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Abstract

In this MSc thesis, we study the performance of a delayed optoelectronic reservoir
computer. We focus our atention on the system’s optimization through the addition
of a second temporal delay. We find that the addition of this delay has a positive
influence for some benchmark tasks while it remains neutral in other cases. In
particular, we evaluate linear and nonlinear memory capacities as well as nonlinear
time series prediction of a chaotic Mackey-Glass system and NARMA (Nonlinear
Auto Regressive Moving Average Models) systems.

First, we carry out a theoretical analysis of the reservoir computer, and precisely
of the delay-based RC. The Chapter 2 is then devoted to the numerical implemen-
tation of the delayed optoelectronic oscillator. We simulate the addition of a second
delay and study its effects through the benchmark tasks. Finally, in Chapter 3 we
evaluate experimentally an optoelectronic hardware-based reservoir computer with
one and two delays. During this experimental work, besides carrying out the differ-
ent benchmark tasks, we address the reservoir computer’s characterization and look
for the best set of parameters.
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Chapter 1

Introduction

1.1 History

1.1.1 Computation

In the period between World War I and II, first information processing units were
built in order to achieve the increasingly more complex tasks that were no longer
possible to be solved by hand. Since then until the beginning of the XXI Century,
the scaling law for digital technology proposed by Gordon Moore has revealed as
a complete success to keep improving information processing power. Nevertheless,
Moore’s law cannot be sustained by modern solid-state physics. Multiple CPU cores
can’t solve the scaling problem either, which is limited by other technical issues as
energy dissipation and manufacturing economics [1]. Nowadays, new unconventional
information processing techniques are trying to overcome all these challenges. One of
the fields in which major efforts are being invested is optical information processing.

1.1.2 Optical Computation

As of 1970, a different vision of information processing emerged based on optical
modern theories. In particular, it relied on nonlinear effects or bistability [2, 3].
However, the interest on those devices rapidly decayed due to high power consump-
tion and difficulties when it came to integrating those optical-based systems into
already existing machines.

It is the halted acceleration of microprocessor computing power and the parallel
evolution of photonic technologies and quantum computing that has reawakened the
general interest on opportunities offered by optical information processing [4, 5].

In the same way, when moving to supercomputing needs, the outstanding capa-
bility of the light to be generated and propagated with minimum power dissipation,
seems to be the answer to heat generation issues, and the key to a lower energy
consumption [6].

1.2 Reservoir Computer

1.2.1 Birth of the RC

Taking all the previous considerations into account, huge efforts have been in-
vested in novel computational concepts regarding information processing. These at-
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Introduction 2

Figure 1.1: Sketch of RC schemes. (a) Classical RC scheme. (b) Scheme of RC utilizing
a nonlinear node with delayd feedback. Figure taken from [13].

tempts have given rise to a radically different way of processing information, distant
from traditional Turing or von Neumann Machine methods, but as computationally
powerful as the transistor-based models [7]. One of these concepts to compute in
an unconventional way using random recurrent neural networks was proposed in
2004 which was first introduced as Echo State Network [8] and more generally as
reservoir computing (RC) [9]. More recently, L. Larger et al. and Y. Paquot et al.,
concurrently proposed a way to implement this concept on photonic hardware, the
optoelectronic reservoir computer [10, 11]. Reservoir computing is a breakthrough
concept, inspired by the brain’s ability to process information combined with the ad-
vantages of recurrent neural networks and the high performance of machine learning
techniques. This bio-inspired approach has demonstrated state-of-the-art perfor-
mance for computationally demanding tasks such as chaotic time series prediction
or speech recognition, among others [10, 11, 12].

1.2.2 Conventional RC

A conventional Reservoir Computer, as shown in Fig. 1.1(a) is made of three
specific sections, each one of them in charge of a specific role. The so-called “Input
layer” receives the input data. The “reservoir” encloses a recurrent neural network
made up of a large number of fixed and randomly interconnected nonlinear nodes,
that in consequence, also exhibit internal feedback loops. The signal is sent from
the input layer to a given number N of reservoir nodes through random weights wN .
When excited by the input signal, the network not only processes the information but
also exhibits complex transient dynamics, i.e. states in which no stable equilibrium
is reached. It is this response of the network that is evaluated by the “output layer”
via a linear weighted sum of N individual node states.
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(a) (b)

Figure 1.2: Illustration of linear separability. A non linear mapping from a small dimen-
sional space into a high dimensional space facilitates classification. (a) Two dimensional
space where red stars and blue spheres cannot be separated with a single straight line.
(b) In a three dimensional space, spheres and stars can be separated by a single linear
hyperplane. Figure taken from [13].

The transient dynamical response of the reservoir, plays a major role in processing
the information from the input layer. Without input, the reservoir is typically set
to operate in an asymptotically stable (fixed point) state, i.e. not too far from a
bifurcation point. Those behaviors have also been found in physiological systems
from where the RC is inspired [14].

The particular characteristics of the reservoir and the large number of dynamical
elements in it pave the way to perform any kind of complex task. Despite the already
mentioned degrees of freedom, a training procedure of the weights is still needed in
order to perform any computational task.

Being the training of the recurrent neural network the main difficulty of this
procedure, the weights between nodes in RC are kept fixed, thus untrained, as
the ones linking the input layer to the reservoir. Consequently, there is only need
to train the output layer with the help of already known signals in a supervised
learning procedure. As a result, the Reservoir Computer is then able to process
unseen signals.

1.2.3 Properties of a RC

A key issue of the Reservoir Computer is the specific nonlinear transformation
of the input signal in order to efficiently solve a given task. To this end, a reservoir
should fulfill several properties.

Firstly, the reservoir must be able to nonlinearly transform the (usually) low-
dimensional input signal into a high-dimensional state space. This new configuration
is obtained by means of the large number of interconnected reservoir nodes in the
recurrent neural network. Thanks to this high-dimensional space, the different tasks
can be performed in a more efficient way, e.g. the classification of states [13]. This
high-dimensional mapping is illustrated in Fig. 1.2.

In order to obtain not only robust results but also reproducible, if the inputs are
similar, the transient response of the system must be similar for similar outputs.
This property is known as approximation property. In the same way, for different
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inputs, the transient response should be different enough (separation property) [13].
Finally, the RC should also exhibit a fading-memory (also known as short-term

memory). The idea is that recent inputs of the signal need to have an influence
on the present reservoir state. Depending on the parameters of the system, the
number of recent inputs that the system can remember varies. The fading memory
property can turn out to be crucial depending on the nature of the performed task.
For instance, in the case of a time-series prediction, the upcoming step is usually
related to a given number of previous inputs. Thus, and in order to reach an optimal
prediction, the system should have the ability to retain those inputs [9].

