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ABSTRACT

Context. Partially ionized plasmas constitute an essential ingredient of the solar atmosphere since layers such as the chromosphere
and the photosphere and structures such as prominences and spicules are made of this plasma. On the other hand, ground- and space-
based observations have indicated the presence of oscillations in partially ionized layers and structures of the solar atmosphere, which
have been interpreted in terms of magnetohydrodynamic (MHD) waves.

Aims. Our aim is to study the temporal behavior of nonlinear Alfvén waves, and the subsequent excitation of field-aligned motions and
perturbations, in a partially ionized plasma when dissipative mechanisms such as ambipolar diffusion, radiative losses, and thermal
conduction are taken into account.

Methods. First, we applied the regular perturbations method for small-amplitude initial perturbations to obtain the temporal behavior
of perturbations. Then we solved the full set of nonlinear MHD equations for larger values of the initial amplitude.

Results. We obtain analytical and numerical solutions to first-, second-, and third-order systems of equations and study the effects
produced by ambipolar diffusion and thermal mechanisms on the temporal behavior of Alfvén and slow waves. We also study how
the majority of the energy is transferred from the Alfvén waves to plasma internal energy. After numerically solving the full nonlinear
equations when a large amplitude is assumed, the profile of the perturbations displays the typical sawtooth profile characteristic of
associated shocks.

Conclusions. When ambipolar diffusion is taken into account, first-order Alfvén waves are damped in time, while second-order
perturbations are undamped. However, due to the release of heat produced by ambipolar diffusion, other physical effects that modify
the physical conditions in the spatial domain under consideration appear. On the other hand, the second-order perturbations are
damped by thermal effects with a damping time that can be longer or shorter than that of Afvén waves. Therefore, after the initial

excitation, Alfvén waves can be quickly damped, while slow waves remain in the plasma for a longer time, and vice versa.
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1. Introduction

Ground- and space-based observations have confirmed the
presence of oscillatory motions in structures of the solar atmo-
sphere, such as coronal loops and prominences. They have been
interpreted in terms of standing or propagating magnetohydro-
dynamic (MHD) waves, opening the door to the development
of coronal and prominence seismology. This approach seeks
to obtain information about physical conditions in these
coronal structures by comparing observations and theoretical
models of oscillations. Reviews on these topics are available
in Roberts et al. (1984), Roberts (2000, 2008), Aschwanden
(2004), Nakariakov & Verwichte (2005), Nakariakov et al.
(2016), Oliver (1999, 2009), Erdélyi & Goossens (2011),
Ballester (2015), Arreguietal. (2018). In the case of solar
prominences, they display various types of oscillatory motions;
Oliver (1999) classified these oscillations into two categories
based on velocity amplitude: small-amplitude events with
amplitudes in the range of 3—-10kms~!, and large-amplitude
events with amplitudes greater than 10kms~'. These two
categories represent truly different phenomena: small-amplitude
oscillations are, in general, not related to flare activity and
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only affect a small volume of the prominence. On the other
hand, large-amplitude oscillations are often associated with an
energetic event that sets the full prominence (or a large part of
it) into an oscillatory state (Luna et al. 2018). Hence, it is likely
more accurate to speak of local versus global oscillatory events
in prominences.

Alfvén waves are of paramount importance in laboratory
plasma physics and astrophysics. In the case of solar physics,
these waves have been used to explain how the energy flows
through and heats the solar atmosphere; however, direct detec-
tion of these waves has proved to be difficult. In recent years,
claims regarding the detection of these elusive Alfvén waves
in different layers and structures of the solar atmosphere, such
as sunspot umbra, bright-points, and spicules, have been made
(Tomczyk et al. 2007; Jess et al. 2009; Mathioudakis et al. 2013;
Srivastava et al. 2017; Grant et al. 2018; Kohutova et al. 2020).
However, most of these reports are based on indirect signatures
that have been interpreted in terms of Alfvén waves. From a
theoretical point of view, linear Alfvén waves have been thor-
oughly studied (Cramer 2001; Mathioudakis et al. 2013) under
the assumption of fully ionized plasmas. However, in recent
years, studies of Alfvén waves in partially ionized plasmas have
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been developed. The main reason for this increased study is
that these plasmas constitute an essential ingredient of the solar
atmosphere, since many layers, such as the chromosphere and
photosphere, and structures, such as prominences and spicules,
are made of partially ionized plasmas (Zaqarashvili et al. 2012;
Soler et al. 2015a,b, 2016; Cally & Khomenko 2018, 2019;
Gonzalez-Morales et al. 2019; Khomenko & Cally 2019).

The damping of Alfvén waves has been studied by differ-
ent authors using different approaches. For instance, Leake et al.
(2005) studied the damping of linear Alfvén waves due to colli-
sions between neutrals and ions in a Vernazza, Avrett, Loeser
(VALC) model (Vernazzaetal. 1981) for the chromosphere
using analytical and numerical methods. The study allowed the
authors to determine which frequencies are completely damped
and which are unaffected and allow for an undamped propa-
gation of the waves. Song (2011) studied the heat released by
strongly damped Alfvén waves in the solar corona. In this case,
a two-fluid model (plasma and neutrals) was used and the damp-
ing was produced by self-consistently considering the collisions
among electrons, ions, and neutrals, as well as the interaction
between charged particles and the electromagnetic field. The
authors applied this model to the chromosphere and the results
indicate that lower frequencies are nearly undamped and can
propagate through the atmosphere, while higher frequencies are
strongly damped at low altitudes. Threlfall et al. (2011) studied
the damping of Alfvén waves in the ion-cyclotron frequencies
when the Hall term is taken into account and when uniform and
non-uniform plasmas are considered. In the case of uniform plas-
mas, they used an analytical approach, while for non-uniform
plasmas a numerical approach was needed. Finally, Lazarian
(2016) investigated the effect of turbulence on the damping of
Alfvén waves, which may have different astrophysical applica-
tions ranging from the launching of stellar and galactic winds
to the propagation of cosmic rays in galaxies and clusters of
galaxies.

Nonlinear Alfvén waves in fully ionized plasmas have also
been a subject of study. It is well known that the behavior of a
linearly polarized Alfvén wave depends on wave amplitude, and
that in the case of large amplitudes these waves generate density
perturbations and motions along the magnetic field lines. In this
scenario a self-interaction appears, which is due to the pondero-
motive force. Hollweg (1971) solved the equations for a linearly
polarized Alfvén wave propagating parallel to the direction of
the magnetic field in a perfectly conducting fluid up to second
order in the wave quantities. In the second order, longitudinal
wave velocity and density fluctuations appear to be driven by
gradients in the wave magnetic pressure. The main conclusions
were: in the low S regime, large-amplitude linearly polarized
Alfvén waves also have longitudinal motions and density fluctu-
ations associated with them; and the Alfvén wave magnetic field
and transverse velocity are not affected by second-order effects,
but are affected by third-order terms, which were neglected.
Rankin et al. (1994) and Tikhonchuk et al. (1995) investigated
the nonlinear dynamics of standing shear Alfvén waves in cold
magnetized plasmas. First, and in the limit 8 = 0, they obtained
analytical approximations for second-order longitudinal veloc-
ity and density perturbations, corresponding to slow waves, as
well as analytical approximations for third-order Alfvén wave
quantities. In the second order, they found a secularly growing
temporal behavior for longitudinal velocity and density perturba-
tions; this produces a density enhancement at the velocity antin-
odes of Alfvén waves and a depletion near the nodes, with an
angular frequency equal to 2k.cs, where ¢ is the sound speed,
and an effective wavenumber of 2k,, where k, is the longitu-
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dinal wavenumber of the Alfvén wave. When the assumption
of B = 0 is removed, the secular effects on longitudinal veloc-
ity and density perturbations disappear and periodic behaviors
are found. Finally, they derived third-order analytical approx-
imations and used numerical solutions to the full set of non-
linear ideal MHD equations to test the validity of analytical
results. Verwichte et al. (1999) studied the temporal evolution of
Alfvénic pulses in cold homogeneous plasmas. The initial distur-
bance produces two pulses traveling in opposite directions; the
ponderomotive force of the two pulses produces a static shock
in longitudinal velocity at the initial position, while the travel-
ing pulses form a shock described by a Cohen-Kulsrud equation.
They found a good agreement between the derived analytical
solutions and the numerical results. Terradas & Ofman (2004)
studied the effect of large-amplitude waves in loops as a pos-
sible mechanism to produce density enhancements at loop tops
due to the effect of the ponderomotive force of standing waves.
They solved the nonlinear three-dimensional MHD equations in
a flux tube configuration and found that for large initial pertur-
bations a pressure imbalance appears along the loop, produc-
ing upflows from the footpoints. Therefore, the accumulation
of mass at the loop top produces a significant density enhance-
ment. Thurgood & McLaughlin (2013) numerically investigated
the effects of ponderomotive force induced by Alfvén waves in
inhomogeneous 2.5D MHD plasmas. They analysed the source
terms in the nonlinear wave equations when the magnetic field
and density are inhomogeneous; they conclude that the pon-
deromotive effects are induced by any Alfvén wave propagat-
ing in any medium and may affect the dynamics of energy
transport and aspects of dissipation. Zheng et al. (2016) stud-
ied the effects of dissipative mechanisms, such as resistivity and
viscosity, on nonlinear Alfvén wave trains. In weakly dissipa-
tive one-dimensional systems, the main effect is the damping
of Alfvén waves and the heating of plasma; however, in the
case of strong dissipation, the Alfvén wave train develops a
damped soliton. In two-dimensional systems, phase mixing is
present, which enhances damping and plasma heating. Finally,
Lardner & Trehan (1991) studied the nonlinear evolution of
Alfvén and magnetoacoustic waves in a low-density plasma with
a strong magnetic field, using a very different approach based
on the Chew-Goldberger-Low approximation. In the reported
research on nonlinear Alfvén waves, the plasma has always been
considered as fully ionized and treated as a single fluid. This
assumption of fully ionized plasma is valid, for instance, for the
solar corona; however, as we have previously pointed out, the
plasma is only partially ionized in some layers and structures
of the solar atmosphere. On the other hand, except in one case
(Zheng et al. 2016), dissipative effects have not been taken into
account, and ideal or resistive MHD equations have been used.
Therefore, it is of great interest to study the behavior of nonlin-
ear Alfvén waves in partially ionized plasmas; this approach was
taken by Martinez-Gémez et al. (2018), who, using a nonlin-
ear multi-fluid code, investigated the behavior of high-frequency
nonlinear waves in a partially ionized plasma, paying special
attention to the heating caused by ion-neutral collisions.

