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Resum (en català)

Aquesta tesi és un recull del treball realitzat en els darrers quatre anys d’investigació
enfocats a la producció de simulacions de relativitat numèrica de forats negres binaris
en configuracions genèriques, així com a l’anàlisi de les ones gravitacionals extretes de
dites simulacions, les seves conseqüències pel models de formes d’ones gravitacionals
existents i les seves implicacions per a la cerca i l’estimació dels paràmetres d’aquests
sistemes en la natura.

Per començar, he estudiat la prescripció de paràmetres inicials en les simulacions de
relativitat numèrica. Un problema ben conegut a relativitat numèrica és la dificultat
d’obtenir simulacions de forats negres en òrbites quasi-circulars, degut a imprecisions
en la generació de les dades inicials que provoquen òrbites quasi-el·líptiques amb una
excentricitat residual. El primer projecte d’aquesta tesi ha estat el desenvolupament
d’un procediment iteratiu, senzill i computacionalment eficaç per a la reducció de
l’excentricitat a simulacions de relativitat numèrica de forats negres binaris, veure
Cap. 4. Amb aquest mètode s’han generat formes d’ona gravitacionals quasi-circulars
amb una excentricitat negligible, e ∼ O

(
10−4

)
, que han estat utilitzades pel nostre

grup per generar models quasi-circulars de formes d’ona gravitacionals.

La flexibilitat del mètode anterior permet no tan sols reduir l’excentricitat de les
simulacions numèriques, sinó també augmentar-la. Aquest fet ha permès la generació
d’un banc de més de 60 simulacions de relativitat numèrica amb excentricitat moder-
ada e ≤ 0.5. Aquest ha estat el segon projecte d’investigació de la tesi, veure Cap. 5.
Amb aquest grup de simulacions s’han generat formes d’ona híbrides pel mode domi-
nant (2, 2) entre les ones obtingudes per la teoria post-Newtoniana i les de relativitat
numèrica. A més, s’ha estimat les limitacions dels models quasi-circulars actuals per
estimar paràmetres d’aquestes fonts. Els resultats obtinguts demostren que els models
quasi-circulars de formes d’ona que inclouen modes subdominants redueixen el biaix
en alguns paràmetres com la distància i el ràtio de massa, respecte a models sense
modes subdominants.

Per altra banda, durant el doctorat també s’han estudiat les limitacions de dues
aproximacions utilitzades habitualment per models d’ona quasi-circulars amb espins
precessants, veure Cap. 6. Aquestes dues aproximacions s’han analitzat emprant
únicament simulacions de relativitat numèrica incloent modes subdominants. Els re-
sultats obtinguts confirmen el bon funcionament de les aproximacions pels modes
dominants (2,±2), mentre que pel modes subdominants s’observa una degradació im-
portant degut a diferent causes depenent del mode estudiat, per exemple, els modes
(2,±1) són molt sensibles a les asimetries entre modes que les aproximacions neg-
ligeixen, mentre que els modes (4,±3) i (3,±2) pateixen mescla de modes en la part
del decaïment de l’ona que les aproximacions no tenen en compte.

Finalment, s’ha analitzat la sensibilitat de dos algorismes de cerca emprats per les
col·laboracions LIGO i Virgo durant el segon període d’observació O2 per detectar



vi

senyals completes d’ones gravitacionals procedents de binàries de forats negres ec-
cèntriques, veure Cap. 7. En aquest treball preliminar s’ha quantificat l’impacte
de l’excentricitat sobre dos algorismes de cerca: un codi de filtrat adaptat basat en
el coneixement de la morfologia de la senyal, i un codi de cerca sense modelat. En
aquest estudi s’estima per primera vegada la sensibilitat d’ambdós algorismes injectant
senyals excèntriques calculades a partir de simulacions de relativitat numèrica incloent
espins alineats amb el moment angular orbital del sistema. Els resultats obtinguts
mostren una major degradació de la sensibilitat de l’algorisme de filtrat adaptat a
mesura que l’excentricitat augmenta, mentre que la sensibilitat de l’algorisme sense
modelat no es veu quasi afectada per l’increment de l’excentricitat, i per tant, es pot
identificar aquest darrer com una eina robusta per a la detecció de senyals excèn-
triques.
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Resumen (en castellano)

Esta tesis recoge el trabajo realizado en los últimos cuatro años de investigación en-
focados en la producción de simulaciones de relatividad numérica de agujeros negros
binarios en configuraciones genéricas, así como en el análisis de las ondas gravita-
cionales extraídas de dichas simulaciones, sus consecuencias para los modelos de for-
mas de ondas existentes y sus implicaciones para la búsqueda y la estimación de los
parámetros de dichos sistemas en la naturaleza.

Para empezar, he estudiado la prescripción de parámetros iniciales en las simula-
ciones de relatividad numérica. Un problema bien conocido en relatividad numérica
es la dificultad de obtener simulaciones de agujeros negros en órbitas casi-circulares,
debido a imprecisiones en la generación de los datos iniciales que provocan órbitas
casi-elípticas con una excentricidad residual. El primer proyecto de esta tesis ha
sido el desarrollo de un procedimiento iterativo, sencillo y computacionalmente eficaz
para la reducción de la excentricidad en simulaciones de relatividad numérica de agu-
jeros negros binarios, ver Cap. 4. Con este método se han generado formas de onda
gravitacionales casi-circulares con una excentricidad negligible, e ∼ O

(
10−4

)
, que han

sido usadas por nuestro grupo para generar modelos de formas de onda casi-circulares.

La flexibilidad del método anterior permite no solo reducir la excentricidad de las
simulaciones numéricas, sino también aumentarla. Este hecho ha permitido la gen-
eración de un banco de más de 60 simulaciones de relatividad numérica con excentri-
cidad moderada e ≤ 0.5. Este ha sido el segundo proyecto de investigación de la tesis,
ver Cap. 5. Con este grupo de simulaciones he generado formas de onda híbridas
para el modo dominante (2, 2) entre las ondas obtenidas a partir de la teoría post-
Newtoniana y las de relatividad numérica. Además, con colaboradores he estimado
las limitaciones de los modelos casi-circulares actuales para estimar los parámetros
de estas fuentes. Los resultados obtenidos demuestran que los modelos casi-circulares
de formas de onda que incluyen modos subdominantes reducen el sesgo en algunos
parámetros como la distancia y el ratio de masa, respecto a los modelos sin modos
subdominantes.

Por otro lado, durante el doctorado también se han estudiado las limitaciones de
dos aproximaciones utilizadas comúnmente para modelos de onda casi-circulares con
espines precesantes, ver Cap. 6. Estas dos aproximaciones se han analizado usando
únicamente simulaciones de relatividad numérica incluyendo modos subdominantes.
Los resultados obtenidos confirman el buen funcionamiento de las aproximaciones para
los modos dominantes (2,±2), mientras que para los modos subdominantes se observa
una degradación importante debido a diferentes causas dependiendo del modo estu-
diado, por ejemplo, los modos (2,±1) son muy sensibles a las asimetrías entre modos
que las aproximaciones negligen, mientras que los modos (4,±3) y (3,±2) padecen
mezcla de modos en la parte del decaimiento de la onda que las aproximaciones no
tienen en cuenta.
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Finalmente, con colaboradores he analizado la sensibilidad de dos algoritmos de
búsqueda, utilizados por las colaboraciones LIGO y Virgo durante el segundo período
de observación O2, para detectar señales completas de ondas gravitacionales proce-
dentes de binarias de agujeros negros excéntricos, ver Cap. 7. En este trabajo pre-
liminar se ha cuantificado el impacto de la excentricidad sobre dos algoritmos de
búsqueda: un código de filtrado adaptado y un código de búsqueda sin modelado. En
este estudio se estima por primera vez la sensibilidad de ambos algoritmos inyectando
señales excéntricas calculadas a partir de simulaciones de relatividad numérica. Los
resultados muestran una mayor degradación de la sensibilidad del algoritmo de fil-
trado adaptado a medida que aumenta la excentricidad, mientras que el algoritmo sin
modelado no se ve casi afectado por el aumento de la excentricidad, y por tanto, se
puede identificar este último como una herramienta robusta para la detección robusta
de señales excéntricas.
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Summary (in English)

This thesis gathers all the work done in my last four years of research focused on
the production of numerical relativity simulations of generic binary black holes, as
well as the analysis of the gravitational waveforms from these simulations and their
implications for searches and parameter estimation on those systems.

I have started studying the prescription of initial parameters in numerical relativity
simulations. A well known problem in numerical relativity is the difficulty to obtain
simulations of black holes orbiting in quasi-circular orbits due to inaccuracies of the
initial data, which cause elliptical orbits with residual eccentricity. The first project
of the thesis has been the development of a simple, iterative and computationally
efficient procedure to reduce the eccentricity in binary black hole numerical relativity
simulations, see Chap. 4. With this method we have produced quasi-circular wave-
forms with negligible eccentricity, e ∼ O

(
10−4

)
, which have been used in our group

to generate quasi-circular waveform models.

The flexibility of the previous method permits not only the reduction of the eccen-
tricity, but also increasing it. Using this fact I have produced a data set of more
than 60 numerical relativity simulations with moderate eccentricity e ≤ 0.5. This has
been the second project of the thesis, see Chap. 5. Taking this set of simulations,
with collaborators I have generated hybrid waveforms for the dominant (2, 2) mode
between post-Newtonian and numerical relativity waveforms. Moreover, we have es-
timated the limitations of the current quasi-circular waveform models to estimate the
parameters from those sources. We have found that the quasi-circular models which
include higher order modes reduce the bias in some parameters like the mass ratio and
luminosity distance, with respect to those models not including higher order modes.

Furthermore, during the Ph.D. I have also studied the limitations of two approxi-
mations commonly used by precessing quasi-circular waveform models, see Chap. 6.
These two approximations have been analysed using exclusively numerical relativity
simulations including higher order modes. The results confirm the good performance
of the approximations for the (2,±2) modes, while one observes a clear degradation for
higher order modes due to different reasons depending on the considered mode. For
instance, the (2,±1) modes are found to be very sensitive to asymmetries which the
approximations neglect, while the (4,±3) and (3,±2) modes, have mode-mixing in the
ringdown part which is not properly taken into account by the simple approximations.

Finally, with collaborators I have analysed the sensitivity of two search pipelines,
used by the LIGO and Virgo collaborations during the O2 Science Run, to the full
gravitational wave signal of eccentric binary black holes, see Chap. 7. In this pre-
liminary work we have quantified the impact of eccentricity on two search pipelines:
a matched-filter and an unmodeled search algorithm. We have for the first time es-
timated the sensitivity of both algorithms injecting eccentric signals computed from
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numerical relativity simulations. The results show a larger degradation of the sensi-
tivity of the matched-filter algorithm with increasing eccentricity, while the sensitivity
of the unmodeled search algorithm remains barely unaffected to the increase of eccen-
tricity, thus, we consider the latter one a robust tool to detect such eccentric signals.
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Preface

This thesis is composed of two different parts manifestly separating what corresponds
to Introductory concepts from the Original research results. The first part introduces
basic notions about gravitational waves from binary black hole coalescences, which is
the main topic of the thesis, while the second part collects original scientific articles,
which have been published or sent for publication to an international peer reviewed
journal by the author of the thesis. The main reasons for using the previous structure
are that the first part of the thesis has a pedagogical goal for the reader, but also for
myself to thoroughly review derivations and fundamental concepts in the literature
of gravitational wave physics. An additional purpose of the first part is to provide
a broader introduction to basic concepts implicitly used to produce the original sci-
entific results. Furthermore, with this format one clearly differentiates the original
scientific results from results that can already be found in the literature, easing the
reading and reviewing of the text.

The first three chapters in Part I provide an overview of basic concepts of the re-
search field, which can be found in many textbooks and research articles from the
literature. Specifically, Chap. 1 introduces the topic of gravitational radiation from
compact binaries, Chap. 2 summarizes possible solutions to the two body problem
within general relativity and Chap. 3 shortly describes data analysis techniques ap-
plied to gravitational waves emitted by compact binaries.

In Part II we present the main research lines of the thesis focused on gravitational
waves from eccentric binary black holes and quasi-circular precessing binaries.

Regarding precessing binaries, we analyse two main approximations used to model
the waveforms from quasicircular precessing binary black holes by phenomenological
waveform models in Chap. 6. We discuss the validity of those approximations using
numerical relativity simulations including higher order modes, with special attention
to their performance and accuracy for the (l, |m|) = {(2, 2), (2, 1), (3, 3), (3, 2), (4, 3), (4, 4)}
modes.

Regarding eccentric binaries, we set the basis to model the waveform from such
binaries in this thesis by developing new tools and methods and by adapting the
current infrastructure of our group for quasicircular binaries to the eccentric ones.
This work is expressed in the research projects of Chaps. 4, 5 and 7. In Chap. 4 we
develop a new procedure to specify and measure the initial value of the eccentricity
parameter in numerical relativity simulations. The method allows one to efficiently
produce numerical relativity simulations controlling the amount of initial eccentricity
at a given initial orbital separation of the binary.

Using this method we produce a numerical relativity data set of 60 simulations
with moderate initial eccentricity e ≤ 0.5 including dimensionless spin aligned with
the orbital angular momentum of the system up to 0.75. We present this dataset in
Chap. 5, where we study its properties, produce hybrid waveforms by gluing them
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to post-Newtonian waveforms and show examples of their implications for parameter
estimation with current waveform models used by the LIGO and Virgo collaborations.

Finally, in Chap. 7 we expand on the data analysis implications of the eccentric
numerical relativity waveforms generated in Chap. 5 by estimating the sensitivity
of two search pipelines used by the LIGO and Virgo collaborations during the O2
Science Run to them. We quantify the effect of eccentricity on two search pipelines:
a matched-filter and an unmodeled search algorithm. The preliminary results show
a large degradation of the sensitivity of the matched-filter algorithm with increasing
eccentricity, while the sensitivity of the unmodeled search algorithm remains barely
unaffected to the increase of eccentricity, hence, we identify the latter one as a solid
tool to search for those signals.

We also take the opportunity to set notation and define some useful quantities. In
most of the numerical relativity studies in this thesis we work with geometrized units
in which c = 1 and G = 1, so that the mass and length are measured in units of time.
We define the following quantities:

• Total mass: M = m1 +m2.

• Mass ratio: q = m1
m2

, with m1 > m2.

• Symmetric mass ratio: η = m1m2
m1+m2

= q
(1+q)2

, sometimes also referred to as ν in
the literature.

• Chirp mass: M = (m1m2)3/5

(m1+m2)1/5
= Mη3/5.

• Post-Newtonian expansion parameter: x = (GMω
c3

)2/3.
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Chapter 1

General introduction to
gravitational waves

Guided by the equivalence principle, that all bodies fall the same way in a gravita-
tional field, and Mach’s principle, that all the matter in the universe affects the local
motion of particles and vice versa, Einstein presented in 1916 [1] the theory of general
relativity (GR), which reformulated gravitation as a geometric consequence of the dis-
tribution of masses located in spacetime. During the last century, GR has aced all the
tests it has been subjected to. Starting with the 1919 solar eclipse [2], which made
Einstein become famous, the description of the perihelion precession of Mercury [3],
passing through the description of the rate of decay of the period of the Hulse-Taylor
pulsar [4, 5, 6], and very recently, in 2015 with the first direct gravitational wave
detection by the LIGO detectors [7].

Gravitational waves (GW) were one of the first predictions of GR [8]. They are rip-
ples of spacetime caused by the motion of massive compact bodies. These warpages
of the spacetime fabric travel through the Universe at the speed of light. As we will
see, gravitational waves detectable by interferometric ground-based detectors like Ad-
vanced LIGO [9] and Advanced Virgo [10], are generated by the most catastrophic
events of the universe like the merger of binary black holes (BBH) or binary neutron
stars (BNS).

During the first observing run (O1) of the LIGO detectors in 2015, the first direct
detection of GW from a BBH merger opened a new era of GW astronomy [7]. This
detection was followed by several other GW detections coming from BBHs during
O1 and the second observing run (O2) [11]. Apart from black holes in O2 there was
also the first detection of GWs from a binary neutron star (BNS) merger [12], which
supposed a breakthrough in GW astronomy, not only because it was the first detec-
tion of GWs from a BNS merger, but because it opened the path to multi-messenger
astronomy by combining the information coming from the detection of gravitational
waves with that from electromagnetic (EM) radiation [13, 14]. The combination of
information from these two sources of radiation allowed a detailed description of this
binary neutron star system, setting some constraints on its equation of state (EOS)
[15] and the amount of elements ejected during the merger [16]. Furthermore, the
precise location of the system thanks to the combination of both sources of radiation
allowed an estimation of the the Hubble parameter [17], rate of expansion of the uni-
verse, which is independent from that measured by the Planck mission [18] and that
calculated using type Ia supernovae (SNIa) calibrated with Cepheid distances [19].
The value for the Hubble parameter, H0, calculated using GW information lies within
the error bars of the values from the Planck mission and SNIa observations. Further
multi-messenger detections of BNS systems will constrain more and more the values
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of the Hubble parameter alleviating the current tension in its measurement between
the values calculated from the cosmic microwave background and the supernovae type
Ia.

During the preparation of this thesis the LIGO and Virgo detectors have been in
the third observing run (O3). For O3 the detectors have upgraded their sensitivity to
increase their detection volume, which increases the number of GW detections with
respect to O1 and O2. Tens of GW candidates have already been detected [20] and
public alerts are sent each time a GW candidate hits the detection threshold [21] to
facilitate the detection of an EM counterpart. This is a clear signature of the start of
the multi-messenger astronomy era, which will allow a more precise description of our
universe and it will permit the measurement of cosmological parameters so decisive
as H0.

The detection of GWs also allows to test the validity of GR in the strong field regime.
Using the GW events from compact binary coalescences (CBC) during O1/O2 the
LIGO and Virgo scientific collaborations have already set some constraints on general
relativity [22] with distinct types of tests aimed to constrain some physical parameters
like the graviton mass or the speed of GWs. These tests rely not only on the current
ability of the detectors to measure the passing gravitational wave radiation, but very
strongly on the accuracy of the waveform models used to describe those GW signals.
These waveform models are generated upon calibration to numerical relativity (NR)
simulations. There are two main difficulties to generate such models, the first is the
huge computational cost of the NR simulations describing CBCs mergers, and the
second one is the construction of such models for the large parameter space of generic
binary systems. Current uncertainties in GW detections are dominated by statistical
errors set by the level of signal-to-noise ratio (SNR) the current detectors are able to
achieve. However, the increase in the sensitivity of the ground-based detectors and the
upcoming space mission, LISA, will augment our ability to detect GW from a large
variety of astrophysical systems. This future scenario will require huge advances in
the whole field of gravitational physics in the upcoming decade in order to be able to
extract the maximum information from the upcoming detections so that we will con-
struct a more accurate description of the universe providing answers to open questions
in astrophysics, cosmology and fundamental physics.

1.1 Gravitational waves

Gravitational waves are perturbations of the spacetime metric propagating at the
speed of light. Their nature is very different from the electromagnetic waves. This
is why the detection of gravitational waves is usually claimed to open a new window
to the Universe. In this chapter we will briefly review their basic properties and the
fundamental equations governing their behaviour.

1.1.1 The Einstein equations: covariance and hyperbolicity

According to Einstein’s general relativity the relation between the matter/energy con-
tent of the spacetime and its geometry is given by Einstein’s equations

Gab =
8πG

c4
Tab, (1.1)
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where Gab denotes the Einstein tensor and Tab indicates the stress-energy tensor of
the matter field, c and G are the speed of light and Newton’s gravitational constant,
respectively. The left hand side of Eq. (1.1) represents the geometry of the spacetime.
If we restrict to a four dimensional space, then the spacetime can be described by
a four-dimensional Lorentzian manifold. The notion of distance is introduced in the
manifold through the metric tensor gab, which defines the invariant spacetime interval
between two nearby points of the manifold according to

ds2 = gabdx
adxb, (1.2)

where ds represents the line element between two nearby points and dxa the infinites-
imal displacement of the spacetime coordinates xa. The metric tensor is at the core
of the definition of the Einstein tensor of Eq. (1.1), which can be written in terms of
the Ricci tensor, Rab, as

Gab = Rab −
1

2
gabR, (1.3)

where R = Rabg
ab is the Ricci scalar. The Ricci tensor is the trace part of the Riemann

tensor, Rab = Racbdg
cd. The Riemann tensor can be written in a coordinate basis in

terms of the Christoffel symbols, Γabc, as

Rabcd = ∂cΓ
a
bd − ∂bΓacd + ΓebdΓ

a
ce + ΓebdΓ

a
ce. (1.4)

Recall that the connection coefficients, Christoffel symbols, can be written in a coor-
dinate basis as

Γabc =
1

2
gad (∂bgdc + ∂cgdb − ∂dgbc) . (1.5)

Hence, Eq. (1.5) explicitly shows the relation of the left hand side of Eq. (1.1) with
the geometry of the Lorentzian manifold on which the physical events occur.

General relativity is a covariant theory, i.e., the theory is invariant under any ar-
bitrary change of coordinates. This huge symmetry group of arbitrary coordinates
systems can be mathematically described through arbitrary diffeomorphisms,

xa → x′a(x), (1.6)

where x′a(x) has to be differentiable with respect to xa, invertible and with a dif-
ferentiable inverse. The covariance of the theory described by Eq. (1.6) implies the
following transformation law of the metric tensor,

g′ab(x
′) =

∂xc

∂x′a
∂xd

∂x′b
gcd(x). (1.7)

Equation (1.7) is also known as the gauge freedom or gauge symmetry of general rel-
ativity in the literature. This shows that by an appropriate choice of coordinates one
can reduce the number of components of g′ab(x

′), such that one has the metric tensor
in the desired form to solve Einstein’s equations.

Furthermore, a careful check of Eq. (1.1) shows that Einstein’s equation are hyperbolic-
type equations because the Riemann tensor in the left hand side contains second order
terms in the metric derivatives together with non-linear terms in the metric and met-
ric derivative. As a consequence, Einstein’s equations are equivalent to a system of
coupled differential equations in gab, which thanks to the Lorentzian signature of the
metric, the purely time component has a different sign from the spatial ones implying
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that the equations are of hyperbolic nature. Hence, many introductory texts first
introduce the scalar wave equation

�φ =
(
−∂2

t + ∆
)
φ = 0, (1.8)

where ∆ is the Laplacian. Analysing the solution of Eq. (1.8), which is a much simpler
hyperbolic equation, eases afterwards the understanding of the much more complicated
system of partial differential equations which are the Einstein equations. As shown
by Landau and Lifshitz [23] Einstein’s equations can be recast, after imposing certain
gauge conditions, in a form which shows their hyperbolic nature. Using the Landau-
Lifshitz formulation Einstein’s equations can be expressed as [23]

∂c∂d

(
GabGcd − GacGbd

)
= −16π(−g)

(
T ab + tabLL

)
, (1.9)

where Gab =
√
−ggab and tabLL is the Landau-Lifshitz pseudotensor composed of the

second order terms of Gab and its first derivative ∂cGab.
Choosing now the harmonic gauge defined by

�xa = 0 → ∂aGab = 0, (1.10)

where � is the d’Alembertian operator in a curved space,

� =
1√
−g

∂a

(√
−ggab∂b

)
. (1.11)

With the gauge choice of Eq. (1.10), Eq. (1.9) can be written as

√
−g�Gab = −16π(−g)

(
T ab + tabL L

)
+
(
∂cGbd

)
∂dGac, (1.12)

which displays a clear analogy with Eq. (1.8) and demonstrates that Einstein’s equa-
tions can be viewed as a coupled system of 10 independent (6 equations are redundant
due to the symmetry of the metric tensor) nonlinear second order partial differential
hyperbolic equations for Gab. Hence, this result also implies that gravitational waves
are perturbations of spacetime propagating at the speed of light, and solutions of the
Einstein equations.

1.1.2 Generation of gravitational waves

In this section we briefly show using linear perturbation theory that gravitational
waves are solutions of the Einstein equations and that those solutions in the four-
dimensional case have only two physical degrees of freedom corresponding to two
polarizations. We will not repeat the whole detailed calculation here, for details see
[24, 25], but we will focus on the interpretation and discussion of the results.

Consider first a small linear perturbation of the spacetime metric, hab, around the
flat-space background,

gab = ηab + εhab, ε� 1, (1.13)

where ηab = diag(−1, 1, 1, 1) is the Minkowski metric and ε is a small bookkeeping
parameter. Note that by imposing Eq. (1.13) one chooses a specific frame, therefore,
breaking the invariance of general relativity under coordinate transformations. How-
ever, there is still a residual gauge symmetry in the coordinate choice coming from the
freedom to make an infinitesimal variation of order ε such that x′a = xa+εξa(x). This
residual symmetry allows one to choose a gauge condition which, in this case, is again
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the harmonic gauge, also known as Lorentz gauge in electromagnetism, condition,

∂ah̄ab = 0, (1.14)

where h̄ab = hab − ηabh/2 and h = ηabhab. Replacing (1.13) in (1.1), employing the
gauge condition (1.14) and assuming that Tab is of order ε one obtains the following
wave equation,

�f h̄ab = −16πG

c4
Tab, (1.15)

where �f = ηab∂
a∂b is the flat space d’Alembertian operator. Equation (1.15) demon-

strates that metric perturbations sourced by a matter field described by Tab travel at
the speed of light. Moreover, the combination of Eqs. (1.14) and (1.15) imply the
conservation of the energy-momentum tensor

∂aTab = 0. (1.16)

Setting for simplicity the matter term to zero, Tab = 0, Eq. (1.15) reduces to

�f h̄ab = 0, (1.17)

which, thanks to the symmetry of the metric tensor gab, has 10 independent compo-
nents and whose general solution are superposition of complex metric plane waves of
the form

h̄ab = Aabe
ikcxc , (1.18)

where Aab is the amplitude tensor and kc is the wave co-vector. Inserting Eq. (1.18)
into (1.17) one obtains that kc is a null vector, i.e., ηabkakb = kak

a = 0, this confirms
that h̄ab propagates at the speed of light. Combining Eq. (1.18) with the Lorentz
gauge given by (1.14) one obtains Aabkb = 0, which indicates that the amplitudes
of the oscillations are transverse to the direction of propagation defined by the wave
vector ka. This transversality condition reduces the number of independent conditions
from 10 to 6. As discussed above, the Lorentz gauge allows the freedom of a coordinate
transformation xa → xa + ξa such that ξa satisfies �ξa = 0. This residual symmetry
can be used to reduce the number of independent components from six to two. A
gauge choice which allows such a simplification is the well-known transverse-traceless
(TT) gauge condition. Using this gauge condition and assuming propagation of the
gravitational waves towards the +z−direction one can write the metric perturbation
hab in terms of two polarizations h+ and h×,

hab =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (1.19)

where the matrix components are in order t, x, y, z. The main conclusion from Eq.
(1.19) is that gravitational waves are the tranverse and tracefree part of the metric per-
turbation. From the explanation presented so far, it might appear that gravitational
waves are a specific result due to some gauge choice and some linear expansion around
flat spacetime. The question of whether gravitational radiation could be gauged away
thanks to invariance of GR under arbitrary diffeomorphisms was a controversial topic
within the first years of GR, which made even Einstein doubt about their own exis-
tence. The historical controversy came to an end in the sixties with the seminal works
of Bondi, van der Burg and Metzner, and Sachs [26, 27, 28], where they defined GWs
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in terms of the asymptotic behaviour of the gravitational field at null infinity confirm-
ing their reality and showing their transverse traceless nature for general spacetimes.

Restricting ourselves here for simplicity to the linearized theory, one can extract grav-
itational radiation in general coordinates using a projection operator P ba = δba−nanb,
where na indicates a unit vector pointing in the direction of propagation of the waves.
Then, the gravitational radiation can be extracted from the spacetime metric pertur-
bation using the projection operator onto the spatial components of hµν as

hGWµν =

[
Pαµ P

β
ν −

1

2
PµνP

αβ

]
hαβ, (1.20)

which ensures the transverse and traceless nature of hGW .

We finalize this section outlining the effect of gravitational waves on freely falling
particles, which is usually explained in the literature in terms of the relative gravi-
tational acceleration of two nearby test bodies. The acceleration between two freely
falling test bodies parametrized by xa(τ) and xa(τ)+ξa(τ) is governed by the geodesic
deviation equation which for a wave propagating in the +z−direction reduces to the
following equations for the metric components,

ẍ =
1

2

(
ḧ+x+ ḧ×y

)
, ÿ =

1

2

(
ḧ×x− ḧ+y

)
. (1.21)

The consequences of Eqs. (1.21) on the motion of a ring of test particles are displayed
in Fig. 1.1, where the gravitational wave propagates in the direction perpendicular to
the page surface. One observes the quadrupole deformation induced in a ring of test
particles, which is initially at rest forming a circle and it is subsequently deformed
to an ellipse. In general a gravitational wave propagating in the z-direction can be

Figure 1.1: The upper plot represents a monochromatic gravitational
wave with period T propagating in the z−direction. The lower plot
shows the effect of the gravitational + and × polarizations on a ring of
freely falling test particles in the x− y plane. Image taken from [29].

written as a linear combination of the two polarizations as,

h = h+e+ + h×e×, (1.22)
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where e+ and e× are the polarization tensors. Finally, note that the dephasing be-
tween the + and × polarizations is 45◦ and that the effect of the gravitational wave
on the rings is invariant under a rotation of 180◦ in the direction of propagation.

1.1.3 Gravitational wave energy

In Sec. 1.1.2 we obtained a solution for the metric perturbation for a vanishing
energy-momentum tensor. We consider now the general case of a non-zero stress
energy tensor. Then, the solution of Eq. (1.15) can be obtained using Green function
methods,

h̄ab(t, xµ) = 4

∫
Tab(t− |xµ − yµ| , yν)

|xµ − yµ|
d3y, (1.23)

where we have set G = c = 1 and adopted cartesian coordinates for the spatial co-
ordinates, xµ represents the position of the source with respect to the observer, yµ

describes the geometry of the source. Equation (1.23) can be further simplified noting
that GW are defined in the wave zone, that is astrophysical objects are far from the
detectors which implies that the distance from the gravitational wave source is much
larger than the gravitational wavelength, λ. Therefore, we restrict to solutions of Eq.
(1.23) for r ∼ |xµ| > λ.

We also make the further assumption that the energy-momentum tensor is non-
vanishing in a finite region close to the source with an extent R. The fact that
the typical wavelength is much longer than R implies that r � R. Hence, supposing
|xµ| � |yµ|, which means that distance from the observer to the source is much larger
than the typical scale of the source, we can rewrite (1.23) as

h̄ab(t, x
µ) =

4

r

∫
Tab(t− |xµ − yµ| , yν)d3y. (1.24)

Noting that |xµ − yµ| ≈ r−
∑

µ
xµyµ

r and |yµ| . R one can Taylor expand the energy-
momentum tensor around the retarded time tret = t− r in the Minkowski spacetime
as

Tab(t− |xµ − yµ| , yν) = Tab(tret, y
µ) +

∑
µ x

µyµ

r
∂tTab(tret, y

µ) + · · · . (1.25)

The expansion of Eq. (1.25) is only valid in the far zone where the energy-momentum
tensor of the source is zero. Furthermore, if we denote by τ the characteristic time
scale of variation of Tab then we can observe that the second term of (1.25) scales as
R/(cτ) with respect to the first term, which is equivalent to an expansion in v/c where
v = R/τ is the characteristic velocity of the gravitational wave source. Assuming that
the characteristic speed of the gravitational wave source is small compared to the
speed of light we can retain just the first term in (1.25) obtaining,

h̄ab(t, x
µ) =

4

r

∫
Tab(tret, y

µ)d3y. (1.26)

Using the stress-energy tensor of a perfect fluid and the conservation law ∂aT
ab = 0

it can be shown [24, 25, 30] that one finally obtains

h̄ab(t, x
µ) =

2

r

d2

dt2

∫
d3xρxaxb =

2

r
Ïab(tret), (1.27)
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where Iab indicates the quadrupole moment of the system. As shown in Sec. 1.1.2 the
GW part has to be extracted using the projection operator which in this case leads to

h̄GWab (t, xµ) =
2

r

d2ĨTTab
dt2

=

[
P caP

d
b −

1

2
PabP

cd

]
2

r

d2Ĩcd
dt2

, (1.28)

where Ĩab is the tracefree part of Iab defined as

Ĩab = Iab − δab
∑
c

Icc. (1.29)

Equation (1.28) is known as the quadrupole formula of gravitational waves. A first con-
sequence of Eq. (1.28) is that bodies with a non-vanishing quadrupole moment emit
gravitational waves, while spherically symmetric and perfectly axisymmetric bodies
do not as they have a constant quadrupole moment. Secondly, the quadrupole formula
shows that the amplitude of the gravitational wave signal depends on the direction
of the observer with respect to the source of gravitational wave radiation through the
projection operator. Note also that the quadrupole formula in this section is derived
within linearized theory, this is an expansion around flat spacetime. This implies that
in principle the quadrupole formula cannot be used for self-gravitating objects like
black holes or neutron stars. However, it can be shown using post-Newtonian theory
[31], a weak-field and small velocity v � c approximation, that the same expression
as in Eq. (1.28) is obtained.

Once, we have obtained solutions for the gravitational wave signals we turn our at-
tention to the energy carried by this form of radiation. We want to present some
estimates of the typical observed energies in the detectors. Before presenting some
equations we refer to [24, 25, 30] for details in their derivation. In GR, the definition
of energy and momentum of GWs is a subtle problem due to the fact that they cannot
be defined locally, but they have to be defined as global quantities in asymptotically
flat spacetimes, spacetimes which at null infinity resemble Minkowski spacetime, and
where the notion of energy and momentum acquires a physical meaning, like the
Arnowitt-Deser-Misner (ADM) mass and momentum typically used in numerical rel-
ativity.

The gravitational wave energy flux can be expressed in terms of the quadrupole mo-
menta as [24, 25, 30]

dE

dt
=

1

5

∑
µ,ν

〈
d3Ĩµν
dt3

d3Ĩµν
dt3

〉
, (1.30)

where 〈· · · 〉 denotes the average over a certain time duration, typically several periods
of gravitational-wave cycles.
Now we have all the required tools to provide an estimate of the gravitational wave
amplitude. In order to do that we recover the constants G and c and we define fGW as
the gravitational-wave frequency, D as the distance from the source to the observer,
and T as the time duration of emission. Then, combining eqs. (1.20) and (1.30) we
can estimate the gravitational wave luminosity as

∆ET−1 ∼ c3G−1(h0D)2f2, (1.31)

where ∆E is the scale of the energy variation and h0 the scale of the gravitational-
wave amplitude. We can write the time duration of the signal in terms of the wave
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cycles, N , as T = N/f and ∆E = εEMc2, where εE is the efficiency in converting
binding energy into gravitational wave radiation, typically, εE . 1. With all of this
we obtain,

h0 ∼
1

D

[
εE
GM

cfN

]1/2

,

h0 ∼ 10−17

(
10kpc
D

)( εE
0.01

)1/2
(

M

10M�

)1/2( f

1kHz

)−1/2

N−1/2.

(1.32)

For instance, suppose an astrophysical object with a total mass of 30M� collapses to
a black hole at a distance D ∼ 50kpc. The frequency of the system will be of the
order of 1 kHz, the number of cycles of order 1 and just take the efficiency of 1%.
Then, h0 ∼ 10−18 which is a very small amplitude. As discussed in Sec. 1.1.2 the
effect of gravitational waves is to change proper distances between two nearby freely
falling particles. This modification of the distance can be translated to the relative
change in length by

h = 2
∆L

L
. (1.33)

Then, taking a 4km detector the effect of a passing gravitational wave signal with
amplitude h0 ∼ 10−18 is a change in the length of the order 10−11 cm, which is
smaller than the atomic radius. These rough numbers show the challenge of detecting
gravitational waves and it also explains why it took nearly a century after their first
prediction by GR to make the first direct detection of a passing gravitational wave
signal through a ground-based interferometer.

1.2 Gravitational wave sources

According to linearized theory each body with a non-vanishing quadrupole moment
radiates gravitational waves. However, as shown by the estimates of Sec. 1.1.3 they
are very weak in nature. Hence, only very compact objects and catastrophic events
like compact binary coalescences, supernova explosions or highly rotating neutron
stars, etc., are able to produce detectable gravitational wave radiation. In this section
we briefly summarize the properties of the known sources of gravitational waves.

The frequency range of astrophysical gravitational wave sources is limited to 104

Hz downward. This maximum frequency can be estimated assuming that a source
of mass M cannot be much smaller than its Schwarzschild radius, 2GM/c2, and it
cannot emit significantly at periods much smaller than the light-travel time 4πGM/c3

around its Schwarzschild radius. This restricts the emitted frequencies to [32]

f .
1

4πGM/c3
≈ 104Hz

M�
M

. (1.34)

In order to emit at its maximum frequency, i.e., reaching a size of the order its
Schwarzschild radius, the object size should be larger than its Chandrasekhar limit1,
M & 1.44M�. This sets the expected maximum frequency of the gravitational wave
frequency band to ∼ 104 Hz and it spans the whole range of frequencies downward. In
the following subsections we will shortly describe some of the most promising sources of
gravitational waves: Compact Binary Coalescences (CBC), Continuous Waves (CW),
Bursts and the stochastic gravitational wave background. Some of these events have

1Or the limit observed for neutron stars which is similar.
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already been detected by the LIGO and Virgo detectors, like the CBCs, and the rest
are expected to be detected in the upcoming years.

Compact binary coalescences

Compact binary mergers include all systems of compact objects like binary black holes
(BBH), binary neutron stars (BNS) or black hole neutron star (NSBH), which coalesce
to form a Kerr black hole or a neutron star (this formation channel is only possible
for BNS and NSBH systems). CBC, and specifically BBH coalescences, are the main
topic of this thesis. Compact binaries are the only sources of gravitational waves
which have been directly detected so far [11]. During O1 and O2 the LIGO and Virgo
scientific collaborations confidently detected 11 GW events consistent with 10 stellar
mass BBH mergers, with total mass ranges between 18.6+3.2

−0.7M� and 84.4+15.8
−11.1M�

and range in distance between 320+120
−110 and 2840+1400

−1360 Mpc, and 1 BNS merger. These
numbers confirm that BBHs are the most promising sources of gravitational waves in
the near future.

Galactic white-dwarf binaries, another CBC type of source, will be detected with the
advent of space-craft gravitational wave detectors like LISA. These sources constitute
the more typical final stages of the stellar evolution and their detection will permit
a better description of their population and possible formation channels [33]. Other
expected sources for space-craft detectors are intermediate black-hole (IMBH) binary
mergers and extreme mass ratio inspirals (EMRIs), providing the latter information
about formation channels of the supermassive black holes in the galactic centers.

Continuous Waves

Continuous gravitational waves are expected to be produced by highly spinning com-
pact objects, like a neutron star, with some asymmetries or imperfections which break
the constancy of its quadrupole moment and allow the emission of gravitational waves.
The system emits continuously at the same frequency and amplitude as it spins around
its rotation axis.

The duration of gravitational-wave emission of these systems is much longer than
for CBCs, although the amplitude of the signal is much weaker due to the small
asymmetries causing the emission of gravitational radiation. Current search pipelines
have set upper limits on the gravitational-wave strain amplitude for rapidly spinning
neutron stars with an asymmetry in their rotation axis and prospects on their future
detection [34]. Alternatively, a boson cloud scenario [35] has been recently suggested
as another possible source of continuous waves. This exotic scenario requires a cloud
of bosons around a highly spinning black-hole. This cloud of bosons could emit con-
tinuous gravitational wave radiation through the corresponding energy transitions of
the bosons of the cloud.

Gravitational wave bursts

Gravitational wave bursts are produced by transient unmodeled gravitational wave
sources, like core-collapse supernovae, high mass BBH mergers, highly eccentric BBH
mergers, cosmic strings, etc. Other sources of burst signals are the gravitational wave
emission associated with the short gamma-ray bursts (GRBs) of coalescing BNS and
BH-NS binaries which could provide insight into the progenitors and the generation
of these transient phenomena [36].
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In this thesis one of the unmodeled search pipelines used by LIGO and Virgo to de-
tect burst signals is used to analyse the sensitivity of this unmodeled search pipeline
to eccentric binary black hole mergers. Hence, we explain in detail in Sec. 3.4.2 of
Chapter 3 the algorithm used by a burst search pipeline, coherent Wave Burst (cWB),
to detect these unmodeled signals.

Stochastic background

The stochastic gravitational-wave background is a superposition of sources which are
too weak or too numerous to be detected individually. Current LIGO pipelines have
not found evidence for a stochastic background in O1 and O2 [37] and they have set
upper limits on the normalized energy density of gravitational waves in a frequency
independent background. These uppers limits can be used to set some constraints in
models of compact binaries and cosmic strings.

Space-craft detectors like LISA are expected to also detect a background caused by
the superposition of the GW signals of the white-dwarf binary population in our
galaxy. This makes the LISA detector strain to be signal dominated in contrast to
ground-based detectors, which have a noise dominated strain. The removal of such a
background is currently under investigation through mock data challenges [38].

Finally, a stochastic background can also have a cosmological origin [39]. The sources
causing such a background are associated with phase transition models in the early
universe which may produce an hypothetical fossil background.

1.3 Gravitational wave detectors

The firsts attempts to measure GW date from the 1960s when the pioneer Joseph
Weber developed and constructed the first resonant-bar detectors. The underlying
principle of these instruments is that they absorb a tiny fraction of the energy of
the passing GW signal and transform it into mechanical oscillations. This conversion
happens at a very specific frequency which is the resonant frequency of the object.
Thus, resonant-mass detectors are narrow band detectors sensitive to very specific
GW frequencies coincident with the resonant one of the material.

By the end of the sixties, a series of failed detections made resonant-mass detectors
become unpopular among the scientific community. Furthermore, the low maximum
accuracy in the measurement of h ∼ O

(
10−21

)
set by the quantum limit poses a

problem for detections of many astrophysical events using this type of detectors [40].
Hence, resonant bars were progressively abandoned in favour of large GW interfero-
metric detectors. Nowadays, there are still some operating resonant-mass detectors
like AURIGA [41], although they are also used to search for dark matter candidates
[42].

Passing from resonant-mass detectors to interferometers constitutes a dramatic change
of scale of the scientific effort required to operate it for confident detections. While
the former can be operated with a scientific group of a dozen of scientists, the latter
requires collaborations of hundreds of people and a financial cost several orders of
magnitude higher. This is the reason why every large interferometer has associated
with it some large scientific collaboration like LIGO, Virgo, GEO or Kagra. GW
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interferometers are remarkably complex instruments with many degrees of freedom
which have to be controlled to high accuracy. All this together explains why it took
more than 50 years from its first theoretical descriptions in 1962 by M. Gertsenshtein
and V.I. Pustovoit [43] to the first direct GW detection by LIGO in 2015 [7].

Focusing on the scientific part, we have to recall from Sec. 1.1.2 that the effect
of a passing GW is the modification of the proper distance of the two directions or-
thogonal to the propagation direction of the wave. The relative length difference in
each direction is ∆L/L = h/2, which can also be associated with the relative length
change induced by a passing GW signal. This formula also shows that the longer the
distance L over which we are measuring length differences, the higher the accuracy
at which one can determine the strain h. Moreover, the previous reasoning suggests
that an L-shaped detector would be perfectly suited to perform the task of measuring
such length differences and it led to the Michelson-Morley interferometer as the first
alternative to resonant-mass detectors. The basic concept of a Michelson-Morley in-
terferometer is shown in Fig. 1.2.

Figure 1.2: Basic design of a Michelson interferometer. The laser
beam hits the beam splitter and half of the beam goes in one arm
and the other half is sent to the other arm. They are reflected in
the end mirror of each arm and recombined at the intersection where
they interfere destructively. If a passing GW modifies slightly the
length of one arm the interference will produce some light patterns in
the detector output. [Image taken from https://www.ligo.caltech.

edu/page/ligos-ifo]

The principle of the Michelson-Morley interferometer is at the core of the current
ground-based detectors. However, some modifications in the design have to be applied

https://www.ligo.caltech.edu/page/ligos-ifo
https://www.ligo.caltech.edu/page/ligos-ifo
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to increase the accuracy of the instrument. Here, we focus on the LIGO detectors and
we list the main modifications to the Michelson interferometer to increase the accu-
racy. The arms of the instrument are increased from the original 11m of the Michelson
interferometer to the 4km of LIGO. The increase in the arm length implies an increase
of accuracy as explained before. However, 4km are not enough to reach the required
accuracy, thus, in the arms Fabry-Perot cavities are inserted. These cavities are 4km
long and they make the light of each arm bounce back and forth along the full path.
The improvement coming from these reflections is two-fold, 1) it stores laser light for
a longer time in the interferometer increasing the LIGO sensitivity and 2) it increases
the light travel distance to 1600km, which supposes a significant increase of accuracy
of the instrument.

So far, we have focused on increasing the length to augment the sensitivity, but a
laser power increase also enhances the instrument sensitivity. Recycling the laser
power allows to achieve a cleaner detector output as the interference pattern is better
resolved by the photodetector. Nonetheless, only 200 W of laser power enter the inter-
ferometer while the detector performs at ∼ 750 kW at full power. As it is impractical
to build a 1600km interferometer it is impossible to have a laser with 750 kW as ini-
tial power. This is solved by the addition of power recycling mirrors which thanks to
the alignment of the instruments allow a boost in the power of the laser beam. The
consequent sharpening of the interference fringes at the photodetector allows better
discrimination of passing GW signals. Finally, two more main modifications are im-
plemented in LIGO detectors, 1) signal recycling mirrors, which enhance the output
signal of the detector, and 2) LIGO’s seismic isolation system, which is a specific sys-
tem to damp out undesired seismic vibrations. With all these modifications, LIGO
interferometers are known as Dual Recycled Fabry-Perot Michelson interferometers.

The interferometer detector output is contaminated by many noise sources whose
amplitude is much higher than the searched GW signals. Thus, a confident detection
of a GW signal requires the understanding and removal of the noise sources hitting
our detector output. The main sources of noise acting on a LIGO interferometer are:

• Displacement noise. This name characterizes the noise sources which are not
related to the passing GW. This category includes Newtonian and seismic noise
caused by the inhomogeneous gravity gradient, thermal noise caused by pen-
dulum thermal fluctuations or test-mass thermal fluctuations, and other noise
sources like non-gaussian noise caused by residual gas.

• Radiation pressure. This noise is caused by the fluctuation in the number of
photons hitting the mirror, which causes a stochastic force shaking the mirrors.

• Shot noise. This noise is caused by the quantum nature of light. The uncer-
tainty principle causes quantum fluctuations of the laser light which produce
undesired instrumental noise. However, some particular states of light, known
as squeezed light, can reduce the contribution of this noise source.

Finally, we briefly mention current ground-based detectors and their properties:

a) GEO-600. It is a smaller interferometer with an arm length of 600m located
near Hannover (Germany) [44]. It is operated by British and German scientists,
mainly the Max Planck Institute of Hannover. Its sensitivity is more than one
order of magnitude smaller than the one from the LIGO detectors. Currently,
GEO600 is mainly used to push the available technologies to their limits and
advance the interferometer technology.



14 Chapter 1. General introduction to gravitational waves

b) Kagra. It is the first 2.5 generation interferometric gravitational wave detector
located under the mountain of the Kamioka mine in Kamioka-cho (Japan) with
3km-long arms. It is operated by the international Kagra collaboration formed
by more than 200 researchers from 90 institutions in 15 countries. Very recently,
Kagra has joined the Advanced LIGO and Advanced Virgo detectors for the last
part of the third observing run, although its current sensitivity is quite limited.
It is expected to be decisive in the upcoming observing runs [45].

c) LIGO. The two 4km arm long Advanced LIGO [9] detectors are located at
Hanford and Livingston (United States of America). They are operated by the
LIGO scientific collaboration (LSC) consisting of more than 1000 scientists from
over 100 institutions and 18 countries worldwide. It is currently on the third
observing run and it has already sent public alerts for tens of GW candidates
[20] which are currently under analysis.

d) Virgo. Advanced Virgo [10] is a 3 km-long arm detector situated in Cascina
(Italy). It is operated by the Virgo collaboration composed of more than 500
members representing 99 institutions from 11 countries. Its sensitivity is ap-
proximately one order of magnitude smaller than the one of the LIGO detectors.
However, it plays a crucial role determining the sky position of GW sources, as it
occurred during O2 with the detection of GW170814 [46], the first three-detector
observation of a BBH merger.

Apart from the current GW observatories, there are plans to construct third-
generation ground-based GW detectors like LIGO India, the Einstein Telescope (Eu-
rope) and Cosmic Explorer (USA). Additionally, the prospects of space-based de-
tectors like LISA ensure a fully operational gravitational wave detector network of
ground-based and space-based detectors covering the high and low frequency bands(
10−4 − 2000Hz

)
with an unprecedented sensitivity by the early thirties, which will

provide a much more complete picture of the universe and a deeper understanding of
gravity and its nature.
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Chapter 2

Solutions to the two-body problem
in general relativity

In this chapter we assemble some basic concepts of the two-body problem in Einstein’s
theory of general relativity which will help to better understand the original research
work in the upcoming chapters. We focus on the merger of compact binary objects,
particularly BBHs which are the main topic of this thesis. Regarding mergers of
compact objects, one can clearly differentiate three stages in their evolution:

• Inspiral: In this regime the compact objects are far apart from each other, so
the gravitational interaction between the two bodies is weak and their veloc-
ities are small compared to the speed of light. The binary is evolving quasi-
adiabatically towards the merger. This phase is well described through post-
Newtonian (PN) and Effective-One-Body (EOB) theories, which provide ana-
lytical expressions for the dynamics and the waveform during this phase1. We
provide further details about PN theory in Sec. 2.2.

• Merger: As the compact objects approach each other, gravitational non-linear
effects become larger and larger, until the assumptions of weak field and small
velocities compared to the speed of light break down. At this point a numerical
approach is required to accurately describe the complicated non-linear interac-
tions. For this purpose one uses numerical relativity (NR), specifically in this
thesis two finite difference NR codes have been used, the private BAM code and
the open-source EinsteinToolkit (ET). However, the high computational cost
of these simulations (∼ 105 CPU hours for a not very challenging simulation)
reduces their application to a few orbits prior to merger, which motivates the
construction of hybrid waveforms between PN/EOB-NR, and it also complicates
populating the large parameter of space of a compact binary. We explain basic
concepts of NR in Sec. 2.3.

• Ringdown: After merger, the final state will depend on the nature of the
binary (BH-BH, NS-BH, NS-NS). If we restrict to BH-BH coalescences, the final
state is a perturbed Kerr black-hole described by perturbation theory. After
merger, the resulting black-hole tends to a stationary Kerr solution emitting the
gravitational radiation through a spectrum of exponentially decaying modes, the
quasinormal modes (QNMs), which are caused by disruptions and asymmetries
in the black-hole horizon. The ringdown part of the waveform is a fundamental
tool to look for deviations from general relativity in GW detections [1] and to
constrain the final state of matter systems [2, 3].

1We note that EOB is also extended through the merger regime, although its accuracy degrades
significantly with respect to the inspiral.
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The above separation can be identified in Fig. 2.1, where the time domain plus polar-
ization of a NR simulation is displayed. One distinguishes the three phases of the GW
evolution. The construction of gravitational waveform models which reproduce the
GW emission during these stages are called Inspiral-Merger-Ringdown (IMR) wave-
forms [4, 5]. IMR waveform models are semi-analytical approximations to the solution
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Figure 2.1: Representation of the time evolution of the plus polar-
ization of the gravitational wave for a non-spinning BBH numerical
relativity simulation with mass ratio q = m1/m2 = 1.5. From left to
right, the three different stages of the BBH coalescence are displayed:
the ending of the inspiral regime set by the time of the minimum en-
ergy circular orbit (MECO) [6] marked with a vertical red line, the
merger regime until the peak of the waveform indicated with a blue
vertical line, and the rindown regime characterized by the amplitude

decay of the GW emission.

of the Einstein equations for the GW emission of BBH mergers. They are constructed
upon calibration to hybrid PN/EOB-NR waveforms. Currently, the main limitations
in constructing these models comes from the difficulty to construct waveform models
for high-dimensional parameter spaces, this poses a challenge in the description of
generic BBHs which include precession or eccentricity, and the huge computational
cost of generic BBH NR simulations which impedes populating certain regions of the
parameter space, like highly precessing, intermediate mass ratios (q = m1/m2 > 10)
or very eccentric systems, with high quality simulations which can be used to extend
and further improve the current IMR waveform models.

2.1 Parameters of a generic BBH coalescence

In this section we detail the physical parameters required to describe the GW signal of
a BBH coalescence. The radiation of GW signals is typically described through three
different reference frames: the source frame, the radiation frame and the detector
frame. We refer the reader to [7, 8] for a detailed explanation. According to the No-
Hair theorem a non-charged isolated black hole in equilibrium is described by only its
mass and total angular momentum. Hence, in the case of a BBH coalescence, which
describes the merger of two gravitationally bound black holes emitting GW radiation,
one is left with 8 parameters Θ = {m1,m2, ~S1, ~S2}, wheremi and ~Si are the component
masses and individual spin vectors, respectively. These are the 8 intrinsic parameters
required to describe a quasi-circular binary, which quasi-adiabatically passes from a
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quasi-circular orbit to another until merger. However, more generic BBH systems
also require to take into account two additional parameters {e,Ω}, eccentricity and
the argument of the periapsis respectively. Thus, in the source frame the most generic
BBH binary is described by 10 intrinsic parameters,

ζ = {q,M, ~S1, ~S2, e,Ω}, (2.1)

where we have rewritten for later convenience the component masses m1 and m2 in
terms of the mass ratio q = m1/m2 and the total mass of the system M = m1 +m2.

