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1 Introduction

Gravitational-wave astronomy has opened a new window to the universe, providing hith-
erto hidden information [1], [2]. Even though gravitational waves were already predicted
in 1916 [3], their direct detection had major implications in astronomy and fundamental
physics. They render possible new tests for General Relativity and carry information
about their sources that are complementary to any other “messenger”, like photons, neu-
trinos, or cosmic rays. Furthermore, gravitational waves very weakly interact with matter,
making them hard to detect, but also allowing them to travel freely through the universe.
For these reasons, gravitational waves can be used to detect sources which are invisible
by other means: binaries of compact objects such as black holes (BH) and neutron stars
(NS), events such as supernovae and also processes of the early universe.

This project is dedicated to modelling the gravitational signal from merging black
holes, more concretely to the phenomenon of spin precession. Mathematical models of
the signal are indispensable for the detection of gravitational waves. Models are compared
with detector data in order to detect weak signals, but even more importantly they are
necessary to identify the origin of detected gravitational wave events, and to measure
the parameters of the sources, such as their masses, spins, or distance. When the spins
(angular momenta of the individual black holes) are orthogonal to the orbital plane, this
plane is preserved. We will however be interested in the general case, when the spin of one
or both components of the binary is not perpendicular to the orbital plane. Spin-orbit
and spin-spin couplings then induce the orbital plane, and the spin vectors themselves, to
exhibit a complicated precessing motion. The spin precession is thus related to a breaking
of the symmetries of the system. In order to describe precessing systems, it has turned
out to be fruitful to use a (non-inertial) co-precessing frame in which the decomposed
waveform is similar to a non-precessing one. The description of this non-inertial frame
requires the definition of a time dependent rotation between the inertial and non-inertial
frames, which is usually described in terms of Euler angles. The main objective of this
project is to study the quaternion description of these rotations in comparison with the
Euler angle description, and investigate whether waveform models previously developed
within the UIB group should be modified to adopt the quaternion description.

1.1 Gravitational waves

Gravitational waves are transverse waves that travel at the speed of light, caused by
energetic and violent processes which distort spacetime. They propagate in all directions
from the source as ripples of spacetime that carry information about the process and also
about the nature of gravity. Any massive object that accelerates in a way which changes
its quadrupole moment produces gravitational waves, but only those sources which are
sufficiently massive generate waves detectable for our instruments. The most efficient way
to accelerate masses is in binary systems, and indeed all gravitational wave signals detected
so far have been produced by the coalescence of compact binaries. In addition, the more
compact and heavy the source, the easier it will be to detect its gravitational waves,
and therefore black hole binaries, where objects of several solar masses are accelerated to
significant fractions of the speed of light within small regions of spacetime at most several
hundred kilometers across, are the most detected so far [2]. The kind of gravitational
waves produced by such sources are known as Compact Binary Coalescence (CBC). As
we will see below, CBC signals are short transient signals. Other types of signal are



intensively searched for, but have not yet been detected, such as the continuous waves
emitted by deformed spinning neutron stars [4], or the stochastic signals that may have
been generated during the first fractions of a second of expansion of the universe [5].

The first direct gravitational wave detection was made by the Advanced Laser Interfer-
ometer Gravitational-Waves Observatory (LIGO) on September 14, 2015 [1]. The signal
was found to be produced by a black hole binary of initial masses of 3675 M and 2914 M.
Three observation “runs” (O1, 02, O3) have so far been carried out with the advanced
generation of interferometric GW detectors. Between observation runs, the detectors have
been upgraded and their sensitivity increased further. The third observation run has re-
cently been suspended on March 26 2020 [6], roughly a month before the planned end,
due to the COVID-19 pandemic. While in O1 and O2 the LIGO-Virgo collaboration
has confidently detected 11 GW events [2], already 56 detection candidates from this run
have been publicly announced on gracedb.ligo.org. The next observation run, O4, is
planned to start in late 2021 and reach the planned design sensitivity of the detectors.
Further detector upgrades after O4 are already scheduled.

As stated, most of the observations have been from BH mergers, but a first binary NS
merger has also been detected on August 17, 2017 [7]. Furthermore, possible candidates
for NS-BH mergers have been identified (see the gracedb.ligo.org public announcement
system). LIGO has played a role in all detections to date, with the Virgo detector joining
during the second observation run. Additionally, on 25 February 2020 Kamioka Gravi-
tational Wave Detector (KAGRA) [8] in Japan became operational, which will improve
the detection and localization of future gravitational wave signals. The first space-based
detector, LISA [9], is scheduled to fly and will be able to detect phenomena much more
massive than the ground-based detectors, such as mergers of the supermassive black holes
typically found at the centers of galaxies.

Even though the first gravitational-wave direct detection happened in 2015, their exis-
tence was predicted by Albert Einstein in 1916 [3], a year after his publication of the theory
of General Relativity [10]. General Relativity arises from including gravity in the theory
of Special Relativity, and understanding it not as a force, but as a geometric property
of spacetime. In this theory particles move along geodesics, which is the generalization
of a straight line in a curved space. That curvature is due to the energy or momentum
of matter or radiation, and the relation between these properties is established by the
Einstein field equations (EFE),
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where R, is the Ricci curvature tensor, R is the scalar curvature, g, is the metric tensor,
G is Newton’s gravitational constant, ¢ the speed of light in vacuum and finally T, is the
stress-energy tensor. The Ricci tensor or curvature can be obtained as a contraction of

the Riemann tensor, which is a combination of derivatives of the Christoffel coefficients:
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Finally, the scalar curvature R is the trace of the Ricci curvature tensor, R = g** Ry, = RC.
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The EFE (1.1) are simple as tensor equations but very complex when written as partial
differential equations for the metric components. It is these equations which predict
phenomena such as gravitational waves (GWs), black holes (BHs), and the expansion of
the universe. When the stress-energy tensor Ty, is zero in the region under consideration,
the EFE are referred to as vacuum field equations or vacuum Einstein equations: Ry, = 0.

1.1.1 Linearized Einstein equations: gravitational waves

The most natural starting point for discussions of GWs is linearized gravity. For space-
times whose geometries differ slightly from flat spacetime, it is possible to solve analyt-
ically the vacuum Einstein equations, which comprise ten nonlinear, partial differential
equations for the ten metric coefficients g,,. Linearized gravity is an approximation to
general relativity when the spacetime metric g, () is treated as a small deviation of the
metric from flat spacetime 7,,, which in inertial Cartesian coordinates (¢, z,y, z) can be
written in the simple form n,, = diag(—1,1,1,1). Metrics for this kind of spacetime can
be written as

gan(x) = Nab + hap(7), [hap| <1, (1.4)

where hg, is the metric perturbation, which is assumed to be weak, and the coordinate
system to be approximately Cartesian and inertial. Furthermore, terms of higher order
than linear in h,, will be neglected in all the expressions.

In order to obtain the linearized Einstein equations we must insert Eq. (1.4) into
R, = 0 and expand it to first order in Ay (z). Two terms are obtained in this expansion,
the first one is the Ricci curvature of flat spacetime, which vanishes, and the second term
is the linearized equation we are looking for. Substituting Eq. (1.4) into Eq. (1.3), we
can obtain the first-order perturbation terms of the Christoffel symbols, since the zeroth
order vanishes because the components of 7., are constant:

Ohaa | Ohay ahab) (1.5)
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The perturbation in the Ricci curvature can be found by inserting Eq. (1.5) into Eq. (1.2),
taking into account that the last two terms do not contribute since they are of second
order in hg,. The perturbation of the Ricci tensor then becomes

98T, 98T,
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Finally, the linearized vacuum EFEs are obtained by substituting Eq. (1.5) into Eq. (1.6)
1
OR,, = 5[—Elhab + 0V + OV,] =0, (1.7)

where (0 = 7%9,0, is the flat-space wave operator (d’Alembertian) and the vector V,
is defined as V, = d.h{ — %(%hg, where h¢ = 7°hg,: indices on perturbations can be
raised and lowered with the flat space metric. The equation (1.7) is a set of ten linear,
partial differential equations for hq,(z). As coordinates are arbitrary, a specific choice
can simplify the solutions, but it has to leave the components of 7,, unchanged. Let us
consider the following change:

' =z + &% (x), (1.8)



where £%(z) are four arbitrary functions of the same small size as hq,(2). This change of
coordinates implies a metric transformation

P oxc Ox? ,
gup(2') = %wgcd(iﬂ) = Nab + Ny, = Nab + (hap — 0y — &a). (1.9)

Adding a term 0,&, + 0,¢, to the metric perturbation thus corresponds to a coordinate
transformation rather, and is physically equivalent. This gauge transformation is anal-
ogous to A, — A, + 9, A for the vector potential in electromagnetism. Since £%(x) are
arbitrary functions, they can be chosen so that V/(z) = 0, called the harmonic gauge
conditions In fact, it can be assumed that the initial coordinate system already satisfies
V. (z) = 0, simplifying the linearized Einstein equation to