1.2.4 One single NL hardware node RC

Even if highly demanding tasks can be performed, the previously described con-
cept of RC remains technologically challenging and often unrealistic. Here we will
focus on a specific architecture, and more efficient, concept of RC. The recurrent
Neural Network, typically composed of a large number of nodes, can be substi-
tuted by a dynamical system comprising a single nonlinear node plus a delayed
self-feedback [13]. In this equivalent system, as shown in Fig. 1.1(b), the reservoir is
built within the delay line. The resulting loop is divided into N “virtual nodes” re-
ceiving data from the input layer via time multiplexing. Consequently, the addition
of this delay τ results in a large dimensionality of the dynamics of the system. Even
after this strong simplification of the hardware, the system fulfills the requirements
for proper operation as high dimensionality and fading memory [13].

1.3 Delay-based Reservoir Computer

1.3.1 Description

In this section, we will perform an in-depth description of the RC’s delayed
scheme. Having changed the Recurrent Neural Network for a delayed line of time
τ , now N equidistant points separated in time by θ = τ/N act as virtual nodes as
shown in Fig. 1.3. When the information is sent to the nodes, each of them acquire
a value that characterize the transient response of the reservoir to a certain input at
a given time. Being T the characteristic time of the nonlinear node, the condition
θ < τ is preferred if one wants to exploit the bandwidth of the system. In this
case the system does not have the time to reach an asymptotic value. Therefore the
states of the virtual nodes depend on the states of neighbouring nodes.

As in the traditional case, the delay-based approach is also characterized by three
main different sections. In the input layer, a continuous u(t) or discrete u(k) flow
of data is transformed into a continuous function I(t), where each step is held for a
time τ . These states are, one by one, multiplied by a random mask J(t) = M(t)I(t)
as illustrated in Fig. 1.4. Now, in the reservoir, the new stream of data J(t) is added
to the previous one x(t− τ

N
(N − i)) and then computed by the nonlinear function

F . This final set of data can be delivered to the virtual nodes and the operation is
repeated again. The system would be governed by the following equation:

x(t) = F (γJ(t) + βx(t− τ) + φ) (1.1)

where τ is the delay time, β and γ are the feedback and input scaling parameters
and φ is the phase of the system.
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Figure 1.3: Schematic representation of reservoir computing with a delayed feedback sys-
tem and a single nonlinear node.

The output layer remains unchanged when compared with the classical RC. After
being trained, each of the virtual nodes is related with a given weight wi. The output
data can be described as a linear combination of the states of the nodes:

o(t) =
N∑
i=1

wi · x(t− τ

N
(N − i)) (1.2)

The whole process, highlighting the output layer weights, is described in Fig. 1.3. In
the training procedure, o(t) must minimize the distance to a given target sequence
y(t).

Figure 1.4: Scheme of the input data preparation and masking procedure. Starting either
from a time-continuous or time discrete input stream, after going under a sample and hold
operation, we obtain a constant stream I(t). After being multiplied by a random mask
M(t), it is feed to the virtual nodes. Figure taken from [13].
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1.4 Benchmark tasks

1.4.1 Memory capacity

The fading memory is the property to retain a certain number of inputs within
the reservoir activity after a certain time. In order to compare the fading memory
of different systems, a quantitative value of the memory capacity is obtained by a
simple methodology. In this case, the input to the reservoir is set as an identically
distributed random sequence, u(n), uniformly distributed between [−1, 1]. Setting
the output target of the RC as the “i” previous input, yi(n) = u(n− i), proceeding
in this way, the system output after training will give as a result the prediction,
oi(n) of an input that was presented a time “i” before at the reservoir input. The
memory function m(i) is described as follows:

m(i) = corr[oi(n), yi(n)] =
< yi(n)oi(n) >2

n

σ2(yi(n))σ2(oi(n))
(1.3)

where <>m is the mean over all n values and σ denotes the standard deviation. The
memory capacity MC is then defined as the sum of the memory function m(i), with
i going to infinity:

MC =
∞∑
i

m(i) (1.4)

The MC gives a good understanding of the system’s ability to retain previously seen
values [15].

1.4.2 Mackey-Glass time series prediction

The performance of the RC will be further tested through a nonlinear time series
prediction of the chaotic Mackey-Glass system (MG) [16]. The dynamics followed
by such a system are governed by a delay differential equation:

ż(t) =
az(t− τ)

1 + z10(t− τ)
− bz(t), t ≥ 0 (1.5)

The typical constant values introduced to the system are a = 0.2, b = 0.1 and
τ = 17 [12]. A time series u(n) = z(nT ), n = 1, ..., 4000 of discrete points
with sampling time T = 3 is obtained. In general, the time series is divided in
two different sets: 3000 points for training and 1000 for the test of the system’s
performance. A segment of the MG time series can be seen in Fig. 1.5(a) and the
corresponding power spectra in Fig. 1.5(b).

The main objective is to optimize the one step-ahead prediction of the RC using
the discrete values y(n) = u(n + 1) of the Mackey-Glass chaotic system. Being
τ = 17 the parameter that provides information about the delayed component and
the sampling time T = 3, the minimum memory capacity required for this problem
is approximately MC ≈ 6, (MC > τ/T ) .

1.4.3 NARMA tasks

NARMA (Nonlinear Auto Regressive Moving Average Models) tasks are com-
monly used benchmarks in the field of reservoir computing for evaluating the com-
putational capability of the learning system and specially the memory capacity [17,
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Figure 1.5: (a) Time series of the Mackey-Glass chaotic system. The circles denote the
samples that are kept in u(t). In this time series, three different pseudo-periodicities are
visible with periods ∆1 = 3τ/T , ∆2 = 6τ/T and ∆3 = 12τ/T . (b) Fast Fourier Transform
(FFT) of the whole set of data. The power spectra shows frequency resonances at 1/∆i.