The description of the passing GW signal through an interferometric detector re-
quires 7 additional parameters, called extrinsic parameters, which relate the detector
frame coordinates with the sky location of the source,

∆ = {r, tc, ι, ϕ, φ, θ, ψ}, (2.2)

where r is the luminosity distance from the detector to the source, tc the coalescence
time, ι the inclination, ϕ the azimuthal angle, φ the right ascension, θ the declina-
tion and ψ the polarization angle. Then, the polarization tensors of eq. (1.22) can
be projected onto the detector frame coordinates to obtain the strain induced in a
detector from a passing gravitational wave [9] in terms of the extrinsic and intrinsic
parameters as

h̄(t, ζ,∆) = F+(θ, φ, ψ)h+(t− tc; ι, ϕ, ζ) + F×(θ, φ, ψ)h×(t− tc; ι, ϕ, ζ), (2.3)

where F+ and F× are the antenna pattern functions. For an L-shaped interferometer
one obtains

F+(θ, φ, ψ) =
1

2

(
1 + cos2 θ

)
cos(2φ) cos(2ψ)− cos θ sin(2φ) sin(2ψ),

F×(θ, φ, ψ) = −1

2

(
1 + cos2 θ

)
cos(2φ) sin(2ψ)− cos θ sin(2φ) cos(2ψ).

(2.4)

As a spin-2 field the complex waveform defined in terms of the two polarisations can
be written in the basis of the spin-weighted (s = −2) spherical harmonics as

h(t) = h+ − ih× =
∞∑
l=2

l∑
m=−l

Y −2
lm (ι, ϕ)hlm(t− tc; ζ), (2.5)

From eqs. (2.3) and (2.5) one can observe that there is a separation between intrinsic
and extrinsic parameters, which allows factoring out the contribution from the ex-
trinsic ones in the GW strain induced in a detector. This property allows to produce
models of the signal for the intrinsic parameters of a binary system and, afterwards,
add trivially the dependency on the extrinsic parameters. Furthermore, from the 10
intrinsic parameters of a binary system, in vacuum GR the total mass of the system
is just a scale factor which is typically set to 1, M = m1 +m2 = 1, and it is not taken
into account when modelling BBH mergers. Hence, the most generic BBH system
has 9 intrinsic parameters η, ~S1, ~S2, e,Ω, where we have written by convenience the
symmetric mass ratio η = m1m2/(m1 +m2)2, η ∈ [0, 0.25] instead of the mass ratio.
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2.2 Post-Newtonian theory

Post-Newtonian theory is an approximation to the full Einstein equations in the weak
gravitational field regime and slow motion of the bodies with respect to the speed of
light. In this chapter we provide a brief overview of the basic concepts of the theory
focusing on the theoretical notions which are necessary to understand the calculations
done in the original research chapters. For detailed derivations and more involved
explanations we refer the reader to [10, 11, 12]. Specifically, we focus on the Hamil-
tonian formulation used to develop the method in Chapter 4 and the current status
of eccentric PN theory, employed in the work of Chapter 5 .

As discussed in Sec. 1.1.2, the linearized theory cannot be applied to self-gravitating
objects as the background metric is not correctly described by the Minkowski one. In
order to apply PN theory to describe a self-gravitating object emitting gravitational
radiation it turns out useful to take into account the different scales involved in the
problem and separate the domain according to those. This fact motivates the defini-
tions of the near zone and the far zone, also called the wave zone. Introducing the
characteristic time scale of the source, tc, which is the typical time for any noticeable
change in the source and the characteristic wavelength of the radiation λc = ctc, one
can define

near zone: r � λc,

far zone: r � λc,
(2.6)

where r = |x| is the position vector. Taking into account the retarded time τ = t−r/c,
one observes that in the near zone differences between τ and t are small, indicating
that retardation effects are unimportant, while in the wave zone differences between
τ and t are large, implying that retardation effects become relevant, as a consequence
spatial derivatives are comparable to time derivatives.

Moreover, if the source is confined to a bounded region in space one can define the
characteristic length scale of the source Rc, and the characteristic velocity of the source
vc = Rc/tc, which represents the speed at which modifications in the source propagate
to the region defined by Rc. This new scale definitions permit the introduction of the
slow motion condition which can be formulated in terms of the characteristic velocity
or the characteristic wavelength as

slow motion condition: vc/c� 1,

slow motion condition: Rc/λc � 1.
(2.7)

The first condition implies that all the velocities within the source distribution must
be much smaller than the speed of light, while the second one implies that the re-
gion occupied by the source is small compared to the characteristic wavelength of the
emitted gravitational radiation. Consequently, the second condition implies that the
source of GW is profoundly placed in the near zone defined by r � λc.

Under these assumptions one can develop a formalism to compute the dynamics and
the gravitational radiation emitted by such a confined matter distribution. An ac-
curate description of such a formalism is far beyond the scope of this introductory
chapter. We remark two additional important points regarding PN theory, 1) it is
an asymptotic series whose convergence has not been proven. The convergence of
the PN series expansion is not ensured because there is not a unique dimensionless
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small expansion parameter for the Einstein equations 2) there are currently two main
approaches developed to perform such an expansion, the Direct Integration of the
Relaxed Einstein equations (DIRE) developed by Will and Wiseman [13, 14, 15] and
the multipolar expansion of the source potential developed by Blanchet, Damour and
Iyer [10]. Furthermore, there are two other approaches to compute the dynamics of a
compact binary based on an effective field theory formalism (EFT) [16] and a Hamil-
tonian formulation [12].

Finally, we note that the PN expansion suffers from two main problems, 1) a technical
complication due to the appearance of divergences at high PN orders, this is solved
by applying regularization techniques and proper boundary conditions, 2) mathe-
matically, the PN expansion is an example of a singular perturbation theory, i.e., a
expansion of a function G(v/c, r) of the form

G(v/c, r) =
∑
n

cn(r)
(v
c

)n
, (2.8)

around v/c = 0, with the coefficients cn(r) depending on a second parameter r, which
diverges as r →∞. Hence, the PN expansion is not uniform in r and it is only valid in
the near region of the source. This also implies that no-incoming radiation boundary
conditions at infinity, which are suited to a radiation problem, can be imposed for
this problem. The solution to the issue of the boundary conditions at infinity is
circumvented with a technique called matched asymptotic expansion which allows to
match the PN series with a post-Minkowskian (PM) expansion, a series expansion in
terms of G. This technique permits the application of the correct boundary conditions
for the radiation problem and a solution valid for the whole spatial domain.

2.2.1 Hamiltonian formulation of GR

The main motivation behind a Hamiltonian formalism is, apart from being a pow-
erful mathematical tool to explore the applications of a mathematical theory, that
Hamiltonians are generators of the time evolution of all quantities in a physical the-
ory. In the case of isolated systems the total Hamiltonian is conserved in time. A
typical feature of Hamiltonian formalisms is the splitting between time and spatial co-
ordinates in the so called, (3+1)-decomposition of spacetime, which we revisit in 2.2.2.

The Hamiltonian formalism of GR was originally developed by Arnowitt, Deser and
Misner (ADM) [17, 18, 19] in the sixties. In this formalism the Hamiltonian, called
nowadays ADM Hamiltonian, is written as volume integral of the divergence of a vec-
tor over a three dimensional space-like hypersurface. In the two thousands, the ADM
formalism in GR has been used by Jaranowski, Schäfer, Steinhoff and collaborators
[12] to push forward post-Newtonian theory and extend it to account for matter defor-
mation [20, 21] and classical spin effects [22, 23]. We note also that other Hamiltonian
formalisms of GR developed by Dirac [24, 25] and Schwinger [26, 27] exist, although
the most commonly used one for applications describing gravitating objects is the
ADM formalism. We remark also that the Hamiltonian framework has motivated also
other approaches like the effective one body (EOB) formalism [28, 29, 30].

One of the most relevant applications of the ADM formalism is the analytical treat-
ment of the problem of motion of gravitating compact bodies. Within the ADM
formalism one can compute Hamiltonians to describe the motion of post-Newtonian
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sources. The current knowledge of ADM Hamiltonians at different PN orders is as
follows:

• For non-spinning point particles the Hamiltonian is known up to 4PN order
[31, 32, 33].

• Spin-orbit Hamiltonians have been computed up to 3.5PN order [31, 34, 35].

• Spin-spin Hamiltonians are known up to 4PN order [36, 37, 38].

2.2.2 3+1 decomposition of spacetime

We derive the ADM equations by separating the spacetime into spatial and time co-
ordinates, which it is also commonly done to study formulations of the Einstein equa-
tions in numerical relativity. Assuming a globally hyperbolic spacetime, a spacetime
which preserves causality, we can foliate it into non-intersecting spacelike hypersur-
faces (Cauchy surfaces),

∑
t, parametrized by a global time function t. We define

a future-directed timelike four vector n normal to the hypersurfaces
∑

t, satisfying
na ∝ ∇at and nana = −1. Then, the spacetime metric gab induces a spatial metric
γab on the spatial hypersurfaces given by

γab = gab + nanb. (2.9)

It is straightforward to show that naγab = 0, which means that γab is a projection
tensor which maps spacetime tensors onto spatial hypersurfaces. If we now take a
timelike vector ta of the spacetime tangent to the time axis, i.e. ta = (∂/∂t)a and
ta∇at = 1, then, as shown in Fig. 2.2, ta is not always normal to spatial hypersurfaces
and it can be decomposed into timelike and spacelike components as

α = −tana, βa = tbγab , (2.10)

where α is the lapse function, which measures the proper time elapsed between neigh-
bouring time slices along the normal unit vector, and βa is the shift vector, which
describes the change of coordinates from one slice to another with respect to the nor-
mal vector. Both α and βa are related to the degrees of freedom in the choice of
coordinates. The components of na and the spatial metric can be written in terms of
the lapse and the shift as

na =
(
α−1,−βiα−1

)
, na = (−α, 0, 0, 0), (2.11)

with βi = γijβ
j and βa = (0, βi). Using the above relations one obtains the following

expression for the four dimensional spacetime metric,

gab =

(
−α2 + βmβ

m βi
βj γij

)
, (2.12)

or equivalently, the line element can be written as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (2.13)

which is sometimes referred as the 3 + 1 form of the metric. Eq. (2.13) may be
interpreted as the invariant interval, a generalization of the Euclidean concept of
distance for a 4-dimensional spacetime, between the two points xi(t) and xi(t+ dt) of
Fig. 2.2.
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Figure 2.2: Representation of the 3+1 decomposition of the space-
time in spatial slices of constant time coordinate

∑
t and

∑
t+dt. The

four vector t represents the direction of evolution of the coordinate
time t, this can be decomposed into a timelike component αn and
spacelike component β. n is a timelike unit vector normal to the
hypersurface and α is called the lapse representing the proper time
elapsed from one hypersurface to the next one, while β is the shift
vector which describes the change of the spatial coordinates between

both hypersurfaces. Graphic taken from [39].

The extrinsic curvature or second fundamental form describes the rate of change
between two nearby normal vectors, na and na + δna in the spacelike hypersurface,
thus, it is calculated projecting the derivative of the normal vector onto the spacelike
hypersurfaces

∑
t,

Kab = −γca∇cnb = −1

2
Lnγab, (2.14)

where Ln indicates the Lie derivative with respect to na.
With the notation and the definitions introduced in this section one can obtain the

standard 3+1 equations, which we list below. This formalism uses different projection
operators to decompose the Einstein equations into constraint and evolution equations.
We refer the reader to [40, 41, 42, 43] for details in the derivation of these expressions.
In the case of Einstein equations one has four constraint equations. The Hamiltonian
constraint,

H ≡ R+K2 −KijK
ij − 16πρ = 0, (2.15)

where K = γabKab is the trace of the extrinsic curvature Kab and ρ = nanbT
ab is the

total energy density measured by a normal observer na.
The remaining three constraint equations are the so-called momentum constraint

equations,
Mi ≡ Dj(K

j
i −Kδ

i
j)− 8πSi = 0, (2.16)

where Dj is the 3-dimensional covariant derivative compatible with the spatial metric,
i.e. Daγbc = 0, and Sa = −γbancTbc is the momentum density measured by a normal
observer. These constraint equations involve only the spatial metric, extrinsic curva-
ture and their spatial derivatives and not time derivatives, hence, these are a set of



26 Chapter 2. Solutions to the two-body problem in general relativity

equations which have to be satisfied on each hypersurface.
The evolution equations for the spatial metric,

∂tγij = −2αKij +Diβj +Djβi, (2.17)

and the extrinsic curvature,

∂tKij =−DiDjα+ α(Rij − 2KikK
k
j +KKij)− 8πα(Sij −

1

2
γij(S − ρ))

+ βkDkKij +KikDjβ
k +KkjDiβ

k,
(2.18)

where Rab is the Ricci tensor, Sab = γcaγ
d
bTcd is the spatial stress energy tensor and

S = Saa its trace. Equations (2.17) and (2.18) are a coupled system of differential
equations for the evolution of (γab,Kab), which together with the constraint equations
(2.15) and (2.16) are equivalent to the Einstein equations (1.1). In the 3 + 1 decom-
position the Einstein equations have been recast in the form of a constrained initial
value problem, from a system of coupled equations of second order in time in their
original form to first order time in the new formulation. Note also that as in the case
of electrodynamics, the evolution equations for the spatial metric and the extrinsic
curvature preserve the constraint equations, thus, if the constraints are satisfied at a
given time t they will also be satisfied at all later times.

The above geometrical description of the (3 + 1)-splitting of spacetime is the one
commonly explained in introductory textbooks of numerical relativity [42, 43]. The
above description is totally equivalent to the classical field approach typically used to
analytically compute Hamiltonians at different PN orders. Starting from (2.13) and
considering only asymptotically flat spacetimes it can be shown that the Hamiltonian
generating the Einstein field equations is [44, 45]

H
[
γij , π

ij , α, βi; qA, πA
]

=

∫
d3x(αH+βiMi)+

c4

16πG

∮
i0
dSi∂j(γij−δijγkk), (2.19)

where πij is related to the ADM canonical momentum by c3πij/(16πG) with

πij = −γ1/2(Kij −Kγij). (2.20)

Furthermore, (qA, πA) represent the canonical matter variables appearing in the mat-
ter part of the Hamiltonian density, H, and momentum density,Mi, defined as

H =
c4

16πG

[
−γ1/2R+

1

γ1/2

(
γikγjlπ

ijπkl − 1

2
π2

)]
+Hm, (2.21a)

Mi =
c3

8πG
γij∇kπjk +Mm,i, (2.21b)

where Hm ≡ ρ and Mm,i ≡ Si introduced in Eqs. (2.15) and (2.16), respectively.
Then, varying Eq. (2.19) with respect to the lapse and shift one reproduces the
constraint equations (2.15) and (2.16),

H = 0, Mi = 0. (2.22)
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Adopting the following coordinate conditions, also called ADMTT coordinates or
ADMTT gauge,

πii = 0, ∂jγij − ∂iγjj = 0 or γij = ψδij + hTTij , (2.23)

where ψ is a field function and hTTij denotes the transverse and traceless part. Taking
these gauge conditions, four coordinate conditions, and the four constraint equations
one obtains the Hamiltonian of Eq. (2.19) in a reduced form

Hred

[
hTTij , π

ij
TT ; qA, πA

]
=

c4

16πG

∮
i0
dSi∂j(γij − δijγkk)

=
c4

16πG

∫
d3x∂i∂j(γij − δijγkk).

(2.24)

The reduced Hamiltonian of Eq. (2.24) generates the field equations for the two
unfixed degrees of freedom (10 metric coefficients - 4 constraint equations - 4 gauge
conditions ) corresponding to two metric degrees of freedom which correspond to the
gravitational radiation.

2.2.3 Post-Newtonian description of quasicircular binaries

In the case of BBHs the Hamiltonian for point particles has been analytically calcu-
lated to different PN orders depending on the inclusion of spin effects as indicated in
Sec. 2.2.1. The total PN Hamiltonian can be used then to compute the Hamilton
equations of a spinning point particle in the center of mass frame described by the
canonical coordinates (xi, pi, S

i),

ṗi = −∂H
∂xi

, ẋi =
∂H

∂pi
Ṡi = gimεmjk

∂H

∂Sj
Sk. (2.25)

One ingredient of the description of a BBH is the calculation of the equations of mo-
tion in the near region. The other ingredient is the waveform computed at null infinity.
As explained in Sec. 2.2 there are two main approaches to tackle the calculation of
the waveform, the Blanchet-Damour approach, consisting in a multipolar expansion
of the gravitational field, and the direct integration of the relaxed Einstein equations.
We directly present the results of the calculation of the PN waveforms and refer the
reader to [10, 46, 13, 14, 15] for details of the calculations.

We focus on quasicircular BBHs characterized by a quasi-adiabatic evolution where
the black holes approach each other with increasing velocity, which implies that the
PN approximation is less and less valid. Several criteria exists to determine the end of
the inspiral regime, i.e., the breakdown of the PN expansion. One is the usage of the
Innermost Stable Circular Orbit (ISCO) [47], another is the Minimum Energy Circu-
lar Orbit (MECO) [6]. We remark that although the ISCO and MECO separations
mark the end of the inspiral, the accuracy of the PN approximation tends to degrade
much earlier due to the lack of knowledge of higher PN order terms which make the
PN waveforms faithfully reproduce numerical relativity waveforms [48, 49].

One of the applications of the PN approach is the calculation of the evolution of
the orbital phase φ(t) of a compact binary (we focus here on BBHs) as an expansion
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in a small parameter, x, where

x = v2 = (Mω)2/3, ω =
dφ

dt
, (2.26)

and v is the characteristic speed of the binary, ω the orbital frequency and M is the
total mass of the system. In the adiabatic approximation one can work with orbit
averaged quantities. From the energy conservation condition one obtains,〈

dEorb
dt

〉
= −〈F〉, (2.27)

where Eorb is the orbital energy and F is the gravitational wave energy flux. Com-
bining Eqs. (2.26) and (2.27) one obtains the following system of equations for the
orbital phase

dv

dt
= − F

dEorb/dv
, (2.28a)

dφ

dt
=
v3

M
. (2.28b)

Equivalently, Eqs. (2.28a) and (2.28b) can be expressed as

t(v) = tref +M

∫ vref

v
dv
E′(v)

F(v)
, (2.29a)

φ(v) = φref +

∫ vref

v
dvv3E

′(v)

F(v)
, (2.29b)

where E′(v) ≡ dEorb/dv. Using the 3PN conserved energy [10], E3PN , and the 3.5PN
energy flux, F3.5(v), as an expansion of the small parameter v [50]

E3PN (v) = − 1

2
ηv2

[
1−

(
3

4
+

1

12
η

)
v2 −

(
27

8
− 19

8
η +

1

24
η2

)
v4

−
{

675

64
−
(

34445

576
− 205

96
π2

)
η +

155

96
η2 +

35

5184
η3

}
v6

]
,

(2.30)

F3.5PN (v) = +
32

5
η2v10

[
1−

(
1247

336
+

35

12
η

)
v2 + 4πv3 −

(
44711

9072
− 9271

504
η − 65

18
η2

)
v4

−
(

8191

672
+

583

24
η

)
πv5 +

{
6643739519

69854400
+

16

3
π2 − 1712

105
γ

+

(
41

48
π2 − 134543

7776

)
η − 94403

3024
η2 − 775

324
η3 − 856

105
log
(
16v2

)}
v6

−
(

16285

504
− 214745

1728
η − 193385

3024
η2

)
πv7

]
, (2.31)

different PN approximants have been developed depending on the treatment of the
ratio F(v)/E′(v) [50, 51, 52], although all of them equivalent to the same PN order.

The previous equations for the orbital energy and the energy flux are restricted to
non-spinning systems. However, generic BBHs can have arbitrarily oriented spins.
The description of spinning systems is typically separated into systems with the spin
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vectors (anti)parallel to the orbital angular momentum of the system, called non-
precessing, and systems with spins misaligned with the orbital angular momentum,
called precessing. For the latter relativistic interactions between the orbital and spin
angular momenta induce precessing motion of the spin vectors and the orbital plane
[53, 54]. Precession introduces complex phase and amplitude modulations to the GW
waveforms complicating substantially their description and modelling. We discuss
further precession in Chapter 6, where we present results on the analysis of several
approximations used to describe quasi-circular precessing waveforms.

TaylorT1

The TaylorT1 approximant is obtained by taking directly the PN expansions for F(v)
and E′(v) as in Eqs. (2.28a) and (2.28b). Thus, the expressions are left as a ratio of
polynomials and the differential equations are solved numerically.

dv(T1)

dt
= − F

dEorb/dv(T1) , (2.32a)

dφ(T1)

dt
=

(
v(T1))3
M

. (2.32b)

The initial conditions are typically chosen such that at v(t = 0) = v0 and the initial
phase set initially to 0 or π/2, when taking into account only the (2,±2) modes in
order to have two orthogonal templates [50].

TaylorT2

The TaylorT2 approximant is calculated taking Eqs. (2.29a) and (2.29b), expanding
the ratio E′(v)/F(v) to a consistent PN order and integrating term by term. As a
result one obtains a pair of equations of the form [55]

φ(T2)
n (v) = φ

(T2)
ref +

n∑
k=0

φ̂vkv
k, (2.33a)

t(T2)
n (v) = t

(T2)
ref +

n∑
k=0

t̂vkv
k, (2.33b)

where n indicates the post-Newtonian order. We note that TaylorT2 is a computation-
ally expensive approximant as it requires solving a couple of trascendental equations.
The initial conditions for tref are usually chosen such that at t = 0, v = v0.

TaylorT3

This approximant is based upon TaylorT2, which provides analytical expressions for
φ(T2)(v) and t(T2)(v) as polynomials of v [55]. The TaylorT3 approximant consists
then in inverting the series φ(v) and t(v) to obtain v(t) and φ(t),

φ(T3)
n (t) = φ

(T3)
ref +

n∑
k=0

φ̂tkθ
k, (2.34a)

ω(T3)
n (t) =

n∑
k=0

ω̂tkθ
k, (2.34b)
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where θ = [η(tref − t)/(5M)]−1/8 and n indicates the post-Newtonian order. For this
case we have computed the 3.5PN expressions for ω(T3) and φ(T3) including non-
precessing spin effects,
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4161798144
+

107 log(θ)

280
+

53π2

200

+
107γ

280
− 720817631400877

288412611379200
+

107 log(2)

280

)
+

θ7

1300561920

(
−7938

(
8876η2 +

(
71931

√
1− 4η − 206917

)
η

− 67493
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1− 4η − 1
))

χ3
1 + 7938

(
−8876η2

+
(

71931
√

1− 4η + 206917
)
η − 67493

(√
1− 4η + 1

))
χ3
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+ 3π
(
47634384η2 − 164245200η − 188516689

)
− χ1

(
169753248η3

+ 84
(

870576
√

1− 4η + 840149
)
η2 − 7938 (5372η

− 192709
(√

1− 4η + 1
))

ηχ2
2 − 1796909184πηχ2

− 7
(

429508815
√

1− 4η − 1496368361
)
η + 6579635551

(√
1− 4η − 1

))
+
(
−169753248η3 + 84

(
870576

√
1− 4η − 840149

)
η2

− 7
(

429508815
√

1− 4η + 1496368361
)
η + 6579635551

(√
1− 4η

+ 1))χ2 − 7938χ2
1

((
−192709

(√
1− 4η − 1

)
− 5372η) ηχ2 + 58608π

(
2η +

√
1− 4η − 1

))
+ 465230304π

(
−2η +

√
1− 4η + 1

)
χ2

2

)]
, (2.35b)

where χi = ~Si · L̂/m2
i , i = 1, 2; ~Si indicates the spin vector and L̂ = ~L/|~L| is a

unit vector in the direction of the orbital angular momentum of the system. For
this approximant as t → tref, then ω diverges. Additionally, given an initial orbital
frequency ω0 at t = 0, one has to solve numerically Eq. (2.35b) to find tref.

TaylorT4

The TaylorT4 approximant [55] is an extension of TaylorT1 resulting from expanding
the ratio F(v)/E′(v) to a consistent PN order. The equations to solve for a non-
spinning binary at 3.5PN order are

dv

dt
=

32

5

η

M
v9

[
1−

(
743

336
+

11

4
η

)
v2 + 4πv3 +

(
34103

18144
+

13661

2016
η +

59

18
η2

)
v4

−
(

4159

672
+

189

8
η

)
πv5 +

(
16447322263

139708800
+

16

3
π2 − 1712

105
γ

+

(
451

48
π2 − 56198689

217728

)
η +

541

896
η2 − 5605

2592
η3 − 856

105
log(16v2)

)
v6

−
(

4415

4032
− 358675

6048
η − 91495

1512
η2

)
πv7

]
, (2.36a)

dφ(T4)

dt
=
v3

M
, (2.36b)

where γ = 0.57721 is the Euler constant. This PN template agrees better with
numerical simulations of the inspiral than TaylorT1 [55]. We note also that while
TaylorT1 can have a pole in the right hand side of the equation for dv/dt, that is not
possible when taking (2.36a). The setup of initial conditions for this approximant is
the same as with TaylorT1.

TaylorF2

This approximant is the analogue of the TaylorT2 approximant in Fourier domain.
It is calculated using the stationary phase approximation (SPA), which assumes that
the amplitude is a slowly-varying function with respect to the orbital phase. Using
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the SPA the frequency domain waveform can be expressed as [55]

h̃SPA(f) =
a(tf )√
φ̈(tf

ei[ψf (tf )−π/4], ψf (t) ≡ 2πft− 2φ(t), (2.37)

where tf is defined such that dψf (t)/dt = 0 and a(tf ) is an amplitude coefficient.
Within the adiabatic approximation tf and ψf (t) can be computed from the following
equations

dψ

df
− 2πt = 0,

dt

df
+
πM2

3v2

E′(f)

F(f)
= 0, (2.38)

which characterize the TaylorF1 approximant. Truncating the energy and flux func-
tions in Eq. (2.38) to consistent PN order and integrating each term, one obtains the
phase and amplitude of the Fourier domain waveform [55, 49]. For this approximant
the constants tc and φc are chosen freely.

2.2.4 Post-Newtonian description of eccentric binaries

In this section we briefly present the PN description of eccentric BBHs. A binary
evolving in an elliptical orbit requires two additional parameters, apart from the eight
parameters determining the quasicircular case, to unequivocally determine its orbit,
eccentricity, e, and the relative position of its components in the orbit, periapsis ar-
gument, Ω. Apart from the orbital, radiation reaction and spin-precession2 timescales
of the gravitational two-body problem, eccentricity introduces a new timescale due to
periastron precession. Neglecting spin-precession, the hierarchy of timescales in the
binary problem is

Torb � Tprec � TRR. (2.39)

This new timescale induces oscillations in the dynamical quantities and the waveform
due to the asymmetric gravitational interaction along the elliptical orbit. In Fig. 2.3
we exhibit the separation and the orbital frequency of a mass ratio 2 non-spinning
PN configuration for initial eccentricities 10−4 and 0.2. The PN evolution code and
the initial eccentricities are specified using the method of [56]. The PN evolution is
stopped at separation 4M as can be observed in the top panel of Fig. 2.3.

As displayed in Fig. 2.3, the description of eccentric binary black holes (eBBHs)
complicates substantially with respect to the quasicircular (QC) case, due to the
introduction of oscillations caused by eccentricity. Next, we highlight the current
state-of-art of commonly used analytical descriptions for eBBHs.

Quasi-Keplerian parametrization

The quasi-Keplerian (QK) parametrization [57, 58] is typically used to describe non-
spinning eccentric binaries. This parametrization describes the conservative dynam-
ics and it also incorporates effects of radiation reaction [59, 60] describing the three
timescales of Eq. (2.39). Furthermore, the secular evolution of the orbital elements
has been calculated to 3PN order [61, 62, 63]. These theoretical results have been
used to develop a pletora of waveform models [64, 65, 66, 67, 68] in the last years.

At 3PN order, the conservative dynamics is specified by the following equations,

r = ar (1− er cosu) , (2.40a)

2Only when spins are misaligned with the orbital angular momentum of the system.
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Figure 2.3: Top panel: Time domain evolution of the orbital separa-
tion of a mass ratio 2 non-spinning binary. The blue (red) line corre-
sponds to a configuration with initial eccentricity e0 = 10−4 (e0 = 0.2).
Bottom panel: Time domain evolution of the orbital frequency of a
mass ratio 2 non-spinning binary. The blue (red) line corresponds to

a configuration with initial eccentricity e0 = 10−4 (e0 = 0.2).

φ− φ0 = (1 + k)v + (f4φ + f6φ) sin(2v) + (g4φ + g6φ) sin(3v)

+ i6φ sin(4v) + h6φ sin(5v) , (2.40b)

v = 2 arctan

[(
1 + eφ
1− eφ

)1/2

tan
u

2

]
. (2.40c)

We note that in Eqs. (2.40a), (2.40b) and (2.40c) two different eccentricity parameters
appear, the radial and angular eccentricities, er and eφ, respectively, such that the
expressions for r and φ take a similar form as in the Keplerian case. The parameter k
is the periastron advance per orbital period, ar is the semi-major axis, f4φ, f6φ, g4φ,
g6φ, i6φ, and h6φ are functions of the orbital energy and angular momentum [58].

The variable u is the eccentric anomaly related to the mean anomaly l through
the 3PN Kepler equation

l = u− et sinu+ (g4t + g6t) (v − u)

+ (f4t + f6t) sin v + i6t sin(2v) + h6t sin(3v) , (2.41)

where et is the time eccentricity, another eccentricity parameter, and g4t, g6t, f4t, f6t,
i6t, and h6t are functions of the energy and angular momentum of the system [58]. We
remark that the three eccentricity parameters are not independent, and there exist
explicit relations among all of them [58] at consistent PN order, hence, in practice one
chooses to express the equations in terms of the time eccentricity parameter e ≡ et
and the PN parameter x = (GMω/c3)2/3.



2.2. Post-Newtonian theory 35

In order to solve the Kepler equation (2.41) several methods exist [69, 70, 71]. The
analytical procedure of [71] yields

u = l +
∞∑
s=1

As sin(sl) , (2.42a)

As =
2

s
Js(set) +

∞∑
j=1

αj {Js+j(set)− Js−j(set)} , (2.42b)

where Js are Bessel functions of the first kind of order s and αj are PN functions of
the energy and angular momentum [71].

The prescription presented so far, concerns only the conservative dynamics. Ra-
diation reaction effects are typically introduced through the conservation of the grav-
itational wave energy and angular flux, and provide two differential equations for the
secular evolutions of x and e [72]

Mẋ = x5
(
ẋ0PN + ẋ1PNx+ ẋ1.5PNx

3/2 + ẋ2PNx
2 + ẋ2.5PNx

5/2 + ẋ3PNx
6
)
, (2.43a)

Mė = x4
(
ė0PN + ė1PNx+ ė1.5PNx

3/2 + ė2PNx
2 + ė2.5PNx

5/2 + ė3PNx
6
)
, (2.43b)

where the different coefficients in (2.43a) and (2.43b) can be found in [72, 73].
Regarding the waveform, very recently [74, 75] have completed the 3PN description

of an eccentric inspiral including the hereditary, post-adiabatic and memory contri-
butions to the waveform for moderate eccentricities.

In order to obtain eccentric waveforms using the QK parametrization one has to
solve Eqs. (2.43a) and (2.43b) providing initial conditions for x and e, replace those
solutions into the conservative equations of motion by solving the Kepler equation and,
then, compute the waveform. The main advantage of this approach is the simplicity
to provide eccentric waveforms, while the main drawbacks are that its extension to
eccentric spinning binaries is challenging and makes the method much more computa-
tionally inefficient, although there has been recently promising work on extending to
this parametrization to the spinning case [68]. Finally, we note that we have neglected
the introduction of memory and post-adiabatic contributions to ease the discussion.
The reader may see [74, 75] for further details.

Effective-One-Body formalism

Eccentric EOB models [76, 77, 78, 79] are IMR waveform models currently describ-
ing moderately eccentric systems up to eccentricity e ∼ 0.3. These eccentric models
rely on a quasicircular description of the merger-ringdown part provided by quasi-
circular EOB models [80, 81, 82] fitted to quasicircular NR simulations and different
approaches to model the eccentric inspiral.

We remark here that the EOB framework is a Hamiltonian formalism, which does
not parametrize the orbits as the quasi-Keplerian parametrization, and relies on three
independent pieces:

1) A Hamiltonian describing the conservative part of the dynamics.

2) The radiation reaction forces describing the loss of energy and angular momen-
tum of the system through gravitational radiation.

3) Analytical expressions to compute the waveform from the dynamics.
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Eccentric EOB models require the modification of steps 2 and 3 to incorporate the
radial component of the radiation reaction force, which is set to 0 in the quasicircular
case, and the prescription to compute the non-quasicircular terms of the waveform in
order to properly describe eccentric binaries [79].

Finally, we note that in the EOB framework do not appear several definitions of
eccentricity as in the QK case, although eccentricity remains as a gauge dependent
quantity, and the eccentricity is read from the orbital or wave quantities using some
fitting procedure [56, 83]. Furthermore, the extension of the EOB models to incor-
porate spin effects seems to be more straightforward than in the QK case due to
flexibility and modularity of the framework [79].

2.3 Numerical Relativity

We briefly introduce in this section some basic concepts of numerical relativity in-
tended to ease the understanding of the numerical simulations performed during this
thesis. Starting from the 3+1-decomposition explained in Sec. 2.2.2 we present the
moving punctures method [84, 85], with brief descriptions of the initial data, the
evolution part based on the Baumgarte-Shibata-Shapiro-Nakamura-Oohara-Kojima
(BSSNOK) formulation [86, 87] of the ADM equations and the possible gauge choices.

The moving punctures method is the basis of most finite difference NR codes, in
particular of the ones used to produce simulations of BBH mergers during this thesis,
the ET [88, 89] and BAM [90]. For further details on other methods and formulations
we refer the reader to [40, 41, 43, 42] for introductory explanations.

2.3.1 Moving punctures method

The puncture method [91, 92, 93] was initially developed as a procedure for the con-
struction of black hole initial data. The puncture method descomposes the metric
as a sum or product of one term which contains the singularity, but it can be com-
puted analytically, and a correction term which is regular, but it has to be calculated
numerically.

Soon after the method was extended to perform ‘fixed’ puncture evolutions [94, 95]
in which the gauge was chosen such that the punctures were not allowed to move
across the grid. However, these methods did not succeed in producing long-term
stable evolutions. Then, in 2005 [84, 85] introduced modifications to the puncture
method allowing the evolution of a singular conformal factor, were the location of
the puncture is also allowed to move across the grid. Subsequent work [96] clarified
geometrical aspects and regularity of the moving puncture formalism. Therefore, these
approaches became very successful in producing long-term stable evolutions and they
have become standard methods for the evolution of BBH mergers with finite difference
codes.

Initial Data

The binary black-hole initial data are typically modelled adopting the Brill-Lindquist
wormhole topology [97] with 3 asymptotically flat ends, each Einstein-Rosen bridge
connects to its own asymptotically flat region, and the presence of two throats. Each
asymptotically flat end is then compactified and identified with points ri on R3. The
points ri, known as punctures, are coordinates singularities due to the compactifica-
tion.
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The construction of initial data for any NR code consists in the specification of
the spatial metric and extrinsic curvature (γij ,Kij) on an initial spatial hypersur-
face Σt defined by a timelike unit normal vector ni as in Fig. 2.2. Following the
York-Lichnerowicz conformal decomposition [98, 99, 100] one introduces a conformal
transformation of the metric,

γij = ψ4γ̄ij , (2.44a)

Kij = ψ−2Āij +
1

3
γijK, (2.44b)

where ψ is a positive defined function called the conformal factor, and we have ad-
ditionally decomposed the extrinsic curvature into its trace K and its trace-free part
Āij = ψ2Kij . Choosing a conformally flat spatial metric γij = δij and a maximal slic-
ing condition, K = 0, the extrinsic curvature can be solved analytically as [101, 102]

Kij = ψ−2

{
3

2r2

[
niPj + njPi + nkP

k(ninj − δij)
]
− 3

r3
(εilknj + εjlkni)n

lSk

}
,

(2.45)
where εijk is the Levi-Civita symbol and P i and Si can be identified with the ADM
linear momentum and spin associated with the punctures. Eq. (2.45) is known as
Bowen-York solutions [101, 102].

Once calculated Kij one has to calculate the solution for the conformal factor
ψ. This is done applying the conformal transformation (2.44a) to the Hamiltonian
constraint (2.15), which can then be written as

8D̄2ψ − R̄ψ + ψ5
(
KijK

ij −K2
)

= 0, (2.46)

where R̄ and D̄2 are the Ricci tensor and the Laplace operator of the spatial metric
γij . Assuming a moment of time symmetry in the initial slide, i.e., all time deriva-
tives of γij are zero and the 4-dimensional line interval has to be invariant under the
transformation t → −t. The latter condition implies that βi = 0, which according
to Eq. (2.17) imposes Kij = K = 0. With this simplifications the equation for the
conformal factor is D̄2ψ = 0, which admits solutions given by the superposition of
punctures [97]

ψ = 1 +

N∑
i=1

mi

2|~r − ~ri|
= 1 + ψBL, (2.47)

where mi parametrize the mass of each black hole, |~r − ~ri| is the coordinate distance
between punctures and for BBHs, N = 2, Eq. (2.47) is known as Brill-Linquist initial
data. In the general case, the Brill-Lindquist solution also takes into account source
terms which modify the above prescription to [92]

ψ = u+ ψBL. (2.48)

Assuming γ̄ij = δij and K = 0, the Hamiltonian constraint then takes the form of an
elliptic equation for u,

D̄2u+
1

8ψ7
BL

ĀijĀ
ij = 0. (2.49)

This is the so-called puncture method. We remark that the Brill-Linquist initial data
evolves towards a Kerr solution. However, a Kerr spacetime cannot be represented
by Bowen-York initial data [103]. This situation leads to an initial spacetime with
a residual gravitational energy content, which is radiated away at the initial stages
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of the evolution, and it constitutes the so-called junk radiation. This outburst of
unphysical gravitational radiation is a consequence of the choice of conformally flat
initial data and restricts the initial values of mass and spins to 0.812 & M ≤ 1 and
χ . 0.93 [104, 103, 105].

The definition of the initial data is completed specifying initial values for the gauge
quantities, the lapse function α and the shift vector βi. Here, the typical criteria is the
use of conditions such that they simplify the solution of initial data and the subsequent
evolution. For instance, in the case of the BAM code,

α = ψ−2, βi = 0, (2.50)

where the pre-collapsed lapse suggested in [84, 106] is used because it reduces initial
gauge dynamics.

Evolution system: BSSNOK formulation

The ADM equations in the form presented in Sec. 2.2.2 are only weakly hyperbolic
when used to set up a free evolution problem, thus, they do not have a well-posed
initial value problem. As a consequence, other formulations are necessary to evolve the
initial data. One commonly used in finite difference codes is the BSSNOK system [86,
87]. Here we briefly review the BSSNOK formulation. We start with the conformal
decomposition of the metric,

γ̃ij = ψ−4γij , (2.51)

which is the same as Eq. (2.44a), but using the tilde for the conformally transformed
variables to differentiate them from the ones used for the construction of the initial
data. The conformal metric is chosen to have unit determinant, γ̃ = 1, during the
whole evolution, which translates into the following relation between the conformal
factor and the spatial metric,

ψ = γ1/2. (2.52)

The extrinsic curvature is decomposed as in Eq. (2.44b) into its trace and tracefree
parts,

Aij = Kij −
1

3
γijK, Ãij = ψ−4Aij . (2.53)

At this point it is important to remark that the pure conformal formulation is still not
suitable for numerical relativity, (see Section 2.3.2 of [43]). The key element to achieve
strong hyperbolicity for the BSSNOK formulation is the introduction of a conformal
connection function defined by

Γ̃i = γ̃jkΓ̃ijk = −∂j γ̃ij , (2.54)

with Γ̃ijk being the Christoffel symbols of the conformal metric. This new variable
with its own evolution equation, Eq. (2.54), can be interpreted as a new algebraic
constraint, and it additionally removes mixed second derivatives in the evolution equa-
tions which are inappropriate for numerical evolutions. In terms of these new variables
the ADM Eqs. (2.17) and (2.18) can be expressed as,

∂0γ̃ij = −2αÃij , (2.55a)

∂0φ =
1

6
αK, (2.55b)

∂0Ãij = e−4φ(αRij −DiDjα)TF + α(KÃij − 2Ãmi Ãmj), (2.55c)
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∂tK = −DiDiα+ α

(
ÃmnÃmn +

1

3
K2

)
, (2.55d)

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γij∂j∂kβ

k + βj∂jΓ̃
i∂jβ

j − 2
(
α∂jÃ

ij + Ãij∂jα
)
, (2.55e)

(2.55f)

where ∂0 = ∂t −L~β with L~β being the Lie derivative with respect to the shift vector,
Di is the covariant derivative associated to the spatial metric γij , TF denotes the
trace free part of the expression. In the above formulation we have chosen the φ
method [90] for the conformal factor, i.e., φ = lnψ = 1/12 log γ. The number of
independent variables in the ADM equations, Eqs. (2.15) to (2.18) is 12, while in Eqs.
(2.55a) to (2.55e) is 17: φ, K, γ̃ij , Ãij and Γ̃i. With the conditions Tr(Ãij) = 0 and
γ̃ = 1 this gets reduced to 15.

Applying the same conformal transformations to the constraint equations, Eqs.
(2.15) and (2.16), and replacing the momentum constraint in the evolution equations
one obtains the following two equations,

∂jÃ
ij = Γ̃ijkÃ

jk − 6Ãij∂jφ+
2

3
γ̃ij∂jK, (2.56a)

∂tΓ̃
i = βm∂mΓ̃i − Γ̃m∂mβ

i +
2

3
Γ̃i∂mβ

m + 2αΓ̃imnÃ
mn +

1

3
γ̃im∂m∂nβ

n

+ γ̃mn∂m∂nβ
i − 4

3
αγ̃im∂mK + 2Ãim (6α∂mφ− ∂mα) . (2.56b)

Equations (2.56a) and (2.56b) complete the system of equations and make it well
posed. However, the system of Eqs. (2.55a) to (2.56b) is still missing a crucial part
provided by the specifications of the slicing conditions for α and βi which are discussed
in the following section.

Gauge choices

One crucial part of the moving punctures method is the choice of the gauge conditions.
Current simulations with BAM and ET [56, 83, 107] in our group use the covariant
form of the ‘1 + log’ slicing [108] for the lapse function

(∂t − βi∂i)α = −2αK. (2.57)

We note that the shift advection term in Eq. (2.57) avoids the appearance of zero
speed modes in the BSSNOK system [109, 110], which is the case when this term is
dropped from Eq. (2.57) and it was the typical choice in the fixed puncture approach.

We use the Gamma-freezing condition [111] for the evolution of the shift vector

∂0
3

4
Bi, ∂0B

i = ∂0Γ̃i − ηBi, (2.58)

where ∂0 = ∂t − βi∂i, Bi is an auxiliary vector field which reduces perturbations in
the constraints at the positions of the punctures [41], and η is a parameter typically
on the order of 1/(2M), with M being the total mass of the system. Variants of the
Gamma-freezing condition [85, 112, 109] modify some or all the ∂0 derivatives with
∂t, providing also successful numerical evolutions [112, 110].

We conclude this chapter emphasizing that the ADM evolution equations in the
form presented in Sec. 2.2.2 are ill posed when set up as a free evolution problem
because they are not strongly hyperbolic. Thus, new formulations are required to
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numerically evolve the spacetimes. We have focused on the BSSNOK formulation,
although other successful variants exist like a constrained formulation [113, 114] or
the Z4-formulations [115, 116, 117, 118]. We finally remark that the dynamical gauge
conditions, Eqs. (2.57) and (2.58), although mathematically motivated, could have
not been found without a lot of effort in numerical experiments, which are essential
for numerical relativity advances.
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Chapter 3

Analysis of gravitational wave data
from compact binaries

The extraction and analysis of the gravitational wave signals hidden in the noise
dominated strain of ground-based detectors, like Advanced LIGO [1] and Advanced
Virgo [2] is a challenging task, which requires the application of optimized statistical
methods in order to obtain the maximum amount of information possible. We provide
in this chapter a brief introduction to detection techniques and parameter estimation
of gravitational wave signals from compact binary coalescences. We refer the reader
to [3, 4, 5] for more detailed explanations and derivations of the expressions presented
in this chapter.

3.1 Description of detector noise as a random process

A random or stochastic process is a sequence of random variables x(t), t ∈ T , where
T is a subset of real numbers, T ⊂ R, defined on the same probability space. Instru-
mental noise is an example of a random process representing detector’s time series
x(t). Introducing the probability density function px for the value of x at some time
t, the expectation value of x is calculated as an ensemble average

〈x〉 =

∫
xpx(x)dx. (3.1)

In the case of a stationary random process, for which its statistical properties do not
vary with time, the expectation value is equivalent to a long time average,

〈x〉 = lim
T→∞

1

T

∫ T/2

−T/2
x(t)dt. (3.2)

For a stationary process the autocorrelation function only depends on some time shift
τ ,

Rx(τ) = 〈x(t)x(t+ τ)〉. (3.3)

In the case of the gravitational wave detector noise one deals with a Gaussian random
process, which is a special class of stationary random process characterized by Gaus-
sian random variables and its power spectral density (PSD). The general definition
of a (double-sided) power spectral density is in terms of the Fourier transform of the
autocorrelation function

Sx(f) = 2

∫ +∞

−∞
Rx(τ)e−2πifτdτ. (3.4)
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Assuming uncorrelated stationary noise with zero mean 〈x〉 = 0, the power spectral
density can also be expressed as

Sx(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ T/2

−T/2
x(t)e−2πiftdt

∣∣∣∣∣
2

, (3.5)

where we have assumed a windowed signal of duration T . From Eq. (3.5) one can
derive a useful expression for the power spectral density as

〈x̃∗(f ′)x̃(f)〉 =
1

2
Sx(f)δ(f − f ′), (3.6)

where δ(f−f ′) is the Dirac delta function. Assuming that the noise timeseries, x(t), is
formed of N samples separated by ∆t, then, xj = x(j∆t) for j = 1, . . . , N . In the case
of independent Gaussian random variables with zero mean and standard deviation σ,
the joint probability distribution of getting {xj } is

px({xj }) =

(
1√

2πσ2

)N
exp

{
− 1

2σ2

N∑
j=1

x2
j

}
. (3.7)

If the samples xj are independent, then the noise is denominated white noise. In the
case of white noise, noticing that Rjk = 〈xjxk〉 = σ2δjk, the PSD can be written as

Sx(f) = 2

∫ +∞

−∞
Rx(τ)e−2πifτdτ = lim

∆t→0
2σ2∆t. (3.8)

Hence, in the case of white noise the PSD is constant and independent of the frequency.
In the continuum limit the probability density of x(t) is [4]

px[x(t)] ∝ exp

{
− 1

2
4

∫ ∞
0

|x̃(f)|2

Sx

}
df. (3.9)

So far, we have restricted to white noise, but it turns out that Eq. (3.9) is also valid
for coloured noise, for which the PSD is a frequency dependent function. In particular,
it can be shown that the probability density px for a stationary Gaussian process x(t)
(with white or coloured noise ) is [4]

px[x(t)] ∝ e(x|x), (3.10)

where (x|x) denotes the noise-weighted inner product (Wiener scalar product) defined
as

(a|b) = 2Re
∫ +∞

−∞

ã(f)b̃∗(f)

S(f)
df = 4Re

∫ +∞

0

ã(f)b̃∗(f)

S(|f |)
df, (3.11)

where a(t) and b(t) are two timeseries with ã(f), and b̃(f), their respective Fourier
transforms. In the last equality of Eq. (3.11) we have assumed that a(t) and b(t) are
real functions. S(f) is the one-sided power spectral density, which satisfies S(−f) =
S(f). Its associated norm is

|a|2 = (a|a) = 4Re
∫ +∞

0

ã(f)ã∗(f)

S(f)
df. (3.12)
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We remark that the Wiener inner product is real and symmetric. The inner product
in Eq. (3.11) is usually normalized for the noise, 〈|n(t)|2〉 = 1, which through Eq.
(3.6) implies the property 〈(a|n)(n|b)〉 = 〈(a|b)〉.

Assuming additive noise, the output of a gravitational-wave detector s(t) can be
written as a sum of the the GW signal h(t,Θ), described by the set of parameters Θ,
and the noise n(t),

s(t) = h(t,Θ) + n(t). (3.13)

3.2 Matched filtering and optimal detection statistic

Given the statistical properties of the noise presented in Sec. 3.1, one wants to con-
struct a quantity whose value expresses the probability that the data contains the
GW signal. This quantity is called the optimal detection statistic. In this Section
we present a brief introduction to optimal detection statistics as well as to matched
filtering, the optimal procedure to search for a known GW signal buried in detector
noise.

Regarding the strain detector output, Eq. (3.13), one wants to discriminate be-
tween two hypothesis, that the data does not contain a GW signal or it does,

• Null Hypothesis H0 : s(t) = n(t).

• Alternative Hypothesis H1 : s(t) = n(t) + h(t).

This hypothesis testing problem can be faced in two ways, using a frequentist or a
Bayesian approach. In the case of a Bayesian approach [5, 4], one calculates the odds
ratio O(H1|s) = P (H1|s)/P (H0|s), which is the ratio between the probability that the
alternative hypothesis is true given s(t) and the probability that the null hypothesis
is true given s(t).

Before going into the details of the gravitational wave detection problem we recall
the basics of Bayesian inference. At the core of the Bayesian framework it is Bayes’
theorem,

P (B|A) =
P (B)P (A|B)

P (A)
, (3.14)

where P (A) is the probability of an event A being true, also known as evidence, P (B)
is the probability of an event B being true and it is also known as the prior probability
of B being true, and P (A|B) is the conditional probability, i.e., the probability of A
being true given B is true. The conditional probability, also called likelihood, is defined
in terms of the joint probability P (A,B) for both A and B being true as

P (A|B) =
P (A,B)

P (B)
. (3.15)

Taking into account that the probability of A being false, P (Ā), can be written as
P (Ā) = 1− P (A), then the likelihood ratio can be expressed as

Λ(B|A) =
P (A|B)

P (A|B)
. (3.16)

Eq. (3.16) can also be rewritten in terms of the odds ratio of B being true if A is true
as

O(B|A) = O(B)Λ(B|A), (3.17)

where O(B) = P (B)/P (B̄) is the prior odds ratio of B being true.
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Going back to the problem of gravitational wave detection, we recall that given
the data s(t), we want to compute the odds ratio for H1, i.e., O(H1|s). Looking at
Eq. (3.17), and replacing probabilities by probability densities, we observe that the
quantity we want to calculate is proportional to the likelihood ratio

Λ(H1|s) =
p(s|H1)

p(s|H0)
, (3.18)

and the prior odds ratio which does not depend on the data. As the odds and likelihood
ratios are related to each other by a factor independent from the data, then, one can
decide for simplicity to focus on the likelihood ratio. Assuming Gaussian noise, we
can compute the probability densities under the null hypothesis, H0 : n(t) = s(t),
and the alternative hypothesis H1 : n(t) = s(t)− h(t) as

p(s|H0) = pn(s(t)) ∝ e−(s|s)/2, p(s|H1) = pn(s(t)− h(t)) ∝ e−(s−h|s−h)/2. (3.19)

Then, the likelihood ratio is

Λ(H1|s) = e(s|h)e−(h|h)/2. (3.20)

The only dependence of Eq. (3.20) on the data is through the inner product (s|h).
Therefore, this implies that any bound on the value of the odds ratio is translated,
via an overall factor, into a bound on the value of (s|h), which is denominated the
matched filter. It can also be shown that (s|h) is the optimal detection statistic [4].
We note that the efficiency of the matched filter strongly depends on knowing the
form of the signal in the data. We now introduce the matched-filtered signal-to-noise
ratio (SNR) as a normalized matched filter [6, 7, 5, 4],

ρ(Θ) =
(h|s)

r.m.s[(h|n)]
=

(h|s)
〈(h|n)(h|n)〉]

=
(h|s)√
(h|h)

= (ĥ|s), (3.21)

where ĥ = h/
√

(h|h) is the normalized signal template, (ĥ|ĥ) = 1, and Θ denotes
the parameters of the signal. It can be shown that the maximizing the likelihood is
equivalent to maximizing the SNR [6, 7], hence, the SNR is also an optimal detection
statistic. Furthermore, given a template model hm for the signal h contained in the
data s(t), the ensemble average, see Eq. (3.1), of the SNR is

〈ρ〉 = 〈(ĥm|h)〉+ 〈(ĥm|n)〉 = (ĥ|h). (3.22)

To obtain the last equality we have assumed that the noise and the signal are uncor-
related, i.e., 〈(ĥm|n)〉 = 0. Then, in the case the template is identical to the signal,
hm = h, one obtains

〈ρ〉opt =
√
h|h, (3.23)

which is the optimal SNR.
Finally, we remark that in this section we have focused on a Bayesian approach as

current parameter estimation techniques are based on it, although we note that the
detection hypothesis testing problem can also be faced with a frequentist approach
obtaining, through the Neyman-Pearson lemma, that the likelihood ratio is also the
optimal detection statistics. As we will see in the upcoming sections, the detection
problem is substantially more complicated in a real detector as the assumption of
stationary Gaussian noise does not hold anymore and the optimal detection statistic
for such simplified noise cannot be used to claim real detections. As a consequence,
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more advanced techniques have to be developed to detect real GW signals.