Ohyy = 0. (1.10)

Just as in electromagnetism, Eq. (1.10) admits the solution of a superposition of plane
waves, gravitational waves, which propagate at the speed of light

Rap(7) = agpe™™, (1.11)

where a,;, is a symmetric 4x4 matrix which gives the amplitudes of the components of
the wave, which are not arbitrary and can be simplified by choosing an appropriate set
of coordinates. Explicit calculations show that the metric perturbation is purely spatial
(hyi = 0) and traceless (h? = 0). In addition, the harmonic gauge condition implies
that the spatial metric perturbation is transverse, just as are electromagnetic waves,
K'as; = O4hay = 0 and also that ay = 0: this is called the transverse-traceless (TT) gauge,
which fixes the local gauge freedom. Orienting the z-axis along the propagation of the
wave, all that is left is a 2x2 symmetric and traceless matrix in the z-y subspace, which
exhibits the fact that gravitational waves have only two polarizations, i.e. local degrees
of freedom, called h, and hy:

0 O 0 0
10 ke e 0] e
hap(z) = 0 h, —h, 0| (1.12)
0 0 0 0

1.1.2 Gravitational waves from black hole binaries

A few months after the publication of general relativity, Karl Schwarzschild found a
solution to the spherically symmetric and stationary vacuum solution of the Einstein field
equations [11]. This solution becomes singular at what is called the Schwarzschild radius,
and although it was not understood at the time, that surface is the event horizon: causal
influences can cross it in only one direction. That is the definition of a black hole, it is
a region of space-time where neither matter nor radiation can escape, whose boundary is
called the event horizon. A known formation channel for black holes is the gravitational
collapse of stars, which occurs when the star’s internal pressure cannot resist its own
gravity. The remnant mass after the collapse determines which type of compact star
results from the process. If this mass is high enough that even the neutron degeneracy
pressure cannot stop the collapse, the object inevitably becomes a black hole.

Black hole binary (BHB) mergers are key sources for gravitational-wave astronomy.
Only accelerating masses can generate gravitational waves and a particularly effective



way to accelerate astrophysical objects is through orbital motion. As the distance be-
tween objects decreases, the frequency increases, consequently binaries are more effective
to produce gravitational waves when they are closer. Since black holes are the most
compact astrophysical bodies, and thus can orbit at the smallest separations and highest
frequencies, BHB are the most effective known source of gravitational waves. As we will
see below, the frequency is indirectly proportional to the total mass, and so the frequency
band of a detector determines the masses of binary systems that can be observed.

The no-hair theorem [12], [13] states that a stationary black hole solution is completely
described by only three parameters: the mass, the charge and the angular momentum.
Astrophysical bodies, like stars, do not have charge since their intense electromagnetic
field would expel it. Thus, astrophysical black holes are also not expected to have charge,
but will in general be rotating; the corresponding equilibrium solution was found by Kerr
in 1963 [14]. Hence, rotating black holes without charge are referred to as Kerr black
holes, and are characterized by their spin angular momentum (S) and mass. Therefore,
the parameter space of a binary is composed by two masses and two spins (8 parameters).
If the orbit is circular, there are no further parameters, since the separation between
the two masses then determines the velocity. For eccentric orbits two more parameters
are needed to characterize the orbit (the eccentricity and the orientation of the ellipse).
However, eccentric orbits are expected to be rare, since they tend to circularize rapidly
in the absence of other interactions [15], so current data analysis efforts focus on circular
binaries. It is convenient to use geometrized units G = ¢ = 1, so in vacuum general
relativity, where other fundamental constants are absent, the mass acts simply as a scale
parameter. The parameter space is then the mass ratio ¢ = my/my > 1 and both spins
of the black holes.

The coalescence of black hole binaries has three phases. The inspiral is the process
in which a pair of compact objects revolve around each other during millions of years,
emitting GWs that carry away orbital energy from the system. This loss of energy di-
minishes the orbit and increases the frequency, hence loosing more energy with stronger
GWs. This process ends with the merger of both objects and the following ringdown of
the resulting compact object. In this last stage, the remnant BH oscillates, emitting GWs
until it settles down to a Kerr BH. Analytic approximation techniques can provide a good
qualitative description of the gravitational wave signal. The simplest version of these
calculations is based on Newtonian orbital dynamics (Kepler’s third law) and Einstein’s
quadrupole formula (for a textbook development see e.g. [16] ch. 4.1), which yields the
following results for the gravitational wave strain polarizations, establishing the z-axis
orthogonal to the orbital plane
b (1) = 4Guu§R2 1+ cos?(0)

rc 2

where R is the separation between both objects, r the distance to the system, n the
reduced mass and wy the orbital frequency. These expressions show that radiation has
a frequency of twice the orbital frequency (wgw = 2ws). Further development provides
expressions for the evolution of the GW frequency in time:

1 5 I GMN T 5 o5 (GM.\ /3
1 c _ 5 —sy3 (GMe 1.14
faw(t) - (256(tcoal_t)> < 3 > , T 256(7TfGW) ( 3 ) , (1.14)
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cos(2wst), h,(t) cos(6) sin(2wst), (1.13)
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where M, is the chirp mass M. = M (ﬁ) / , M is the total mass of the binary, ..y is

the coalescence time starting at a reference time and 7 is the time until coalescence for a



certain frequency (7 = teoq —t). The radiation power emitted during the process is given
by

P 32¢° (GMCWGW>10/3

5G 2c3 '
During the inspiral, the amplitude of the emitted waves increases as both objects come
closer. The signal becomes detectable when the compact objects orbit fast enough, and
the peak amplitude occurs at the merger. During the ringdown to the remnant Kerr black
hole the amplitude decays exponentially and quickly becomes undetectable. The time the
system is emitting detectable GWs depends on the masses of the objects involved. Let
us consider two equal mass systems, a neutron star (Mygs = 3Mg) binary and a black
hole (Mpy = 50M) binary. The minimum frequency which can be detected with LIGO
at design sensitivity is approximately 10 Hz, which implies (using Eq. (1.14)) 7nsp ~ 15
minutes and Ty ~ 8 seconds: a signal coming from a binary of massive black holes can
last several seconds, while from a neutron star merger, hundreds of seconds.

Although these approximations give qualitatively correct results during the inspiral,
they are not sufficiently accurate for gravitational wave data analysis. A more accurate
description of the inspiral can be obtained from the Post-Newtonian (PN) expansion [17],
which expresses deviations from the approximations corresponding to equations 1.13 and
1.15 in terms of an expansion in the parameter v?/c?. For strong fields and velocities close
to the speed of light, as occurs when the black holes come close, the expansion breaks
down. For the last orbits and the merger, perturbative methods can not be used, and the
Einstein equations need to be solved numerically with the methods of numerical relativity.
Complete descriptions of the gravitational wave signal from compact binaries thus have
only been possible since breakthroughs in numerical simulations in 2005 [18]-[20].

Numerical simulations can only produce waveforms for discrete points on the pa-
rameter space, building up catalogs. Accurate descriptions of gravitational wave signals
from black hole binaries can be developed by calibrating theoretical models to catalogs
of numerical relativity simulations. A large international effort is underway to further
develop such waveform models, and the underlying analytical and numerical frameworks
to describe the relativistic two-body dynamics. The two major families of such models
are the time-domain effective-one-body (EOB) models, which are based on “deforming”
post-Newtonian Hamiltonians and energy fluxes (see e.g. [21]) and the frequency domain
phenomenological models partially developed at UIB (see e.g. [22]-[25]). Since frequency
domain templates are needed to compute the scalar product with detector data, models
were first constructed in the Fourier domain. These models then achieve fast evaluation
times in data analysis procedures. However, the time domain description of the signal
provides the dynamical information of the source in a more direct way, and also insights
to develop strategies for modelling binary systems.

(1.15)

1.2 Gravitational wave data analysis and waveform modelling

Gravitational wave detectors are essentially Michelson interferometers, which measure the
gravitational wave strain as a difference in the length of their arms. This difference leads
to an interference phase of the beams emitted by each arm, which transmits an optical
signal proportional to the strain of the wave. A basic scheme of its operation and images of
both LIGO detectors can be seen in Figure 1. In order to achieve the required sensitivity
to detect gravitational waves, great effort is needed to reduce seismic and thermal noise,
other noise sources and optical phase fluctuations. The sum of all noise contributions
leads to the sensitivity curve of the detector as a function of frequency, shown in Figure 2.
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1.1: Aereal views of the the LIGO Hanford and 1.2: Basic schematic of LIGO’s interferometers
LIGO Livingston interferometers. (Caltech/MIT/LIGO Lab).

Figure 1: Images recovered from LIGO Caltech.