The aim of this paper is to study the temporal behavior of
nonlinear Alfvén waves in a partially ionized plasma, whose
physical conditions are those of quiescent solar prominences,
when ambipolar diffusion is taken into account. For this study,
we consider our plasma as a single fluid and, apart from ambipo-
lar diffusion, we have also included radiative losses and ther-
mal conduction as dissipative mechanisms for the field-aligned
motions and density perturbations excited in the plasma by the
ponderomotive force. Furthermore, third-order Alfvén waves,
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which are influenced by these second-order perturbations which
in turn are influenced by thermal effects, have also been studied.
The layout of the paper is as follows: First we introduce
single-fluid MHD equations, an equilibrium model and dis-
sipative mechanisms; next, we derive equations for parallel
propagating waves and apply the regular perturbations method,
obtaining first-, second-, and third-order equations which have
been solved for different cases; finally, we obtain numerical solu-
tions for the full set of nonlinear MHD equations and compare
the results with those from the regular perturbations approach.

2. Basic equations
2.1. Governing equations in the single-fluid approximation

We study the dynamics of partially ionized plasmas within the
framework of the single-fluid approximation. In short, the single-
fluid approximation assumes a strong coupling between ions,
electrons, and neutrals so that all the species effectively behave
as one fluid. In this approximation, the basic MHD equations are
written in terms of total quantities, while the effect of the interac-
tions between the various species remains in the form of several
nonideal terms. For instance, the influence of ion-neutral colli-
sions is present through the so-called ambipolar diffusion effect,
which acts as a diffusive mechanism for the magnetic field. The
single-fluid approximation is appropriate when studying MHD
waves in partially ionized plasmas as long as the wave frequency
remains lower than the ion-neutral collision frequency. The val-
ues of the collision frequencies in the solar chromosphere can
be checked, for example, in Fig. 11 of Ballester et al. (2018); in
solar prominences, the collision frequencies are similar to those
found in the upper chromosphere. In the following expressions,
MKS units have been used.
The basic single-fluid equations used in this work are:

%ﬁ =—pV-u, @)
p%:—Vp+i(VxB)xB, )
% =VXx@xB)-Vx(@nVxB)

+ V X {na [(V x B)x B] x B}, 3)
%:—7pV~v+(y—l)£, 4)
p= p}%, (%)
where % = % + v - V denotes the material or total derivative,

p is the mass density, p is the thermal pressure, T is the tem-
perature, v is the velocity vector, B is the magnetic field vector,
v is the adiabatic index, u the magnetic permeability, n and na
are the coefficients of Ohmic and ambipolar diffusion, respec-
tively, L represents the net effect of all the sources and sinks of
energy, R is the gas constant, and /I is the mean molecular weight.
Equations (1)—(5) are the continuity, momentum, induction,
energy, and state equations, respectively.

2.2. lonization state

The ionization state of the plasma is determined by the balance
between ionization and recombination. The general approach to
computing the ionization state is to take into account all the
ionization and recombination processes and to determine the

time-dependent values of the ionized and neutral fractions.
Here, to estimate the ionization degree, we follow Heinzel et al.
(2015), who used one-dimensional non-LTE radiative transfer
models (Heinzel et al. 2014) to determine the ionization degree
in several prominence slabs. In particular, these authors pro-
vide tables for the ionization degree for different temperatures
and pressures at the prominence. Heinzel et al. (2015) consider
a prominence plasma composed of hydrogen and helium, whose
abundance is 10% and which is fully neutral. Then, the ioniza-
tion degree i is defined as i = ,’Z—;, where n, is the electron density
number and ny is the total hydrogen density number (ng; + 7,),
using the following subscripts: e for electrons, p for protons,
H for neutral hydrogen plus protons, HI for neutral hydrogen,
and Hel for neutral helium; the total particle density number is
N = ny + nye; + ne. Then, taking into account that nye; = 0.1ny,
N can be written as

1.1
N =ne (l + —) 6)
i
and the gas pressure, p = NkgT, is given as
1.1
p=ne|l+—|kgT @)
i
or, using the mass density, as
pksT (i +1.1)
_rBL YT ®)

1.4H ’

where kg is the Boltzmann constant and H is the atomic mass
unit. Using Table 1 in Heinzel et al. (2015) and the Fit function
from the Mathematica symbolic package, we performed a poly-
nomial fit, up to the third order in pressure p and temperature
T as well as product terms and interactions, of the ionization
degree:

i=a+bp+cp’ +dp* +eT + fT*+gT> +hpT + jp*T +kT?p, (9)

where a, b, c,d, e, f, g, h, j, and k are the coefficients of the fitted
function (see Appendix A). Then, using Eq. (9) together with
the temperature and pressure values in Heinzel et al. (2015), we
can compute the fitted ionization degree. The goodness of our
surface fitting is assessed by computing the determination coef-
ficient R?:

D=0y
2 -t
i

where i; corresponds to the values of the ionization degree
in Heinzel et al. (2015), i corresponds to the fitted ionization
degree using Eq. (9), and i; corresponds to the mean of the values
of the ionization degree in Heinzel et al. (2015). Using Eq. (10),
the obtained value for R? is 0.98 or 98%. Figure 1 compares
the fitted surface, described by Eq. (9), to data in Table 1 of
Heinzel et al. (2015), visually showing the goodness of the fit.

Next, in order to determine the total particle density number
we need to know the plasma pressure; from Eq. (8), the ioniza-
tion degree can be written as

. plAH
1=
pkB T

R (10)

- 1.1 (11)

Then, once a value for the density was assumed, and using the
different temperature values in the Heinzel et al. (2015) table,
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Fig. 1. Ionization degree i versus temperature 7" and pressure p. The
blue dots correspond to data in Table 1 in Heinzel et al. (2015); the sur-
face represents the fitting described by Eq. (9).

we solved Egs. (9) and (11) together. When the pressure is deter-
mined, the total particle density number is obtained from

p

N=—" 12
kT (12)
and the rest of particle density numbers can be determined from
N
ne:np:1+%, 13)
ny = = (14)
l
nHer = N — ng — ne, (15)
NH1 = NY — Ne. (16)
Finally, the mean molecular weight can be computed as
o Zpnmg
__m_ Sgmy (i + npian + Nl el + Nelile) (17
H= H h H a (l’lp + nyp + NHer + }’le)H ’

where 7 is the mean mass per particle.

