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A B S T R A C T

The Colless index for bifurcating phylogenetic trees, introduced by Colless (1982), is defined as the sum, over
all internal nodes 𝑣 of the tree, of the absolute value of the difference of the sizes of the clades defined by the
children of 𝑣. It is one of the most popular phylogenetic balance indices, because, in addition to measuring
the balance of a tree in a very simple and intuitive way, it turns out to be one of the most powerful and
discriminating phylogenetic shape indices. But it has some drawbacks. On the one hand, although its minimum
value is reached at the so-called maximally balanced trees, it is almost always reached also at trees that are
not maximally balanced. On the other hand, its definition as a sum of absolute values of differences makes
it difficult to study analytically its distribution under probabilistic models of bifurcating phylogenetic trees.
In this paper we show that if we replace in its definition the absolute values of the differences of clade sizes
by the squares of these differences, all these drawbacks are overcome and the resulting index is still more
powerful and discriminating than the original Colless index.
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1. Introduction

Evolutionary biology is concerned, among other major things, about
understanding what forces influence speciation and extinction pro-
cesses, and how they affect macroevolution [1]. In order to do so,
there has been a natural interest in the development of techniques and
measures whose goal is to assess the imprint of these forces in what
has become the standard representation of joint evolutionary histories
of groups of species: phylogenetic trees [2–4]. There are two aspects
of a phylogenetic tree that can expose such an imprint: its branch
lengths – determined by the timing of speciation events – and its shape,
r topology —which, in turn, is determined by the differences in the
iversification rates among clades [5, Chap. 33]. But, as it turns out,
he accurate reconstruction of branch lengths associating, to a given
hylogenetic tree, a robust timeline is not straightforward [6] while,
n the other hand, phylogenetic reconstruction methods over the same
mpirical data tend to agree on the topology of the reconstructed
ree [7–9]. Therefore, the shape of phylogenetic trees has become
he focus of most of the studies performed on this topic, be it via
he definition of indices quantifying topological features – see, for
nstance, [3,10,11] and the references on balance indices given below
or the frequency distribution of small rooted subtrees [12–15].

In his 1922 paper, Yule [16] first observed that taxonomic trees
ave a tendency towards asymmetry, with most clades being small

∗ Corresponding author.
E-mail addresses: krzysztof.bartoszek@liu.se, krzbar@protonmail.ch (K. Bartoszek), t.martinez@uib.eu (T.M. Coronado), arnau.mir@uib.eu (A. Mir),

esc.rossello@uib.es (F. Rosselló).

and only a few of them large at every taxonomic level. Thus, balance,
understood as the propensity of the children of any given node to have
the same number of descendant leaves, has become the most popular
topological measure used to describe the topology of a phylogenetic
tree. Therefore, per negationem, the imbalance of a phylogenetic tree
gives a measure of the tendency of diversification events to occur
mostly along specific lineages [11,17]. Several such measures have
been proposed, in order to quantify the balance (or, in many cases,
the imbalance) of a phylogenetic tree, and they are referred to in the
literature as balance indices. For example, see [10–12,18–24] and the
section ‘‘Measures of overall asymmetry’’ in [5] (pp. 562–563).

For instance, these indices have then been thoroughly used in order
to test the validity evolutionary models [3,21,25–29]; to assess possible
biases in the distribution of shapes that are obtained through dif-
ferent phylogenetic tree reconstruction methods [30–34]; to compare
tree shapes [35–37]; as a tool to discriminate between input param-
eters in phylogenetic tree simulations [38,39]; or simply to describe
phylogenies existing in the literature [40–43].

Introduced in [18], the Colless index has become one of the most
popular balance indices in the literature. Given a bifurcating tree 𝑇 , it
is defined as the sum, over all internal nodes 𝑣 in 𝑇 , of the absolute
value of the difference between the numbers of descendant leaves of
the pair of children of 𝑣 (even so, there exists a recent extension
to multifurcating trees, see [23]). Its popularity springs from several
ttps://doi.org/10.1016/j.mbs.2020.108503
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sources. First of all, its antiquity: it is one of the first balance indices
found in the literature, dating back to 1982. Secondly, the way it
measures the ‘‘global imbalance’’ by adding the ‘‘local imbalances’’ of
each internal node in 𝑇 is fairly intuitive. Finally, it has been classified
as one of the most powerful tree shape statistics in goodness-of-fit tests
of probabilistic models of phylogenetic trees [21,44,45], as well as one
of the most shape-discriminant balance indices [46].

Due to this popularity, the statistical properties of the Colless in-
dex under several probabilistic models have been thoroughly studied
[47–50] as well as its maximum [23] and minimum [51] values. The
characterization of this last value, as well as that of the trees attaining
it, apart from recent turns out to be rather complex and fails to
shed light on the intuitive concept of balance. Indeed, other balance
indices, such as the total cophenetic index [22] and the rooted quartet
index 𝑟𝑄𝐼 [19] classify as ‘‘most balanced’’ trees only those that are
maximally balanced, in the sense that the imbalance of each internal
node is either 0 or 1. Even though these trees are effectively considered
to be ‘‘most balanced’’ by the Colless index, they are seldom the only
ones being so considered.

In this manuscript, we introduce a modification of the Colless index
that offers some benefits over the original definition, consisting in
squaring the difference of the number of descendant leaves to each
child of an internal node instead of considering its absolute value. On
the one hand, we have been able to compute both its expected value
and its variance under the Yule and uniform probabilistic models for
phylogenetic trees. In contrast, notice that the expected value of the
Colless index under the uniform model is still unknown in the literature.
On the other hand, its maximum and minimum values are attained ex-
actly at the caterpillars and the maximally balanced trees, respectively,
and the proofs of these results are rather easy—more so when compared
to those concerning the Colless index. Furthermore, it proves to be less
prone to have ties between different trees than any other balance index
in the literature is, as well as more shape-discriminant than any of the
balance indices tested in [46] are.

Before leaving the Introduction, we want to note that, even though
the Colless index, as well as other indices, was invented for its ap-
plication to the description and analysis of phylogenetic trees, it is a
shape index, i.e. one whose value does not depend on the specific labels
associated to the leaves of the tree, but on its underlying topological
features. Thus, in the rest of this manuscript we will restrict ourselves
to unlabelled trees.

2. Preliminaries

2.1. Trees

In this paper, by a tree 𝑇 we always mean a bifurcating rooted tree,
that is, a directed tree with one, and only one, node of in-degree 0
(called the root of the tree) and all its nodes of out-degree either 0 (the
leaves, forming the set 𝐿(𝑇 )) or 2 (the internal nodes, forming the set
𝑉𝑖𝑛𝑡(𝑇 )). For every 𝑛 ⩾ 1, we denote by  ∗

𝑛 the set of (isomorphism
classes of) trees with 𝑛 leaves.

Let 𝑇 be a tree. If there exists an edge from a node 𝑢 to a node 𝑣
in 𝑇 , we say that 𝑣 is a child of 𝑢 and that 𝑢 is the parent of 𝑣. Notice
that, since 𝑇 is bifurcating, all internal nodes of 𝑇 have exactly two
children. In addition, if there exists a path from a node 𝑢 to a node 𝑣 in
𝑇 , we say that 𝑣 is a descendant of 𝑢. For every node 𝑣 of 𝑇 , we denote
by 𝜅𝑇 (𝑣) the number of its descendant leaves. If 𝑛 ⩾ 2, the maximal
pending subtrees of 𝑇 are the pair of subtrees rooted at the children of its
root. We shall denote the fact that 𝑇1 and 𝑇2 are the maximal pending
subtrees of 𝑇 by writing 𝑇 = 𝑇1⋆𝑇2. This notation is commutative, that
is 𝑇1 ⋆ 𝑇2 = 𝑇2 ⋆ 𝑇1.

For every 𝑛 ⩾ 1, the comb with 𝑛 leaves, 𝐾𝑛, is the unique tree in 𝑛
all whose internal nodes have different numbers of descendant leaves;

cf. Fig. 1(a).

3

Fig. 1. (a) The comb 𝐾7 with 7 leaves; (b) The maximally balanced tree 𝐵7 with 7
leaves.

2.2. The Colless index and the maximally balanced trees

Given a tree 𝑇 and an internal node 𝑣 ∈ 𝑉𝑖𝑛𝑡(𝑇 ) with children 𝑣1
and 𝑣2, the balance value of 𝑣 is 𝑏𝑎𝑙𝑇 (𝑣) = |𝜅𝑇 (𝑣1) − 𝜅𝑇 (𝑣2)|. The Colless
index [18] of a tree 𝑇 ∈ 𝑛 is the sum of the balance values of its
internal nodes:

𝐶(𝑇 ) =
∑

𝑣∈𝑉𝑖𝑛𝑡(𝑇 )
𝑏𝑎𝑙𝑇 (𝑣).

An internal node 𝑣 is balanced when 𝑏𝑎𝑙𝑇 (𝑣) ⩽ 1, i.e. when its two
hildren have ⌈𝜅𝑇 (𝑣)∕2⌉ and ⌊𝜅𝑇 (𝑣)∕2⌋ descendant leaves, respectively.

A tree is maximally balanced if all its internal nodes are balanced (cf.
ig. 1(b)). Recursively, a bifurcating tree is maximally balanced if its
oot is balanced and its two maximal pending subtrees are maximally
alanced. This easily implies that, for every 𝑛 ∈ N, there exists a unique

maximally balanced tree with 𝑛 leaves, which we denote by 𝐵𝑛.
The maximum Colless index in ∗

𝑛 is reached exactly at the comb
𝐾𝑛. The fact that 𝐶(𝐾𝑛) is maximum was already hinted at by Colless
in [18], but to our knowledge a formal proof that 𝐶(𝐾𝑛) > 𝐶(𝑇 ) for
every 𝑇 ∈ ∗

𝑛 ⧵ {𝐾𝑛} was not provided until [23, Lem. 1]. As to the
minimum Colless index in ∗

𝑛, it is proved in [51, Thm. 1] that it
is achieved at the maximally balanced tree 𝐵𝑛, although (unlike the
situation with the maximum Colless index) for almost every 𝑛 ∈ N⩾1
here exist other trees in ∗

𝑛 with minimum Colless index (see [51, Cor.
]). If we write 𝑛 =

∑𝓁
𝑗=1 2

𝑚𝑗 , with 𝓁 ⩾ 1 and 𝑚1,… , 𝑚𝓁 ∈ N such that
1 > ⋯ > 𝑚𝓁 , then

(𝐵𝑛) =
𝓁
∑

𝑗=2
2𝑚𝑗 (𝑚1 − 𝑚𝑗 − 2(𝑗 − 2)). (1)

or a proof, see Thm. 2 in [51].