18, 19, 20]. To emulate the desired outputs, the RC must have enough memory of
historical inputs and transform them nonlinearly. For the NARMA task, the input
u(k) of the system consists of scalar random numbers drawn from a uniform distri-
bution in the interval [0, 0.5] and the target y(k+1) is given by a nth-order recursive
formula. In this case, we compared the performance of the system for n = 2 and 5.
The first one is called NARMA2 and is described by:

yk+1 = 0.4yk + 0.4ykyk−1 + 0.6u3k + 0.1 (1.6)

In turn, the NARMA5 task evaluates a 5th-order nonlinear dynamical system.
It’s written as follows:

yk+1 = 0.3yk + 0.05yk

(
4∑
j=0

yk−j

)
+ 1.5uk−4uk + 0.1 (1.7)

The purpose of both tasks is to approximate the y(k + 1) value given u(k) as the
input to the reservoir.

1.5 Objectives

This project aims at exploring the influence of an enhanced node connectivity in
the performance of delay-based RC. For this purpose, different strategies have been
suggested as the addition of multiple delays or tailoring the input mask amongst
other [21, 22]. Here we will focus on the addition of a second delay and we will evalu-
ate it in an optoelectronic RC implementation. In delay-based RC, the first delayed
loop is usually added in such a way that each of the virtual nodes is connected to
the direct neighbour.

In this context, the enhanced connectivity provided by the addition of a second
delay is illustrated in Fig. 1.6. Each one of the virtual nodes is then connected to
two different nodes in previous temporal states. Proceeding in this way, we obtain a
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Figure 1.6: Schematic representation of the virtual node connectivity in a delay-based
reservoir with two delays. The parameter b1 allows to shift the first delay, only positive
b1 values are allowed if one wants to create recurrent connections. The condition for the
second delay is less restrictive and b2 can take both positive or negative values.

reservoir computer with two different delays and a richer virtual node connectivity.
The equation governing the RC is therefore given by:

x(t) = F

(
γJ(t) +

β

2
(x(t− τ1) + x(t− τ2)) + φ

)
(1.8)

This new approach allows to manipulate the connectivity of the reservoir and to ex-
plore systematically the influence of having a second delay for each of the performed
tasks.

In order to study the influence of the addition of a second delay, in Chapter 2 we
will perform numerical simulations. In this part, we will evaluate numerically the
response of an optoelectronic reservoir with one and two delays to the benchmark
tasks explained in Sec. 1.4. In Chapter 3, we will characterize the dynamics of
a novel hardware setup of an optoelectronic reservoir computer that allows to add
multiple delays. Finally, we will test this experimental setup with the different
benchmark tasks.



Chapter 2

Numerical Simulations

2.1 Optoelectronic Reservoir Computer

We focus our work on the study of a delayed optoelectronic oscillator which has
a sine squared nonlinearity [10, 11]. The delay-based approach to RC usually has a
ring network connectivity [11, 12].
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Figure 2.1: Plot of selected virtual nodes of the delayed optoelectronic oscillator for γ =
0.2, β = 0.6, κ = 0.9 and φ = 0.7π. In panel (a), the RC output is plotted against the
value of I(k) of the Mackey-Glass time series. In panel (b), the Mackey - Glass values are
multiplied by the random mask M(k) with gaussian distribution.

The network connectivity formed by the virtual nodes of the RC can play an
important role in the system performance as it will be shown in the following. Not
only we can play with the value of the first delay but we can also enhance the
connectivity with the addition of the second one. The value of the first delay has
usually been set to N + 1 [12] but here we vary the time-shift in order to evaluate
its impact. In the case τ = N + 1, the virtual neurons, xi(k) = z(kN + i), form a
ring topology and can be described by:

xi(k) = κ sin2 (γJi(k) + βxi−1(k − 1) + φ) , i = 2, . . . , N (2.1)

and x1(k) = κ sin2 (γJ1(k) + βxN(k − 2) + φ) where J(k) is the input stream of
data I(k) multiplied by a gaussian random mask. Thus the nonlinear projected

9
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space is composed of the N consecutive outputs of the system at each time step,
xi(k) = (x1(kN), . . . ,xN(kN)).

Each one of the consecutive outputs of the system can be plotted in the space
defined by the input-output mapping. In Fig. 2.1(a), the RC’s outputs are plotted
against the Mackey - Glass input values and in Fig. 2.1(b) against the values of
J(k) = I(k) ·M(k). In the latter representation, the sinusoidal nonlinearity becomes
apparent. In this same figure, the width of the curve is related with the value of the
parameter β while the number of explored periods of the sine squared is linked to
the parameter γ. It is by changing the value of the phase φ that the curve can be
shifted along the sine squared nonlinearity.

After the addition of a second delay, we will evaluate the memory capacity, the
nonlinear time-series prediction and the NARMA task for different positions of both
delays.

2.2 Memory Capacity

(a) (b) (c)

(d)

Figure 2.2: Nodes distribution in a 7 nodes network with first delay set to: (a) τ = N
i.e, each node i receives information from itself, (b) τ = N + 1 where all the nodes are
connected to their left neighbour and (c) τ = N + 3. All these figures are equivalent to
the temporal representation depicted in (d) setting b = 0 for (a), b = 1 for (b) and b = 3
for (c).

Firstly, we numerically evaluate the behavior of the memory function for the
optoelectronic system with one single delay. In Fig. 2.2, we show two examples
of different network configurations that can be built using one delay and different
time shifts between the length of the reservoir (N) and the value of the delay (τ).
In Fig. 2.2(b), we show the resulting configuration of having τ = N + 1, i.e. a
connectivity from node i in k = 2 to the i − 1 node in a precedent state k = 1
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(N + 1 previous nodes). However, other configurations can be obtained with the
delay-based RC and other time shift. For instance, in Fig. 2.2(c) we show how node
i is connected with the i − 3 node in the previous state (N + 3 previous nodes).
Those figures are equivalent to the temporal representation shown in figure (d).

In the following, we show the numerical results for the memory function and the
memory capacity (see Section 1.4.1) when the delay is shifted from N to N + 10.
Figure 2.3(a), shows the memory function for the ideal noise-free system (∞ dB)
as well as the influence of noise in the memory function of the system: the higher
the signal-to-noise ratio (SNR), the longer will be the fading memory. The analysis
of the SNR is performed in order to compare with the experimental set up in the
next chapter. Here we show how a different value of the SNR gives rise to different
results. More specifically, the noise degrades the memory capacity of the system.
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Figure 2.3: (a) Shape of the memory function for b = 1, i.e. with a delay set to N + 1.
Figure done with N = 246, β = 1.0, γ = 0.3, κ = 0.9 and φ = 0.4π. The numerical
evaluation has been done for different values of the SNR. (b) Memory capacity for different
values of b and for three values of the SNR. The other parameters are equivalent to those
from (a).