This picture shows the sensitivity of the
Advanced LIGO detectors in the first ob-
servation run (O1) (September 2015-January
2016), which was about a factor of three to
five better than the instruments in 2010 in
their most sensitive band, while at lower fre-
quencies the improvement is more than ten

1021}

1/VHz

£ 10722

Strain noise

102 times better. The sensitivity of the detector

is limited at low and high frequencies, and the

O i Hégi 1 (2015) —,Ex;i‘fﬁig lcosesgd|  most sensitive frequency band is between 100
10 10 Hz and 300 Hz.

Frequency, Hz

Thus, in the output data d(t) of any real
detector there will be the GW signal s(t)
and also the detector noise n(t), so d(t) =
s(t) + n(t). The noise spectral density S,(f)
is defined so that the ensemble average over
different noise realizations of n%(t), (n?(t)), is
obtained integrating this function over the physical range of frequencies,

(n2(0) = (n2(0) = [ df dr'w (1)n(s) = [ drsa(s). (1.16)

Figure 2: Spectral amplitude of the total
strain noise in units of strain per v Hz.
Image recovered from [26].

If n(t) is dimensionless, S, (f) has dimensions Hz . The noise of the detector then can

be characterized by /S, (f), which is called spectral amplitude (see Figure 2).

The noise of real detectors is typically considered as a superposition of Gaussian noise
and non-Gaussian artefacts usually referred to as “glitches”. For stationary Gaussian
noise one can assume without loss of generality that (n(t)) = 0. Most importantly, for
stationary Gaussian noise there exists an optimal method of detection when the possible
signals can be predicted theoretically: this method is matched-filtering [27] (for a textbook
development see e.g. [16] ch. 7) with accurate templates. The main idea of this method is
to compute the scalar product between the output of the detector d(t) and the template
h(t), chosen such that it maximizes the signal-to-noise ratio (SNR). Defining the scalar
product between two real variables as

(A()|B(t)) = 4 - Re/ooo df%, (1.17)

11


https://www.ligo.caltech.edu/page/ligo-gw-interferometer

the SNR can be defined as S/N, where S is the expected value of a quantity which depends
on the output of the detector and the template and N is its RMS value when the signal
is absent. Applying the SNR definition to the scalar product then implies
d|h h
i’[: ((dh)) — _ (s]h) | (1.18)
V(@) ((kln) -/ (kIh)

where the second equality is obtained by evaluating the ensemble averages over noise

realizations [28]. The SNR optimal value is y/(h|h), so it becomes

) )
SNR2, = (;) - 4/0 ap PO (1.19)

Sn(f)

For Gaussian noise, the optimal search strategy is to optimize the SNR over the templates
h. A detection then corresponds to statistically significant peaks in the SNR, when
compared with a suitably computed background, and taking into account a y? test, see
e.g. [1], [29], [30].

Data analysis then proceeds in two steps: First, “searches” are performed (see e.g. [30]),
which aim to deliver statistically significant detections and which are optimized to maxi-
mize the detection rate while minimizing the false alarm rate. Once a detection is made,
a more detailed analysis called “parameter estimation” is performed [31], which uses the
methods of Bayesian inference to measure the source parameters: the intrinsic parame-
ters (masses and spins) and the extrinsic parameters (sky location, distance, inclination,
polarization and coalescence phase) and compute error estimates.

There are different ways to perform searches, which generally rank events according
to an appropriate detection statistic. This value quantifies the SNR of the event and
the consistency of the data between both detectors. Generic transient searches operate
without a specific waveform model and classify events based on their amplitude and the
evolution of the frequency in time. Such generic searches allow to discover unmodelled
signals. Matched filter binary coalescence searches on the other hand are dedicated di-
rectly to the detection of gravitational waves from a binary. The search calculates the
matched-filter signal-to-noise ratio (1.19) and identifies its maximum in time and within
a template bank of possible signals. For reasons of computational efficiency, matched-
filter searches only provide an approximate estimation of the source parameters, so the
more detailed follow-up analysis of parameter estimation is needed to determine the fea-
tures of the source. While several 10° templates are typically used for binary coalescence
searches, approximately 107 — 10° models based on general relativity are used for param-
eter estimation. Bayesian inference then provides a probability distribution of the source
parameters obtained, which allows to determine the spins and masses of both initial black
holes and the final object, the distance of the source and also the total energy radiated in
gravitational waves.

Therefore, waveform modelling is important to provide templates for the detection of
weak signals, but it becomes indispensable for parameter estimation and thus to under-
stand the origin of events. Waveforms analyzed in this project are those coming from
systems with misaligned spins, which exhibit a phenomenon known as spin precession.

1.3 Precessing systems

For a binary composed of two rotating black holes whose spin vectors (Sy,Ss) are or-
thogonal to the orbital plane and thus parallel or anti-parallel to the orbital angular
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momentum (L), there exists an equatorial symmetry of the spacetime with respect to the
orbital plane. This symmetry is preserved in time, and so are the orbital plane and the
directions of the spins. Therefore, the intrinsic parameter space for these systems is four
dimensional, since only two parameters are needed for the spin components orthogonal to
the orbital plane and two more for the masses. Introducing the mass ratio ¢ and recalling
that the total mass serves as a scale parameter, then the parameter space that needs to
be modelled becomes three dimensional. These systems are referred to as non-precessing.
In this case the change of total angular momentum J = L +S; + S5 is due to the emission
of gravitational waves. Note that only the orbital angular momentum L will change sig-
nificantly, since the individual bodies are sufficiently axisymmetric and thus do not emit
gravitational radiation on their own. Furthermore, due to their compactness it turns out
that they absorb very little gravitational wave energy and angular momentum.

Precessing systems are characterized by
the spin of one or both black holes not being
orthogonal to the orbital plane. This situa-
tion leads to a variation of S and L in time;
hence, the orbital plane inclines and precesses
also over time. An example of a precess-
ing binary motion is shown in Figure 3. In
this more general case, the parameter space is
that of eight parameters. The main effect of
precession on the waveform is an amplitude
modulation resulting from the time depen-
dence of the orthogonal direction to the or-
bital plane, which is the dominant direction in
which gravitational waves are radiated. This
modulation complicates the production of an-
Figure 3: Trajectories of the smaller (red) alytic precessing-binary waveforms and it is
and larger (black) BHs for a precessing necessary to define an appropriate frame in
simulation at ¢ = 3. Image taken from which to describe the data analytically.
[32]. The evolution of coalescing binary systems

can be studied using a post-Newtonian (PN)

approximation [17]. Since during the last stage of the binary the velocity is not expected to
be small, high order expansions are desirable, and the highest available order for different
quantities has been slowly increasing during the last decades, with many quantities avail-
able at 3PN, i.e. (v/c)®, or 4PN order. The spins of both black holes play an important
role in the orbital dynamics and gravitational wave emission. At low order (sufficiently
low frequency), the spin effects have two contributions, one due to the spin-orbit (SO)
interaction and the other due to the spin-spin (SS) interaction (for a discussion of both
terms, see e.g. [33] or [21]).

The post-Newtonian equations of motion can be obtained from a Hamiltonian. In
order to discuss the qualitative nature of spin effects we will focus on the leading order
spin-orbit Hamiltonian, which reads

Ser - L
Hgso =2 T (1.20)
where R is the separation between the black holes and the effective spin Seg is defined as
3 3
Sef = (1 + m?Sl> + (1 + mlSz) : (1.21)
4 ma 4 Mo
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Equation (1.20) implies that the potential energy depends only on the parallel component
of the spin to the orbital angular momentum. One can see from the sign of (1.20) that
the interaction between bodies will be attractive or repulsive if L and S are anti-aligned
or aligned, respectively. If the interaction is attractive, then the compact objects will
inspiral together faster, while in case of having a positive Hamiltonian, the inspiral will
take longer, radiating more gravitational waves. From the spin-orbit interaction, one can
also derive the PN evolution equation for the black hole total spin

S = —;Seﬁ: x L. (1.22)
This last equation shows that the spin will be preserved if the effective spin is parallel to
the orbital angular momentum, such as it happens for non precessing binaries. However, if
the cross product between both vectors does not vanish, then the spin evolves, producing
a precession of the orbital plane and therefore a modulation of the waveform. This
precession depends on the orbital angular momentum L, the total spin S and their relative
orientations. If the angle between both vectors is small, so will be the modulation, and
if the module of S is much smaller than L, the modulations can be neglected. Thus,
the orthogonal components of S are relevant neither for the speed at which the inspiral
binaries together nor for the amount of gravitational waves radiated, but only for the
orbital plane and spin precession.