.3. Phylogenetic trees

A phylogenetic tree on a set 𝑋 is a (rooted and bifurcating) tree with
ts leaves bijectively labelled by the elements of 𝑋. We shall denote by
𝑋 the space of (isomorphism classes of) phylogenetic trees on 𝑋. When
he specific set of labels 𝑋 is irrelevant and only its cardinality |𝑋| = 𝑛
atters, we shall identify 𝑋 with the set {1,… , 𝑛}, we shall write 𝑛

nstead of 𝑋 , and we shall call the members of this set phylogenetic
rees with 𝑛 leaves.

A probabilistic model of phylogenetic trees 𝑃𝑛, 𝑛 ⩾ 1, is a family
f probability mappings 𝑃𝑛 ∶ 𝑛 → [0, 1], each one sending each
hylogenetic tree in 𝑛 to its probability under this model.

The two most popular probabilistic models of phylogenetic trees are
he Yule, or Equal-Rate Markov, model [16,52] and the uniform, or Pro-
ortional to Distinguishable Arrangements, model [53,54]. The Yule model

produces bifurcating phylogenetic trees on [𝑛] through the following
stochastic process: starting with a single node, at every step a leaf is
chosen randomly and uniformly and it is replaced by a pair of sister
leaves; when the desired number 𝑛 of leaves is reached, the labels
are assigned randomly and uniformly to these leaves. The probability
𝑃𝑌 ,𝑛(𝑇 ) of each 𝑇 ∈ 𝑛 under this model is the probability of being
obtained through this process. As to the uniform model, it assigns the
same probability to all trees 𝑇 ∈ 𝑛, which is then 𝑃𝑈,𝑛 = 1∕(2𝑛 − 3)!!.
For more information on these two models, see [55, §3.2].
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3. Main theoretical results

The Quadratic Colless index, Q-Colless index for short, of a bifurcating
ree 𝑇 is the sum of the squared balance values of its internal nodes:

𝐶(𝑇 ) =
∑

𝑣∈𝑉𝑖𝑛𝑡(𝑇 )
𝑏𝑎𝑙𝑇 (𝑣)2 =

∑

𝑣∈𝑉𝑖𝑛𝑡(𝑇 )
(𝜅𝑇 (𝑣1) − 𝜅𝑇 (𝑣2))2,

where 𝑣1 and 𝑣2 denote the children of each 𝑣 ∈ 𝑉𝑖𝑛𝑡(𝑇 ).
For instance, the trees depicted in Fig. 1 have Q-Colless indices

𝑄𝐶(𝐾7) = 55 and 𝑄𝐶(𝐵7) = 2. As we shall see, these are the maximum
and minimum values of 𝑄𝐶 on 7.

It is straightforward to check that the Q-Colless index satisfies the
following recurrence; cf. [56] for the corresponding recurrence for the
‘‘classical’’ Colless index.

Lemma 1. For every 𝑇 ∈ ∗
𝑛, with 𝑛 ⩾ 2, if 𝑇 = 𝑇𝑘 ⋆ 𝑇 ′

𝑛−𝑘, with 𝑇𝑘 ∈ ∗
𝑘

and 𝑇 ′
𝑛−𝑘 ∈ ∗

𝑛−𝑘, then

𝑄𝐶(𝑇 ) = 𝑄𝐶(𝑇𝑘) +𝑄𝐶(𝑇 ′
𝑛−𝑘) + (𝑛 − 2𝑘)2.

The Colless index and the Q-Colless index satisfy the following
relation.

Lemma 2. For every 𝑇 ∈ ∗
𝑛, 𝑄𝐶(𝑇 ) ⩾ 𝐶(𝑇 ) and the equality holds if

and only if 𝑇 is maximally balanced.

Proof. By definition,

𝑄𝐶(𝑇 ) =
∑

𝑢∈𝑉𝑖𝑛𝑡(𝑇 )
bal𝑇 (𝑢)2 ⩾

∑

𝑢∈𝑉𝑖𝑛𝑡(𝑇 )
bal𝑇 (𝑢) = 𝐶(𝑇 )

because bal𝑇 (𝑢) ∈ N for all 𝑢 ∈ 𝑉𝑖𝑛𝑡(𝑇 ). This inequality is an equality if,
and only if, each bal𝑇 (𝑢) is either 0 or 1, and, by definition, this only
happens in the maximally balanced trees. □

3.1. Extremal values

In this subsection we prove that, according to the Q-Colless index,
the most balanced trees are exactly the maximally balanced trees and
the most unbalanced trees are exactly the combs.

Theorem 3. The minimum of the Q-Colless index on ∗
𝑛 is always

reached at the maximally balanced tree 𝐵𝑛, and only at this tree. Moreover,
𝑄𝐶(𝐵𝑛) = 𝐶(𝐵𝑛) and hence this minimum value is given by Eq. (1).

Proof. Let 𝑇 ∈ ∗
𝑛. By [51, Thm. 1], we know that 𝐶(𝑇 ) ⩾ 𝐶(𝐵𝑛).

Therefore, by Lemma 2,

𝑄𝐶(𝑇 ) ⩾ 𝐶(𝑇 ) ⩾ 𝐶(𝐵𝑛) = 𝑄𝐶(𝐵𝑛)

and therefore 𝑄𝐶(𝐵𝑛) is minimum on ∗
𝑛. Furthermore, the first in-

equality is strict if 𝑇 ≠ 𝐵𝑛, and therefore 𝑄𝐶(𝑇 ) > 𝑄𝐶(𝐵𝑛) if 𝑇 ≠
𝐵𝑛. □

Theorem 4. The maximum of the Q-Colless index on ∗
𝑛 is always reached

at the comb 𝐾𝑛, and only at this tree, and it is equal to.

𝑄𝐶(𝐾𝑛) =
(

𝑛
3

)

+
(

𝑛 − 1
3

)

.

Proof. The formula for 𝑄𝐶(𝐾𝑛) comes from the fact that the balance
values of the internal nodes of 𝐾𝑛 are {0, 1,… , 𝑛 − 2} and therefore

𝑄𝐶(𝐾𝑛) =
𝑛−2
∑

𝑖=1
𝑖2 =

(𝑛 − 1)(𝑛 − 2)(2𝑛 − 3)
6

=
(

𝑛
3

)

+
(

𝑛 − 1
3

)

.

We prove now the maximality assertion in the statement by in-
uction on the number 𝑛 of leaves. For 𝑛 ∈ {1, 2, 3}, the assertion
s obviously true because in these cases ∗

𝑛 consists of a single tree.
ssume now that 𝑛 ⩾ 4 and that, for every 𝑚 < 𝑛, 𝑄𝐶(𝐾 ) > 𝑄𝐶(𝑇 )
𝑚 𝑚

4

or every 𝑇𝑚 ∈ ∗
𝑚 ⧵ {𝐾𝑚}. Let 𝑇 ∈ ∗

𝑛 and let 𝑇𝑛1 and 𝑇𝑛−𝑛1 be its two
aximal pending subtrees, with 𝑇𝑛1 ∈ ∗

𝑛1
and 𝑇𝑛−𝑛1 ∈ ∗

𝑛−𝑛1
and, say,

1 ⩽ 𝑛∕2. In this way, by Lemma 1,

𝐶(𝑇 ) = 𝑄𝐶(𝑇𝑛1 ) +𝑄𝐶(𝑇𝑛−𝑛1 ) + (𝑛 − 2𝑛1)2.

e want to prove that 𝑄𝐶(𝐾𝑛) ⩾ 𝑄𝐶(𝑇 ) and that the equality holds
nly when 𝑇 = 𝐾𝑛 = 𝐾1⋆𝐾𝑛−1. Since, by induction, 𝑄𝐶(𝐾𝑛1 ) ⩾ 𝑄𝐶(𝑇𝑛1 )
nd 𝑄𝐶(𝐾𝑛−𝑛1 ) ⩾ 𝑄𝐶(𝑇𝑛−𝑛1 ) and the corresponding equalities hold only
hen 𝑇𝑛1 = 𝐾𝑛1 and 𝑇𝑛−𝑛1 = 𝐾𝑛−𝑛1 , it is enough to prove that

𝐶(𝐾𝑛) ⩾ 𝑄𝐶(𝐾𝑛1 ) +𝑄𝐶(𝐾𝑛−𝑛1 ) + (𝑛 − 2𝑛1)2,

.e., that
(𝑛 − 1)(𝑛 − 2)(2𝑛 − 3)

6

⩾
(𝑛1 − 1)(𝑛1 − 2)(2𝑛1 − 3)

6
+

(𝑛 − 𝑛1 − 1)(𝑛 − 𝑛1 − 2)(2𝑛 − 2𝑛1 − 3)
6

+ (𝑛 − 2𝑛1)2,

or every 1 ⩽ 𝑛1 ⩽ 𝑛∕2, and that the equality holds only when 𝑛1 = 1.
Consider now the function 𝜅 ∶ [1, 𝑛∕2] → R, defined as

(𝑥) = 1
6

(

(𝑥 − 1)(𝑥 − 2)(2𝑥 − 3) + (𝑛 − 𝑥 − 1)(𝑛 − 𝑥 − 2)(2𝑛 − 2𝑥 − 3)

+ 6(𝑛 − 2𝑥)2
)

= (𝑛 + 1)𝑥2 − 𝑛(𝑛 + 1)𝑥 + 1
6
(

2𝑛3 − 3𝑛2 + 13𝑛 − 12
)

The graph of this function is a convex parabola with vertex at 𝑥 = 𝑛∕2.
Therefore, the maximum value of 𝜅 on the interval [1, 𝑛∕2] is reached
at 𝑥 = 1, which is exactly what we wanted to prove. □

By [51, Cor. 5],

𝐶(𝐵𝑛) = 𝐶(𝐵𝑛) < min{𝑛∕2, 2⌈log2(𝑛)⌉∕3}

nd therefore the range of values of 𝑄𝐶 on ∗
𝑛 goes from below this

ound to
(𝑛
3

)

+
(𝑛−1

3

)

and hence its width grows in 𝑛3∕3, one order of
agnitude larger than the range of the Colless index.