2.3. Dissipative mechanisms

The induction equation (Eq. (3)) contains two magnetic diffusion
terms in addition to the ideal convective term. The second term
on the right-hand side is Ohmic diffusion, which is caused by
electron collisions. The coefficient of Ohmic diffusion is given
by
e
n=— (18)
Moe*ng

where e is the electron charge. The total friction coefficient of
species 8 with other species is

ap = Z Qppr -

B#B

19)

Therefore, in our case, the total friction coeflicient of electrons
a, with protons, neutral hydrogen, and neutral helium is
Qe = Qep + AeH1 T AeHel- (20
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The friction coefficient for collisions between two charged
species g and ¢’ (Spitzer 1962; Braginskii 1965) is

4
ngng e In Agy

(. \/ﬁeozmqqr (kB T /mgq

Agq )3/2 ’ (2 1)

where myqy = mgmg / (mq + mq/) is the reduced mass, ¢ is the
permittivity of free space, and In A is the Coulomb’s logarithm
(Spitzer 1962; Vranjes & Krstic 2013). This logarithm is given
by

(22)

247€l kST
InAgy = In | 5o,

e3\ng +ng
while the friction coefficient for collisions between a charged
or neutral species 8 = e, p,HI,Hel, and neutral species n =
H1, Helis

skT 12
} T (23)

ag, = Mgh,Mmg, | ——
pn ﬁnﬁnﬂmﬁ

where o7, is the collision cross section (Vranjes & Krstic 2013).

The third term on the right-hand side of Eq. (3) is ambipolar
diffusion. This term contains the effect of ion-neutral collisions
in the single-fluid approximation. The coefficient of ambipolar
diffusion in a hydrogen-helium plasma (Zaqarashvili et al. 2013)
is

_ ‘f%HQHeI + fIZ.IeICVHI + 2€H1€He 101 He

M= - , (24)
Ho (a'Hla'He] - aH IHCI)

with the friction coefficients for ay.; and ay; given by

QHe1 = QHelp T @HeH1 T QHele (25)

QH1 = QH1p + AH1He1 T QHIe- (26)

The effect of all the sources and sinks of energy is included in
the function £ on the right-hand side of the energy equation
(Eq. (4)). The expression of L is

L=V -(VT)=-pL(p,T)+j-E* +ph, Q27)

where the various terms on the right-hand side are the heat flux
due to thermal conduction V - («VT). Here, « is the thermal con-
ductivity tensor and L (p, T') is the radiative loss function. The
j - E* is the generalized Joule heating, where j is the current
density and E* is the effective electric field. The & represents an
additional and unspecified external constant heating per unit vol-
ume. The thermal conduction in a magnetized plasma is strongly
anisotropic. For convenience, we split the thermal conduction
term in Eq. (27) into its components that are parallel and per-
pendicular to the magnetic field direction, namely

B-VT Bx (VT x B
V'(KVT):B'V(K” |BP )+V'(KL T

|BI? ) o

where k; and k, are the parallel and perpendicular conductiv-
ities, respectively, with respect to the magnetic field direction,
and |B|* is the square of the modulus of the magnetic field vec-
tor. In a fully ionized plasma, « is essentially determined by the
electron conductivity, while «, is mainly determined by ions. In
a partially ionized plasma, the isotropic conductivity of neutrals
has to be added to both parallel and perpendicular components.
Thus, the parallel and perpendicular components of thermal con-
ductivity are approximated by k| = k. + &k, and k; = k,, Where
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Table 1. Numerical values of the piecewise constants y* and « for
prominences (Hildner 1974).

Reference

Hildner (1974)

Regime T X" a

10.000 1.76 x 107 7.4

Prominence

Notes. All quantities are expressed in MKS units.

Ke, and k, are the parallel electron thermal conductivity and
the total neutral thermal conductivity, respectively, as given by
(Braginskii 1965; Meier 2011; Soler et al. 2015a):

212
nskiT
Key = 3.2—2 (29)
Qe tot
5 n? n?
Kn = = (—HI + — )kéT, (30)
3 (HItot (Hel, tot

where ag; is the total friction coeflicient of species 3, given by
Qo = Qp + pg; this includes the term agg, which accounts for
self-collisions.

The radiative loss function, L (o, T), accounts for radiative
losses due to plasma cooling. Determining the plasma radiative
losses as a function of temperature and density is a difficult task
that requires complicated numerical solutions of the radiative
transfer problem. The radiative loss rate depends, for example,
on the completeness of the atomic model used for the calcula-
tion, on the atomic processes included, on the ionization equi-
librium, and on the assumed element abundance, among other
factors. The solution of the radiative transfer problem is beyond
the scope of the present paper. A frequent alternative approach
to account for the plasma radiative losses is to use semi-
empirical parametrizations of the radiative loss function that are
widely available in the literature (Rosner et al. 1978; Milne et al.
1979; Dahlburg & Mariska 1988; Klimchuk & Cargill 2001;
Carbonell et al. 2004; Landi et al. 2012). These parametrizations
enable us to incorporate radiative losses in a consistent way
without needing to solve the full radiative transfer problem. The
expression of the radiative loss function we used is

L(p,T)=px*T, (31

where y* and « are piecewise constants dependant on the tem-
perature, and we use the parametrization of y* and @ given in
Hildner (1974) (see Table 1). The inconvenience of this approach
is that the semi-empirical radiative loss function is obtained
under the assumption of optically thin plasma, while the cool
partially ionized plasmas of interest here may not completely sat-
isfy this condition. Owing to finite optical thickness, the actual
radiative losses of the plasma would probably be reduced to
some degree compared to the optically thin calculation.

Finally, the generalized Joule heating j-E* takes into account
plasma heating due to the dissipation of electric currents by both
Ohmic and ambipolar diffusion. The expression of j - E* is
. * . |2 s 12
B =i+ pnclinP (32)
where 7c is the so-called Cowling’s (or total) diffusivity given
by
ne =1+ B (33)
and j; and j, are the components of the current density parallel
and perpendicular to the magnetic field, respectively, that can be

computed as

1[(VxB)-B]B

= - 34
Ji i B[ (34)
. 1B x[(VXB)XxB]

L=- : 35
=g Bl (35

Thus, Ohmic diffusion is responsible for the dissipation of par-
allel currents, while Cowling’s diffusion, that is to say the joint
effect of Ohmic and ambipolar diffusion, is responsible for the
dissipation of perpendicular currents.

2.4. Equations for parallel-propagating waves

We use a Cartesian coordinate system and assume that the
plasma properties vary on the z-direction only, whereas x and
y are ignorable directions. Then, we can conveniently rotate the
coordinate system for v and B to lie on the zy-plane with no
loss of generality. Hence, v = (0,v,,v.) and B = (0, B, B;). The
solenoidal condition V - B = 0 imposes that dB,/dz = 0, while
from the z-component of Eq. (3) we get dB,/0t = 0. Therefore,
B, is a constant in both space and time. In this one-dimensional
case, Egs. (1)—-(4) become

op 0
9P _ 9 vy, 36
o 2 (ov2) (36)
z B, OB
ov; = _vz%_la_p__y_y’ (37)
ot 0z poz up 0z
vy 0 B, 0B,
Dy _ _ Z& + =22 (38)
ot 0z up 0z
OB, v, 9 o ( 0B,
— =B,— By, )+ — —_— 39
P 6(}v)+6z(ncéz) 59
op _ —v ap 3 av,
o - o oz
N OB, \* L9 Bl + Bik. 9T
4 #TIC 0z dz\ B2+B; Ox
—(y =D (p™'T" - ph). (40)

3. Regular perturbations approach

Before exploring the numerical solutions to Egs. (36)—(40), we
perform an approximate analytic study of the solutions in the
limit of small amplitudes in this section. To do so, we consider
small-amplitude Alfvén waves superimposed on a homogeneous
and constant equilibrium state. The purpose of this section is
to establish an analytic basis that can be compared to the fully
numerical simulations performed later. We define the parameter
€ = vo/cap, where v is the Alfvén wave initial velocity ampli-
tude and cy4 is the equilibrium Alfvén speed. Then, assuming
that € <« 1, we write

p=po+ep, (41)
p=po+ep, (42)
T =T, + €T, (43)
v, = eV, (44)
vy = ev; + e3v'3y, 45)
B. = By, (46)
B, = €B,+€B,, (47)
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where the subscript 0 denotes a homogeneous and constant equi-
librium quantity and the prime ’ denotes a perturbation. Since,
initially, we are interested in Alfvén waves, the perturbations of
the perpendicular components of velocity and magnetic field are
assumed to be of first order in € with a third-order correction,
while the perturbations of the remaining quantities are assumed
to be second order in €. Contributions with higher orders in €
are neglected. We substitute these quantities in Egs. (36)—(40)
and separate the various terms according to their order with
respect to €. From the zeroth order equations in €, we find that
the unspecified external heating source must be 1 = pox*T to
compensate for radiative losses in order for the equilibrium to be
satisfied. The first-order equations in € govern the behavior of v,
and By, and so they describe linear Alfvén waves. The second-
order equations in e involve v;, p’, p’, and T, so that they
describe the generation of slow magnetoacoustic waves due to
the nonlinear coupling with the Alfvén waves. The equations for
higher orders in € represent nonlinear corrections on the Alfvén
and slow waves. In this approximate study, we restrict ourselves
to the first-, second-, and third-order equations in €.