To leading PN order one can split the orbital angular momentum as [33]

L = Ly + Lpn + Lso, (1.23)

where Ly = p(r x v) is the Newtonian orbital angular momentum, and the other terms
are

1 M
Len = L |50%(1=3n) + B+ 1)

e o (33 (s ( )
Lso = [Tnx nx (3S+0M M, M 5V X S+oM M, M,

The evolution of the orbital angular momentum up to 2PN order is [34]

L= [(2 + 3q> _3v [(S2 +¢S1) LH v9(Sy x L)

2 27
+ Kz + ;q) - 22 [(S1 + Cllsz) : LH v%(Sg x L) (1.25)
+ 0",

where 1 = ¢/(1 + ¢?) is the symmetric mass ratio. The addition of these terms to the
equations of motion has important implications for the binary evolution and thus for the
waveform (see Fig. 3).

The development of precessing waveform models has proven difficult: the complexity
of precession makes it difficult to solve the PN equations at high order and to develop
phenomenological descriptions, while the large dimensionality of the parameter space
makes it difficult to sample it with numerical relativity simulations. In order to simplify
the problem it has turned out to be fruitful to work in coordinate frames that are adapted
to the precessing motion, and which are rotated relative to a fixed inertial frame. The
discussion of gravitational waves from precessing systems, and the role of frame rotations
will be the subject of the next section.
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2 Gravitational waves from precessing systems

2.1 Spherical harmonic decomposition

In order to determine the gravitational wave signal, it is common to combine the transverse-
traceless projections of the strain, introduced in Section 1.1.1, Eq. (1.12), into a single
complex quantity h(t,r) = hy(t,r) —ihy(t,r). At large distance (as is the case in astron-
omy) the strain is inversely proportional to the distance, i.e.

o hO(t7 f.)

h(t,r) +0(r %)
and one is only interested in the quantity hg. Similar as for other radiation problems, it
is useful to describe the angular dependence by spherical harmonics. The strain, which

is a tensorial quantity, can be expanded in terms of spin-weighted spherical harmonics
(SWSHs) with spin weight s = —2 [35],

1 m=l - PR 1 - B
M) =~ Y0 EOYLEE) = - S HT(0Y0,0), (2.1)
[>2m=-I lym

where (0, ¢) are the standard polar coordinates on the unit sphere. Given this relation, it
is useful to discuss directly the modes h'™(t) instead of the function value in any particular
direction. Higher order terms are strongly suppressed, and for comparable mass systems
only a handful of terms are required for current data analysis applications [24]. This
representation of the waveform in terms of a few functions that only depend on time,
instead of a single function that depends on time and two angles is significantly simpler.
First-order calculations based on Newtonian orbital dynamics and Einstein’s quadrupole
formula (see Eq. (1.13)) show that non-precessing binary systems predominantly emit
gravitational waves in the direction of § = 0,m, i.e. orthogonal to the orbital plane,
which for those systems corresponds to the direction of the orbital angular momentum
L. Consistent with the symmetry of such systems, it is natural to orient the z-axis in
this direction. It then turns out that there exists a natural hierarchy of mode amplitude,
with modes with a smaller value of |m| having smaller amplitude. The dominant modes
are then those given by the (I = 2, m = |2|) spherical harmonics of the wave. The modes
|m| = 1 vanish if the two black holes can be exchanged by symmetry and m = 0 is a non-
oscillating mode which is related to memory effects, see e.g. [36]. There are some other
features of the modes of non-precessing systems that yield simplifications. For example,
the invariance of the system under reflection across the orbital plane (generally z-y plane)
is expressed by (deduction in Appendix C of [37]):

B = (=1)! (B (2.2)

being h* the complex conjugate. One can thus restrict to analyzing modes with negative
values of m, since the complex amplitudes of the two modes (I, £m) are equal but differ
on their complex phases up to an addition of 7 for old [. Furthermore, during the inspiral
a simple relation holds to high accuracy between the modes and the orbital phase @,

Rb™ o e m®, (2.3)

If the system is rotated, the modes with the same index [ are mixed, and hence,
the description of gravitational waves with SWSHs becomes complicated. For precessing
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systems no natural fixed z-axis can be chosen, and consequently the natural amplitude
hierarchy for each [ is lost. Likewise the symmetry property of Eq. (2.2) and the relation
of Eq. (2.3) do not hold for precessing systems. Both failures in these equations for
precessing binaries are not just because of the mode mixing in a fixed basis, but also will
appear in any frame.

2.2 Quadrupole aligned frame

A breakthrough idea in modelling precessing systems has been to find a co-precessing
frame in which Eq. (2.3) becomes approximately true [32]. The search of the preferred
frame in which to describe the data analytically implies the use of geometrical methods
to determine a new basis in which to express gravitational wave modes.

Non-precessing systems can be characterized by two time scales, the time scale of the
approximately circular orbital motion, and the inspiral time scale of the radial motion,
which is much slower. Precessing systems show a third time scale, of the precessing motion,
which lies in between the orbital and inspiral time scales. Consequently, the acceleration
is much larger due to the orbital motion than due the precessing or radial motion. Since
the emission of gravitational waves is due to acceleration, the orbital motion dominates
the radiated power, and neglecting the power emitted due to the radial and precessing
motion is a good approximation in the inspiral. The inspiral rate of a precessing system
is thus well approximated by that of a non-precessing system.

These ideas lead to considering an approximate map between precessing and non-
precessing waveforms [32]: in an appropriately co-rotating frame (which is thus non-
inertial) the waveform should look similar to a non-precessing waveform. Mapping a
non-precessing waveform to a precessing one in this way is usually referred to as “twisting
up” the non-precessing signal [22].

It turns out [32] that the mode structure of precessing waveforms in an appropriate
co-rotating frame is indeed very similar to that of a corresponding non-precessing wave-
form. Moreover, post-Newtonian approximations permit to compute the time dependent
rotation from the co-rotating frame, where the precessing waveform is approximated by
a non-precessing one, to the inertial frame, in which gravitational wave data analysis is
performed (e.g. the frame of the source or the detector) [22]. Hence, the fact that the
twisting up procedure can be performed using PN expansions has given rise to a vari-
ety of phenomenological waveform models for precessing waveforms, starting with [22].
These models have become standard tools in gravitational wave astronomy, in particu-
lar the frequency domain PhenomP [22] and PhenomPv2 models [23] and also the time
domain IRMPhenomTP [38], which have been implemented in the open source LIGO
Algorithm Library (LAL) [39]. Their main idea is indeed the same: find a co-precessing
frame (non-inertial) in which the decomposed waveform is similar to the one that is non-
precessing, i.e. achieve a precessing waveform that can be approximated by rotating the
one that would be produced for an aligned spin system. The description of this non-
inertial frame needs the definition of a time dependent rotation between the vectors of
the basis involved (inertial and non-inertial), which has been usually described using Eu-
ler angles (EA). Thus, it is necessary to find the new basis Y;5 (¢',¢') for the rotated
system at each moment in time (with " and ¢’ being the rotated coordinates). However,
using Euler angles has several disadvantages, since composing rotations in their terms
is computationally expensive and can lead to inaccuracies due to sharp features and the
phenomenon of gimbal lock discussed below. For this reason, in this project I investigate
the quaternion representation of rotations.
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Equation (2.1) transforms simply under rotations, which is essential to obtain the
simplified waveform. Rotated modes k"™, which will be decomposed into an appropriate
co-precessing frame, can be found using the relation

i =3 Rl (R, (2.4)

where fol),m is the Wigner matrix and R the rotation which transforms the first basis
into the second one. Several techniques have been introduced to find a suitable frame
in which to decompose the waveform, where the basis is not static anymore, but time
dependent. The method used in this project to find the “co-precessing frame”, described
in [32], consists in locating the frame in which the decomposed waveform is similar to
that of a non-precessing system. The dominant modes for these last systems are the
(I,m) = (2,£2), called the quadrupole modes, and the purpose of this method is to find
the non-inertial frame in which the amplitudes of these modes are maximized, denoted as
the “quadrupole-aligned frame”. The procedure consists in finding the direction of max-
imum gravitational radiation emission, which is perpendicular to the orbital plane. This
direction is not exactly that of the orbital angular momentum as it is for non-spinning
systems, but it is still a good approximation. However, when rotating the waveform,
quadrupole modes mix up and aligning the rotating frame directly to the maximum emis-
sion direction is not sufficient, but it is necessary to impose another condition (Equa-
tion (2.6)). The method also produces higher-mode amplitudes consistent with those of
non-precessing binaries, which is useful because those systems are better known. Thus,
the main result is that the waveform can be represented in a simpler form which can
simplify analytic models for precessing systems and also facilitate comparisons between
numerical and analytic results.