.2. Statistics under the uniform and the Yule model

Let 𝑄𝐶𝑛 be the random variable that chooses a phylogenetic tree
∈ 𝑛 and computes 𝑄𝐶(𝑇 ).

heorem 5. For every 𝑛 ⩾ 1:

(a) The expected value of 𝑄𝐶𝑛 under the uniform model is

𝐸𝑈 (𝑄𝐶𝑛) =
(

𝑛 + 1
2

)

⋅
(2𝑛 − 2)!!
(2𝑛 − 3)!!

− 𝑛(2𝑛 − 1).

(b) The variance of 𝑄𝐶𝑛 under the uniform model is

𝜎2𝑈 (𝑄𝐶𝑛) =
2
15

(2𝑛 − 1)(7𝑛2 + 9𝑛 − 1)
(

𝑛 + 1
2

)

− 1
8
(5𝑛2 + 𝑛 + 2)

(

𝑛 + 1
2

)

(2𝑛 − 2)!!
(2𝑛 − 3)!!

−
(

𝑛 + 1
2

)2 ( (2𝑛 − 2)!!
(2𝑛 − 3)!!

)2
.

Regarding the Yule model, we have the following result. In it, 𝐻𝑛
nd 𝐻 (2)

𝑛 denote, respectively, the 𝑛th harmonic number and second order
armonic number :

𝑛 =
𝑛
∑

𝑖=1

1
𝑖
, 𝐻 (2)

𝑛 =
𝑛
∑

𝑖=1

1
𝑖2
.

heorem 6. For every 𝑛 ⩾ 1:

(a) The expected value of 𝑄𝐶𝑛 under the Yule model is

𝐸𝑌 (𝑄𝐶𝑛) = 𝑛(𝑛 + 1) − 2𝑛𝐻𝑛.
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(b) The variance of 𝑄𝐶𝑛 under the Yule model is

𝜎2𝑌 (𝑄𝐶𝑛) =
1
3
𝑛
(

𝑛3 − 8𝑛2 + 50𝑛 − 1 − 30𝐻𝑛 − 12𝑛𝐻 (2)
𝑛

)

.

We prove these theorems in the Appendix at the end of the paper.
Using Stirling’s approximation for large factorials it is easy to prove

that
(2𝑛 − 2)!!
(2𝑛 − 3)!!

∼
√

𝜋𝑛

see, for instance, [57, Rem. 2]). Moreover, it is known (see, for
nstance, [58]) that

𝑛 ∼ ln(𝑛), 𝐻 (2)
𝑛 ∼ 𝜋2

6
.

Then, from the last two theorems we obtain the following limit be-
haviours:

𝐸𝑈 (𝑄𝐶𝑛) ∼

√

𝜋
2

𝑛5∕2 𝜎𝑈 (𝑄𝐶𝑛) ∼
√

14
15

𝑛5∕2

𝐸𝑌 (𝑄𝐶𝑛) ∼ 𝑛2 𝜎𝑌 (𝑄𝐶𝑛) ∼
1
√

3
𝑛2

o, both under the Yule and the uniform models, the Q-Colless index
atisfies that the expected value and the standard deviation grow with
in the same order. This is in contrast with the Colless index, for which

t only happens under the uniform model (see [47] for details):

𝐸𝑈 (𝐶𝑛) ∼
√

𝜋𝑛3∕2 𝜎𝑈 (𝐶𝑛) ∼
√

10 − 3𝜋
3

𝑛3∕2

𝐸𝑌 (𝐶𝑛) ∼ 𝑛 log(𝑛) 𝜎𝑌 (𝐶𝑛) ∼

√

18 − 6 log(2) − 𝜋2

6
𝑛.

.3. Limit distribution under the Yule distribution

Let us now consider the following Yule-normalized version of the
andom variable 𝑄𝐶𝑛:

𝑛 =
𝑄𝐶𝑛 − 𝐸𝑌 (𝑄𝐶𝑛)

𝑛2
,

where notice that the denominator 𝑛2 is the order of growth of 𝜎𝑌 (𝑄𝐶𝑛).
The limit distribution of this random variable under the Yule model

atisfies the following theorem.

heorem 7. As 𝑛 → ∞, the distribution under the Yule model of 𝑌𝑛 tends
o the distribution of a random variable 𝑌 satisfying the following equality
n distribution:


= 𝜏2𝑌 ′ + (1 − 𝜏)2𝑌 ′′ + (1 + 6𝜏2 − 6𝜏),

here 𝜏 ∼ Unif[0, 1] and 𝑌 ′, 𝑌 ′′ are independent and distributed according
o the same law as 𝑌 .

We also postpone the proof of this theorem to the Appendix at
he end of the paper. It is interesting to compare the formula ob-
ained in this theorem with the formula of the limit distribution of the
orresponding normalization of the Colless index,

𝑛 =
𝐶𝑛 − 𝐸𝑌 (𝐶𝑛)

𝑛
.

lum, François and Janson proved in [47] that as 𝑛 → ∞, the distribu-
ion under the Yule model of 𝑍𝑛 tends to the distribution of a random
ariable 𝑍 such that

= 𝜏𝑍′ + (1− 𝜏)𝑍′′ + 𝜏 log(𝜏) + (1− 𝜏) log(1− 𝜏) + 1− 2min(𝜏, 1− 𝜏), (2)

here 𝜏 ∼ Unif[0, 1] and 𝑍′, 𝑍′′ are independent and distributed
according to the same law as 𝑍. So, the independent term of the
recurrent equation for the limit distribution is much simpler for the
Q-Colless index than for the Colless index.

We have not carried out here a similar study for the uniform model,
because in this case the random variable 𝐿𝑛 that chooses a tree in
 , and then chooses a maximal pending subtree of it and counts
𝑛

5

Table 1
Range of values of the Colless index 𝐶, the Sackin index 𝑆, the total cophenetic index
𝛷 and the Q-Colless index 𝑄𝐶; recall that a function 𝑓 (𝑛) is in 𝛩(𝑛𝑘) when there exist
constants 0 < 𝑐1 ⩽ 𝑐2 such that, for large enough values of 𝑛, 𝑐1 ⋅ 𝑛𝑘 ⩽ 𝑓 (𝑛) ⩽ 𝑐2 ⋅ 𝑛𝑘.

Index Minimum Maximum

𝐶 𝛩(𝑛)
(𝑛−1

2

)

𝑆 𝛩(𝑛 log(𝑛))
(𝑛+1

2

)

− 1

𝛷 𝛩(𝑛2)
(𝑛
3

)

𝑄𝐶 𝛩(𝑛)
(𝑛
3

)

+
(𝑛−1

3

)

the number of leaves of the latter (cf. A.3) has a more complicated
behaviour than in the Yule case (cf. the 𝛽 ⩽ −1 case in [59, Lemma
3]). Similarly, the weak convergence results obtained in [60] cannot
be carried over to this model (see Remark 4.2 in loc. cit.).

4. Numerical results

.1. Discriminative power of 𝑄𝐶

Since the range of values of the Q-Colless index on ∗
𝑛 is wider

han those of the Colless index 𝐶, the Sackin index 𝑆 [11,24] or the
otal cophenetic index 𝛷 (see Table 1), our intuition told us that the
robability of two trees with the same number of leaves having the
ame Q-Colless index would be smaller than for these other balance
ndices. To simplify the language, when a balance index 𝐼 takes the
ame value on two trees in the same space  ∗

𝑛 , we call it a tie. Of course,
ince for 𝑛 ⩾ 12 the range of possible 𝑄𝐶 values is narrower than the
umber of trees in ∗

𝑛 (see [5, Table 3.3] for the cardinality of ∗
𝑛 for

mall values of 𝑛), the pigeonhole principle implies that the Q-Colless
ndex cannot avoid ties for large numbers of leaves.

To check the discriminative power of 𝑄𝐶 with respect to 𝐶, 𝑆, and
, we have computed the probability of tie 𝑝𝑛(𝐼) for these four balance

ndices 𝐼 and for number of leaves of 𝑛 between 𝑛 = 4 and 𝑛 = 20.
More concretely, first of all, for every balance index 𝐼 = 𝐶, 𝑆,𝛷,𝑄𝐶

nd for 𝑛 = 4,… , 20, we have considered all pairs of different trees
𝑇1, 𝑇2) in  ∗

𝑛 × ∗
𝑛 and we have calculated the number 𝑛𝐼 of such pairs of

rees such that 𝐼(𝑇1) = 𝐼(𝑇2). Finally, we have computed the probability
𝑛(𝐼) as 𝑝𝑛(𝐼) =

𝑛𝐼
(|

∗
𝑛 |

2 )
, where | ∗

𝑛 | is the cardinal of the set  ∗
𝑛 .

The results obtained are shown in Fig. 2. The Q-Colless balance
index is the balance index with the least probability of a tie.

In relation with this last point, another way to assess the discrimi-
nating skill of an index is to evaluate its power to distinguish between
dissimilar trees, and compare it with that of other shape indices. In
their paper [46], the authors (whom we thank for their support with
the software provided in the article) develop a new resolution function
to evaluate the power of tree shape statistics when it comes to discrimi-
nate between dissimilar trees (based on the Laplacian matrix of the tree,
which allows for less spatial and time complexity in the operations),
and then test it together with the usual resolution function based on
the NNI metric. Therefore, they are able to rank some balance indices
according to their power in discriminating all possible phylogenetic
trees on the same number of leaves.