3.1. First-order equations

In order to write all the equations under study in dimensionless
forms, we introduce the following dimensionless quantities:

., Voo _zZ _ t _ nco
Vo= yk.=kL, 7=—,1t=-, = —,
CAy() < ¢ L T e, CA’()L
_ B/ ~ ’ _ CA,O
=—,p = p_7 a0=—=1 (48)
By Po CAD

where L corresponds to half the size of the spatial domain
under consideration and 7 is a characteristic timescale, which
are related through the equilibrium Alfvén speed cao = L/7.
Hereafter we drop bars for the sake of simplicity.

The first-order equations in € are:

o, 4B,
R @
OB, oV, B!

y y y
B _ M 7%, 50
5 - o + 70 o (50)

These two equations involve the components of v and B trans-
verse to the equilibrium magnetic field and can appropriately be
combined into an equation for v} only, namely

0? vy 0? vy o vy o

oz~ oz "ozar T
where 1¢c is Cowling’s diffusivity computed at the equilibrium
state. Equation (51) governs linear Alfvén waves that are damped
by ambipolar and Ohm’s diffusion, and it can also be shown that
B, satisfies a similar equation. Since we are interested in an ana-
lytical solution to Eq. (51) describing damped linear standing

Alfvén waves, we use the separation of variables method. We
assume that v} (z, t) can be written as

Vi(z, 1) = u(2)g(t).

619}

(52)

Then, substituting this expression in Eq. (51) and using kf as the
separation constant, we obtain

d2g(t dyg(t
dgtg ), kgnc,o% +K2g(H) =0 (53)
2

Tu@ | 2w =, (54)
dz? E
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where the separation constant &, plays the role of the wavenum-
ber along the magnetic field direction. Assuming the station-
ary state of wave propagation, the solution to Eq. (53) can be
obtained assuming that g(f) behaves harmonically as ¢, which
provides a dispersion relation of

w* — ik2ncow — k2 =0, (55)
whose solution for w is
2
incok? 4k = ng. ok 56)
= + ,
2 2
a complex angular frequency, w = w, + iw;, with
4kz — ’7% ok?

= 57
w 3 (57)

nc.ok?

;= . 58
w, > (58)
Then, g(¢) can be written as
g(1) = e 210 (C} cos wyt + Cs sin w,1) . (59)
On the other hand, the solution to Eq. (54) is
u(z) = Cs3 cosk,z + C4 sink,z. (60)
Then, v;,(z, t) can be written as
v;,(z, 1= e~ 2kncat (Cy cos w,t+ Cy sin w,t)

X (C3 cos k,z+ Cy4 sin k;z) (61)

Now, in order to determine the four constants of integration,
we impose the following conditions representative of a standing
oscillation with wavelength equal to 4L:

Vi(z=—-1,0=0, (62)
Vi(z=1,1)=0, (63)
v} (z,0) = vg cos k.2, (64)
. (z,t
( y;t )) =0, (65)
=0

it

where the longitudinal wavenumber k; = 7, and vy is the initial
amplitude. Then, using the above conditions, the final solution
for the transverse velocity perturbation is

1 K?
v;.(z, 1) = vy exp [—Ekfnc,gt] (cos w, t+ % sin w, t| X cos k.7

W,
(66)
with the period and damping time given by
2 4
p=L- T 67)
Wy [
4k? - ’7%:,0"?
1 2
- = . 68
i w;  kco (68)

Once the expression for the perturbed velocity amplitude is
known, the solution for the perturbed magnetic field B} can be
obtained by integrating
dv, 0B

ot oz

(69)
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to obtain

Vo exp [——kznc ot] (k“nC ot 4a)f) sin k,z sin w,t

Byen = T

(70)

In order to plot the temporal behavior of first-order perturbed
velocity and magnetic fields, we impose the dimensionless ini-
tial amplitude of the velocity perturbation vy = 0.15 and com-
pute other dimensionless quantities such as 7¢ and w,. To this
end, we assume values for the magnetic field, density, and tem-
perature typical of quiescent prominences By = 5 x 107*T,
0o =5x10"""kg-m™, and T = 12 000 K. Then, using these val-
ues, the Alfvén speed, ca o, is 63.08 km s~! and the sound speed,
Cs0, 18 15.08 km s~L. Furthermore, in order to remain in the low-
frequency regime and to satisfy the requirements of single-fluid
approximation, we take L = 10®m as our characteristic length
and 7 = 15.85 s is our characteristic timescale; these values give
a period for the Alfvén waves of 64.35s and a frequency of
0.015 Hz. Finally, using Eq. (48), our dimensionless quantities
are ncp = 0.0023 and w, = 1.57. The temporal behavior of the
linear Alfvén velocity and magnetic field perturbations can be
seen in Fig. 2, which shows the damping of the linear Alfvén
wave produced by ambipolar diffusion.

3.2. Second-order equations
The second-order equation in € corresponding to the energy

equation (Eq. 40) is

6[)’ BV; ZT/
=—ypo— +(y-1 —_—
E YPo 5 (y = Do P
0B,
Uco( oz )
where ko denotes the value of «; computed with the equilib-
rium quantities (see Sect. 2.3), and L, and Ly are the partial
derivatives of the radiative loss function with respect to density

and temperature, respectively, evaluated at the equilibrium state,
namely

~ Po (Lpp/ +Lr T’)]

+(y-1) (71)

oL -
L,= (a_) =x'T¢ (72)
P po,To
aL *—
Ly = (aT) = apox " T§ " (73)
po,To

In addition, p’, p’, and 7" are related through the perturbed equa-
tion of state as
7 / T/
r_p, T
po po To
where the term of order €* has been neglected. In writing this
last equation, we assumed, for the sake of simplicity, that the
ionization degree of the plasma remains approximately constant.
Now, we introduce
2
P
w, = —L,, wr=
P e

(74)

poTo
Po

In order to obtain the dimensionless energy equation, we intro-
duce the following dimensionless quantities:

L. (75)

kio = kioTo c = 50 W, = W,T, Wy = WTT.
0 = ) 5,0 — —» - s T — T
K= eaopol” 0 T cag” T
’ _ T/
p=—t 7= (76)
B/ To

A
=W

time

Fig. 2. Dimensionless linear Alfvén wave velocity (red) and mag-
netic field perturbations (blue) versus dimensionless time. The veloc-
ity amplitude has been computed at z = 0, while the magnetic field
amplitude has been computed at z = 1 (T = 12000, vy = 0.15,k, =
/2,mco = 0.0023).

Then, the dimensionless second-order equations become

o’ _ 0V
N ' 10B?
AR C A ST 78)
ot 0z 2 0z
2 50 ’
o _ o (p" =57
™ S+ (y=1) K“O—az2
%o y
~(y-n|2 Wop + wr —p -0
Y sO
B;\’
+(y - I)UC,O(a_) , (79)
Z

where aw, = wr and, using Eqgs. (74), (48), and (76), T’ has
been written as

T'(2,1) = 2 p'(z 1) - P (2,0,
Cs,O

which has been substituted in Eq. (79). The right-hand side of
Eq. (78) involves a quadratic term in B}, which drives slow mag-
netoacoustic waves, since the second-order magnetic pressure
perturbation associated with the Alfvén waves couples with the
thermal pressure perturbation associated with the slow waves. In
absence of this term and the last term in Eq. (79), Eqs. (77)—
(79) would represent free slow magnetoacoustic waves damped
by thermal conduction and radiative losses. Here we are not
interested in the free slow waves, which have been described
elsewhere (Goossens 2003; Roberts 2004, 2006; Priest 2014).
Instead, we focus on the solution that represents the generation
of slow magnetoacoustic waves due to the nonlinear coupling
with the Alfven Waves On the other hand, from here on it is
assumed that c? 0 < 2 A0S that is to say, we consider a low-8
plasma, where the plasma 3 is defined as

(80)

_ Cs,O _ YPo

=2 T m
cao Byl
In the following subsections, we consider different cases in order

to understand how the involved physical mechanisms affect the
temporal behavior of second-order perturbations.

