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Chapter 1
Introduction

1.1 Motivation

In 1928 Paul Dirac revolutionized the world of physics by interpreting the negative elec-
tronic energy solution of his famous equation as the supposed existence of a particle with
the same mass but opposite physical charge. This led to the idea that the fermions had
a counterpart known as an antiparticle. Years later, in 1937 Ettore Majorana theorized
the existence of fermions that were their own antiparticle and the world of science has
been searching for this special particle ever since. In particular, it is believed that Majo-
rana states can appear in solids under certain conditions. For example, high conductance
plateaus have been found in topological junctions of semiconductor and superconductor
material that are signatures of Majorana phases.

Nowadays the goal is to control the appearance of Majorana bound states due to their
usefulness in the field of quantum computing. Devices capable of containing Majoranas
have the potential to be the basic building blocks of future quantum computers in the
same way that the transistor has made today’s computers possible.

Our objective in this bachelor thesis is to get an introduction to the world of nanoscience
through recent experiments on two dimensional junctions formed by a hybrid side that
consists of a superconductor-semiconductor and a normal semiconductor side. Specifi-
cally, we want to analyze magnetoconductance oscillations and observe the appearance of
topological phases for these systems.

This thesis will begin with background information and theory for the general idea of the
physical aspects of normal semiconductor-superconductor systems. Then the model will
be presented. As an introduction the Landauer formalism and topological basic concepts
will be described.
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Chapter 1. Introduction

1.2 Majorana fermions and topological superconduc-

tors

As said earlier, Majorana theorized that Dirac’s equation could be solved by a particle
equal to its antiparticle (identical mass and spin and opposite charge). The Dirac equation
reads

−i~
c
∂t ψ(x, t) = [ i~α · ∂x + βmc ]ψ(x, t), (1.1)

where α and β are 4 x 4 matrices, and m is the mass of the particle. The matrices obey:

{αi, αj} = 2δij, {αi, β} = 0, β2 = 1 . (1.2)

Any α and β satisfying these relations describe a fermion in the relativistic frame. Ma-
jorana proposed a basis on which the complex conjugate of Dirac’s equation reads

−i~
c
∂t ψ

∗(x, t) = [ i~α · ∂x + βmc ]ψ∗(x, t). (1.3)

This means that ψ and ψ∗ fulfill the same Dirac equation. The self-conjugated Dirac
particle is nowadays called Majorana fermion.

A suitable particle to be a Majorana fermion is the neutrino, but there is still no exper-
imental evidence to confirm this. What about electrons? The electron is a negatively
charged particle so it cannot be its own antiparticle directly and therefore is discarded as
a Majorana fermion. On the other hand, it has been studied that Majorana fermions can
exist as collective excitations of electrons in condensed matter systems.

The collective excitation should satisfy two conditions: obey the Dirac equation and the
excitation should be its own antiparticle in the Dirac sense. These special conditions are
fulfilled in topological superconductors. First, the boundary excitations obey the Dirac
equation because of the topological nature of the superconductor. The second condi-
tion is met because superconductors have particle-hole symmetry. This allows Majorana
fermions to appear at the edges of topological superconductors.
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1.3. Conductance

1.3 Conductance quantization and its relationship

with transmission

Van Wees et al. and Wharam et al. [1] carried out independent experiments about the
low-temperature conductance of quantum point contacts at zero magnetic field that led to
the observation of the conductance quantization. To make it short, the two-dimensional
electron gas contributes a gate-voltage independent series resistance in the conductor.
Even in a ballistic conductor (that means it has no scattering) the resistance is not zero.
If this resistance is subtracted, plateaus appear at quantized values h/2Ne where N is
an integer number and e is the electron charge. Due to the resistance discrete values the
inverse of the resistance, known as conductance, shows plateau-like values at

G =
2e2

h
N . (1.4)

This expression depicts that conductance is quantized in units of twice the conductance
quantum G0 = e2

h
(Ω−1). Experimentally, it is proven that conductance has a limit value

reached when the length of the conductor is much shorter than the mean free path of
electrons [2]. Then we must consider two effects when describing conductance in low di-
mensional systems: the length-independent resistance and the fact that conductance takes
discrete values. The approach used to describe a conductance with these two features
is known as Landauer formalism. Landauer developed a formula for electrical conduc-
tance by relating macroscopic properties to quantum mechanics through the probability
of transmission