We have performed the same experiment on the same data (which
was provided along with [46]). It turns out that the 𝑄𝐶 performs better
than all the other tested indices do, including the Saless index [46],
a linear combination of the Sackin and Colless indices which was
introduced in the same article and performed best when tested under
the NNI metric— although not with the resolution function proposed in
the article, under which it was the Colless index that performed better.
We present here the two tables (Tables 2 and 3), the first of them
computing the score under the NNI distance (bigger values represent
more power), and the second one under their proposed resolution

function (lower values represent more power). 96
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Table 2
Scaled resolution scores for shape indices on the NNI distance matrix for different
numbers of leaves 𝑛. The value of the resolution is between 0 and 1. Higher values
represent more discriminating power.
𝑛 Colless Sackin Variance 𝐼2 𝐵1 𝐵2 Saless Q-Colless

5 1 1 1 1 1 1 1 1
6 0.8157 0.8510 0.8144 0.7611 0.7546 0.8705 0.8315 0.8709
7 0.9251 0.9303 0.9023 0.8844 0.8649 0.9254 0.9297 0.9360
8 0.9255 0.9122 0.8753 0.8612 0.8326 0.9113 0.9235 0.9218
9 0.9184 0.9208 0.8826 0.8539 0.8324 0.907 0.9224 0.9302
10 0.941 0.9380 0.8985 0.8545 0.8326 0.9085 0.9426 0.9475
11 0.9531 0.9514 0.9102 0.8552 0.8375 0.9132 0.9551 0.9604
12 0.9533 0.9523 0.9086 0.8504 0.8311 0.9045 0.9556 0.9632
13 0.9541 0.9542 0.9078 0.8416 0.8247 0.8992 0.9567 0.9657
14 0.9552 0.9548 0.9070 0.8374 0.82 0.8902 0.9575 0.967
15 0.9546 0.9544 0.9049 0.8298 0.813 0.8826 0.9569 0.9674
16 0.9543 0.9541 0.9034 0.8265 0.8089 0.8743 0.9564 0.9677
17 0.9534 0.9534 0.9006 0.8199 0.8024 0.8678 0.9555 0.9679

Table 3
Scaled resolution scores for shape indices on the resolution function presented in
[46]. The value of the resolution is between 0 and 1. Lower values represent more
discriminating power.
𝑛 Colless Sackin Variance 𝐼2 𝐵1 𝐵2 Q-Colless

7 0.0984 0.0937 0.1082 0.1115 0.1178 0.0989 0.0948
8 0.0808 0.0955 0.111 0.0893 0.1164 0.0965 0.0941
9 0.0507 0.0566 0.0662 0.068 0.0797 0.0653 0.0558
10 0.0327 0.0379 0.0471 0.0535 0.0629 0.0451 0.0357
11 0.0222 0.0255 0.0326 0.0458 0.0511 0.0348 0.0236
12 0.0183 0.0217 0.0282 0.0429 0.0473 0.0304 0.0194
13 0.016 0.0185 0.0238 0.0413 0.0441 0.0283 0.0163
14 0.0147 0.0170 0.0217 0.04 0.0421 0.0265 0.0147
15 0.0137 0.0157 0.0197 0.039 0.0404 0.0256 0.0134
16 0.013 0.0148 0.0184 0.038 0.0389 0.0247 0.0126
17 0.0123 0.014 0.017 0.037 0.0375 0.0238 0.0118
18 0.0117 0.0132 0.016 0.0358 0.0361 0.0229 0.0111
19 0.0112 0.0127 0.015 0.0347 0.0349 0.0222 0.0105
20 0.0107 0.012 0.0141 0.0339 0.0338 0.0217 0.01
21 0.0102 0.0114 0.0133 0.0329 0.0327 0.0209 0.01

4.2. Limit behaviour of 𝑄𝐶

We can use Theorem 7 to simulate directly the behaviour of 𝑄𝐶 in
he limit, using Algorithm 3 in [61]. We have simulated 10000 values
f 𝑌 using this algorithm, with recursion depth 10. It has to be noted
hat the drawn number will come from the limiting distribution only
hen the recursion depth is infinite. We have also generated 10000

ndependent phylogenetic trees in 1000 under the Yule model, and
calculated their Yule normalized Q-Colless indices

𝑌 (𝑇 ) =
𝑄𝐶(𝑇 ) − 𝐸𝑌 (𝑄𝐶𝑛)

𝑛2
.

he corresponding histograms are shown in Fig. 3. As it can be seen,
hey are indistinguishable. Performing a t-test on the two simulated
amples yields a 𝑝-value of 0.2315, and an F-test (R’s var.test()),

to compare the sample variances, yields a p-value of 0.199. We can also
notice that both sample variances are close to 1∕3, as they should be
according to Theorem 6.

In Fig. 3 we also compare the (Yule-normalized) Q-Colless index
limit distribution with the limit distribution of the (Yule-normalized)
Colless index simulated by means of Eq. (2). We can see that the Colless
index is more symmetric and also has wider support than the Q-Colless
index. This in turn implies that a statistical test based on the Q-Colless
index should have better power at detecting deviations from the Yule
model, in line with the conclusions concerning its discriminating abil-
ities given in the previous subsection. Interestingly, the histogram of
the limit of the normalized Q-Colless index exhibits a similar skewness
as the limit of the normalized total cophenetic index (cf. Fig. 2 in [61],
although that figure is not directly comparable with our Fig. 3 as there
the simulated points were also normalized by the leading constant of
the variance).
6

Fig. 2. Probability of tie using the Colless, Total cophenetic, Quadratic Colless, Rooted
Quartet (rQI), and Sackin balance indices as function of the trees’ number of leaves 𝑛,
for 𝑛 = 4,… , 20..

5. Conclusions

The Colless index [18] is one of the oldest and most popular balance
indices appearing in the literature. Its number of cites more than dou-
bles that of the second most cited balance index in Google Scholar, the
Sackin index. Nevertheless, it presents some drawbacks related to the
difficult characterization of the trees that achieve its minimum value
– which clashes with the intuition that only the maximally balanced
trees should be considered the most balanced bifurcating trees – and the
fact that its moments under one of the most widely used probabilistic
models for bifurcating phylogenetic trees, the uniform model, are still
unknown.

In this paper we have presented an alternative to the Colless index
that captures both its intuitive definition and its statistical benefits. In
the first part of this manuscript we have proved that its extremal values
are attained exactly by the trees that are usually considered to be the
‘‘most’’ and ‘‘least’’ balanced family of bifurcating trees, respectively.
This contrasts vividly with the Colless and Sackin indices, whose mini-
mum value, although being always reached by the maximally balanced
trees, is seldom attained only by it; although the Colless index was
defined in 1982 [18], these characterizations have been only very
recently found [51,62]. We have thus shown that the range of values
of the Quadratic Colless index, 𝑂(𝑛3), is bigger than that of the original
Colless index, 𝑂(𝑛2), on pair with that of the total cophenetic index.

Then, we have proceeded to the computation of both the expected
alue and the variance under the Yule and the Uniform models of the
-Colless index. We want to remark to the reader that the expected
alue and the variance of the Colless index in its original definition
re, under the uniform model, still unknown. So, in this regard the
uadratic Colless index presents an improvement over the original
easure of balance. We have also obtained a recurrent equation for

he limit distribution of the Q-Colless index under the Yule model.
Finally, we have empirically shown that it possesses more discrimi-

atory power than the original Colless index does by, firstly, computing
he probability of producing a tie between a pair of trees for numbers
f leaves up to 20, and, secondly, testing it under the metrics provided
n [46]. In both cases, it has systematically been one of the best
erforming measures, being often superior to the Colless and Sackin
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ndices. All scripts and data used in these computations are available
t the GitHub repository associated to this paper (https://github.com/
iocom-uib/QColless).
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ppendix

.1. Proof of Theorem 6

The following lemma summarizes Lemma 16 in [22] and Lemma 2
n [48].

emma 8. Let 𝐼 ∶
⋃

𝑛⩾1 𝑛 → R be a mapping satisfying the following
wo conditions:

• It is invariant under phylogenetic tree isomorphisms and relabellings
of leaves.

• There exists a symmetric mapping 𝑓𝐼 ∶ N𝑛⩾1×N𝑛⩾1 → R such that, for
every pair of phylogenetic trees 𝑇 , 𝑇 ′ on disjoint sets of taxa 𝑋,𝑋′,
respectively,

𝐼(𝑇 ⋆ 𝑇 ′) = 𝐼(𝑇 ) + 𝐼(𝑇 ′) + 𝑓𝐼 (|𝑋|, |𝑋′
|).

For every 𝑛 ⩾ 1, let 𝐼𝑛 and 𝐼2𝑛 be the random variables that choose a tree
𝑇 ∈ 𝑛 and compute 𝐼(𝑇 ) and 𝐼(𝑇 )2, respectively. Then, for every 𝑛 ⩾ 2,
their expected values under the Yule model are:

𝐸𝑌 (𝐼𝑛) =
1

𝑛 − 1

𝑛−1
∑

𝑘=1

(

2𝐸𝑌 (𝐼𝑘) + 𝑓𝐼 (𝑘, 𝑛 − 𝑘)
)

𝐸𝑌 (𝐼2𝑛 ) =
1

𝑛 − 1

𝑛−1
∑

𝑘=1

(

2𝐸𝑌 (𝐼2𝑘 ) + 4𝑓𝐼 (𝑘, 𝑛 − 𝑘)𝐸𝑌 (𝐼𝑘) + 2𝐸𝑌 (𝐼𝑘)𝐸𝑌 (𝐼𝑛−𝑘)

+ 𝑓𝐼 (𝑘, 𝑛 − 𝑘)2
)

.

7

Claim 1. For every 𝑛 ⩾ 1, the expected value of 𝑄𝐶𝑛 under the Yule
model is

𝐸𝑌 (𝑄𝐶𝑛) = 𝑛(𝑛 + 1) − 2𝑛𝐻𝑛.

Proof. By Lemma 8(a),

𝐸𝑌 (𝑄𝐶𝑛) =
2

𝑛 − 1

𝑛−1
∑

𝑘=1
𝐸𝑌 (𝑄𝐶𝑘) +

1
𝑛 − 1

𝑛−1
∑

𝑘=1
(𝑛 − 2𝑘)2

= 2
𝑛 − 1

𝑛−1
∑

𝑘=1
𝐸𝑌 (𝑄𝐶𝑘) +

1
3
𝑛(𝑛 − 2)

= 2
𝑛 − 1

𝐸𝑌 (𝑄𝐶𝑛−1) +
𝑛 − 2
𝑛 − 1

( 2
𝑛 − 2

𝑛−2
∑

𝑘=1
𝐸𝑌 (𝑄𝐶𝑘)

)

+ 1
3
𝑛(𝑛 − 2)

= 2
𝑛 − 1

𝐸𝑌 (𝑄𝐶𝑛−1) +
𝑛 − 2
𝑛 − 1

(

𝐸𝑌 (𝑄𝐶𝑛−1) −
1
3
(𝑛 − 1)(𝑛 − 3)

)

+ 1
3
𝑛(𝑛 − 2)

= 𝑛
𝑛 − 1

𝐸𝑌 (𝑄𝐶𝑛−1) + 𝑛 − 2

Dividing this equation by 𝑛 and setting 𝑋𝑛 = 𝐸𝑌 (𝑄𝐶𝑛)∕𝑛, we obtain the
equation

𝑋𝑛 = 𝑋𝑛−1 + 1 − 2
𝑛

hose solution with initial condition 𝑋1 = 𝐸𝑌 (𝑄𝐶1) = 0 is

𝑋𝑛 =
𝑛
∑

𝑘=2

(

1 − 2
𝑘

)

= 𝑛 + 1 − 2𝐻𝑛

and hence, finally,

𝐸𝑌 (𝑄𝐶𝑛) = 𝑛𝑋𝑛 = 𝑛(𝑛 + 1) − 2𝑛𝐻𝑛. □

Claim 2. For every 𝑛 ⩾ 1, the variance of 𝑄𝐶𝑛 under the Yule model is

𝜎2𝑌 (𝑄𝐶𝑛) =
1
3
𝑛
(

𝑛3 − 8𝑛2 + 50𝑛 − 1 − 30𝐻𝑛 − 12𝑛𝐻 (2)
𝑛

)

.