(81)
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3.2.1. Case where radiation and thermal conduction are
neglected

First, we consider the case in which radiation and thermal con-
duction are neglected. We assume an equilibrium temperature of
T = 12000K and, following Sect. 2.1, the ionization degree in
this case is i = 0.82, the mean molecular weight is @ = 0.73,
and 8 = 0.07. From Egs. (77)—(79), the system of equations to
be solved is

6p’ av
2

ot 9z’ (82)
v’ dB?
P _ _al _19%, , (83)
ot 0z 2 0z
(9p’ 2 ov. B;; 2

-1 . 4
o 0%, =+ (y - Dnco e (84)

In this system of equations, the only dissipative term is the sec-
ond term on the right-hand side of Eq. (84), where the expression
for B} obtained from Eq. (70) has been used. The system of equa-
tions was solved, numerically, together with the following initial
and boundary conditions, respectively,
P'(2,0)=v.(z,0)=p'(z,0) =0,V.(z=1,0) =vi(z=-1,1) =0
(85)

The case without ambipolar diffusion was studied by
Rankin et al. (1994) and Tikhonchuk et al. (1995), among oth-
ers. To recover it we can neglect the dissipative term in Eq. (84)
and combine the remaining equations to obtain a partial differ-
ential equation for the longitudinal velocity perturbation, v,

10 (0B}
T 20| oz |
Using the D’Alembert’s method, an analytical solution to this
equation can be found, namely

62 ’
50 82

62 ’
8t2 -

(86)

, v%aﬁ sin (2k;z) [w, sin (2csok;t) — cspk;sin Qw,1)] &)
V. = )
‘ (8¢ gkt — 8c, ok2w?)

This analytical solution can be decomposed in two sinusoidal
terms with angular frequencies 2c¢; ok, and 2w, respectively; the
longitudinal velocity perturbation comes from the composition
of the two sinusoidal curves with different amplitudes and angu-
lar frequencies. Considering the low 8 regime, ¢ k; < w,, the
second term in Eq. (87) can thus be neglected and the dominant
angular frequency of the solution is 2¢, ok, (Rankin et al. 1994;
Tikhonchuk et al. 1995). Using the already known value for c;,
the oscillatory period is 132 s, although this value is an approxi-
mation to the true period.

To explore the effect of ambipolar diffusion produced by a
change of the Alfvén wave wavelength, we consider the follow-
ing values for L: 10’ m, 10° m, and 5 x 10* m; therefore, the cor-
responding wavelengths are 4 x 10’ m, 4 x 10° m, and 2 x 10° m
Using these values for L, three different values for the dimen-
sionless Cowling’s coefficient are obtained, 0.00023, 0.023, and
0.045, respectively, which have been used when numerically
solving Eqgs. (82)—(84).

Figure 3 shows the temporal and spatial behavior of the heat
released due to ambipolar diffusion. We observe that most of
the heat is released at the central part of the spatial domain and
decreases towards the boundaries, and that it is attenuated in
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Fig. 3. Dimensionless heating versus dimensionless time and space for
nco = 0.023.

time, as can be expected. When different values of Cowling’s dif-
fusivity are considered, we find that the amount of heat released
increases when Cowling’s diffusivity is increased.

Figure 4 displays the temporal behavior of pressure pertur-
bation at z = 0 (left panel) and z = 1 (right panel) for the
different values of Cowling’s diffusivity that are considered. At
the center (z = 0) of the spatial domain, pressure perturbations
are always positive and the amplitude increases when Cowling’s
diffusivity is increased. However, for the smallest considered
value of Cowling’s diffusivity, pressure perturbations become
very slightly negative at the minimum of the oscillations. It
seems that the net effect of an increase in Cowling’s diffusiv-
ity is that pressure perturbation curves within the positive zone
of the plot are slightly shifted up, while a decrease produces a
downward shift of the curves, which slightly enter the negative
zone of the plot, as can be observed in Fig. 4 (left panel). At
the boundary (z = 1) of the spatial domain, we observe two dif-
ferent behaviors: for the highest and the intermediate values of
Cowling’s diffusivity, the amplitude of the pressure perturba-
tion goes from negative to positive values, while for the smallest
value of Cowling’s diffusivity, the amplitude of the pressure per-
turbation is negative. This behavior of pressure perturbations is
directly related to the behavior of density and temperature per-
turbations. In the case of density perturbations (Fig. 5), they
become negative at the center (z = 0) of the spatial domain
for any significant value of Cowling’s diffusivity, while they
become positive at the boundary (z = 1). A similar behavior
is observed in Fig. 6 for temperature perturbations; we note the
sudden increase of the temperature perturbation during the time
in which most of the heating is released (Fig. 6, left panel). We
also observe that, as expected, as the value of Cowling’s diffu-
sivity increases, so does the temperature perturbation because of
the more intense heating. Once the initial temperature increase
is over, the temperature perturbations become oscillatory in the
same way the pressure and density perturbations do. On the con-
trary, at z = 1 (Fig. 6, right panel) we only observe oscillatory
perturbations without, as before, any sudden increase in temper-
ature due to the lack of heat released at the boundaries of the
spatial domain. During the oscillatory behavior, whose ampli-
tude becomes constant after some time, the observed tempera-
ture variations are due to the interplay between pressure and den-
sity perturbations shown in Eq. (80). Finally, Fig. 7 (left panel)
displays the temporal behavior of longitudinal velocity pertur-
bations, at z = 0.5, for the three different values of Cowling’s
diffusivity. It is interesting to note that the high-frequency
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Fig. 4. Dimensionless pressure perturbations versus dimensionless time computed at z = 0 (leff) and z = 1 (right), for ncp = 0.00023 (black),

0.023 (blue), and 0.045 (red).
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Fig. 5. Dimensionless density perturbations versus dimensionless time computed at z = 0 (left) and z = 1 (right), for nco = 0.00023 (black), 0.023

(blue), and 0.045 (red).
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Fig. 6. Dimensionless temperature perturbations versus dimensionless time computed at z = 0 (left) and z = 1 (right), for njco = 0.00023 (black),

0.023 (blue), and 0.045 (red).

distortions of the sinusoidal shape that appear for the very low
value of nco disappear when the value of nc is increased.
Therefore, a sufficiently intense Cowling’s diffusion is able to
damp the high-frequency modulation of the longitudinal velocity
perturbation, which is associated with the damped Alfvén wave.
Only the low frequency, associated with the slow wave, remains.

The temporal behavior of pressure, density, and temperature
perturbations can be understood as follows. For any significant

value of Cowling’s diffusivity, the release of heat due to ambipo-
lar diffusion produces, for short periods, an increment of tem-
perature around the center of the spatial domain. Later on, the
behavior of the temperature becomes oscillatory. The rise in
temperature at the center of the spatial domain, because of the
heating, causes a local increment of pressure. In turn, this over-
pressure pushes the material away from the center, so that a lon-
gitudinal flow towards the boundaries is generated. As a result of
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Fig. 7. Left panel: dimensionless longitudinal velocity perturbations versus dimensionless time computed for rc = 0.00023 (black), 0.023 (blue),
and 0.045 (red); Right panel: dimensionless longitudinal velocity perturbation versus dimensionless time. Full analytical solution obtained from
Eq. (89) (red) and numerical solution (blue) (z = 0.5, vy = 0.15,k, = 71/2,nco = 0.045 and 0.00023).
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Fig. 8. Dimensionless density perturbation versus dimensionless time
and space for ¢ o = 0.045.

this, mass density decreases at the center and increases near the
boundaries (see Fig. 8). We note that this effect is the opposite
of that of the ponderomotive force, which tends to accumulate
mass at the center of the domain. Which of the two effects dom-
inates depends on the efficiency of the heating due to ambipolar
diffusion.