3.3 Gravitational wave parameter estimation

The calculation of the optimal detection statistic provides, under the hypothesis of
stationary Gaussian noise, the probability of a signal present in the data p(H1|d),
where H1 is the alternative hypothesis, i.e., the hypothesis that data contains a signal,
and d are the data. When the signal is parametrized by a set of parameters Θ =
{θ1, θ2, . . . , θN} one can construct the probability density p(HΘ|d) as a function of
Θ and estimate the values of the set of parameters. This task is called parameter
estimation and it is performed through a Bayesian analysis on the observed data to
estimate (or set constraints on) the unknown parameters of the source using waveform
models.

The aim of parameter estimation is the description of the state of knowledge of
the values of a set of parameters Θ under a certain hypothesis H and probability
density p(Θ|H). Then, one uses Bayes theorem, Eq. (3.14), to update the prior
probability distribution p(Θ|d,H) with the new data of the experiment by computing
the posterior probability distribution p(Θ|d,H),

p(Θ|d,H) =
p(Θ|H)p(d, |Θ, H)

p(d|H)
, (3.24)

where p(d|Θ, H) ≡ L(d|Θ) is the likelihood function and p(d|H) is the evidence or
the fully marginalized likelihood. As explained in Sec. 2.1 of Chapter 2, gravita-
tional waveform models are described by a large number of parameters1 which makes
p(Θ|d,H) a multi-dimensional probability density with a large parameter space and
with complicated relations among its parameters. The probability density for a spe-
cific parameter is found marginalizing over the remaining parameters,

p(θ1|d,H) =

∫
dθ2 · · · dθNp(Θ|d,H), (3.25)

while the evidence, Z = p(d|H), is calculated as

Z = p(d|H) =

∫
dθ1 · · · dθNp(d|Θ, H)p(Θ|H). (3.26)

The evidence does not depend on any parameters and, thus, in parameter estimation is
treated as a normalization constant for a particular model. However, evidence becomes
a key tool in model selection problems, like the determination of which gravitational
waveform model better describes the detected signal. The comparison between two
competing models, A and B, is calculated using the ratio of posterior distributions,

OAB =
p(HA|d)

p(HB|d)
=
p(HA)

p(HB)
×BAB, (3.27)

where BAB = ZA/ZB is the Bayes factor between the two competing models describ-
ing how much is model A more strongly supported by the data than model B. For
gravitational wave purposes the large dimensionality of the parameter space and the
amount of data to analyse make it impossible to perform the calculations described
above with a fixed sampling of the parameter space. Thus, stochastic methods based

1The set of unkown parameters contains also typically parameters not related to the source, but
describing the calibration or the noise of the detector [8, 9].
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on Markov chain Monte Carlo (MCMC) and Nested Sampling have been developed
[8, 9, 10, 11] to sample over the parameter space and solve problems of Bayesian
inference like model selection and parameter estimation.

Gravitational wave data model

As explained in Chapter 1, the data of a gravitational wave detector, d = h+ n, can
be described by a signal and noise components, h and n, respectively. Here, we focus
on the description of the observed data with the inclusion of the detector noise which
permits us to construct a model of the data which can be used to perform parameter
estimation analyses.

The data of the detector is a time series di sampled uniformly at times ti. The
data are originally sampled at fs = 16834 Hz, and down sampled to a lower rate to
reduce the volume of data [8]. The lower rate is usually chosen such that it contains
the maximum frequency fmax of the lowest mass signal used by the prior distribution,
i.e., fs ≥ 2fmax. For instance, in the case of a not very massive BBH signal one
typically uses 2048 Hz.

The simplest model for the data in absence of a signal is that of Gaussian stationary
noise described by a power spectral density, Sn(f), and zero mean. The analyzed
segment d spans an interval [tc − T + 2, tc + 2], where the coalescence time tc is
computed by the search pipelines which have detected the event, T is a time which
ends after 2s after the trigger, the 2s are added to safely account for inaccuracies in
the determination of tc. The PSD is calculated using data adjacent to the analyzed
segment not containing the signal, i.e., ending before tc−T . Then, assuming stationary
Gaussian noise with zero mean and a variance calculated from the PSD, the likelihood
function for the noise model can be expressed a product of Gaussian distributions in
each frequency bin [8]

p(d|H0, Sn(f)) = exp
∑
i

[
− 2|d̃i|2

TSn(fi)
− 1

2
log
(π

2
TSn(fi)

)]
, (3.28)

where H0 is the null hypothesis and the d̃ denotes the discrete Fourier transform of d,

d̃i =
T

N

N∑
k=1

dk exp(−2πijk/N). (3.29)

For completeness, we display in Fig. 3.1 the amplitude spectral density, defined as
the square-root of the PSD, Sn(f)1/2, in terms of equivalent gravitational wave strain
of the LIGO Hanford and LIGO Livingston detectors for times near the first GW
detection GW150914 [12].

In the presence of a signal h the mean of the likelihood is modified such that the
likelihood becomes

p(d|HS , Sn(f),Θ) = exp
∑
i

[
−2|h̃i(Θ)− d̃i|2

TSn(fi)
− 1

2
log
(π

2
TSn(fi)

)]
. (3.30)

A network of detectors is typically analyzed assuming uncorrelated noise among them,
which allows to express the coherent likelihood for the data as a product of likelihoods
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Figure 3.1: Amplitude spectral noise density expressed in terms of
equivalent gravitational wave strain of the LIGO Hanford (H1) and
LIGO Livingston (L1) detectors close to the time of signal detection

of GW150914 [12].

in each detector [13]

p(dH,L,...|HS , Sn,{H,L,... }(f),Θ) =
∏

i∈{H,L,... }

p(di|HS , Sn,i(f)). (3.31)

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) sampling [14, 15] methods estimate a posterior
distribution by stochastically walking through the parameter space drawing samples
proportional to the target posterior distribution. The probability of a point (‘walker’)
to move to another point of the parameter space is determined by the proposal density
function or transition probability distribution Q(Θ′|Θ). The generation of a new
sample Θ′ depends on the present sample Θ and its acceptance is based on the
probability,

rs = min(1, α), α =
Q(Θ|Θ′)p(Θ′|d,H)

Q(Θ′|Θ)p(Θ|d,H)
. (3.32)

In case of acceptance Θ′ is added to the Markov chain, otherwise the operation is
repeated until an accepted sample is found.

The behaviour of the chains at early times is strongly dependent on the initial
conditions. Thus, some iterations are required before the dependence is lost, this is the
burn-in period. Burn-in samples have to be discarded when estimating the posterior
distribution due to their dependence on the prior probabilities [8]. Moreover, the
position of a walker in a chain is normally autocorrelated, thus, the position of the
walkers do not faithfully represent the sampling from a posterior distribution. This
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causes and underestimation of the width of the posterior distribution. To avoid this,
a thinning procedure is applied to the chains [8, 9] by selecting samples separated by
a certain autocorrelation time,

τ = 1 + 2
∑
i

ĉ(i), (3.33)

where i are the iterations of the chain and ĉ(i) is the Pearson correlation coefficient
[16].

The efficiency of the MCMC algorithm is mainly dependent on the choice of the
transition probability distribution, since this governs the acceptance rates and the au-
tocorrelation times. Using a standard Gaussian distribution as a proposal distribution
becomes inefficient for GW parameter estimation and a range of jump proposals have
been developed to sample more efficiently the parameter space of a compact binary
coalescence as discussed in [8].

Furthermore, posterior distributions of GW parameters normally contain multiple
local maxima, or modes, separated by regions of low probability. In order to ensure
proper mixing of the samples from different modes, a technique called parallel tem-
pering [17, 18] is commonly used. This method introduces an inverse temperature to
the likelihood function, resulting in a posterior distribution

pT (Θ|d) ∝ p(Θ|H)L(Θ)1/T. (3.34)

Temperatures larger than 1 smooth the likelihood surface, broadening the peaks, with
a distribution tending to the priors as the temperature increases. The algorithm
constructs a set of tempered chains with temperatures T = 1, . . . , Tmax. Distributions
at high temperatures are more likely to explore a larger parameter space by moving
between modes. At high temperatures high probability regions are passed to low
temperature chains by proposing exchanges in the locations of adjacent chains, Ti < Tj
at an acceptance rate rs = min(1, ωij), with

ωij =

(
L(Θj)

L(Θi)

) 1
Ti
− 1
Tj

. (3.35)

This procedure increases significantly the sampling efficiency of the T = 1 chain,
at the cost of calculating samples with T > 1 which are eventually discarded for
the calculation of the final posterior distribution [8] as they are not drawn from the
target posterior distribution. Moreover, each run can be run independently in parallel
increasing the computational efficiency of the algorithm.

Nested Sampling

Nested sampling is a Monte Carlo technique to calculate the evidence [19] which
produces samples of the posterior distribution as a by-product. The multidimensional
integral of Eq. (3.26) is replaced by a one-dimensional integral over the prior volume
X, defined as

X(λ) =

∫
p(d|Θ,H)>λ

dΘp(Θ|H), (3.36)
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where the integral is calculated within a likelihood contour defined by p(d|Θ, H) = λ.
Using the definition of Eq. (3.36), Eq. (3.26) can be expressed as

Z =

∫ 1

0
L(X)dX, (3.37)

where L(X) is the likelihood distribution as a function of the prior volume obtained
by using the inverse form of Eq. (3.36). The larger the prior volume enclosed the
lower the likelihood, thus, L(X) is a monotonically decreasing function of X. We show
in Fig. 3.2 two cartoon pictures representing a 2D posterior distribution and the
corresponding L(X) function which associates directly each prior volume Xi with the
likelihoods Li.

L1
L2
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L4

. .

.

.
.

L1

L2

L3

L4
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.

.

.

.

X2X3X4

Figure 3.2: Pictures representing in the left plot a two-dimensional
posterior distribution and, in the right panel the transformed L(X)
function where the prior volumes Xi are directly related to the likeli-

hoods Li. Pictures taken from [20].

Given a sequence of monotonically decreasing prior volumes Xi, such that, 0 <
XM < · · · < X0 = 1, one can evaluate the likelihoods Li = L(Xi) and approximate
the evidence distribution, for instance, through the trapezoidal as

Z =
M∑
i=1

1

2
(Xi−1 −Xi+1)Li. (3.38)

The algorithm to apply this sampling procedure can be summarized as follows:

1) Choose initial live points sampling the prior distribution.

2) Remove the value with the lowest likelihood (dead point) and replace it by a new
sample with higher likelihood. The proposal distributions in Nested Sampling
are based on MCMC chains and are very similar to the ones for MCMC sampling
[8].

3) The removal and replacement of points is repeated until a stopping condition is
met. The stopping condition is normally set in GW analysis [8, 11] such that
the change in evidence calculation is less than a factor of 0.1 assuming that the
remaining prior distribution was at maximum likelihood, i.e., LmaxXi/Zi > e0.1.

The posterior samples can be produced by resampling the chain of dead and live points
as

p(Θ|d,H) =
(Xi−1 −Xi+1)

2
× Li

Z
. (3.39)
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Finally, we remark that the computation of the prior volumes and the generation of
new samples vary between implementations, we refer the interested reader to [21, 8, 11]
for details on these calculations within the nested sampling method. From the param-
eter estimation methods presented in this section, the nested sampling algorithms will
be used in Chapter 5 to obtain original results on the estimation of the parameters of
injected numerical relativity eccentric GW signals into detector noise.

3.4 Detection of gravitational waves

The basic concepts presented so far on the optimal detection statistic restricted to the
case of stationary Gaussian noise, which is not the case of a real gravitational wave
detector where transient noise artefacts, known as glitches, can faithfully resemble a
GW signal [22, 23]. A search algorithm optimal for Gaussian stationary noise can
perform poorly on real data, missing events or identifying glitches as GW signals.
Thus, these algorithms need to be equipped with additional tools to measure the
robustness of a signal in order to reject noise artefacts and retain GW signals, like the
calculation of the false alarm probability and the detection efficiency of our detection
statistic. The detection problem is equivalent to a hypothesis testing problem, where
we have to decide between the null hypothesis, H0 (only noise in the data) and the
alternative hypothesis H1 (signal contained in the data). Given a detection statistic of
the data Λ(d) and a certain threshold value Λ′, one may have the following situations:

• Λ(d) < Λ′: we accept H0 and there is no signal.

• Λ(d) < Λ′: we should accept H0, but there is a GW signal in the data. In this
case, one can compute the false alarm dismissal, which is the probability of the
threshold not being crossed even when H1 is true,

FAD(Λ′ < Λ|H1) =

∫ Λ′

−∞
p(Λ(d)|H1)dΛ. (3.40)

• Λ(d) ≥ Λ′: we accept H1 and there is a signal.

• Λ(d) ≥ Λ′: we should accept H1, but there is no signal in the data. In or-
der to prevent this situation one calculates the probability of passing over the
threshold notwithstanding H0 being true, this is the definition of the false alarm
probability,

FAP(Λ′ > Λ|H0) =

∫ ∞
Λ′

p(Λ(d)|H0)dΛ. (3.41)

In practice, apart from these two quantities which evaluate the detection proba-
bility of a search algorithm, there are a pletora of techniques developed to prevent
misidentification of noise transient as GW signals like the application of vetoes, coin-
cidences, time-slides, . . . The use of one or another highly depends on the targeted
source of GW signal and we refer the reader to [4, 3, 22, 23] for an introduction with
further details on those concepts.

In the following two subsections we briefly describe two methods used in this thesis
to search for stellar mass eccentric binary black holes. These two methods are 1) a
modeled search algorithm, specifically the PyCBC [24, 25] pipeline, based on match
filtering with a known template, and 2) an unmodeled search algorithm, particularly
coherent Wave Burst (cWB) [26, 27], based on a coherent excess power in a network
of detectors.
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3.4.1 Matched filter search algorithm

In the LIGO analyses of GW events during O2 two independent modeled search algo-
rithms have been used [28], PyCBC[24, 25] and GstLAL [29, 30, 31]. Both pipelines
use a bank of template waveforms to grid up the parameter space such that the maxi-
mum likelihood ratio can be approximately identified with the best match of the data
with the template bank [32, 33, 34, 35, 36, 37]. We focus here on the PyCBC pipeline.
For PyCBC, template banks are generated such that the loss in matched filter SNR
due to the discrete placement of templates is not larger than 3%.

In Sec. 3.2 we introduced the basic concepts of matched filtering. In the following
we show the implementation of the matched filter in the PyCBC pipeline. Although
recent progress has been achieved on testing the implementation of additional physi-
cal effects on the search pipeline, like spin precession or eccentricity [38, 39], current
searches are restricted to template banks produced with quasi-circular aligned-spin
(2,±2) modes waveforms. The simplification of using only the (2,±2) modes implies
that effects the sky location and binary orientation are an overall factor in the ampli-
tude and phase of the waveform, which are computationally efficiently maximized by
projecting the template h(t) into two orthogonal space hsin and hcos [24]. In terms of
this decomposition the SNR can be expressed as

ρ2(t) =
(d|hcos)

2

(hcos|hcos)
+

(d|hsin)2

(hsin|hsin)
, (3.42)

where (·|·) is the noise-weighted inner product defined in Eq. (3.11).
Triggers are generated by the pipeline according to excesses of matched-filter SNR

over a predetermined threshold. However, some of those triggers can be caused by
non-stationary and non-gaussian detector noise, thus, an additional signal consistency
test between the data and the template, known as chi-squared test, is applied. The
chi-squared test assesses if the time frequency distribution of the data is consistent
with the expected power in the template [24]. This test is evaluated by dividing the
template in p frequency bins with equal contributions to the power of the matched
filter SNR. Then, the matched-filter SNR, ρi, is calculated for each frequency bin. For
a real signal ρi contains a 1/p fraction of the total SNR. This motivates the definition
of the χ2 statistic,

χ2 = p

p∑
i=1

[(
ρ2
cos
p
− ρ2

cos,i

)2

+

(
ρ2
sin
p
− ρ2

sin,i

)2
]
, (3.43)

where ρ2
cos, ρ

2
sin are the SNRs of the two orthogonal phases. This statistic compares

the expected with the measured power in each frequency bin. Given a value of the
matched filter SNR, large values of χ2 indicate high probability of a noise transient
nature of the trigger. In order to have a magnitude of the expected order of the χ2

statistic in the case of a signal, it is defined the reduced chi-squared statistic as

χ2
r = χ2/(2p− 2), (3.44)

which for signals should be close to 1. The matched filter SNR can also be redefined
to down weight the triggers caused by noise fluctuations [24]

ρ̂ =

{
ρ/[1 + (χ2

r)
3/2]1/6, if χ2

r > 1,

ρ, if χ2
r ≤ 1,

(3.45)
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which is known as the re-weighted SNR. The reweighted SNR is computed for each
trigger and those triggers with ρ̂ smaller than a predetermined threshold are discarded.
The search requires that the observed signals are consistent within the detector net-
work by first vetoing instrumental noise glitches, and afterwards performing a coinci-
dence test on the remaining triggers [25]. For instance, signals observed by the LIGO
Hanford and LIGO Livingston detectors have to be seen within a time difference of
15 ms (∼10 ms travel time between detector +5 ms for timing errors).

Triggers passing the coincidence test are named as coincident events, which, in
the case of a two-detector network are ranked according to the quadrature sum of the
reweighted SNR of each detector,

ρ̂c =
√
ρ̂2

1 + ρ̂2
2. (3.46)

Finally, the pipeline computes the false-alarm rate (FAR) of the search as a function
of the detection statistic ρ̂c to assign statistical significances to candidate events. The
false alarm rate of the pipeline is calculated using a time shift procedure for a two
detector network [25]. We note that very recently the PyCBC pipeline has been
extended to three or more detectors [40].

The sensitivity of a search pipeline can be estimated using the sensitive volume of
the pipeline, defined as

V (F) =

∫
ε(F ; x,Θ)φ(x,Θ)dxdΘ, (3.47)

where x is a spatial coordinate, φ(x,Θ) is the distribution of signals in the Universe
and ε is the efficiency of the pipeline at detecting events with parameters Θ in a volume
specified by x with a false alarm rate F . For PyCBC the sensitivity volume is calcu-
lated injecting a large number NI of simulated signals into the data and measuring
the ability of the pipeline to find them. Assuming that the astrophysical distribution
for the simulated and real signals is the same, the sensitive volume can be calculated
as

V (F) ≈ 1

NI

NI∑
i=1

H(F|Fi) ≡ 〈H(F)〉, (3.48)

where Fi is the FAR associated with each simulated signals and H(F|Fi) is a step
function defined as

H(F|Fi) =

{
1, if F ≤ Fi,
0, otherwise.

(3.49)

For each simulated signal the FAR is calculated using the most significant event within
a 1 second window of the time of arrival of the simulated signal. When no event is
found within that window, the detection statistic is set to 0.

3.4.2 Unmodeled search algorithm

Bursts of gravitational wave radiation are short-lived signals with a duration shorter
than the observational timescale. These transient signals can have a known morphol-
ogy, as the case of a binary coalescence, can be poorly modeled as in the case of
core-collapse supernovae, or can be emitted from a totally unknown source. In any
case, all of them are characterized by their short duration compared to the observa-
tion time. In this section we focus on the description of an unmodeled search pipeline,
coherent Wave Burst (cWB) and its application [26, 27] for detecting eccentric BBH
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mergers. cWB is a search algorithm for detection and reconstruction of unknown
burst signals based on the excess of coherent energy in a detector network.

The first operation of cWB is the application of a time frequency (TF) transform
[41, 42, 43] to the detector data xk[i], where k and i represent the detector index
(assuming a network of K detectors) and the data sampling index (≡ TF pixel),
respectively. Specifically, a Wilson-Daubechies-Meyer (WDM) transform is applied to
the detector time series. For each data sample the detector noise is estimated by the
WDM PSD Sk[i]. Then, the one defines the noise-scaled (whitened) data as

wk[i] = xk[i]/
√
Sk[i]. (3.50)

The TF series of whitened data from all the detectors are combined to obtain TF
energy maps maximized over all possible sky locations,

E[i] =
∑
k

w2
k[i]. (3.51)

These energy maps identify regions of the TF space, also called clusters C with i ∈
C, with excess energy power over the detector noise threshold. These TF clusters,
identified by a clustering algorithm [44], characterize the burst event from which one
extracts the sky location, waveform and polarizations. This is called the inverse
problem.

In the case of GW burst searches, one has to determine the amplitudes of the GW
polarizations (h+, h×) and the sky location (θ, φ) from a coincident output, x[i] of a
network of detectors. The data vector x[i] can be expressed in terms of the passing
GW signal h[i] = {h+[i], h×[i]} at a certain sky location (φ, θ) as

x = Fh[i] + n[i], (3.52)

where F is the network antenna pattern matrix

F =

F1,+ F1,×
· · · · · ·
FK,+ FK,×

 . (3.53)

We note that the polarization angle is not included in the above expressions as the
network response is invariant under rotations of the polarization angle, thus, its con-
tribution is included in the definition of the signal h.

The inverse problem can be addressed by calculating the likelihood ratio [6]

Λ(x,Θ) =
p(x|h(Θ))

p(x|H0)
, (3.54)

where p(x|h(Θ)) is the joint probability of a GW signal h contained in the data x,
while p(x|H0) is the probability of the null hypothesis being true. Then, the likelihood
ratio is completely determined by the noise and signal models.

In the case of unmodeled searches the signal can be described byΘ = (h+, h×, φ, θ)
which are calculated by numerically or analytically varying Λ as shown below. As-
suming an unconstrained source model and quasistationary Gaussian noise, the noise-
scaled data can be expressed as [44]

w[i] =
x1[i, τ1(φ, θ)]√

S1[i]
, . . . ,

xK [i, τK(φ, θ)]√
SK [i]

, (3.55)
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where S1, · · · , SK are the PSDs, xk[i, τk(φ, θ)] the detector amplitudes defined by the
time-flight delays τk and the sky position (φ, θ). The noise-scaled network response is
defined as

ξ[i] = F [i]h[i], with F [i] =


F1,+(φ,θ)√

S1[i]

F1,×(φ,θ)√
S1[i]

· · · · · ·
FK,+(φ,θ)√

SK [i]

FK,×(φ,θ)√
SK [i]

,

 . (3.56)

where F [i] is the noise-scaled antenna pattern matrix. We introduce the likelihood
functional L as twice the logarithm of the likelihood ratio Λ,

L[h] = 2(w|ξ)− (ξ|ξ), (3.57)

where inner products are calculated on each cluster. The solution for h is found
by the variation of L[h]. In order to that, a transformation of F into the dominant
polarization frame (DPF) [45] is applied to obtain the network matrix f . The network
matrix can be expressed in terms of the antenna pattern vectors f = (f+,f×), which
through the relations

(f+,f×) = 0 and |f×| ≤ |f+|, (3.58)

define a plane where the GW response ξ can be located. The variation of the likelihood
provides the following system of linear equation for h+ and h× in the DPF,(

w[i] · e+[i]
w[i] · e×[i]

)
=

(
|f+[i]| 0

0 |f×[i]|

)(
h+[i]
h×[i]

)
, (3.59)

where (e+, e×) are unit vectors in the directions of (f+,f×). Eq. (3.59) determines the
network sensitivity to the GW polarizations. The maximum likelihood ratio statistic
[4] is obtained in this case replacing the solution of Eq. (3.59) into Eq. (3.57),

Lmax =
∑
i∈C

w[i]P [i]wT [i], with Pnm[i] = en+[i]em+[i] + en×[i]em×[i], (3.60)

where P is the projection matrix into the (f+, f×) axes. The axis orthogonal to
(f+, f×) defines the residual detector noise and it is known as the null stream.

In order to construct event selection quantities in burst searches, the maximum
likelihood statistic is decomposed into coherent Ec and incoherent Ei contributions,

Ec =
∑
i∈C

∑
n 6=m

wn[i]Pnm[i]wn[i], (3.61)

Ei =
∑
i∈C

∑
n

wn[i]Pnn[i]wn[i]. (3.62)

Then, using also the null stream energy En, the network correlation coefficient is
defined as [26]

cc = Ec =
∑
i∈C

∑
n

wn[i]Pnn[i]wn[i]. (3.63)

The network correlation coefficient provides a very useful tool to perform event con-
sistency tests, as it allows to discriminate between noise artefacts (cc � 1) and real
GW events (cc ≈ 1). The network correlation coefficient together with the coherent
energy Ec, statistic providing correlations between detector pairs, are employed to
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define the burst detection statistic [44]

ηc =

√
ccEcK

K − 1
. (3.64)

The burst detection statistic estimates the network coherent energy (≡ SNR) for
correlated GW signals measured by a network of K GW detectors.

At this point we remark that the sensitivity of the search can also be estimated
using the general definition given by Eq. (3.47). We refer the interested reader to
[26, 27, 44, 45] for more details on methods used by the cWB pipeline as well as the
procedure to reconstruct the waveform of the detected GW signal.
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Chapter 4

Eccentricity reduction in numerical
relativity simulations

The following publish article is included in this chapter:

• Antoni Ramos-Buades, Sascha Husa and Geraint Pratten Geraint. Simple pro-
cedures to reduce eccentricity of binary black hole simulations. Physical Review
D 99, 023003 (2019). [27 pages]
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We present simple procedures to construct quasi-circular initial data for numerical evolutions of binary black
hole spacetimes. Our method consists of using Post-Newtonian theory in three ways: first to provide an initial
guess for the initial momenta at 3.5PN order that implies low residual eccentricity, second to measure the
resulting eccentricity, and third to calculate corrections to the momenta or initial separation which further reduce
the eccentricity. Regarding the initial guess, we compare numerical evolutions in post-Newtonian theory to the
post-circular and post-post-circular analytical approximations to quasi-circular data. We discuss a robust fitting
procedure to measure eccentricity from numerical simulations using the orbital frequency Ω, and derive from
the quasi-Keplerian parametrization at 1PN oder the correction factors for the tangential and radial momentum
components required to achieve reduce the measured eccentricity to zero. We first test our procedure integrating
PN equations of motion at 3.5PN where low eccentric initial data is easily obtained, and then apply our method
to sets of binary black hole numerical relativity simulations with different mass ratios (q = m2/m1 = 1, 2, ..., 8),
spin configurations and separations. Our set of simulations contains non-spinning, spin-aligned and precessing
simulations. We observe that the iterative procedure produces low eccentric simulations with eccentricities of
the order O

(
10−4

)
with only one iteration. The simplicity of the procedure allows to obtain low eccentric NR

simulations easily and saving computational resources. Moreover, the analytical PN formulas derived in this
paper will be useful to generate eccentric hybrid waveforms.

PACS numbers: 04.25.Dg, 04.25.Nx, 04.30.Db, 04.30.Tv

I. INTRODUCTION

The first detection of a gravitational wave signal [1] in 2015
by the LIGO detectors [2], as well as the subsequent detec-
tions [3–7], have been found consistent with models of the
waveform emitted from the merger of compact objects under
the assumption of quasi-circularity of the binary’s orbit prior
to the merger. These models have been used to infer the pa-
rameters of the sources from the measured data, see e.g. the
detailed discussion of parameter estimation results for the first
detection [8]. Indeed, efforts to model the gravitational wave
signals from compact binary coalescence have to a large de-
gree neglected eccentricity, as motivated by the efficient cir-
cularisation of binaries as a consequence of the emission of
gravitational waves [9, 10].

Only a decade before the first detection of gravitational
waves, breakthroughs in numerical relativity (NR) [11–13]
have made it possible to compute the evolution of binary black
holes until the merger in general relativity (GR), and to extract
the gravitational waves emitted from such systems. Numerical
simulations of compact binaries are now performed routinely
[14–17], and models synthesized from numerical parameter
studies and perturbative results are routinely used to analyse
the data from the LIGO and Virgo detectors [18–22].

Initial data for numerical relativity simulations of black
hole binaries are typically constructed in a five-step proce-
dure, which can be roughly summarised as follows:

1) One chooses the separation and the spin components.

2) One chooses the momenta or velocities of the black
holes such as to result in a low eccentricity. This step
is usually guided by post-Newtonian (PN) approxima-
tions [23].

3) The constraint equations of general relativity are solved
numerically for the chosen parameters, often using the
approximation of conformal flatness.

4) The data are evolved numerically until the eccentricity
can be estimated reliably from the corresponding os-
cillations in the separation, or orbital and gravitational
wave frequency, as well as in other quantities. Residual
eccentricy can lead to parameter biases when using the
resulting waveforms for parameter estimation in gravi-
tational wave analysis, and complicate the construction
of quasi-circular waveform models from the numerical
data. In GR there is however no unique definition of
eccentricity, and a specific quantity usually referred to
as “eccentricity estimator” needs to be chosen, which
reduces to the Newtonian concept of eccentricity in the
Newtonian limit. Determining eccentricity from the or-
bital frequency Ω, one would, for example, typically
choose the eccentricity estimator

eΩ =
Ω(t) −Ω(e = 0)

2Ω(e = 0)
, (1.1)

which measures the time dependent oscillations in the
orbital frequency relative to the case with vanishing ec-
centricity. The factor of two normalizes the quantity eΩ

to be consistent eccentricity in radial oscillations (with-
out the corresponding factor of two).

5) A correction to the initial parameters is applied, and
steps 2-5 (or 1-5) are applied until the eccentricity is
deemed low enough for applications, taking into ac-
count the computational cost of short evolutions re-
quired to measure the eccentricity and the human effort
to carry out or automatize the procedure.
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In this paper we first discuss steps two, four, and five, and
then a version of changing the momenta in step two where we
also correct for the initial coordinate separation, thus chang-
ing step one. In order to guess initial conditions, determine
the eccentricity of a numerical simulation, and to guess im-
proved initial momenta, PN approximations at different or-
ders in the PN expansion parameter v/c are used. A key prob-
lem in relating post-Newtonian quantities to numerically con-
structed spacetimes are the different coordinate systems that
are employed. For our numerical evolutions, we use the mov-
ing puncture approach [12, 17, 24, 25] with conformally flat
Bowen-York initial data [26]. The coordinates used to con-
struct the initial data for the numerical relativity simulations
are close to the ADMTT coordinates [27] typically employed
in the Hamiltonian approach to the post-Newtonian expan-
sion. However, the standard puncture data we employ are
consistent with the PN description in the ADMTT gauge only
up to order (v/c)3, see [28–30]. In [31] it is argued that as a
consequence, only low order PN expressions should be used
in constructing low-eccentricity initial data. However, since
high-order PN expressions are routinely used in modelling the
gravitational wave signal from compact binaries, and there-
fore readily available, in this work we take the point of view
that it is simplest to just use the highest PN order available to
guess the initial momenta in step two. In addition, we show
that while a low PN order expression of the radial initial mo-
mentum is enough to build low eccentric initial data, the tan-
gential momentum benefits from the knowledge of high PN
orders, and the higher the PN order the closer to the low ec-
centric value.

The simplest post-Newtonian description of quasi-circular
(QC) initial parameters is to set the radial momentum to zero,
which is inconsistent with an actual inspiral (at least in the
absence of precession). A straightforward way to improve
the post-Newtonian description is to numerically solve the
PN/Effective-One-Body (EOB) [32] dynamics from a larger
separation down to the desired starting separation for a numer-
ical relativity simulation, and to use the momenta read from
this numerical calculation as input parameters to numerically
solve the constraints [33]. This procedure benefits from the
fact that radiation reaction circularizes the orbit during the
long inspiral, and for a sufficiently long inspiral, the eccen-
tricity present in the PN data can be neglected. This will not
lead to negligible eccentricity of the NR evolution due to the
finite order used for the PN expansion, and the difference in
the PN and NR coordinate systems as discussed above. A sec-
ond method [34] specifies the values of the initial momenta at
a given separation using analytical expressions at 3PN derived
from a Hamiltonian formalism, which approximately take into
account the radial momentum. In this work we follow the sec-
ond approach, since it simplifies the construction of precess-
ing initial data with chosen directions of the spins at a given
separation. When numerically integrating the PN equations
from a larger distance, constructing low eccentricity momenta
with fixed spin directions would require an iteration of nu-
merical integrations of the PN equations, which complicates
setting up a grid of NR simulations to cover (portions of) the
precessing parameter space.

In Section II we discuss and compare these different ap-
proaches in more detail, and provide analytical formulas for
the momenta in terms of initial separation, mass ratio and
spins, including spin precession, updating the expressions pre-
sented in [34] to 3.5PN order. We also implement the post-
post-circular (PPC) approximation [35, 36] commonly used
in the Effective One Body (EOB) theory and provide a recipe
to compute it. This approximation consists in correcting ana-
lytically for the tangential momenta by iterating over the post-
circular (PC) approximation.

In Section III we develop the post-Newtonian methods to
deal with steps four and five: we first discuss our procedure to
determine the eccentricity of numerical data using the eccen-
tricity estimator defined in equation (1.1). Then, from the 1PN
Quasi-Keplerian parametrization [37] we compute explicit ex-
pressions for the correction factors for the tangential and ra-
dial momentum to achieve approximately vanishing eccentric-
ity. Due to the deviations between the post-Newtonian equa-
tions and the full Einstein equations in the chosen gauge, as
well as the noise that is present in numerical relativity simula-
tions, this procedure may have to be iterated, although in many
cases we find that a single step is sufficient for our purposes.
Finally, we compute a similar formula that instead corrects the
radial momentum and separation, thus directly compensating
for the difference between the PN and NR coordinate systems.

We test our procedures in section IV, first applying them to
post-Newtonian data, and check that the PPC approximation
is indeed an excellent approximation to carry out full numeri-
cal solutions of the post-Newtonian inspiral. One practical ap-
plication of such low-eccentricity post-Newtonian data is the
construction of hybrid waveforms, where residual eccentric-
ity in the post-Newtonian part leads to undesired oscillations
[38]. Finally, we apply our procedures to several precessing
and non-precessing numerical relativity simulations.

To date the most accurate procedures used to construct low
eccentricity inspirals in numerical relativity are two iterative
methods [39, 40]. The method consists in running first a sim-
ulation with quasi-circular (QC) parameters, modify the tan-
gential and radial velocities of the simulation and rerun the
simulation with the updated values. The iterative method in
[39] is highly successful and can reduce eccentricities to be-
low 10−5 in two iterations. Nevertheless, as discussed in [40]
its application to moving puncture simulations shows some
difficulties. The iterative method presented in [40] is designed
for moving puncture simulation, but it is computationally ex-
pensive, and we have found it significantly more cumbersome
than the method presented here .

We summarise and discuss our results in Sec. V.

Throughout this text we are working in geometric units G =

c = 1. To simplify expressions we will also set the total mass
of the system M = 1, and we define the mass ratio q = m2/m1
with the choice m2 > m1, so that q > 1. We also introduce
the symmetric mass ratio η = q/(1 + q)2, and we will denote
the black hole’s dimensionless spin vectors by ~χi = ~S i/m2

i , for
i = 1, 2.
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II. POST-NEWTONIAN INITIAL DATA

We prepare initial data for our simulations within PN theory
in the Arnowitt-Deser-Misner transverse-traceless (ADMTT)
gauge. We describe the particles in the center of mass (CM)
frame, so that the motion of the two point particles can be de-
scribed by the motion of one effective particle. We choose our
z-axis in the direction of the initial orbital angular momentum,
and initially locate the particles on the x-axis with y = z = 0,
then pφ = Lz with the standard definition of spherical polar
coordinates. We define the tangential momentum as

pt =
pφ
r
. (2.1)

Using the standard relation between Cartesian and polar coor-
dinates one can write (px, py) in terms of (pφ, pt) as

px =
xpr − ypt√

x2 + y2
= prcosφ − ptsinφ, (2.2)

py =
xpt + ypr√

x2 + y2
= prsinφ + ptcosφ. (2.3)

To compute the initial parameters we use the ADMTT
Hamiltonian in the CM frame which is currently completely
known up to 3.5PN order,

H = HNS + HS O + HS S + HS S S , (2.4)

where HNS is the non-spinning part of the Hamiltonian,

HNS = HNewt + H1PN + H2PN + H3PN . (2.5)

The Hamiltonians in equation (2.5) can be found in [41]. The
spin-orbit Hamiltonian is

HS O = HS O,1.5PN + HS O,2.5PN + HS O,3.5PN . (2.6)

The expression for HS O,1.5PN , HS O,2.5PN and HS O,3.5PN can be
found in [41], [42] and [43], respectively. The spin-spin inter-
action Hamiltonian is

HS S = HS 2,2PN + HS 1S 2,2PN + HS 2,3PN + HS 1S 2,3PN , (2.7)

where explicit formulas for HS 2,2PN and HS 1S 2,2PN can be
found in [41] while for HS 2,3PN , HS 1S 2,3PN in [44] and [45],
respectively. Finally, HS S S is given in [46].

A. Post-circular approximation

Using the Hamiltonian of (2.4) one can compute the circu-
lar conditions for the orbit of the binary in absence of radiation
reaction:

pr = 0,
(
∂H
∂r

)

pr=0
= 0. (2.8)

Equation (2.8) gives a set of conditions to solve in PN order by
order for pφ(r). Once we have computed pφ, or equivalently
pt(r), we can then compute

Ω =

(
∂H
∂pφ

)

pr=0
(2.9)

and obtain an expression for the orbital frequency as a func-
tion of r. For completeness, we can also obtain an expression
for the ADM mass defined by

MADM = M + H, (2.10)

where M is the total mass and H is the 3.5PN Hamiltonian in
ADMTT gauge.

Taking into account equations (2.4), (2.8 - 2.10) we obtain
explicit expressions for the orbital frequency, tangential mo-
mentum and ADM mass as a function of the orbital separa-
tion r. These expressions can be found in Appendix A and are
given by equations (A1), (A2) and (A3). The expression for
the initial tangential momentum in terms of the orbital sepa-
ration, equation (A2), is obtained from the conservative part
of the dynamics. It remains to specify a value for the radial
component of the momentum vector, pr. The inclusion of ra-
diation reaction through the gravitational wave flux of energy
allows us to derive an expression to compute pr, following the
procedure described in [41]. First, we consider the definition
of the ADM mass given in (2.10) for circular orbits:

MADM = M + Hcirc, (2.11)

where Hcirc is the energy corresponding to circular orbits, i.e.,
the Hamiltonian corresponding to equation (2.4) evaluated at
the values of pr = 0 and pt derived in Appendix A. Taking a
time derivative of (2.11) we get

dMADM

dt
=

dM
dt

+
dHcirc

dt
. (2.12)

The loss of ADM mass corresponds to a flux of gravitational
wave energy leaving the binary, which has to be equal to the
energy of the orbital motion plus the change in mass of the
black holes. Consequently,

−dEGW

dt
=

dM
dt

+
dHcirc

dt
, (2.13)

the derivative of the orbital energy can be rewritten as

dHcirc

dt
=

(
dr
dt

) (
dHcirc

dr

)
. (2.14)

The expression for dM/dt was derived in [47] for the spin-
aligned or anti-aligned with respect to the orbital angular mo-
mentum. We use that expression taking into account the con-
tribution related to the change in mass of the two black holes
because the leading order term of dM/dt is comparable in
magnitude to a relative 2.5PN spin effect in the flux. The ex-
pression for the gravitational wave flux [23, 48] in terms of
the basic dynamical variables in ADM coordinates for quasi-
circular orbits can be found in Appendix A.
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Then, we can use the Hamilton’s equations to compute the
time derivative of the orbital separation as

dr
dt

=
∂H
∂pr

. (2.15)

If we expand the right hand side of equation (2.15) for pr
around 0, we can solve it for pr and obtain a first order ap-
proximation to the radial momentum.

pr =

[
−dr

dt
+

1
r7/2

(
− (6q + 13)q2χ1xχ2y

4(q + 1)4 − (6q + 1)q2χ2xχ2y

4(q + 1)4 + χ1y

(
−q(q + 6)χ1x

4(q + 1)4 −
q(13q + 6)χ2x

4(q + 1)4

))
+

1
r4

(
χ1z

(
3q(5q + 2)χ1xχ2y

2(q + 1)4

−3q2(2q + 5)χ2xχ2y

2(q + 1)4

)
+ χ1yχ2z

(
3q2(2q + 5)χ2x

2(q + 1)4 − 3q(5q + 2)χ1x

2(q + 1)4

))]
×

−
(q + 1)2

q
−

1
(
−7q2 − 15q − 7

)

2qr

−47q4 + 229q3 + 363q2 + 229q + 47
8q(q + 1)2r2 − 1

r5/2



(
4q2 + 11q + 12

)
χ1z

4q(q + 1)
+

(
12q2 + 11q + 4

)
χ2z

4(q + 1)



− 1
r7/2



(
−53q5 − 357q4 − 1097q3 − 1486q2 − 842q − 144

)
χ1z

16q(q + 1)4 +

(
−144q5 − 842q4 − 1486q3 − 1097q2 − 357q − 53

)
χ2z

16(q + 1)4



− 1
r3



(
q2 + 9q + 9

)
χ2

1x

2q(q + 1)2 +

(
3q2 + 5q + 3

)
χ2xχ1x

(q + 1)2 +

(
3q2 + 8q + 3

)
χ1yχ2y

2(q + 1)2 −
9q2χ2

2y

4(q + 1)
+

(
3q2 + 8q + 3

)
χ1zχ2z

2(q + 1)2 − 9q2χ2
2z

4(q + 1)

+

(
9q3 + 9q2 + q

)
χ2

2x

2(q + 1)2 +
−363q6 − 2608q5 − 7324q4 − 10161q3 − 7324q2 − 2608q − 363

48q(q + 1)4 −
9χ2

1y

4q(q + 1)
− 9χ2

1z

4q(q + 1)
− π2

16





−1

.

(2.16)

The expression for dr/dt can be computed combining equa-
tions (2.13) and (2.14):

dr
dt

=

[
dEGW

dt

] [
dHcirc

dr

]−1

. (2.17)

The procedure to obtain a post-circular expression for the ra-
dial momentum can be summarized in the following algo-
rithm:

1) Compute the circular expression for pt(r).

2) Use the expression for pt(r) and pr = 0 to compute
dHcirc/dr.

3) Combine dHcirc/dr with the gravitational wave flux for
the quasi-circular orbits, dEGW/dt, to obtain dr/dt.

4) Use Hamilton’s equations to compute dr/dt = ∂H/∂pr.
Taylor expand at first order in pr around pr = 0 of the
right hand side and isolate pr as a function of dr/dt.

5) From step 4 compute an expression of pr using the
value of dr/dt calculated in step 3.

B. Post-post-circular approximation

The post-post circular approximation, first presented in
[36], keeps the value of the tangential momentum pt from the

PC approximation, but applies a further correction to the ra-
dial momentum pr, and has been extensively used to construct
initial data for EOB dynamics. We start with the post-circular
values for pt and pr derived in the previous Section II A and
define a bookkeeping parameter ε to arrange the orders of ap-
proximation, writing the tangential and radial momenta as

pt = p0
t + ε2 p2

t + O
(
ε4

)
, (2.18)

pr = εp1
r + O

(
ε3

)
. (2.19)

Here p0
t is the circular approximation, p1

r is the post-circular
approximation and p2

t is the post-post-circular value that we
want to compute. The parameter ε is also related to the order
of the radiation reaction terms of the φ coordinate in the PN
equations of motion.

Hamilton’s equation for the radial momentum reads

dpr

dt
= −∂H

∂r
. (2.20)

The left hand side of equation (2.20) can be approximated us-
ing the chain rule and the post-circular solution to

dpr

dt
=

dpr

dr
dr
dt
≈ dp1

r

dr
dr
dt

=
dp1

r

dr
∂H
∂pr

. (2.21)

Then, combining equations (2.20) and (2.21) we obtain

−
[
∂H
∂r

]

pr=p1
r

≈
(

dp1
r

dr

) [
∂H
∂pr

]

pr=p1
r

. (2.22)
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Given the values of the radial momentum pr, the separation r,
the masses of the particles m1 and m2 and the dimensionless
spin vectors ~χ; one can solve equation (2.22) for pt using a
numerical root finding method.

III. ECCENTRICITY REDUCTION ITERATION

In order to reduce the eccentricity further beyond the post-
circular or post-post-circular initial data, we will now develop
two methods that iteratively reduce the eccentricity. The first
method corrects the initial momenta by factors (λt,λr) such
that (pt, pr) → (λt pt, λr pr), the second method corrects the
initial separation by δr such that r → r + δr, and the radial
momentum pr as for the first method. We will provide ana-
lytical expressions to compute the λt, λr and δr in terms of
the measured eccentricity and an initial phase of the oscilla-
tions that characterize eccentricity, thus both methods are very
straightforward to apply.

A. Quasi-Keplerian 1PN equations of motion

At 1PN order, bound orbits in the center of mass frame [37]
are described by:

nt(t − t0) = u − et sin u,
(φ − φ0) = (1 + k)Aeφ (u),

Aeφ (u) = 2 arctan


(

1 + eφ
1 − eφ

)1/2

tan
(u
2

) ,

r = ar(1 − er cos u).

(3.1)

Where et, er and eφ are the temporal, radial and angular eccen-
tricities, nt is called the mean anomaly, u is the true anomaly
and k is the fractional periastron advance per orbit.

The frequency of the radial oscillations is directly related to
the mean anomaly by

nt = Ωr = 2π/Pr, (3.2)

where Pr is the time between two consecutive periastron pas-
sages. The average orbital frequency can be related to the
radial oscillations by the expression

Ωφ = (1 + k)Ωr. (3.3)

The orbital quantities can be written in terms of the reduced
energy, En = E/µ, and angular momentum, h = J/µ, where
E and J = |J| are the respective dimensionful quantities and
µ = m1m2/M is the reduced mass. Moreover, defining γ = c−2

at 1PN order the orbital elements can be written as

e2
t = 1 + 2En

(
γEn

(
17
2
− 7η

2

)
+ 1

) (
h2 + γ(2 − 2η)

)
, (3.4)

e2
φ = 1 + 2En

(
γEn

(
η

2
− 15

2

)
+ 1

) (
h2 − 6γ

)
, (3.5)

e2
r = 1 + 2En

(
γEn

(
5η
2
− 15

2

)
+ 1

) (
h2 + γ(η − 6)

)
, (3.6)

ar = −
(
1 − 1

2γEn(η − 7)
)

2En
. (3.7)

nt = 2
√

2(−En)3/2
(
1 − γEn

4
(η − 15)

)
. (3.8)

The eccentricities et, er and eφ can be related to each other
in terms of the fractional periastron advance,

eφ = et

[
1 − 1

3

(
1 − e2

t

)
(η − 4)k

]
, (3.9)

er = et

[
1 +

1
6

(
1 − e2

t

)
(8 − 3η)k

]
, (3.10)

where the fractional periastron advance k is defined as

k =
h√

h2 − 6γ
− 1. (3.11)

Combining equations (3.8) and (3.11) we can get a relation
between the mean anomaly and the fractional periastron ad-
vance,

k = 3γ
n2/3

t

1 − e2
t
. (3.12)

Note that this 1PN parametrization does not take into account
the spins of the particles, which only enter at higher PN order.

B. Eccentricity measurement

The eccentricities et, er, eφ introduced in (3.1) determine the
amplitude of oscillations in the orbital quantities relative to
the non-eccentric values. At Newtonian order the three ec-
centricities agree, but they differ in general, starting at 1PN.
For general solutions, such as those obtained from numeri-
cal relativity, it is useful to define eccentricity estimators as
time dependent functions which measure the relative devia-
tion from the non-eccentric case, normalized to agree with the
eccentricities et, er, eφ at Newtonian order. For this work, for
simplicity, we will only use the eccentricity estimator for the
orbital frequency,

eΩ =
Ω(t) −Ω(e = 0)

2Ω(e = 0)
. (3.13)

Here Ω(t) = dφ/dt can be obtained from the coordinate mo-
tion of the orbiting objects, and Ω(e = 0) refers to the orbital
frequency setting the eccentricities to zero. For examples of
using eccentricity estimators for other quantities, related to the
orbital dynamics or gravitational wave signal, see [49], and for
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a discussion of eccentricity estimators, in particular the differ-
ences between using the strain or Newman-Penrose scalar Ψ4,
see [40].

In this work, we choose an orbital quantity as our ec-
centricity estimator for simplicity and to save computational
resources for numerical relativity simulations: Using wave
quantities like the strain or ψ4 require longer numerical evo-
lutions to allow the waves to travel to the extraction sphere.
Also, obtaining a clean wave signal for the first few orbits,
where eccentricity reduction is typically applied, may require
significant computational effort to carry out the simulations,
or effort to post-process and de-noise the signal [40]. How-
ever, the methods developed in this paper can be easily reused
together with other eccentricity estimators. Among quantities
related to the orbital dynamics, the orbital frequency is conve-
nient due to its weak gauge dependence, e.g. compared to the
separation.

In the context of numerical data, obtained from a numerical
relativity simulation or numerical evolution of the PN EOM,
Ω(e = 0) could be represented by data from a simulation
corresponding to negligible eccentricity (which is straightfor-
ward to achieve for PN solutions by starting at a very large
separation), or be determined by a fit to the numerical data,
Ω0

fit(t), which does not contain oscillating terms correspond-
ing to eccentricity (which is common practice in numerical
relativity).

A simple way to fit the secular orbital frequency evolution
as a function of time, averaging out oscillations due to eccen-
tricity, coordinate gauge, or numerical artefacts, over a small
number of cycles is to use a low-order polynomial of coordi-
nate time, however such fits typically look pathological out-
side of the fitting interval, and are prone to pick up the os-
cillations due to eccentricity, gauge effects or spin evolution,
when using too many terms in the attempt of creating an accu-
rate fit. A natural ansatz which avoids these problems uses the
orbital frequency evolution of a non-eccentric binary in the
form of the TaylorT3 quasi-circular PN approximant [50, 51].
For the same reasons a similar fitting strategy has been used
in [52]. There however, only two PN-like terms are used, with
all coefficents determined by the fit. Here instead we use all
known PN terms up to third PN order, and our ansatz A0 for
the quasicircular frequency evolution is

A0 =
a θ3

8

(
1 + b1θ

2 + b2θ
3 + b3θ

4 + b4θ
5 + b5θ

6
)
, (3.14)

where the known coefficients bi as determined by PN theory
are listed in Appendix B, θ is defined as

θ =

[
η

5
|tmaxt0 − t|

]−1/8
, (3.15)

and we fit two parameters, a and t0. To accelerate the conver-
gence of the fit, tmax is chosen of the order of the merger time
of the numerical simulation, thus t0 is of order unity. The pa-
rameter a would be unity in PN theory, and fitting it leads to an
unphysical low frequency behaviour, which would be inappro-
priate for waveform modelling purposes. For our application
however, we are only interested in the time scale correspond-
ing to a numerical simulation, no inconsistency arises, and we

find that our choice of fitting parameters leads to robust and
accurate fits.

Once we have obtained a non-eccentric fit to our numerical
data, we can measure eccentricity by fitting the data using an
extended ansatz Ae, which adds a sinusoidal function to the
non-eccentric ansatz A0,

Ae = A0 + e(1 + |k1| t) cos [(1 + t |k2|)Ω1Ω0t + t1] . (3.16)

Here Ω0 is the quasi-circular value given by equation (A1),
and the coefficients to fit are a, t0, e, Ω1, k1, k2 and t1. The co-
efficients k1 and k2 have been added to capture the decreasing
eccentricity during the inspiral. In this work the fits have been
performed using the function NonlinearModelFit from
Mathematica with a global minimization method to avoid
problems related to fitting the behaviour corresponding to lo-
cal minima of the data. We have found the differential evolu-
tion method of the NonlinearModelFit function to result in
particularly robust fits.

Furthermore, we have tested this procedure to measure the
eccentricity of genuinely eccentric NR simulations, and we
found accurate measurements up to eccentricities et = 0.1.
For higher eccentricities the measurements are inaccurate due
to the fact that the single harmonic function of the ansatz of
equation (3.16) is not able to reproduce the high peak am-
plitudes in the orbital frequency. As a solution one should re-
place the single harmonic function in equation (3.16) by a sum
of different harmonics in order to correctly capture the ampli-
tude of those peaks. However, for the purposes of the present
paper we found an ansatz with a single harmonic function suf-
ficiently accurate, and we leave extensions of this measure-
ment procedure to the high eccentricity limit for future work.

C. Tangential momentum correction from Quasi-Keplerian
parametrization

In order to reduce the eccentricity resulting from the choice
of initial momenta, we need to know how much the momen-
tum changes from its quasi-circular value as a function of ec-
centricity. We can split the momentum into a tangential and
radial part, and will first compute the dependence of the tan-
gential momentum component on the orbital eccentricity eΩ

at 1PN order.
We start by using eq. (3.1) to compute eΩ as a function of

the eccentricities et and eφ defined in eqs. (3.4) and (3.5),

eΩ = f
(
et, eφ

)
. (3.17)

From the equations of motion (3.1) it is straightforward to
write at 1PN the radial coordinate, r, and the orbital frequency,
Ω = φ̇ up to linear order in eccentricity as:

r = ar(1 − er cos [Ωrt]), (3.18)

Ω ≡ φ̇ = Ωφ

(
1 + (eφ + et) cos [Ωrt]

)
. (3.19)

Combining equations (3.19) and (3.13), we get the following
expression for the orbital frequency estimator

eΩ =
eφ + et

2
. (3.20)
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We now proceed as follows:

a) In equation (3.20) write the eccentricities eφ, et in terms
of the energy and the angular momentum using the
quasi-Keplerian solution of the compact binaries in ec-
centric orbits.

b) Write the eccentricities, energy and angular momentum
in terms of the pr and pt using the Hamiltonian and the
angular momentum expressions in ADM coordinates.

c) Multiply the momenta by the factors λt and λr.

d) Substitute the values of pt and pr by the circular ones.

e) Taylor expand equation (3.20) in powers of (λt − 1) and
(λr − 1) up to linear order in (λt − 1) and (λr − 1).

f) Solve for λt, setting λr = 1.