G =
2e2

h
MT , (1.5)

where T is the electron transmission probability and M is the number of propagating
modes of the conductor. The discrete steps are then related to the transverse modes or
subbands in narrow conductors. In this approach we can see that scattering produces

Figure 1.1: Conductance dependence with gate voltage Vg. Image taken from [1].
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Chapter 1. Introduction

resistance by reducing the transmission probability. In fact, the total resistance can
be separated in two contributions: the interface or contact resistance and a scatterer
resistance:

R = G−1 = G−1
c +G−1

s =
h

2e2M
+

h

2e2M

1− T
T

. (1.6)

The finite quantized conductance without scattering appears due to the power dissipation
of the charge carriers in the source and drain contacts.
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Chapter 2
Theory and model

This chapter is devoted to the theory and model we use. In the first three sections we
introduce, in a general way, the well-known Blonder-Tinkham-Klapwijk (BTK) formal-
ism [3]. This formalism provides as a theoretical starting point to give a preliminary idea
of what a normal superconducting junction is. Furthermore, it is the basis used in the
calculation of conductance from the transmission probability in the case of an interface
modeled as a barrier. Once we had introduced the theoretical starting point, in the re-
maining sections we discuss the specific model that we use in this work. Our model is
based on recent research on the evidence of the existence of Majorana phases in hybrid
junctions. In particular, nanowires with two dimensional degrees of freedom in the pres-
ence of an applied magnetic field. We discuss the parameters involved and how to find the
differential conductance from them. A description of how to find the phases of Majorana
modes is also explained.

2.1 The BTK formalism

2.1.1 Generalized semiconductor scheme

A simple semiconductor scheme can be established by taking advantage of the BCS
(Bardeen-Cooper-Schrieffer) theory which describes superconductivity from the assump-
tion that it is a microscopic effect caused by the coupling of two electrons (a Cooper pair).
In this model the normal state is distinguished from the superconducting by the density
of states of the superconductor fase NS(E) and it is based on the use of the Bogoliubov-de
Gennes (BdG) equations [3].

If we only take into account energies E > ∆ (gap energy of the semiconductor), the
BdG solutions are for quasiparticle excitations with energy Ek =

√
∆2 + ε2k, where εk =

~2k2
2m
− εF . With each energy there are two possible associated values for k

5



Chapter 2. Theory and model

~k± = (2m)1/2[ εF ± (E2
k −∆2)1/2 ]1/2. (2.1)

In the BCS formalism, the pairing of −k and k generates a fourfold degeneracy of states
for each E. This is shown in Fig. 2.1. In this formalism each quasiparticle consists of a
linear combination of a hole with momentum −k and an electron with momentum k with
opposite spin.

Figure 2.1: Representation of the superconducting excitation energies Ek versus
k. Image taken from [3].

To finalize the generalized semiconductor scheme we will focus on the normal metal side.
This case is obtained by letting ∆ → 0 in the superconducting approach. In the normal
metal this implies that only the branches shown in Fig. 2.2 are possible.

Figure 2.2: Plot of excitation energies for the normal state. Image taken from [3].

2.1.2 Normal-Superconductor interface

In this section, we focus our attention primarily on the N-S interface modeled in the
context of reflection with branch crossing, the well-known Andreev reflection. This ap-
proach is known as Blonder-Tinkham-Klapwijk (BTK) formalism [3]. The BTK formalism

6



2.1. The BTK formalism

is a mean-field theory so residual interactions, such as quasiparticle scattering, are not
accounted for.

The BTK formalism is based on the BCS theory and the use of the Bogoliubov-de Gennes
(BdG) equations. These equations include a series of parameters to characterize super-
conductors: Hartree potential V (x), pairing strength ∆(x) and chemical potential µ(x).
By using these equations to handle the interface the problem gets simpler because it can
be solved by matching wave functions at the boundary.

In this approach, the superconductor is divided into three different parts: the supercon-
ducting regime, the normal regime and the interface between them.

Regarding the interface, the BTK formalism models it as a repulsive delta-function po-
tential V (x) = Hδ(x). We will consider only processes for which energy is conserved
and establish that incident particles with positive velocity can generate two processes:
transmission of a particle with positive velocity or reflection of a particle with negative
velocity. These restrictions simplify the number of allowed processes to four: Andreev re-
flection if the incident electron coming from the normal side is reflected as a hole; normal
reflection if the electron is reflected as an electron; on the other hand, the electron can be
transmitted as a hole-like or as an electron-like quasiparticle. The four possible processes
are depicted in figure 2.3.