Proof. We shall compute the variance 𝜎2𝑌 (𝑄𝐶𝑛) by means of the
identity

𝜎2𝑌 (𝑄𝐶𝑛) = 𝐸𝑌 (𝑄𝐶2
𝑛) − 𝐸𝑌 (𝑄𝐶𝑛)2 (3)

here the value of 𝐸𝑌 (𝑄𝐶𝑛) is given by Claim 1. What remains is to
ompute 𝐸𝑌 (𝑄𝐶2

𝑛). Now, by Lemma 8(b),

𝑌 (𝑄𝐶2
𝑛) =

1
𝑛 − 1

𝑛−1
∑

𝑘=1

(

2𝐸𝑌 (𝑄𝐶2
𝑘) + (𝑛 − 2𝑘)4

+ 4(𝑛 − 2𝑘)2𝐸𝑌 (𝑄𝐶𝑘) + 2𝐸𝑌 (𝑄𝐶𝑘)𝐸𝑌 (𝑄𝐶𝑛−𝑘)
)

= 2
𝑛−1
∑

𝐸𝑌 (𝑄𝐶2
𝑘) +

1
𝑛−1
∑

(𝑛 − 2𝑘)4

𝑛 − 1 𝑘=1 𝑛 − 1 𝑘=1

https://github.com/biocom-uib/QColless
https://github.com/biocom-uib/QColless
https://github.com/biocom-uib/QColless
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1
2

3

4
a5
t6

7

O

8

9

10

u

11

a

+ 4
𝑛 − 1

𝑛−1
∑

𝑘=1
(𝑛 − 2𝑘)2𝑘(𝑘 + 1 − 2𝐻𝑘)

+ 2
𝑛 − 1

𝑛−1
∑

𝑘=1
𝑘(𝑛 − 𝑘)(𝑘 + 1 − 2𝐻𝑘)(𝑛 − 𝑘 + 1 − 2𝐻𝑛−𝑘)

Let us denote by 𝑇𝑛 the independent term in this equation, so that this
equation can be written as

𝐸𝑌 (𝑄𝐶2
𝑛) =

2
𝑛 − 1

𝑛−1
∑

𝑘=1
𝐸𝑌 (𝑄𝐶2

𝑘) + 𝑇𝑛

= 2
𝑛 − 1

𝐸𝑌 (𝑄𝐶2
𝑛−1) +

𝑛 − 2
𝑛 − 1

⋅
2

𝑛 − 2

𝑛−2
∑

𝑘=1
𝐸𝑌 (𝑄𝐶2

𝑘) + 𝑇𝑛

= 2
𝑛 − 1

𝐸𝑌 (𝑄𝐶2
𝑛−1) +

𝑛 − 2
𝑛 − 1

(𝐸𝑌 (𝑄𝐶2
𝑛−1) − 𝑇𝑛−1) + 𝑇𝑛

= 𝑛
𝑛 − 1

𝐸𝑌 (𝑄𝐶2
𝑛−1) + 𝑇𝑛 −

𝑛 − 2
𝑛 − 1

𝑇𝑛−1

Dividing this equation by 𝑛 and setting 𝑌𝑛 = 𝐸𝑌 (𝑄𝐶2
𝑛)∕𝑛, we obtain

the equation

𝑌𝑛 = 𝑌𝑛−1 +
1
𝑛

(

𝑇𝑛 −
𝑛 − 2
𝑛 − 1

𝑇𝑛−1
)

. (4)

We want to compute now the independent term in this equation as
n explicit expression in 𝑛. To do that, we first compute the three sums
hat form 𝑇𝑛. On the one hand,

1
𝑛 − 1

𝑛−1
∑

𝑘=1
(𝑛 − 2𝑘)4 = 1

15
𝑛(𝑛 − 2)(3𝑛2 − 6𝑛 − 4). (5)

n the other hand,

4
𝑛 − 1

𝑛−1
∑

𝑘=1
(𝑛 − 2𝑘)2𝑘(𝑘 + 1 − 2𝐻𝑘)

= 4
𝑛 − 1

(𝑛−1
∑

𝑘=1
(𝑛 − 2𝑘)2𝑘(𝑘 + 1) − 2(𝑛 − 2)2

𝑛−1
∑

𝑘=1
𝑘𝐻𝑘

+ 16(𝑛 − 3)
𝑛−1
∑

𝑘=1

(

𝑘
2

)

𝐻𝑘 − 48
𝑛−1
∑

𝑘=1

(

𝑘
3

)

𝐻𝑘

)

= 4
𝑛 − 1

(

1
15

(𝑛 − 1)𝑛(𝑛 + 1)(2𝑛2 − 5𝑛 + 2) − 2(𝑛 − 2)2
(

𝑛
2

)

(

𝐻𝑛 −
1
2

)

+ 16(𝑛 − 3)
(

𝑛
3

)

(

𝐻𝑛 −
1
3

)

− 48
(

𝑛
4

)

(

𝐻𝑛 −
1
4

)

)

= 2
45

𝑛(𝑛 − 2)(12𝑛2 + 16𝑛 + 9) − 4
3
𝑛2(𝑛 − 2)𝐻𝑛 (6)

using, in the second last equality above, that
𝑛−1
∑

𝑘=1

(

𝑘
𝑚

)

𝐻𝑘 =
(

𝑛
𝑚 + 1

)

(

𝐻𝑛 −
1

𝑚 + 1

)

; (7)

see Eq. (6.70) in [58].
As to the third sum,

2
𝑛 − 1

𝑛−1
∑

𝑘=1
𝑘(𝑛 − 𝑘)(𝑘 + 1 − 2𝐻𝑘)(𝑛 − 𝑘 + 1 − 2𝐻𝑛−𝑘)

= 2
𝑛 − 1

[𝑛−1
∑

𝑘=1
𝑘(𝑘 + 1)(𝑛 − 𝑘)(𝑛 − 𝑘 + 1)

− 2
𝑛−1
∑

𝑘=1
𝑘(𝑛 − 𝑘)(𝑛 − 𝑘 + 1)𝐻𝑘 − 2

𝑛−1
∑

𝑘=1
𝑘(𝑛 − 𝑘)(𝑘 + 1)𝐻𝑛−𝑘

+ 4
𝑛−1
∑

𝑘=1
𝑘(𝑛 − 𝑘)𝐻𝑘𝐻𝑛−𝑘

]

= 2
𝑛 − 1

[𝑛−1
∑

𝑘=1
𝑘(𝑘 + 1)(𝑛 − 𝑘)(𝑛 − 𝑘 + 1) − 4

𝑛−1
∑

𝑘=1
𝑘(𝑛 − 𝑘)(𝑛 − 𝑘 + 1)𝐻𝑘

+ 4𝑛
𝑛−1
∑

𝑘𝐻𝑘𝐻𝑛−𝑘 − 4
𝑛−1
∑

𝑘2𝐻𝑘𝐻𝑛−𝑘

]

𝑘=1 𝑘=1

8

= 2
𝑛 − 1

[𝑛−1
∑

𝑘=1
𝑘(𝑘 + 1)(𝑛 − 𝑘)(𝑛 − 𝑘 + 1)

− 4
𝑛−1
∑

𝑘=1

(

6
(

𝑘
3

)

− 4(𝑛 − 1)
(

𝑘
2

)

+ 𝑛(𝑛 − 1)𝑘
)

𝐻𝑘

+ 4𝑛
𝑛−1
∑

𝑘=1
𝑘𝐻𝑘𝐻𝑛−𝑘 − 4

𝑛−1
∑

𝑘=1
𝑘2𝐻𝑘𝐻𝑛−𝑘

]

= 2
𝑛 − 1

[

4
(

𝑛 + 3
5

)

− 24
(

𝑛
4

)

(

𝐻𝑛 −
1
4

)

+ 16(𝑛 − 1)
(

𝑛
3

)

(

𝐻𝑛 −
1
3

)

− 4𝑛(𝑛 − 1)
(

𝑛
2

)

(

𝐻𝑛 −
1
2

)

+ 4𝑛
(

𝑛 + 1
2

)

(

𝐻2
𝑛+1 −𝐻 (2)

𝑛+1 − 2𝐻𝑛+1 + 2
)

− 4
3

(

𝑛 + 1
2

)

(

(2𝑛 + 1)(𝐻2
𝑛+1 −𝐻 (2)

𝑛+1)

− 13𝑛 + 5
3

𝐻𝑛+1 +
71𝑛 + 37

18

)

]

= 1
270

𝑛(18𝑛3 + 303𝑛2 + 1163𝑛 + 98) − 2
9
𝑛(𝑛 + 1)(3𝑛 + 16)𝐻𝑛

+ 4
3
𝑛(𝑛 + 1)(𝐻2

𝑛+1 −𝐻 (2)
𝑛+1) (8)

sing, in the second last equality above, Eq. (7) and the identities
𝑛−1
∑

𝑘=1
𝑘𝐻𝑘𝐻𝑛−𝑘 =

(

𝑛 + 1
2

)

(

𝐻2
𝑛+1 −𝐻 (2)

𝑛+1 − 2𝐻𝑛+1 + 2
)

𝑛−1
∑

𝑘=1
𝑘2𝐻𝑘𝐻𝑛−𝑘 =

𝑛(𝑛 + 1)
6

[

(2𝑛 + 1)(𝐻2
𝑛+1 −𝐻 (2)

𝑛+1)

− 13𝑛 + 5
3

𝐻𝑛+1 +
71𝑛 + 37

18

]

proved in [63].
So,

𝑇𝑛 =
1
15

𝑛(𝑛 − 2)(3𝑛2 − 6𝑛 − 4)