The time dependent rotation between a fixed, i.e. inertial, frame and the quadrupole-
aligned one is the main focus of this project. Unlike non-precessing systems, precessing
binaries do not have a preferred inertial frame. However, there are some natural fixed
frames which have benefit properties for the waveforms. The initial orbital angular mo-
mentum frame Lg is usually used in numerical relativity waveforms. This frame has the
property that the spin components are approximately conserved, i.e. perpendicular and
parallel components of S do not change. For this reason, when rotating the waveform to
the quadrupole frame, it will exhibit the same features as the one produced by a system
with the same parallel components of S. Another natural fixed frame is the one defined
by the initial total angular momentum, the .Jy frame. Even though the Ly frame permits
an easier description of the spin components, the .Jy frame simplifies the initial waveform
and hence, its manipulation to the rotated frame. Therefore, even if there is no preferred
inertial frame for precessing systems, a smart choice of its coordinates can simplify the
problem. Aligning the z-axis of the inertial frame in the chosen direction, the choice of
the other axes is arbitrary, which can be made by imposing L to be in the x-z plane at
some frequency of reference. The co-precessing frame requires to track the orbital plane,
so the z’-axis is defined as L, which is parametrized by the spherical angles («, §) in the
inertial frame (see Figure 4). The rotation freedom around that axis can also be fixed
with an arbitrary election, and in this project we use the same convention as in [23], in
particular x’ = Ly.

The specification of the time-dependent rotation between the two triads (z,y, z) and
(2',y/, 2’) is usually defined by the Euler angles in the z;-y-z convention (intrinsic rota-
tions, standard when using spherical harmonics), which implies a first rotation through an
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angle o about the z-axis, then a second rotation about the 3/-axis of angle 5 and finally, a
third rotation ¢ around the new z”-axis. However, this is equivalent to rotations in the op-
posite order about fixed axes zo-y-2; (extrinsic rotations), which is useful for calculations.

Euler angles form one set of coordinates for

SO(3), the group of rotations of R? about the

+ L origin. These rotations are described by orthog-

| 4 onal 3x3 matrices with positive unit determi-

I :;_-_-_—_J_“i_,,,ﬁ{ nant and the operation of the group is the com-

;. I position of rotations. By construction, the first

/ “ two Euler angles are given by « and 3, which
£ Va can be initially calculated as

) --"'--,R_\‘ Lm
8 /LL a = arctan(L,, L,) = arctan —,
oS L . X Ly (25)

- — 4 cosf=z-L=1L,.

The third angle can be found by imposing the
minimal rotation condition, which is deduced

Figure 4: Definition of the Euler angles. ip [40]:
A = —dcos f. (2.6)

Equation (2.6) demands absence of rotation in the precessing frame about the orbital
angular momentum. Hence, imposing this condition implies that waveforms decomposed
in this new frame are invariant under rotations of the inertial frame and exhibit smoothly
varying phase. Note that there exists a freedom in the angle ~, since this equation only
specifies its derivative, and we can choose v = 0 at the initial time or reference frequency
(related by Eq (1.14)).

For the special case where z points in the J direction, denoted as .Jy frame, the evolu-
tion of the Euler angles can be obtained by introducing the triad n, L, A, where n is the
unit separation vector between the black holes and A = L x n. In this frame, we call the
second Euler angle (3,1, while in the Ly frame, it is denoted as ¢. It can be shown [33]
from post-Newtonian evolution equations that the total angular momentum is conserved
at 2PN order when the loss of energy due to gravitational radiation is neglected. Thus,
in this approximation the orbital angular momentum L must precess as L = —S, and
the orbital angular momentum and total spin vectors precess around J on the slow pre-
cessional time scale. If the inspiral timescale is much greater than the orbital timescale,
which holds until shortly before the merger, then radiation reaction changes the situation
only slowly, changing the “opening angle” between J and L. Hence, the Euler angles
evolution equations are given by [25]

@ In : I
. ’ B = )
sin Bz, /.J2 + J2 NI (2.7)

where @ is the precession frequency for the orbital plane, defined as L = —@X. Equa-
tions (2.7) and (2.6) are then solved next-to-next-to-leading order in the spin-orbit cou-
pling, giving the evolution of the Euler angles in time, which give the rotation needed to
obtain the quadrupole modes in this non-inertial frame [22].

The Wigner Matrices that appear in the expression of the rotated modes (Eq. (2.4))
form a representation of SO(3), and they can be expressed in terms of the Euler angles

a =
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as a convenient set of coordinates. An explicit expression for the Wigner Matrices and its
derivation can be found in [41], which in our convention is given by

min[l+m,l—m/]

DY (. B = > JU+m)—m)(l +m)( —m)!

k=max[0,m—m’]
6 2k+m’—m ﬁ 21—2k—m/4+m
KI+m—k)m —m+ k)N —m — k) (2) o8 (2) -

_1\k+m'—m
Xei(m"y+ma) ( 1)

= el (B), (28)

where din’,m are the elements of Wigner’s (small) d-matrix, which are real expansions of
sin and cos functions of the angle 5. This matrix exhibits some symmetries, such as

dl—m’,—m(6> - <_1)m_m/dlm’,m(6)’ dfn’,m(6> - (_1)m+m/dlm,m’7 dlm’,m<5) - dlm,m’(_ﬁ)

(2.9)
Explicit expressions for the matrix elements that are used in this project are
d;Q = cos? g, diz = 2cos® gsin BL
dgg = cos® g, d§73 = /6 cos® g sin g, (2.10)
diA = cos® g, d§74 = 2v/2 cos’ g sin g, d;‘A = 2/7 cos® g sin? g

Therefore, the rotation to obtain the modes in the quadrupole aligned frame can be
written in terms of the Euler angles, resulting

/f\l/l’m — Z hl’mlp,fi)/7m(_7, _67 _a) (211)

m/

This last expression gives the quadrupole maximized modes, which are similar to those
obtained for non-precessing systems and hence, present approximately the features that
had been introduced [Egs. (2.2) and (2.3)]. In addition, rotated modes can be determined
analytically and compared easily, such as is the case for non-precessing waveforms.

3 Complex description of rotations

3.1 Quaternions

The rotation group SO(3) introduced in the previous section can be also parameterized by
the set of unit quaternions. Quaternions were first described by William Rowan Hamilton
in 1843 in order to obtain the analogues of complex numbers (points in the plane) but
with points in a three dimensional space. They form a four-dimensional division algebra,
which is associative but not commutative, over the real numbers. Quaternions can be
expressed as a + bt + ¢j + dk, where a, b, ¢, d are real numbers and i, j, k are symbols that
can be interpreted as unit vectors pointing along the spatial axes. In addition, {1,4, j, k}
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form a basis of the 4-dimensional vector space over the real numbers. Another way to
express quaternions is considering a scalar plus a vector

do
a1
Q=q+7=|q|. (3.1)
qs
q4

Their multiplication rule is what makes quaternions unusual, known as the Hamilton
product

P-Q = (pogo — P+ @) + (pod + qop'+ P x Q). (32)
Defining the conjugate of the quaternion as Q) = gy — ¢, the norm is defined as the square
root of the scalar product between a quaternion and its conjugate

QI = VQQ = V@ + ¢ + & + a3 (3.3)

Unit quaternions are those whose norm (Eq. (3.3)) is equal to 1, which can be thought
of as points on the unit 3-sphere. This set can be chosen as a group structure on the
3-sphere S3. In a 4-dimensional space, the 3-sphere is the set of points equidistant from a,
fixed central point. More technically, it is a three-dimensional manifold (topological space
which locally resembles flat space (Euclidean geometry)), which is compact and simply
connected. The latter implies that any loop can be continuously shrunk to a point. This
group is isomorphic to the 3D rotation group introduced in the previous section, SO(3),
which gives rise to quaternion applications in different fields and the feature which we want
to exploit in this project. An overview of applications of quaternions in physics is given
in [42], including the discussion of its group representation applied to crystallography,
the kinematics of the rigid body, and also the representation of the Lorentz group of
special relativity. In addition they are related to spinors, which are fundamental objects
in quantum theory.

In this section, it will be shown how a problem can be simplified through the use of
complex variables. First, we will explore the Lorentz transformations, explaining some
of the results demonstrated in [43], and finally, the benefits of using them for describing
spatial rotations, deriving the expressions of the section above now using quaternions.