Figure 2.3: Diagram of energy vs. momentum at N-S interface. The empty circles
are holes, and full circles electrons. The figure shows the four allowed processes for
an incident electron with energy E > ∆ at (0): the Andreev-reflected hole (A), the
normal-reflected electron (B), the transmitted electron-like quasiparticle (C) and the
transmitted hole-like quasiparticle (D). Image taken from [3].

Considering these four processes the wave functions associated with each possible outcome
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Chapter 2. Theory and model

for an electron travelling from N to S are:

ψNinc =

[
1
0

]
eik+x,

ψNrefl = a

[
0
1

]
eik−x + b

[
1
0

]
e−ik+x,

ψStrans = c

[
u2
k0

v2
k0

]
eik+x + d

[
v2
k0

u2
k0

]
e−ik−x .

(2.2)

The prefactors a − d are related to the probabilties of transmission and reflection. In
order to obtain them the following boundary conditions are used [4]:

1) Continuity at 0 :

ψN(0) = ψS(0) = ψ(0) ,

2) Derivative of the wavefunction satisfies :

~
2m

dψS(0)

dx
− ~

2m

dψN(0)

dx
= Hψ(0) .

(2.3)

Carrying out the algebra one can get the expressions for a − d. The probabilities asso-
ciated with them are: A(E) is Andreev reflection probabilty, B(E) is normal reflection
probability, C(E) and D(E) are the transmission probabilites without and with branch
crossing, respectively. Their expressions are:

A(E) = |a(E)|2 =
u20v

2
0

γ2

B(E) = |b(E)|2 =
(u20−v20)2Z2(1+Z2)

γ2

C(E) = |c(E)|2 =
u20(u20−v20)(1+Z2)

γ2

D(E) = |d(E)|2 =
v20(u20−v20)Z2

γ2

 (E > ∆)

A(E) = ∆2

E2+(∆2−E2)(1+2Z2)2

B(E) = 1− A
C(E) = 0
D(E) = 0

 (E < ∆),

(2.4)

where the dimentionless barrier height is defined as Z = mH/~2kf and γ = u2
0 + (u2

0 −
v2

0)Z2.

2.1.3 Current flowing from N to S. Differential Conductance

When a voltage is applied a current will be generated. In this section, the BTK formalism
and the use of BdG equation solutions are still valid [3]. Moreover, we shall assume that
equilibrium Fermi functions describe the incoming particles. Following these criteria,
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2.2. Model: the 2D-q1D nanowire

electrons coming from the S side are described by fN←S(E) = f0(E) while those coming
in from the N side have fN→S(E) = f0(E− eV ). Because of the current conservation the
current can be calculated, for simplicity, on the N side. To find this current one must
subtract fN→S and fN←S at two points of the normal side (for example, 0 and 5 on Figure
2.3), and integrate over E:

INS ∝
∫ ∞
−∞

[fN→S(E)− fN←S(E)] dE = ...

=

∫ ∞
−∞

[f0(E − eV )− f0(E)] [1 + A(E)−B(E)] dE.

(2.5)

This expression shows that Andreev reflection, A(E), increases the current and normal
reflection, B(E) decreases it. From this current expression one can get the differential
conductance as follows:

dINS(V )

dV
∝ [1 + A(E)−B(E)], (2.6)

where the energy is evaluated with respect the apllied bias. This means that E = eV .

In Figure 2.4 different plots showing differential conductance at zero temperature versus
voltage for different barrier strengths can be seen. In the case of zero barrier strength,
Z = 0, we see a differential conductance constant value up to the energy ∆ which coincides
with the energy of the superconducting gap. After this energy value, the differential
conductance decays to an asymptotic value. In the rest of the cases, with a barrier
strength different from zero, we see that a characteristic peak occurs at ∆. Before this
energy the differential conductance takes lower values and for a strong barrier, below
energy ∆ is practically non-existent. This is a non-trivial result since, despite having
a superconducting part, the differential conductance is zero below the superconducting
energy gap.