In Fig. 2.3(b), the memory capacity in function of the parameter b, i.e. when
the first delay is set to N + b, is shown. For b = 0, the memory capacity is close
to zero since the virtual nodes are not connected as it can be seen in Fig. 2.3(a).
Nevertheless, for 1 < b < 10 the numerical simulations show that the MC is approx-
imately constant. Thus, relating those results to Fig. 2.2, we see that no matter
how the connectivity of the network is, for a given SNR and with one single delay,
the memory capacity will remain constant, provided b ≥ 1.

Addition of a second delay

The influence of the recent inputs varies with the addition of a second delay.
In the following, the first delay will be set at N + 1, and the second one will be
shifted. The second delay at 2N + b can be set in a given reference state varying the
parameter b. Even with the addition of the second delay, the temporal information
about the input that the system can remember after a certain time still depends on
the SNR.

In this section, it will be shown that the addition of a second delay improves the
memory capacity of the Reservoir Computer. In order to show this, a numerical
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(a) (b) (c)

(d)

Figure 2.4: Nodes distribution in a 4 nodes network with first delay (red) set at N + 1
and the second delay (blue) in (a) 2N + 1, (b) 2N + 2, (c) 2N + 3. For a) and (c), the
connectivity is the same but with the direction of the second delay inverted. Interestingly,
in (b), the second delay is divided in two different clusters that are disconnected between
them.

simulation has been performed. The second delay was set as shown in Fig. 1.6.
Varying the parameter b, the MC also varies. The evaluation has been done for
different values of the SNR.

In this case, as seen in Fig. 2.5(a), when varying the parameter b for the second
delay, the memory capacity for a given SNR suffers important changes. It decreases
when approximating to b = 0 from negative values, for b = 1 there is a large peak
and then it decreases for 2N + 2. After this value of the time shift (b ≥ 3), the
memory capacity starts to increase again and eventually saturates.

For b = 0 each node of the second delay is connected with itself in a previous state,
and therefore there is no transfer of information between the neighbouring nodes
and the memory is reduced. The memory function has been plotted for b = 1, 2 and
3 in Figs. 2.5(b)-(d). For b = 1, the first and second delays are in N + 1 and 2N + 1
respectively. As seen in Fig. 2.5(b), the memory function does not reach the highest
value but it is kept for several values i around 0.9 and then it decreases slowly. In
the case b = 2 (Fig. 2.5(c)), the memory function starts constant at the highest value
but, e.g. for the highest value of the SNR, it suddenly collapses for i ≈ 10 . This
memory capacity loss is due to the division of the reservoir connectivity provided
by the second delay in two different clusters. This phenomenon occurs for all even
N and b = 2, as in this case with N = 246. A schematic representation of this type
of connectivity is shown in Fig. 2.4(b). In the case b = 3, the memory capacity
is partially recovered and the shape of the memory function is similar to the one
obtained for one single delay. For b ≥ 3, the same shape for the memory function is
repeated again and again but slightly extended to the right, what also results in an
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Figure 2.5: a) Memory capacity for N = 246, β = 1.0, γ = 0.3, κ = 0.9 and φ = 0.4π.
The first delay is set to N + 1 while the second one varies with 2N + b. The simulation
has been done for different values of the SNR. b) Shape of the memory function for the
case b = 1, c) for b = 2 and d) for b = 3.

increase of the memory capacity.

2.3 Chaotic time series prediction

In this section, the RC performance has been tested through the one step ahead
prediction task of the well known chaotic Mackey-Glass oscillator described in Sec.
1.4.2. The training has been performed with the first 3000 values from a set of 4000
data while the prediction test has been done with the remaining 1000 values. In the
following the NMSE will be described as:

NMSE =
1
N

∑N
i=1(o(i)− y(i))2

σ(y)
(2.2)

where y are the targets and o the output of the RC.
Firstly, the system has been tested for one single delay with a number of nodes

N = 246, the results are shown in Fig. 2.6 for different parameters combination.
In order to obtain the parameters that give rise to the minimum NMSE in the
prediction, three parameters of Eq. (2.1) have been modified, in this case β, γ and
the phase φ. Firstly, Fig. 2.6(a) was obtained with φ = 0.1π and varying γ and β.
The second plot (b) has been done fixing γ at the optimum value extracted from (a)
while in Fig. 2.6(c), the value of β is the best one obtained in (b). The parameter κ
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Figure 2.6: Heat maps for the Mackey - Glass system one step ahead prediction test with
one single delay. Each map gives the better combination of parameters (a) γ−β (φ = 0.1π),
(b) φ − β (γ = 0.3) and (c) φ − γ (β = 1.1). The best value of the NMSE is obtained in
(b) for the combination β = 1.1, γ = 0.3 and φ = 0.1π with log10(NMSE) = −4.09. All
the figures have the same color range for the NMSE values. These results are the average
over 10 random masks.

is in all cases fixed at 0.9. The SNR of this system is set at 40dB and each NMSE
is obtained averaging for 10 trials.

As seen in the heat maps, the variation of a single parameter has a strong in-
fluence in the prediction accuracy. The result varies from log10(NMSE) ≈ −0.5
to a minimum of −4.09. We find that the best result for the MG one step ahead
prediction for one delay is log10(NMSE) = −4.09 (i.e., NMSE=8.13 · 10−5) for the
combination β = 1.1, γ = 0.3 and φ = 0.1π.

Addition of a second delay

In order to test the influence of the network connectivity, now we add a second
delay to the RC. In these simulations, the first and second delays are set in N+1 and
2N+7 respectively. Following the same methodology that we considered for the case
of one delay, we build three heat maps for the different parameters combinations.

The set of equations describing this new scheme for the RC can be written as
follows:

xi(k) =


κ sin2

(
γJ(k) + β

2
(xN(k − 2) + xN−6(k − 3)) + φ

)
, i = 1;

κ sin2
(
γJ(k) + β

2
(xi−1(k − 1) + xN−7+i(k − 3)) + φ

)
, i = 2, . . . , 7;

κ sin2
(
γJ(k) + β

2
(xi−1(k − 1) + xi−7(k − 2)) + φ

)
, i = 8, . . . , N ;

(2.3)
where both delays share the same value of the parameter β. Firstly, in order to
evaluate the influence of the SNR on the chaotic time series prediction task, we
simulate the behavior of the log10(NMSE) against the parameter γ for different
fixed values of the parameters β and φ. The result of this simulation is shown in
Fig. 2.7.