Using the fact that the energy and the total angular momen-
tum can be written in terms of the momenta pt and pr, and in-
serting that expressions into the definitions of equations (3.5)
and (3.4) we get at 1PN order:

et =

√√
η4 + rp2

t

[
r
(
p2

r + p2
t

)
− 2η2

]

η4 + γ


η4 + rp2

t

(
r
(
p2

r + p2
t

)
− 2η2

)

η4



−1/2

×
[
− (η − 4)r2 p6

t

2η6

− (η − 4)r2 p4
r p2

t

2η6 + p2
r

(
1 − η
η2 − (η − 4)r2 p4

t

η6 +
5(η − 4)rp2

t

2η4

)
+

(3η − 10)rp4
t

η4 +
(20 − 9η)p2

t

2η2

+
2(η − 1)

r

]
, (3.21)

eφ =

√√
η4 + rp2

t

[
r
(
p2

r + p2
t

)
− 2η2

]

η4 + γ


η4 + rp2

t

[
r
(
p2

r + p2
t

)
− 2η2

]

η4



−1/2

×
[
(η − 4)r2 p6

t

2η6 +

(η − 4)r2 p4
r p2

t

2η6 + p2
r

(
− 3
η2 +

(η − 4)r2 p4
t

η6 − 3(η − 4)rp2
t

2η4

)
− (η − 6)rp4

t

η4 +
(η − 20)p2

t

2η2 +
6
r

]
. (3.22)

Then, we make the substitutions

pt → λt pt, pr → λr pr. (3.23)

If we replace equations (3.21) and (3.22) into (3.20) and Tay-
lor expand around λ0

t = 1 and use the circular value solutions
of pt and pr = 0 we obtain at 1PN order:

eΩ = 2(λt − 1) + γ(λt − 1)
(

2η
r

+
4
r

)
. (3.24)

We can invert equation (3.24) to obtain an expression for λt in
terms of the eccentricity estimator

λt = 1 +
eΩ

2
− γeΩ

2r
(η + 2). (3.25)

Equation (3.25) directly relates the eccentricity of the simu-
lation to the correction factor of pt, at 1PN order, and linear
in eccentricity, we can thus read off the momentum correction
factor λt directly from the value of the measured eccentricity.

Although this equation has been derived in the low eccen-
tricity limit, it can be used to generate approximate eccen-
tric initial data for NR simulations. Given a configuration
described by the masses of the particles, the spins, the ini-
tial linear momenta and the orbital separation, one can choose
an initial eccentricity of the simulation and then obtain how

much one has to change the tangential momentum to generate
that eccentric simulation.

The computation of λt in (3.25) solves the one parameter
problem of correcting pt to reduce the eccentricity. However,
the reduction of the eccentricity is a two dimensional problem
in the absence of precession. In the precessing case, eccen-
tricity reduction is in principle a three-dimensional problem,
however it appears that no correction to the small out-of-the
orbital plane momentum is necessary at the current level of ac-
curacy, so we restrict ourselves to a two-dimensional method.
We have previously used a different two-dimensional method
that uses PN information see [40], our new method is how-
ever significantly simpler to apply. There is a threshold of
how much the eccentricity can be reduced correcting only pt,
which we find typically around 10−3 for the cases we consider.
Hence, one needs not only to correct pt, but also pr if one
wants to efficiently reduce the eccentricity, and we develop a
two-parameter method in the next section.
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D. Correcting both tangential and radial momenta from 1PN
residuals

We will describe the relative oscillations in the orbital fre-
quency by the ansatz

RΩ = A + B cos (Ωrt + Ψ) , (3.26)

where Ωr is the frequency of the radial oscillations, and A, B
and Ψ are coefficients to be determined.

We will now derive explicit formulas in terms of the am-
plitude B and the phase Ψ of the ansatz (3.26) to rescale both
the tangential momentum by λt, and the radial momentum by
a factor λr, in order to reduce the eccentricity resulting from
the choice of initial data. In order to do that we compute the
residual of the orbital frequency, i.e., the difference between
the configuration perturbing pr and pt and the unperturbed
configuration with zero eccentricity. To our knowledge, the
effects of perturbing such a residual were first studied in [40].

We will assume that the total residual is a linear combina-
tion of the residual, Rλt p0

t
Ω

, computed perturbing only p0
t , the

residual, Rλr p0
r

Ω
, calculated just perturbing p0

r , and the resid-

ual, Rλt p0
t ,λr p0

r
Ω

, computed perturbing both momenta. In the rest
of the section we are going to compute these three residuals
and obtain from them analytical expressions for the correction
factors (λt, λr).

We start writing the residual corresponding to a perturba-
tion λt of the initial tangential momentum p0

t ,

Rλt p0
t

Ω
= Ωλt p0

t −Ωp0
t . (3.27)

In equation (3.27), Ω ≡ Ω(t) refers to equation (3.19), the an-
alytical 1PN solution at linear order in eccentricity. The mag-
nitude of the eccentricities we are working with, usually well
below 10−2, justifies to take just the linear order in eccentricity
in the equations of motion.

Note that Ωφ in equation (3.19) also depends on pt. There-
fore, we begin computing the effect of perturbing pt in Ωφ.
Combining equations (3.12), (3.2) and (3.3) we obtain the fol-
lowing expression

Ωφ =

1 + 3γ
n2/3

t

1 − e2
t

 nt. (3.28)

We can now use equations (3.4) and (3.8) to write Ωφ in terms
of the energy and the angular momentum, which at the same
time can be written in terms of the radial and tangential mo-
menta. Then, we perturb the tangential momentum a factor λt
and we Taylor expand up to linear order in λt around λ0

t = 1.
As a result we obtain

Ω
λt
φ = γ


(−5η − 9)λt

2r5/2
0

+
6η + 6

2r5/2
0

 −
3λt

r3/2
0

+
4

r3/2
0

. (3.29)

Defining Ω0 = r−3/2
0 as the Newtonian-like orbital frequency

we can rewrite (3.29) as

Ω
λt
φ = γΩ0

(
3(η + 1)

r0
− (5η + 9)λt

2r0

)
+ Ω0 (4 − 3λt) . (3.30)

For the expression of the unperturbed Ωφ we will use the ana-
lytical circular solution, equation (A1), which coincides with
the unperturbed expression of the orbital frequency Ω, assum-
ing p0

t and p0
r are given by the circular values,

Ω0
φ = Ωp0

t = Ω0

[
1 +

γ(η − 3)
2r0

]
. (3.31)

The perturbed configuration is calculated replacing (3.30) in
(3.19) to obtain

Ωλt p0
t = Ω0 [1 + (λt − 1) (4 cos(Ωrt) − 3)] + γΩ0

[
(η − 3)

2r0

+ (λt − 1)
(

(6η + 2) cos(Ωrt)
r0

− 5η + 9
2r0

)]

+ O
(
(λt − 1)2

)
.

(3.32)

Replacing equations (3.31) and (3.32) in equation (3.27), we
finally obtain

Rλt p0
t

Ω
= Ω0 (λt − 1) (4 cos(Ωrt) − 3)

+
γΩ0 (λt − 1) (4(3η + 1) cos(Ωrt) − 5η − 9)

2r0

+ O
(
(λt − 1)2

)
.

(3.33)

We can follow the same procedure to obtain the residual cor-
responding to just perturbing p0

r . We will expand now in pow-
ers of (λr − 1) and we will maintain p0

r in the expressions for
a better comparison with the formulas of [40]. In practical
computations, p0

r will be replaced by its post-circular value.
Note that in the following derivation of the residual, Ωφ does
not depend on pr. Another important fact is that equations
(3.1) assume that the motion starts at the periastron, φ0 = 0,
this condition combined with the negative value of p0

r that the
post-circular approximation yields, causes a shift of the peri-
astron by π/2. Consequently, the radial perturbations will be
dominated by a sine mode [40].

As in equation (3.27) we can write the residual as

Rλr p0
r

Ω
= Ω

λr p0
r

0 −Ω
p0

t ,p
0
r

0 . (3.34)

In equation (3.34), Ω
p0

r
0 is given by the unperturbed configura-

tion assuming a non-zero value of p0
r .

The calculations to obtain Ω
p0

t ,p
0
r

0 are the following:

1) Write et and eφ in equation (3.19) in terms of En and h.

2) Write En and h in terms of p0
t and p0

r .

3) Substitute the value of p0
t by equation (A2).

The result of applying steps 1) − 3) is

Ω
p0

t ,p
0
r

0 = Ω0

1 −
2r1/2

0

∣∣∣p0
r

∣∣∣
η

sin(Ωrt)

 + γ
2Ω0

∣∣∣p0
r

∣∣∣
ηr1/2

0

sin(Ωrt).

(3.35)
The recipe to obtain the perturbed configuration is quite

similar with some additional steps:
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a) Write et and eφ in equation (3.19) in terms of En and h.

b) Write En and h in terms of p0
t and λr p0

r .

c) Substitute the value of p0
t by equation (A2).

d) Taylor expand up to linear order in (λr − 1).

As a result of performing steps a) − d) we obtain

Ω
λr p0

r
0 = Ω0 + γ

2Ω0λrsin(Ωrt)
∣∣∣p0

r

∣∣∣
ηr1/2

0

− 2r1/2
0 Ω0λrsin(Ωrt)

∣∣∣p0
r

∣∣∣
η

+ O
(
(λr − 1)2

)
.

(3.36)

Combining equations (3.35) and (3.36) we now get

Rλr p0
r

Ω
=

2Ω0
∣∣∣p0

r

∣∣∣
η

(
r1/2

0 − γr−1/2
0

)
(λr − 1) sin(Ωrt)

+ O
(
(λr − 1)2

)
.

(3.37)

The next step of the calculation is computing the resid-
ual produced by the simultaneous perturbation of p0

t and p0
r .

The procedure to follow is quite similar to the algorithms pre-
sented so far. The residual we want to calculate is

Rλt p0
t ,λr p0

r
Ω

= Ω
λt p0

t ,λr p0
r

0 −Ω
p0

t ,p
0
r

0 , (3.38)

where Ω
p0

t ,p
0
r

0 is given by equation (3.35). The procedure we
follow to compute the residual is summarized as:

A) Write et and eφ in equation (3.19) in terms of En and h.

B) Write En and h in terms of λt p0
t and λr p0

r .

C) Substitute the value of p0
t by equation (A2) and main-

tain the value of p0
r .

D) Taylor expand up to linear order in (λt − 1) and (λr − 1).

After following steps A) − D) we obtain

Ω
λt p0

t ,λr p0
r

0 = Ω0 +
2
√

r0Ω0λrλt

∣∣∣p0
r

∣∣∣
η

sin(Ωrt) + γ
2Ω0λr

∣∣∣p0
r

∣∣∣
ηr1/2

0

[
(η

+1)λt − (η + 2)
]
sin(Ωrt) + O

(
(λr − 1)2

)

+ O
(
(λt − 1)2

)
+ O

(
(λtλr)2

)
.

(3.39)

Inserting equations (3.35) and (3.39) into (3.38) gives

Rλt p0
t ,λr p0

r
Ω

=
2r1/2

0 Ω0

η
sin(Ωrt)

∣∣∣p0
r

∣∣∣ (λrλt − 1)

+ γ
2Ω0

ηr1/2
0

sin(Ωrt)
∣∣∣p0

r

∣∣∣ [λr (η (λt − 1) + λt − 2) + 1
]
.

(3.40)

Finally, the total residual at 1PN can be understood as the sum
of (3.33), (3.37) and (3.40), this is

R1PN
Ω = Rλt p0

t
Ω

+ Rλr p0
r

Ω
+ Rλt p0

t ,λr p0
r

Ω

= −3Ω0 (λt − 1) − γ(5η + 9)Ω0 (λt − 1)
2r0

+ sin(Ωrt)2Ω0

×
∣∣∣p0

r

∣∣∣
[ √

r0(λr − 1)
η

+ γ

(
(λr(η(λt − 1) + λt − 2) + 1

η
√

r0

− (λr − 1)
η
√

r0

)
+
√

r0
(λrλt − 1)

η

]
+ cos(Ωrt) [4Ω0 (λt − 1)

+γ

(
6ηΩ0 (λt − 1)

r0
+

2Ω0 (λt − 1)
r0

)]
.

(3.41)

Once we have derived the expression (3.41) for the residual,
we want to compare it to (3.26) in order to obtain expressions
of λt and λr in terms of the amplitude and the phase of the
residual. We do not take into account the offset terms because
the 1PN order is not accurate enough to described the full PN
dynamics and even less the dynamics of the full Einstein equa-
tions dynamics of a NR simulation.

The total residual, equation (3.41), is a sum of sine and co-
sine terms that we want to express as a single cosine plus a
phase as in equation (3.26). The result of such a transforma-
tion gives two expressions for the amplitude B and the phase
C in terms of λt and λr:

B =
[
a2

1 + a2
2

]1/2
, (3.42)

Ψ = arctan (a1/a2) , (3.43)

where a1 and a2 are given by,

a1 = 4Ω0 (λt − 1) +
2γ(3η + 1)Ω0 (λt − 1)

r0
, (3.44)

a2 =
2
√

r0Ω0 (λr − 1)
∣∣∣p0

r

∣∣∣
η

+ γ
2Ω0

∣∣∣p0
r

∣∣∣
r1/2

0 η

[
λr (η (λt − 1) + λt

−2) + 1 − (λr − 1)] +
2Ω0

∣∣∣p0
r

∣∣∣ (λrλt − 1)

ηr−1/2
0

.

(3.45)

The solution of the equations (3.44) and (3.45) consistently at
1PN order for λr and λt provides the formulas

λt = 1 +

[
B

4Ω0
− γB(3η + 1)

8r0Ω0

]
cos Ψ, (3.46)

λr = 1 +
Bη

2r1/2
0 Ω0

∣∣∣p0
r

∣∣∣

[
1 + γ

1
r0

]
sin Ψ. (3.47)

Equations (3.46) and (3.47) can be used to compute the cor-
rections of the momenta from a measured eccentricity oscil-
lation amplitude B and phase shift Ψ. The accuracy of the
procedure is limited by carrying out the computations at 1PN
order, but more importantly by the noise in numerical relativ-
ity data, due to both numerical and gauge artefacts.

82 Chapter 4. Eccentricity reduction in numerical relativity simulations



10

E. Separation correction from 1PN Residual

We will now develop an alternative method of eccentric-
ity reduction, where we replace the correction of the tangen-
tial momentum with a correction of the coordinate separation
where the NR momentum is identified with the PN momen-
tum. This is motivated by the fact that the PN and NR coordi-
nates for the initial data only agree to 2PN order [28–30], and
we will again calculate the required correction to the initial
orbital separation of the binary at 1PN order.

We compute the residual coming from the variation δr of
the initial separation given by

Rδr+r0
Ω

= Ω
r0+δr
0 −Ω

r0
0 . (3.48)

In equation (3.48), Ω
r0
0 is the unperturbed configuration,

which is computed assuming that p0
t and p0

r take the circular
values. We obtain

Ω
r0
0 = Ω0

[
1 + γ

(η − 3)
2r0

]
, (3.49)

where Ω0 = r−3/2
0 is the Newtonian-like orbital frequency. To

compute the perturbed term, we need to calculate first the ef-
fect of perturbing the initial separation in Ωφ. The calculation
is similar to the one performed in section III D. We make the
replacement

r0 → r0 + δr, (3.50)

and expand in Taylor Series around δr = 0 up to linear order
in δr. As a result we obtain

Ω
r0+δr
φ = Ω0

1 − 3δr
2r0
− γ (η − 3) (5δr − 2r0)

4r2
0

 . (3.51)

Then, for the perturbed configuration we obtain

Ω
δr+r0
0 = Ω0

[
1 +

δr
r0

(
2 cos (Ωrt) − 3

2

)
+ γ

(
η − 3
2r0

+
δr
4r2

0

[
12(η + 3) cos (Ωrt) − 5(η − 3)

]

 .

(3.52)

Inserting equations (3.49) and (3.52) into (3.48) we get

Rδr+r0
Ω

=
δrΩ0

r0

[
−3

2
+ 2 cos (tΩr) +

γ

r0

(
−5(η − 3)

4
+3(η + 3) cos (tΩr))

]
.

(3.53)

As in the previous section III D, equation (3.53) can be writ-
ten as a generic cosine function with an offset, an amplitude
and a phase of the form

R = M + N cos (Ωrt + χ) . (3.54)

Again, the amplitude N and the phase χ can be expressed by
the equations

N =
[
b2

1 + b2
2

]1/2
, χ = arctan (b1/b2) , (3.55)

where b1 and b2 are given by,

b1 =
Nr0

2Ω0
−

3Nγ
(
3q2 + 7q + 3

)

4(q + 1)2Ω0
, b2 = 0. (3.56)

Consistent with the fact that for the separation we have per-
formed a one-parameter analysis toward reducing the eccen-
tricity, we have obtained the result that the phase does not
provide information and the whole information is encoded in
the amplitude of the residual. Solving equations (3.55) and
(3.56) consistently at 1PN order gives

δr =
Nr0

2Ω0
− γ

3N
(
3q2 + 7q + 3

)

4(q + 1)2Ω0
(3.57)

Equation (3.57) provides an expression to compute a correc-
tion to the initial separation of the binary. Note that the ap-
plication of the separation correction and the tangential mo-
mentum correction are degenerate because both describe the
conservative dynamics of the binary. We could now perform
a full two-parameter analysis combining radial separation and
radial momentum, in analogy to Sec. III D, but instead we note
that we can also extend Eq. (3.57) to a 2-dimensional iterative
scheme by combining the correction for the separation with
the correction for the radial momentum derived previously,
Eq. (3.47), and we will use this 2-dimensional prescription for
successful eccentricity reduction in an example case in Sec-
tion IV B.

IV. ECCENTRICITY REDUCTION FOR NUMERICAL
DATA

In this section we apply the analytical formulae we have
previously derived (3.46), (3.47) and (3.57), relating ampli-
tude and phase of time dependent eccentricity estimators to
corrections of the momenta or radial separation, to numer-
ical data obtained from NR simulations, or, as a test case,
to numerical post-Newtonian data. We compute the orbital
frequency Ω from the position vector ~r in the center of mass
frame, with r = |~r|, and its time derivative ~v as

Ω = |~Ω| = |~r ×~v|
r2 , (4.1)

In the PN simulations ~r and ~v are computed from the motion
of the point-particles, whereas in the NR simulations they are
computed from the coordinate positions of the punctures. Our
NR setup is described in Appendix C. For the NR simulations
we use two codes, BAM [17, 53] and the EinsteinToolkit
[54], which implement a discretized version of the BSSN
[55, 56] formulation of the Einstein equations. Both codes
use the moving puncture approach [12, 17, 24, 25] with the
“1+ log” slicing and the Γ-driver shift condition [57]. The ini-
tial conditions for the evolving coordinate conditions (i.e. for
the lapse and shift), in particular the choice of vanishing shift,
lead to gauge transients, which manifest themselves as decay-
ing oscillations in the orbital frequency and separation. As
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discussed in detail in [40] for one binary black hole config-
uration, these gauge transients complicate reading off the ec-
centricity, but can be suppressed by choosing a sufficiently
small value of the Γ-driver “damping” parameter η (not to be
confused with the symmetric mass ratio used in Secs. II and
III), such as η = 0.25. The parameter η does in fact have
the dimension of inverse mass, and one might expect that for
larger mass ratios, a smaller value of η = 0.25 is required to
avoid large gauge transients. However, for larger mass ratios
gauge transients turn out to be damped out faster in general,
possibly related to the faster time scale of the smaller black
hole, and in our study we find that the choice η = 0.25 indeed
works well for all the simulations we have performed.

We will first apply eccentricity reduction to PN data as a
test case, and then apply our methods to different numerical
relativity data sets, with and without precession. As expected,
we will find that in PN the PPC prescription for initial data
leads to smaller eccentricities than the PC prescription, with
the lowest eccentricities obtained with a PN integration start-
ing at a sufficiently large separation [33]. For NR simulations
we will, however, find that PC initial data typically lead to
lower eccentricity than the PPC approximation. We also find
that for the cases we have studied, a single iteration of our
eccentricity reduction procedure is sufficient to obtain an ec-
centricity below 10−3.

A. PN example

The dynamics of PN particles can be described using
Hamilton’s equations of motion,

dX
dt

=
∂H
∂P

,
dP
dt

= −∂H
∂X

+ F. (4.2)

with X and P the position and the momentum vectors, respec-
tively, in the CM frame, H the Hamiltonian given by equation
(2.4) and F is the radiation reaction force given by equation
(3.27) in [41]. The equation of motion for the i-th spin is

dSi

dt
=
∂H
∂Si
× Si. (4.3)

The solution of such a system of equations describes the mo-
tion of a binary point-particle system in the inspiral regime.
In this section we discuss our method to reduce eccentricity in
PN, where the low computational cost of numerical solutions
and the avoidance of the initial gauge transients present in NR
greatly simplify the analysis.

To illustrate the procedure with an example black hole con-
figuration, we choose mass ratio 4, which is significantly dif-
ferent from unity, and large spins with dimensionless Kerr
paramaters ~χ1 = (0., 0., 0.8) and ~χ2 = (0., 0.,−0.8) at an ini-
tial separation Di = 12M, where M is the total mass of the
binary system. We integrate the PN equations of motion until
a minimal separation D f = 6M. We run two PN simulations,
with initial momenta computed with the post-circular (PC),
and alternatively the post-post-circular (PPC) approximation.

For both simulations we measure the eccentricity using a fit
to the ansatz (3.16), and apply two iterations employing the

correction factors for the tangential and radial momenta given
by equations (3.46) and (3.47). The corresponding eccentric-
ity time evolution of the eccentricity estimators for each iter-
ation are plotted in Figure 1, which shows that the post-post-
circular approximation indeed produces a simulation with a
smaller eccentricity than the post-circular approximation, as
one would expect. Moreover, in Figure 1 we have added the
result of initialising the momenta at Di = 12M from another
PN evolution starting at a larger initial separation D0 = 30M
with PC initial momenta, which we have integrated to a sep-
aration of Di = 12M. In this case the eccentricity is much
smaller, eΩ = (5±2) ·10−5, due to some initial eccentricity be-
ing radiated away during inspiral before reaching Di = 12M,
and to the high accuracy of PC momenta at D = 30M.
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Figure 1: Eccentricity reduction iterations for the configuration q =

4, χ1z = 0.8, χ2z = −0.8. The upper panel shows the time evolu-
tion of eΩ specifying PC momenta at iteration 0 (red curve) and the
lower panel shows the same quantity specifying PPC momenta at it-
eration 0. Afterwards, two more iterations are performed (orange and
black curves). The continuous curves correspond to the data, and the
dashed ones to the fits for each iteration (blue, gray, magenta, brown).
Additionally the result of integrating from a longer separation (li) is
shown in each panel.

The eccentricity measurement yields a time dependent re-
sult corresponding to the choice of the ansatz (3.16). For ex-
ample, for iteration 0 in the post-circular approximation, one
obtains the following expressions for the eccentricity and the
amplitude,

εΩ = 0.00197344 − 1.97129 · 10−7t, (4.4)

A = 0.00008561 − 8.55168 · 10−9t. (4.5)
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However, as in this case the time dependent terms are typi-
cally very small and can be neglected, and we simply use the
eccentricity values at t = 0.

The values of the eccentricity and the different correction
factors are shown in Table I. In addition, Table I contains the
values of eccentricity and the corresponding correction fac-
tors when one corrects not only the momenta, but also the ra-
dial momenta and the distance of the binary. Consistent with
Fig. 1 we see that PPC initial data produce lower eccentricity
than PC for the first iteration. The final eccentricities after 2
iterations are however very similar, although the ratio of effi-
ciency gets worse in each iteration due to the fact that a highly
accurate measurement of the amplitude and the phase of the
residual is required. One observes that the method can easily
obtain eccentricities of the order 2 ·10−4 for a case with a rela-
tively high mass ratio and high spins, and that one can equally
well choose to correct the tangential and radial momenta or
the orbital separation and the radial momentum.

Post-Circular correcting for (λt, λr)
Iteration (εΩ ± δεΩ) ·10−3 10 · pt pr · 103 λt λr

0 1.973 ± 0.006 0.56477 0.238712 1.00085 1.19247
1 0.561 ± 0.015 0.56529 0.284657 0.99974 0.94794
2 0.221 ± 0.007 0.56516 0.271206

Post-Post-Circular correcting for (λt, λr)
Iteration (εΩ ± δεΩ) ·10−3 10 · pt pr · 103 λt λr

0 0.833 ± 0.005 0.56517 0.238712 1.00013 1.19737
1 0.567 ± 0.003 0.56525 0.285827 0.99974 0.96201
2 0.197 ± 0.005 0.56510 0.274971

Post-Circular correcting for (δr, λr)
Iteration (εΩ ± δεΩ) ·10−3 D pr · 103 δr λr

0 1.973 ± 0.006 12.0 0.238712 0.01432 1.19247
1 0.718 ± 0.004 12.0143 0.284657 0.00445 0.999083
2 0.230 ± 0.003 12.0099 0.284396

Table I: Eccentricity estimator and its corresponding statistical error
for the configuration q = 4, χ1z = 0.8, χ2z = −0.8.

We have also tested our eccentricity reduction method in
the PN description of precessing binaries, with similar results:
even for high spins we can obtain eccentricities of the or-
der of 10−4 in one or two iterations. In the precessing case
the method of integrating from a longer separation still yields
lower eccentricities, but it does not provide control of the ini-
tial spin components of the binary at separation Di due to the
fact that the spins also evolve in time during the integration.
Controlling the spins at Di would require to set up another it-
eration procedure to define the spins at the larger “auxiliary
separation” (D = 30M in our example) in terms of the de-
sired spins at Di. Specifying the initial data using the PC or
PPC prescription can significantly simplify setting up param-
eter studies where control of the spin configurations is desired
at Di. As we will see below, this argument is even stronger
in NR, where due to the deviations between PN and full GR
there is no significant advantage in integrating from a large

initial separation as compared with PC or PPC data.

B. Numerical relativity examples

Applying our eccentricity reduction procedure to numerical
relativity simulations adds several complications compared
with the post-Newtonian example: Apart form the increase
in computational cost by 6-7 orders of magnitude, the main
technical problem are gauge transients resulting from the pro-
cedure of initialising the coordinate conditions of the moving
puncture evolutions (in particular the initially vanishing ve-
locity of the punctures). We address this problem by using
a small value of the shift parameter η, of η = 0.25, for the
evolutions we report on below, and by cutting away the first
∼ 200M of time evolution. Black-hole binary puncture ini-
tial data also exhibit a burst of junk radiation due to unphys-
ical gravitational wave content in the initial data. Here we
do not take into account the resulting small change to initial
masses, spins, and momenta, although this may be beneficial
when attempting to construct initial data with even lower ec-
centricities. For the cases we have studied so far, our choice of
η = 0.25, together with the robust setup of our fitting method
to determine eccentricity presented in Sec. IV, provides suf-
ficiently accurate estimates not only of the eccentricity, but
also of the phase shift defined in Eq. (3.26), which is required
to determine the change in radial momentum or separation to
implement a 2-parameter eccentricity reduction algorithm.

We first discuss our procedure for the example of a pre-
cessing binary with mass ratio q = 2 and dimensionless spin
vectors ~χ1 = (0, 0, 0), ~χ2 = (0.3535, 0.3535, 0.5), and initial
orbital separation D = 10.8M. First, we run a simulation
with PC initial data with BAM at low resolution with N = 64
points to measure the eccentricity, fitting the oscillations of Ω

computed using eq. (4.1). Then, we adjust the values of the
tangential and radial momenta according to eqs. (3.46) and
(3.47) to reduce eccentricity, and we run two low resolution
simulations with the corrected momenta, one with BAM an-
other with ET with the same numerical resolution and gauge
conditions. The results for the time evolution of the eccentric-
ity estimator for the three simulations are shown in Figure 2.

After one iteration the eccentricity has been notably re-
duced with both codes. The values of eccentricity for itera-
tion 1 in both codes is quite similar. However, the ET residual
is cleaner than for the BAM evolution, which contains more
high frequency noise which we attribute to different settings
for numerical dissipation in this simulation, and which com-
plicates the measurement of the phase and the amplitude of the
residual and leads to different results in iteration 1. The sign
of the correction to the tangential momentum is read from the
value of the residual at the initial time of the evolution, ac-
cording to the expression for the residual computed in Section
III: For positive residual, as is the case in iteration 0, the mo-
mentum has to be decreased; while for negative residual the
momenta should be increased. The values of the eccentric-
ity as well as the correction factors used are shown in Table
II. After a single iteration the eccentricity is well below 10−3,
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Figure 2: Time evolution of the eccentricity estimator for the con-
figuration q = 2, ~χ1 = (0, 0, 0), ~χ2 = (0.3535, 0.3535, 0.5) and
D = 10.8M. The thick curves corresponds to the data and the dashed
ones to the fits. For the three simulations we have discarded the ini-
tial t = 200M of evolution time.

which we have considered sufficient to neglect eccentricity in
our waveform modelling applications, and we have not car-
ried out further iterations. For completeness we also show in
Figure 3 the time evolution of the orbital separation and the
orbital frequency of that configuration. One can observe from
the plots that the oscillations remaining after one iteration of
the eccentricity reduction procedure cannot be appreciated on
that scale of the plot any more.

Iteration Code (εΩ ± δεΩ) ·10−3 λt λr

0 BAM 1.37 ± 0.02 0.9996 0.8456
1 BAM 0.48 ± 0.02
1 ET 0.51 ± 0.03

Table II: Eccentricity estimator and its corresponding statistical error
for the configuration q = 2, ~χ1 = (0, 0, 0), ~χ2 = (0.3535, 0.3535, 0.5)
and D = 10.8M.

In a second example we apply the correction of the sepa-
ration and radial momentum to a NR simulation, combining
the corrections in the radial momentum and the initial orbital
separation,

p1
r = λr p0

r , r1
0 = r0

0 + δr. (4.6)

We choose the spin-aligned configuration ID13 of Table V,
i.e., q = 1, χ1z = −0.5, χ2z = 0.5 with D = 11M. The results
of applying the eccentricity reduction procedure are shown in
Table III. The eccentricity residual is plotted in Figure 4.

Looking at Figure 4 one checks that the eccentricity estima-
tor is dominated by high frequency noise. That is the reason
why the quality of the fit is so bad and its statistical error so
large. One can also check comparing the value of the eccen-
tricity after one iteration for ID13 from Table V where one
corrects the momenta and the value from Table III that both
results are consistent and similar providing eccentricity of the
same magnitude.
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Figure 3: Time evolution of the orbital quantities for the configu-
ration q = 2, ~χ1 = (0, 0, 0), ~χ2 = (0.3535, 0.3535, 0.5) and initial
separation D = 10.8M. In the upper panel we plot the time evolu-
tion of the orbital separation of the binary. In the lower panel the
orbital frequency of the binary is plotted for the different iterations.
The blue dashed curve corresponds to iteration 0 run with the BAM
code and PC initial data. The red curve corresponds to iteration 1 run
the BAM code and the black dashed one to the simulation performed
with the ET code.

Iteration Code N δr λr (εΩ ± δεΩ) ·10−3

0 BAM 64 1.24 ± 0.03
1 BAM 64 −0.0023 0.8581 0.2 ± 0.2

Table III: Eccentricity estimator and its corresponding statistical er-
ror for the configuration ID2 of Table V.

C. Post-Circular and Post-post-circular in NR

In order to compare PC and PPC initial data, we have run 12
pairs of simulations, ranging from equal mass non-spinning to
mass ratio q = 8 and precessing simulations, using both PC
and PPC initial data for each case. The results are shown in
Table IV. All the simulations in Table IV have been computed
using the BAM code, at low resolution with N = 64 points in
the innermost box, and setting the gauge parameter η = 0.25
as before.

Figure 5 shows a graphical representation of Table IV.
Overall, the PC initial data seem to work better in NR than
PPC, except for the configuration 9, where PPC initial data
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Figure 4: Time evolution of the eccentricity estimator for the config-
uration q = 1, χ1z = −0.5, χ2z = 0.5. The black curve corresponds to
the data and the dashed pink line to the fit to the data.
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Figure 5: Measured eccentricity, with statistical error bars computed
from the nonlinear fits, for the 12 configurations reported Table IV,
comparing PC initial data (rounded blue points) and PPC data (yel-
low squares).

lead to a lower eccentricity than PC data. This apparently
counter-intuitive result is not particularly surprising: the nu-
merical relativity evolutions differ from PN not only be-
cause of missing higher order PN terms, but also because the
ADMTT [27] gauge underlying our post-Newtionan results
differs from the gauge used in our numerical relativity code
beyond 2PN order [28]. While in post-Newtonian theory the
PPC approximation is indeed superior, the deviation of PC
data could either lead to momenta that are closer to NR, or
indeed show larger eccentricities than PPC.

D. Eccentricity reduction for post-circular initial data for a
range of numerical relativity simulations

In Table V we present results from single step eccentricity
reduction for a variety of configurations, using both the BAM
and ET codes, and starting with PC initial momenta, which
as we have seen in the previous section IV C typically yield
smaller eccentricities than PPC momenta for numerical rela-

ID Approx. q ~χ1 ~χ2 D/M (εΩ ± δεΩ) · 103

1 PC 1 (0, 0, 0) (0, 0, 0) 11 1.42 ± 0.02
1 PPC 1 (0, 0, 0) (0, 0, 0) 11 1.43 ± 0.04
2 PC 1 (0, 0,−0.5) (0, 0,−0.5) 11 5.3 ± 0.4
2 PPC 1 (0, 0,−0.5) (0, 0,−0.5) 11 9.8 ± 0.5
3 PC 1 (0, 0, 0.5) (0, 0,−0.5) 11 1.5 ± 0.05
3 PPC 1 (0, 0, 0.5) (0, 0,−0.5) 11 2.27 ± 0.04
4 PC 2 (0, 0,−0.75) (0, 0,−0.75) 12.6 4.22 ± 0.07
4 PPC 2 (0, 0,−0.75) (0, 0,−0.75) 12.6 4.61 ± 0.16
5 PC 2 (0, 0, 0) ~α 10.8 2.68 ± 0.17
5 PPC 2 (0, 0, 0) ~α 10.8 5.43 ± 0.13
6 PC 2 (0, 0, 0) ~β 10.8 3.61 ± 0.017
6 PPC 2 (0, 0, 0) ~β 10.8 4.003 ± 0.018
7 PC 4 (0, 0,−0.8) (0, 0, 0.8) 11 4.05 ± 0.07
7 PPC 4 (0, 0,−0.8) (0, 0, 0.8) 11 7.25 ± 0.06
8 PC 4 (0, 0,−0.8) (0, 0,−0.8) 11 17.9 ± 1.5
8 PPC 4 (0, 0,−0.8) (0, 0,−0.8) 11 17.5 ± 1.5
9 PC 4 (0, 0, 0.8) (0, 0,−0.8) 11 17.4 ± 0.6
9 PPC 4 (0, 0, 0.8) (0, 0,−0.8) 11 15.3 ± 0.5

10 PC 4 (0, 0, 0.8) (0, 0, 0.8) 11 5.5 ± 0.5
10 PPC 4 (0, 0, 0.8) (0, 0, 0.8) 11 9.9 ± 0.6
11 PC 8 (0, 0, 0.5) (0, 0,−0.5) 11 4.64 ± 0.14
11 PPC 8 (0, 0, 0.5) (0, 0,−0.5) 11 8.0 ± 0.2
12 PC 8 (0, 0,−0.5) (0, 0,−0.5) 11 12.49 ± 0.18
12 PPC 8 (0, 0,−0.5) (0, 0,−0.5) 11 22.9 ± 0.4

Table IV: Simulations performed to compare PC and PPC initial data.
In the first column an identifier is assigned to each configuration
which is run with the PC and PPC approximations. In the following
columns the mass ratio, the dimensionless spin vectors of each black
hole are specified, with the vectors ~α = (0.3535,−0.3535,−0.5) and
~β = (0.3535,−0.3535, 0.5). It is also shown the initial orbital separa-
tion and the value of the eccentricity estimator and its corresponding
statistical error.

tivity gauge and initial separations we use. All the simulations
using PC initial data, labelled as iteration 0 of the eccentric-
ity reduction procedure, are carried out with gauge parameter
η = 0.25 and low numerical resolution of 643 grid points for
the innermost grid (containing the black holes). While we
have used the same setup for some of the iteration 1 simula-
tions, for others we use our typical setup for productions runs:
a higher resolution of 803 or 963 points, and a gauge parameter
of η = 1, which increases initial gauge transients, but tends to
reduce high frequency noise. For all the cases shown, a single
eccentricity reduction step reduces the eccentricity to below
10−3.

However, we show that the η parameter can also be set to 1
in the first iteration and one can also get an important reduc-
tion of the eccentricity, as happens with the case ID19. The
residuals of such a configuration are shown in Figure 6. For
that configuration one can also observe the poor quality of the
fit in iteration 1, which is consistent with the high value of the
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Figure 6: Time evolution of the eccentricity estimator for the config-
uration q = 3 non-spinning. The red curve corresponds to iteration 0
and the black one to iteration 1. The dashed lines are fits to the data.
Both simulations were run with η = 1.

error of the eccentricity in Table V.
The lower the value of the eccentricity, the more difficult

becomes the eccentricity measurement because some features
due to the lack of resolution of the code can appear, like high
frequency noise coming from the finite difference scheme.
Furthermore, it becomes difficult to disentangle gauge oscil-
lations from eccentricity oscillations. As one can observe in
Figure 7 where the eccentricity estimators of the configura-
tions ID1, ID7, ID18 and ID23 from Table V are plotted.

Finally, the results of Table V allow one to discuss which
PN order in the PN expressions for the initial momenta (pt, pr)
is closer to the corrected momenta which provide low ec-
centric initial data. The results are displayed in Figure 8.
We have computed the difference in absolute value between
the corrected tangential or radial momentum (pre f

t , pre f
r ) and

the PC and PPC values at a given PN order (pi
t, pi

r), with
i = 0, 1, 1.5, 2, 2.5, 3, 3.5.

On the one hand, the upper and intermediate plots of Figure
8 show that in order to have low-eccentricity initial data one
requires the knowledge of high PN orders for the tangential
momentum. In addition, when comparing the top and inter-
mediate panels of Figure 8 one can check that the PPC ap-
proximation has larger values than the PC, and also one ob-
serves that for the PC the difference between 3PN and 3.5PN
is very small.

On the other hand, the lower panel of Figure 8 reveals that
the use of higher PN orders for the radial momentum does not
help significantly to reduce the eccentricity. In fact, the lower
PN orders seem to provide lower differences. This is in agree-
ment with some of the statements of [31] with respect to the
use of low PN order expressions in eccentricity reduction pro-
cedures and explains the success of their method. However,
note that small changes in the tangential momentum translate
into large changes in the eccentricity, while the eccentricity is
less sensitive to changes in the radial momentum [58], this is
due to the fact that ∂et/∂λt � ∂er/∂λr. In addition, the small
difference between the different PN orders implies that the use
of different PN orders for the radial momentum provides very

similar results. Therefore, while the differences between the
values of pr at different PN do not have a large effect on the
eccentricity, the smaller differences for pt between the PN or-
ders are large enough to directly affect the eccentricity.

V. SUMMARY AND CONCLUSIONS

In this paper we have developed a suite of methods which
use post-Newtonian approximations to produce low eccentric-
ity initial data for binary black hole evolutions in numeri-
cal relativity. The methods rely on working with sufficiently
large numerical separations to allow for several orbits before
merger, so that an accurate fit can be performed to determine
the eccentricity of the numerical data, and to avoid a break-
down of the post-Newtonian approximations which we use.
These requirements are consistent with the usual requirements
for waveform modelling, where e.g. waveforms need to be
long enough to be able to glue NR data to PN data and con-
struct a PN-NR hybrid waveform. Length requirements for
numerical relativity waveforms have been discussed e.g. in
[59–61].

We have first compared three alternatives to set initial mo-
menta from PN calculations: numerical integration from a
large distance, and the PPC and PC approximations. We have
found that, as expected, integration from a large distance in-
deed leads to PN evolutions with negligible eccentricity, and
that PPC initial data yield smaller eccentricity than PC initial
data for PN evolutions. When using the same prescriptions
for the initial momenta in NR evolutions however, PC initial
data typically lead to smaller eccentricities. The fact that PC
initial data result in particularly low eccentricities of puncture
initial data for NR simulations has previously been noted in
[34], and we extend their explicit formulas for the momenta
in the post-circular approximation to 3.5PN order.

We have also discussed the post-post-circular approxima-
tion, which provides an analytical correction to the tangential
momentum, maintaining the radial momentum from the PC
approximation. We have explicitly shown the success of the
PPC approximation in PN, and the ability to generate low ec-
centric PN initial data without any further iteration. However,
we have also checked performing 24 simulations correspond-
ing to 12 configurations that PPC momenta do not provide
lower eccentric initial data than PC in NR. This is mainly due
to the fact that PPC corrections does not provide the appro-
priate correction in NR, because the difference due to the fact
that PN and NR have different coordinate systems up to 2.5PN
overshoots the correction.

The key idea of our eccentricity reduction procedure is to
derive explicit formulas to the correction of either the tangen-
tial and radial momentum, or alternatively the separation and
radial momentum, in terms of the measured eccentricity and
the initial phase of the oscillations related to eccentricity. We
have found that fitting the orbital frequency evolution to the
TaylorT3 approximant provides a robust method to determine
the eccentricity and initial phase with sufficient accuracy to be
able to reduce the eccentricity below 10−3 in a single iteration.
Reducing the eccentricity below 10−4 for our moving puncture
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ID Iteration Code N η q ~χ1 ~χ2 D/M 10 · pt 103 · pr λt λr (εΩ ± δεΩ) · 103

1
0 BAM 64 0.25 1 (0, 0, 0) (0, 0, 0) 12 0.850941 0.53833 0.9997 0.8695 1.42 ± 0.02
1 BAM 96 0.25 1 (0, 0, 0) (0, 0, 0) 12 0.850686 0.468113 0.22 ± 0.02

13
0 BAM 64 0.25 1 (0, 0,−0.5) (0, 0, 0.5) 11 0.901836 0.722706 0.9998 0.8581 1.24 ± 0.03
1 BAM 64 0.25 1 (0, 0,−0.5) (0, 0, 0.5) 11 0.901688 0.620187 0.27 ± 0.02

14
0 BAM 64 0.25 1 (0, 0, 0.5) (0, 0, 0.5) 11 0.874251 0.601797 0.999237 0.9346 1.64 ± 0.03
1 BAM 64 0.25 1 (0, 0, 0.5) (0, 0, 0.5) 11 0.873583 0.562465 0.39 ± 0.03

15
0 ET 64 0.24 1.5 (0, 0,−0.6) (0, 0, 0.6) 10.8 0.868557 0.699185 0.999737 0.9168 1.12 ± 0.05
1 ET 80 0.24 1.5 (0, 0,−0.6) (0, 0, 0.6) 10.8 0.856941 0.641051 0.84 ± 0.165

16
0 ET 64 0.2314 1.75 (0, 0, 0.6) (0, 0,−0.6) 10.8 0.856941 0.685199 0.999643 0.8525 1.52 ± 0.08
1 ET 80 0.2314 1.75 (0, 0, 0.6) (0, 0,−0.6) 10.8 0.856636 0.584173 0.43 ± 0.07

17
0 ET 64 0.2314 1.75 (0, 0,−0.6) (0, 0, 0.6) 10.8 0.834827 0.649957 0.999903 0.8941 1.12 ± 0.14
1 ET 80 0.2314 1.75 (0, 0,−0.6) (0, 0, 0.6) 10.8 0.834746 0.581178 0.66 ± 0.13

18
0 BAM 64 0.2222 2 (0, 0, 0.75) (0, 0, 0.75) 11.1117 0.760924 0.450647 0.999937 0.6566 2.38 ± 0.07
1 BAM 96 0.2222 2 (0, 0, 0.75) (0, 0, 0.75) 11.1117 0.760876 0.295898 0.47 ± 0.05

19
0 BAM 80 0.1875 3 (0, 0, 0) (0, 0, 0) 10 0.72377 0.575703 0.999914 0.8629 1.41 ± 0.07
1 BAM 64 0.1875 3 (0, 0, 0) (0, 0, 0) 10 0.723708 0.496774 0.29 ± 0.24

7
0 BAM 64 0.16 4 (0, 0,−0.8) (0, 0, 0.8) 11 0.559207 0.336564 0.998501 0.7341 4.05 ± 0.07
1 BAM 64 0.16 4 (0, 0,−0.8) (0, 0, 0.8) 11 0.558369 0.24708 0.45 ± 0.4

20
0 BAM 64 0.0987 8 (0, 0, 0.5) (0, 0, 0.5) 11 0.102969 0.345755 1.00066 1.3512 2.2 ± 0.4
1 BAM 64 0.0987 8 (0, 0, 0.5) (0, 0, 0.5) 11 0.139132 0.345985 0.45 ± 0.4

21
0 BAM 64 0.2222 2 (0, 0, 0) (0.4949, 0.4949, 0) 10.8 0.811783 0.649957 0.999788 0.9802 6.4 ± 1.7
1 ET 80 0.2222 2 (0, 0, 0) (0.4949, 0.4949, 0) 10.8 0.811611 0.581178 0.40 ± 0.05

22
0 BAM 64 0.2222 2 (0, 0, 0) (0.1767, 0.1767, 0) 10.8 0.812379 0.610965 0.999534 0.9009 1.46 ± 0.02
1 ET 80 0.2222 2 (0, 0, 0) (0.1767, 0.1767, 0) 10.8 0.812001 0.550427 0.54 ± 0.05

23
0 ET 64 0.2222 2 (0, 0, 0) (−0.1767, 0.1767, 0.5) 10.8 0.793749 0.53149 0.99994 0.881549 1.88 ± 0.01
1 ET 80 0.2222 2 (0, 0, 0) (−0.1767, 0.1767, 0.5) 10.8 0.793701 0.468535 0.28 ± 0.05

24
0 ET 64 0.2222 2 (0, 0, 0) (−0.3535, 0.3535, 0.5) 10.8 0.7935 0.531374 0.999772 0.843376 2.13 ± 0.03
1 ET 80 0.2222 2 (0, 0, 0) (−0.3535, 0.3535, 0.5) 10.8 0.79332 0.448148 0.48 ± 0.05

25
0 ET 64 0.2222 2 (0, 0, 0) (−0.3535, 0.3535, 0.) 10.8 0.812118 0.611108 0.999848 0.895657 1.78 ± 0.07
1 ET 80 0.2222 2 (0, 0, 0) (−0.3535, 0.3535, 0.) 10.8 0.811994 0.547343 0.69 ± 0.07

Table V: Summary of the eccentricity reduced simulations. In the first column we label each configuration, the second one specifies the
iteration. The code used and the number of points N used in the innermost level of the codes are displayed, as well as the value of the
parameter η appearing in the Γ−driver shift condition. Then, the mass ratio q = m2/m1, and the dimensionless spin vectors, ~χ1, ~χ2, the orbital
separation D/M, the tangential momenta pt multiplied by 10 and the radial momentum pr multiplied by a factor 103 are shown. The correction
factors λt and λr computed from iteration zero are described. The values of the eccentricity estimators εΩ and their corresponding statistical
error δεΩ from the fit are also given.

evolutions will require to reduce the numerical noise with im-
proved choices for numerical dissipation, on which we will
report elsewhere, and will also require a discussion of spin
oscillations in the context of spin precession. Such a study
has been performed in [52], where eccentricities below 10−4

have been achieved for precessing simulations in four itera-
tions, while we can reach eccentricities of the order O(10−4)
in one iteration. We also note that in [52] the test cases start at
separation d = 16M, which would improve the performance
of the PC approximation and of the PN expressions on which
we base our eccentricity reduction method, however here we
want to show that the method works well for simulations of in-
termediate length, of typically between 5 and 10 orbits, which
can be performed with moderate computational cost and are

still very beneficial for waveform modelling purposes.

When only moderately low eccentricities are desired, or as
the first step in an iterative procedure, it is possible to only cor-
rect the tangential momentum, using Eq. (3.25). In this case it
is important to accurately determine the eccentricity, but not
the phase Ψ in Eq. (3.46). The two-dimensional schemes,
where also the radial momentum is changed, rely on an ac-
curate extrapolation of the residual (3.26) to the initial time
t = 0 of the simulation. This is made possible by fitting the
frequency evolution to the TaylorT3 approximant. This ansatz
avoids artefacts outside of the numerical fitting region, which
are characteristic for polynomial fits.

In this paper we use the orbital frequency, which is coordi-
nate dependent, to measure eccentricity. In order to suppress
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Figure 7: Time evolution of the eccentricity estimators. In the top left panel one has the configuration ID1, in the top right panel ID18, in the
bottom left plot ID7 and in the bottom right picture ID23 from Table V. The red curves correspond to the data of iteration 0 and the black ones
to the data of iteration 1. The dashed lines correspond to fits to the eccentricity estimators.

initial gauge transients we use a small value of the η parame-
ter appearing in the Γ-driver shift condition, η = 0.25, as has
been studied in some detail in [40]. Here we show that this
method works well for a variety of cases, including precess-
ing ones. As an alternative to measuring the eccentricity from
the orbital frequency one could use the wave frequency [40],
employing methods to denoise the wave frequency such as
those employed in [40]. For our setup of numerical relativity
simulations, abstaining from an accurate determination of the
gravitational wave signal however saves computational cost
for the low resolution simulations used to compute the cor-
rected momenta or separation. The method should also apply
to numerical relativity codes based on different methods and
in particular coordinate gauges, e.g. the SpEC code [62]. We
also hope that the simplicity of the procedure benefits exten-
sion to binary systems containing matter, in particular neutron
stars or boson stars.

A coordinate dependence that is more problematic than the
one for the orbital frequency arises from mapping PN mo-
menta at some coordinate separation in the PN ADMTT gauge
to the same value of the coordinate separation of the punc-
tures in the coordinates corresponding to Bowen-York initial
data, which only agree with ADMTT up to second PN order
[28]. We have addressed this problem by developing two ver-
sions of our iterative scheme to correct the initial parameters
of the simulation to reduce the inherent eccentricity: In the
“traditional” version we correct our initial guesses for the tan-
gential and radial momenta (pt, pr). In the alternative version
we correct for the initial separation and pr. The second ver-

sion, which appears logically more consistent, and is hoped to
provide advantages when constructing hybrid PN-NR dynam-
ics and waveforms, e.g. for precessing configurations, where
not only the waveforms but also the spin evolutions should be
glued together. This will be explored in future work.

The corrections pt → λt pt (3.46), pr → λr pr (3.47), and
r0 → r0 +δr (3.57) can be applied iteratively, we find however
that when combing the procedure with PC initial momenta for
iteration 0, for the cases we have studied, which include mass
ratios as high as 8 and also some precessing simulations, a sin-
gle iteration was sufficient to obtain eccentricities below 10−4.
For those cases where we applied a second iteration, eccen-
tricities dropped at least by an additional factor of 2. How-
ever, there may be parts of the parameter space, especially
high mass ratios and high spins, where the initial PN formu-
las will produce significantly larger eccentricities of the order
O(10−2) requiring in those cases more than iteration to reach
a value of the eccentricity of the order O(10−4).