2.2 Model: the 2D-q1D nanowire

Now we are ready to analyse diffential conductance oscillations in topological NS junc-
tions. In our particular case, we are focusing on hybrid nanowires. These are formed when
a semiconductor approaches a superconducting material so its superconducting properties
are transferred to the semiconductor part. The main feature of these topological systems
is that at the ends of the nanowire Majorana modes may appear. To obtain and describe
these states, complex band structure is often used. For this purpose, we use recent re-
searches [5] and [6] as a reference for the complex band structure analysis.
In our model we consider a nanowire system, with the axis oriented in the x direction and
the transverse directions are characterized by a strong confinement. This is referred as
2D-q1D nanowire which has one transverse degree of freedom, y, and q1D is the acronym

9



Chapter 2. Theory and model

Figure 2.4: This figure shows the BTK model results for differential conductance
versus voltage considering different barrier strengths Z at T = 0. Image taken
from [3].

for quasi-one dimensional system. These type of wires are often called strips.

The model consists of a 2D-q1D nanowire with a normal semiconductor side attached to
a hybrid semiconductor-superconductor side. Both sides are separated by a barrier. The
continuum coordinates describe the movement in the xy plane and the strip is of width
Ly. Isospin and spin are discrete variables described with σxyz and τxyz Pauli matrices,
separately. Moreover, the magnetic field is perpendicular to the plane, i.e., B = Bz, and
will affect electron motion in a planar way. The Hamiltonian reads

H =

(
p2
x + p2

y

2m
− µ

)
τz +

α

~
(pxσy − pyσx) τz + ∆B σz + ∆0 τx

+
~2

2ml4z
y2 τz −

~
ml2z

ypx −
α

l4z
y τy .

(2.7)

where ∆0, ∆B and α are respectively the pairing, Zeeman and spin-orbit parameters.
The Zeeman energy is ∆B = g∗µBB/2, the gyromagnetic factor is represented by g∗. The
chemical potential is µ. The orbital field terms are the last three in Eq. (2.7) and they
depend on the magnetic length l−2

z = eB/~c.

Figure 2.5: Scheme of infinite quasi-one dimensional nanowire along x with y as
the transverse dimension. Image taken from [5].
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2.2. Model: the 2D-q1D nanowire

In this approach, the general wave function is represented as

Ψ(x, y, ησητ ) =
∑
sσ ,sτ

Ψ(k)
sσsτ (y) eikx χsσ(ησ)χsτ (ητ )

=
∑
k

Ck Ψ(k)(x, y, ησ, ητ ),
(2.8)

where ησ,τ represent spin and isospin, respectively. For an infinite nanowire and a given
wavenumber k, the Ψ(k)’s are the eigensolutions. These transverse states of the nanowire
give the band structure, ε(k), from the eigenvalue stationary equation

hk Ψ(k)(y, ησ, ητ ) = εk Ψ(k)(y, ησ, ητ ) , (2.9)

where hk is the effective 1D Hamiltonian

h(k) =

(
(~k)2 + p2

y

2m
− µ

)
τz +

α

~
(~kσy − pyσx) τz + ∆B σz+

∆0 τx +
~2

2ml4z
y2τz −

α

l4z
yτy .

(2.10)

In this approach we shall assume that Majorana phase transitions appear as in the 1D
case, when the closing and reopening of the gap at k = 0 occurs. For this reason, it is
only needed the structure given by imposing k = 0 on (2.9)

h0 Ψ(0)(y, ησ, ητ ) = ε0 Ψ(0)(y, ησ, ητ ). (2.11)

2.2.1 Majorana phase boundaries

The general numerical method1 used in order to obtain phase boundaries of the Majo-
rana is based on wave number analysis with matching conditions on y and spin-isospin
components. In the numerical calculation, the equation (2.11) is solved in a 1D grid as
a linear system considering fading boundary conditions at the edges. By doing this, the
trivial solution can always exist because the system is homogeneous. In order to scrap
the trivial solution, a matching point ym is introduced, and for an arbitrary pair of spin-
isospin components a non vanishing wave function is imposed. This method is known as
the F -function method and we describe it as in [5].

Equation (2.11) gives the transverse wave functions Ψ(0)(y, sσ, sτ ) as unknowns. This
equation is discretized on a uniform grid for matching point and spin-isospin components
(y, sσ, sτ ) 6= (ym, s, t). The matching conditions required are

1This final degree project does not focus on developing a new numerical model, but on obtaining
results from already existing ones. Therefore, only a brief description of the algorithm is given. A more
detailed description of the numerical model can be found, for example, in [7].
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Chapter 2. Theory and model

{
Ψs,t(ym) = 1(

d(L)

dy
− d(R)

dy

)
Ψsσ ,sτ (ym) = 0 (sσ, sτ ) 6= (s, t),

(2.12)

d(L,R)/dy represent derivatives with only left (L) or right (R) grid neighbours. The first
condition makes the system inhomogenous so that it always admits a solution. The second
condition is used to discard non-physical solutions with the so called F -function and it
reads

F =

∣∣∣∣(d(L)

dy
− dR

dy

)
Ψ(ym, s, t)

∣∣∣∣2 . (2.13)

When F = 0, with fixed k and energy, Majorana phase boundaries appear while sweeping
the remaining parameters.