On the other hand, Eqgs. (82)—(84) can be combined to obtain
the following wave equations:

a2p/ _C2 a2p/ _ Cz_,oﬁ 63;2
o 092 T 2 97| oz
1 0 (9BY 88
+(y - )Uc,ogt(az) (88)
v, 2 Fv._ 14 OB}
o 092 20t| 0z
d (0B’
—(y=Dnco— =21 . 89
(y — Dncyo 6z( P ) (89)

Then, analytical solutions for pressure (p’) and longitudi-
nal velocity perturbations (v;) can be found by means of
D’ Alembert’s method, and for density perturbations (o’) from
Eq. (82). These solutions are much more complex than in the
case without ambipolar diffusion (Eq. (87)) and are not shown
here. Instead, in Fig. 7 (right panel), we compare the obtained
analytical solution for velocity perturbation with the previously
obtained numerical solution for two different values of Cowl-
ing’s diffusivity and find a perfect agreement.
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Fig. 9. Dimensionless variation of the waves and internal energies
versus dimensionless time. Black: internal energy; red: Alfvén wave
energy; blue: slow wave energy. (T’ 12000K, vy 0.15,k;,
7/2,nco = 0.0023).

These full analytical solutions for the pressure, longitudinal
velocity, and density perturbations obtained from Eqgs. (88), (89),
and (82) can be used to compute the temporal behavior of the
internal energy, as well as the energy associated with Alfvén and
slow waves. In dimensionless form, the change in the plasma’s
total internal energy is computed from

1
AEint = f
-1

where p(z) — po = €?p’ is the final pressure distribution and py is
the initial constant pressure. The change in the slow wave energy

is
P ] dz,

1 'Y,
AEgow = Ef:l [v12 + 2

3,0
which involves kinetic and thermal energy; for Alfvén waves it
is

1 : 2 2
AEAlfVCn = E Il (Vy + By )dZ,

which involves kinetic and magnetic energy. Figure 9 shows the
temporal behavior of the variation of these energies. It is clear
that almost all the energy from Alfvén waves goes to increment

P2 — po

d9
y-1 ‘

(90)

72

oD
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and ¢ = 0.023 (red curve)).

the internal energy and, as a consequence, to increment the
plasma temperature. On the contrary, only a negligible amount
of energy goes to slow waves. In order to obtain an approxima-
tion to the plasma’s final temperature, we neglect the amount of
energy transferred from Alfvén to slow waves and we assume

Exa = Ein, 93)
where Exp is the total kinetic energy of the Alfvén wave given
by

|
Exa =
-1

1
=PoVi, (94)

72 _
Spovydz = 2

2

where v, vo cos(35z), the initial perturbation for the Alfvén
wave. Therefore, the above expression provides us with the ini-
tial energy in the Alfvén wave. The Ej, is the internal energy

given by
P~ Po

E~—jﬂﬂ@_m
mt — - 1 £
-1 ’)/—] ’}/—1

where p(z) is the final pressure distribution and which, for the
sake of simplicity, has been assumed as uniform and equal to
p. Then, substituting the energy expressions in Eq. (93), we can

dz=2

95)

obtain an expression for the final temperature, namely:

2
1 Vo
Cs,O
Then,
2
1 Vo
AT =T - Ty =To|zy(y - D5~ | O7)
4 o

dividing by T and introducing ca g, the temperature variation
can be written in dimensionless form as
2
1

V,
= Yy -
C

AT = -
4 s,0

(98)
Using Ty = 12000K for the equilibrium temperature, nco =
0.045, and the equilibrium Alfvén and sound speeds, we obtain
AT = 0.108. On the other hand, using the above-mentioned ana-
lytical solutions for pressure and density perturbations, Eq. (80),
and the same physical conditions, we can compute the spatial
average of temperature perturbation by means of

L

(T'[z,1]) = %‘ j:L T'[z,1] dz.

99)
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Fig. 12. Logarithm of the damping time versus L for 7 = 12000K
(red), T = 8000 K (blue), T = 6000 K (black).

This computation is done for a time at which all the Alfvén
wave’s energy has been converted to internal energy and the
obtained result fully coincides with the value of AT that was
obtained before.

3.2.2. Effect of radiation

In this case, our energy equation comes from Eq. (79), when
thermal conduction is neglected and a radiative loss function
(Hildner 1974) is considered. Then, the system of equations to
be solved is:

op' _ _ov;

== 100
ot 0z (100)
6 : , 183/2
o 1T (101)
ot 0z 2 0z
2
ap’ 2 Ov' CS,O ’ y ’ ’
ot = _CS’OG_ZZ +(y-1) [_7 (wpp +wr (%p —pP
0B\’
+-1) Uc,o(a—) : (102)
74

This system was solved together with the same initial and bound-
ary conditions as in Sect. 3.2.1. In order to determine the effect
produced by radiative losses, we consider three different equilib-
rium temperatures, 7 = 12000K, 7' = 8000 K, and 7" = 6000 K,
typical of quiescent solar prominences, together with two dif-
ferent values for L, 103 and 107 m, in an attempt to identify the
effect of a change in the wavelength, A = 4L, of the Alfvén wave.
Next, the dimensionless numerical values of Cowling’s diffusity,
1c.0, are computed together with wr and w,. Figures 10-11 show
the temporal behavior of density, pressure, longitudinal velocity,
and temperature perturbations for L = 103 m. The results show
that for L = 10° m, the shorter wavelength, the perturbations cor-
responding to 7 = 12000 K are quickly damped; for L = 107 m,
the longer wavelength, the opposite happens and the perturba-
tions corresponding to 7 = 6000 K are more quickly damped.
This behavior can be understood following Soler (2010). In this
work, the author obtained an analytical approximation for the
imaginary part of the angular frequency, in the case of nonadia-
batic slow waves in a filament thread. When radiation and ther-
mal conduction are considered, the imaginary part of the angular
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Table 2. Damping times for slow waves.

T(K) L=10m, L=10m L=10m
12000K 3616905 3625 44
8000 K 52202 621s 105
6000 K 11912 739 627s
frequency is given by
-1 - D(kyok? + wr) +
o = Y10 Z Dol +en) e (103)

2')’ Ciokz2 + (’}/ - 1)2(K”’Qk§ + a)r)

Then, once this quantity has been computed for the different tem-
peratures, the damping time can be computed from

1

- (104)
|yl

D

When only radiation is considered («; = 0), with the help of
the Egs. (103) and (104), we can obtain the damping times for
each of the considered equilibrium temperatures and different
values of L (see Table 2). For L = 10" m, the results show
that the perturbations corresponding to the lower temperature
are the ones that are more quickly damped. Conversely, when
L is decreased to 10° m, the perturbations corresponding to the
higher temperature are the ones that are more quickly damped.
When only radiation is considered and the temperature is kept
fixed, all the quantities in Eq. (103) are constants except the
wavenumber, k,, which depends on L. Then, Eq. (104) can be
written as

1p = F +GL?, (105)

suggesting a parabolic behavior of the damping time versus L,
while ' and G are constants. This can be seen in Fig. 12: for
large values of L, no crosses between the different curves appear
and the damping time is always much longer for high temper-
atures than for low ones. However, for small values of L, we
observe the presence of crosses between the different curves
and, as a consequence, the damping time for high tempera-
tures is shorter than for low temperatures. For a constant tem-
perature, the behavior of the damping time only depends on L
(see Table 2), a quantity which is related to the longitudinal
wavenumber through k, = 7.
On the other hand, for L = 10° m, the timescale is 7 = 1.58s,
which means that the dimensionless time interval considered in
Figs. 10 and 11 corresponds to 94.8 s. Then we can observe that:
The perturbations are completely damped for a temperature of
12000 K with a damping time of 49 s; they are slightly damped
for 8000 K with a damping time of 104s; and they are nearly
undamped for 6000 K, with a damping time of 627s. When
L = 10" m is considered, the behavior of the temporal perturba-
tion damping is reversed. The comparison between the obtained
damping times (Table 2) and the temporal behavior of pertur-
bations in Figs. 10 and 11 confirms that the analytical approx-
imation is valid and explains the temporal attenuation of per-
turbations when different equilibrium temperatures, as well as
different characteristic length scales, L, are considered.
Furthermore, it is also interesting to compare the damping
times for Alfvén and slow waves. For L = 10’ m, the damp-
ing times of Alfvén waves are much greater than those of slow
waves, while the opposite happens when L = 10° m. Modify-
ing the value of L means modifying the longitudinal wavenum-
ber k,; therefore, when L is increased the wavenumber decreases
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Fig. 13. Dimensionless variation of internal (red), slow (blue) and

Alfvén (black) wave energies versus dimensionless time (7 = 6000 K

and ¢ = 0.003).

and, following Eq. (68), the damping time is increased. Con-
versely, when L is decreased the damping time decreases. These
results show that when the wavelength of the Alfvén wave, 4L, is
increased, the efficiency of the ambipolar diffusion decreases and
the opposite happens when is decreased. Then, when ambipo-
lar diffusion is very efficient, Alfvén waves are quickly damped
while slow waves still remain in the plasma; however, when
ambipolar diffusion is inefficient, slow waves are more quickly
damped. Figure 13 displays the temporal behavior of Alfvén,
internal, and slow wave energies, showing how these energies
are damped in time due to ambipolar and radiative losses. Then,
taking into account the temporal behavior of the energies, we can
explain the temporal behavior of the perturbations. At the begin-
ning, they should behave as in the case without radiation; how-
ever, once radiative losses become dominant, these perturbations
must be damped in time. Finally, Fig. 14 (left panel) shows the
spatial distribution of the two terms contributing to the energy
balance separately and for a fixed time; it can be seen that, for
the chosen time, the injected heating is still dominant and radia-
tive losses are small. Therefore, the balance is positive and the
plasma is heated.