Before focusing on the description of spatial rotations in terms of quaternions, we
illustrate the utility of complexifications through the example of Lorentz transformations.
These describe the relation between observations made in two different inertial frames
consistent with special relativity. Usually these transformations are presented in the
simple case when the boost (relation between the movement of both frames) is aligned
with one of the spatial coordinates. The simplicity disappears for the general Lorentz
transformation, when six parameters are needed in order to describe the transformation:
three for the relative velocity and three for describing the relative orientation of the frames.
However, the use of complex variables can simplify the problem. A Lorentz transformation
is a linear transformation of the real coordinates of an event to new coordinates (those
measured in another frame), where both coordinates satisfy the relation

P2 gy g2 g2 g2 2 (3.4)

The most compact way to describe a Lorentz transformation is to arrange the original and
transformed coordinates in columns and express the boost as a matrix (which contains
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the details of the transformation), so the relation between both frames becomes
X' =1LX, (3.5)

where X is a four row column and L. is a 4x4 matrix. However, the general Lorentz
transformation is rarely found written out explicitly due to its high complicity. The
“complex” alternative consists in packing the coordinates into a 2x2 matrix

X:[H’? wﬂyl. (3.6)
rT—1y t—=z

In this new convention, a proper Lorentz transformation is defined as any linear transfor-
mation from ¢, x,y, z to ', 2’, 1/, 2/ which satisfies

X' = AXAT, (3.7)

where AT is the Hermitian conjugate of the matrix A, defined as

A= lz Z] : (3.8)

where a, b, ¢, d are complex numbers. The condition (3.4) implies that (for a mathematical
development see e.g. [43]):
ad — bc = 1. (3.9)

Therefore, the 6 parameters needed are encoded in four complex numbers with two con-
strains given by Eq. (3.9) (for the real and complex part). This reduction of parameters
has huge benefits for calculating the transformations in the most difficult cases, in which
the usual convention (Eq. (3.5)) becomes complicated. Some examples can be found in
[43], showing how simplification can be found through complexification. Furthermore,
boosts in Lorentz transformations can be thought of as hyperbolic rotations of space-
time coordinates in a four-dimensional Minkowski space. Since generators of 4D rotations
can be represented by pairs of unit quaternions, any Lorentz transformation can then be
related to quaternions [44].

3.2 Quaternions in spatial rotations

Turning to the description of spatial rotations, quaternions offer a number of advantages
to describe spatial rotations over the use of FEuler angles. First, their representation is
more compact and they can be quicker to compute than the representation by matrices
and in terms of trigonometric functions of Euler angles. Furthermore, they do not have
the singularities of the Euler angle coordinates, which result in the phenomenon known
as gimbal lock. It implies a loss of one degree of freedom in a system of three gimbals,
which is the case when using Euler angles. The gimbal lock occurs when two of the
three gimbals are in a parallel configuration, so the rotation can not be about one axis:
the rotation takes place in a degenerate two-dimensional space. Some examples of these
singularities will be seen in Section 4. Another convenience of using quaternions instead
of Euler angles is their simplicity to compose rotations: while using Euler angles means
multiplying matrices, composing rotations with quaternions is a vector multiplication.
Therefore, this suggests that using quaternions in order to obtain the quadrupole aligned
frame can be more efficient than using the usual representation explained in the section
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above. It is for this reason that e.g. in computer graphics quaternions are already the
standard way to rotate objects.

Any rotation in a three-dimensional space of a rigid body where a point remains fixed
can be described by three Euler angles. These three composed rotations are equivalent
to a single rotation about an axis that runs through the fixed point, according to Euler’s
rotation theorem. The fixed axis is called the Euler axis, denoted as @ (which is a unit
vector), and ¢ is the angle rotated about this axis. Quaternions provide a simple way to
describe this rotation in terms of @ and ¢:

R:COS§+ﬁsin(§. (3.10)

This quaternion can be applied to a vector ¢ (which can be considered as a quaternion
with vanishing real part) to obtain the rotated vector ¢’

7 =R-U-R, (3.11)

where - is the Hamilton product given in Eq. (3.2). Using this last expression, it is
straightforward to show that the quaternion described in Eq. (3.10) effectively rotates the
vector by ¢ around the u axis.

The composition of rotations using quaternions can be derived easily from expression
(3.11). If the new vector 7' is now rotated by ¢ about an axis @, defining P = cos £ +
W sin g, the rotated vector ¥ becomes

"=P-¢-P=P-R-7-R-P=(PR)-v-PR. (3.12)

As a generalization of this last expression, the composition is the Hamilton product be-
tween the rotations following the corresponding order, taking into account that the prod-
uct is not commutative.

In precessing binaries, Euler angles associated to the rotation of the inertial frame to
the quadrupole aligned one can be obtained using the relations from Eq. (2.5) to Eq.(2.7).
These angles (o, [3,v) represent rotations about the z, y and z-axis, respectively. In terms
of quaternions, these rotations can be written as

Q1 = cos% + ﬁsin%,
Q2 = cos g + ¢ sin g, (3.13)

Q3 :cos%—l—ésin%,

where Z and ¢ are the unit vectors along the z and y axis. Therefore, the quaternions
associated to these successive rotations are the composition of them, following Eq. (3.12):

i @ 8 7 B gin @ gin 27
COS § COS 5 COS 5 — €OS 5 sin § sin

Y qin @ ain B _ a i B ain 2
oS 3 8in § 8in 5 — cos § sin 5 sin J

R=Qs Qs Qi = . (3.14)
cos & s

Y in B i @i B Y
2008281n2—|—sm2sm28m2

B

B Y oain & a 8
| COS 5 €Os 3 sin 5 + COS 5 COS

Bain X
2San_
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This last expression gives the quaternion associated to a particular rotation in terms of
the Euler angles. Therefore, given the angles which rotate the modes to the quadrupole
aligned frame, one can calculate the associated quaternions and perform the same cal-
culations in terms of them, since it is a more compact and efficient way to do it. The
precession of the orbital plane can be thus described using quaternions, rotating the an-
gular momentum vector with Eq. (3.11).

However, in order to obtain the quadrupole modes given by the expression (2.1),
Wigner matrices need to be expressed also in terms of quaternions. The easiest way to
deduce the equivalent of Eq. (2.8) in terms of quaternions is inverting the relation found
in Eq. (3.14), and substituting the results directly in (2.8). Using some trigonometric
identities, it is straightforward to show that the Wigner matrix becomes

min[l+m,l—m/]

Dﬁ,lz),m(qg,ql,q%qg) = > \/(H—m)!(l—m)!(l+m’)!(l—m’)!

k=max[0,m—m/]

. ’ a3 o/ a1
x 6z((m +m) arctan P +(m—m') arctan i

(—1)ktm’=m 2k-+m/ —m 21— 2k—m'+m
1 _ 2 2 2 2
Kl +m— k) —m+ k) (a5 +a3) q0 + g3

ei((m/—l—m) arctan g—g—i-(m—m/)arctan Z—;)dfn/’m(qmq?))? (315)
where again d.,, , are the elements of the Wigner’s (small) d-matrix, but in terms of
quaternions. Some explicit expressions for these matrix elements are

A3, = (g +¢3)° diy=2(q+a)"* J1-a&—d
dis = (go+a3)° dis=v6(qg+a3)*1—q —d3

diy = (g +63)", diy=2V2(q5 +63)" 1 —af — a3, doy =2V7(q3 +43)*(1 — q5 — 43).

(3.16)
These matrices can be computed more efficiently and accurately using quaternions than
the Euler angles as can be seen by comparing expressions from (2.10) and (3.16). While
using Euler angles these matrix elements are expansions of trigonometric functions, in
terms of quaternions they are simply polynomial functions. Finally, the rotated modes
can be obtained in this case (see Eq. (2.1)) as

}\Lhm = Z hl’m’DgL)/,m(QOa —q1, —q2, _Q3) (317)

4 Twisting up Gravitational Waves

We now turn to the application of quaternions to describe rotations in the context of
precession. These transformations have been implemented as Mathematica code, both
in terms of Euler angles and quaternions. Given a waveform from a precessing system
and the Euler angles which decompose it to the quadrupole aligned frame, the respective
quaternions have been calculated using Eq. (3.14). The quadrupole modes have been
computed following Eqs. (2.11) and (3.17) based on implementations of the Wigner Ma-
trices in terms of Euler angles (2.8) and quaternions (3.15). Results have been tested by
comparing them to each other and also to previous Euler angle implementations of the
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group. Additionally it has been checked that the twisting up of non-precessing waveforms
commutes with the quadrupole alignment transformation into a co-rotating frame. We
will first consider two example waveforms obtained from numerical relativity simulations,
where we will check how the transformation to the quadrupole-aligned frame will simplify
the mode structure, and compare the Euler angle and quaternion descriptions. We will
then compare the two descriptions for post-Newtonian waveforms, where long waveforms
corresponding to challenging situations can be computed within minutes.

4.1 Numerical relativity waveforms

This section applies the quadrupole aligned frame method (using Euler angles and quater-
nions) to two numerical relativity waveforms produced by the SpEC code [45], which
uses pseudo-spectral methods to solve the Einstein equations. These waveforms are pub-
licly available [46]. Two precessing waveforms are considered here. For the first one
(SXS:BBH:0037), only the heavier of the two BHs is spinning, while for the second one
(SXS:BBH:0053) both BHs are spinning. All the spins are initially located within the
orbital plane and both binary systems have a mass ratio of ¢ = 3. In order to show the
efficiency of the method, rotated waveforms are compared with the waveform coming from
a non-spinning source of equal mass ratio (SXS:BBH:0030), which is the non-precessing
waveform that corresponds to the two precessing waveforms in the quadrupole-aligned
frame.