2.2.2 Majorana states

In this section we briefly explain the procedure for calculating the Majorana states2.
Once the regions with Majorana states have been determined, they can be calculated
using complex band theory. To do so, we are interested in obtaining the Majorana wave
function previously shown in equation (2.8). In order to do it, a set of complex wave

numbers and transverse wave functions
{
k,Ψ

(k)
sσ ,sτ (y)

}
is calculated first by using sparse

non-Hermitian matrix diagonalization techniques. Then, the amplitudes Ck are obtained
from the boundary condition at x = 0 considering a semi-infinite strip with x ≥ 0

∑
k

Ck Ψ(k)
sσ ,sτ (y) ≡

∑
k

Mk′k Ck = 0, (2.14)

where

Mk′k =
∑
sσ ,sτ

∫
dyΨ(k′)∗

sσ ,sτ (y) Ψ(k)
sσ ,sτ (y). (2.15)

The Ck’s are then obtained as the diagonalization of M in equation (2.14). Eventually,
the wavefunction is obtained from amplitudes Ck’s of the infinite nanowire modes. The
Majorana state is built as a linear superposition of these amplitudes.

2In this bachelor’s thesis it is not necessary to calculate these states but it is described how they are
calculated for completeness.
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2.2. Model: the 2D-q1D nanowire

2.2.3 NS hybrid junctions in 2D-q1D

As we mentioned previously we are interested in normal-superconductor junctions and,
particularly, junctions of normal lead and hybrid nanowire. The system is formed by a
right superconductor contact and a left normal semiconductor contact with an interface
central region [6]. The same Hamiltonian describes both regions but the left has a zero
superconductor coupling and the right has a finite value. In the central region the cou-
pling can have a position-dependent value.

Figure 2.6: Schematic of the NS junction. We distinguish the left (normal), central
and right (superconducting) sides. The superconductor coupling ∆s increases with
x position. Image taken from [5].

Solutions with similar form to those of a semi-infinite nanowire are written to describe
the ingoing and outgoing propagating modes

Ψ(x, y, ησ, ητ ) =
∑
α,nα

d(α,c)
nα eik

(α,c)
nα x φ(α,c)

nα (y, ησ, ητ ), (2.16)

where the input and output modes are labeled by α = i, o for the contacts c = L,C,R.
The parameter nα is the ordering number. The program gives a set of output amplitudes
based on the input amplitudes, for a given energy. The use of energy as a parameter is not
a restriction since, as explained before, the differential conductance depends on reflection
and transmission probabilities at a certain energy. The closed-system of linear equations
that need to be resolved reads

(H− E)Ψ(x, y, ησ, ητ ) = 0, (xy) ∈ C, (2.17)

Ψ(x, y, ησ, ητ )−
∑
no

d(o,c)
no eik

(o,c)
no x φ(α,c)

no (y, ησ, ητ ) =∑
ni

d(i,c)
ni

eik
(i,c)
ni

x φ(i,c)
ni

(y, ησ, ητ ), (xy, c) ∈ L/R,
(2.18)
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Chapter 2. Theory and model

∑
ησ ,ητ

∫
dy φ(o,c)∗

mo (y, ησ, ητ ) Ψ(xc, ησ, ητ )−
∑
no

d(o,c)
no eik

(o,c)
no xcM(oc,oc)

mo,no =

∑
ni

d(i,c)
ni

eik
(i,c)
ni

xM(oc,ic)
mo,ni

, c ∈ L/R,
(2.19)

where xc indicates the x coordinate with respect the grid points. The M matrix is the
same from previous section with the new labelling. These set of matching equations are
solved for the output coefficients do,cnα which are all the information needed to obtain the
conductance.