For low γ and a SNR of 40 dB, there exists a small region where the performance
of the system with two delays is better. In the inset of Fig. 2.7, we see that for
γ = 0.2, the NMSE of the RC where a second delay has been added is slightly better.
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Figure 2.7: One step ahead prediction of the Mackey - Glass chaotic system, the blue
lines are for a SNR of 40 dB, red lines are for an infinite SNR. The log10(NMSE) has
been plotted against the parameter γ. In the inset, we zoom-in the region where the best
performance appears for this given task. The solid lines with circles correspond to the one
delay system, while the dashed lines with cross markers show the prediction for a system
with two delays.

However this improvement of the NMSE is not significant. A much lower NMSE, for
the same parameters of the reservoir, is obtained when the SNR is increased from
40 dB to the free-noise case.

Now, we extend our analysis to the whole set of parameters. The results are
shown in Fig. 2.8. The best combination of parameters is obtained in panel (c)
for the combination β = 1.5, γ = 0.3 and φ = 0.8π with log10(NMSE) = −4.25.
Not only this value is lower than the minimum obtained with one delay but also
the parameter region of good operation is significantly extended as it can be clearly
seen comparing panel (a) in Figs. 2.6 and 2.8 for the different schemes.
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Figure 2.8: Heat maps for the Mackey - Glass system one step ahead prediction test with
two delays. Each map gives the better combination of parameters (a) γ − β (φ = 0.1π),
(b) φ − β (γ = 0.3) and (c) φ − γ (β = 1.5). The best value of the NMSE is obtained in
(c) for the combination β = 1.5, γ = 0.3 and φ = 0.8π with log10(NMSE) = −4.25. The
color scheme is the same than in Fig. 2.6

For completeness, we also simulate the performance of the system splitting the
delay term in two different parts, i.e. splitting β into β1 and β2. In this case, the
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equation governing the system can be written as follows:

xi(k) =


κ sin2 (γJ(k) + β1xN(k − 2) + β2xN−6(k − 3) + φ) , i = 1;

κ sin2 (γJ(k) + β2xi−1(k − 1) + β1xN−7+i(k − 3) + φ) , i = 2, . . . , 7;

κ sin2 (γJ(k) + β1xi−1(k − 1) + β2xi−7(k − 2) + φ) , i = 8, . . . , N ;
(2.4)

As shown in Fig. 2.9, an anti-diagonal appears such that the increase of one feedback
strength can be compensated by reducing the other one. In this case, the best
prediction error is log10(NMSE) = −4.25, obtained for (β1, β2) = (1.3, 1.7) and
being the rest of parameters the same ones than for the optimum in Fig. 2.8 (γ = 0.3
and φ = 0.8π).
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Figure 2.9: MG one step ahead prediction using two different feedback parameters for
each delay term. An anti-diagonal appears tracing the best values for β1 and β2. The
color scheme is the same than in Fig. 2.8.

2.4 NARMA tasks

In this section we will make use of the NARMA task described in Sec. 1.4.3,
which will give us a better grasp of the system’s dynamics. In the following, we will
present the results from numerical simulations demonstrating the computational
capabilities of the RC with one single delay for this task.

We first create a random uniformly distributed series uk ranged in [0, 0.5] that
will be used as an input for the system. When processed by the system, we obtain
the output matrix Xi(k) that will be used for the training procedure. The targets are
the yk+1 values of the NARMA task, described by Eqs. (1.6) and (1.7) for NARMA2
and NARMA5 respectively. As usual, we train the system with the first 3000 values
and test it with the remaining 1000. To obtain the best values of the parameters
that give rise to the lower NMSE, we create heat maps for the parameters γ, β
and φ as in the previous section. The best values obtained for tasks NARMA2 and
NARMA5 are summarized in Tab. 2.1.
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γ β φ NMSE

NARMA2 0.9 0.7 0.1π 0.0018
NARMA5 1.1 0.7 0.1π 0.0072

Table 2.1: Sets of parameters γ, β and φ for which the best NMSE is obtained for the RC
with one delay. The results are averaged over 10 random masks.

For NARMA2 and NARMA5, the best values of the NMSE are 0.0018 and 0.0052,
respectively, for the optoelectronic system with a single delay.

Addition of a second delay

In this part we perform the same task but adding a second delay to the reservoir.
We follow the same procedure that was carried out with one single delay. The best
obtained results are summarized in Tab. 2.2.

γ β φ NMSE

NARMA2 0.5 0.9 0.1π 0.0015
NARMA5 0.8 1.1 0.1π 0.0056

Table 2.2: Sets of parameters γ, β and φ for which the best NMSE is obtained for the
RC with two delays. In both cases, the NMSE is lower than the one obtained for a single
delay in Tab. 2.1. The results are averaged over 10 random masks.

From those results we can confirm that the addition of a second delay systemat-
ically decreases the NMSE produced by the delayed optoelectronic reservoir when
performing the NARMA2 and NARMA5 tasks.

0 20 40 60 80 100 120

Timesteps

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

N
A

R
M

A
2

NARMA2

1 Delay

2 Delays

0 20 40 60 80 100 120

Timesteps

0.1

0.2

0.3

0.4

0.5

0.6

N
A

R
M

A
5

NARMA5

1 Delay

2 Delays

(b)

(a)

Figure 2.10: Results for one realization of the NARMA task. In (a), 120 timesteps of the
test for the NARMA2 task for one (NMSE=0.0013) and two single delays (NMSE=0.0014).
In (b), 120 timesteps of the test for the NARMA5 task for one (NMSE=0.021) and two
single delays (NMSE=0.013). All the simulations have been done for the optimal combi-
nations of parameters shown in Tabs. 2.1 and 2.2.
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2.5 Summary

In this second chapter we have numerically studied the influence of adding a sec-
ond delay in an optoelectronic reservoir computer. Firstly, we evaluated the memory
capacity of the system. The obtained results show that a significant increase on the
memory capacity can be obtained through the addition of a second delay. Particu-
larly, we went from a MC of 10 past inputs to a MC of around 16 when a second
delay was added to the reservoir for the same value of the SNR. We also introduced
the parameter b that allows to obtain different network configurations and studied
the different values of the MC resulting from the variation of this parameter. We
found that some values of b need to be avoided.