Our implementation of the eccentricity reduction procedure
with analytical formulas relating the eccentricity and the
correction of the momenta needed to eliminate it, provides
real control in the eccentricity of a PN or NR simulation.
As shown in this communication this can be used to reduce
the amount of eccentricity in the simulation, but it can also
be used to perform eccentric simulations. This can be used
to generate eccentric NR and PN simulations, which can be
glued into hybrid waveforms that are the fundamental inputs
for waveform modelling.
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Figure 8: Absolute difference between the low eccentric tangential
or radial momentum value, (pre f

t , pre f
r ), from Table V and the mo-

mentum at a given PN order, (pi
t, pi

r) with i = 0, 1, 1.5, 2, 2.5, 3, 3.5
for the configurations of Table V. In the upper panel the absolute
difference for the values of the PC tangential momentum at different
PN orders are shown, in the intermediate one the absolute differences
for the PPC tangential momentum, and in the lower panel the abso-
lute differences for the radial momentum. The ID in the three plots
correspond to those of Table V.
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Appendix A: PN initial data formulas

We present the formulas for the orbital frequency, the tan-
gential momentum and the ADM mass as a function of the
separation at 3.5PN order,

MΩ =
1

r3/2
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16(q + 1)6 −
3
(
4q2 + 9q + 4

)
q2χ1yχ2y

4(q + 1)6

+
3
(
10q2 + 21q + 10

)
q2χzχ2z

8(q + 1)6 +

(
3q2 + 38q + 50

)
qχ2

z

16(q + 1)6 − 3497q2

384(q + 1)8 −
(
52q2 + 12q − 25

)
q3χ2

2x

16(q + 1)6

+

(
q2 − 17q − 15

)
q3χ2

2y

8(q + 1)6 +

(
−15q3 − 17q2 + q

)
χ2
y

8(q + 1)6 +

(
50q2 + 38q + 3

)
q3χ2

2z

16(q + 1)6 + π2
(

81q6

128(q + 1)8 +
81q5

32(q + 1)8

+
243q4

64(q + 1)8 +
81q3

32(q + 1)8 +
81q2

128(q + 1)8

)
+

179q
128(q + 1)8

]
+

1
r9/2


3(20q + 7)q4χ2

2xχ2z

8(q + 1)6 −
3(12q + 5)q4χ2

2yχ2z

16(q + 1)6

−3(12q + 5)q4χ3
2z

16(q + 1)6 + χ2
1x

(
3(22q + 15)q2χ2z

8(q + 1)6 +
3(7q + 20)qχ1z

8(q + 1)6

)
+ χ2

1y

(
−3(28q + 15)q2χ2z

16(q + 1)6 − 3(5q + 12)qχz

16(q + 1)6

)

−3(22q + 23)q2χ2
1zχ2z

16(q + 1)6 + χ1x

(
3(5q + 3)q3χ2xχ2z

2(q + 1)6 +
3(3q + 5)q2χ2xχ1z

2(q + 1)6

)
+ χ1y

(
3(3 − 4q)q3χ2yχ2z

8(q + 1)6 +
3(3q − 4)q2χ2yχz

8(q + 1)6

)

+χ1z


3(15q + 22)q3χ2

2x

8(q + 1)6 −
3(15q + 28)q3χ2

2y

16(q + 1)6 − 3(23q + 22)q3χ2
2z

16(q + 1)6 −
(
128q5 + 181q4 − 88q3 + 81q2 + 544q + 312

)
q

64(q + 1)8



−
(
312q5 + 544q4 + 81q3 − 88q2 + 181q + 128

)
q2χ2z

64(q + 1)8 − 3(5q + 12)qχ3
z

16(q + 1)6

 . (A3)

In this work we have chosen to specify as initial condition
the orbital separation r. Another possible choice is to spec-
ify the initial orbital frequency where we want to start our
simulation. Then, equation (A1) can be inverted to obtain the

relation r(Ω), and then write the separation, the tangential mo-
mentum and the ADM mass in terms of the orbital frequency.
The resulting equations are,

r
M

= Ω−2/3 − 3q2 + 5q + 3
3(q + 1)2 +

[
− (3q + 4)χ1z

6(q + 1)2 −
q(4q + 3)χ2z

6(q + 1)2

]
Ω1/3 +

−
χ2

1x

(q + 1)2 −
2qχ2xχ1x

(q + 1)2 +
χ2

1y

2(q + 1)2 +
q2χ2

2y

2(q + 1)2

+
χ2

1z

2(q + 1)2 +
q2χ2

2z

2(q + 1)2 +
−18q4 + 9q3 + 62q2 + 9q − 18

72(q + 1)4 +
qχ1yχ2y

(q + 1)2 +
qχ1zχ2z

(q + 1)2 −
q2χ2

2x

(q + 1)2

 Ω2/3

+


q
(
3q2 − 6q − 26

)
χ1z

24(q + 1)4 −
q
(
26q2 + 6q − 3

)
χ2z

24(q + 1)4

 Ω +



(
71q2 + 40q − 8

)
χ2

1x

24(q + 1)4 +
q
(
36q2 + 47q + 36

)
χ2xχ1x

12(q + 1)4

+
q2

(
−8q2 + 40q + 71

)
χ2

2x

24(q + 1)4 +

(
−27q2 − 15q + 7

)
χ2

1z

18(q + 1)4 +
q2

(
7q2 − 15q − 27

)
χ2

2z

18(q + 1)4 −
q
(
11q2 + 20q + 11

)
χ1yχ2y

2(q + 1)4

−
(
17q2 + 25q + 11

)
χ2

1y

6(q + 1)4 −
q2

(
11q2 + 25q + 17

)
χ2

2y

6(q + 1)4 −
q
(
15q2 + 17q + 15

)
χ1zχ2z

9(q + 1)4 +
167π2q

192(q + 1)2

Chapter 4. Eccentricity reduction in numerical relativity simulations 93



21

−324q6 + 16569q5 + 65304q4 + 98086q3 + 65304q2 + 16569q + 324
1296(q + 1)6

]
Ω4/3 +


(4q + 9)χ3

2zq
3

12(q + 1)4 +
(4q − 3)χ2

2xχ2zq3

3(q + 1)4

+
(4q + 9)χ2

2yχ2zq3

12(q + 1)4 +
(11q + 13)χ2

1zχ2zq

6(q + 1)4 +

(
−72q5 + 1629q4 + 6731q3 + 7197q2 + 2331q + 81

)
χ2zq

432(q + 1)6 +
(9q + 4)χ3

1z

12(q + 1)4

+

(
(4 − 3q)χ1z

3(q + 1)4 +
q(11q + 6)χ2z

6(q + 1)4

)
χ2

1x +

(
(9q + 4)χ1z

12(q + 1)4 −
q(10q + 3)χ2z

6(q + 1)4

)
χ2

1y +

(
− (14q + 15)χ2xχ2zq2

6(q + 1)4

− (15q + 14)χ2xχ1zq
6(q + 1)4

)
χ1x +

(
(16q + 21)χ2yχ2zq2

6(q + 1)4 +
(21q + 16)χ2yχ1zq

6(q + 1)4

)
χ1y +


q2(6q + 11)χ2

2x

6(q + 1)4 +
q2(13q + 11)χ2

2z

6(q + 1)4

+
81q5 + 2331q4 + 7197q3 + 6731q2 + 1629q − 72

432(q + 1)6

)
χ1z

]
Ω5/3. (A4)

pt

M
=

qΩ1/3

(q + 1)2 +
q
(
15q2 + 29q + 15

)
Ω

6(q + 1)4 +

[
−2(4q + 3)χ2zq2

3(q + 1)4 − 2(3q + 4)χzq
3(q + 1)4

]
Ω4/3 +


χ2

2yq
3

2(q + 1)4 +
χ2

2zq
3

2(q + 1)4 −
χ2

2xq3

(q + 1)4

+
χ1yχ2yq2

(q + 1)4 +
χ1zχ2zq2

(q + 1)4 −
2χ1xχ2xq2

(q + 1)4 +
χ2

1yq

2(q + 1)4 +
χ2

1zq

2(q + 1)4 +

(
441q4 + 1440q3 + 1997q2 + 1440q + 441

)
q

72(q + 1)6

− χ2
1xq

(q + 1)4

 Ω5/3 +

−
(
16q3 + 29q2 + 22q + 7

)
χ2zq2

2(q + 1)6 −
(
7q3 + 22q2 + 29q + 16

)
χ1zq

2(q + 1)6

 Ω2 +



(
−116q2 + 4q + 53

)
χ2

2xq3

24(q + 1)6

+

(
5q2 − 41q − 31

)
χ2

2yq
3

12(q + 1)6 +
53χ1xχ2xq3

12(q + 1)6 −
(
q2 + 147q + 81

)
χ2

2zq
3

36(q + 1)6 +
161π2q2

192(q + 1)4 −
(
8q2 + 21q + 8

)
χ1yχ2yq2

2(q + 1)6

−
(
21q2 + 67q + 21

)
χ1zχ2zq2

18(q + 1)6 +

(
53q2 + 4q − 116

)
χ2

1xq

24(q + 1)6 −
(
31q2 + 41q − 5

)
χ2

1yq

12(q + 1)6 −
(
81q2 + 147q + 1

)
χ2

1zq

36(q + 1)6

+

(
20007q6 + 60489q5 + 67320q4 + 53681q3 + 67320q2 + 60489q + 20007

)
q

1296(q + 1)8

 Ω7/3 +


2(2q + 3)χ3

2zq
4

3(q + 1)6

+
(4q − 9)χ2

2xχ2zq4

3(q + 1)6 +
2(2q + 3)χ2

2yχ2zq4

3(q + 1)6 +
(32q + 37)χ2

1zχ2zq2

6(q + 1)6 +
2(3q + 2)χ3

1zq

3(q + 1)6 +

(
(7q + 3)χ2zq2

3(q + 1)6 +
(4 − 9q)χ1zq

3(q + 1)6

)
χ2

1x

−
(
10656q5 + 25560q4 + 24235q3 + 14853q2 + 8550q + 2808

)
χ2zq2

432(q + 1)8 +

(
2q(3q + 2)χ1z

3(q + 1)6 − q2(16q + 3)χ2z

6(q + 1)6

)
χ2

1y

+

(
− (22q + 21)χ2xχ2zq3

3(q + 1)6 − (21q + 22)χ2xχ1zq2

3(q + 1)6

)
χ1x +

(
4(5q + 6)χ2yχ2zq3

3(q + 1)6 +
4(6q + 5)χ2yχ1zq2

3(q + 1)6

)
χ1y

+


(3q + 7)χ2

2xq3

3(q + 1)6 +
(37q + 32)χ2

2zq
3

6(q + 1)6 −
(
2808q5 + 8550q4 + 14853q3 + 24235q2 + 25560q + 10656

)
q

432(q + 1)8

−
(3q + 16)χ2

2yq
3

6(q + 1)6

 χ1z

 Ω8/3 (A5)

MADM

M
= 1 − qΩ−1

2(q + 1)2 +

[
− (4q + 3)q2χ2z

4(q + 1)4 − (3q + 4)qχ1z

4(q + 1)4

]
Ω−5/2 +

(
7q2 + 13q + 7

)
qΩ−2

8(q + 1)4

+

−
(
32q3 + 42q2 + 14q + 1

)
q2χ2z

16(q + 1)6 −
(
q3 + 14q2 + 42q + 32

)
qχ1z

16(q + 1)6

 Ω−7/2 +

−
q3χ2

2x

2(q + 1)4 +
q3χ2

2y

4(q + 1)4 +
q3χ2

2z

4(q + 1)4

−q2χ1xχ2x

(q + 1)4 +
q2χyχ2y

2(q + 1)4 +
q2χzχ2z

2(q + 1)4 +

(
9q4 + 16q3 + 13q2 + 16q + 9

)
q

16(q + 1)6 − qχ2
1x

2(q + 1)4 +
qχ2

1y

4(q + 1)4 +
qχ2

1z

4(q + 1)4

 Ω−3

+


9q3χ1xχ2x

8(q + 1)6 +

(
25q2 − 12q − 52

)
qχ2

1x

16(q + 1)6 −
3
(
4q2 + 9q + 4

)
q2χ1yχ2y

4(q + 1)6 +
3
(
10q2 + 21q + 10

)
q2χ1zχ2z

8(q + 1)6
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+

(
3q2 + 38q + 50

)
qχ2

1z

16(q + 1)6 +
81π2q2

128(q + 1)4 −
(
52q2 + 12q − 25

)
q3χ2

2x

16(q + 1)6 +

(
q2 − 17q − 15

)
q3χ2

2y

8(q + 1)6 +

(
−15q3 − 17q2 + q

)
χ2

1y

8(q + 1)6

+

(
50q2 + 38q + 3

)
q3χ2

2z

16(q + 1)6 +

(
537q6 − 3497q5 − 18707q4 − 29361q3 − 18707q2 − 3497q + 537

)
q

384(q + 1)8

 Ω−4

+


3(20q + 7)q4χ2

2xχ2z

8(q + 1)6 −
3(12q + 5)q4χ2

2yχ2z

16(q + 1)6 − 3(12q + 5)q4χ3
2z

16(q + 1)6 + χ2
1x

(
3(22q + 15)q2χ2z

8(q + 1)6 +
3(7q + 20)qχ1z

8(q + 1)6

)

+χ2
1y

(
−3(28q + 15)q2χ2z

16(q + 1)6 − 3(5q + 12)qχ1z

16(q + 1)6

)
− 3(22q + 23)q2χ2

1zχ2z

16(q + 1)6 + χ1x

(
3(5q + 3)q3χ2xχ2z

2(q + 1)6 +
3(3q + 5)q2χ2xχ1z

2(q + 1)6

)

+χ1y

(
3(3 − 4q)q3χ2yχ2z

8(q + 1)6 +
3(3q − 4)q2χ2yχ1z

8(q + 1)6

)
+ χ1z


3(15q + 22)q3χ2

2x

8(q + 1)6 −
3(15q + 28)q3χ2

2y

16(q + 1)6 − 3(23q + 22)q3χ2
2z

16(q + 1)6

−
(
128q5 + 181q4 − 88q3 + 81q2 + 544q + 312

)
q

64(q + 1)8

 −
(
312q5 + 544q4 + 81q3 − 88q2 + 181q + 128

)
q2χ2z

64(q + 1)8

−3(5q + 12)qχ3
1z

16(q + 1)6

 Ω−9/2 (A6)

The expression used in this paper for the gravitational wave energy flux [23, 48] is

dEGW

dt
=

32
5
η2Ω10/3

(
1 +

[
−35η

12
− 1247

336

]
Ω2/3 +

[
4π − 5δ

4
Σl − 4S l

]
Ω +

[
65η2

18
+

9271η
504

− 44711
9072

− 89δχaχs

48
+

287δχaχs

48

+

(
33
16
− 8η

)
χ2

a −
(

33
16
− η

4

)
χ2

s

]
Ω4/3 +

[
π

(
−583η

24
− 8191

672

)
+

43δηΣl

4
− 13δΣl

16
+

272ηS l

9
− 9S l

2

]
Ω5/3

+Ω2
[
−4843497781

69854400
− 775η3

324
− 94403η2

3024
+

(
8009293

54432
− 41π2
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)
η +

287π2

192
+
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(
−γ +

35π2

107
− 1

2
log

(
16Ω2/3

))

−31πδΣl

6
− 16πS l + δ

(
611
252
− 809η

18

)
χaχs +

(
43η2 − 8345η

504
+

611
504

)
χ2

a +

(
173η2

18
− 2393η

72
+

611
504

)
χ2

s

]
+

[
−31πδΣl

6

−16πS l] Ω3 +

[
π

(
193385η2

3024
+

214745η
1728

− 16285
504

)
− 1501

36
δη2Σl +

1849δηΣl
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+

9535δΣl

336
− 2810η2S l

27
+

6172ηS l

189

+
476645S l

6804
+ δ

(
34η
3
− 71

24

)
χ3

a + δ

(
109η

6
− 71

8

)
χaχ

2
s +

(
−104η2

3
+

263η
6
− 71

8

)
χ2

aχs +

(
−2η2

3
+

28ν
3

−71
24

)
χ3

s

]
Ω7/3 +

[
130583πδηΣl

2016
− 7163πδΣl

672
+

13879πηS l

72
− 3485πS l

96

]
Ω8/3

)
(A7)

where we have the following definitions:

~λ =
~L

|~L|
, (A8)

δ =
m2 − m1

m1 + m2
, (A9)

χ1 = S 1z/m2
1, (A10)

χ2 = S 2z/m2
2, (A11)

χa =
χ1 − χ2

2
, (A12)

χs =
χ1 + χ2

2
, (A13)

S l = m2
1χ1 + m2

2χ2, (A14)

Σl = m2χ2 − m1χ1, (A15)
S l = (~S 1 + ~S 2) · ~λ, (A16)

Σl = (m1 + m2)

~S 2

m2
−
~S 1

m1

 · ~λ. (A17)

Appendix B: Ansatz coefficients

The coefficients of the ansatz of the non-spinning fit de-
scribed in Section III B are derived using the energy given by
equation (2.4) and the gravitational wave energy flux given by
equation (A7). The coefficients are:
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b1 =
11η
32

+
743

2688
, (B1)

b2 =
1

320

(
−113

[( √
1 − 4η − 1

)
χ1z −

( √
1 − 4η + 1

)
χ2z

]
− 96π

)
− 19

80
η(χ1z + χ2z), (B2)

b3 =
371η2

2048
+
η
(
61236s1z2 − 119448χ1zχ2z + 61236χ2
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)
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+

1
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[
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( √
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)
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1z
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( √

1 − 4η + 1
)
χ2
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]
, (B3)

b4 = − 1
128

17η2(χ1z + χ2z) +
η
(
117π − 2

((
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√
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)
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(
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√
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+
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(( √
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( √
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)
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)
− 46374π
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, (B4)

b5 =
235925η3
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
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1z
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+ χ1z

(
1051π
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+

(
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2z
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2048
+
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]
+
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( √
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χ1z

12800
−
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( √
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( √
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137625600
−
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( √
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+
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+
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[
γ + log(2θ)

]
(B5)

Appendix C: Numerical Relativity setup

1. BAM

Here we describe the numerical set up for NR simulations
produced using the BAM code. The numerical setup is similar
to the that in [40] but we present the details here for complete-
ness. The BAM code starts with black-hole binary puncture
initial data [63, 64] and evolves them using the χ-variant of the
moving puncture [12, 13] version of the BSSN [55, 56] formu-
lation of the Einstein equations. The black-hole punctures are
initially placed on the y-axis at positions y1 = −qD/(1 + q)
and y2 = D/(1 + q), where D is the coordinate distance be-
tween the two punctures and the mass ratio is q = m2/m1 > 1.
The punctures are provided initial momenta p = (∓pt,±pr, 0).
The spin parameter of a BH is defined as χi = S i/m2

i .
The code uses sixth-order spatial finite-difference deriva-

tives, fourth-order Runge-Kutta algorithm and Kreiss-Oliger
(KO) dissipation terms which converge at fifth order. More-
over, the code utilizes sixteen mesh-refinement buffer points
and the base configuration consists of n1 nested mesh-
refinement boxes with N3 points surrounding each black hole,
and n2 nested boxes with (2N)3 points surrounding the entire
system. On the levels where the extraction of gravitational ra-
diation is performed (4N)3 points are used in order to extract
more accurately the gravitational waves emitted by the binary.
These waves are computed from the Newman-Penrose scalar
Ψ4 [17]. In addition, in order to reduce gauge oscillations in
the orbital quantities we set the value of the parameter η ap-

pearing in the Γ-driver shift condition to 0.25 for simulations
used to reduce the eccentricity and we use η = 1 for higher
resolution production simulations, that will be used in future
waveform modelling and LIGO data analysis.

2. Einstein Toolkit

The Einstein Toolkit (ET) is an open source code suite
for relativistic astrophysics simulations built around the Cac-
tus framework, where individual modules are denoted thorns.
The numerical setup of the simulations is similar to that used
in [65] but we present the details here for completeness.

The simulations use standard Bowen-York initial data [63,
64] computed using the TwoPunctures thorn [66]. Time evo-
lution is performed using the W-variant [67] of the BSSN for-
mulation [55, 56] of the Einstein equations by McLachlan
[68], in which the BHs are evolved using the standard moving
punctures gauge conditions [12, 13]. The lapse is evolved ac-
cording to the ”1 + log” condition [69] and the shift evolved
using the hyperbolic Γ̃-driver equation [57].

The simulations were performed using 8th order accurate
finite differencing along with the appropriate KO dissipation
terms. Adaptive mesh refinement is provided by Carpet, with
the near zone being computed with high resolution Cartesian
grids that track the motion of the BHs and the wave extrac-
tion zone being computed on spherical grids using the Llama
multipatch infrastructure [65]. By using grids adapted to the
spherical topology of the wave extraction zone, we are able
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to efficiently compute high-accuracy waveforms at large ex-
traction radii relative to standard Cartesian grids. The appar-
ent horizons are computed using AHFinderDirect [70] and a
calculation of the spins is performed in the dynamical horizon
formalism using the QuasiLocalMeasures thorn [71]. The
contrast to BAM, the two punctures are initially placed on the
x-axis at positions x1 = D/(1 + q) and x2 = −qD/(1 + q),
in which D is the coordinate distance separation and we as-
sume m1 > m2. Initial momenta are chosen such that p =

(∓pr,±pt, 0). As with BAM, the parameter η that appears in
the Γ-driver shift condition, which is denoted BetaDriver in

the McLachlan code, is set to 0.25 for low-resolution simula-
tions and set to 1 for the higher resolution production runs.

The gravitational waves are computed using WeylScal4
and the GW strain h calculated from Ψ4 using fixed-frequency
integration [72]. The thorns McLachlan and WeylScal4 are
generated using the Kranc [73] automated-code-generation
package. The ET simulations are managed using Simulation
Factory [74] and the analysis and post-processing of ET
waveforms was performed using the open source Mathemat-
ica package Simulation Tools [75].
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Rev. D 96, 024058 (2017).

[23] L. Blanchet, Living Reviews in Relativity 17 (2014), ISSN
1433-8351.

[24] M. Hannam, S. Husa, D. Pollney, B. Brügmann, and N. OMur-
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We analyze a new numerical relativity data set of spinning but non-precessing binary black holes on eccentric
orbits, with eccentricities from approximately 0.1 to 0.5, with dimensionless spins up to 0.75 included at mass
ratios q = m1/m2 = (1, 2), and further non-spinning binaries at mass ratios q = (1.5, 3, 4). Comparison of the
final mass and spin of these simulations with non-eccentric data extends previous results in the literature on cir-
cularisation of eccentric binaries to the spinning case. For the (l,m) = (2, 2) spin-weighted spherical harmonic
mode we construct eccentric hybrid waveforms that connect the numerical relativity data to a post-Newtonian
description for the inspiral, and we discuss the limitations in the current knowledge of post-Newtonian the-
ory which complicate the generation of eccentric hybrid waveforms. We also perform a Bayesian parameter
estimation study, quantifying the parameter biases introduced when using three different quasicircular wave-
form models to estimate the parameters of highly eccentric binary systems. We find that the used aligned-spin
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precessing quasicircular model without higher order modes and the quasicircular precessing model.

PACS numbers: 04.25.Dg, 04.25.Nx, 04.30.Db, 04.30.Tv

I. INTRODUCTION

The detections of gravitational wave signals [1–8] have
been found consistent with models of the waveform emitted
from the merger of compact objects under the assumption of
quasi-circularity of the binary’s orbit prior to the merger. The
assumption of quasicircularity motivated by the efficient cir-
cularization of binaries as a consequence of the emission of
gravitational waves [9, 10] simplifies significantly the com-
plexity of the signal and has accelerated the development
of inpiral-merger-ringdown (IMR) waveform models: several
mature IMR models for quasi-circular coalescences, i.e. ne-
glecting eccentricity, are now publicly available [11–24], and
are being used to search and infer the parameters of observed
binary black hole systems [7].

Recently, population synthesis studies [25–28] have shown
that active galactic nuclei and globular clusters can host a pop-
ulation of moderate and highly eccentric binaries emitting in
the frequency band of ground-based detectors. Therefore, the
increase in sensitivity of the detectors will increase the likeli-
hood to detect binary systems with non-negligible eccentric-
ities. The modelling of the gravitational waveforms from ec-
centric black-hole binaries complicates due to the addition of
a new timescale to the binary problem, the periastron pre-
cession [29]. This new timescale induces oscillations in the
waveforms due to the asymmetric emission of gravitational
radiation between the apastron and periastron passages.

The orbits of eccentric black-hole binaries are typically de-
scribed using the Quasi-Keplerian (QK) parametrization [30],
which is currently known up to 3 Post-Newtonain (PN) or-
der [31]. This parametrization has been proven a key element
to develop inspiral PN waveforms [32–36]. The generation
of IMR eccentric models relies on the connection of an ec-

centric PN inspiral with a circular merger [37, 38]. Alterna-
tively, one can substitute the PN waveform by one produced
within the Effective One Body (EOB) formalism describing
an eccentric inspiral [39–41]. Some eccentric IMR waveform
models show good agreement with numerical waveforms up
to e ∼ 0.2 for non-spinning configurations [37]. Recent work
has shown possible extensions of the eccentric PN and EOB
inspiral waveforms to include spin effects [41, 42]. A key
step in the generation of IMR waveform models is the produc-
tion of hybrid waveforms [43–49] between PN/EOB inspiral
and Numerical Relativity (NR) waveforms. The hybridization
procedure consists in smoothly attaching a PN/EOB inspiral
waveform to a NR one in order to get the full description of
the gravitational radiation of the binary system. The gener-
ation of data sets of hybrid waveforms has been used in the
quasicircular case to calibrate and validate the accuracy IMR
waveform models [16–18, 22, 23].

In this paper we present the input data and some key tools
required for the development of an IMR eccentric waveform
model calibrated to eccentric hybrid PN-NR waveforms. In
Sec. II we first present our Numerical Relativity (NR) cat-
alog of non-spinning and spinning eccentric binaries, com-
puted with the private BAM code [50] and the open source
EinsteinToolkit (ET) [51, 52]. This includes a discussion of
our procedure to specify the initial parameters of the eccentric
simulations in subsection II B, a study of the remnant quan-
tities in Sec. II C, and a new method to measure the eccen-
tricity of NR waveforms with arbitrarily high eccentricity in
Sec. II D. We find that the final spin and mass are consistent
within the error estimates with the quasicircular case, which
extends the study in [53] to the eccentric spinning case. We
hybridize the dominant gravitational waveform (l = 2,m = 2)
mode between numerical relativity and post-Newtonian wave-
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forms in Sec. III. This will provide the input data for future
work on constructing waveform models that contain the in-
spiral, merger and ringdown, and allows us to perform injec-
tions into detector noise which contain a long inspiral phase.
In Sec. IV we use such injections of hybrid waveforms, as
well as of pure numerical relativity waveforms, to study the
parameter biases introduced when using quasi-circular wave-
form models to estimate the parameters of highly eccentric
spinning systems. Unless explicitly noted, we are working in
geometric units G = c = 1. To simplify expressions we will
also set the total mass of the system M = 1 in Secs. II and III.
We define the mass ratio q = m1/m2 with the choice m1 > m2,
so that q > 1. We also introduce the symmetric mass ratio
η = q/(1 + q)2, and we will denote the black hole’s dimen-
sionless spin vectors by ~χi = ~S i/m2

i , for i = 1, 2.

II. NUMERICAL RELATIVITY DATA SET

A. Overview

We present a catalog of 60 eccentric NR simulations per-
formed with the non-public BAM code [50] and the open-
source ET code [51, 52] with the multipatch Llama infras-
tructure [54]. The numerical setup of both codes is the same
as in [55]. Most of the simulations are run with the ET
code using the Llama module due to its ability to extract
the waves at larger extraction radii. The different simula-
tions and their initial conditions are described in Table IV
of Appendix A. In Figure 1 we show our choices of mass
ratio q, initial eccentricity e0, and effective spin parameter,
χeff = (m1χ1,z + m2χ2,z)/(m1 + m2). We have also added 20
public eccentric SXS simulations presented in [38].

Figure 1: Initial eccentricity e0, mass ratio q and effective spin pa-
rameter χeff = (m1χ1,z+m2χ2,z)/(m1+m2) for the Numerical Relativity
simulations generated with the BAM, EinsteinToolkit and SpEc [56]
codes. The thick black line represents the cases with χeff = 0.

B. Initial parameters of eccentric NR simulations

We use conformally flat Bowen-York initial data [57] in the
center of mass frame, where the free parameters are the spins

and masses of the two black holes, the separation, and the
momentum of one of the two black holes (the momentum of
the second black hole is then equal in magnitude but oppo-
site in direction). We first choose the masses and spins as
displayed in Fig. 1. In order to be able to construct hybrid
waveforms, the minimal separation, i.e. the separation at peri-
astron, has to be large enough such that the PN approximation
is still roughly valid. We then use a simple PN approxima-
tion as discussed below to compute the apastron separation
required to achieve a chosen value of the eccentricity, and a
further PN approximation to compute the appropriate value of
the momentum corresponding to this value of the eccentricity.
Due to the simplicity, i.e. low order, of the PN approxima-
tions used, neither the periastron separation, nor the measured
eccentricity will exactly coincide with the specified values. In
this study we choose our initial choice for the approximate
periastron separation as rmin ∼ 9M, with slightly different val-
ues in order to account for mass ratio and spin effects which
can significantly increase the computational cost of the sim-
ulations. We start our simulations at the apastron, where the
PN approximation employed to specify the initial momentum
and the agreement with the PN data we use for hybridization,
will be more accurate than during other points of the orbit.

Larger choices of eccentricity for the same configuration of
masses and spins thus lead to a larger merger time and num-
ber of orbits, as one can see in Table IV of Appendix A. For
instance, focusing on simulations with IDs 34, 35 and 36 one
observes an increase in the merger time when increasing the
initial eccentricity. This increase in merger time also implies
an increase in the computational cost of the simulation.

Using the QK parametrization at Newtonian order one can
relate the initial minimum and maximum separations by

rmin = rmax
1 − e
1 + e

. (2.1)

As stated above, for our simulations we choose rmin ∼ 9M
such that the PN approximation is still roughly valid. Then
for e0 = 0.1, 0.2, 0.5 Eq. (2.1) implies that rmax = 11M,
13.5M, 27M, respectively. These values of rmax are rough
estimates based on a Newtonian order calculation, in practice,
we slightly modify those values of initial separations in order
to account for the increase of computational cost depending
on the mass ratio and the spins of the simulations as observed
in Table IV. For instance, in the case of negative spin compo-
nents the merger time is significantly reduced [58], thus, we
increase rmax for e = 0.1, 0.2 cases in order to produce longer
NR waveforms which are easier to hybridize afterwards.

In order to produce initial data for a desired eccentricity
we then make use of Eq. (3.25) of [55] to perturb the initial
tangential momentum of the black holes by a factor λt from
its quasicircular value. The expression for λt in terms of the
eccentricity at 1PN order is

λt(r, e0, η, sign) = 1 +
e0

2
× sign ×

[
1 − 1

r
(η + 2)

]
, (2.2)

where η is the symmetric mass ratio, r is the orbital separation
and sign = ±1 depends on the initial phase of the eccentricity
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estimator [55]. We refer the reader to Sec. III D of [55] for an
explicit derivation of Eq. (2.2). Taking Eq. (2.2) we compute
the correction factor applied to the momentum as the mean
between the inverse of the expression with the plus sign plus
the expression with the minus sign,

λ̄0
t (r, e0, η) =

1
2

[
λt(r, e0, η,+1)−1 + λt(r, e0, η,−1)

]

=
8r2 − e2

0(η − r + 2)2

4r(e0(−η + r − 2) + 2r)
.

(2.3)

We use the combination of factors in Eq. (2.3) because we
have experimentally tested that it works more accurately than
just specifying a value of λt(r, e, sign) with a given sign. In
Table IV one can compare the value of the desired initial ec-
centricity, e0, specified in Eq. (2.3), and the actually measured
initial eccentricity, eω, from the orbital motion of the simula-
tion. Both quantities are also displayed in Fig. 10 of App.
A, where we have differentiated among non-spinning, posi-
tive and negative spin simulations. The results point out that
the use of Eq. (2.3) produces differences of less than 10% be-
tween eω and e0 in non-spinning cases at low eccentricities of
the order of 0.1. However, when spins are present or the ec-
centricities are higher, the inaccuracy of the formula becomes
manifest, with differences of the order of 20−30%, this is due
to the fact that Eq. (2.2) was derived assuming a non-spinning
binary in the low eccentric limit. Additionally, one can check
in Table IV and Fig. 10 that the differences between eω and
e0 are smaller for the cases with positive spins than in cases
with negative spins because in Eq. (2.2) the radiation reaction
effects, which are more significant for negative spins, are also
not taken into account.

C. Final state of spinning eccentric systems

We compare the final state of the eccentric NR simulations
with the predicted final mass and final spin of the QC NR
fits [59] as an indicator of circularisation of the coalescence
process as the binary merges. This is basically an extension of
[53] to the eccentric spinning case with more moderate values
of the eccentricity, but with longer NR evolutions.

The final mass and final spin of the simulations are com-
puted using the apparent horizon (AH) of the remnant black
hole and are shown in Table IV. The magnitude S of the angu-
lar momentum of the final black hole can be computed from
the integral

S =
1

8π

∮

AH
Ki jniφ jdA, (2.4)

see the discussion in [60, 61]. Here for the BAM code [50] the
vector φ j is a coordinate-based approximation to the (approxi-
mate) axial Killing vector of the black hole horizon as in [60],
and for the Einstein Toolkit code the QuasiLocalMeasures
module is used, which constructs an approximate Killing
vector with rotational symmetry around the spin axis as in
[62, 63]. The vector ni is a spacelike unit normal to the hori-
zon surface and Ki j is the extrinsic curvature. The final mass

can be computed from the Christodoulou formula in terms of
the BH angular momentum and AH area A as

M f =

√
M2

irr +
S 2

4M2
irr

, Mirr =

√
A

16π
. (2.5)

where Mirr is the irreducible mass. The dimensionless final
spin can then be computed as χ f = S/M2

f .
In Fig. 2 we have computed the absolute and relative errors

between the eccentric simulations and the quasicircular NR
final mass and final spin fitting formulas [59],

∆X =

∣∣∣∣∣∣
XNR

XQC − 1

∣∣∣∣∣∣ × 100, X = M f or χ f . (2.6)

The results in Fig. 2 show that the differences in the final spin
are generally higher than for the final mass. However, the dif-
ferences with respect to the quasicircular fitting values are as
high as ∼ 1% which is entirely consistent with numerical er-
rors and gauge artifacts in the apparent horizon surfaces and
inaccuracies in the fits. Hence, we can conclude that within
the current knowledge of systematic errors (compare [59]),
the final state of the eccentric simulations up to the values
of eccentricity studied here, is consistent with the quasicircu-
lar values. Identifying small physical deviations between the
quasicircular and eccentric final states will require numerical
simulations with improved error estimates.

D. Measuring the eccentricity of highly eccentric systems

This subsection aims to extend the discussion on the mea-
surement of the eccentricity in NR presented in [55] to highly
eccentric systems. An eccentricity parameter is chosen to de-
scribe the non-circularity of orbits, such that for bound orbits
its value ranges between 0 and 1, corresponding to circular
and extremely elliptical configurations, respectively. Such an
eccentricity can only be defined naturally in Newtonian grav-
ity, whereas in general relativity the eccentricity is a gauge de-
pendent quantity. In order to measure the eccentricity in NR
data one defines quantities known as eccentricity estimators,
which estimate the eccentricity from the relative oscillations
of a certain combination of dynamical quantities such as the
orbital separation or orbital frequency, or wave quantities like
the amplitude or frequency of the (l,m) = (2, 2) mode. All
these different estimators are usually defined such that they
agree in the Newtonian limit and in the low eccentricity limit.

In [55], where we studied the reduction of residual eccen-
tricity in initial data sets, we choose our eccentricity estimator
based on the orbital frequency as

eω(t) =
ω(t) − ω(e = 0)

2ω(e = 0)
≡ ω(t) − ωfit(t)

2ωfit(t)
, (2.7)

where ω(t) is the orbital frequency of the simulation and
ω(e = 0) is the orbital frequency in the quasicircular limit. We
note that when dealing with numerical simulations, the quasi-
circular frequency in Eq. (2.7) is typically replaced by a fit,
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Figure 2: In the top panel the absolute difference between the final
mass and spin of the simulations and the QC NR fits as a function of
the ID of the simulations in Table IV. In the bottom plot the absolute
relative error for the phase and amplitude, ∆X = |XNR/XQC −1| ×100
for X = M f , χ f , relative error of the final mass and final spin of the
simulations against the QC NR fits as a function of the ID of the
simulations in Table IV.

ωfit(t), of the non-oscillatory part of the frequency [55]. This
eccentricity estimator is largely used to measure the residual
eccentricity of NR simulations of quasicircular black-hole bi-
naries. We remark that while in Eq. (2.7) we decide to use
the orbital frequency calculated from the BH motion, one can
also use the gravitational wave frequency extracted from the
waves as discussed below. Furthermore, gauge effects can im-
pact the eccentricity measurement from the orbital frequency
of NR codes as extensively discussed in the small eccentricity
limit in [64, 65]. Here, we follow the practice of the literature
[55, 64–66] to avoid contamination of the eccentricity mea-
surement through the gauge quantities, like the choice of the
value of the η-parameter in the Gamma driver condition [67],
which can lead to residual oscillations in the orbital frequency
complicating the determination of the eccentricity.

In [55], we argue that the procedure shown there, based on
Eq. (2.7), to measure the eccentricity is limited to values as
high as e ∼ 0.1 due to the lack of an accurate ansatz to fit the
higher order contributions beyond the sinusoidal contribution.
While the lack of an ansatz for high eccentricities is a clear
limitation, the use of (2.7) biases the eccentricity measure-
ment due to its reliance on a non-eccentric fit of the orbital

1000 2000 3000 4000 5000 6000 7000

0.0

0.1

0.2

0.3

0.4

Figure 3: Time evolution of the orbital frequency, Mωorb, the orbital
frequency at apastron, Mωa, the orbital frequency at periastron Mωp

and the eccentricity estimator, eω, defined in Eq. (2.8).

frequency and due to the fact that Eq. (2.7) for high eccentric-
ities does not reduce to the common definition of eccentricity
in the Newtonian limit.

Therefore, we decide to change to another estimator [68],
constructed also from the orbital frequency,

eω(t) =
ω1/2

p − ω1/2
a

ω1/2
p + ω1/2

a

, (2.8)

where ωa, ωp are the orbital frequency at apastron and peri-
astron, respectively. The eccentricity estimator in (2.8) does
not depend on any non-eccentric fit of the orbital frequency.
Furthermore, as shown in Appendix B the eccentricity esti-
mator from (2.7) in the Newtonian limit at high eccentricities
does not reduce to the eccentricity parameter and it is not nor-
malized, while the eccentricity estimator from (2.8) fulfills all
these conditions.

We measure the eccentricity from the maxima and minima
of the orbital frequency corresponding to the periastron and
apastron passages, respectively. Additionally, we produce an
interpolated function from the maxima, ωp, and the minima
ωa, and substitute them into Eq. (2.8), so that one can estimate
the evolution of the eccentricity from those points. The inter-
polation is calculated using the Hermite method implemented
in the function Interpolation in Mathematica [69]. The
new procedure to measure the eccentricity is shown in Fig.
3, where the time evolution of the orbital frequency, the in-
terpolated functions of the maxima and minima of the orbital
frequency and the eccentricity are shown for the configura-
tion with ID 60 from Table IV. As expected the eccentricity is
a monotonically decaying function, whose value at t = 200M,
after the burst of junk radiation, is eω = 0.415 ± 0.005. The
error in the eccentricity, δeω, is computed using error propa-
gation: from Eq. (2.8) we obtain

δeω =
δω

(
ω1/2

a + ω1/2
p

)2


ω1/2

a

ω1/2
p

+
ω1/2

p

ω1/2
a

 , (2.9)

where we have assumed δωa = δωp = δω. Motivated by the
results of the error in the convergence analysis of the orbital
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frequency in [70] we have taken as a conservative estimate for
δω = 0.0001. The error estimate of Eq. (2.9) is the statisti-
cal error associated with eccentricity measurement taking into
account the error of the orbital frequency from different res-
olutions of NR simulations. We remark that this error does
not take into account systematics coming from the use of a
different eccentricity estimator, neither contributions from the
interpolation error when the number of minima and maxima
is small due to the short length of the simulations. Due to
the difficulties in quantifying the systematics associated with
the choice of the eccentricity estimator estimator and the fact
that the interpolation error is a subdominant effect for most of
the simulations here, we restrict for simplicity our eccentricity
error calculation to Eq. (2.9).

The main drawback of this method is that when the simu-
lations are so short that there is only one minimum and one
maximum it becomes inefficient and inaccurate. Furthermore,
one could choose the frequency of the (l,m) = (2, 2) mode and
compute the orbital frequency as ωorb ≈ ω22/2, and employ
the same method as discussed in this section. Nevertheless,
as pointed out in [64] the usage of the orbital frequency from
the (2, 2)-mode requires additional post-processing of the data
due to the presence of high frequency noise when taking a
time derivative of the phase of the (2, 2)-mode. As a con-
clusion, if one has long enough highly eccentric simulations,
the method introduced in this section allows one to measure
the eccentricity as a monotonically decaying function for the
whole inspiral, which is a key tool to be used to construct a
time domain eccentric waveform model.

III. HYBRIDIZATION OF ECCENTRIC WAVEFORMS

In the eccentric case the hybrization of the PN-NR wave-
forms is a challenging problem. The higher the eccentric-
ity the stronger is the interaction between the binary compo-
nents at each periastron passage, which can break the post-
Newtonian, weak-field and low velocity, approximation and
generate a secular dephasing between both waveforms. More-
over, the lack of a general description in PN theory of ec-
centric black-hole binary systems poses the main difficulty.
Therefore, we briefly review the status of the PN theory for
eccentric systems in Sec. III A. In Sec. III B we show an ex-
ample of our procedure to hybridize eccentric PN-NR wave-
forms.

A. Review of eccentric post-Newtonian theory

As far as the authors know by the time of writing this
communication, the orbital averaged gravitational wave en-
ergy flux for eccentric binaries is know up to 3PN order [71]
using the 3PN QK parametrization [31]. Our strategy con-
sists in evolving the 3.5PN Hamilton’s equations of motion in
ADMTT gauge[72–74] for a point particle binary,

dX
dt

=
∂H
∂P

,
dP
dt

= −∂H
∂X

+F ,
dSi

dt
=
∂H
∂Si
×Si, i = 1, 2.

(3.1)

with X ,P and Si the position, momentum and spin vectors
in the center-of-mass frame, H the Hamiltonian described in
Sec. II of [55] and F the radiation reaction force described
in [75] enhanced with the eccentric contribution to the energy
flux from [71]. The eccentric term in the flux is expressed
in the QK parametrization and depends only on the orbital
frequency ω, which is computed while evolving the system,
and the eccentricity et, for which we use its 3PN expression in
terms of the orbital energy and the angular momentum of the
system, which are variables computed at each time step.

The solution of the PN point particle equations, Eqs. (3.1),
can be used to compute the gravitational radiation emitted by
the system. Here, the lack of general PN expressions for the
waveforms of point particles evolving on quasi-elliptical or-
bits sets a strong limitation. The instantaneous terms of the
waveform multipoles are known up to 3PN order for gen-
eral non-spinning systems with arbitrary eccentricity [76].
Recently, the complete description of the 3PN non-spinning
multipoles has been computed including tail, tail-of-tails and
memory terms within the QK parametrization for low eccen-
tricities [77, 78]. At this point only using the 3PN instanta-
neous terms [76] introduces more error than the quadrupole
order, due to the missing tail and tail-of-tails terms that enter
at 1.5PN, 2.5PN and 3PN orders, respectively. Additionally,
the translation of the generic solution we obtain from solving
Eqs. (3.1) to the QK form of the waveform modes in [77, 78]
is more involved due to the fact that they split the dynami-
cal variables into adiabatic and post-adiabatic contributions.
Therefore, we will restrict here to the quadrupole formula to
generate the (l,m) = (2, 2) mode and leave for future work the
generation of full 3PN waveforms, which will additionally al-
low us to construct multimode eccentric hybrids.

B. Hybridization example

The hybridization of PN and NR waveforms consists in de-
termining the time shift and phase offset which minimizes the
difference between both waveforms in a certain time window.
This hybridization procedure is well-established in the quasi-
circular case [43, 48, 49, 79, 80]. The time shift is usually
computed by minimizing a suitable quantity that measures
disagreement of the two waveforms, such as an overlap inte-
gral [48, 80], or the deviation between phase or frequency of
the (2, 2)-mode [49]. However, in the eccentric case the cal-
culation of the time shift requires alignment of the peaks due
to eccentricity of both waveforms in the hybridization win-
dow. This alignment is complicated to obtain with the phase
because the peaks corresponding to each periastron passage
are not very pronounced and they are difficult to estimate.
One could use the frequency of the (2, 2) mode. However,
it is a quantity obtained from a time derivative of the phase,
which for NR waveforms tends to be noisy. As a consequence,
for simplicity we use the amplitude of the (2, 2) mode to de-
termine the time shift of the waveform because it is a clean
quantity with clearly defined peaks. We remark that aligning
the oscillations of the amplitude of PN and NR waveforms
in a certain hybridization window is equivalent to minimiz-
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ing their difference as the maximum agreement between both
quantities is obtained when both are aligned at the eccentric
peaks.

As an example, we take the NR simulation with ID 60 of Ta-
ble IV, which is a mass ratio q = 4 non-spinning configuration
with an initial eccentricity of e0

ω = 0.415 ± 0.005 and initial
orbital separation at apastron D0 = 27.5M. We take the initial
conditions of the NR simulation defined by the initial position
vector, momenta (velocities in the case of SpEc waveforms)
and dimensionless spin vectors: {X ,P /V ,S1,S2}t=0. The
fact that PN and NR coordinates for the initial data agree up
to 1.5PN order [81–83] makes this identification a good ap-
proximation. However, we have checked that the differences
between PN and NR initial conditions can produce discrepan-
cies between the NR and PN waveforms of the order of 10%.

In order to leverage these differences we decide to modify
the initial condition vector of the PN evolution by modifying
the initial separation by a δr such that the difference in the
amplitude of the Newman-Penrose scalar, ψ4, for the (2, 2)-
mode between PN and NR is minimal. In our example we
obtained δr = 0.08. The outcome of such a calculation can
be observed in the top panel of Fig. 4, where the time domain
amplitude of the PN and NR waveforms are shown. We do not
show the full time domain range of the hybrid waveform in the
top panel of Fig. 4 to better display the matching PN/NR re-
gion. The procedure is also applied to eccentric aligned-spin
configurations. We find that initial highly eccentric configu-
rations require larger δr than low eccentric ones, and that the
hybridization errors for high negative spins, where radiation
reaction plays a dominant role, are one order of magnitude
higher than for non-spinning or low spins due to the lack of
expressions for PN spinning eccentric waveforms.

The procedure to construct the hybrid waveform is similar
to the one presented in [49]. We first choose the matching re-
gion to be after the junk radiation burst, in our particular case
we take t/M ∈ (275, 375), which corresponds to less than one
gravitational wave cycle as shown in the top panel of Fig. 4.
In order to understand the choice of this short hybridization
window for eccentric waveforms, we first explain the criteria
for hybridizing quasicircular ones following [103]. Quasicir-
cular waveforms are hybridized over several cycles as the low
frequency approximant, typically EOB, is very accurate and
resembles faithfully the NR behavior during the late inspiral.
Furthermore, hybridization over several cycles is required to
accurately compute the time-alignment between waveforms
by averaging out residual oscillations due to eccentricity and
high frequency numerical noise coming from NR. In the ec-
centric case, the time-alignment is much easier to compute as
the peaks in the GW frequency ease such an alignment, so
there is no need to use several cycles. Moreover, the inaccu-
racy of the current low frequency eccentric approximants sets
also a clear limitation to faithfully reproduce the NR wave-
forms along several cycles. Hence, we have chosen a small
hybridization window to ensure small errors in the GW am-
plitude and frequency between PN and NR. Choices of hy-
bridization window including several cycles make that error
increase to 10% or larger depending on the case, due to the
inaccuracy of the PN approximant. We have also checked that

the election of different peaks for hybridization in the GW am-
plitude (in the inspiral regime), does not change significantly
the errors maintaining them below 1% as quoted in the low
panel of Fig. 4.

After choosing the hybridization region, we have to com-
pute the time shift, τ, and phase offset, ϕ0, which reduce the
difference between the PN and NR waveforms in the matching
window,

hPN(t) = eiϕ0 hNR(t + τ). (3.2)

In order to align the waveforms in time we choose τ such that
it minimizes the amplitude difference along the matching win-
dow. For the phase offset we decide to align the phases at
the beginning of the the window, ϕ0 = φNR(t0 − τ) − φPN(t0),
where t0 is the initial time of the window. Once τ and ϕ0 are
calculated the hybrid waveform is constructed as a piecewise
function

hhyb(t) =



eiϕ0 hPN(t + τ) if t < t1
w−(t)eiϕ0 hPN(t + τ) + w+(t)hNR(t) if t1 < t < t2
hNR(t) if t > t2

(3.3)
where t1 = 275M and t2 = 375M. The functions w±(t) de-
note the blending functions defined in the interval [t1, t2] that
monotonically go from 0 to 1 and from 1 to 0, respectively,

w+(t)[t1,t2] =
t − t1
t2 − t1

, w−(t)[t1,t2] = 1 − w+(t). (3.4)

The result of the application of such a hybridization procedure
can be observed in the bottom panel of Fig. 4, where the ab-
solute value of the relative error between the hybrid and NR
amplitude and frequency are shown. The quantity ∆X is de-
fined as ∆X = |Xhyb/XNR − 1| × 100 for X = A22, ω22. The
errors in the gravitational wave frequency and amplitude are
both below 1%, being those for the amplitude slightly smaller
due to the choice of the amplitude as the quantity with which
to minimize the agreement between PN and NR waveforms.

Finally, note that the PN waveform used to produce the
hybrid is evolved backwards in time from D0/M = 27.5 to
D f /M = 60. This makes the initial eccentricity to increase
with respect to the NR waveform. Next, we explicitly show
the systematics affecting the measurement of the initial eccen-
tricity of the hybrid. We display in Fig. 5 the time evolution
of the orbital frequency for the same hybrid waveform of Fig.
4, ωorb ≈ φ̇22/2, computed from the phase of the (2, 2) mode
of the Newman-Penrose scalar and the strain computed using
Fixed-Frequency Integration (FFI) algorithm [84]. We also
compute the orbital frequency from the PN dynamics as,

ω =

∣∣∣∣∣
v × r

r2

∣∣∣∣∣ (3.5)

where r = |r|, and v, r are the velocity and the position vec-
tors in the center of mass frame. The curves from Fig. 5 indi-
cate that the orbital frequency computed from ψ4 and h over-
estimate and underestimate, respectively, the values of eccen-
tricity with respect to the ones from the dynamics. This is con-
firmed from the values for the initial eccentricity one obtains
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Figure 4: In the top panel the time domain amplitude of the |rψ2,2
4 |

mode. The blue thick and the red dashed curves represent the PN and
NR waveforms, respectively, and the vertical black lines highlight
the hybridization window. In the bottom plot the absolute value of
the relative error for the gravitational wave frequency and amplitude,
∆X = |Xhyb/XNR − 1| × 100 for X = φ22, A22, of the hybrid against the
NR waveform in the matching region is displayed.

from the orbital frequency of the strain, ψ4 and the dynamics,
eh

0 = 0.55 ± 0.01, eψ4
0 = 0.84 ± 0.03 and edyn

0 = 0.65 ± 0.01,
respectively. These three values of eccentricity are measured
at the same initial time, t = 600M. These results lead to the
conclusion that the eccentricity measured from the frequency
of the (2, 2) mode is higher for ψ4 than for h, this can be un-
derstood from the fact that h ≈

∫ ∫
ψ4dt′dt, therefore, h is a

smoother function than ψ4. As shown in Fig. 5 this is not a
particular result of our procedure to measure the eccentricity,
but a general fact which can be reproduced by any method
to measure the eccentricity based on the oscillations of the
frequency of the (2, 2) mode. We have decided to show the
orbital frequency from the PN dynamics as it contains more
cycles and eases the visualization of the effect, but the same
effect can be obtained with the orbital frequency from the BH
motion of a NR simulation. Moreover, we remark that these
differences have also been noted in [64], where they explicitly
computed the factor between the eccentricity estimator calcu-
lated from the gravitational wave frequency of h and ψ4 in the
low eccentric limit. Thus, one expects to see these discrepan-
cies even augmented as the eccentricity increases as it is the
case of the waveforms studied in this article. We also note

-20000 -15000 -10000 -5000 0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

Figure 5: Time evolution of the orbital frequency, Mωorb computed
from the phase of rψ2,2

4 , the orbital frequency computed from the
dynamics, ω = |v×rr2 |, and from the phase of the strain h2,2.

that we choose not to integrate backwards in time too far in
the past of the binary due to the inaccuracy of the eccentric
PN fluxes which make the solutions inaccurate for extremely
high eccentricities and the inaccuracy of the PN expressions
for the waveform which also become more and more inaccu-
rate for high eccentricities.

IV. PARAMETER ESTIMATION WITH ECCENTRIC
SIGNALS

In this section we employ the waveforms introduced in
Secs. II and III for data analysis studies. First, we analyze the
impact of the eccentricity when computing overlaps against
quasicircular models. Second, we perform parameter estima-
tion studies injecting eccentric NR and hybrid waveforms into
detector noise and compute parameter biases using three dif-
ferent IMR quasicircular models available in the LIGO Li-
braries, LALSUITE [85].

A. Match calculation

A generic black-hole binary evolving in a quasi-elliptical
orbit is described by 17 parameters. The intrinsic parameters
are the individual masses of the binary m1, m2, the 6 compo-
nents of the two spin vectors, ~S 1 and ~S 2, the orbital eccen-
tricity e and the argument of the periapsis Ω. The extrinsic
parameters describing the sky position of the binary with re-
spect to the detector are: the distance from the detector to
the source r, the coalescence time tc, the inclination ι, the az-
imuthal angle ϕ, the right ascension (φ), declination (θ) and
polarization angle (ψ). All these parameters together describe
the strain induced in a detector from a passing gravitational
wave [86]

h(t, ζ,Θ) =
[
F+(θ, φ, ψ)h+(t − tc; ι, ϕ, ζ)

+F×(θ, φ, ψ)h×(t − tc; ι, ϕ, ζ)
]
.

(4.1)
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Where Θ = {tc, r, θ, φ, ι, ϕ, ψ} is the set of extrinsic parame-
ters, ζ = {m1,m2, ~S 1, ~S 2, e,Ω} are the intrinsic parameters and
F+, F× are the antenna patterns functions defined in [86] . The
detector response is written in terms of the waveform polariza-
tions (h+, h×) which combine to define the complex waveform
strain

h(t) = h+ − ih× =

∞∑

l=2

l∑

m=−l

Y−2
lm (ι, ϕ)hlm(t − tc; ζ), (4.2)

where Y−2
lm (ι, ϕ) are spin-weighted -2 spherical harmonics and

hlm refers to the (l,m) waveform mode. The comparison be-
tween two waveforms is usually quantified by an overlap in-
tegral, which is a noise-weighted inner product between sig-
nals [87], and which can be maximised over subsets or all of
the parameters of the signal. Given a real-valued detector re-
sponse, the inner product between the signal, hS

resp(t), and the
model, hM

resp(t), is defined as

〈hS
resp|hM

resp〉 = 4Re
∫ +∞

0

h̃S
resp( f )h̃M∗

resp( f )

S n(| f |) d f , (4.3)

where h̃ denotes the Fourier transform of h, h∗ the complex
conjugate of h and S n(| f |) is the one sided noise Power Spec-
tral Density (PSD) of the detector.

The normalized match optimized over a relative time shift
and the initial orbital phase can be written as

M(ιS , ϕ0S ) = max
tc,ϕ0S


〈hS

resp|hM
resp〉√

〈hS
resp|hS

resp〉 〈hM
resp|hM

resp〉


. (4.4)

The match is close to 1 when the model is able to faithfully
reproduce the signal, while values of the match close to 0 in-
dicate large disagreement between the two waveforms. In Eq.
(4.4) the match is computed for given values of the angles
(ιS , ϕ0S ) of the signal and maximizing over phase and time
shifts. We will take only the h22 mode of the eccentric hybrids
and a quasicircular (QC) waveform model and compute single
mode mismatches maximized over a time shift, t0, and a phase
offset, φ0, as

MM = max
t0,φ0


〈hhyb

22 |hQC
22 〉√

〈hhyb
22 |hhyb

22 〉 〈hQC
22 |hQC

22 〉


. (4.5)

To simplify the comparisons we introduce the mismatch,
1 −MM. Values of the mismatch close to zero indicate good
agreement between the signal and the model, while the higher
the mismatch the larger the difference between both wave-
forms, indicating that the model is not able to accurately rep-
resent the signal.