3.2.3. Combined effect of radiation and thermal conduction

In this case, we must solve Egs. (77)-(79) together with the fol-
lowing initial and boundary conditions:

p'(z,0) =vi(z,0) = p'(z,0) = 0,
viz=1,0=vi(z=-1,0=0,
9p'z=10=0p(z=-1,0=0,
0.0/ (z=1,0=090,0(z=-1,0)=0. (106)
Figure 14 (right panel) shows, at a fixed time, the spatial distribu-
tion of the balance between contributions coming from ambipo-
lar diffusion, radiation, and thermal conduction; we observe that
radiation dominates the energy loss while thermal conduction
losses are negligible. This conclusion is in agreement with the
temporal behavior of the different perturbations, which is quite
similar to the case when only radiative losses are considered.

3.3. Third-order equations

The third-order equations represent nonlinear corrections to the
Alfvén modes. The dimensionless third-order equations are:

o, ov, OB o

3y Py 3y , 0y

y T NGl 107
a - ot a Pa (107)
AB,, OV,  A(B.V) B,

3y _ 3y 'z +1co 3y (108)
ot 0z 0z "0z

These can be combined to obtain a wave equation for v’3y so that

Bzv;y s c')zvgy 83\/3y
oz A0 Tconsa = f(z,1), (109)
where f(z, 1), the source term, is given by
FBY) AV ') PV 'V,
f(z, 1) =— o2 o ﬁt. +7co 5Z2V + 7o (922.
(110)

This includes contributions coming from interactions between
first-order magnetic-field and velocity perturbations with
second-order longitudinal velocity and density perturbations.
Eq. (109) was solved numerically with the following initial and
boundary conditions:

M, (2,0

ot
In this case, we must take into account that second-order per-
turbations are influenced by thermal effects, which means that
third-order magnetic-field and velocity perturbations for the
Alfvén wave are also influenced by thermal effects. Figure 15
(left panel) shows the temporal behavior of third-order trans-
verse velocity perturbation for the Alfvén wave when ambipo-
lar diffusion and thermal effects are not taken into account.
We can observe that the perturbation grows without bound due
to the effect of the remaining source terms on the right-hand
side of Eq. (109), as is consistent with the expected result
that the nonlinearity of an ideal Alfvén wave increases with
time. Conversely, Fig. 15 (right panel) compares the behavior of
third-order velocity perturbation when thermal effects are or are
not present in second-order perturbations. The main dissipative
mechanism, producing the damping of third-order velocity per-
turbation, is Cowling’s difussivity; thermal effects, introduced
by second-order perturbations, introduce an additional contribu-
tion to the damping of third-order Alfvénic perturbations. Thus,
the presence of dissipative mechanisms reduces the nonlinearity
of the Alfvén wave perturbations.

On the other hand, as we state at the beginning of Sect. 3,
contributions with higher orders in € have been neglected. The
inclusion of higher orders in € would represent nonlinear cor-
rections to the obtained Alfvén and slow waves, since fourth
order in € would involve v, p’, p’, and T’, again, while fifth-
order in € would represent higher corrections to Alfvén waves.
However, because of the damping mechanisms, ambipolar diffu-
sion, and thermal effects that are included in our calculations, the
higher-order excited perturbations would probably have a negli-
gible amplitude.

Vi, (2,0) = 0, =0 = 0,0, (<10 =V, (L, =0, (111)

4. Nonlinear numerical simulations
4.1. Numerical method and setup

Now, we solve the nonlinear MHD equations numerically. The
code used to perform the simulations is MOLMHD (Bona et al.
2009; Terradas et al. 2015, 2016, 2018). The full set of equations
implemented in the code can be found in Terradas et al. (2015);
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Fig. 15. Dimensionless third-order velocity perturbation computed at z = 0.5. Left panel: without ambipolar diffusion and second-order thermal
effects. Right panel: (red) with ambipolar diffusion and without radiative and thermal conduction losses; (blue) with ambipolar diffusion and

radiative losses (T = 12000 K, nco = 0.023).

they are reduced, without the nonideal terms, to Egs. (36)—-(40),
which are shown in Sect. 2.4. The main features of the code are
described in the following lines. The code is based on the method
of lines technique and it solves the temporal and spatial parts
independently. A third-order Runge-Kutta method is applied to
the temporal part. Finite differences are used for the spatial part
and a fifth-order WENO scheme (Jiang & Shu 1996) is applied
for the velocity, density, and pressure variables. An ordinary
fifth-order central scheme is used for the magnetic field, and no
divergence correction is needed since the one-dimensional situa-
tion is considered; the full version of the code uses a hyperbolic
correction based on Dedner et al. (2002). Although the compar-
ison of MoLMHD to known standard shock MHD tests has not
been published, the MoLMHD code shows the expected per-
formance regarding the WENO implementation. The technique
of background splitting for the magnetic field (see Powell et al.
1999) included in MoLMHD is not necessary in the present sim-
ulations. The novelty in this work is that the corresponding non-
ideal terms in the induction and pressure equation (Joule term)
related to ambipolar diffusion need to be incorporated into the
scheme. These terms are introduced in the code as source terms.
The fact that we recover the linear results of the previous sec-
tions indicates that these source terms have been properly imple-
mented in the code. For the present comparison, the rest of the
nonideal terms, that is to say radiation, conduction, and heat-
ing terms, are not included in the equations. The time step, con-

A48, page 14 of 17

strained by the CFL condition, is now also affected by the diffu-
sion time due to ambipolar diffusion and it is modified accord-
ingly. We use the same equilibrium in its simplest version, as
we do in the previous sections. Therefore, we have constant den-
sity, pressure, and magnetic field pointing in the z-direction. For
the initial perturbations (at # = 0) we focus on standing Alfvén
waves around this equilibrium of the following form:

39)
2 %)

where vy is the amplitude of the perturbation. Line-tying condi-
tions are applied at the boundary of the domain and therefore no
mass or energy is introduced in the system through the bound-
aries.

vy =V cos( (112)

4.2. Results

First, we numerically tested the results for the linear regime. For
comparison purposes, we plotted the density and temperature
evolution obtained from the numerical solution of the nonlin-
ear equations, and the solution using the regular perturbation
approach presented earlier, in Fig. 16. The initial amplitude of
excitation is vog = 0.015, satisfying the condition of linearity.
The agreement between the two solutions is remarkable, as can
be seen when the two line styles are compared. This validates the
numerical implementation in the code. Figure 16 indicates that
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regime (vp = 0.015). The continuous line corresponds to the purely
numerical results while the dashed line represents the semi-analytical
approach developed in the previous sections. In this case, . = 0.045.

in the strong diffusion situation, studied in the present simula-
tions, we obtain the known effect already described in the linear
regime; instead of an enhancement, there is a depletion around
z = 0 and an enhancement at the footpoints, z = 1, a result that
is essentially reversed in the absence of ambipolar diffusion.