2.2.4 Conductance calculation

All the previous sections and their respective calculations allow finally to obtain the
conductance. Knowing the scattering amplitudes, d, the conductance for a given energy
E is

G(E) ≡ dI(E)

dV
=
e2

h
[N(E)− Pee(E) + Peh(E) ] , (2.20)

where

Pee(E) =
∑
noησ

∣∣d(o,L)
no

∣∣2 ∫ dy
∣∣φo,Lno (y, ησ,⇑)

∣∣2 , (2.21)

Peh(E) =
∑
noησ

∣∣d(o,L)
no

∣∣2 ∫ dy
∣∣φo,Lno (y, ησ,⇓)

∣∣2 , (2.22)

are the normal and Andreev reflection probabilites. We use ητ =⇑ to denote the isospin
component for electron and ητ =⇓ for hole. The number of incident electron modes is
represented as N(E).

In conclusion, to calculate numerically the differential conductance, three steps are needed:
first, the solutions for each contact are obtained, as explained in sections 2.2.1 and 2.2.2;
then, the system of equations in section 2.2.3 (the scattering problem) is solved and,
finally, knowing the amplitudes and the wave functions, the differential conductance is
calculated.
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Chapter 3
Results

In this chapter we are presenting the results for the normal semiconductor hybrid super-
conductor (N-hS) junction, where the superconductor side is topological and can host a
Majorana mode localized on the end, close to the junction. An applied magnetic field
in vertical direction allows to change the topological phases of the superconducting part.
We also consider a barrier between N and hS, at the interface as usual. We are mainly
interested in the differential conductance which is calculated from Andreev and normal
reflection probabilities, as explained earlier. The results also show the transmission that
is not necessary to calculate the differential conductance as we have seen previously. It is
represented since the codes calculate it. Furthermore, it is an indicative result important
for the physics of the problem.

We consider the parameters as in [6]. Specially, the case corresponding to the figure of
that reference which shows the conductance for zero energy (E = 0) or infinitesimal bias.
The figure is showed below as Fig. 3.1 . The N-hS junction has the same structure as in
Figure 2.6.

In this same paper [6], the topological phases with Majorana modes are found following
the model described in the previous chapter. The phases with Majorana modes were
obtained for a series of values of chemical potential and magnetic field considering zero
energy. We use as reference these data that describe the trivial and topological phases
but we show the junction conductance dependence with energy or applied bias (which is
equivalent to E = eV ).

We will take four selected magnetic fields, corresponding to different topological phases of
Figure 3.1 and show the dependence with E as this is increased. This will allow us to see
the evolution of the junction conductance with the bias and with the applied magnetic
field and analyse the different transitions between topological and trivial phases. We
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choose the following four cases:

1) Trivial (no Majorana): B = 0.075 T
2) Topological (with Majorana): B = 0.5 T
3) Trivial: B = 1.12 T
4) Topological: B = 1.6 T

The following results are in effective units (Lu, Eu). The correspondence with physical
units is: for length Lu = 150 nm, for energy Eu = 0.1 meV. Finally, for magnetic field:
∆B/Eu = 4B/T. That is B =1 T corresponds to ∆B = 4 Eu.

Figure 3.2c shows normal reflection probability RN , Andreev reflection probability RA,
transmission T and conductance G as a function of the energy for the cases described
above. The main result on Figure 3.2 is that the topological phases (panels b and d) are
characterized by a conductance that has a peak at zero energy. This is called a zero-bias
anomaly and it is due to the peak of the Andreev reflection at zero energy. In panel b
the width of the zero-bias anomaly is approximately 7 µV while for panel d, where the
magnetic field is greater, the width is 4 µV. Therefore, we can infer that the greater the
magnetic field the smaller the width of the anomaly. The zero-bias anomaly is an impor-
tant result because it indicates the Majorana state presence. Finally, another result we
can observe is that in the topological phases (b and d) Andreev reflection dominates over
normal reflection.