Having set the notation for the calculation of the mismatch,
we compute the mismatch between the eccentric (2, 2) mode
hybrids computed in Sec. III and the quasicircular model Phe-
nomX [22, 23], which is an upgrade of the aligned-spin Phe-
nomD model [12, 88], with calibration to a larger NR data
set and also to extreme-mass ratio waveforms. We employ

the Advanced LIGO’ ”zero detuned high power” PSD [89] to
compute the overlap in Eq. (4.3). The integral of Eq. (4.3) is
evaluated between a frequency range of 20 and 2000 Hz. The
non-monotonic behaviour of the GW frequency of eccentric
systems complicates the determination of the frequency range
of a signal in the detector band. The ideal case would be the
one in which the initial apastron and periastron frequencies are
below 20Hz. This would mean that the whole waveform starts
before the cutoff frequencies of the detectors and one observes
the complete eccentric inspiral of the binary. Another possi-
bility is that both frequencies are above 20 Hz, then the signal
is very short and much of the inspiral waveform is lost. Fi-
nally, it is also possible that during some part of the waveform
the periastron frequencies are above 20 Hz and apastron fre-
quencies are below 20Hz. The latter is typically the case of
our hybrid waveforms.

50 100 150 200
10

-4

0.001

0.010

0.100

1

Figure 6: Mismatches for the (l,m) = (2, 2) mode between the ec-
centric hybrid waveforms corresponding to the cases presented in
Table IV of Appendix A and the quasicircular PhenomX waveform
model as a function of the total mass of the system. The green, blue,
black and red lines correspond to eccentric PN-NR hybrid waveforms
with initial eccentricities e ≤ 0.3, 0.3 ≤ e ≤ 0.5 and 0.5 ≤ e ≤ 0.84,
respectively.

In Fig. 6 we show the single mode mismatches between
the eccentric hybrids and PhenomX for a range of total mass
of the system between MT ∈ {20, 200}M�. As expected, for
larger total masses of the system most of the waveform in the
frequency band of the detector is in the merger and ringdown
parts and the mismatches are even below the 3% threshold.
This is consistent with the results obtained in Sec. II C, which
show the agreement for the final state between the eccentric
simulations and the quasicircular fits. However, the lower the
total mass the higher the mismatch, this is due to the fact that
at low frequencies there is more inspiral part of the waveform
in the frequency band, and therefore, the inability of the qua-
sicircular model to resemble the eccentric inspiral becomes
notorious. One can also appreciate in Fig. 6 that generally the
higher the initial eccentricity the higher the mismatch for the
whole mass range.
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B. Eccentric Injections into detector noise

In this section we show some applications of the eccentric
waveform data set to parameter estimation. We inject eccen-
tric hybrids into Gaussian noise realization recolored to match
the spectral density of the Advanced LIGO and Virgo detec-
tors at design sensitivity. All simulations with the same in-
jected signal are performed with the same noise realization.
We do not address the challenge of detecting eccentric sig-
nals and instead assume that the signal has been detected by
standard CBC search pipelines [90]. We perform parameter
estimation using the python-based BILBY code [91]. Of the
numerous stochastic samplers implemented in BILBY, we em-
ploy the nested sampler CPNEST [92] and use waveform ap-
proximants implemented in LALSUITE [85] as the model tem-
plates. The eccentric hybrids make use of the Numerical Rel-
ativity injection infrastructure [93, 94].

At the time of writing, the state of the art non-spinning
eccentric IMR models [37–40] were not yet implemented in
LALSUITE. The only eccentric waveform models in LALSUITE
are inspiral non-spinning frequency domain approximants
[32, 95, 96]. We decide not to use such inspiral waveform
models to avoid biases induced by the sharp cutoff at the end
of the waveform [97]. For a study of the eccentricity mea-
surement using such inspiral approximants see [98, 99]. We
restrict to IMR quasicircular approximants and perform pa-
rameter estimation analysis on the injected eccentric signals
sampling on the 15 parameters of a quasicircular black-hole
binary.

ID Simulation q χ1,z χ2,z D/M eω ± δeω
61 SXS:BBH:1355 1. 0. 0. 12.97 0.090 ± 0.003

62 SXS:BBH:1359 1. 0. 0. 15.73 0.146 ± 0.003

63 SXS:BBH:1361 1. 0. 0. 16.69 0.209 ± 0.003

Table I: Summary of the injected NR simulations. The first column
denotes the identifier of the simulation, the second column indicates
the name of the simulation as presented in [38]. Next columns show
the mass ratio, z-component of the dimensionless spin vectors, the
initial orbital separation and the initial orbital eccentricity as mea-
sured using the procedure detailed in Sec. II D.

We inject three NR equal mass non-spinning simulations
described in Table I into a network of gravitational wave
detectors composed of the LIGO-Hanford, LIGO-Livingston
[100] and Virgo interferometers [101], each operating at de-
sign sensitivity. We set a reference frequency of fref = 20 Hz,
where the waveforms start. Some injected parameters are
displayed in Table II, while the declination is δ = −1.21
rad, the right ascension α = 1.37 rad and the coalescence
phase φ = 0 rad. From these simulations, the {(l,m} =

{(2,±2), (3,±2), (4,±4), (5,±4), (6,±6)} modes are used, we
do not inject odd m modes because they are zero by symme-
try. For the injected signal we choose the luminosity distance,
DL = 430 Mpc, similar to the first detection of a gravitational
wave signal, GW150914 [7], which produces a high network
signal-to-noise ratio (SNR) as shown in Tables II, III.

We employ a uniform-in-volume prior on the luminosity
distance, p(DL|H) ∝ D2

L, between 50 and 1500 Mpc. The
inclination and polarization angles have both uniform pri-
ors between (0, π). We use the standard priors for the ex-
trinsic variables, as in Table I of [91]. Instead of sampling
in the component masses we sample in mass ratio, q, and
chirp mass, Mc, with a range (0.05, 1) and (15, 60)M�, re-
spectively. The spin priors are set differently according to
the approximant. If the approximant is non-precessing, we
set the option of aligned spin=True in the BBHPriorDict
function of Bilby which samples in the dimensionless spin
z-components between -0.8 and +0.8. While for precessing
approximants, we sample in the tilt angles, (θ1, θ2), the angle
between the spin vectors, φ12, the angle between J and L, φJL
and the dimensionless spin magnitudes (a1, a2). The priors
for a1, a2, θ1, θ2, φJL and φ12 are the same as in Table I of [91].
We also define a uniform prior for the coalescence time of two
seconds centered at the injection time.

We take three quasicircular models as approximants: 1)
IMRPhenomD [12, 88], non-precessing model with only
the (2,±2) modes, 2) IMRPhenomHM [15], non-precessing
model including higher order modes, and 3) IMRPhenomPv2
[13], effective precessing model.

We plot the posterior probability distribution for the chirp
mass, mass ratio, effective spin parameter and luminosity dis-
tance for the PhenomD approximant in Fig. 7 with 90% cred-
ible intervals specified by the dashed vertical lines and the
injected values by the magenta thick vertical lines. As a con-
trol case we show in Fig. 7 also the posterior distribution of
an equal mass non-spinning zero eccentricity injection per-
formed using the hybridized surrogate model NRHybSur3dq8
[19] with the same injected parameters as in Table II and re-
covered with the PhenomD model. The NRHybSur3dq8 in-
jected waveform contains all higher order modes up to l = 4,
which in this case seems to cause the small bias one observes
in the luminosity distance when recovering with the PhenomD
model which only contains the (2, |2|) modes. For the rest
of the parameters, like the mass ratio, chirp mass and the ef-
fective spin parameter, we obtain results consistent with the
accuracy of the PhenomD model for parameter estimation of
injected signals as shown in [22].

The posterior distributions for the rest of approximants are
shown in Fig. 13 of App. C. The same information is sum-
marized in Fig. 8, where the median and the error bars cor-
responding to the 90% credible intervals of the posterior dis-
tribution are shown as a function of the initial eccentricity.
Note that the bars corresponding to the same initial eccentric-
ity but different approximants have been separated by a small
amount to ease the visualization of the results. For the lowest
initial eccentricity, e0 = 0.09 the results for the four quanti-
ties are pretty different. The chirp mass and the effective spin
parameter produce similar distributions for the three approx-
imants, while for the mass ratio and the luminosity distance,
PhenomHM distributions are closer to the injected values than
PhenomD and PhenomPv2.

Furthermore, for e0 = 0.14 and e0 = 0.2 we observe in-
creasing poorer agreement with the injected values, except for
the mass ratio where the lowest initial eccentricity signal pro-

108 Chapter 5. A first exploration of spinning eccentric binary black holes



10

duces wider distributions than the ones with higher initial ec-
centricity. This can also be checked in Table II, where the
recovered parameters, median values and 90% credible in-
tervals, are compared to the injected values. Regarding the
effective spin parameter and the chirp mass, the increase of
initial eccentricity in the injected signal shifts the posteriors
for the three quasicircular models, while for the mass ratio the
increase of initial eccentricity reduces the bias on the mea-
surement of the mass ratio, probably as a consequence of the
shift in the chirp mass distribution, as displayed in Fig. 11 of
App. C for the all the injections recovered with the PhenomD
model.

One observes also that PhenomHM recovers better the in-
jected parameters than PhenomD and PhenomPv2. For the lu-
minosity distance the probability densities tend to flatten and
be closer to the prior distributions for high initial eccentrici-
ties, one notes again that PhenomHM has less parameter bias
than PhenomD and PhenomPv2. Injected values of the sky
position like the right ascension α = 1.375 rad and δ = −1.21
rad are well recovered for all the nine runs, probably due to
the expensive PE settings described in App. C : α = 1.37+0.01

−0.01
rad and δ = −1.21+0.01

−0.01 rad.
Furthermore, we have computed the recovered matched-

filter SNR for the detector network, ρMatch, for each sim-
ulation. This quantity, ρMatch, is computed calculating the
matched filter between the detector data with the eccentric sig-
nal injected and the waveform of the approximant waveform
model with the parameters corresponding to the highest log-
likelihood value of the posterior distribution. The results of
such a calculation are shown in Table I. As expected, we ob-
serve that the zero eccentricity injection recovers much more
SNR than the eccentric injections, with decreasing values of
the recovered SNR with increasing eccentricity.

Additionally, we display the values of the log Bayes factor
for each simulation. The Bayes factor is computed here as
the ratio between the signal and null evidences (see Eq. 13
of [102]). One can observe that both the recovered matched-
filter SNR and the log Bayes factor decrease the higher the
initial eccentricity of the injected signal. The matched-filter
SNR produces similar values between models for simulations
with the same initial eccentricity. However, the log Bayes
factor tends to be slightly higher for aligned-spin waveform
models, PhenomD and PhenomHM, for the lowest initial ec-
centric injected signal, while for higher initial eccentricities
the precessing model IMRPhenomPv2 shows slightly greater
log Bayes factors than the aligned-spin ones. The highest log
Bayes factor is obtained for the zero-eccentricity injection.

We repeat the same procedure injecting a hybrid waveform,
including only the (l,m) = (2,±2) modes, of an eccentric
spinning waveform with ID 8 of Table IV. This is an equal
mass with the z-component of the dimensionless spin vectors
χ1z = χ2z = −0.25 and initial eccentricity e0 = 0.420 ± 0.006.
The posterior distribution for the chirp mass, mass ratio, lumi-
nosity distance and χeff are shown in Fig. 9 for the IMRPhe-
nomD, IMRPhenomHM and IMRPhenomPv2 as waveform
models. In this case, the parameter biases are much higher
than in the previous injection study mainly due to the fact that
the injected signal has a much higher initial eccentricity.

The values of the recovered parameters as well as the in-
jected values are shown in Table III. The injected values of
the sky position like the right ascension α = 1.375 rad and
δ = −1.21 rad are again well recovered parameters for the
three runs α = 1.37+0.01

−0.01 rad and δ = −1.21+0.01
−0.01 rad. The bias

in the chirp mass is ∼ 4M� for the three models. Here one
observes again the correlation between chirp mass and mass
ratio, the shift in chirp mass posteriors with respect to the in-
jected value translates into a better determined mass ratio dis-
tribution, which is clearly the case for PhenomHM which per-
forms unexpectedly well recovering the mass ratio parameter,
while PhenomD and PhenomPv2 show much wider distribu-
tions and much larger credible intervals.

The posteriors of the luminosity distance show also large
error bars for the three models, where again PhenomHM re-
duces the bias with respect to PhenomD and PhenomPv2. The
recovered effective spin parameter is completely off with re-
spect to the injected value for the three approximants. The
recovered χeff is positive while the injected one is negative,
the bias in the effective spin parameter is approximately −0.3
for the three models, indicating the inability of the quasicircu-
lar models to estimate the spin parameter of highly eccentric
spinning binaries with quasicircular models. Regarding the
recovered matched-filter SNR and the log Bayes factor dis-
played in Table III one can observe that while the SNR pro-
vides comparable values among models, the values of the log
Bayes factor indicate that PhenomPv2 fits scarcely better the
data than PhenomHM and PhenomD.

This section shows examples of the kind of study that one
is able to perform with the current eccentric waveform data
set. We have shown the limitations of the current IMR quasi-
circular to estimate the parameters of moderately eccentric
waveforms including a moderately spinning case. For the
cases studied in this section we have found that although the
use of quasicircular models to estimate parameters of eccen-
tric signals leads to inevitable biases, aligned spin quasicir-
cular models with higher order modes leverage the impact of
this biases for the mass ratio and the luminosity distance when
compared to aligned spin models with only the (2,±2) modes
or precessing models. Due to the computational cost of the
PE runs and the amount of eccentric waveforms available we
leave for future work a detailed study of the whole data set
using not only quasicircular models, but also eccentric wave-
form approximants.

V. SUMMARY AND CONCLUSIONS

In this paper we have presented the first parameter study of
numerical relativity simulations of eccentric spinning black-
hole binaries. We have presented a simple procedure to set up
the initial parameters of eccentric simulations. The higher the
initial eccentricity of the simulation the longer the initial sep-
aration has to be in order to avoid the immediate plunge of the
binary due to the strong interactions at the periastron. This in-
creases the computational cost of the simulations of Table IV
with e0 ∼ 0.4 which is roughly double the one with e0 ∼ 0.2
as can be observed in their merger times. Additionally, longer
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e0 Model m1/M� m2/M� Mc/M� q DL/Mpc χeff ψ (rad) ι (rad) ρMatch logB

0.09

PhenomD 35.06+2.55
−1.92 31.29+1.10

−1.33 28.40+0.17
−0.17 0.87+0.10

−0.12 384+49
−82 0.00+0.02

−0.02 1.60+1.28
−1.34 0.54+0.32

−0.32 89.40 3463.79

PhenomHM 34.05+2.14
−1.16 31.79+0.69

−1.17 28.38+0.16
−0.16 0.92+0.07

−0.11 429+16
−33 −0.01+0.02

−0.02 2.01+0.97
−1.82 0.28+0.21

−0.17 89.28 3463.78

PhenomPv2 35.26+2.97
−2.06 31.28+1.18

−1.53 28.44+0.21
−0.18 0.86+0.11

−0.13 412+24
−66 0.00+0.02

−0.02 1.65+1.22
−1.32 0.39+0.32

−0.22 89.19 3459.54

0.14

PhenomD 34.03+1.34
−0.72 32.63+0.44

−0.73 28.86+0.15
−0.15 0.95+0.04

−0.07 407+53
−84 0.02+0.02

−0.02 1.58+1.21
−1.23 0.54+0.32

−0.32 84.87 3288.25

PhenomHM 33.76+0.96
−0.54 32.73+0.35

−0.56 28.82+0.16
−0.14 0.96+0.03

−0.05 408+46
−52 0.02+0.02

−0.02 1.91+0.46
−0.58 0.54+0.19

−0.25 84.74 3283.61

PhenomPv2 34.22+1.48
−0.89 32.54+0.54

−0.82 28.87+0.19
−0.21 0.94+0.05

−0.08 389+33
−60 0.01+0.02

−0.03 1.70+1.09
−1.07 0.64+0.25

−0.18 85.08 3302.37

0.2

PhenomD 35.65+1.52
−0.85 34.01+0.51

−0.82 30.13+0.16
−0.16 0.94+0.05

−0.07 420+72
−109 0.07+0.02

−0.02 1.57+1.36
−1.18 0.61+0.41

−0.37 81.88 3102.70

PhenomHM 35.47+1.36
−0.78 33.97+0.46

−0.72 30.06+0.16
−0.15 0.95+0.04

−0.07 438+43
−47 0.06+0.02

−0.02 0.42+0.90
−0.29 0.54+0.16

−0.20 81.97 3101.79

PhenomPv2 37.13+2.11
−1.76 33.20+1.00

−1.12 30.12+0.21
−0.22 0.870.09

−0.09 414+41
−69 0.06+0.02

−0.02 1.62+0.98
−1.29 0.66+0.25

−0.18 82.05 3112.97

0 PhenomD 34.07+2.05
−1.29 30.91+1.24

−1.77 28.24+0.16
−0.16 0.91+0.07

−0.10 375+48
−75 0.0+0.02

−0.02 1.58+1.28
−1.24 0.53+0.33

−0.32 173.16 3632.19

Injected 32.5 32.5 28.29 1. 430 0. 0.33 0.3

Table II: Black hole binary recovered parameters for the three NR simulations from Table I. The last row corresponds to the injected parameters.
In the penultimate row we show the recovered parameters of the zero eccentricity injection performed with NRHybSur3dq8 model. The first
column describes the initial eccentricity of the injected signal, then we specifiy the approximant, the component masses, the chirp mass, mass
ratio, luminosity distance, effective spin parameter, polarization angle, inclination, the recovered matched-filter SNR for the detector network
and the log of the Bayes factor.
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Figure 7: Posterior probabibility distributions for the injected NR simulations of Table I and a zero eccentricity injection using the NRHyb-
Sur3dq8 model. The vertical dashed lines correspond to 90% credible regions. The magenta thick vertical line represents the injected value.
The green, black, blue and red curves represent distributions sampled using the IMRPhenomD approximant with injected initial eccentricities,
e0 = 0.0, 0.09, 0.14, 0.2, respectively.
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Figure 8: Median values and error bars corresponding to 90% credible regions of the posterior probabibility distributions for the injected NR
simulations of Table I. The vertical magenta line represents the injected value. The black, blue and red segments represent the median values
and errors bars of the distributions sampled using the IMRPhenomD, IMRPhenomHM and IMRPhenomPv2 approximants, respectively. The
cases are represented for three initial eccentricities of the injected signal, e0 = 0.09, 0.14, 0.2. To ease the visualization of the horizontal bars,
cases with the same initial eccentricity and run with different approximants have been separated a ∆e = 0.003.

e0 Model m1/M� m2/M� Mc/M� q DL/Mpc χeff ψ (rad) ι (rad) ρMatch logB

0.42

PhenomD 37.52+1.30
−0.76 36.04+0.49

−0.73 31.86+0.19
−0.2 0.95+0.04

−0.06 474+62
−101 0.06+0.02

−0.02 2.60+0.31
−0.33 1.54+1.22

−1.19 82.68 2895.91

PhenomHM 37.23+0.95
−0.37 36.62+0.30

−0.81 32.07+0.18
−0.23 0.98+0.02

−0.06 384+54
−45 0.08+0.02

−0.02 2.28+0.18
−0.16 1.04+1.12

−0.26 82.54 2894.17

PhenomPv2 39.15+2.08
−1.62 35.20+0.84

−1.06 31.87+0.23
−0.26 0.88+0.07

−0.08 413+77
−110 0.05+0.03

−0.03 2.33+0.33
−0.44 1.46+1.36

−0.45 82.62 2910.28

Injected 32.5 32.5 28.29 1. 430 −0.25 0.33 0.3

Table III: Black hole binary recovered parameters for the spinning hybrid waveform from Fig. 9. The last row corresponds to the injected
parameters. The first column describes the initial eccentricity of the injected signal, then we specifiy the approximant, the component masses,
the chirp mass, mass ratio, luminosity distance, effective spin parameter, polarization angle, inclination,the recovered matched-filter SNR for
the detector network and the log of the Bayes factor.

initial separations produce long enough waveforms which al-
low to avoid the breakdown of the post-Newtonian approxi-
mation and ease the posterior construction of PN-NR hybrid
waveforms. As part of the post-processing step, we have com-
puted the final mass and final spin of the 60 new simulations
presented in Table IV. We have compared the final mass and
final spin of those simulations with quasicircular NR fits [59]
and found that relative differences are as high as 1%, which
is completely consistent with the inaccuracies of the fitting
formulae and gauge transient in the apparent horizon quanti-
ties. Therefore, we have extended previous work [53] on the
circularization of eccentric non-spinning Numerical Relativ-

ity simulations to the eccentric spinning case. Note that the
eccentricities of the simulations presented in this communi-
cation have more moderate values than the ones presented in
[53], altough ours are much longer and include spins.

Crucial part of these work has been to extend the low ec-
centric procedure to measure the eccentricity in NR [55] to the
arbitrary high eccentric limit. We have shown that eccentric-
ity estimator used in [55] cannot be used for high eccentrici-
ties because it does not reduce to the Newtonian definition of
the eccentricity. Additionally, its reliance on a non-eccentric
fit makes it numerically inaccurate and it can produce eccen-
tricity values higher than 1. As a consequence, we have de-
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Figure 9: Posterior probabibility distributions for the injected spinning eccentric hybrid waveform, with initial eccentricity e0 = 0.420±0.006.
The vertical dashed lines correspond to 90% credible regions. The magenta thick vertical line represents the injected value. The black, blue
and red curves represent distributions sampled using the IMRPhenomD, IMRPhenomHM and IMRPhenomPv2 approximants, respectively.

cided to use another eccentricity estimator [68] constructed
also upon the orbital frequency and which does not rely on
any non-eccentric fit. This eccentricity estimator reduces to
the Newtonian definition of eccentricity for arbitrarily high
eccentricities. We have shown that with this eccentricity es-
timator we are able to robustly measure the eccentricity for
the whole evolution, which will be a key result to generate a
future eccentric waveform model.

We have then taken the NR waveforms and hybridized the
(2, 2) mode with PN waveforms. The production of the ec-
centric PN waveforms has required to solve the point particle
3.5PN equations of motion in ADMTT coordinates [55] en-
hanced with the eccentric contribution to the energy flux from
[71]. The absence of complete generic PN expressions for the
waveform modes has caused the inaccuracy of the PN wave-
forms to dominate the error in the hybridization procedure.
The use of the instantaneous terms at 3PN order [76] pro-
duces inaccurate waveforms due to the lack of the low order
tail terms, while the full 3PN expressions in [77] are restricted
to the QK parametrization and rely on a certain decomposition
of the dynamical variables which complicates their combina-
tion with the generic numerical solution of the equations of
motion (3.1). Therefore, we have restricted to the use of the
quadrupole formula with a correction procedure for the initial
orbital separation. We have developed a procedure which cor-
rects the initial orbital separation of the PN evolution code for
a certain δr, such that it minimizes the difference in amplitude

between the PN and NR (2, 2) waveforms modes. We have
shown that with that procedure we are left with relative errors
in the amplitude and phase below 1% in the hybridization re-
gion. These errors in amplitude and phase are high compared
to the quasicircular ones [103], where the PN knowledge is
wider. Therefore, we expect that in the future an improvement
in the knowledge of the post-Newtonian waveforms will allow
us to construct more accurate hybrid waveforms, not only for
the (2, 2) mode, but also for the higher order modes.

We have also compared the hybrid waveforms with quasi-
circular IMR waveform models. This has been done first com-
puting the mismatch of the eccentric hybrid data set against
the quasicircular non-precessing PhenomX model [22, 23].
We find that the mismatches become much higher than 3%
for binaries with a total mass lower than 100M�, while for to-
tal masses higher than 150M�, the mismatch lowers below 3%
due to the fact that most of the eccentric waveform in the fre-
quency band of the detector is in the merger-ringdown parts,
which as shown in Sec. II C, due to circularization agrees re-
ally well with the quasicircular model.

Additionally, we have made a set of injection into gaussian
detector noise colored to match the LIGO and Virgo design
detector sensitivities. We have studied the parameter biases on
recovered parameters when using quasicircular models as ap-
proximants. We have used three different quasicircular mod-
els to recover the parameters and shown that, although the
use of quasicircular models leads to inevitable biases in pa-
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rameters like the effective spin parameter or the chirp mass,
where the biases are similar among the three models, others
like the mass ratio and the luminosity distance present lower
biases when using quasicircular aligned spin models including
higher order modes. Another important feature is the correla-
tion between chirp mass and mass ratio, the better the mea-
surement of the chirp mass the worse the determination of the
mass ratio and viceversa, and this can be clearly observed in
Figs. 9 and 13 where for initial eccentricities 0.09 the chirp
mass is well measured for the three models, but the mass ratio
distributions are not and as the initial eccentricity increases so
does the shift in the chirp mass distribution and generally the
better the mass ratio is determined. In the case of the spinning
eccentric hybrid the high initial eccentricity produces clear
biases in all the quantities and unexpectedly PhenomHM re-
covers well the injected value of the mass ratio and performs
the best for the luminosity distance. The study of this phe-
nomenology for the different cases that we have available is
ongoing and we leave for a future communication the exten-
sion of these results to the whole parameter space.

The work presented in this communication is a natural ex-
tension of [55]. We have set up the current infrastructure of
our group for quasicircular waveform modelling to the eccen-
tric case. As shown in this paper, we have developed new
methods to produce a set of spinning eccentric hybrid wave-
forms which can actually be used for data analysis purposes.
The next natural step is to use this hybrid data set to produce
a calibrated eccentric IMR waveform, which can be used for
detection and parameter estimation of eccentric black-hole bi-
naries.
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d’Educació, i Universitats del Govern de les Illes Balears
i Fons Social Europeu, Generalitat Valenciana (PROME-
TEO/2019/071), EU COST Actions CA18108 , CA17137,
CA16214, and CA16104, H2020-MSCA-IF-2016. Marie
Skłodowska-Curie Individual Fellowships Proposal number:
751492. The authors thankfully acknowledge the com-
puter resources at MareNostrum and the technical sup-
port provided by Barcelona Supercomputing Center (BSC)
through Grants No. AECT-2019-2-0010, AECT-2019-1-
0022, AECT-2018-3-0017, AECT-2018-2-0022, AECT-2018-
1-0009, AECT-2017-3-0013, AECT-2017-2-0017, AECT-
2017-1-0017, AECT-2016-3-0014, AECT2016-2-0009, from
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Appendix A: Numerical Relativity Simulations

The numerical set up for the BAM and the EinsteinToolkit
codes is the same described in Appendix C of [55]. We present
in Table IV the NR simulations we have produced for this pub-
lication. In Table IV we show the main properties of the NR
simulations: from left to the right we start providing an iden-
tifier to the simulations, the simulation name, the mass ratio
q = m1/m2 ≥ 1, the code used to produce it, the z-component
of the dimensionless spin vectors, χ1,z, χ2,z, of each black hole,
the initial orbital separation D/M, where M is the total mass
of the system, the initial eccentricity e0 corresponding to the
eccentricity value used in Eq. (2.3) to compute the perturba-
tion factors of the initial linear momenta of the simulations,
the initial orbital eccentricity, eω, measured with Eq. (2.8)
from the orbital frequency computed from the motion of the
black holes, an eccentricity error estimate, δeω, computed us-
ing Eq. (2.9), the time to merger, Tmerger/M, calculated as the
time elapsed from the start of the simulation until the peak of
the amplitude of the (l,m) = (2, 2) mode, the number of or-
bits, Norbits = φM

22/(4π), where φM
22 is the value of the phase

of the (2, 2) mode at merger, the final mass, M f , as defined in
Eq. (2.5) and the magnitude of the dimensionless final spin,
χ f = S/M f , where S is specified in Eq. (2.4).

In Fig. 10 we display the values of the eccentricity mea-
sured from the orbital frequency, eω, defined in Eq. (2.8), and
the value of the eccentricity, e0, used in Eq. (2.3) to compute
the perturbation factors of the initial linear momenta of the
simulations in Table IV. Moreover, we distinguish for eω with
blue, red and green colors non-spinning, positive and nega-
tive spin simulations, respectively. As expected, we observe
an increase in the differences between eω and e0 with higher
initial eccentricities and with high spins as the formula for
λt(r, e0, η, sign) where e0 is used, Eq. (2.2), is a 1PN expres-
sion derived for non-spinning binaries in the low eccentricity
limit. In order to obtain better control on the initial eccentric-
ity of the NR simulations for high eccentricities, higher order
corrections, including spin effects, should be taken into ac-
count in the derivation of the correction factors for the initial
linear momenta of the black holes. We leave for future work
an extension of the current PN formulas to the high eccentric-
ity limit.

Appendix B: Eccentricity estimators in highly eccentric systems

In this section we briefly show the form of the eccentricity
estimators of Eqs. (2.7) and (2.8) in the Newtonian limit. We
start analyzing the eccentricity estimator

eω(t) =
ω(t) − ω(e = 0)

2ω(e = 0)
. (B1)
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ID Simulation Code q χ1,z χ2,z χe f f D/M e0 eω ± δeω Tmerger/M Norbits M f χ f

1 q1. 0. 0. et0.1 D12.23 BAM 1. 0. 0. 0. 12.23 0.1 0.114 ± 0.002 1256.42 4.5 0.9527 0.6871
2 q1. 0. 0. et0.2 D15 BAM 1. 0. 0. 0. 15.0 0.2 0.210 ± 0.002 1682.01 5.2 0.9533 0.6895
3 q1. 0. 0. et0.1 D15 BAM 1. 0. 0. 0. 15.0 0.1 0.095 ± 0.002 2961.01 8.3 0.9525 0.6869
4 q1. 0. 0. et0.2 D17 BAM 1. 0. 0. 0. 17.0 0.2 0.195 ± 0.003 2917.42 8.2 0.9535 0.6889
5 q1. 0. 0. et0.3 D20 BAM 1. 0. 0. 0. 20.0 0.3 0.301 ± 0.001 497.48 1.5 0.9548 0.6950
6 Eccq1. 0. 0.25 et0.1 D14 ET 1. 0. 0.25 0.125 14.0 0.1 0.100 ± 0.002 2319.85 6.4 0.9480 0.7249
7 Eccq1. 0. 0.25 et0.2 D16 ET 1. 0. 0.25 0.125 16.0 0.2 0.217 ± 0.003 2449.84 5.8 0.9474 0.7243
8 Eccq1. -0.25 -0.25 et0.1 D12 ET 1. −0.25 −0.25 −0.25 12.0 0.1 0.148 ± 0.002 939.87 2.8 0.9579 0.6080
9 Eccq1. 0.25 0.25 et0.1 D12 ET 1. 0.25 0.25 0.25 12.0 0.1 0.131 ± 0.002 1347.59 4.8 0.9440 0.7605

10 Eccq1. -0.25 -0.25 et0.1 D14 ET 1. −0.25 −0.25 −0.25 14.0 0.1 0.134 ± 0.002 1897.26 5.3 0.9573 0.6091
11 Eccq1. 0.25 0.25 et0.1 D14 ET 1. 0.25 0.25 0.25 14.0 0.1 0.112 ± 0.003 2464.75 7.6 0.9440 0.7607
12 Eccq1. -0.25 -0.25 et0.2 D14 ET 1. −0.25 −0.25 −0.25 14.0 0.2 0.249 ± 0.002 1067.25 3.8 0.9578 0.6109
13 Eccq1. 0.25 0.25 et0.2 D14 ET 1. 0.25 0.25 0.25 14.0 0.2 0.194 ± 0.002 1499.92 5.0 0.9432 0.7620
14 Eccq1. 0.25 0.25 et0.2 D16 ET 1. 0.25 0.25 0.25 16.0 0.2 0.199 ± 0.003 2599.90 8.9 0.9437 0.7624
15 Eccq1. -0.25 -0.25 et0.5 D26 ET 1. −0.25 −0.25 −0.25 26.0 0.5 0.38 ± 0.004 3287.31 7.7 0.9566 0.6080
16 Eccq1. 0.25 0.25 et0.5 D26 ET 1. 0.25 0.25 0.25 26.0 0.5 0.418 ± 0.004 4613.02 11.3 0.9428 0.7604
17 Eccq1. 0.25 0. et0.1 D14 ET 1. 0.25 0. 0.125 14.0 0.1 0.128 ± 0.003 2302.69 7.2 0.9480 0.7249
18 Eccq1. 0.25 0. et0.2 D16 ET 1. 0.25 0. 0.125 16.0 0.2 0.161 ± 0.002 2411.27 7.4 0.9474 0.7242
19 Eccq1. -0.5 -0.5 et0.1 D13 ET 1. −0.5 −0.5 −0.5 13.0 0.1 0.143 ± 0.002 1131.58 3.2 0.9623 0.5286
20 Eccq1. 0.5 0.5 et0.1 D13 ET 1. 0.5 0.5 0.5 13.0 0.1 0.116 ± 0.002 2071.02 7.3 0.9323 0.8309
21 Eccq1. -0.5 -0.5 et0.2 D15 ET 1. −0.5 −0.5 −0.5 15.0 0.2 0.104 ± 0.001 1170.51 3.3 0.9624 0.5298
22 Eccq1. 0.5 0.5 et0.2 D15 ET 1. 0.5 0.5 0.5 15.0 0.2 0.194 ± 0.002 2290.43 7.7 0.9329 0.8323
23 Eccq1. -0.5 -0.5 et0.5 D26 ET 1. 0.5 0.5 0.5 26.0 0.5 0.505 ± 0.005 2675.44 6.1 0.9622 0.5230
24 Eccq1. 0.5 0.5 et0.5 D26 ET 1. 0.5 0.5 0.5 26.0 0.5 0.400 ± 0.004 5307.53 13.4 0.9322 0.8294
25 Eccq1. -0.75 -0.75 et0.1 D13 ET 1. −0.75 −0.75 −0.75 13.0 0.1 0.144 ± 0.002 907.44 2.5 0.9654 0.4458
26 Eccq1. 0.75 0.75 et0.1 D13 ET 1. 0.75 0.75 0.75 13.0 0.1 0.089 ± 0.002 2307.95 8.3 0.9156 0.8934
27 Eccq1. -0.75 -0.75 et0.2 D15 ET 1. −0.75 −0.75 −0.75 15.0 0.2 0.249 ± 0.002 902.561 2.6 0.9657 0.4475
28 Eccq1. 0.75 0.75 et0.2 D15 ET 1. 0.75 0.75 0.75 15.0 0.2 0.181 ± 0.002 2629.47 9.5 0.9149 0.8904
29 Eccq1. -0.75 -0.75 et0.5 D26 ET 1. −0.75 −0.75 −0.75 26.0 0.5 0.339 ± 0.003 2079.87 4.1 0.9655 0.4506
30 Eccq1. 0.75 0.75 et0.5 D26 ET 1. 0.75 0.75 0.75 26.0 0.5 0.373 ± 0.004 5907.6 15.1 0.9158 0.8843
31 Eccq1.5 0. 0. et0.1 D13 ET 1.5 0. 0. 0. 13.0 0.1 0.108 ± 0.002 1606.33 5.2 0.9552 0.6651
32 Eccq1.5 0. 0. et0.2 D13.5 ET 1.5 0. 0. 0. 13.5 0.2 0.126 ± 0.001 1142.56 3.8 0.9553 0.6619
33 Eccq1.5 0. 0. et0.2 D15 ET 1.5 0. 0. 0. 15.0 0.2 0.245 ± 0.002 1809.34 5.4 0.9548 0.6636
34 Eccq2. 0. 0. et0.1 D13 ET 2. 0. 0. 0. 13.0 0.1 0.106 ± 0.002 1738.71 5.3 0.9610 0.6232
35 Eccq2. 0. 0. et0.2 D16 ET 2. 0. 0. 0. 16.0 0.2 0.167 ± 0.002 2499.02 7.5 0.9610 0.6249
36 Eccq2. 0. 0. et0.5 D26 ET 2. 0. 0. 0. 26.0 0.5 0.422 ± 0.004 4380.33 10.4 0.9609 0.6262
37 Eccq2. -0.25 -0.25 et0.1 D12 ET 2. −0.25 −0.25 −0.25 12.0 0.1 0.138 ± 0.002 1026.39 3.2 0.9664 0.5283
38 Eccq2. 0.25 0.25 et0.1 D12 ET 2. 0.25 0.25 0.25 12.0 0.1 0.103 ± 0.002 1435.07 5.1 0.9544 0.7170
39 Eccq2. -0.25 -0.25 et0.1 D14 ET 2. −0.25 −0.25 −0.25 14.0 0.1 0.130 ± 0.002 2001.7 5.6 0.9663 0.5261
40 Eccq2. 0.25 0.25 et0.1 D14 ET 2. 0.25 0.25 0.25 14.0 0.1 0.103 ± 0.002 2707.25 8.3 0.9544 0.7155
41 Eccq2. -0.25 -0.25 et0.2 D14 ET 2. −0.25 −0.25 −0.25 14.0 0.2 0.072 ± 0.001 1123.58 3.5 0.9660 0.5300
42 Eccq2. 0.25 0.25 et0.2 D14 ET 2. 0.25 0.25 0.25 14.0 0.2 0.219 ± 0.002 1708.92 5.6 0.9548 0.7151
43 Eccq2. -0.25 -0.25 et0.2 D16 ET 2. −0.25 −0.25 −0.25 16.0 0.2 0.225 ± 0.003 2085.67 5.8 0.9663 0.5253
44 Eccq2. 0.25 0.25 et0.2 D16 ET 2. 0.25 0.25 0.25 16.0 0.2 0.188 ± 0.003 2847.34 8.3 0.9549 0.7165
45 Eccq2. -0.25 -0.25 et0.5 D26 ET 2. −0.25 −0.25 −0.25 26.0 0.5 0.392 ± 0.003 3628.05 8.4 0.9665 0.5308
46 Eccq2. 0.25 0.25 et0.5 D26 ET 2. 0.25 0.25 0.25 26.0 0.5 0.411 ± 0.004 5203.86 12.5 0.9542 0.7140
47 Eccq2. 0.5 0.5 et0.1 D14 ET 2. 0.5 0.5 0.5 14.0 0.1 0.095 ± 0.002 2985.28 9.1 0.9448 0.8052
48 Eccq2. -0.5 -0.5 et0.1 D14 ET 2. −0.5 −0.5 −0.5 14.0 0.1 0.158 ± 0.003 1714.88 4.2 0.9698 0.4279
49 Eccq2. -0.5 -0.5 et0.2 D16 ET 2. −0.5 −0.5 −0.5 16.0 0.2 0.277 ± 0.003 1712.98 4.2 0.9696 0.4300
50 Eccq2. 0.5 0.5 et0.2 D16 ET 2. 0.5 0.5 0.5 16.0 0.2 0.180 ± 0.003 3294.21 10.5 0.9451 0.8035
51 Eccq2. -0.5 -0.5 et0.5 D27 ET 2. −0.5 −0.5 −0.5 27.0 0.5 0.393 ± 0.004 3522.66 7.2 0.9696 0.4328
52 Eccq2. -0.75 -0.75 et0.1 D14 ET 2. −0.75 −0.75 −0.75 14.0 0.1 0.137 ± 0.002 1386.95 3.2 0.9725 0.3273
53 Eccq2. -0.75 -0.75 et0.2 D16 ET 2. −0.75 −0.75 −0.75 16.0 0.2 0.125 ± 0.002 1353.72 3.4 0.9728 0.3297
54 Eccq3. 0. 0. et0.1 D13 ET 3. 0. 0. 0. 13.0 0.1 0.104 ± 0.002 1978.55 6.1 0.9713 0.5414
55 Eccq3. 0. 0. et0.2 D15 ET 3. 0. 0. 0. 15.0 0.2 0.166 ± 0.002 2156.21 6.2 0.9710 0.5401
56 Eccq3. 0. 0. et0.5 D26 ET 3. 0. 0. 0. 26.0 0.5 0.416 ± 0.004 5029.06 11.5 0.9710 0.5385
57 Eccq4. 0. 0. et0.1 D12 ET 4. 0. 0. 0. 12.0 0.1 0.134 ± 0.002 1609.06 5.3 0.9780 0.4725
58 Eccq4. 0. 0. et0.2 D15 ET 4. 0. 0. 0. 15.0 0.2 0.176 ± 0.002 2412.73 7.4 0.9779 0.4731
59 Eccq4. 0. 0. et0.5 D27 ET 4. 0. 0. 0. 27.0 0.5 0.412 ± 0.004 6698.64 15.2 0.9779 0.4739
60 Eccq4. 0. 0. et0.5 D27.5 ET 4. 0. 0. 0. 27.5 0.5 0.415 ± 0.005 7422.59 16.4 0.9784 0.4717

Table IV: Summary of the eccentric NR simulations used in this work. In the first column we indicate the identifier of the simulation.
Additionally, each simulation is specified by its mass ratio q = m1/m2 ≥ 1, the code with it was produced, the z-component of the dimensionless
spin vectors, χ1,z, χ2,z, the orbital separation D/M, the desired initial eccentricity e0 used in Eq. (2.3) and the actual measured initial orbital
eccentricity, eω and its error, δeω, the time to merger, Tmerger/M, the number of orbits, Norbits, the final mass, M f and the magnitude of the
dimensionless final spin, χ f .
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Figure 10: Eccentricity measured from the orbital frequency, eX
ω

with X = NS,−S ,+S corresponding to non-spinning, positive and
negative spin simulations, for all the simulations in Table IV com-
pared to the PN eccentricity, e0, specified in Eq. (2.3) to compute
the perturbation factors to the initial linear momentum of the simula-
tions. The black dots represent e0, the eccentricity value prescribed
in Eq. (2.3), while the diamonds represent the actual measured ec-
centricity eX

ω. For eX
ω we distinguish non-spinning (X=NS), positive

spin (X=+S) and negative spin (X=-S) simulations with blue, red and
green colors, respectively.

In the Keplerian parametrization the orbital frequency can be
written as:

ω(t) =
nt
√

1 − e2

(1 − e cos u)2 , (B2)

where nt = 2π/Torb is the mean motion, Torb is the orbital
period, e is the eccentricity and u is the eccentric anomaly. In
the low eccentric limit, Eq. (B1) reduces to

ω(t) ≈ nt [1 + 2e cos u] + O
(
e2

)
. (B3)

Replacing Eq. (B3) in Eq. (B1) one obtains eω = e. However,
if one substitutes Eq. (B2) in Eq. (B1) one gets

eω(t) =
1
2


√

1 − e2

[e cos(u) − 1]2 − 1

 , (B4)

which does not reduce to the Newtonian definition of eccen-
tricity. Moreover, one can show that the estimator of Eq. (B4)
is not normalized for a certain combination of values of u and
e. For example, if u vanishes, then

eω ≥ 1 for e ≥ 0.455212. (B5)

This shows that the eccentricity estimator given by Eq. (B1)
has to be taken with caution in the high eccentric limit because
it can go above 1. On the other hand, the eccentricity estimator

eΩa,p (t) =
ω1/2

p − ω1/2
a

ω1/2
p + ω1/2

a

, (B6)

where ωa, ωp are the orbital frequency at the apastron and
periastron, respectively. This eccentricity estimator has the

property that even for high eccentricities it reduces to the
Newtonian definition of eccentricity, i.e., eΩa,p = e.

Appendix C: Posterior distributions

In this Appendix we show further information about the pa-
rameter estimation methods used and posterior distributions of
several relevant quantities. The settings of the CPNEST sam-
pler [92] are a number of live points Nlive = 16824 and a max-
imum number of Markov-Chain Monte Carlo (MCMC) steps
to take max-mcmc = 5000. We refer the reader to [104] for
details on the meaning of those parameters in the context of
nested sampling. This is a computationally expensive setup
aiming to ensure an accurate sampling of the likelihood given
the complexity of the signal.

We show in Fig. 11 a contour plot of the mass ratio and
chirp mass posterior distributions for the injected eccentric
NR simulations of Table I and the zero eccentricity injection
with the NRHybSur3dq8 model recovered with PhenomD.
This plot explicitly exhibits the correlation between the bias
in the measurement of the chirp mass and the narrowing of
the posterior for the mass ratio with increasing initial eccen-
tricity.

For completion we also show in Fig. 12 the posterior dis-
tribution of the χp parameter for the NR simulations of Fig. 1
run with IMRPhenomPv2. This parameter, defined in [105],
accounts for the spin components orthogonal to the direction
of the orbital angular momentum vector of the system. There-
fore, for non-precessing configurations χp = 0 and for pre-
cessing configurations it ranges between 0 and 1. In Fig. 12
one can observe an increase in χp with increasing initial ec-
centricity of the injected signal. This result means that the
precessing waveform IMRPhenomPv2 is trying to compen-
sate the inability to reproduce the eccentric signal increment-
ing the value of the χp parameter, i.e., increasing the preces-
sion.

In Fig. 13 we display the posterior probability distribu-
tions of the chirp mass, mass ratio, effective spin parameter
and luminosity distance for the eccentric injected NR simula-
tions of Table I recovered with the IMRPhenomD, IMRPhe-
nomHM and IMRPhenomPv2 approximants with 90% credi-
ble intervals specified by the dashed lines and the injected val-
ues by the magenta thick vertical lines. The fainter the colour
of the posterior distributions the lower the initial eccentricity
(e0 = 0.09, 0.14, 0.20).
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Figure 11: Posterior probabibility distributions of the mass ratio and
the chirp mass for the injected eccentric NR simulations of Table I
and the zero eccentricity injection with the NRHybSur3dq8 model,
using IMRPhenomD as approximant. The vertical dashed lines cor-
respond to 90% credible regions. The dark blue thick vertical line
represents the injected value. The black, red, blue and green curves
represent injections with initial eccentricities, e0 = 0, 0.09, 0.14, 0.2,
respectively.
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Figure 12: Posterior probabibility distributions of χp for the injected
NR simulations of Table I. The vertical dashed lines correspond to
90% credible regions. The magenta thick vertical line represents the
injected value. The black, blue and red curves represent injections
with initial eccentricities, e0 = 0.09, 0.14, 0.2. All cases are sampled
using as approximant IMRPhenomPv2.
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Figure 13: Posterior probabibility distributions for the eccentric injected NR simulations of Table I. The vertical dashed lines correspond to
90% credible regions. The magenta thick vertical line represents the injected value. The black, blue and red curves represent distributions
sampled using the IMRPhenomD, IMRPhenomHM and IMRPhenomPv2 approximants, respectively. With increasingly higher opacity are
represented injections with initial eccentricities, e0 = 0.09, 0.14, 0.2.

Chapter 5. A first exploration of spinning eccentric binary black holes 117



19

[1] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. Lett. 116, 061102 (2016).

[2] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Phys. Rev. Lett. 116, 241103 (2016).

[3] B. P. Abbott et al. (VIRGO, LIGO Scientific), Phys. Rev. Lett.
118, 221101 (2017), arXiv:1706.01812 [gr-qc] .

[4] B. P. Abbott et al. (Virgo, LIGO Scientific), Astrophys. J. 851,
L35 (2017), arXiv:1711.05578 [astro-ph.HE] .

[5] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett.
119, 141101 (2017).

[6] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev. Lett.
119, 161101 (2017).

[7] B. P. Abbott et al. (LIGO Scientific, Virgo), (2018),
arXiv:1811.12907 [astro-ph.HE] .

[8] I. M. Romero-Shaw, P. D. Lasky, and E. Thrane, (2019),
arXiv:1909.05466 [astro-ph.HE] .

[9] P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).
[10] P. C. Peters, Phys. Rev. 136, B1224 (1964).
[11] S. Husa, S. Khan, M. Hannam, M. Pürrer, F. Ohme,
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M. Hannam, S. Husa, P. Mösta, D. Pollney, C. Reisswig, E. L.
Robinson, J. Seiler, and B. Krishnan, Phys. Rev. D 82, 064016
(2010).

[44] F. Ohme, Classical and Quantum Gravity 29, 124002 (2012).
[45] F. Ohme, M. Hannam, and S. Husa, Phys. Rev. D 84, 064029

(2011).
[46] I. MacDonald, S. Nissanke, and H. P. Pfeiffer, Classical and

Quantum Gravity 28, 134002 (2011).
[47] P. Ajith, M. Boyle, D. A. Brown, B. Brügmann, L. T. Buch-
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The current paradigm for constructing waveforms from precessing compact binaries is to first construct a
waveform in a non-inertial, co-precessing binary source frame followed by a time-dependent rotation to map
back to the physical, inertial frame. A key insight in the construction of these models is that the co-precessing
waveform can be effectively mapped to some equivalent aligned spin waveform. Secondly, the time-dependent
rotation implicitly introduces m-mode mixing, necessitating an accurate description of higher-order modes in
the co-precessing frame. We assess the efficacy of this modelling strategy in the strong field regime using
Numerical Relativity simulations. We find that this framework allows for the highly accurate construction of
(2,±2) modes in our data set, while for higher order modes, especially the (2, |1|), (3, |2|) and (4, |3|) modes,
we find rather large mismatches. We also investigate a variant of the approximate map between co-precessing
and aligned spin waveforms, where we only identify the slowly varying part of the time domain co-precessing
waveforms with the aligned-spin one, but find no significant improvement. Our results indicate that the simple
paradigm to construct precessing waveforms does not provide an accurate description of higher order modes in
the strong-field regime, and demonstrate the necessity for modelling mode asymmetries and mode-mixing to
significantly improve the description of precessing higher order modes.

PACS numbers: 04.25.Dg, 04.30.Db, 04.30.Tv

I. INTRODUCTION

The first observation of gravitational waves (GWs) from
colliding black holes by Advanced LIGO [1, 2] marked the
beginning of a new era in astronomy. Since then, GWs
from twelve coalescing compact binaries such binary black
holes (BBHs) and binary neutron stars (BNSs) have been de-
tected confidently [3, 4] by Advanced LIGO (aLIGO) and
Virgo [5], and many more GW candidates have been recorded
since the start of the third observing run [6]. For all confident
BBH detections, the emitted signal was found to be consistent
with predictions from General Relativity [7, 8] and consis-
tent with compact binaries whose spins are aligned with the
orbital angular momentum L [3]. The GW signal of such
aligned-spin binaries is well described by the current genera-
tion of semi-analytic waveform models [9–13] governing the
inspiral, merger and ringdown. More recent work [14–17]
has focused on extending these waveform models to incorpo-
rate subdominant harmonics beyond the dominant quadrupo-
lar (2, |2|) modes.

Generic BBHs, however, can have arbitrarily oriented spin
configurations, i.e., the spins are not (anti-)parallel to the or-
bital angular momentum. Relativistic couplings between the
orbital and spin angular momenta induce precession of the
spins and the orbital plane [18, 19], resulting in complex am-
plitude and phase modulations of GW signal. This compli-
cates waveform modelling efforts and impedes brute force Nu-
merical Relativity (NR) studies as the parameter space grows
from three intrinsic parameters to seven for quasi-spherical
binaries [20]. Recent attempts, guided by reduced order mod-
elling strategies [21, 22], have been successful in accurately
modelling precessing waveforms in very restricted domains
of the parameter space [23–25].

In recent years, a number of key breakthroughs in wave-
form modelling enabled the development of the first inspiral-
merger-ringdown (IMR) waveforms for precessing compact
binaries [26–31]. A key insight was the observation that
the waveform of precessing binaries can be greatly simpli-
fied when transformed to an effectively co-precessing, non-
inertial frame that tracks the leading-order precession of the
orbital plane [26, 27, 32]. This general framework has since
been used to produce several IMR waveform models of pre-
cessing binaries [23, 24, 33–36]. A second crucial insight
was the realisation that a co-precessing waveform can be ap-
proximately mapped to a some equivalent aligned-spin wave-
form [26, 30, 37]. This identification is predicated on an
approximate decoupling between the spin components par-
allel to the orbital angular momentum L and the spin com-
ponents perpendicular to L (in-plane spins) [30]. Schemati-
cally, we can construct an approximate precessing waveform
using a time-dependent rotation of the co-precessing wave-
form modes given a model of the precessional motion of the
orbital plane [26, 29]. Within this general framework, several
approximations are commonly made, though different wave-
form models use different approximations. Here, we focus on
the phenomenological waveform family, a key tool for LIGO
data analysis due to its computational efficiency. Precessing
phenomenological waveform models [33, 36, 38, 39] are con-
structed using three independent pieces: 1) an aligned-spin
waveform model, 2) a model for the Euler angles describ-
ing the time-dependent rotation of the orbital plane, and 3)
a modification of the final state that captures spin-precession
effects. The most commonly for GW analysis used model IM-
RPhenomPv2 [33, 38], has recently been upgraded to include
double-spin effects in the inspiral [36], and to incorporate
(uncalibrated) subdominant spherical harmonic modes in the
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co-precessing frame [39], while a forthcoming phenomeno-
logical waveform model will include the calibration of these
modes [40].

Precessing phenomenological waveform models are con-
structed based on a set of simplifying approximations. Each
of these approximations will introduce systematic modelling
errors. While current observations are dominated by the sta-
tistical uncertainty in the measurement, advances in the detec-
tor sensitivity will reveal systematic errors. We thus need to
understand the impact of various modelling approximations to
guide the model development for the coming years. Due to the
dimensionality of the precessing parameter space, systematic
studies are sparse. Here, we make a first attempt at scrutiniz-
ing two main approximations made in the phenomenological
modelling paradigm:

1. (APX1) The identification between co-precessing and
aligned-spin waveform modes.