+ 2
45

𝑛(𝑛 − 2)(12𝑛2 + 16𝑛 + 9) − 4
3
𝑛2(𝑛 − 2)𝐻𝑛

+ 1
270

𝑛(18𝑛3 + 303𝑛2 + 1163𝑛 + 98) − 2
9
𝑛(𝑛 + 1)(3𝑛 + 16)𝐻𝑛

+ 4
3
𝑛(𝑛 + 1)(𝐻2

𝑛+1 −𝐻 (2)
𝑛+1)

= 1
270

𝑛(216𝑛3 − 9𝑛2 + 1031𝑛 + 26) − 2
9
𝑛(9𝑛2 + 7𝑛 + 16)𝐻𝑛

+ 4
3
𝑛(𝑛 + 1)(𝐻2

𝑛+1 −𝐻 (2)
𝑛+1)

nd, hence, the independent term in Eq. (4) is
1
𝑛

(

𝑇𝑛 −
𝑛 − 2
𝑛 − 1

𝑇𝑛−1
)

= 1
𝑛

[

1
270

𝑛(216𝑛3 − 9𝑛2 + 1031𝑛 + 26) − 2
9
𝑛(9𝑛2 + 7𝑛 + 16)𝐻𝑛

+ 4
3
𝑛(𝑛 + 1)(𝐻2

𝑛+1 −𝐻 (2)
𝑛+1)

− 𝑛 − 2
𝑛 − 1

(

1
270

(𝑛 − 1)(216(𝑛 − 1)3 − 9(𝑛 − 1)2 + 1031(𝑛 − 1) + 26)

− 2
9
(𝑛 − 1)(9(𝑛 − 1)2 + 7(𝑛 − 1) + 16)𝐻𝑛−1

+ 4
3
(𝑛 − 1)𝑛(𝐻2

𝑛 −𝐻 (2)
𝑛 )

)]

= 1
𝑛

[

1
270

𝑛(216𝑛3 − 9𝑛2 + 1031𝑛 + 26)

− 2
9
𝑛(9𝑛2 + 7𝑛 + 16)𝐻𝑛−1 −

2
9
(9𝑛2 + 7𝑛 + 16)

+ 4 𝑛(𝑛 + 1)(𝐻2 −𝐻 (2)) + 8 𝑛𝐻 + 8

3 𝑛 𝑛 3 𝑛−1 3



MBS: 108503

K. Bartoszek, T.M. Coronado, A. Mir et al. Mathematical Biosciences xxx (xxxx) xxx

1
2

3

(

4

5

6

7
8

9

10
L11
s12
u13

𝐸

14
15
16
17

18

19

20

21

L 22

23

24

25

26

27

28

29

w

�̂�

30
31

32

P

𝐸

− 1
270

(𝑛 − 2)(216𝑛3 − 657𝑛2 + 1697𝑛 − 1230)

+ 2
9
(𝑛 − 2)(9𝑛2 − 11𝑛 + 18)𝐻𝑛−1

− 4
3
(𝑛 − 2)𝑛(𝐻2

𝑛 −𝐻 (2)
𝑛 )

]

= 1
𝑛

( 1
3
(12𝑛3 − 28𝑛2 + 47𝑛 − 30) − 8(𝑛2 − 𝑛 + 1)𝐻𝑛−1

+ 4𝑛(𝐻2
𝑛 −𝐻 (2)

𝑛 )
)

= 4𝑛2 − 28
3
𝑛 + 47

3
− 10

𝑛
− 8(𝑛 − 1)𝐻𝑛−1 −

8𝐻𝑛−1
𝑛

+ 4𝐻2
𝑛 − 4𝐻 (2)

𝑛

The solution of Eq. (4) with initial condition 𝑌1 = 𝐸𝑌 (𝑄𝐶2
1 ) = 0 is

𝑌𝑛 =
𝑛
∑

𝑘=2

1
𝑘

(

𝑇𝑘 −
𝑘 − 2
𝑘 − 1

𝑇𝑘−1
)

=
𝑛
∑

𝑘=2

(

4𝑘2 − 28
3
𝑘 + 47

3
− 10

𝑘
− 8(𝑘 − 1)𝐻𝑘−1 −

8𝐻𝑘−1
𝑘

+ 4𝐻2
𝑘 − 4𝐻 (2)

𝑘

)

=
𝑛−1
∑

𝑘=1

(

4(𝑘 + 1)2 − 28
3
(𝑘 + 1) + 47

3
− 10

𝑘 + 1

− 8𝑘𝐻𝑘 −
8𝐻𝑘
𝑘 + 1

+ 4𝐻2
𝑘+1 − 4𝐻 (2)

𝑘+1

)

(∗)
= 1

3
(4𝑛3 − 8𝑛2 + 35𝑛 − 31) − 10(𝐻𝑛 − 1)

− 8
(

𝑛
2

)

(

𝐻𝑛 −
1
2

)

− 4(𝐻2
𝑛 −𝐻 (2)

𝑛 )

+ 4
(

(𝑛 + 1)𝐻2
𝑛 − (2𝑛 + 1)𝐻𝑛 + 2𝑛 − 1

)

− 4
(

(𝑛 + 1)𝐻 (2)
𝑛 −𝐻𝑛 − 1

)

= 1
3
(4𝑛3 − 2𝑛2 + 53𝑛 − 1) − 2(2𝑛2 + 2𝑛 + 5)𝐻𝑛 + 4𝑛(𝐻2

𝑛 −𝐻 (2)
𝑛 )

where, in the second last equality (marked with (∗)) we have used
Eq. (7) and the identities
𝑛−1
∑

𝑘=1

𝐻𝑘
𝑘 + 1

= 1
2
(𝐻2

𝑛 −𝐻 (2)
𝑛 )

cf. Eqn. (6.71) in [58]) and
𝑛−1
∑

𝑘=1
𝐻2

𝑘 = 𝑛𝐻2
𝑛 − (2𝑛 + 1)𝐻𝑛 + 2𝑛

𝑛−1
∑

𝑘=1
𝐻 (2)

𝑘 = 𝑛𝐻 (2)
𝑛 −𝐻𝑛

(see [64, §1.2.7]).
Therefore, finally

𝐸𝑌 (𝑄𝐶2
𝑛) = 𝑛𝑌𝑛

= 𝑛
3
(4𝑛3 − 2𝑛2 + 53𝑛 − 1) − 2𝑛(2𝑛2 + 2𝑛 + 5)𝐻𝑛 + 4𝑛2(𝐻2

𝑛 −𝐻 (2)
𝑛 )

and

𝜎2𝑌 (𝑄𝐶𝑛) = 𝐸𝑌 (𝑄𝐶2
𝑛) − 𝐸𝑌 (𝑄𝐶𝑛)2

= 1
3
𝑛
(

𝑛3 − 8𝑛2 + 50𝑛 − 1 − 30𝐻𝑛 − 12𝑛𝐻 (2)
𝑛

)

as we claimed. □

A.2. Proof of Theorem 5

To simplify the notations, for every 𝑛 ⩾ 2 and for every 1 ⩽ 𝑘 ⩽ 𝑛−1,
set

𝐶𝑘,𝑛−𝑘 ∶= 1
2

(

𝑛
𝑘

)

(2𝑘 − 3)!!(2(𝑛 − 𝑘) − 3)!!
(2𝑛 − 3)!!

.

The proof of the following lemma is identical to the proof of
emma 8 given in the references provided in the previous subsection,
imply replacing the probabilities under the Yule model by probabilities
nder the uniform model. We leave the details to the reader.
9

Lemma 9. Let 𝐼 ∶
⋃

𝑛⩾1 𝑛 → R be a mapping satisfying the same
conditions as in the statement of Lemma 8 and, for every 𝑛 ⩾ 1, let 𝐼𝑛
and 𝐼2𝑛 be the random variables that choose a tree 𝑇 ∈ 𝑛 and compute
𝐼(𝑇 ) and 𝐼(𝑇 )2, respectively. Then, for every 𝑛 ⩾ 2, their expected values
under the uniform model are:

𝐸𝑈 (𝐼𝑛) =
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

2𝐸𝑈 (𝐼𝑘) + 𝑓𝐼 (𝑘, 𝑛 − 𝑘)
)

𝑈 (𝐼2𝑛 ) =
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

2𝐸𝑈 (𝐼2𝑘 ) + 𝑓𝐼 (𝑘, 𝑛 − 𝑘)2

+4𝑓𝐼 (𝑘, 𝑛 − 𝑘)𝐸𝑈 (𝐼𝑘) + 2𝐸𝑈 (𝐼𝑘)𝐸𝑈 (𝐼𝑛−𝑘).
)

In the proofs provided in this subsection we shall use the follow-
ing technical lemmas. They are proved in the Section SN-4 of the
Supplementary Material of [57]; Lemma 12 is Proposition 6 in that
paper.

Lemma 10. For every 𝑛 ⩾ 2:

(a)
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘 = 1

(b) For every 𝑚 ⩾ 1,
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

𝑘
𝑚

)

= 1
2

(

𝑛
𝑚

)

(

1 − 𝑚 − 1
𝑛 − 1

⋅
(2𝑚 − 3)!!
(2𝑚 − 2)!!

⋅
(2𝑛 − 2)!!
(2𝑛 − 3)!!

)

.

emma 11. For every 𝑛 ⩾ 2,

(a)
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘 ⋅

(2𝑘 − 2)!!
(2𝑘 − 3)!!

= 1
2
⋅
(2𝑛 − 2)!!
(2𝑛 − 3)!!

+ 1
4
(

2𝐻2𝑛−2 −𝐻𝑛−1 − 2
)

.

(b) For every 𝑚 ⩾ 1,
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

𝑘
𝑚

)

(2𝑘 − 2)!!
(2𝑘 − 3)!!

= 1
2

(

𝑛
𝑚

)

( (2𝑛 − 2)!!
(2𝑛 − 3)!!

−
(2𝑚 − 2)!!
(2𝑚 − 3)!!

)

.

Lemma 12. The solution 𝑋𝑛 of the equation

𝑋𝑛 = 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝑋𝑘 +

𝑟
∑

𝑙=1
𝑎𝑙

(

𝑛
𝑙

)

+
(2𝑛 − 2)!!
(2𝑛 − 3)!!

𝑠
∑

𝑙=1
𝑏𝑙

(

𝑛
𝑙

)

with given initial condition 𝑋1 is

𝑋𝑛 =
𝑠+1
∑

𝑙=1
𝑎𝑙

(

𝑛
𝑙

)

+
(2𝑛 − 2)!!
(2𝑛 − 3)!!