In numerical relativity, it is useful to use the Newman-Penrose formalism [47], which
introduces spinors in order to treat general relativity. Weyl scalars refer to a set of 5
complex scalars {¥;} which encode the ten independent components of the Weyl tensor
(equivalent of the Riemann curvature tensor). The Weyl Scalar W, encodes the outgoing
gravitational radiation of an asymptotically flat system. In fact, this scalar is given by

Uy = —h=—hy+ihy. (4.1)

If h is the strain of the wave, which measures the difference between both arms in the
interferometer, then the Weyl scalar is a measure of the its acceleration. In numerical
relativity, the Weyl scalar is easier to compute, and in order to obtain the strain it is
necessary to integrate twice the data obtained. Thus, in this section we will plot this
scalar instead of the strain of the wave. However, the decomposition in terms of the
spherical harmonics is the same as in Eq. (2.1), so the rotated modes can be found in the
same way as in Eq. (2.4), substituting h — ¥, and hb™ — U,

For numerical relativity waveforms, the inertial frame is usually defined by the initial
orbital angular momentum, which has been denoted as the Ly frame. In this frame, the
spin components are approximately preserved. Hence, if the spins only have components
perpendicular to the orbital angular momentum, the waveform in the co-precessing frame
is the same as the one produced by a non-spinning source (note the difference between
non-precessing, which may have spins orthogonal to the orbital plane, and non-spinning,
which does not have spins). In this frame, the second Euler angle is denoted as ¢ and
parametrizes the opening between the orbital angular momentum at each instant of time
with the initial one. Although this frame is the simplest choice to describe the spin
components, this does not occur for the waveform. If Lg is the inertial frame in which the
waveform is initially decomposed, then the Euler angle ¢ becomes sharp and the procedure
fails when it becomes higher than 7 /2. However, if a smart choice of fixed axes is made,
then the waveform becomes simpler and so do the second Euler angle. Comparisons
between choosing the inertial frame J, or Ly are done in Sec. 4.2.
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4.1.1 Single spin case (SXS:BBH:0037)

This numerical relativity waveform is from a black hole binary, where the largest one
has initial dimensionless spin y; = GsTlﬁ = (.52, i.e. orthogonal to the orbital angular
momentum. Therefore, this system presents the spin precession phenomenon according
to Equation (1.22).
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Figure 5: Evolution of the Euler angles which rotate the waveform to the quadrupole
aligned frame in terms of the time, measured in units of mass. These angles have
been obtained from the (2,2)-maximization procedure for the single spin waveform
SXS:BBH:0037. The time starts at 400 [M] in order to avoid noise fluctuations at low
frequencies, and finishes 180 [M] after the peak of the strain associated to the merger
(7776.98 [M]). This is the convention used in all plots to easily compare waveforms.

Figure 5 shows the evolution of the Euler angles that transform the SXS:BBH:0037
waveform to the quadrupole aligned frame. The time starts at 400 [M] to avoid initial
transient noise. Due to the high sensitivity required of the detectors, they can detect any
external noise which becomes present at the lowest levels of the detected gravitational
wave, called artificial gravitational waves. This noise has larger effects on the lower
modes and decays as the amplitude of the wave increases, as shown in Figs. 7 and 11. On
the other hand, during the ringdown of the resulting compact object, there are excited
constant frequency modes which are however not the spherical harmonics in which the
waveform has been decomposed. Moreover, these modes do not form a basis since they
are not orthogonal. For this reason, mode mixing occurs in the spherical harmonic modes,
which produces modulations of the waveform during this last stage, which have also been
removed. The left panel exhibits the angle ¢, and as expected, it begins at 0°. It evolves
smoothly until there is a sudden change at a time of approximately 7400 [M]. The fact
that the second Euler angle is not typically negative during the inspiral creates this sharp
reflections. The right panel shows the a and —v angles, which have a smooth evolution
until the moment of the fusion approaches. Both have been offset by £360°, respectively,
so that they do not change sign. The great resemblance between —y and « is because
the evolution of v was obtained from Eq. (2.6). The gimbal lock problem occurs when
the second Euler angle exceeds 7/2, and above this value the quadrupole aligned method
fails. This case of mass ratio 3 already presents a challenging evolution, which suggests
that more extreme cases may lead to values of ¢ larger than /2.

Given the Euler angles plotted in Figure 5, the associated quaternions can be computed
using Eq. (3.14), giving the result shown in Figure 6.
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Figure 6: Evolution of the quaternion components which rotate the waveform to the
quadrupole frame in time, measured in units of mass. The quaternion components have
been computed using Eq. (3.14) with the Euler angles shown in Figure 5.
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Figure 7: Time evolution of the amplitudes for the dominant mode ¥, 5, and selected sub-
dominant modes in logarithmic scale. Top row: Comparison between the amplitudes from
the SXS:BBH:0037 waveform (left) and SXS:BBH:0030 (right). Bottom row: Comparison
between the rotated amplitudes from the SXS:BBH:0037 data into the quadrupole aligned
frame, computing Eq. (2.11) with Euler angles in Fig. 5 (left), and computing Eq. (3.17)
with quaternions in Fig. 6 (right).
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In contrast to the Euler angles, quaternions do not suffer from coordinate prob-
lems when performing rotations. Thus, they present a more robust way to execute the
quadrupole aligned method. Even though this is only an example, quaternions present
the same features in any situation, both for highly precessing waveforms and for any fixed
frame. Following examples will reinforce quaternion compactness and effectiveness.

Nevertheless, for this specific waveform both implementations achieve an accurate
quadrupole aligned waveform which is equivalent to that coming from a non-spinning
system, as shown in Figure 7. This agreement between both waveforms is due to the
choice of the fixed frame Lgy. The top left panel shows the evolution of the dominant mode
(2,2) and other subdominant modes for the waveform in this inertial frame. Even though
the dominant amplitude and the highest modes present features compatible with those
coming from non-precessing systems, lower modes show modulations which complicate
the understanding of the waveform. The top right panel shows the numerical relativity
waveform SXS:BBH:0030, which exhibits a smooth increase until the peak associated to
the merger of the black holes, followed by the exponential decrease of the waveform (since
it is plotted in logarithmic scale). Quadrupole aligned waveforms obtained using Euler
angles (bottom left panel) or quaternions (bottom right panel) exhibit the same features
as the non-spinning one, where the modulations on lower modes present on the original
waveform have been removed. We can thus conclude that the method proposed is effective
since it achieves the expected results, both the concordance between rotations with EA
or quaternions and also with the SXS:BBH:0030 data.

Finally, the quadrupole aligned frame decomposes the modes in a similar way to
those coming from a non-precessing system, which implies that they approximately satisfy
the symmetry property given by Eq. (2.2). Figure 8 shows the difference between the
amplitudes of the |m| modes for selected modes which did not present high modulations
during a period close to the merger. Left column of panels shows how this property does
not hold for precessing waveforms, while quadrupole aligned modes show a higher degree
of symmetry between +m modes (right panels). The fact that precessing waveforms do
not present symmetry respect to the |m| modes implies that stronger radiation can be
either toward the north or south. When both black holes are orbiting to each other,
during the middle part of the orbit emit the positive modes and then the negative ones.
If there is an asymmetry between the quantity of gravitational radiation emitted, then
both contributions do not cancel so the remnant black hole of the fusion will have a
recoil velocity perpendicular to the orbital plane in the direction of maximum emission.
Thus, the amount of linear momentum in the 2’ direction of the final object can be
computed easily from the difference between the energy of the (I, +m) modes, considering
the relativistic relation between energy and momentum. An example of the simplest case
where only the dominant (2,|2]) modes are considered can be found in Section III A
in [48]. Rotated modes, shown in the right panels of Figure 8, present approximately
the feature expected for non-precessing systems, but any rotation can not completely
eliminate the asymmetries of precessing waveforms. However, the fact that the method
produces higher modes consistent with those from non-precessing waveforms permits the
complete representation of the waveform in a simpler way than the one produced directly
by the numerical relativity code. The possibility to compute the subdominant modes
of precessing binaries twisting up a non-precessing waveform simplify the production of
analytical binary coalescence methods.
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Figure 8: Difference between the amplitudes (in logarithmic scale) of the (I,m) and
(I, —m) modes for the SXS:BBH:0037 data close to the merger. Only those modes which
does not present noise fluctuations have been plotted for each [. Left column: selected
modes of the precessing waveform. Right column: selected modes of the same waveform
after being transformed into the quadrupole aligned frame. These rotated waveforms
approximately present the expected feature for non-precessing binaries (Eq. (2.2)).

These results show the robustness of the quadrupole aligned method, both for Eu-
ler angles and quaternions. Moreover, a mass ratio of 3, which is not an extreme case,
produce modulations in the second Euler angle. This suggests that larger mass ratios
may conduce to the gimbal lock problem, since highly precessing waveforms difficult the
¢ evolution. Therefore, extreme cases could not permit using Euler angles in the proce-
dure, while quaternions work in any situation. Some of these challenging examples have
been developed as post-Newtonian waveforms, which not only show how the Euler angles
become wilder but also how an appropriate inertial frame can simplify them.