2. (APX2) The choice of subdominant harmonic modes
used in constructing the co-precessing waveform
modes, i.e., the number of aligned-spin modes used to
generate the approximate precessing modes.

In particular, we focus on the limitations of these two approx-
imations when extended to higher order mode for both indi-
vidual modes as well as the strain. We note that in the analy-
ses presented here, we neglect modifications to the final state
and compute the Euler angles directly from the precessing NR
simulations.

The paper is organised as follows: In Sec. II we briefly sum-
marise the general framework used to model precessing bina-
ries. In Sec. III we present the data set of NR waveforms used
in this study, afterwards we present our results on the valid-
ity of (APX1) and (APX2) in Sec. V. In Sec. VI we discuss
caveats and possible improvements of (APX1). We conclude
in Sec. VII. In Appendices A-D we present details of the NR
data set, additional results and supporting analyses.

Throughout we use geometric units G = c = 1. To simplify
expressions we set the total mass of the system to M = m1 +

m2 = 1 unless stated otherwise. We define the mass ratio as
q = m1/m2 ≥ 1 with m1 ≥m2. We also introduce the symmetric
mass ratio η = q/(1 + q)2, and we will denote the black holes’
dimensionless spin vectors by χχχi = SSS i/m2

i , for i = 1,2.

II. MODELLING PRECESSING BINARIES

The orbital precession dynamics of a binary system is en-
coded in three time-dependent Euler angles {β(t),α(t), ε(t)}
[26], where β is the angle between the total angular momen-
tum JJJ and L and α is the azimuthal orientation of L . These
two angles track the direction of the maximal radiation axis,
which is approximately normal to the orbital plane [41]. The
final angle, ε, corresponds to a rotation around the maximal
radiation axis given by enforcing the minimal rotation condi-
tion [42], ε = −

∫
α̇(t)cosβ(t)dt, which is related to the pre-

cession rate of the binary.
A coordinate frame, which tracks the orbital precession is

referred to as co-precessing. In any such co-precessing frame,
the waveform modes hco−prec

`m can be obtained by an active ro-

tation applied to the modes hprec
`m obtained in an inertial coor-

dinate system [26, 29]:

hco−prec
`m (t) =

∑̀

k=−`
R`mk(β,α,ε) hprec

`k (t), (2.1)

where Rk`m(β,α,ε) is the k`m-element of the rotation opera-
tor which describes the inertial motion, adopting the (z, y,z)-
convention. It follows that the inverse transformation permits
the generation of precessing waveform modes, i.e., given the
modes in the co-precessing frame, we find

hprec
`m =

∑̀

k=−`
R−1
`mk(β,α,ε) hco−prec

`k (t). (2.2)

While all available precessing IMR waveform models use
this general framework, they make different assumptions
about the RHS of Eq. (2.2). In particular, phenomenologi-
cal waveform models [33, 36, 41] identify the co-precessing
waveform modes in Eq. (2.2) with aligned-spin (AS) modes
obtained from a binary with the same mass ratio and spin com-
ponent parallel to L , i.e.,

h̄prec
`m (t;q,SSS 1,SSS 2) =

l∑

k=−l

R−1
`mk(β,α,ε) hAS

lk (t;q,S 1||(t0),S 2||(t0)),

(2.3)
where h̄prec

lk and hAS
lk denote the approximate precessing and

AS waveform modes, respectively. Given an appropriate de-
scription of the rotation operator, the identification between
hco−prec
`m ' hAS

`m (APX1) provides a straightforward procedure
to construct approximate precessing waveforms.

One key aspect of precessing waveforms that is not cap-
tured by this identification are mode asymmetries [43]. For
time domain aligned-spin waveforms the negative-m modes
are given by complex conjugation, i.e.,

hAS
`,−m = (−1)`

(
hAS
`m

)∗
, (2.4)

where the symbol ∗ denotes complex conjugation. This re-
lation is no longer true for precessing waveforms, which is
neglected in the identification hco−prec

`m ' hAS
`m . We investigate

in detail the effect of neglecting these mode-asymmetries in
Sec. V A.

III. NUMERICAL RELATIVITY DATASET

The set of NR simulations used in this study includes pub-
licly available waveforms from the SXS Collaboration [44], as
well as non-public waveforms generated with BAM [45, 46]
and the open-source Einstein Toolkit [47, 48]. The simula-
tions employed here, including their properties are listed in
Tab. A of App. A. Throughout the main text we will highlight
results for three precessing cases: IDs 10, 28 and 36. Their
parameters are listed in Tab. I. We choose these three cases
due to the presence of particular features which we discuss in
detail in Sec. V A.
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ID Simulation Code q χχχ1 χχχ2 χeff D/M MΩ0 e0 ·10−3

10 SXS:BBH:0023 SpEC 1.5 (0.5,0.05,0.) (0.08,−0.49,0.) 0. 16. 0.0145 0.28
36 SXS:BBH:0058 SpEC 5. (0.5,0.03,0.) (0.,0.,0.) 0. 15. 0.0158 2.12
28 q3. 0.56 0.56 0. 0.6 0. 0. T 80 400 BAM 3 (0.75,−0.27,0.) (0.3,0.52,0.) 0 8.83 0.0329 2.94

Table I. Parameters of three precessing simulations highlighted in various analyses. The full list of NR simulations and further details for all
simulations can be found in Tab. A.

From all available NR simulations we pair the precessing
and AS waveforms whose initial dimensionless spin vector
projected onto the initial orbital angular momentum L̂LL0 coin-
cide, i.e.,

L̂LL
AS
0 ·χχχAS

0,i ≡ L̂LL
prec
0 ·χχχprec

0,i , i = 1,2, (3.1)

where L̂LL0 = LLL0/||LLL0|| is the unit orbital angular momentum
vector after junk radiation. Note that satisfying Eq. (3.1) ex-
actly is very difficult when working with NR simulations. We
have thus chosen a tolerance of 10−3. Applying this criterion
we obtain 36 unique precessing simulations with an AS coun-
terpart. Figure 1 shows the distribution of the mass ratio q as
well as two spin parameters for the 36 NR simulations: (i) the
effective inspiral spin parameter χeff [49, 50] given by

χeff =
m1χ1L + m2χ2L

m1 + m2
, (3.2)

where χiL = χχχi · L̂LL with i = 1,2, and (ii) the effective precession
spin parameter χp [30] defined as

χp :=
S p

A2m2
2

, S p = max(A1S 1⊥,A2S 2⊥), (3.3)

where A1 = 2+3q/2, A2 = 2+3/(2q), and S i⊥, with i = 1,2, is
the norm of the spin components perpendicular to L (in-plane
spin components). The effective spin parameter is a mass
weighted combination of the spin components aligned with
L , which predominantly affects the inspiral rate [51]. It is the
best constrained spin parameter to date [3]. The in-plane spin
components source the precession of the binary system. The
average precession exhibited by the binary is approximated by
χp.

The NR simulations have been selected according to the
following criteria:

1) Waveform accuracy. When multiple resolutions of a
simulation are available, we use the highest resolution
and the waveforms extracted at largest extraction radius.
For SXS waveforms we choose the second order extrap-
olation to future-null infinity.

2) NR code. We only compare simulations produced with
the same NR code to avoid systematics coming from the
different numerical methods and ambiguities due to the
use of different gauges.

3) Length requirements. Due to the lack of a robust hy-
bridization procedure between precessing NR and post-
Newtonian inspiral waveforms as well as the introduc-
tion of additional systematics, we restrict this study to
NR waveforms only. We select NR waveforms long

Figure 1. Parameter space distribution in mass ratio, q, and effective
spin parameters, χeff and χp, of the NR simulations from Table A.
The black thick line corresponds to χeff = 0. The blue (yellow) dots
represent precessing (aligned-spin) simulations. The simulations
span the following parameter ranges: q ∈ [1,5], χeff ∈ [−0.5,0.38]
and χp ∈ [0,0.8].

enough to cover a total mass below 100 M� at 20 Hz
for all the considered (`m) modes, except for one BAM
case, ID 28, whose length is shorter but it is interesting
as it has a high value of χp = 0.8.

4) Residual eccentricity. We only select NR simulations
that have a residual initial eccentricity e ≤ 3×10−3. The
low-eccentricity initial parameters of the ET simula-
tions have been computed using the method developed
in [52].

IV. METHODOLOGY

A. Quadrupole Alignment

Several ways have been put forward to compute the wave-
form modes in a co-precessing frame [26–28]. We choose
the method developed in [26] referred to as quadrupole-
alignment, henceforth abbreviated QA. It is based on finding
the coordinate frame that maximises the mean magnitude of
the (2,±2) modes [26–30].

Once the three time-dependent Euler angles that define this
frame have been computed, each precessing waveform mode
can be rotated to this QA frame through Eq. (2.1). Conversely,
given AS modes, these can be rotated through Eq. (2.3) into
an inertial frame where they resemble precessing modes.

Furthermore, in order to minimize the effect of the differ-
ence between the inertial frames of the rotated AS and the
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precessing simulations, we perform an additional global ro-
tation of the (`m) modes specified by the three Euler angles
which rotate the z-axis onto the direction of the final spin of
the black-hole. The direction of the final spin is computed
from the data of the apparent horizon of the simulations, while
its magnitude is computed using two different procedures,
from the apparent horizon of the simulations and from fits to
the ringdown orbital frequency as in [53]. Note that another
approximated fixed direction for a precessing system is the
asymptotic total angular of the system [41], which one could
in principle compute from the initial total angular momen-
tum of the system read from the NR simulations and evolve
it backwards in time using PN equations of motion. However,
this is a difficult procedure due to the gauge differences be-
tween PN and NR. We have also tested that the differences
between the directions of the initial and final angular momen-
tum of the system are small (∼ 1◦) for the cases discussed
here, thus, the choice of one or the other does not modify the
subsequent analysis.

B. Match calculation

The GW signal of a quasicircular binary black hole system
with arbitrary spins is described by 15 parameters [54]. Some
of these parameters are properties intrinsic to the GW emit-
ting source: the total mass and mass ratio of the binary as well
as the six components of the two spin vectors. The remain-
ing parameters are extrinsic and describe the relation between
the binary source frame and the observer; they are: the lumi-
nosity distance dL, the coalescence time tc, the inclination ι ,
the azimuthal angle ϕ, the right ascension φ, declination θ and
polarization angle ψ.

The real-valued GW strain observed in a detector is given
by [55]

hresp(t;ζ,Θ) =F+(θ,φ,ψ)h+(t− tc,dL, ι,ϕ,ζ)
+ F×(θ,φ,ψ)h×(t− tc,dL, ι,ϕ,ζ), (4.1)

where Θ = {tc,dL, θ,ϕ,α,δ,ψ} and ζ = {M,q,SSS 1,SSS 2} are the set
of extrinsic and intrinsic parameters, respectively. The two
waveform polarisations h+,h× are defined as

h(t) = h+− ih× =

∞∑

l=2

l∑

m=−l

−2Y`m(ι,ϕ)h`m(t− tc;ζ), (4.2)

where −2Y`m denotes the spin-weighted spherical harmonics
of spin weight −2.

The comparison between two waveforms is commonly
quantified by the match – the noise-weighted inner product
between the signals [56]. Given a real-valued detector re-
sponse, the inner product between the signal hS

resp(t) and a
model hM

resp(t), is defined as

〈hS
resp|hM

resp〉 = 2
∫ ∞

−∞

h̃S
resp( f )h̃M∗

resp( f )

S n(| f |) d f , (4.3)

where h̃ denotes the Fourier transform of h, h∗ the complex
conjugate of h and S n(| f |) is the one-sided noise power spec-
tral density (PSD) of the detector.

In order to reduce the dimensionality of the parameter space
we can combine declination, right ascension and polarization
angle (θ,φ,ψ) into an effective polarization angle κ defined as
[57]

κ(θ,φ,ψ) := arctan
(

F×
F+

)
, A(θ,φ) =

√
F2×+ F2

+. (4.4)

The detector response can then be rewritten in terms of the
effective polarization angle κ as

hresp(t) =
A
dL

[h+(t)cosκ+ h×(t) sinκ] . (4.5)

The normalized match is then defined as the inner product
optimized over a relative time shift, the initial orbital phase
and the polarization angle given by

M = max
tM
0 ,ϕM

0 ,κ
M


〈hS

resp|hM
resp〉√

〈hS
resp|hS

resp〉 〈hM
resp|hM

resp〉


, (4.6)

where the values of the signal angles (ιS ,ϕS
0 , κ

S ) are fixed. The
procedure to compute the match is described in detail in App.
B of [30]. A matchM' 1 indicates good agreement between
the signal and the model, whileM' 0 indicates orthogonality
between the two waveforms.

We perform an analytical maximization over κM and com-
pute numerically the maximum for tM

0 and ϕM
0 through an in-

verse Fourier transform and numerical maximization. To ease
the comparisons we introduce the mismatch, 1−M.

C. Radiated energy

In addition to the commonly used mismatch calculation to
quantify the disagreement between two waveforms, we also
compute the radiated energy per (`m)-mode,

E`m =
1

16π

∫ t f

t0
dτ

∣∣∣ḣ`m(τ)
∣∣∣2 , (4.7)

where t0 is the relaxed time after the burst of junk of radiation,
t f is the final time of the simulation, ḣ`m(τ) ≡ dh`m(τ)/dτ.
This quantity is more sensitive to discrepancies in the am-
plitude of the waveforms than the mismatch, which is more
sensitive to phase differences. We will use this measure in
particular as a diagnostic tool to quantify mode asymmetries.
Note that given the fact that we have set set the scale of the
total mass to 1, the radiated energy scales consistently with
that choice.

V. TESTING THE ACCURACY OF MODELLING
APPROXIMATIONS

We quantify and discuss the impact of the two approxi-
mations (APX1) and (APX2) used in the phenomenological
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framework to model precessing binaries including higher or-
der modes. The higher order modes analyzed in this paper
are (`,m) = {(2, |2|), (2, |1|), (3, |2|), (3, |3|), (4, |3|), (4, |4|)}. These
modes can be grouped in three subsets: the `= 2 modes, where
at least for the (2, |2|) we expect high accuracy of the approx-
imations, the (3, |2|), (4, |3|) modes for which poor accuracy is
expected due to the significant mode-mixing [58] which the
approximations are not able to reproduce, and the (4, |4|) and
(3, |3|) modes as the next dominant higher order modes.

The analyses are carried out in two different coordinate
frames, the non-inertial co-precessing frame and the inertial
precessing frame. We discuss the interpretation of the results
in both frames and show the suitability of one or another to
assess the accuracy of the approximations.

A. Co-precessing waveforms: QA vs. AS

We first study the validity of the identification of AS and
co-precessing waveforms (APX1), where the latter are con-
structed via the QA method described in Sec. IV A. For this
comparison we use all available waveform modes of each sim-
ulation in order to generate the QA modes, i.e., we take all
terms in the sum of Eq. (2.1). For instance, we generate the
QA (2,2) and (3,3) modes as follows:

hQA
22 (t) = R222hprec

22 (t) + R22,−2hprec
2,−2(t) + R22,0hprec

2,0 (t)

+ R221hprec
21 (t) + R22,−1hprec

2,−1(t).
(5.1)

hQA
33 (t) = R333hprec

33 (t) + R33,−3hprec
3,−3(t) + R33,0hprec

3,0 (t)

+ R332hprec
32 (t) + R32,−2hprec

3,−2(t)

+ R331hprec
31 (t) + R33,−1hprec

3,−1(t).

(5.2)

The qualitative behavior of (APX1) is illustrated in Fig. 2,
where we show a selection of higher-order modes in the
co-precessing frame with the corresponding AS modes for
the configuration with ID 36. We observe the well-known
hierarchy between the amplitudes of the AS higher-order
modes[59], which is also reproduced by the QA modes. Fur-
thermore, we see clear asymmetries between positive and neg-
ative m QA modes at merger.

Note that in Fig. 2 there is not only an amplitude discrep-
ancy but also a time shift between positive and negative m
QA modes. This is due to the fact that for the strain, which
is two time derivatives of the Newman-Penrose scalar ψ4,
the amplitude discrepancies in the ψ4,`m modes translate also
into time-shifts in the h`m modes. However, only amplitude
asymmetries are relevant for the subsequent analysis as the
mismatch calculation maximizes over possible time-shifts be-
tween waveforms by performing an inverse Fourier transform.
These amplitude asymmetries are not captured by (APX1),
and reduce the accuracy of the QA-AS identification, espe-
cially for higher order modes, where these effects are exacer-
bated (see Fig. 2).

We now quantify the agreement between the QA and AS
modes by calculating the mismatch between individual modes

-200 -150 -100 -50 0 50

0.001

0.005

0.010

0.050

0.100

0.500

Figure 2. Time-domain amplitude of the strain for the
{(2,±2), (2,±1), (3,±3), (3,±2))} modes. The solid lines with low
opacity represent the amplitude of the AS (`,m) mode, while the
dashed lines with high (low) opacity represent the QA (`,m) ((`,−m))
modes for the configuration with ID 36 from Table A of App. A.

optimized over a time shift and phase offset for all pairs of NR
simulations in Tab. A. The integral in Eq. (4.3) is evaluated
between 20 Hz and a maximum frequency below 2000 Hz
which varies depending on the total mass of the system and
the length of the NR waveform. We use the Advanced LIGO
design sensitivity PSD [1, 60].

Figure 3 shows the mismatch between single QA modes
and AS ones for the {`,m} = {(2,±2) (top panel) and {`,m} =
(2,±1)} modes (bottom panel) as a function of the total mass
compatible with the length of the NR waveforms. The results
for the other modes can be found in Fig. 9 in App. B. In each
panel of Figures 3 and 9 we mark with horizontal lines the 1%,
3% and 10% values of the mismatch. Moreover, we highlight
two cases with IDs 10 (red) and 36 (blue): ID 10 is selected
as a representative of the bulk of available NR waveforms,
with a small mass ratio, q = 1.5, and moderate precession spin,
χp = 0.5, while the case ID 36 has the highest mass ratio in our
data set of NR waveforms, q = 5.

For the (2,±2)-modes, top panel in Fig. 3, we observe
mismatches well below 3%, except for the (2,2) mode of the
case with ID 28. This configuration has a moderate mass ra-
tio, q = 3, and high values of the in-plane spin components
χ1⊥ = 0.8, χ2⊥ = 0.6 on both BHs. A closer look (see Fig. 14 in
App. B) reveals that while the (2,2)-QA mode resembles the
AS (2,2)-mode reasonably well during the inspiral, at merger
the amplitude of the QA-mode is significantly higher than for
the AS-mode. Additionally, we identify a clear asymmetry
between the (2,2) and (2,−2) QA modes. In order to quan-
tify this asymmetry between positive and negative m-modes,
as well as the difference between AS and QA modes, we also
compute the radiated energy per (`,m)-mode for this case. The
amount of energy radiated per m-mode is given in Tab. II.
We also calculate the ratio of radiated energy between posi-
tive and negative m-modes. The large differences in radiated
energy between positive and negative m-modes translate into
great differences in the peak of the waveforms, which is the
cause of the high mismatch for this particular case.
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Figure 3. Mode by mode mismatches between QA and AS modes
for all NR configurations in Table A as a function of the total mass
of the system. Top: Results for the (2,±2); Bottom: Result for the
(2,±1) modes. The configurations with IDs 10 (red) and 36 (blue)
are highlighted. The solid and dashed curves correspond to positive
and negative m-modes, respectively. The horizontal lines mark mis-
matches of 1%, 3% and 10%. Configurations with PI symmetry (IDs
1, 2, 3 and 4) have been removed from the bottom panel.

(`, |m|) 10−3
[
EAS
`,m EQA

`,m EAS
`,−m EQA

`,−m

]
EQA
`,m/E

QA
`,−m

(2,2) 8.912 13.619 8.912 8.083 1.68

(2,1) 0.104 0.098 0.104 0.192 0.51

(3,2) 0.012 0.026 0.012 0.049 0.53

(3,3) 0.852 1.124 0.852 1.003 1.21

(4,3) 0.005 0.008 0.005 0.016 0.52

(4,4) 0.164 0.201 0.164 0.195 1.03

Table II. Radiated energy in the (2, |2|), (2, |1|), (3, |2|), (3, |3|), (4, |3|),
(4, |4|) modes of the AS and QA configurations for the case with ID
28 in Table A.

This picture changes quite significantly for the (2,±1)
modes, bottom panel of Fig. 3: We identify five configura-
tions with a mass averaged mismatch larger than 10%: ID 4,
which is an equal mass, equal spin binary; IDs 9, 10 and 12,
which correspond to a series of q = 1.5 simulations with the
same χ1L but differently oriented in-plane spin components
for the smaller black hole; and ID 20, a q = 2 simulation. For
those cases we find that the QA-mode is not represented well
by the corresponding AS-mode (see App. C for details). We
note that odd-m modes, in particular the (2,1)-mode, are very
sensitive to asymmetries in the binary, which may be reflected
in the values of the final recoil of the system [61]. Thus, we
have computed the recoil velocity for all available simulations
in Tab. A. However, we do not find a direct correlation be-
tween the recoil velocity and large mismatches. We observe
that some configurations with mass ratios 1.5 and 2, the same
χeff but different in-plane spin components have mismatches
< 3%, while others have mismatches ≥ 10%.

Furthermore, there are also four cases with mass averaged
mismatches 〈1−M〉 between 5% and 10%, corresponding to
the simulations with IDs 1, 15, 16 and 21. Simulation with
ID 1 is an equal mass equal, spin configuration with PI sym-
metry, hence, with mathematically vanishing odd m modes,
while IDs 15, 16 and 21 are q = 2 simulations with χeff = 0 and
χeff = −0.33 , respectively, and small AS (2,1) modes. Further
discussion can be found in App. C. For the remaining simu-
lations, i.e., 75% of the NR data set, we find mass averaged
mismatches 〈1−M〉 ≤ 3%.

We have also investigated the QA-AS correspondence for
other higher-order modes. Overall, we find that the number
of cases with 〈1−M〉 ≤ 3% is significantly smaller than for
the quadrupolar modes. This indicates a clear degradation of
(APX1) for higher order modes. We identify the QA mode
asymmetries as well as strongly pronounced residual oscilla-
tions due to nutation as the cause. See Fig. 9 in App. B
for the details. We further remark that the (3, |2|) and (4, |3|)
modes are affected strongly by mode mixing, which requires
a transformation to a spheroidal harmonic basis. In addition,
all higher order modes suffer from more numerical noises in
comparison to the quadrupolar mode, which necessarily im-
pacts the mismatch. Possible ways to address such limitations
are discussed in Sec. VI B.

B. Approximate precessing waveforms: Impact of
higher-order modes

We are now turning our attention to (APX2), analyzing the
impact of the number of AS higher order modes used in the
construction of approximate precessing waveforms in the in-
ertial frame. To do so, we use the inverse QA-transformation.
In contrast to the previous section, where all available higher-
order modes were taken into account (see Eqs. (5.1) and
(5.2)), in this section we restrict the number of available AS
modes in the sum of Eq. (2.3) to the same set of modes
used in current Phenom/EOB waveform models [15, 16]:
(`,m) = {(2,±2), (2,±1), (3,±2), (3,±3), (4,±3), (4,±4)}. The
impact of these higher order modes in the map between the
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co-precessing and the inertial frame is assessed via truncat-
ing different terms in the sum. For instance, in the case of
the approximate precessing (2,2) mode, we calculate it tak-
ing into account either only the AS (2,±2) modes or the AS
(2,±2), (2,±1) modes, i.e.,

hP,k:{±2}
22 (t) = R−1

222hAS
22 (t) + R−1

22,−2hAS
2,−2(t), (5.3)

hP,k:{±2,±1}
22 (t) = R−1

222hAS
22 (t) + R−1

22,−2hAS
2,−2(t)

+ R−1
221hAS

21 (t) + R−1
22,−1hAS

2,−1(t).
(5.4)

The notation hP,k:{±r,±s}
`m refers to the approximate precessing

(`,m) waveform mode constructed with the AS (`,±r), (`,±s)
modes.

The agreement between fully precessing and approximate
precessing modes is first quantified via single-mode mis-
matches following the same procedure as in Sec. V A. The
results for the (2,±2) and (2,±1) modes are shown in Fig. 4,
the results for the other modes in Fig. 10. Solid and dashed
lines represent the mismatches calculated with two AS modes,
as per Eq. (5.3), or with four AS modes, as per Eq. (5.4), re-
spectively. The configurations with IDs 10 (blue) and 36 (red)
are again highlighted; horizontal lines indicate mismatches of
1%, 3% and 10%.

The precessing (2,2)-mode mismatches (top panel of Fig.
4) are below 3% for all cases except for the case with ID 28,
which shows mismatches > 3% for all total masses. This out-
lier configuration is the same as in Sec. V A when testing
(APX1) for the (2,2)-mode and it corresponds to a short BAM
simulation with q = 3 and χp = 0.8, the highest value in our
NR data set. We identify an amplitude asymmetry as the un-
derlying cause (see App. C for details).

In Tab. III the percentages of cases with a mass average
mismatch within different threshold values are shown. For the
(2,2) mode 97.2% of the cases in our data set have an aver-
age mismatch below the 3%. The addition of the AS (2,±1)
modes does not change the percentage of simulations with an
average mismatch below 3%. This indicates that the inclusion
of the AS (2,±1) modes in the construction of the approximate
precessing (2,2) mode has little impact, although we generally
observe improved mismatches (see top panel of Fig. 10).

The bottom panel of Fig. 4 shows the results for the pre-
cessing (2,1) mode; we see a higher number of cases with
mismatches above 3% than for the (2,2) mode. In particular,
we find that the inclusion of the AS (2,±1) decreases the to-
tal percentage of simulations with mismatched below 3% as
shown in Table III, see e.g. the red and blue curves in the bot-
tom panel of Fig. 4. We attribute this decrease to the less ac-
curate identification between the QA and AS (2,1) mode. For
the configuration ID 10 we see in the right panel of Fig. 14 that
the approximate precessing (2,1)-mode constructed with four
AS modes, although it reproduces more accurately the shape
of the precessing mode during the inspiral, it has larger errors
at merger than the one built with only two AS modes. This er-
ror at merger dominates the value of the mismatch and it also
indicates the inability of the approximation to accurately re-
produce the merger part of the precessing (2,1)-mode for this

P Mode AS Modes N3%≤〈1−M〉 N3%≤〈1−M〉≤10% N〈1−M〉≥10%

(2,2)
(2,±2) 97.2% 2.8% 0%
(2,±2), (2,±1) 97.2% 2.8% 0%

(2,1)
(2,±2) 77.8% 13.9% 8.3%
(2,±2), (2,±1) 63.9% 22.2% 13.9%

(3,2)
(3,±3) 8.3% 13.9% 77.8%
(3,±3), (3,±2) 25.% 33.3% 41.7%

(3,3)
(3,±3) 86.1% 5.6% 8.3%
(3,±3), (3,±2) 88.9% 8.3% 2.8%

(4,3)
(4,±4) 27.8% 33.3% 38.9%
(4,±4), (4,±3) 27.8% 30.6% 41.7%

(4,4)
(4,±4) 83.3% 16.7% 0%
(4,±4), (4,±3) 83.3% 16.7% 0%

Table III. Distribution of single mode mismatches shown in Figs. 4
and 10. The notation NX%≤〈1−M〉≤Y refers to the percentage of cases
in the NR data set, with a mismatch averaged over the mass range
between the X% and Y%. The first column indicates the precessing
(`,m)−mode for which the mismatches are calculated; the second
column the AS modes used to constructed the approximate precess-
ing mode; the remaining columns give the percentage of cases in our
NR data set with an average mismatch ≤ 3%, between 3% and 10%,
and ≥ 10% , respectively.

case. Further, high mismatches for the (2,±1) modes are also
obtained for configurations for which the (2, |1|)-modes have
a particularly small amplitude. This poses a challenge for NR
codes to resolve such small signals. We discuss possible sys-
tematics for the AS (2,±1) mode in Sec. VI A.

The mismatches for the remaining higher order modes
{(3,3), (3,2), (4,4), (4,3)} are shown in Fig. 10 of App. B
and summarized in Table III. We observe a clear difference
between the higher order modes affected by mode-mixing,
(3,2) and (4,3) modes, which show poor mismatches with less
than 30% of cases below the 3% mismatch; the next dominant
higher order modes, (3,3) and (4,4) modes, which are not af-
fected significantly by mode-mixing and have 80% of config-
urations with mass-averaged mismatches below the 3% mis-
match. Note that the mismatches of the (3,2) and (4,3) modes
are higher in the inertial frame than in the co-precessing, indi-
cating that the effects of mode-mixing become more relevant
in the former due to the more complicated structure caused by
the precession of the orbital plane of the binary. Generally,
the addition of the AS (3,±2) or the (4,±3) modes tends to
improve the mismatches. However, for a non-negligible sub-
set of configurations their inclusion increases the mismatch,
see e.g. the blue and red curves in the left panels of Fig. 10.
This indicates the necessity to disentangle the effects of the
two sources of mode-mixing in the approximate precessing
waveforms, the one coming from using different AS modes in
the map between the co-precessing and inertial frame, and the
one from the contribution of approximate precessing higher
order modes with the same m index. One possible approach
to that problem would be to study the map between inertial
and co-precessing frames with the spheroidal harmonic basis
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Figure 4. Mode by mode mismatches between precessing and ap-
proximate precessing modes in the inertial frame for all NR configu-
rations from Table A as a function of the total mass of the system. In
the top and bottom panels we show the results for the (2,2) and (2,1)
modes, respectively. The thick and dashed lines correspond to taking
two, Eq. (5.3), and four AS modes, Eq. (5.4), to generate the approx-
imate precessing waveforms, respectively. The letter k represents the
index of the rotation operator given in Eq. (2.3). In addition, config-
urations with IDs 10 and 36 are highlighted with red and blue colors,
respectively. The horizontal lines mark a mismatch of 1%, 3% and
10% respectively.

for the ringdown part of the waveform for these modes, which
we leave for future work.

We also compute mismatches for negative m modes in Fig.
11. Computing the average mismatch for each configuration,
we find similar results to the positive m-modes.

The analysis of the single mode mismatches indicates that
the inclusion of more AS higher order modes can lower the
mismatch between the precessing and approximate precessing
waveforms quite significantly. Therefore, it is not necessarily
optimal to include an arbitrary number of AS modes when
constructing approximate precessing waveform modes.

However, this analysis concerns only the individual modes,
thus neglects the geometric coefficients which reweight the
modes depending on the orientation of the source. Therefore,
we now take this into account and compute mismatches be-
tween the detector response (Eq. (4.5)) constructed from the
precessing NR modes and the approximate precessing modes
calculated with either two or four AS modes as per Eqs. (5.3)
and (5.4). When computing the mismatches for the detector
response we optimize over time shifts and phase offsets as

in the case of the single mode mismatches, but we also opti-
mize analytically over the effective polarization angle of the
template, κt, following the procedure described in [30]. The
mismatches are calculated using the same number of (`,m)
modes in the signal and the template. For instance, when
using only the approximate precessing (2,±2) modes in the
complex strain,

hP,k:{±2}(t) = Y−2
22 (ι,ϕ)hP,k:{±2}

22 + Y−2
2,−2(ι,ϕ)hP,k:{±2}

2,−2 , (5.5)

and the AS (2,±2) modes in the rotation operator as in Eq.
(5.3), we use the label (`,m) = (2,±2)/AS : {(`,±`)}. Figures
5 and 15 show contour plots of the mismatches between pre-
cessing and approximate precessing waveforms averaged over
κS for the configuration with ID 36 as a function of inclination
and azimuthal angle for a total mass of M = 65M�.

In the top right panel of Fig. 5 the mismatches for the strain
computed with the (`,m) = (2,±2)/AS : {(`,±`)} modes are
displayed. The mismatches increase above 3% in a range
of inclinations 67.5◦ < ιS < 112.5◦. In addition close to
ιS = 90◦ (edge-on configuration) the values reach a maximum
of ∼ 15% value. On the left panel, where the AS (2,±1) modes
have been included in the calculation of the approximate pre-
cessing modes, the maximum value at ιS = 90◦ has decreased
to ∼ 2%. For small inclinations the benefit of adding the AS
(2,±1) modes is more moderate. Hence, the inclusion of the
AS (2,±1) modes significantly improves the description of the
strain constructed with the (2,±2) modes, especially for edge-
on configurations.

In the mid panels the (2,±1) modes are added to the com-
plex strain. The right mid panel, where only the AS (2,±2)
modes are taken into account, displays mismatches above the
3% in small regions around ιS = {45◦,135◦} , while the left
mid panel, where the AS (2,±2), (2,±1) modes are taken into
account, shows mismatch values below 3% for all orienta-
tions. Therefore, the inclusion of the (2,±1) AS modes re-
duces the mismatch with respect to the case where only the
(2,±2) AS modes are available. This result also indicates that
the improvement in the (2,±2) approximate precessing modes,
due to the inclusion of the (2,±1) AS modes, is higher than
the degradation of the single (2,±1) approximate precessing
modes as observed in the bottom panel of Fig. 4. The choice
of an inertial frame where the (2,±2) modes have more power
than the (2,±1) modes alleviates the inaccuracy in the descrip-
tion of the precessing (2,±1) modes.

In the bottom panels of Fig. 5 the strain is constructed
from the (2,±2), (2,±1), (3,±3) modes. The bottom right
panel, which uses the AS (2,±2), (3,±3) modes to gener-
ate the approximate precessing waveforms, shows higher
mismatches than the left panel, which employs the AS
(2,±2), (2,±1), (3,±3), (3,±2) modes. The results show an
overall increase in the mismatch due to the addition of the
(3,±3), (3,±2) modes whose inaccuracy, as shown in the sin-
gle mode mismatches of Fig. 10 of App. B, is higher than for
the (2,±2), (2,±1) modes.

In Fig. 15 of App. B strain mismatch contour plots
between precessing and approximate precessing wave-
forms in the inertial frame for the same configuration
as in Fig. 5 with more higher order modes in the sum
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of the complex strain are shown. In the top, middle
and bottom panels the (2,±2), (2,±1), (3,±3), (4,±4);
(2,±2), (2,±1), (3,±3), (3,±2), (4,±4) and (2,±2), (2,±1),
(3,±3), (3,±2), (4,±4), (4,±3) modes are taken into account
in the sum of the complex strain, respectively. In the left
and right panels the (`, |`|), (`, |` − 1|) AS modes are taken
into account, respectively. The mismatches tend to increase
slightly when adding more higher order modes in the sum
of the complex strain, consistent with the single mode
mismatches of Figs. 4 and 10, while the inclusion of more
AS higher order tends to lower the mismatch, although its
effect is restricted due to the small power of the AS higher
order modes. Note that the results of Figs. 5 and 15, although
different quantities, are consistent with the signal-to-noise
ratio weighted mismatches of references [36, 39].

We conclude that the inclusion of AS higher order modes in
the construction of approximate precessing waveforms tends
to decrease the mismatches when the full strain is consid-
ered. However, individual modes are not always better de-
scribed when adding more AS modes due to the inaccuracy of
(APX1) for higher order modes, especially those significantly
affected by mode-mixing like the (3, |2|) and (4, |3|) modes.
Furthermore, the analysis showed that the inclusion of AS
higher order modes, like the (2,±1), in the precessing strain
can reduce the mismatches by up to an order of magnitude.
We stress, however, that the addition of even more higher or-
der modes can also have a negative impact, especially when
modes, where (APX1) is clearly not applicable, are included.

VI. CAVEATS AND POSSIBLE IMPROVEMENTS

A. Systematic errors and (2,1)-amplitude minima

Let us now discuss possible sources of systematic errors in
the NR waveforms which can affect our results.

The first systematic error source we consider is the quantity
used to calculate the Euler angles that encode the precession
of the orbital plane. For the SXS simulations we compute the
angles from the gravitational radiation extrapolated to infinite
radius [62], while for the ET and BAM simulations we use the
Newman-Penrose scalar [63], ψ4, at the outermost extraction
radius available in the simulation. Alternatively, we could also
integrate ψ4 twice in time to obtain the strain and calculate
the angles from it. However, integrating twice in time can
add extra oscillations in the waveforms which can be as large
as those coming from the difference between using ψ4 or the
strain. Therefore, we restrict to compute the angles from the
ψ4 in the case of the BAM and ET simulations.

Aligned-spin configurations with PI symmetry, i.e. the two
black holes can be exchanged under a reflection in the orbital
plane, have vanishing odd m-modes, which reduce to noise
in NR simulations. Naturally, this poses a clear limitation to
the identification between AS and QA modes. In our data set
simulations with IDs 1-4 show this particular feature. From
those four we note that the non-spinning configuration ID 1
has a small AS spin amplitude with respect to the precessing
counterpart leading to higher mismatches than the spinning

configurations IDs 2, 3 and 4. We discuss this point in more
detail in App. C.

Another known issue concerns the occurrence of minima
in the amplitude of the AS (2,±1), which are not observed in
the corresponding QA modes. In order to obtain some insight
into these minima, we have reproduced the AS configuration
q2. 0.6 -0.6 pcD12 simulation from Tab. I of Ref. [16]
with the Einstein Toolkit (ID 37 in our data set). In addition,
we also produced two precessing simulations to test not only
the existence of the minimum with a finite difference code,
but also to check its relevance for the QA approximation. We
summarize the properties of these three simulations in Tab. IV.

Figure 6 shows the time domain amplitudes of the (2,1)
mode of ψ4 for the three simulations of Tab. IV. We clearly
identify a minimum in the AS (2,1) mode shortly before t = 0.
The minimum occurs at an orbital frequency of ΩET

min = 0.19,
which is slightly different from the one obtained from the orig-
inal SpEC simulation, Ω

SpEC
min = 0.17. This small difference

could be due to differences in the initial data and numerical
errors, such as the inaccuracies in the wave extraction or in the
double time integration of ψ4 to obtain the strain. Addition-
ally, we also display the approximate precessing (2,1) modes
constructed from all available AS modes, and the correspond-
ing QA modes. We see that the QA (2,1) modes do not ac-
curately resemble the AS (2,1) modes. The mismatches be-
tween the (2,1)-modes are of the order of 15(20)% for config-
uration 38 (39), while the mismatches between the (2,2)-AS
and (2,2)-QA modes are 0.2(0.04)%, respectively. Further-
more, the precessing (2,2)[(2,1)] modes are faithfully repro-
duced by the approximate precessing ones with mismatches
of 0.2(0.04)[0.2(0.2)]% for simulation with ID 38 (39). The
agreement of the precessing modes is due to the negligible
contribution of the rather small AS (2,1)-mode in comparison
to the large AS (2,2) mode, while the poor recovery of the AS
mode by the QA mode confirms the inability of the AS-QA
identification to reproduce the amplitude minima observed in
the AS (2,1)-mode.

B. Waveform decomposition in the co-precessing frame

We have seen previously that the identification between QA
and AS modes does not capture mode asymmetries as well as
residual modulations due to nutation. This can ultimately lead
to a poor reconstructions of the fully precessing GW strain.
We now study an extension to (APX1), following the strategy
adopted by the precessing surrogate models NRSur4d2s and
NRSur7dq2 [64, 65], where the time domain co-precessing
waveforms are decomposed into slowly-varying functions and
small oscillatory ones such that

A±`,m(t) =
1
2
[
A`,m(t)±A`,−m(t)

]
, m > 0, (6.1)

φ±`,m(t) =
1
2
[
φ`,m(t)±φ`,−m(t)

]
, m > 0, (6.2)

where A`,m = |hco−prec
`,m (t)| and φ`,m = arg

(
hco−prec
`,m (t)

)
. The sym-

metric amplitude A+
`,m and the antisymmetric phase φ−`,m are
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Figure 5. Strain mismatch between precessing and approximate precessing waveforms in the inertial frame averaged over the angle κS for
a total mass of 65 M� for the configuration with ID 36 as a function of the inclination and the azimuthal angle of the signal (precessing
waveform). In the plot labels {`,m} denotes the modes used in the sum of the complex strain given in Eq. (4.2), while AS represent the
aligned-spin modes taken into account in Eq. (2.3). In addition, the 3% and 10% mismatch values are highlighted with orange and red curvess,
respectively.
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ID Simulation Code q χχχ1 χχχ2 D/M MΩ0 e0 ·10−3

37 q2. 0.6 -0.6 pcD12 ET 2 (0.,0.,0.6) (0.,0.,−0.6) 11.72 0.022 1.17
38 q2. 0.4 0. 0.6 0. 0. -0.6 pcD12 ET 2 (0.4,0.,0.6) (0.,0.,−0.6) 11.68 0.022 1.47
39 q2. 0. 0. 0.6 0.4 0. -0.6 pcD12 ET 2 (0.,0.,0.6) (0.4,0.,−0.6) 11.71 0.022 1.08

Table IV. Summary of the properties of the simulations used for the analysis of the impact of the (2,1) minimum. Each simulation is specified
by its mass ratio q = m1/m2 ≥ 1, the initial dimensionless spin vectors, χχχ1, χχχ2, the orbital separation D/M, the orbital frequency Ω0 and the
orbital eccentricity, e0, at the relaxation time.
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Figure 6. Time domain amplitude of the rψ4 for the (2,1) mode of
the aligned-spin (AS), quadrupole-aligned (QA), precessing (Prec.)
and approximate precessing (R−1[AS ]k={±2,±1}) configurations. In
the upper plot we compare simulations with ID 37 and 38, and in the
bottom panel we compare simulations with ID 37 and 39 of Table
IV.

monotonic functions similar to aligned-spin waveforms, while
the antisymmetric amplitude, A−`,m and the symmetric phase
φ+
`,m are small real-valued oscillatory functions whose mod-

elling is challenging. In Ref. [23] apply a Hilbert transform is
applied to A−`,m and φ+

`,m to convert them into slowly-varying
functions easier to model.

We pursue to assess the identification between what we call
the symmetric waveform, constructed with the symmetric am-
plitude and the antisymmetric phase, i.e., h+

`m = A+
`,meiφ−

`,m , and
the aligned-spin modes. In order to quantify that comparison
we calculate single mode mismatches following the procedure
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Figure 7. Single mode mismatches between the AS modes, hAS
`,m, and

the symmetric QA modes, h+
`m, for all the configurations in Table A

as a function of the total mass of the system. In the top and bottom
panels we show the results for the (2,2) and (2,1) modes, respec-
tively. The configurations with IDs 10 and 36 are highlighted with
red and blue colors, respectively. The horizontal lines mark the 1%,
3% and 10% value of the mismatch.

of Sec. V A. In Fig. 7 we show the single mode mismatches
between the h+

`m and hAS
`m for the (2,2) and (2,1) modes. The

mismatches for higher order modes are displayed in Fig. 12
of App. B. For odd-m modes we have removed the cases with
PI symmetry. The results of Fig. 7 suggest that for the (2,±2)
modes the identification between h+

2,±2 and hAS
2,±2 is an out-

standing approximation as all the mismatches are below 3%.
For higher order modes the mismatches increase one or two
orders of magnitude for some particular cases as shown in Fig.
12 of App. B, although the bulk of cases are below 3%.

Given this, which suggests a good approximation between
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the symmetric QA and the AS waveforms, we can also study
the impact of constructing the QA waveform modes replacing
A`,m+ and φ`,m− with the AS the amplitude and phases, AAS

`,m,
φAS
`,m,

AQA
l,±m = A+

`,m±A−`,−m → ÂQA
l,±m ≈ AAS

`,m±A−`,−m, (6.3)

φQA
l,±m = φ+

`,m±φ−`,−m → φ̂QA
l,±m ≈ φ+

`,m±φAS
`,−m. (6.4)

Therefore, one can compute an approximate QA waveform

as ĥQA
`m = ÂQA

l,m eiφ̂QA
l,m . Once, this waveform is constructed we

quantify the difference between the QA modes, hQA
`m , and the

approximate ones, ĥQA
`m via single mode mismatches. In Fig. 8

one observes that ĥQA
`m produces lower mismatches than hAS

`m .
This indicates that the approximation of the symmetric am-
plitude and asymmetric phase by the AS amplitude and phase
can be used with high accuracy for the (2,±2) modes, while
for higher order modes, especially the weak (2,±1), (3,±2)
and (4,±3) modes this approximation degrades as shown in
Fig. 13. This degradation is mainly due to the fact that the
small difference between AAS

`,m and A+
`,m is a significant frac-

tion of the power of the modes.
These results suggest a modification to the modelling strat-

egy of precessing waveforms as follows: Instead of directly
identifying the QA with corresponding AS modes, one should
use the symmetric amplitude and antisymmetric phases con-
structed from the AS modes as per Eqs. (6.3) and (6.4).

VII. SUMMARY AND CONCLUSIONS

We have assessed and quantified the accuracy of two main
approximations commonly used to construct phenomeno-
logical inspiral-merger-ringdown waveforms from precessing
BBHs. The first approximation (APX1) is the identification
between aligned-spin and co-precessing waveforms [26–29].
The second approximation (APX2) concerns the inclusion of
higher-order aligned-spin modes in the construction of ap-
proxmiate precessing modes.

Focusing exclusively on the late inspiral and merger
regime, we use NR waveforms from the first SXS catalog [44]
and additional waveforms produced with the private BAM
code and the open-source Einstein Toolkit. Our analysed NR
data set consists of a total of 36 pairs of AS and precessing
configurations, and we restrict our analyses to comparisons
of waveforms generated with the same NR code to avoid the
introduction of systematics due to numerical errors. We note
that during the preparation of this manuscript a much larger
SXS catalog [66] was released. This allows for the extension
of the presented analyses to a larger parameter space, which
we leave for future work.

We first quantified the efficacy of the QA-AS mapping
(APX1) via single-mode mismatches and the radiated energy
per mode. We find that this approximation yields mismatches
below 3% for the (2,±2) modes for the majority of configu-
rations in our sample. However, the picture changes dramat-
ically for higher-order modes. For modes that are prone to

mode-mixing such as the (3, |2|) and (4, |3|) mode, the approx-
imation is particularly poor, but the matches drop significantly
also for the (2, |1|)-modes.

Furthermore, we find that the QA-AS map breaks down
for configurations with highly asymmetric energy content be-
tween the +m and −m modes as quantified by the radiated
energy per mode. The mode asymmetries are one of the clear
limitations of this approximate mapping due to the tight sym-
metry condition of the AS waveforms which is not fulfilled
by precessing and therefore the QA waveforms. We conclude
that it will become increasingly important to correctly model
these mode asymmetries in order to improve the accuracy of
waveform models, which will particularly important in the
coming years as ground-based GW detectors are set to im-
prove their sensitivity [67–71].

To alleviate some of the shortcomings of (APX1), we have
investigated a modification used in surrogate models [23, 25],
where rather than identifying the co-precessing modes with
AS modes, a combination of slowly varying amplitude and
phase functions is used to model the co-precessing modes. We
find that the symmetric amplitude and antisymmetric phase
of the co-precessing modes can be identified with the am-
plitude and phase of the AS modes to high accuracy for the
(2,±2) modes. For certain higher order modes such as the
(3,±3) and (4,±4) we find comparable results, but the weak-
est modes such as (2,±1), (3,±2) and (4,±3) still have signif-
icantly larger mismatches.

Our study of (APX2) shows that the addition of the AS
(2,±1) modes to construct the approximate precessing (2,±2)
modes, does not significantly impact the mode accuracy.
Again, we find that the opposite is true for higher order modes,
where the inclusion of higher order AS modes improves the
accuracy of the approximate precessing modes. And similarly
to (APX1), we find that the (2, |1|), (3, |2|) and (4, |3|) modes
are most strongly affected.

Beyond the individual modes, we have also analyzed the
GW strain, which takes into account the different contribu-
tions from higher order modes depending on the orientation of
the binary. Similarly, we find that the inclusion of AS higher
order modes to construct approximate precessing waveforms
improves the mismatches by an order of magnitude for edge-
on configurations. However, care needs to be taken as the
inclusion of even more higher order modes in the strain can
increase the mismatch due to the accumulation of approxima-
tion errors when summing up the individual modes to con-
struct the strain.

To highlight some additional error sources, we have stud-
ied a particular configuration which shows a minimum in the
aligned-spin (2,1) mode. We find that while the QA (2,1)
mode is not able to resemble the AS mode accurately, the pre-
cessing (2,1) is hardly affected since the main contribution in
its construction stems from the AS (2,2) mode. Nevertheless,
we have also seen that the inclusion of higher order modes in
the construction of approximate precessing waveforms does
matter for the majority of cases and therefore their accuracy is
crucial.

Overall, our results show larger mismatches than what has
previously been found for precessing phenomenological and

Chapter 6. Analysis of approximations for modelling precessing binaries with
numerical relativity 133



13

50 100 150 200

10
-5

10
-4

0.001

0.010

0.100

10
-5

10
-4

0.001

0.010

0.100

50 100 150 200

Figure 8. Single mode mismatches between the QA modes, hQA
`m , and the approximate QA, ĥQA

`m , and the AS, hAS
`m , modes; for all the config-

urations in Table A of App. A as a function of the total mass of the system. In the top [bottom] left and right panels we show the results for
the (2,±2) [(2,±1)], respectively. The thick gray (dashed black) lines correspond to mismatches between hQA

`m and ĥQA
`m (hAS

`m ). In addition,
configurations with IDs 10 and 36 are highlighted with red and blue colors, respectively. The horizontal lines mark the 1%, 3% and 10% value
of the mismatch.

EOB models [36, 72]. We attribute this difference to the im-
pact of NR errors in our waveforms, which are much higher
than those described in [36, 38, 72] due to the inclusion of
higher order modes, although the strain mismatches in Sec.
V B are consistent with those obtained in [39] for the same
configurations. We also note that we neglect modifications
to the final state that capture spin precession effects. How-
ever, we have verified using other phenomenological wave-
form models [9, 10, 73] that such modifications are a sub-
dominant effect in the whole framework. Hence, the intrinsic
limitations of the two modelling approximation (APX1) and
(APX2), combined with the impact of NR errors for higher
order modes are responsible for the reduced accuracy pf pre-
cessing higher order modes produced in this paradigm.

Our studies show that in order to produce accurate phe-
nomenological precessing waveform models necessary to fa-
cilitate the maximal science return from future GW observa-
tions, modifications to the simple paradigm that take into ac-
count mode asymmetries and subdominant effects will be cru-
cial.
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Vicepresidència i Conselleria d’Innovació, Recerca i Turisme
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Appendix A: Numerical Relativity Simulations

The Einstein Toolkit (ET) [47, 48] is an open source
NR code built around the Cactus framework [74, 75]. The
numerical setup of our simulations is similar to that used in
[76], though we present the details here for completeness.

We use standard Bowen-York initial data [77, 78] computed
using the TwoPunctures thorn [79], in which the punctures
are initially placed on the x-axis at positions x1 = D/(1 + q)
and x2 = −qD/(1 + q), where D is the coordinate separation
and we assume m1 ≥m2. The initial momenta are chosen such
that p = (∓pr,±pt,0). We use low-eccentricity initial data fol-
lowing the prescription detailed in [52].

The time evolution is performed using the W-variant [80]
of the BSSN formulation [81, 82] of the Einstein field equa-
tions as implemented by McLachlan [83]. The black holes
are evolved using the standard moving punctures gauge con-
ditions [84, 85] with the lapse being evolved according to the
”1 + log” condition [86] and the shift being evolved using a
hyperbolic Γ̃-driver equation [87].

The simulations were performed using 8th order accurate
finite differencing and Kreiss-Oliger dissipation [88]. Adap-
tive mesh refinement is provided by Carpet [89–91], with
the near zone being computed with high resolution Cartesian
grids that track the motion of the BHs, while the wave ex-
traction zone uses spherical grids provided the Llama multi-
patch infrastructure [76]. By using grids adapted to the spher-
ical topology of the wave extraction zone, we are able to effi-
ciently compute high-accuracy waveforms at large extraction
radii relative to standard Cartesian grids. The apparent hori-
zons are computed using AHFinderDirect [92] and a cal-
culation of the spins is performed in the dynamical horizon
formalism using the QuasiLocalMeasures thorn [93].

The gravitational waves are computed using the
WeylScal4 thorn and the GW strain h is calculated
from Ψ4 via fixed-frequency integration [94]. The thorns
McLachlan and WeylScal4 are generated by the automated-
code-generation package Kranc [95, 96]. The ET simulations
are managed using Simulation Factory [97] and the anal-
ysis and post-processing of ET waveforms was performed
using the open source Mathematica package Simulation
Tools [98].

The SXS waveform data used here are described in detail
in [66, 99] and can be obtained from [100].

The BAM simulations use the same numerical setup as de-
scribed in App. C 1 of [52]. In brief, the BAM code [45]
evolves black-hole binary initial data [101, 102] using the χ-
variant version of the moving puncture [84, 85] version of the

BSSN formulation [81, 82] of the Einstein equations. The
black-hole punctures are initially located on the y-axis at po-
sitions y1 = −qD/(1 + q) and y2 = D/(1 + q), where D is the
coordinate distance between the two punctures and the mass
ratio is q = m2/m1 > 1. The code uses sixth-order spatial
finite-difference derivatives, fourth-order Runge-Kutta algo-
rithm and Kreiss-Oliger dissipation terms [88] which con-
verge at fifth order. Furthermore, the code uses sixteen mesh-
refinement buffer points and the base configuration consists
of n1 nested mesh-refinement boxes with N3 points surround-
ing each black hole, and n2 nested boxes with (2N)3 points
surrounding the entire system. On the levels where the ex-
traction of gravitational radiation is performed, (4N)3 points
are used in order to extract more accurately the gravitational
waves emitted by the binary. These waves are computed from
the Newman-Penrose scalar Ψ4 [45] and converted into strain
via fixed-frequency integration [94].