We also tested the one step ahead prediction of the Mackey - Glass chaotic
oscillator. In this case by adding a second delay we found a mild improvement on
the performance of this task. We also found that by giving a different weight to each
of the delays, the strength of one feedback term can be compensated by reducing
the other one. However, in order to reduce the NMSE the best strategy that can be
carried out is the lowering of the SNR of the experiment.

Finally, we tested the system through the well known NARMA2 and NARMA5
tasks. In both cases, a lower NMSE is obtained by including a second delay to the
system and by varying the parameters γ, β and φ.



Chapter 3

Experimental setup

The experimental setup for the optoelectronic oscillator with delay has been de-
signed and implemented by Pau Massutti Ballester (detection and amplification
stages) and Matthias Häussler (characterization of ADC and DAC adapter cards).
The code to program the FPGA for delay-based reservoir computing has been de-
veloped by Pau Massutti, Matthias Häussler, Johannes Striebel, Joaquim LLorens
Giralt and myself. I (Jesús Yelo Sarrión) have also performed the characteriza-
tion and the optimization of the dynamics of the optoelectronic oscillator with one
and two delays and the optimization of the system’s parameters to obtain a good
performance for the RC.

3.1 Experimental optoelectronic setup

The experimental optoelectronic reservoir computer is depicted in s Fig. 3.1. It
includes several components: a pump semiconductor laser, a Mach-Zehnder modula-
tor, a photodetector, filters, amplifiers, an FPGA (Field-programmable gate array),
analog to digital (AD) and digital to analog (DA) converters. The FPGA is a de-
signed network of logic block circuits to be configured by the user with a hardware
description language. In the experimental set-up, the FPGA (ALTERA Cyclone
IV) is an essential component that takes care of timing operations, the input mask
multiplication, the delay-feedback loop, and the trained weights multiplication.

The Mach-Zehnder (MZ) modulator provides a sin2 nonlinearity, which can be
defined as follows:

Pout = Ppl sin
2(2π

U

Vπ
+ φb) (3.1)

where Pout is the output power of the MZ, Ppl is the power of the pump laser, U is
the radio-frequency input of the MZ (input to be processed and sent by the FPGA),
Vπ = 2.7V is the voltage needed to go over one period of the sin2, and φb is the
operating bias phase of the MZ.

The electronic part of the optoelectronic oscillator includes a photodetector, fil-
ters and the AD card. The detection apparatus has an approximate frequency
bandwith ranging from fmin = 100 KHz to fmax = 20 MHz and an optical to elec-
tric conversion factor of 1.6 V/mW. The AD and DA cards have a resolution of 14
bits and a maximum peak-to-peak voltage Vpp of 1 V and 600 mV, respectively. We
operate the FPGA with a clock frequency of fclock = 20 MHz such that we define a
temporal spacing between the virtual nodes of θ = 1/fclock = 50 ns. In the following
the number of nodes will be set to N = 500.
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Figure 3.1: Block representation of the optoelectronic reservoir computing with mixed
digital and analog hardware.

In the following, we employ a MZ controller to follow long term drifts in the oper-
ating point of the MZ. We will operate the MZ at the so-called “Quad-” operational
mode, i.e φb = −π/4.

This master thesis contains the first scientific results obtained with such a setup,
which has been developed in order to include addittional delays in the delay-based
RC approach.

3.2 Characterization of the RC.

The experimental setup is governed by an integro-differential equation [23]:

T

θ

∫
x(ε)dε+

dx

dε
= −x(ε) + κ sin2[z(ε− τ ′) + φ] (3.2)

where θ is the low frequency cut-off, ε = t/T , τ ′ = τ/T where T is the high
frequency cut-off and finally, φ is the phase of the system. The nonlinearity gain κ
can be related to the current pumping the MZ modulator:

κ =
ILD − ITh
|ILD|β=1 − ITh

(3.3)

This parameter depends on the power of the pump laser, which can be controlled
through the laser diode current above threshold. In eq. (3.3), ILD is the operation
current, ITh the threshold current and |ILD|β=1 is the current at which the first
oscillations appear when φb = −π/4. Setting κ < 1, the system operates in a steady
(fixed point) state. When increasing the laser power, the system becomes unstable,
this is the point where |ILD|β=1 is reached, for this system: |ILD|β=1 = 23.4 mA.

The oscillator’s output strength is linearly controlled by the intensity of the laser
as it can be seen in Fig. 3.2. This plot gives us a key information: the laser threshold
current, namely ITh. In this case, ITh ≈ 15 mA. The ADC card saturates for I > 60
mA.

There are several sources of noise that affect the system. This intrinsic and
extrinsic noise can be quantified. For the complete system, we measure a signal-to-
noise ratio (SNR) of 41 dB. It is defined as:

SNR = 10 log10

(
RMS2

signal

RMS2
noise

)
(3.4)
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Figure 3.2: Variation of the oscillator’s amplitude range as a function of the laser intensity.
This plot is obtained in the “Quad -” operational mode.

where RMS is the Root Mean Square value given by

RMS(xi) =

√√√√ 1

N

N∑
i=1

x2i (3.5)

Now by introducing an input data, I, the oscillator is transformed into a reservoir
computer governed by:

T

θ

∫
x(ε)dε+

dx

dε
= −x(ε) + κ sin2[γI(ε) + βz(ε− τ ′) + φ] (3.6)

where the parameters γ and β control the strength of the input and the delayed
feedback, respectively.
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Figure 3.3: Representation of the amplitude of the virtual nodes along the sine squared
nonlinearity. The horizontal axis corresponds to (a) the MG time series and (b) the MG
time series multiplied by different mask values. The width of the sinusoidal function is
related to the feedback’s strength and therefore with the value of the parameter β.
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In Fig. 3.3 we show the output of the RC when the Mackey - Glass chaotic time-
series is used as the input. Initially, we show in Fig. 3.3(a), the RC output function
as a function of the MG input values. The different lines in this figure correspond
to the different virtual nodes, here N = 20.

Actually, the nonlinear responses of the virtual nodes are better visualized in
Fig. 3.3(b), where the MG data is scaled by the corresponding input mask value
associated with the node. In this figure, it becomes clear that the different virtual
nodes have a different effective nonlinearity as a result of the different scaling given
by each mask value.