Next numerical relativity waveform performs another test of the method which shows
the possibility to obtain a “normal form” for all waveforms with the same mass ratio,
precessing or not, which facilitate comparisons between analytical and numerical results.
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4.1.2 Double spin case (SXS:BBH:0053)

SXS:BBH:0053 numerical waveform corresponds to a black hole binary where both BHs
have initial dimensionless spins within the orbital plane. In particular, the larger BH has
X1 = 0.5%, while the smaller, xo = —0.5Z. Again, according to Eq. (1.22), the system
shows spin precession, so the same analysis can be done in this double spin case. Moreover,
since the spins only have perpendicular components to the orbital angular momentum,
then the quadrupole aligned waveform corresponds to the same non-spinning waveform
SXS:BBH:0030.
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Figure 9: Evolution of the Euler angles which rotate the waveform to the quadrupole
frame in time, measured in units of mass. These angles have been found from the (2,2)-
maximization procedure for the double spin waveform SXS:BBH:0053. The peak of the
strain in this case corresponds to t=4526.96 [M].
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Figure 10: Evolution of the quaternion components which rotate the waveform to the
quadrupole frame in terms of the time, measured in units of mass. The quaternions have
been computed using Eq. (3.14) with the Euler angles shown in Figure 9.
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Figure 11: Time evolution of the amplitudes for the dominant mode W, 9 and selected sub-
dominant modes. Top row: Comparison between the amplitudes from the SXS:BBH:0053
waveform (left) and SXS:BBH:0030 (right). Bottom row: Comparison between the ro-
tated amplitudes from the SXS:BBH:0053 data, computing Eq. (2.11) with Euler angles
in Fig. 9 (left), and computing Eq. (3.17) with quaternions in Fig. 10 (right).

The results found for this new case have the same features than the latter. This
agreement is because the fact that only one or both BHs have spin do not have a big
impact on the evolution equations. The spins of both black holes together with the
mass ratio ¢ give the effective spin (Eq. (1.21)), which determines either the evolution
of the coalescence (Eq. (1.20)) and also the precession of the orbital plane (Eq. (1.22)).
Therefore, the only difference between this case and the one developed above is that the
second term in Eq. (1.21) contributes. However, this effect does not have great impact, so
the evolution of the Euler angles (Figure 5) and quaternion components (Figure 10) show
the same behaviour. Finally, Figure 11 exhibits remarkable agreement between rotated
modes (bottom row) and the modes of the non-spinning waveform (top right panel), and
hence, with the rotated modes in Fig. 8. This fact shows the benefit of the quadrupole
aligned method: any precessing waveform can be decomposed to the one produced by the
same system but non-precessing, independently of the perpendicular spin components of
the black holes involved.

4.2 Post-Newtonian waveforms

The examples above have demonstrated the effectiveness of the proposed method and
how quaternions work as well as Euler angles. However, quaternions have not played a
different role than the Euler angles. SXS waveforms suggest that in extreme cases, where ¢
becomes high enough and thus the waveform becomes highly precessing, the second Euler
angle may cause problems during the twisting up procedure. This section explores the
evolution of a post-Newtonian waveform coming from a precessing system with mass ratio
g = 7.5 and how by considering an appropriate inertial frame, the waveform is simplified.
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Figure 12: Comparison between the features of the waveform from a precessing-binary
system of ¢ = 7.5 in the Lo frame (left column) and the Jy frame (right column). First
row: Evolution of the post-Newtonian waveform in both frames. Second row: Evolution
of the Euler angles which rotate the previous waveforms to the quadrupole aligned frame.
Third row: Evolution of the quaternions, obtained from the Euler angles above.

Figure 12 shows how the same system analyzed from two different inertial frames
present distinctive features. Usual SXS definition of the inertial frame (left panels), the Lg
frame characterized by the z-axis aligned with the initial angular momentum, produces an
intricate waveform and hence, a complex evolution of the Euler angles. However, defining
the z-axis as the direction of the total angular momentum, the Jy frame, simplifies the
waveform and also the evolution of the Euler angles (in this case, the second one is
referred to as ;7). Regarding to quaternions, they exhibit the same sort of evolution
in both frames, implying that their effectiveness does not depend on this election. In
fact, even in the Ly frame, where the waveform and the Euler angles become “wilder”,
quaternions are not affected and present the smooth evolution shown for the J, frame.
Thus, quaternions prove to be a more general way of finding the co-precessing frame,
whereas the Euler angles can fail if a smart choice of coordinates has not been made.
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5 Discussion

This work applies the quadrupole aligned method to track the precession of the orbital
plane, which consists in decomposing the waveform into a non-inertial time-dependent
frame where it becomes more manageable. The procedure rotates the system maximizing
the amplitude of the dominant modes (2, £2), so the rotated waveform is similar to the
one produced by the same system without precession, i.e. with both black hole spins
parallel to the orbital angular momentum. Both the dominant and subdominant modes
thus become consistent with what is already known from non-precessing systems. This
fact permits to represent the waveform more simply and facilitates comparisons between
analytical and numerical results.

The main difference between previous applications of the method and the one proposed
in this project is the use of quaternions to do the rotations, instead of the Euler angles.
Quaternions present a more compact and efficient way to rotate the system since they
do not have a preferred frame. Moreover, unlike with the Euler angles, rotations with
quaternions avoid coordinate problems, so even in the most extreme cases quaternions
work accurately to obtain the quadrupole aligned waveform. The intricate evolution
of the Euler angles that leads to problems when performing the twisting-up procedure
depends however on the inertial frame chosen.

Work in this project has proceeded in three steps. First, Mathematica code was
developed to implement quaternion algebra and to perform waveform frame rotations
with quaternions, and the code was extensively tested. In the second step the code was
applied to numerical relativity waveforms, and in a third step to much longer waveforms
obtained from the post-Newtonian approximation. When treating numerical relativity
waveforms from SXS simulations, the inertial frame is defined by aligning the z-axis with
the initial orbital angular momentum, which makes the Euler angles become “wilder”.
When the second Euler angle ¢ becomes larger than 7/2, the method fails due to the
gimbal lock problem. In these cases, the use of quaternions becomes essential because
they work for generically precessing waveforms. In fact, only the quaternion description
can perform SXS numerical relativistic simulations of highly-precessing waveforms.

Nevertheless, the Euler angle problems can be solved by choosing an appropriate in-
ertial frame, as shown in Figure 12. Post-Newtonian waveforms are usually described in
the inertial frame defined by the total angular momentum, called Jy. In this frame, the
waveform is more manageable than in the Ly frame, and thus, the second Euler angle evo-
lution is smoother, what complicates acquiring the problematic value of 7/2. Therefore,
quaternions are not indispensable when treating PN waveforms since obtaining a chal-
lenging evolution of the second Euler angle 57, is not only infrequent but also laborious to
develop. Thus, the fact that SXS numerical relativity waveforms need the quaternion de-
scription to solve the most extremely precessing systems suggests that it would be better
to first rotate the waveform into the Jy frame. Since all current codes are implemented in
terms of the Euler angles, using the quaternion description implies obtaining their com-
ponents in the first place. Thus, to deal with gravitational waves currently detectable
by our instruments it is easier to consider the waveform in the inertial .Jy frame, which
usually does not present problems with the Euler angles. However, the implementation
of the quaternion representation in analytical models would present enhancements both
in the possibility of solving any precessing waveform and in the efficiency of numerical
expansions, as seen in Equation (3.16). Besides, quaternions are used primarily because
of their effectiveness in computing rotations versus other techniques (e.g. in computer
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graphics). Hence, the quaternion implementation could improve further the twisting up
procedure.

Since current problems with Euler angles can be solved by smartly choosing the z-
axis, switching to quaternions does not become an emergency, but a future proposal to
deal with any type of system. Ground-based detectors have a limited range of detectable
gravitational waves, but the upcoming incorporation of LISA will broaden this horizon.
Hence, the available parameter space of the detections will increase, and so will the
possibility of the Euler angle failure. To avoid being aware of whether the method works
correctly, the full implementation of the quaternion description would be advantageous,
both for analytical expansions of post-Newtonian and numerical relativity waveforms, and
also to find the co-processing frame.

In conclusion, this project has illustrated the utility of the quadrupole aligned method,
both using Euler angles and quaternions. Moreover, it has shown the generality of the
quaternions comparing their description in two different frames. Unlike for the Euler
angles, their effectiveness do not depend on the chosen inertial frame and they work
for generically precessing waveforms. Current detectable gravitational waves allow the
use of Euler angles because their associated problems can be solved by establishing an
appropriate inertial frame, such as that defined by the total angular momentum. However,
the approaching incorporation of the space-based detector will expand the detectable
parameter space and thus, a quaternion description would be advisable to ensure an
accurate twisting up performance for any system.
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