𝑟
∑

𝑙=1
�̂�𝑙

(

𝑛
𝑙

)

ith

𝑎1 = 𝑋1 − 𝑎1

𝑎𝑙 =
𝑙 ⋅ (2𝑙 − 2)!!
(2𝑙 − 3)!!

( 𝑏𝑙
𝑙
+

𝑏𝑙−1
𝑙 − 1

)

, 𝑙 = 2,… , 𝑠

𝑎𝑠+1 =
(𝑠 + 1) ⋅ (2𝑠)!!
𝑠 ⋅ (2𝑠 − 1)!!

⋅ 𝑏𝑠

𝑙 =
(2𝑙 − 3)!!
(2𝑙 − 2)!!

⋅ 𝑎𝑙 , 𝑙 = 1,… , 𝑟

Claim 3. For every 𝑛 ⩾ 1, the expected value of 𝑄𝐶𝑛 under the uniform
model is

𝐸𝑈 (𝑄𝐶𝑛) =
(

𝑛 + 1
2

)

⋅
(2𝑛 − 2)!!
(2𝑛 − 3)!!

− 𝑛(2𝑛 − 1).

roof. By Lemma 9(a),

𝑈 (𝑄𝐶𝑛) = 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶𝑘) +

𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘(𝑛 − 2𝑘)2

= 2
𝑛−1
∑

𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶𝑘) + 𝑛2
𝑛−1
∑

𝐶𝑘,𝑛−𝑘 − 4(𝑛 − 1)
𝑛−1
∑

𝐶𝑘,𝑛−𝑘𝑘

𝑘=1 𝑘=1 𝑘=1
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1

i

𝜎

P2
𝛼3

𝜎4
+ 8
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

𝑘
2

)

= 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶𝑘) + 𝑛2 − 2𝑛(𝑛 − 1)

+ 4
(

𝑛
2

)

(

1 − 1
2(𝑛 − 1)

⋅
(2𝑛 − 2)!!
(2𝑛 − 3)!!

)

= 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶𝑘) + 2

(

𝑛
2

)

+ 𝑛 − 𝑛 ⋅
(2𝑛 − 2)!!
(2𝑛 − 3)!!

where in the second last equality we have used Lemma 10. Therefore,
by Lemma 12 and using that 𝐸𝑈 (𝑄𝐶1) = 0, we have that

𝐸𝑈 (𝑄𝐶𝑛) =
(

(

𝑛
2

)

+ 𝑛
) (2𝑛 − 2)!!
(2𝑛 − 3)!!

−
(

4
(

𝑛
2

)

+ 𝑛
)

=
(

𝑛 + 1
2

)

⋅
(2𝑛 − 2)!!
(2𝑛 − 3)!!

− 𝑛(2𝑛 − 1)

as we claimed. □

Claim 4. For every 𝑛 ⩾ 1, the variance of 𝑄𝐶𝑛 under the uniform model
s
2
𝑈 (𝑄𝐶𝑛) =

2
15

(2𝑛 − 1)(7𝑛2 + 9𝑛 − 1)
(

𝑛 + 1
2

)

− 1
8
(5𝑛2 + 𝑛 + 2)

(

𝑛 + 1
2

)

(2𝑛 − 2)!!
(2𝑛 − 3)!!

−
(

𝑛 + 1
2

)2 ( (2𝑛 − 2)!!
(2𝑛 − 3)!!

)2

roof. To simplify the notations, we shall denote (2𝑛−2)!!∕(2𝑛−3)!! by
𝑛. We shall compute the variance 𝜎2𝑈 (𝑄𝐶𝑛) by means of the identity

2
𝑈 (𝑄𝐶𝑛) = 𝐸𝑈 (𝑄𝐶2

𝑛) − 𝐸𝑈 (𝑄𝐶𝑛)2 (9)

where the value of 𝐸𝑈 (𝑄𝐶𝑛) is given by Claim 3. Now, we must
compute 𝐸𝑈 (𝑄𝐶2

𝑛). By Lemma 9(b),

𝐸𝑈 (𝑄𝐶2
𝑛) =

𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

2𝐸𝑈 (𝑄𝐶2
𝑘) + (𝑛 − 2𝑘)4

+4(𝑛 − 2𝑘)2𝐸𝑈 (𝑄𝐶𝑘) + 2𝐸𝑈 (𝑄𝐶𝑘)𝐸𝑈 (𝑄𝐶𝑛−𝑘)
)

= 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶2

𝑘)

+
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

[

(𝑛 − 2𝑘)4 + 4(𝑛 − 2𝑘)2
(

(

𝑘 + 1
2

)

𝛼𝑘 − 𝑘(2𝑘 − 1)
)

+ 2
(

(

𝑘 + 1
2

)

𝛼𝑘 − 𝑘(2𝑘 − 1)
)

⋅
(

(

𝑛 − 𝑘 + 1
2

)

𝛼𝑛−𝑘 − (𝑛 − 𝑘)(2(𝑛 − 𝑘) − 1)
)

]

= 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶2

𝑘)

+
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

(𝑛 − 2𝑘)4 − 4(𝑛 − 2𝑘)2𝑘(2𝑘 − 1)

+ 2𝑘(2𝑘 − 1)(𝑛 − 𝑘)(2(𝑛 − 𝑘) − 1)
)

+
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

[

4(𝑛 − 2𝑘)2
(

𝑘 + 1
2

)

𝛼𝑘 − 2
(

𝑛 − 𝑘 + 1
2

)

𝑘(2𝑘 − 1)𝛼𝑛−𝑘

−2
(

𝑘 + 1
2

)

(𝑛 − 𝑘)(2(𝑛 − 𝑘) − 1)𝛼𝑘

]

+ 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

𝑘 + 1
2

)(

𝑛 − 𝑘 + 1
2

)

𝛼𝑘𝛼𝑛−𝑘

= 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶2

𝑘)

−
𝑛−1
∑

𝐶𝑘,𝑛−𝑘

(

8𝑘4 + 16(𝑛 − 1)𝑘3 − 2(12𝑛2 − 6𝑛 − 1)𝑘2

𝑘=1

10
− (2𝑛 − 8𝑛3)𝑘 − 𝑛4
)

+
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

[

4(𝑛 − 2𝑘)2
(

𝑘 + 1
2

)

− 4
(

𝑘 + 1
2

)

(𝑛 − 𝑘)(2(𝑛 − 𝑘) − 1)
]

𝛼𝑘

+ 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

𝑘 + 1
2

)(

𝑛 − 𝑘 + 1
2

)

𝛼𝑘𝛼𝑛−𝑘

= 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶2

𝑘)

−
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

[

192
(

𝑘
4

)

+ 96(𝑛 + 2)
(

𝑘
3

)

− 4(12𝑛2 − 30𝑛 − 5)
(

𝑘
2

)

+ (8𝑛3 − 24𝑛2 + 26𝑛 − 6)𝑘 − 𝑛4
]

+
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

[

96
(

𝑘
4

)

+ 156
(

𝑘
3

)

− 4(𝑛2 − 𝑛 − 16)
(

𝑘
2

)

− 4(𝑛2 − 𝑛 − 1)𝑘

]

𝛼𝑘

+ 2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

𝑘 + 1
2

)(

𝑛 − 𝑘 + 1
2

)

𝛼𝑘𝛼𝑛−𝑘. (10)

Let us compute the independent term in this equation. The first sum
can be computed using Lemma 10:
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

192
(

𝑘
4

)

+ 96(𝑛 + 2)
(

𝑘
3

)

− 4(12𝑛2 − 30𝑛 − 5)
(

𝑘
2

)

+ (8𝑛3 − 24𝑛2 + 26𝑛 − 6)𝑘 − 𝑛4
)

= 96
(

𝑛
4

)

(

1 − 3
𝑛 − 1

⋅
5!!
6!!

⋅ 𝛼𝑛
)

+ 48(𝑛 + 2)
(

𝑛
3

)

(

1 − 2
𝑛 − 1

⋅
3!!
4!!

⋅ 𝛼𝑛
)

− 2(12𝑛2 − 30𝑛 − 5)
(

𝑛
2

)

(

1 − 1
2(𝑛 − 1)

⋅ 𝛼𝑛
)

+ 1
2
(8𝑛3 − 24𝑛2 + 26𝑛 − 6)𝑛 − 𝑛4

= (3𝑛 − 2)𝑛3 −
𝑛(15𝑛2 − 15𝑛 + 4)

4
⋅ 𝛼𝑛.

The second sum in this independent term can be computed using
Lemma 11:
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

[

96
(

𝑘
4

)

+ 156
(

𝑘
3

)

− 4(𝑛2 − 𝑛 − 16)
(

𝑘
2

)

− 4(𝑛2 − 𝑛 − 1)𝑘
]

𝛼𝑘

= 48
(

𝑛
4

)

(

𝛼𝑛 −
6!!
5!!

)

+ 78
(

𝑛
3

)

(

𝛼𝑛 −
4!!
3!!

)

− 2(𝑛2 − 𝑛 − 16)
(

𝑛
2

)

(𝛼𝑛 − 2) − 2(𝑛2 − 𝑛 − 1)𝑛(𝛼𝑛 − 1)

= 𝑛3(𝑛 + 1)𝛼𝑛 −
2𝑛(33𝑛3 − 13𝑛2 − 12𝑛 + 7)

15
.

Finally, the third sum in the independent term of this equation can
be computed as follows:

2
𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘

(

𝑘 + 1
2

)(

𝑛 − 𝑘 + 1
2

)

(2𝑘 − 2)!!
(2𝑘 − 3)!!

(2𝑛 − 2𝑘 − 2)!!
(2𝑛 − 2𝑘 − 3)!!

=
𝑛−1
∑

𝑘=1

𝑛!(2𝑘 − 3)!!(2(𝑛 − 𝑘) − 3)!!𝑘(𝑘 + 1)(𝑛 − 𝑘)(𝑛 − 𝑘 + 1)2𝑘−1(𝑘 − 1)!2𝑛−𝑘−1(𝑛 − 𝑘 − 1)!
𝑘!(𝑛 − 𝑘)!(2𝑛 − 3)!!22(2𝑘 − 3)!!(2(𝑛 − 𝑘) − 3)!!

= 𝑛!2𝑛−4
(2𝑛 − 3)!!