Addition of a second delay

Once the characterization of the RC with a single delay has been done, we proceed
with the addition of the second delay line. In order to correctly validate the proposed
RC concept with two delays, we set as input a Delta function. When the delta
input is processed by the RC, it will give rise to an oscillatory function that will be
repeated and damped at each time τ . As the input will be stored in the memory
and reproduced by both delays, it must be visible at (N + 1) and (2N + b) time
steps later. As the delay echo is rapidly damped, we only detect the first echo of
each delay. The equation governing the system in this case would be:
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Figure 3.4: Demonstration of the existence of two simultaneous delays. The left hand
inset corresponds to the delay set at N + 1 while the right hand inset is the result of the
second delay at 2N + 7. The Delta function starts at t = 250 and is repeated at t1 ≈ 753
and t2 ≈ 1260 by the first and second delay respectively. This result was obtained for
γ = 1.0, β = 1.875, I = 29.7 mA and N = 500.

T

θ

∫
x(ε)dε+

dx

dε
= −x(ε) + κ sin2[γI(ε) + β(z(ε− τ1) + z(ε− 2τ2)) + φ] (3.7)

Figure 3.4 shows how the oscillation created by the second delay has the same
amplitude than the one from the first delay.
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3.3 Memory Capacity

In this section, the objective is to find the set of parameters β and γ that gives rise
to the best memory capacity in the experimental implementation. The data used for
the memory capacity are a set of 4000 values from a random uniform distribution
in the range [-1,1] and we used a uniformly distributed mask where each value is
repeated twice. As in the numerical simulations, we train the output layer with 3000
values and test it with the other 1000. In this case the aim is to test how many
values the system is able to remember.

The memory function m(i), as defined in Sec. 1.4.1, is evaluated for different
combinations of parameters γ and β with a laser intensity of 60 mA. The area under
the curve m(i) corresponds to the memory capacity. The results for the MC are
shown in Tab. 3.1. Those parameters have been chosen after checking different
combinations of them. Afterwards, we explored with a higher accuracy around the
place where the largest MC was obtained until completing a table where all the
neighbours of the center value had a lower MC.

γ
β

0.25 0.3125 0.375

0.375 9.74 9.35 9.18
0.4375 9.13 9.79 9.08
0.5 8.54 9.58 9.25

Table 3.1: Memory capacity for different values of β, γ and I = 60 mA.

The best obtained value is MC = 9.79 for the set of values γ = 0.4375 and β = 0.3125
for I = 60 mA. Introducing this intensity into Eq. (3.3), we find κ = 5.36, and
therefore, the products κ · β and κ · γ give 1.675 and 2.345, respectively.

Addition of a second delay

To test the influence of the network connectivity, we evaluate the MC after the
addition of a second delay in the experiment. The program used to control the RC
behavior only allows discrete changes of the parameters (addition or subtraction).
As β is set the same for the first and second delays, a slight modification of this
parameter gives rise to a huge change of the results. For this reason, instead of
modifying the parameters γ and β of the system, we play with the intensity of the
laser. By varying ILD, we change κ and to some extent, this is equivalent to changing
simultaneously and proportionally γ and β.

Starting from a set of parameters close to the optimal ones obtained with a single
delay, we made several measurements of the memory capacity of the system with two
delays. The first and second delays are set as in the previous section, at N + 1 and
2N + 7 respectively (N = 500). The values of the parameters used are γ = 0.4375
and β = 0.2815. The parameter β is the same for the two delayed feedback terms
but it is not divided in half as happened in the simulations.

I (mA) 25 30 31 32.5 35 40

MC 6.90 9.53 9.62 10.26 10.64 9.93

Table 3.2: Memory capacity for different values of I(mA), with γ = 0.4375 and β = 0.2815.
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Figure 3.5: Memory function m(i) for systems with one and two delays for optimized
conditions.

The results are displayed in Ta. 3.2. The best value found for the memory
capacity using a RC with two delays is MC = 10.64. Experimentally, a higher
value than with one delay has been found for different intensities and therefore for
different combinations of γ and β. In order to compare the obtained results in
this configuration with the one single delay configuration we introduce the optimal
value of the intensity in Eq. (3.3), which gives κ = 2.38. Now, the new values for
the product of the nonlinearity gain κ by the feedback gain and the input gain are
2(κ · β) = 1.34 and κ · γ = 1.04. Interestingly, the feedback strength is similar to
the one with one single delay and the input scaling is a half of the one obtained for
the first configuration.

In Fig. 3.5 we show the different shapes of the memory function m(i) for one
(blue) and two (red) delays. The curves that are represented in this figure correspond
to the ones with a higher MC for each configuration of the reservoir reported in
Tabs. 3.1 and 3.2.

3.4 Chaotic time series prediction

The second task that evaluates the performance of the RC under different con-
figurations of the reservoir is the chaotic time series prediction.

The input time series originates a Mackey - Glass delayed oscillator (see Sec.
1.4.2), where 3000 samples are used for training the output weights and 1000 for
the test. The numerical simulations have shown that, for certain parameters, the
performance of the RC with two delays is better than with one single delay but the
difference was relatively small.

Here, we evaluate the system with the parameters that have been shown to
give a better memory capacity, for one delay, γ = 0.4375, β = 0.3125 and I =
60 mA. In this case the NMSE obtained is 0.0027 for the train and 0.0052 for
the test. This low prediction error is comparable to a previous optoelectronic RC
implementation (NMSE=0.0036 [12]) and one order of magnitude lower than an all-
optical RC implementations (NMSE=0.019 [24]) and NMSE=0.042 [25]), validating
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Figure 3.6: Mackey - Glass test prediction for a system with two delays. The figure was
obtained for parameters: γ = 0.4375, β = 0.2815 and a laser intensity of 35 mA. The
result is NMSE = 0.0056 for the test with 1000 samples.

the current setup for RC.

Addition of a second delay

Once the system’s best parameters were found for the memory capacity, we
proceed with the one step ahead prediction of the Mackey-Glass delayed differential
equation for a configuration of the reservoir with two delays. For an intensity of
I = 35 mA, a feeback gain β = 0.2815 and an input gain γ = 0.4375, the NMSE
is 0.0027 for the training and 0.0056 for the test. A These results are similar but
slightly worse than the prediction error obtained in the case of a single delay for
this particular task. As shown in the numerics, the NMSE is bounded by the SNR
of the system and does not improve much with the addition of the second delay.

3.5 NARMA tasks

In this section, the RC performance is assessed through two NARMA tasks. For
this kind of tasks, the memory capacity of the system is fundamental. Particularly,
the first n−values of the memory capacity m(i) (see e.g. Fig. 3.5) play a key role.
Not only the MC must be greater than the n−order of the NARMA task but those
n first values of the m(i) should be close to 1 to obtain a good performance.