We are also interested in the case of a very small barrier at the interface. For this pur-
pose, we consider a 0.02 meV barrier in Fig. 3.3. We obtain that for topological phases
the results remain the same, these are not affected by the presence of the barrier, except

Figure 3.1: This figure shows junction conductance versus the applied magnetic
field . The width is Ly=150 nm. The parameters in panel (a) are: spin-orbit coupling
α = 60 meV nm and chemical potential µ = 1.5 meV. In the graph appear four curves
and each one indicates the different barrier strength values at the interface V0 in
meV. The phase transition boundaries are shown by vertical bars. The M indicates
the Majorana phase regions. Additional parameters: length of the barrier Lx =7
nm, gyromagnetic factor g∗=15, m =0.033me. Image taken from [6].
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Figure 3.2: Normal reflection probability RN , Andreev reflection probability RA,
transmission T and conductance G as a function of the energy for the four cases
described above. All panels are for SO coupling α =45 meV nm, chemical potential
µ =0.5 meV and barrier height V0 =2 meV=20 Eu. The conductance is in units of
the conductance quantum e2/h. Panel (a) is for magnetic field ∆B = 0.3 Eu (or
B=0.075 T); panel (b) is for ∆B = 2 Eu (or B = 0.5 T); panel (c) is for ∆B = 4.5
Eu (or B=1.12 T) and panel (d) is ∆B = 6.5 Eu (or B=1.6 T).

for minor differences. On the other hand, the trivial phases change significantly due to
the effect of the barrier. The case c is the one that changes the most. From the BTK
model [3] it is expected that the trivial phases without barrier give quantized conductance
to infinitesimal bias applied and that is what we are possibly reproducing. In the figure
3.3 the results for a small barrier are shown.

It should be noted that Andreev’s reflection is very sensitive to the barrier in the trivial
phases. In the topological phases this does not occur and therefore practically the same
results are obtained. In panel c, due to the barrier effect the Andreev reflection proba-
bility increases so does the conductance. In this case, the width of the zero-bias anomaly
present in the topological phases is practically the same; in panel b the width remains 7
µV and in panel d it is 4 µV.

To confirm that we have reached the BTK zero barrier result we also perform the same
calculation for an even lower barrier of 2 × 10−4 meV. This is shown in Figure 3.4. The
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Figure 3.3: Same as Fig. 3.2 for a small barrier V0 = 0.02 meV = 0.2 Eu.

results are identical for both small barriers, confirming that we reached the limit.

We can conclude that the finite bias conductance of the topological NS junction is charac-
terized by a peak near zero (a zero bias anomaly) when the S part is topological and con-
tains a Majorana mode. A barrier at the interface does not change the zero-bias anomaly
of topological phases. This has been obtained for the 2D-q1D NS junction in presence of
a vertical magnetic field. The magnetic field yields strong orbital effects and allows the S
side topological phases of the junction to be controlled. The zero bias anomaly had been
discussed previously in 1D wires, but not in planar systems with applied vertical fields
as we considered here. In addition, we have seen that the Andreev reflection probability

Figure 3.4: Same as Fig. 3.2 for the trivial phase and different barriers. Panel (a)
is for barrier V0 =0.02 meV; panel (b) is for barrier V0=2× 10−4 meV.
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is very sensitive to changes in the barrier for trivial phases. Finally, regarding the width
of the anomaly, we have seen that it does not depend on the barrier but on the applied
magnetic field in an inversely proportional way: the greater the applied magnetic field,
the smaller the width of the anomaly.
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Chapter 4
Conclusions

The realization of this bachelor’s thesis has allowed to obtain a first insight into the inter-
esting world of nanoscience, and in particular, a glimpse of transport in nanostructures.
We have studied the case of a 2D-q1D nanowire that is relevant to find evidence of the
existence of Majorana modes in hybrid normal semiconductor superconductor junctions.
In our particular case we have reproduced recent research but focussing on energy depen-
dence. This energy dependence is equivalent to the bias V dependence as E = eV .

The novel contribution of this work consists in analyzing the effect of energy that had
not been studied for the planar system with a perpendicular magnetic field. In our study
we have obtained the well-known zero bias anomaly in differential conductance discussed
previously in q1D wires, but not in planar systems with applied vertical fields as we con-
sidered here. The results indicate that the width of the zero-bias anomaly depends on
the applied magnetic field but does not depend on the barrier strength. In our case, for
a 0.5 T magnetic field the width is 7 µV while for a 1.6 T magnetic field the width is
4 µV. When the applied magnetic field increases, the width of the anomaly decreases.
Another important result obtained is the relevance of the barrier to distinguish trivial
and topological phases. Specifically, in topological phases, changes in the barrier do not
affect the differential electrical conductance. On the other hand, in trivial phases the
probability of Andreev reflection is sensitive to the strength of the barrier and, therefore,
so is the conductance.

As a final conclusion, it should be noted that the work presented here may be expanded in
the future. For example, the variation of other parameters such as the chemical potential
or the nanowire width could be also studied.
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