𝑛−1
∑

𝑘=1
(𝑘 + 1)(𝑛 − 𝑘 + 1)

=
𝑛!2𝑛−3(𝑛 − 1)(𝑛 + 1)(𝑛 + 6)

(2𝑛 − 3)!!6
= 𝑛 + 6

8
⋅
(

𝑛 + 1
3

)

⋅ 𝛼𝑛.

So, the independent term of Eq. (10) is

𝑛(15𝑛2 − 15𝑛 + 4)
⋅ 𝛼 − (3𝑛 − 2)𝑛3
4 𝑛
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T
=

𝐸

𝜎

a1

A2

3
r4

𝑄5

R6

𝐸7

a8

𝜎9

10
11

12

13

14

15
16
17
18
19
20
21

22

23
24
25

26

27
28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
+ 𝑛3(𝑛 + 1)𝛼𝑛 −
2𝑛(33𝑛3 − 13𝑛2 − 12𝑛 + 7)

15

+ 𝑛 + 6
8

⋅
(

𝑛 + 1
3

)

⋅ 𝛼𝑛

=
𝑛(49𝑛3 + 234𝑛2 − 181𝑛 + 42)

48
⋅ 𝛼𝑛 −

𝑛(111𝑛3 − 56𝑛2 − 24𝑛 + 14)
15

=
(

3𝑛 + 36
(

𝑛
2

)

+ 66
(

𝑛
3

)

+ 49
2

(

𝑛
4

))

𝛼𝑛 − 3𝑛

− 78
(

𝑛
2

)

− 244
(

𝑛
3

)

− 888
5

(

𝑛
4

)

and, hence, Eq. (10) simplifies to

𝐸𝑈 (𝑄𝐶2
𝑛) = 2

𝑛−1
∑

𝑘=1
𝐶𝑘,𝑛−𝑘𝐸𝑈 (𝑄𝐶2

𝑘) − 3𝑛 − 78
(

𝑛
2

)

− 244
(

𝑛
3

)

− 888
5

(

𝑛
4

)

+
(

3𝑛 + 36
(

𝑛
2

)

+ 66
(

𝑛
3

)

+ 49
2

(

𝑛
4

))

𝛼𝑛.

his equation can be solved using Lemma 12 and the fact that 𝐸𝑈 (𝑄𝐶2
1)

0. Its solution is

𝑈 (𝑄𝐶2
𝑛) = 3𝑛 + 84

(

𝑛
2

)

+ 320
(

𝑛
3

)

+ 360
(

𝑛
4

)

+ 112
(

𝑛
5

)

−
(

3𝑛 + 39
(

𝑛
2

)

+ 183
2

(

𝑛
3

)

+ 111
2

(

𝑛
4

))

𝛼𝑛

= 𝑛
15

(14𝑛4 + 85𝑛3 − 60𝑛2 + 5𝑛 + 1)

− 𝑛
16

(37𝑛3 + 22𝑛2 − 13𝑛 + 2)𝛼𝑛.

Finally,
2
𝑈 (𝑄𝐶𝑛) = 𝐸𝑈 (𝑄𝐶2

𝑛) − 𝐸𝑈 (𝑄𝐶𝑛)2

= 2
15

(2𝑛 − 1)(7𝑛2 + 9𝑛 − 1)
(

𝑛 + 1
2

)

− 1
8
(5𝑛2 + 𝑛 + 2)

(

𝑛 + 1
2

)

(2𝑛 − 2)!!
(2𝑛 − 3)!!

−
(

𝑛 + 1
2

)2 ( (2𝑛 − 2)!!
(2𝑛 − 3)!!

)2

s we claimed. □

.3. Proof of Theorem 7

Recall from Lemma 1 that the Q–Colless index has the following
ecursive representation for a tree 𝑇𝑛 = 𝑇𝑘 ∗ 𝑇 ′

𝑛−𝑘 ∈ 𝑛:

𝐶(𝑇𝑛) = 𝑄𝐶(𝑇𝑘) +𝑄𝐶(𝑇 ′
𝑛−𝑘) + (𝑛 − 2𝑘)2.

ecall moreover from Theorem 5 that, under the Yule model,

𝑌 (𝑄𝐶𝑛) = 𝑛(𝑛 + 1) − 2𝑛𝐻𝑛

nd
2
𝑌 (𝑄𝐶𝑛) =

1
3
𝑛
(

𝑛3 − 8𝑛2 + 50𝑛 − 1 − 30𝐻𝑛 − 12𝑛𝐻 (2)
𝑛

)

∼ 𝑛4.

Let us now consider the following normalized version of the Q-Colless
index on 𝑛:

𝑌 (𝑇 ) =
𝑄𝐶(𝑇 ) − 𝐸𝑌 (𝑄𝐶𝑛)

𝑛2
=

𝑄𝐶(𝑇 ) − (𝑛(𝑛 + 1) − 2𝑛𝐻𝑛)
𝑛2

.

Then, if 𝑇 = 𝑇𝑘 ∗ 𝑇 ′
𝑛−𝑘,

𝑌 (𝑇 ) = 𝑛−2
(

𝑄𝐶(𝑇𝑘) +𝑄𝐶(𝑇 ′
𝑛−𝑘) + (𝑛 − 2𝑘)2 − (𝑛(𝑛 + 1) − 2𝑛𝐻𝑛)

)

= 𝑛−2
[

𝑘2
(

𝑄𝐶(𝑇𝑘) − (𝑘(𝑘 + 1) − 2𝑘𝐻𝑘)
𝑘2

+
𝑘(𝑘 + 1) − 2𝑘𝐻𝑘

𝑘2

)

+ (𝑛 − 𝑘)2
(

𝑄𝐶(𝑇 ′
𝑛−𝑘) − ((𝑛 − 𝑘)(𝑛 − 𝑘 + 1) − 2(𝑛 − 𝑘)𝐻𝑛−𝑘)

(𝑛 − 𝑘)2

+
(𝑛 − 𝑘)(𝑛 − 𝑘 + 1) − 2(𝑛 − 𝑘)𝐻𝑛−𝑘

(𝑛 − 𝑘)2

)

+ (𝑛 − 2𝑘)2 − (𝑛(𝑛 + 1) − 2𝑛𝐻𝑛)

]

11
= 𝑛−2(𝑘2𝑌 (𝑇𝑘) + (𝑛 − 𝑘)2𝑌 (𝑇 ′
𝑛−𝑘) + 𝑘(𝑘 + 1) − 2𝑘𝐻𝑘)

+ (𝑛 − 𝑘)(𝑛 − 𝑘 + 1) − 2(𝑛 − 𝑘)𝐻𝑛−𝑘 + (𝑛 − 2𝑘)2 − (𝑛(𝑛 + 1)

− 2𝑛𝐻𝑛)

= 𝑛−2(𝑘2𝑌 (𝑇𝑘) + (𝑛 − 𝑘)2𝑌 (𝑇 ′
𝑛−𝑘) + 𝑛2 + 6𝑘2 − 6𝑛𝑘 + 2𝑛𝐻𝑛

− 2𝑘𝐻𝑘 − 2(𝑛 − 𝑘)𝐻𝑛−𝑘)

= 𝑛−2(𝑘2𝑌 (𝑇𝑘) + (𝑛 − 𝑘)2𝑌 (𝑇 ′
𝑛−𝑘) + 𝐴𝑛(𝑘)) (11)

where

𝐴𝑛(𝑘) = 𝑛2 + 6𝑘2 − 6𝑛𝑘 + 2𝑛𝐻𝑛 − 2𝑘𝐻𝑘 − 2(𝑛 − 𝑘)𝐻𝑛−𝑘.

Let us denote now by 𝑌𝑛 the random variable that chooses a tree
𝑇 ∈ 𝑛 and computes 𝑌 (𝑇 ). Moreover, and as it is usual in this context
(see, e.g., [47]) let 𝐿𝑛 denote the random variable that chooses a tree
𝑇 ∈ 𝑛 and one of its maximal pending subtrees of 𝑇 and counts its
number of leaves. Recall that, under the Yule model, 𝐿𝑛 is uniformly
distributed on {1,… , 𝑛 − 1}. When we translate Eq. (11) in terms of
these random variables, we obtain

𝑌𝑛 = 𝑛−2
(

𝐿2
𝑛𝑌𝐿𝑛

+ (𝑛 − 𝐿𝑛)2𝑌𝑛−𝐿𝑛
+ 𝐴𝑛(𝐿𝑛)

)

.

We will now look at the limit in distribution of 𝑌𝑛 under the Yule
model as 𝑛 → ∞. If one simplifies the proof of Thm. 3.1 in [60] to the
Yule case (which corresponds to Aldous’s 𝛽-model with 𝛽 = 0 [59]),
or, alternatively, follows the logic behind the proof Thm. 3.1 in [61]
(which is a minor modification of the proof of Thm. 2.1 in [65]),
using the function 𝐴𝑛 that gives the independent term in Eq. (11), and
noticing that 𝐸𝑌 (𝑌 2

𝑛 ) is uniformly bounded and that

𝐸𝑌 (𝐴𝑛(𝐿𝑛)) = 𝐸𝑌 (𝑛2 + 6𝐿𝑛(𝐿𝑛 − 𝑛) + 2𝑛𝐻𝑛 − 2𝐿𝑛𝐻𝐿𝑛
− 2(𝑛 − 𝐿𝑛)𝐻𝑛−𝐿𝑛

)

= 𝑛2 + 6
𝑛 − 1

𝑛−1
∑

𝑘=1
𝑘(𝑘 − 𝑛) + 2𝑛𝐻𝑛 −

2
𝑛 − 1

𝑛−1
∑

𝑘=1
𝑘𝐻𝑘 −

2
𝑛 − 1

𝑛−1
∑

𝑘=1
𝑘𝐻𝑘

= 𝑛2 − 𝑛(𝑛 + 1) + 2𝑛𝐻𝑛 − 𝑛(2𝐻𝑛 − 1) = 0

(for the value of ∑𝑛−1
𝑘=1 𝑘𝐻𝑘, see Eqn. (6.68) in [58]), one obtains that

𝑌𝑛

←←←⟶ 𝑌 , for a random variable 𝑌 satisfying the equality in distribution

𝑌

= 𝜏2𝑌 ′ + (1 − 𝜏)2𝑌 ′′ + (1 + 6𝜏2 − 6𝜏), (12)

where 𝜏 ∼ Unif[0, 1] and 𝑌 ′, 𝑌 ′′ are independent, distributed according
to the same law as 𝑌 .
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