The input u(i) of the NARMA task is the same collection of uniform random
numbers that was used in section 3.3 but normalized to fit in the range [0, 0.5] that
is required for this task. Introducing those values into:

yk+1 = 0.4yk + 0.4ykyk−1 + 0.6u3k + 0.1 (3.8)
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Figure 3.7: In panel (a) typical NARMA2 and NARMA5 output time series. In (b) we
show a segment of the prediction made by the RC for NARMA2 (top) and NARMA5
(bottom) with one (red) and two (blue) delays, respectively. Black line corresponds to the
target.

for NARMA2 and, respectively for NARMA5, into:

yk+1 = 0.3yk + 0.05yk

(
4∑
j=0

yk−j

)
+ 1.5uk−4uk + 0.1 (3.9)

we get a numerical series of 4000 data where the first 3000 are used for the training
and the remaining 1000 for the testing of the output layer. The results for the
test are illustrated in Fig. 3.7 and summarized in Fig. 3.8. for the one single delay
reservoir.

The best value for the prediction of the NARMA2 series is obtained for param-
eters γ = 0.4375 and β = 0.375 where the NMSE is 0.0118 and the corresponding
memory capacity was shown to be MC = 9.08. It is also this set of parameters that
gives rise to the best prediction of the NARMA5 random series with an NMSE of
0.1168.

Addition of a second delay

In NARMA2, the RC with one single delay performs better than after adding a
second delay, the lower NMSE at NARMA2 is 0.0165 obtained for I = 30 and 45 mA
in the case of two delays, as shown in Fig. 3.7. However for the NARMA5 task it is
the RC with two delays that obtains the lower NMSE, for the set γ = 0.4375, β =
0.2815 and I = 35 mA. The error between the prediction and the target is in this
case NMSE = 0.1082.

3.6 Other types of memory

The memory capacity can also be evaluated in nonlinear scenarios. In this case,
we have asked the RC to remember the values yi(n) = u2(n−i), yi(n) = sin(u(n−i))
and yi(n) = sin(3u(n−i)). The same procedure than for the linear memory capacity
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Figure 3.8: Results for the NARMA task with the RC configurations with one (solid lines)
and two delays (dashed lines). With one delay, the NMSE is plotted as a function of the
variable β (upper axis) for three different combinations (γ = (0.375, 4375, 0.5), I = 60
mA), while with two delays the NMSE is plotted as a function of the intensity (lower
axis).

is followed, however the targets have been modified to the non linear cases referred
before. In all cases, the memory capacity exhibited by the RC with two delays is
higher than the one showed by the one delay combination. This shows that the
addition of the second delay increases both the linear and the nonlinear memory
capacities. Interestingly, this systematic improvement in the memory turns out to
have a rather neutral influence for the prediction tasks.

3.7 Summary

In this third chapter, we studied and discussed the influence of the additional
delay on the experimental setup of the optoelectronic reservoir computer. Firstly,
we characterized the behavior of the RC which is governed by an integro-differential
equation. We saw how the parameters κ(I), β and γ in this equation influence the
dynamics. The effects of the addition of a second delay were illustrated for different
benchmark tasks. A second delay appears at 2N + b, being b a parameter that we
can choose. It is the addition of this second delay that was proven to be useful in
order to increase the memory. We found some values of the system parameters that
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Figure 3.9: Memory capacity for different non linear functions. Solid lines corresponds
to the system with one single delay, while dashed lines are for the RC system with two
delays.

give rise to a larger memory capacity in the RC’s version with two delays than in
the version with a single delay.

The increase in the memory capacity does not seem to have an effect on the
accuracy for the prediction of chaotic time series prediction. The results obtained
for one single delay and two delays were similar for the prediction of the Mackey -
Glass oscillator. The NARMA2 task is performed better by the RC with one single
delay. However, it is for the NARMA5 task where a slight increase of the prediction
capacity appears when it is performed by the optoelectronic system with two delays.

Finally, it was also shown that not only the linear memory is increased by the
addition of a second delay but also the non linear memory.



Conclusions and Outlook

Nowadays, traditional information processing techniques are reaching its physical
limits and new unconventional methods are emerging. In this way, alternative com-
putational paradigms like machine learning techniques and hardware substrates like
optical systems are called to be key part to overcome this challenge. In particular,
reservoir computing is emerging and obtaining state-of-the-art results [10, 13].

In this MSc Thesis we have demonstrated, both in simulations and experiments,
that the addition of a second delay to an optoelectronic reservoir computer can effi-
ciently enhance the memory capacity and the performance of the device for different
benchmark tasks.

Firstly, in numerical simulations, we found the combination of parameters that
gives rise to a better performance of the optoelectronic reservoir computer when
adding a second delay. This includes the feedback gain β, the input gain γ, and
the phase φ. A significant increase of the memory capacity was found with this
new configuration. For the one step ahead Mackey - Glass time series prediction,
we found that not only a slightly lower NMSE occurs for two delays but also that
the parameter region of good operation is significantly extended by the addition of
a second delay. In parallel, we have studied the influence of a changing network
connectivity by adding a new parameter b. When a combination of two delays is
used, the best performance is obtained for b ≥ 3 when setting the first delay to N+1.
For the system with two delays we found evidences that the increase of one feedback
strength can be compensated by reducing the other one. Finally, the NARMA task
was performed better by the reservoir with two delays than the reservoir with one
single delay.

In the experimental setup, we characterized the reservoir computer and success-
fully tested the addition of the second delay. The influence of this novel configuration
has been studied through the different benchmark tasks. We also discussed the dy-
namical effects of varying the parameters κ(I), β and γ. The memory capacity
of the experimental optoelectronic reservoir computer was increased around a 9%
by the addition of the second delay. In the chaotic time series prediction and the
NARMA2 task, we did not found any improvement in the NMSE but we found it
in the NARMA5 task. Finally, an increase of the the non linear memory capacity
was also found.

Time restrictions prevented us to go in-depth in the exploration of the opto-
electronic reservoir computer, specially in the experimental setup. Nevertheless,
through this MSc thesis we went a step further in the intersection between machine
learning, optics and information processing. The challenge is to extract the best
of each of those fields. In this way, many different strategies can still be addressed
in order to optimize the optoelectronic reservoir computer: reduction of the SNR,
tailoring the random mask or look for better combinations of parameters.
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