Table A summarizes some key properties of the main set
of NR simulations used for this work. We arrange the simu-
lations in pairs, each pair consisting of a different precessing
simulation and its corresponding aligned-spin counterpart fol-
lowing Eq. (3.1).

Appendix B: Mismatches of higher order modes

Complementary to Sec. V here we present the results of sin-
gle mode mismatches for the remaining higher order modes.

Figure 9 shows the results for the mismatches between QA
and AS modes following Sec. V A. From top to bottom, the
plots refer to the (3, |3|), (4, |4|), (3, |2|), and (4, |3|) modes. Ad-
ditionally, mismatches for the configurations with IDs 10 and
36 are highlighted with red and blue colors, respectively. The
horizontal lines mark the 1%, 3% and 10% value of the mis-
match. We find overall increase in the mismatch values in the
two lowest panels, corresponding to (3, |2|) and (4, |3|) modes
compared to the (3, |3|), (4, |4|) modes (top two panels). As dis-
cussed in the main text, this increase is caused by the strong
mode-mixing effect in the (3, |2|) and (4, |3|) modes which is
not captured properly by (APX1).

Single mode mismatches between approximate precessing
and precessing waveforms for the higher order modes {`,m} =
{(3,2), (3,3), (4,3), (4,4)} are shown in Fig. 10. The top left
and right panels correspond to the (3,3) and (4,4) modes; the
bottom left and right panels show the results for the (3,2) and
(4,3) modes. The configurations with IDs 10 and 36 are high-
lighted with red and blue colors, respectively. The thick and
dashed lines correspond to taking 2 and 4 AS waveforms to
generate the approximate precessing waveforms, respectively.
For instance, in the case of the (3,2) mode the thick lines cor-
respond to taking the AS (3,±3) modes, while the dashed lines
to taking the AS (3,±3) and (3,±2) modes into account in
the construction (see Sec. V B for details). For the higher or-
der modes, we find that the modes affected by mode-mixing,
(3, |2|) and (4, |3|), have high mismatches with less than 30% of
cases below 3% (see Tab. III). The other subdominant modes,
(3,3) and (4,4), have mismatches below 3% for more than
80% of cases. Furthermore, the inclusion of more AS modes,
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Figure 9. Mode by mode mismatches between QA and AS modes
for all NR configurations as a function of the total mass of the sys-
tem. From the top to the bottom we show the results for the (3,±3),
(4,±4), (3,±2),(4,±3) modes, respectively. The configurations with
IDs 10 and 36 are highlighted with red and blue colors, respectively.
The thick and dashed curves correspond to positive and negative m
modes, respectively. The horizontal lines mark the 1%, 3% and 10%
value of the mismatch.

although it has a moderate impact, tends to improve the mis-
matches.

Figure 11 shows the results for single mode mismatches be-
tween the approximate precessing and precessing negative m-
modes {`,m} = {(2,−2), (2,−1), (3,−2), (3,−3), (4,−3), (4,−4)}
for all NR pairs as a function of the total mass of the system.
Comparing Fig. 4 and 11 we identify some asymmetries be-
tween the positive and negative m-modes. For instance, focus-
ing on the highlighted configurations, IDs 36 and 10, we find
slightly smaller mismatches for the negative m-modes than for
the positive ones.

In Sec. VI B we have further investigated the time domain
decomposition of co-precessing waveforms used by precess-
ing surrogate models [23, 65]. We show the results of this
analysis for higher order modes in Figs. 13 and 12. The
identification between AS and the slowly varying part of the
QA modes, referred to as symmetric QA modes defined as
h+
`m = A+

`meiφ−
`m , is quantified through mismatches displayed in

Fig. 13. Overall, we find that this approximation gets worse
for higher order modes, especially for the modes affected sig-
nificantly by mode mixing. Given this first approximation,
we then constructed approximate QA modes (see Sec. VI B
for details), ĥQA

`m , replacing the slowly-varying part of the QA
modes by the AS amplitude and phase. The mismatches be-
tween the approximate QA and the QA modes for higher order
modes are shown in Fig. 12. Similarly to the first approxima-
tion, we find an increase in mismatch, in particular for the
modes affected by mode-mixing.

Appendix C: PI symmmetry and waveform systematics

In Sec. V we found (APX1) to be particularly poor for cer-
tain binary configurations. Once such case is the configuration
with ID 28 in Tab. A. The time domain amplitude of rh`m for
the AS and QA {`,m} = {(2,2), (2,−2)} are shown in the left
panel Fig. 14. The solid and dashed lines represent the pos-
itive and negative m modes, respectively. In this particular
case, the QA (2,2)-mode has more power at merger than the
corresponding AS mode, which causes the mismatch to rise
above the 3%. However, the QA (2,−2) mode accurately re-
produces the AS mode through merger and ringdown. The
mode asymmetry is inherent to precession and is exacerbated
by the high χp value of this particular precessing configura-
tion.

In contrast to Fig. 2, we do not observe time shifts between
the QA and AS modes as the QA modes shown in Fig. 14 have
been constructed from ψ4,`m via fixed frequency integration
[94], therefore reducing the amount of time-shift. Note also
that these time shifts do not affect the result of the mismatch
calculations as they are computed taking into account time
shifts between waveforms by performing an inverse Fourier
transform.

The right panel of Fig. 14 shows the (2,1)-modes for the
configuration with ID 10, a case with a mass averaged mis-
match above 10% (see In Sec. V A). We observe a clear dif-
ference between the QA (purple) and AS (brown) amplitudes,
demonstrating that (APX1) is unable to capture the strong in-
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Figure 10. Mode by mode mismatches between precessing and approximate precessing modes for all configurations in Tab. A as a function of
the total mass of the system. The top left and right panels show the results for the (3,3) and (4,4) modes; the bottom left and right plots for
the (3,2) and (4,3) modes. The thick and dashed lines correspond to taking two or four aligned-spin waveforms to generate the approximate
precessing waveforms, respectively. The letter k represents the index of the rotation operator given in Eq. (2.3). In addition, configurations with
IDs 10 and 36 are highlighted with red and blue colors, respectively. The horizontal lines mark the 1%, 3% and 10% value of the mismatch.

teraction at merger for this configuration. The approximate
precessing waveform generated with the either two or four AS
modes, resembles the precessing (2,1)-mode (blue) better but
still not accurately throughout the late inspiral but in particu-
lar during the merger. These large differences are the source
of the high mismatch.

We have found in Sec. V A that the case with ID 4 has
a very high mismatch for the odd m-modes due to the PI
symmetry exhibited by equal mass equal spin black holes.
For configurations with PI symmetry the odd m-modes van-
ish identically, however, in NR simulations these modes are
not zero due to numerical error, although they are extremely
small compared to the even m-modes. For precessing config-
uration, however, this symmetry is broken and the odd m QA
modes will not vanish. As a consequence, the mismatches be-
tween the QA and AS odd m-modes for such configurations
are high. From the four configurations with PI symmetry, IDs
1,2,3 show lower mismatches than ID 4 due to fact that the
negative aligned spin component diminishes the difference in
the amplitude between the modes resulting in a much lower
mismatch when compared to the one of ID 4 (χeff = 0). This
also poses a clear limitation when rotating the (2,1) precess-
ing mode to form the QA (2,1) because the mode mixing in
the rotation leaves the QA with more power than the corre-
sponding AS mode. Moreover, it is also a tight constraint in
the inverse transformation because the approximate precess-
ing modes can only be generated with the information of the
even m modes. This is a clear limitation of (APX1).

Finally, in Sec. V B when analyzing the single mode mis-
matches of the (2,2)-mode (top panel of Fig. 4) we found a
case, ID 28, with the mismatch curve above the 3% thresh-
old. The configuration with ID 28 is the same as in the
co-precessing frame has a mismatch slightly above 3%. In
the inertial frame it occurs the same situation as in Fig. 14.
The asymmetries between positive and negative m precessing
modes are not accurately reproduced by the approximate pre-
cessing waveforms. As a consequence, the mismatch of the
(2,2) mode is much higher than the mismatch of the (2,−2)
mode, which is below the 3% horizontal line as seen in the
top right panel of Fig. 11.

Appendix D: Contour Plots matches including higher order
modes

Figure 15 contour plots of the strain mismatches be-
tween precessing and approximate precessing waveforms,
averaged over the angle κS for a total mass of 65 M�
for the configuration with ID 36. In the figure, the label
{`,m} refers to the modes used in the sum of the complex
strain of Eq. (4.2), while AS represents the aligned-spin
modes taken into account in Eq. (2.3). In addition,
the 3% and 10% mismatch values are highlighted with
orange and red curves, respectively. In the top, mid-
dle and bottom panels the (2,±2), (2,±1), (3,±3), (4,±4);
(2,±2), (2,±1), (3,±3), (3,±2), (4,±4) and (2,±2), (2,±1),

Chapter 6. Analysis of approximations for modelling precessing binaries with
numerical relativity 139



19

50 100 150 200

10
-4

0.001

0.010

0.100

1

10
-4

0.001

0.010

0.100

1

10
-4

0.001

0.010

0.100

1

50 100 150 200

Figure 11. Mode by mode mismatches between negative m precessing and approximate precessing modes for all NR configurations as a
function of the total mass of the system. We show results for the following modes: (2,−1) (top left), (2,−2) (top right), (3,−3) (middle left),
(4,−4) (middle right), (3,−2) (bottom left) and (4,−3) (bottom right). The thick and dashed lines correspond to taking two and four aligned-
spin waveforms to generate the approximate precessing waveforms, respectively. The letter k represents the index of the rotation operator
given in Eq. (2.3). Configurations with IDs 10 and 36 are highlighted in red and blue, respectively. The horizontal lines mark mismatches of
1%, 3% and 10%.

(3,±3), (3,±2), (4,±4), (4,±3) modes are taken into account
in the sum of the complex strain, respectively. In the left and
right panels the (`, |`|), (`, |` − 1|) AS modes are taken into
account, respectively. The results are similar to the bottom
panels of Fig. 5. The addition of higher order modes in
the complex strain increases the mismatch overall for all
inclinations, while the inclusion of more AS higher order
modes tends to lower the mismatches.
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Figure 12. Single mode mismatches between the AS modes, hAS
`m , and the symmetric QA modes, h+

`m, as a function of the total mass of the
system for all configurations in Tab. A. Top row: Results for the (3,3) (left) and (4,4) modes (right). Bottom row: Result for the (3,2) (left)
and (4,3) modes (right). The configurations with IDs 10 and 36 are highlighted with red and blue colors, respectively. The horizontal lines
mark the 1%, 3% and 10% value of the mismatch.
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Figure 13. Single mode mismatches between the QA modes, hQA
`m , the approximate QA modes, ĥQA

`m , and the AS modes, hAS
`m , as a function

of the total mass of the system for all NR configurations. In the left [right] panels from top to bottom we show the results for the {(3,3),
(4,4),(3,2),(4,3)} [{(3,−3), (4,−4), (3,−2),(4,−3)}] modes. The thick gray (dashed black) lines correspond to mismatches between hQA

`m and

ĥQA
`m (hAS

`m ). In addition, configurations with IDs 10 and 36 are highlighted with red and blue colors, respectively. The horizontal lines mark the
1%, 3% and 10% value of the mismatch. In the odd-m panels the cases with PI symmetry have been removed
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Figure 15. Strain mismatch between precessing and approximate precessing waveforms in the inertial frame averaged over the angle κS for
a total mass of 65 M� for the configuration with ID 36 as a function of the inclination and the azimuthal angle of the signal (precessing
waveform). In the plot labels {`,m} denotes the modes used in the sum of the complex strain given in Eq. (4.2), while AS represent the
aligned-spin modes taken into account in Eq. (2.3). In addition, the 3% and 10% mismatch values are highlighted with orange and red curvess,
respectively.
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Chapter 7

Impact of eccentricity on the
gravitational wave searches for
binary black holes

In this chapter I include the draft of a paper performed in collaboration with Drs.
Shubhanshu Tiwari and Maria Haney from the university of Zurich, and my supervisor
Dr. Sascha Husa, where we analyze the sensitivity of two search pipelines to the
full signal of eccentric binary black holes. The results presented in this section are
preliminary as the article is not public by the time of submission, but in a mature
enough form to include it as a part of the original results of this thesis.
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The formation of stellar-mass binary black holes through dynamical interactions in dense stellar environ-
ments predicts the existence of binaries with non-negligible eccentricity in the frequency band of ground-based
gravitational wave detectors; the detection of binary black hole mergers with measurable orbital eccentricity
would validate the existence of this formation channel. Waveform templates currently used in the matched-
filter gravitational-wave searches of LIGO-Virgo data neglect effects of eccentricity which is expected to re-
duce their efficiency to detect eccentric binary black holes. Meanwhile, the sensitivity of coherent unmodeled
gravitational-wave searches (with minimal assumptions about the signal model) have been shown to be largely
unaffected by the presence of even sizable orbital eccentricity. In this paper, we compare the performance of
two state-of-the-art search algorithms recently used by LIGO and Virgo to search for binary black holes in the
second Observing Run (O2), quantifying their search sensitivity by injecting numerical-relativity simulations
of inspiral-merger-ringdown eccentric waveforms into O2 LIGO data. Our results show that the matched-filter
search PyCBC performs better than the unmodeled search cWB for the high chirp mass (> 20M�) and low
eccentricity region (e30Hz < 0.25) of parameter space. For moderate eccentricities and low chirp mass, on the
other hand, the unmodeled search is more sensitive than the modeled search.

PACS numbers: 04.25.Dg, 04.25.Nx, 04.30.Db, 04.30.Tv

I. INTRODUCTION

The number of detections of gravitational wave (GW) sig-
nals has steeply increased from the first and second Observing
runs (O1/O2) of Advanced LIGO and Advanced Virgo [1] to
the third Observing run (O3), where tens of GW candidates
have already been recorded [2]. So far, all GW detections of
binary black holes (BBHs) are consistent with signals emitted
from quasicircular binaries [3, 4].

Generally, two main scenarios can be considered regard-
ing possible formation channels for BBH mergers: 1) isolated
binary evolution [5–8], during which BBHs shed their forma-
tion eccentricity through GW emission and have circularized
by the time they enter the frequency band of the ground-based
detectors [9, 10]; 2) binaries dynamically formed in dense
stellar environments like globular clusters and active galac-
tic nuclei (AGNs) [11–15], which may still retain a signifi-
cant eccentricity by the time they enter the frequency band
of the Advanced LIGO [16] and Advanced Virgo [17] detec-
tors. Although both formation channels (and their different as-
trophysical scenarios) predict BBH mergers with distinct dis-
tributions of masses and spins [18–21], the model uncertain-
ties —as well as the low statistics due to the limited number
of GW detections —do not permit to set tight constraints on
BBH formation scenarios from the mass and spin distributions
alone.

Dynamical BBH formation, hoewever, is distinctly char-
acterized by the potential existence of binaries with non-
negligible eccentricity in the frequency band of the ground-
based detectors, which were formed through dynamical cap-
ture at very close separations (without time to circularize be-
fore merger) or through a dynamical process that increased
the eccentricity of the binary (e.g. Kozai-Lidov oscillations
[22, 23]). The detection of a GW signal with an unambiguous

signature of non-negligible orbital eccentricity would there-
fore confirm the dynamical formation channel for BBHs and
provide information about possible formation mechanisms
and the astrophysical environments of such sources.

In order to be able to confidently detect eccentric binary
black hole signals it is necessary to assess the sensitivity of the
pipelines used to search for such signals. As a consequence
several studies have analysed the sensitivity of different search
pipelines to eccentric compact binary mergers over data from
O1 and O2 Advanced LIGO and Advanced Virgo observing
runs [24–26].

In this paper we quantify the sensitivity of two differ-
ent gravitational-wave search pipelines to eccentric inspiral-
merger-ringdown (IMR) signals calculated from numerical
relativity (NR) simulations. The two search pipelines are: 1)
the template-based PyCBC algorithm [27, 28], and 2) the un-
modeled coherent WaveBurst (cWB) algorithm [29, 30]. We
study the sensitivity of the pipelines with increasing eccen-
tricity of the signal for three different mass ratios q = 1, 2, 4,
with q = m1/m2 > 1 and m1, m2 the component masses of
the binary. Furthermore, for mass ratio q = 1 we inject ec-
centric simulations with increasing dimensionless component
spins |~χi| ≤ 0.75 (aligned with the orbital angular momentum
of the system), where ~χi = ~S i/m2

i and ~S i the spin vector of the
i-component, with i = 1, 2. Due to the restricted length of the
NR simulations the waveforms are injected at 30Hz, and the
eccentricity is consistently defined at that frequency according
to the procedure detailed in Sec. II.

The paper is organised as follows: In Sec. II we provide
details about the NR IMR eccentric waveforms used in this
work. In Sec. III we briefly summarize the two search al-
gorithms considered in this study, the template-based search
PyCBC and the un-modeled search, cWB. We present in Sec.
IV the results of the sensitivity estimates of both studied
pipelines. We conclude in Sec. V discussing the results ob-
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tained and reporting our conclusions.

II. ECCENTRIC BINARY BLACK HOLES

The gravitational wave signal emitted from a generic binary
black hole is described by 17 parameters [31]. The parame-
ters of a binary can be separated into 10 intrinsic parameters,
i.e. properties of the emitting source, and 7 extrinsic parame-
ters, describing the position of the source in the detector sky.
The intrinsic parameters are the two component masses mi,
the six dimensionless spin vectors ~χi = ~S i/m2

i , the eccentric-
ity parameter e, and the argument of the periapsis Ω. Another
useful mass parameter in gravitational wave data analysis is
the chirp massM of a binary with masses m1 and m2, which
is defined asM ≡ (m1m2)3/5(m1 + m2)−1/5. The extrinsic pa-
rameters are the luminosity distance dL, the azimuthal angle
ϕ, the inclination ι, the time of coalescence tc, the polariza-
tion angle ψ, the right ascension φ and the declination θ. The
strain induced in a gravitational wave detector can be written
in terms of these parameters as [32, 33]

h(t, ζ,Θ) =
[
F+(θ, φ, ψ)h+(t − tc; ι, ϕ, ζ)

+F×(θ, φ, ψ)h×(t − tc; ι, ϕ, ζ)
]
,

(2.1)

where F+, F× are the antenna pattern functions, and Θ =

{tc, r, θ, ϕ, ψ, ι, ϕ} and ζ = {m1,m2, ~S 1, ~S 2, e,Ω} represent the
sets of extrinsic and intrinsic parameters, respectively. The
gravitational wave polarizations (h+, h×) appearing in the de-
tector response can be expressed as a complex waveform
strain

h(t) = h+ − ih× =

∞∑

l=2

l∑

m=−l

Y−2
lm (ι, ϕ)hlm(t − tc; ζ), (2.2)

where hlm are the (l,m) waveform modes and Y−2
lm (ι, ϕ) the

spin-weighted -2 spherical harmonics.

A. Numerical Relativity data set

In this work we inject eccentric numerical relativity (NR)
waveforms produced with the open-source EinsteinToolkit
(ET) code [34, 35] and the SpEc code [36]. The ET wave-
forms were presented in [37], and the SXS ones in [38]. The
injected waveforms are displayed in Table I, where we show
for each simulation its identifier (ID, an integer number), the
simulation name, mass ratio, z-components of the dimension-
less spin vectors (χ1,z, χ2,z) and the initial eccentricity mea-
sured with the method developed in [37].

The injected data set is chosen with the following criteria:
simulations with IDs 1 − 4 are equal mass non-spinning cases
which serve as control cases because eccentric equal mass
non-spinning binaries have already been studied in the liter-
ature [39], while simulations with IDs 5− 10 extend the equal
mass case to the spinning sector. Finally, simulations sets
11−14 and 15−17 allow to test the efficiency of the pipelines
at higher mass ratios.

ID Simulation q χ1,z χ2,z eNR
0

1 SXS:BBH:1356 1. 0. 0. 0.09

2 SXS:BBH:1360 1. 0. 0. 0.15

3 SXS:BBH:1363 1. 0. 0. 0.23

4 Eccq1. 0. 0. et0.5 D27 1. 0. 0. 0.30

5 Eccq1. -0.25 -0.25 et0.1 D14 1. −0.25 −0.25 0.07

6 Eccq1. -0.5 -0.5 et0.1 D13 1. −0.5 −0.5 0.07

7 Eccq1. -0.75 -0.75 et0.1 D13 1. −0.75 −0.75 0.08

8 Eccq1. 0.25 0.25 et0.2 D16 1. 0.25 0.25 0.12

9 Eccq1. 0.5 0.5 et0.2 D15 1. 0.5 0.5 0.12

10 Eccq1. 0.75 0.75 et0.2 D15 1. 0.75 0.75 0.12

11 SXS:BBH:1365 2. 0. 0. 0.06

13 Eccq2. 0. 0. et0.2 D16 2. 0. 0. 0.14

12 SXS:BBH:1369 2. 0. 0. 0.20

14 Eccq2. 0. 0. et0.5 D26 2. 0. 0. 0.30

15 Eccq4. 0. 0. et0.1 D12 4. 0. 0. 0.07

16 Eccq4. 0. 0. et0.2 D15 4. 0. 0. 0.14

17 Eccq4. 0. 0. et0.5 D27.5 4. 0. 0. 0.30

Table I: Summary of the injected NR simulations. The first column
denotes the identifier of the simulation, the second column indicates
the name of the simulation as presented in [37, 38]. Next columns
show the mass ratio, z-component of the dimensionless spin vectors
and the initial NR eccentricity as measured using the procedure de-
tailed in [37].

The eccentricity parameter describes the ellipticity of the
binary’s orbit, values close to 0 indicate a quasi-circular evo-
lution while values close to 1 represent an almost head-on col-
lision. In general relativity the eccentricity is a gauge depen-
dent quantity. As a consequence, a plethora of eccentricity
estimators have been developed to measure the eccentricity
in numerical relativity simulations [40–46]. Eccentricity es-
timators are combinations of dynamical or wave quantities,
like the orbital frequency of the binary, the orbital separation,
the gravitational wave frequency of the (2, 2) mode, etc., mea-
suring the relative oscillations in those quantities due to ec-
centricity. In this work we measure the eccentricity from the
gravitational wave frequency of the h22 mode, ω22, following
the procedures of [37]. We remark that the eccentricities pre-
sented in Table I are measured from the gravitational wave
frequency and their values differ from those presented in [37]
as they were calculated there using the orbital frequency com-
puted from the motion of the black holes.

In the top panel of Fig. 1 we show the time evolution of the
eccentricity of the simulation with ID 17 in Table I. Moreover,
we choose the end of the inspiral given by the minimum en-
ergy circular orbit (MECO) [47], and explicitly set the eccen-
tricity to zero from the MECO time onwards as at that point
the eccentricity is so small which is practically zero.

In this study we are interested in injecting the waveforms
presented in Table I at a certain detector frequency and for a
certain total mass distribution. The modification of the total
mass of the system implies a change in length of the wave-
form within the frequency band of the detector, as a conse-
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quence different total masses imply also different initial ec-
centricities, as one can appreciate from the top panel of Fig.
1, which shows the eccentricity as a monotonically decaying
function as the binary evolves. One possible solution might
be to express the eccentricity measured from the NR simula-
tion as a function of gravitational wave frequency of the 22-
mode scaled by the total mass of the system, 2πM f22 = Mω22,
approximate the value of the injection frequency by the fre-
quency of the 22-mode, f22 ≈ fGW, and construct a function
e(M fGW) which would provide the value of the eccentricity
at a certain total mass for a given injection frequency. How-
ever, in the eccentric case the gravitational wave frequency is
a non-monotonic function due to the asymmetric gravitational
interaction along the orbit of the binary as one can observe in
the mid panel of Fig. 1, where the time domain frequency of
the 22-mode for the eccentric simulation with ID 17 from Ta-
ble I and the frequency of the quasicircular IMRPhenomT [48]
waveform model for the same configuration are displayed. We
note that after the MECO time both curves converge indicat-
ing circularization of the eccentric system at merger.

One possibility for the definition of the eccentricity as a
function of a monotonically increasing frequency is to con-
sider the Radiation Reaction (RR) equations [49] for x = ω2/3

and et, replace et by the eccentricity measured from the NR
simulation and solve the differential equation for ẋ. However,
we find that this procedure does not work satisfactorily, as we
have checked that the RR equations show a divergent behav-
ior before the MECO time in some cases indicating the break-
down of the post-Newtonian approximation. Therefore, we
decide to take the gravitational wave frequency of IMRPhe-
nomT and combine it with the eccentricity measured from the
simulation to construct the function eNR(M f22). The outcome
of such a calculation for the simulation with ID 17 in Table I is
shown in the bottom plot of Fig. 1. Hence, given an injection
with total mass MT and an injection frequency of fGW , we can
compute the eccentricity at that frequency and total mass as

einj = eNR(MT fGW ). (2.3)

We note that we focus only on the eccentricity parameter
as the initial argument of the periapsis (also initial mean
anomaly in the quasi-Keplerian parametrization [50]) in the
non-precessing case acts as an initial phase during the inspi-
ral and its main impact is in the morphology of the waveform
at plunge, whose detailed study would require going beyond
the high total mass regime (MT > 100M�) considered in this
communication.

Finally, in Fig. 2 we plot the time evolution of the GW po-
larization state hx(t) for non-spinning, eccentric stellar-mass
binary black holes with total mass mtot = 50M� and mass
ratio q = 2, provided by numerical-relativity simulations.
The characteristic orbital eccentricity of the system —defined
at a reference frequency of 30Hz —is estimated to be 0.05
(in blue, simulation ID 11) and 0.23 (in orange, simulation
ID 14), respectively. The time-domain waveforms clearly
demonstrate the effects of increasing initial orbital eccentric-
ity: rapid dephasing, as well as pronounced amplitude modu-
lations due to the advance of periastron.
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Figure 1: Top panel: Time domain evolution of the eccentricity esti-
mated from the eccentric NR simulation with ID 17 in Table I. Mid
panel: Time domain 22-mode gravitational wave frequencies of the
eccentric case with ID 17 from Table I and of the quasicircular IM-
RPhenomT waveform model, highlighted in blue and green colors
respectively. Bottom panel: Eccentricity as a function of the gravita-
tional frequency of the (2, 2) mode for the same configuration as in
the upper panel. With vertical lines in the top and bottom plots we
have highlighted the MECO time and frequency, respectively.

III. ANALYSIS

A. Data

The data set used to conduct this study is part of the O2 Data
Release through the Gravitational Wave Open Science Center
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Figure 2: Temporal evolution of the GW polarization state hx(t) for
non-spinning, eccentric stellar-mass binary black holes with total
mass mtot = 50M� and mass ratio q = 2, provided by numerical-
relativity simulations. The characteristic orbital eccentricity of the
system —defined at a reference frequency of 30Hz —is estimated to
be 0.05 (in blue, simulation ID 11) and 0.23 (in orange, simulation
ID 14), respectively.

[51]. This covers approximately ≈ 5 days of the coincident
data between LIGO Livingston and LIGO Hanford between
UTC Interval 2017-02-28 16:30:00 - 2017-03-10 13:35:00.
Times with significant instrumental disturbances have been
removed from the time period considered here [52, 53]. We
consider two search algorithms, pyCBC and cWB, with the
same search configurations that were used for the first cata-
logue of gravitational waves transients GWTC-1 [1] for these
algorithms.

B. PyCBC : The matched filter algorithm

PyCBC is a search pipeline devised to detect GWs from
compact binary coalescences using the PyCBC software pack-
age [54]. In this work we have employed the PyCBC search
algorithm in the exact same configuration as was used for
GWTC-1 [1].

The analysis uses a template bank of waveforms to perform
match filtering over the data to compute the signal-to-noise
ratio (SNR) for each combination of detector, coalescence
time and template waveforms [55]. Triggers are generated
by the pipeline according to excesses of matched-filter SNR
over a predetermined threshold of 5.5 in each detector. Fur-
thermore, signal consistency tests between the data and the
template, like the χ2 veto [56], are applied to suppress noise
transient artefacts (‘glitches’) . Then, a single-detector rank
% is computed for each single-detector trigger using the SNR,
the weighting vetoes, and a fitting and smoothing procedure
intended to ensure an approximately constant rate of single-
detector triggers across the search parameter space [57].

PyCBC performs also a coincidence test on the remain-
ing triggers [28] requiring that the signals observed by the
LIGO Hanford and LIGO Livingston detectors have to be seen

within a time difference of 15 ms (∼10 ms travel time be-
tween detector +5 ms for timing errors). Coincident triggers
are assigned a ranking statistic which assesses their statistical
significance and approximates the likelihood of obtaining the
trigger parameters in the presence of a GW signal versus in
the case of only noise [57].

In the PyCBC analysis presented here the template bank de-
scribed in [58] is used. This bank covers binary systems with
a total mass between 2M� and 500M� and mass ratios q < 98.
Binary components with masses below 2M� are assumed to
be neutron stars with a maximum dimensionless spin mag-
nitude of 0.05; otherwise, the maximum dimensionless spin
magnitude is 0.998. This template bank includes no effects of
eccentric orbits.

In a previous study it has been found that a quasi-circular
bank does not provide a good match for searching binaries
with eccentric orbits [59]. Furthermore, it is known that the
signal morphology of the eccentric BBH is orthogonal to the
aligned-spin quasi-circular BBH [60]. As a consequence the
quasi-circular, dominant harmonic and aligned spin template
bank renders ineffective for searching eccentric BBH for high
eccentricities.

The way eccentricity affects the matched-filter search by a
quasi-circular template bank is two fold, first the collection of
matched filtered SNR is reduced as a function of eccentricity
(this can be quantified by studying the overlap of eccentric and
quasi-circular waveforms), second the signal-based χ2 veto
used for weighting the single detector SNR to compute the
rank also penalizes the final detection statistics of the search.

C. cWB : The un-modeled search algorithm

The unmodeled search pipeline cWB [24, 29] is a search al-
gorithm designed to detect and reconstruct short-lived signals
which are weakly modeled or unmodeled using a network of
detectors networks of GW detectors [30], but also signals with
a known morphology as is the case of BBH events reported in
GWTC-1 [1]. The configuration of cWB used in this work
is the same as used in the GWTC-1 catalog. The lack of a
template bank for binary black holes in eccentric orbits which
could be use by matched filtering pipelines motivated the use
of cWB as robust tool to search eccentric BBH signals dur-
ing the first and second observing runs of the LIGO and Virgo
detectors [25].

cWB is devised to search for transient signals without re-
quiring the use of a specific waveform model for the source.
The detection process is based on the identification of a co-
herent excess power in multi-resolution time-frequency repre-
sentations of the detectors strain data, for signal frequencies
up to 1 kHz and duration up to a few seconds. In the case of
binary black holes the collection of excess power in the time-
frequency plane is is performed assuming monotonically in-
creasing frequency for a better collection of the signal energy.
Then, the pipeline identifies events which are coherent in mul-
tiple detectors and reconstructs the source sky location and
signal waveform by using a constrained maximum likelihood
method [30].
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The cWB detection statistic ρ is based on the coherent en-
ergy Ec obtained by cross-correlating the signal waveform re-
constructed in the network of detectors, which in turn it is pro-
portional to the coherent network signal-to-noise ratio. More-
over, this detection statistic takes into account the quality of
the reconstructed chirp by fitting the time-frequency pixels
with the Newtonian chirp mass formula [61]. The estimation
of statistical significance of an event is assessed by ranking the
quantity ρ computed for the event against the ρ distribution for
the background events obtained by repeating the analysis on
time-shifted data. The applied time shifts are chosen much
larger than the expected signals observed by the LIGO Han-
ford and LIGO Livingston detectors, ∼ 15 ms (∼ 10 ms travel
time between detector + 5 ms for timing errors), in order to
exclude astrophysical events from the background sample.

The robustness of the pipeline against non-stationary detec-
tor noise is increased by applying signal independent vetoes.
This motivates the definition of the network correlation coef-
ficient [30]

cc = Ec/(Ec + En), (3.1)

where En is the residual noise energy estimated after the re-
constructed signal pixels are subtracted from the data. Then,
gravitational-wave signals are expected to have cc ≈ 1, while
for noise artefacts cc � 1. Events with cc < 0.7 are rejected.

The cWB search pipeline performs worse than matched-
filter pipelines in the case the signal is well recovered by the
template bank as matched-filtering is a near optimal method
for searching well modeled signals. Nonetheless, the sensi-
tivity of cWB improves at parts of the parameter space where
the template bank does not faithfully reproduces the incoming
signal. The cWB search in its earlier version was found to
have almost no dependency of the search sensitivity as a func-
tion of eccentricity [24]. This was also confirmed in the latest
results for observing run 1 and 2 of LIGO and Virgo detectors
[25]. Also being a weakly modelled search cWB is affected
more by the background noise and hence has a lower sensitiv-
ity as compared to the optimal matched filter searches. But to
detect signals which are outside the template bank of matched
filter search cWB provides a valuable complementarity.

IV. SEARCH SENSITIVITY

A. Injection set

The injection set used in this study is composed of the NR
waveforms detailed in Table I. As a consequence, injections
have fixed spin vectors and mass ratio values corresponding
to those of the NR waveforms, although the total mass of the
system acts a scale parameter which can be freely specified
consistent with the length of the NR waveforms such that the
injected signals are in the frequency band of the detectors.
Due to the length limitations of the NR waveforms we set the
reference frequency of the injection set to 30Hz.

The injection set is constructed using a uniform distribution
in distance scaled by the chirp mass [62]. The total mass val-

Figure 3: The upper (lower) panel shows the sensitivity range for
the cWB (PyCBC) search pipeline for various chirp mass bins as a
function of eccentricity defined at 30Hz at an IFAR > 10 years is
shown. The plot markers are placed in the center of the eccentricity
bins.

ues are uniformly distributed from a minimum value consis-
tent with the length of the NR waveforms (between 30−50M�
for our dataset) to a maximum total mass of 100M�.

The orbital eccentricity of the individual injections, defined
at a reference frequency of 30Hz is estimated through Eq.
(2.3). We note that with this method the maximum eccen-
tricity at 30Hz of a given injected NR waveform is given by
the values of the last column of Table I, as these values are
measured at the start of the NR waveforms.

The moderate values of eccentricity considered here are
well-suited for a first study of sensitivity to the full inspiral-
merger-ringdown (IMR) signal to the gravitational waves
searches. Furthermore, many astrophysical models for eccen-
tric binary black hole coalescences in the frequency band of
ground-based detectors predict similar eccentricity values as
those used here [63–66].
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B. Visible range

The visible range for a given source parameters is calcu-
lated by injecting simulated waveform in the data as explained
in Sec. III. Each recovered signal is assigned an inverse False
Alarm rate (IFAR) according to its detection statistic. Then,
one can compute for each bin of the source parameters the
visible volume over a certain IFAR threshold. For a generic
binary, the sensitive volume V of a network of detectors with
a given sensitivity can be defined as

V(ξ) =

∫ ∞

0
f (z|ξ)dVc

dz
1

1 + z
dz, (4.1)

where f (z|ξ) is the detection probability of a binary with a
given parameter set ξ at redshift z, averaged over the extrinsic
binary orientation parameters [67]. In Eq. (4.1) the sensitivity
is assumed to be constant over the observing time, Tobs, which
is why we have chosen the chunk of O2 data where sensitivity
was almost uniform.

Given a population with parameters θ, the total observed
volume can be computed as

Vθ =

∫

ξ

p(ξ|θ)V(ξ) dξ, (4.2)

where p(ξ|θ) describes the underlying distribution of the in-
trinsic parameters. The visible range can be then estimated as
the radius of the visible volume.

The sensitivity of GW detectors is a strongly dependent
function of the binary chirp masses and distance, and also
varies with spin. We also note that the eccentricity can be
a relevant factor depending on the pipeline used to conduct
the search. Thus, we have mainly chosen chirp mass bin-
ning to study the impact of eccentricity on visible range as
it shows more clearly the dependence of the search sensitivity
than other parameters, like the total mass.

C. Effect of eccentricity on search sensitivities

We now turn to discussing the visible range at an IFAR
threshold of 10 years for both search pipelines and the same
injection set. Although matched-filter searches are an opti-
mal method to search for signals of known morphologies, in
the case of eccentric BBHs computationally efficient wave-
form models describing the full GW signal of eccentric BBH
coalescences have not yet been developed. For this reason
it is expected that the quasi-circular template bank used by
PyCBC will not be able to detect eccentric BBH events with
orbital eccentricities beyond a certain threshold. On the other
hand, cWB does not require signal models for detection and
should be equally sensitive to eccentric BBH signals more or
less throughout parameter space. It should be noted, how-
ever, that cWB is not an optimal method to detect BBH merger
events and thus has lower sensitivity than PyCBC for regions
of parameter space which are either explicitly covered by the
PyCBC template bank or where the signal is otherwise ‘mim-
icked’ by templates in the bank.

In Figure 3 we exhibit the visible ranges of the PyCBC and
cWB pipelines binned in chirp mass and eccentricity for all
the injected signals. The results show a reduction in visible
range of PyCBC with increasing eccentricity. The steepness
of the reduction of visible range becomes more apparent when
one goes to lower chirp masses; this is due to the fact that
for high chirp masses the number of cycles visible in the sen-
sitivity band of the LIGO detectors (and hence the inspiral
part of the signal where eccentricity effects are pronounced)
is rather short. One can conclude that for high chirp mass
events with moderate to low eccentricities the PyCBC search
and its quasi-circular template bank does not lose much visible
range. This behaviour is contrary to the low chirp mass case
with moderate eccentricities, where the loss in visible range is
substantial.

Regarding cWB, previous work [25] found that the search
pipeline is almost independent of eccentricity for a given chirp
mass bin. However, the waveforms used in that investigation
were significantly less accurate than the NR simulations used
here. We note an interesting feature in the dependency of
the range as a function of eccentricity for cWB for the low-
est chirp mass bin. The range increases slightly as a function
of eccentricity. This can probably be attributed to the power
content in higher harmonics in eccentric BBH signals which
is enhanced when the eccentricity increases; cWB captures
the total radiated power and therefore can observe eccentric
BBH events at larger range. For completeness we also show
in Fig. 5 the analogous to Fig. 3 at an IFAR threshold of 100
years, where one observes the expected overall decrease of the
sensitivity of both pipelines with increasing IFAR.

In our NR simulations we only have waveforms with mod-
erate eccentricities (e30Hz < 0.3). We note that the addition
of spins to to mildly eccentric signals does not change sig-
nificantly the detection efficiency for both pyCBC and cWB
searches. We leave the study of a large parameter space of
the eccentric non-precessing spin sector, as well as eccentric
spin-precessing systems, to future work.

D. Comparisons of search sensitivities and astrophysical
implications

In Figure 4 we show the comparison of the visible volumes
of PyCBC and cWB at an IFAR threshold of 10 years. Within
our injection set PyCBC almost always performs better than
or similar to cWB in terms of visible volume. In the case of
low chirp mass and high eccentricity the situation is reversed:
PyCBC loses sensitivity and cWB becomes more sensitive.

These comparison results can also be viewed in the light of
coalescence rate. Suppose the coalescence rate of eccentric
BBH mergers with eccentricities between (0, 0.3) at 30 Hz
is ReBBH; then the number of visible events will be simply
Nevents = ReBBH × ViFAR × Tobs. The relative difference in the
number of detected events will be the same as the relative
difference between the visible volume for the two search
algorithms that we have considered. From this, we can
conclude that cWB will see 10 % more events than pyCBC if
the chirp mass is between [13M�, 20M�] and the eccentricity
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Figure 4: Relative difference in sensitivity volume between the
search sensitivity of pyCBC and cWB for various chirp mass bins
is presented as function of eccentricity at an iFAR > 10 years. The
plot markers are placed in the center of the eccentricity bins.

at 30 Hz is between [0.25-0.3].

V. CONCLUSIONS

In this paper we have quantified for the first time the sensi-
tivities of GW search algorithms to eccentric BBH signals,
using NR simulations of eccentric BBH mergers. The ef-
fect of eccentricity on matched filtered searches has only
been studied for inspiral-only waveforms until now [59]; we
have extended those studies to complete IMR signals. The
search range of unmodeled searches for eccentric signals has
been previously investigated with a particular IMR waveform
model [25]; however, that waveform model is far less accurate
than the NR simulations used here.

We have employed two different gravitational waves
searches for BBH to compare the search sensitivity in terms
of visible volume. The matched filter search PyCBC performs
better than the unmodeled search cWB in most parts of the
limited parameter space that we have considered. Only in the
parameter space region of low chirp mass and high eccentric-
ity does cWB perform better than PyCBC. It should also be
noted that the parameter space that is covered by our NR in-
jections is rather small. Due to the restricted length of the NR
simulations, the parameter space of low chirp mass (Mc <
13) and high eccentricity e30Hz > 0.3 is not yet probed in this
work. This, however, is the most interesting part of parameter
space for eccentric BBHs, with waveform morphologies that
are substantially different than those of quasicircular BBHs.
We plan to investigate this part of parameter space in subse-
quent work, with eccentric hybrid waveforms that combine
NR data with an analytic description of the inspiral, or with
future waveform models for the full IMR signal.

The two search pipelines used here —very different algo-
rithms as described in Sec. III —offer a complementary way

to search for BBH mergers in different parts of the source pa-
rameter space. Constructing a template-based search for ec-
centric BBH will be challenging as the rate of background
triggers increases with the increase of template bank parame-
ters. In the light of astrophysical considerations, most of the
BBH events observable by LIGO and Virgo are expected to
have eccentricities lower than 0.2 at 30 Hz; this region of pa-
rameter space has been demonstrated to be well-covered by
the PyCBC search, even with a quasi-circular template bank.
Certain astrophysical scenarios suggest LIGO-Virgo relevant
BBH events with higher eccentricities: for such sources the
cWB search provides decent coverage.

With the expected availability of computationally efficient
and accurate eccentric IMR BBH waveforms models (and/or
eccentric hybrids) in the near future it will be interesting to
probe the low chirp mass and high eccentricity part of the pa-
rameter space, where the modelled search is penalized due to
substantial dephasing between the quasicircular template bank
and the signal.

With future upgrades, the detectors’ low-frequency sensi-
tivity (in the range 24−100 Hz) is expected to improve signif-
icantly; this will in turn allow a significant gain in SNR during
the inspiral even for BBH systems with relatively high masses,
adding more prominence to detectable inspiral features like
eccentricity and penalizing the matched-filter searches for ec-
centric BBH even further. With future improvements at low
frequencies, the role of un-modeled searches is therefore ex-
pected to become important also for the part of parameter
space which is well-covered by matched-filter searches at cur-
rent detector configuration.
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Appendix A: Effect of increasing the IFAR in the searches

In Sec. IV C we have discussed the effect of eccentricity
in PyCBC and cWB at an IFAR threshold of 10 years. For
completeness we present here results at an IFAR threshold of
100 years. The outcome of such a calculation is shown in
Fig. 5, where one observes comparing to Fig. 3 the expected
overall decrease of the sensitivity distance of both pipelines
with increasing IFAR.

Figure 5: The upper (lower) panel shows the sensitivity range for
the cWB (PyCBC) search pipeline for various chirp mass bins as a
function of eccentricity defined at 30Hz at an IFAR > 100 years is
shown. The plot markers are placed in the center of the eccentricity
bins.
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Chapter 8

Conclusions

The advent of the gravitational wave astronomy demands increasingly more accu-
rate waveform models in order to improve the detection and parameter estimation of
the upcoming signals. The increase of accuracy of the models does not only mean
augmenting the quality of the numerical relativity simulations, to which all current
inspiral-merger-ringdown waveform models are calibrated, but also populating the
huge parameter space of a binary by including more and more physical effects, like
spin-precession or eccentricity. The main work during this thesis has been the pro-
duction of the numerical relativity simulations for generic binary black-hole mergers
and the study of their implications for waveform modelling, detection and parameter
estimation.

The content of this thesis is balanced between the first introductory part and the
second one devoted to the original scientific work. For the benefit of the author and the
reader, pedagogical explanations on basics concepts of gravitational wave astronomy
have been provided in the first three chapters of the thesis. Chapter 1 provides the
fundamentals of gravitational wave physics focused to the radiation produced by com-
pact binary coalescences. Chapter 2 extends the solutions of the two-body problem in
general relativity, with an overview on analytical solutions within the post-Newtonian
theory and numerical approximations within numerical relativity. Finally, Chapter 3
focuses on the theoretical framework for detection and estimation of parameters from
signals emitted by binary black holes, providing also details on the algorithms and
the methods used by different parameter estimation codes and detection pipelines.
Overall, these three chapters aim to contextualize the reader in the main topics ad-
dressed by the thesis providing notation and basic notions on concepts developed in
the second part of the thesis.

The second part of this thesis includes original research results. We have summa-
rized in the following three sections the main results.

Eccentricity in numerical relativity simulations

We present a simple procedure to reduce the eccentricity of numerical relativity sim-
ulations of binary black-hole mergers in Chap. 4 . This method allows one to control
the amount of initial eccentricity on numerical simulations with a computationally
efficient and simple iterative procedure based on post-Newtonian expressions. The
validity of this method has been tested with generic black-hole binary NR simulations
and it permits the reduction of the residual eccentricity up to values of 10−4 in a few
iterations [1].

In Chap. 5 we exploit the procedure developed in Chap. 4 to specify initial param-
eters for highly eccentric NR simulations. We produce a data set of 60 eccentric NR
simulations, non-spinning up to mass ratio q = m1/m2 = 4 and including dimension-
less spins aligned with the orbital angular momentum of the system up to |χi| = 0.75,
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i = 1, 2, with the BAM and the EinsteinToolkit codes. This data set together with
the 20 non-spinning eccentric SXS simulations of [2] give a total of 80 simulations,
which we use to test the quasi-circularity of the final state of the binary extending
previous results to the spinning case. Furthermore, we apply a simple procedure to
generate PN-NR eccentric hybrid waveforms for the (2, 2) mode [3]. Finally, we use
the generated waveforms to show examples of parameter estimation using three dif-
ferent quasi-circular waveform models, IMRPhenomD [4, 5], IMRPhenomHM [6] and
IMRPhenomPv2 [7], as approximants and quantifying the bias in the recovered pa-
rameters for each model. We find that the IMRPhenomHM model shows less bias
in some parameters, like the luminosity distance and mass ratio, with increasing ec-
centricity than IMRPhenomD and IMRPhenomPv2, while other parameters like the
chirp mass or the effective spin parameter show comparable biases with increasing
eccentricity for the three approximants.

Validity of modelling approximations for precessing binaries including
higher order modes with numerical relativity

In Chapter 6 we turned our attention to spin-precession in quasi-circular BBH mergers
with emphasis on the analysis of two main approximations used by phenomenological
waveform models of precessing black hole binaries. Our main objective in this work
has been testing these approximations and assessing their accuracy for higher order
harmonics in the co-precessing and the inertial frames. Due to the lack of precessing
PN/EOB-NR hybrid waveforms we have restricted to pure NR waveforms from three
different codes BAM, ET and the spectral code SpEc [8].

We quantify differences between waveforms using different quantities like the mis-
match, noise weighted inner product between two waveforms, or the gravitational wave
radiated energy per (l,m)-mode [9]. We find that the discrepancies between precessing
and approximate precessing waveforms increase substantially for higher order modes,
where for some specific modes, like the (3,±2) and (4,±3), single mode mismatches
increase above 3% for more than 70% of our data set, due to the negligence of a proper
ringdown mode-mixing treatment of these modes. For the rest of (l,m)-modes studied
differences are reduced. We have also studied possible improvements of the analysed
approximations by adopting strategies already used by the precessing surrogate mod-
els [10, 11], which we show can alleviate such discrepancies.

Sensitivity of two search pipelines to eccentric signals

In Chap. 7 we have analysed the sensitivity of two search pipelines used by the LIGO
and Virgo collaborations during the O2 Science Run to the full gravitational wave
signal of eccentric binary black holes. In this work we have quantified the impact of
eccentricity on two search pipelines: a matched-filter algorithm, PyCBC, based on
aligned-spin (2, 2)-mode binary black hole waveform templates, and an unmodeled
search algorithm, cWB, based on a coherent excess of power in a detector network.

The sensitivity of both pipelines is estimated injecting eccentric signals computed
from numerical relativity simulations, including public SXS [2] and non-public ET
waveforms presented in [3], the latter including spins aligned with the orbital angular
momentum of the system. We find that sensitivity distances decrease significantly
more for PyCBC with increasing than for cWB, whose sensitivity is quite insensitive
to the increase of eccentricity. As a consequence, we can consider cWB a robust tool
to detect GW signals with moderate eccentricities.
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Outlook and future research

The work presented in this thesis is just a small step towards modelling generic black
hole binaries. Regarding spin precession, the study performed in Chap. 6 can help to
compare waveforms in different frames and implement possible improvements in the
current phenomenological precessing waveform models, like the modification of the
precessing angles used in the waveform models to account for mode asymmetries and
accurately describe final spin modifications.

The other main topic has been the development of basic tools required to produce sim-
ple inspiral-merger-ringdown eccentric waveform models, like the production of a data
set of numerical relativity waveforms and their hybridization with post-Newtonian
waveforms for the dominant (2, 2)-mode.

The generation of an eccentric IMR waveform model is challenging due to the lack of
accurate enough post-Newtonian results for the amplitude and the frequency which
allow applying a robust fitting procedure across the parameter space. As a conse-
quence, the generation of the eccentric IMR waveform model is one of the future goals
of the thesis applicant, in which it is currently working.

Another project in which the applicant is currently involved is the generation of multi-
mode eccentric hybrid waveforms including higher order modes. These waveforms are
of potential interest because they allow one to work in the low frequency limit, and
extend data analysis studies like the one presented in Chap. 7 to a low mass range.
Additionally, those multi-mode eccentric hybrids could also be used to generate a ec-
centric IMR model including higher order modes.

During the four years of Ph.D. the candidate has been a member of the LSC, which
in that time has published 40 scientific articles where the applicant appears as a co-
author. I have also participated in the development of the new PhenomX waveform
family which has led to several short author papers in which I am a co-author.

• Geraint Pratten, Sascha Husa, Cecilio García-Quirós, Marta Colleoni, Antoni
Ramos-Buades, Héctor Estellés, Rafel Jaume. Setting the cornerstone for the
IMRPhenomX family of models for gravitational waves from compact binaries:
The dominant harmonic for non-precessing quasi-circular black holes. arxiv:2001.1142
[gr-qc] (2020). Submitted to Physical Review D.

• Cecilio García-Quirós, Marta Colleoni, Sascha Husa, Héctor Estellés, Geraint
Pratten, Antoni Ramos-Buades, Maite Mateu-Lucena, Rafel Jaume. IMRPhe-
nomXHM: A multi-mode frequency-domain model for the gravitational wave sig-
nal from non-precessing black-hole binaries. arXiv:2001.10914 [gr-qc] (2020).
Submitted to Physical Review D.

• Geraint Pratten, Cecilio García-Quirós, Marta Colleoni, Antoni Ramos-Buades,
Héctor Estellés, Maite Mateu-Lucena, Rafel Jaume, Maria Haney, David Kei-
tel, Jonathan E. Thompson, Sascha Husa. Let’s twist again: computationally
efficient models for the dominant and sub-dominant harmonic modes of precess-
ing binary black holes. arXiv:2004.06503 [gr-qc] (2020). Submitted to Physical
Review D.

These models have undergone a waveform review of the LIGO-Virgo collaboration and
are publicly available as part of the LALsuite software [12] software. Furthermore,
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I have also contributed to the new time domain phenomenological IMRPhenomTP
waveform model.

• Héctor Estellés, Antoni Ramos-Buades, Sascha Husa, Cecilio García-Quirós,
Marta Colleoni, Leïla Haegel and Rafel Jaume. IMRPhenomTP: A phenomeno-
logical time domain model for dominant quadrupole gravitational wave signal of
coalescing binary black holes. arxiv:2004.08302 [gr-qc] (2020). Submitted to
Physical Review D.

These models can be used in the future to reduce the limitations from systematic
errors in studies like the ones performed in Chapters 5 and 6, and they are expected
to become a standard tool in GW data analysis. One of the big remaining challenges
is to extend such models to eccentricity, which is my current focus of research.
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Abbreviations

ADM Arnowitt Deser Misner
BAM BifunctionalAdaptiveMesh
BH Black Hole
BBH Binary Black Hole
BNS Binary Neutron Star
BSSNOK Baumgarte Shapiro Shibata Nakamura Oohara Kojima
CBC Compact Binary Coalescence
CPU Central Processing Unit
cWB coherent Wave Burst
eBBH eccentric Binary Black Hole
DPF Dominant Polarization Frame
EM ElectroMagnetic
EMRI Extreme Mass Ratio Inspiral
EOB Effective One Body
EOS Equation Of State
ET EinsteinToolkit
FAD False Alarm Dismissal
FAP False Alarm Probability
FAR False Alarm Rate
GR General Relativity
GRB Gamma Ray Burst
GW Gravitational Waves
IMBH Intermediate Black Hole
IMR Inspiral Merger Ringdown
ISCO InnerMost Stable Circular Orbit
LIGO Laser Interferometer Gravitational Wave Observatory
LSC LIGO Scientific Collaboration
LISA Laser Interferometer Space Antenna
NSBH Neutron Star Black Hole
NR Numerical Relativity
MCMC Markov Chain MonteCarlo
MECO Minimum Energy Circular Orbit
O1 First Observing run of the LIGO gravitational wave detectors.
O2 Second Observing run of the LIGO and Virgo gravitational wave detectors
O3 Third Observing run of the LIGO and Virgo gravitational wave detectors
PN Post Newtonian
PE Parameter Estimation
PSD Power Spectral Density
QC Quasi Circular
QK Quasi Keplerian
QNM QuasiNormal Mode
SNR Signal to Noise Ratio
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SNIa SuperNovae type Ia
SPA Stationary Phase Approximation
TF Time Frequency
TT Transverse Traceless
WDM Wilson Daubechies Meyer
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