Once we tested that the simulations agree with the known
results and were confident that the numerical code works well,
we carried out a brief nonlinear study. The results for a signif-
icantly larger initial amplitude of excitation, vy = 0.3, are dis-
played in Fig. 17. In this case, the semi-analytical approach is
no longer valid and the problem must be studied numerically.
The results show the characteristic sawtooth profile in density
and temperature that are associated with shocks. These shocks
are due to the large-amplitude slow mode that is initially excited
nonlinearly by the pump in the Alfvén wave. As we can see in the
figure, they are not smoothed by the presence of ambipolar dif-
fusion; only the Alfvénic component of the wave, not shown in
the previous figures, is attenuated. We note how the periodicity
in density and temperature fluctuations is reduced with respect
to the linear case. Figure 17 also indicates that the overall incre-
ment in temperature in the system is significantly higher in this
case when compared to the linear result of Fig. 16. The reason
for this is that more energy is deposited in the Alfvén wave and
therefore, due to ambipolar diffusion, this energy is transformed
into heat that eventually raises the internal energy of the system.
Even in this nonlinear situation, the analytical prediction of the
temperature increment, given by Eq. (98), gives a value of 0.44,
while the mean temperature increment from the simulations is
0.45. As mentioned in Sect. 1, Martinez-Gémez et al. (2018)
used a multi-fluid approach to investigate the behavior of high-
frequency nonlinear waves in a partially ionized plasma. For
instance, when large initial amplitudes of the Alfvén waves were
considered, the profiles of the second-order perturbations excited
in a proton fluid look very similar to the profiles shown in
Fig. 17.

0.4f
0.3F
0.2
0.1F

0.0

Density perturbation

-01F
-0.2F

1] 10 20 30 40
time

Temperature perturbation

0 10 20 30 40
time

Fig. 17. Same as in Fig. 16, but for a large initial amplitude of excitation
corresponding to the nonlinear regime (vy = 0.3).

Although the presence of shocks in the high-amplitude case
is not described by the perturbation approach, the overall behav-
ior of the wave perturbations is reasonably well described by the
quasi-linear method, even when the Alfvén wave amplitude is a
considerable fraction of the background Alfvén velocity.

5. Conclusions

We investigated the temporal behavior of nonlinear Alfvén
waves considering a partially ionized plasma with prominence
physical properties up to third order in the velocity amplitude
when ambipolar diffusion is included as a dissipative mech-
anism for these waves. In the case of high amplitudes, lin-
early polarized Alfvén waves produce density perturbations and
field-aligned motions, and self-interact with the induced per-
turbations. In our calculations, apart from ambipolar diffusion,
we have also included radiative losses and thermal conduc-
tion as damping mechanisms for second-order perturbations. To
develop this study, first, we considered a small-amplitude initial
transverse velocity perturbation and applied the regular perturba-
tions method. We obtained analytical solutions for the transverse
velocity and magnetic field perturbations from first-order equa-
tions, as well as the period and damping time of the linear Alfvén
waves. Next, we sought numerical solutions to the system of
equations for second-order perturbations. We solved these equa-
tions with the aim of understanding the role played by ambipolar
diffusion, radiative losses, and thermal conduction on second-
order perturbations. When ambipolar diffusion is almost negligi-
ble, density perturbations at the center of the spatial domain are
positive, while they are negative at the boundaries; the same hap-
pens for pressure and temperature perturbations because no heat
is released at the center of the spatial domain. When ambipo-
lar diffusion becomes important, we observe a depletion of den-
sity at the central part of the spatial domain and an enhancement
at the boundaries. The reason for this behavior is the fact that
the heat released due to ambipolar diffusion is deposited around
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the central part of the spatial domain and, as a consequence, the
temperature rises, as does the pressure. In any case, the behavior
of these perturbations can be understood from Eq. (80) and this
behavior is strictly dependent on the strength of the ambipolar
diffusion. Once we include radiative losses and thermal conduc-
tion in our calculations, second-order perturbations are damped
in time and, using an analytical approximation for the imaginary
part of the angular frequency in the non adiabatic case, the damp-
ing time can be estimated. Depending on the value of the char-
acteristic scale length, L, this damping time is greater or smaller
than the damping time for linear Alfvén waves. This indicates
that after the excitation of second-order perturbations, Alfvén
waves can be quickly damped while slow waves remain in the
plasma, and vice versa. When dissipative mechanisms for slow
waves are considered, the main damping mechanism for second-
order perturbations is radiation, while the contribution of thermal
conduction is very weak.

On the other hand, we computed the temporal behavior of
the different energies involved in the process under investiga-
tion and the results show that almost all the initial energy in
the Alfvén wave is transformed into plasma internal energy,
producing an increment of temperature, while only a small
amount is involved in the excitation of slow waves. This is inter-
esting since this small amount of energy, which excites slow
waves, allows for the continuous presence of these waves in
the plasma in the absence of damping mechanisms for these
waves. Also, making use of a simple approximation, we were
able to compute the temperature increment, which shows an
excellent agreement with the results from the numerical calcu-
lations. When dissipative mechanisms such as radiative losses
and thermal conduction are included, the temporal behavior of
the Alfvén energy shows how this energy is transferred to the
plasma internal and slow wave energies which, later on, are also
dissipated.

We also studied the effects induced by second-order pertur-
bations and ambipolar diffusion on the nonlinear correction to
the Alfvén waves described by third-order systems of equations.
The results were compared to the case when ambipolar diffu-
sion and thermal effects are neglected. In this case, the amplitude
of the third-order transverse velocity perturbation grows without
limit due to the effect of source terms; when ambipolar diffusion
alone or ambipolar diffusion plus thermal effects are considered,
the velocity perturbation is damped in time. The inclusion of
thermal effects in second-order perturbations produces an addi-
tional contribution to the damping. Therefore, the contribution
of dissipative effects causes the Alfvén wave to develop much
smaller nonlinear corrections compared with the ideal Alfvén
wave.

The case of large initial amplitudes of the Alfvén waves was
studied by means of numerical simulations. First, we checked
the semi-analytic results obtained in the linear regime and found
a good agreement. Next, the fully nonlinear regime was explored
by assuming a large initial amplitude; the profiles of the obtained
perturbations show the sawtooth profile characteristic of asso-
ciated shocks. Finally, the nonlinear results also show that the
increment of plasma temperature can still be described by the
linear approach.

As we summarized in Sect. 1, many authors have stud-
ied the damping of Alfvén waves in different contexts using
analytical or numerical tools. For instance, nonlinear cou-
pling of Alfvén waves exciting slow waves have mainly been
studied in fully ionized plasmas (Hollweg 1971; Rankin et al.
1994; Tikhonchuk et al. 1995) and dissipative mechanisms such
as resistivity or viscosity have sometimes been considered
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(Zheng et al. 2016). However, the nonlinear coupling of Alfvén
and slow magnetoacoustic waves in partially ionized plasmas
has received little attention. For instance, the nonlinear coupling
of high-frequency standing and propagating Alfvén waves and
slow waves was investigated by Martinez-Gémez et al. (2018)
using a multi-fluid scheme. However, for our research, we used
a different approach and focused our attention on the nonlinear
coupling of Alfvén waves and slow waves in a partially ionized
plasma that we considered to be a single fluid; additionally, we
took dissipative mechanisms into account, such as ambipolar dif-
fusion for Alfvén waves and thermal radiation and conduction
for slow waves.

Finally, a potential application of this investigation relates to
oscillations detected in partially ionized structures of the solar
atmosphere, as was mentioned in Sect. 1, and solar prominences
in particular. In many cases, the exciter of these oscillations is an
energetic event, a flare, a jet, failed eruptions, Moreton waves,
etc., which strongly perturb the equilibrium of the structure,
injecting a large amount of energy and exciting large-amplitude
oscillations. Then, longitudinal oscillations can be generated by
nonlinear Alfvén waves that were initially excited, which can
be quickly damped while slow waves remain for a longer time
and are damped by radiative losses, as has been proposed in
the case of filaments (Zhang et al. 2012, 2013), although other
mechanisms such as mass accretion have also been proposed
(Ruderman & Luna 2016). Therefore, in the full nonlinear case,
when the amplitude of the initial Alfvénic perturbation is large,
the amplitude of the generated longitudinal oscillations would be
more important than in the weakly nonlinear case; these oscil-
lations could represent small-amplitude oscillations reported in
prominence observations (Arregui et al. 2018).
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Appendix A: Coefficients of the polynomial fit

The numerical values of the coefficients of the polynomial fit
(Eq. (9)) are:

a=171;b=-20.08;c =99.81;d = —205.43; ¢ = —0.0003;
f=3.60x10"%¢g=-125%x10""%; 1 = 0.0015; j = 0.0025;
k=-279x1078. (A.1)
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