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Abstract

Background: The alignment of protein-protein interaction networks was recently
formulated as an integer quadratic programming problem, along with a linearization
that can be solved by integer linear programming software tools. However, the
resulting integer linear program has a huge number of variables and constraints,
rendering it of no practical use.

Results: We present a compact integer linear programming reformulation of the
protein-protein interaction network alignment problem, which can be solved using
state-of-the-art mathematical modeling and integer linear programming software
tools, along with empirical results showing that small biological networks, such as
virus-host protein-protein interaction networks, can be aligned in a reasonable amount
of time on a personal computer and the resulting alignments are structurally coherent
and biologically meaningful.

Conclusions: The implementation of the integer linear programming reformulation
using current mathematical modeling and integer linear programming software tools
provided biologically meaningful alignments of virus-host protein-protein interaction
networks.
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Background
Many meaningful questions in molecular biology have been successfully answered
through their translation into alignment problems for different mathematical structures.
From simple structures, such as genomic or proteomic sequences, to richer structures,
such as complex networks or whole biological systems, pairwise and multiple align-
ment have been used to compare these structures, inferring features and new biological
relations from their alignment.

Several methods and software tools have been already introduced for the alignment
of biological networks, including protein-protein interaction networks, metabolic path-
ways, and gene regulatory networks. They are addressed to solve interesting biological
questions, such as the inference of protein-protein interactions and protein functions, the
regulation of biological processes, and the metabolic capabilities of microorganisms. The
alignment and analysis of protein-protein interaction networks has become a key ingre-
dient to obtain functional orthologs and discover protein-protein interactions and their
associated functions, as well as evolutionary conserved assembly pathways of protein
complexes.

In the general network setting, and hence also in the particular case of protein-protein
interaction networks, an alignment between two networks is an injective, but possibly
partial, mapping from the set of nodes in one network (the source network) to the set of
nodes in the other network (the target network). When the mapping defining the align-
ment has as domain the whole set of nodes of the source network, the alignment becomes
an embedding of the source into the target network. Since biological networks are large
networks, with hundreds to thousands of nodes and edges, most of the techniques devel-
oped for their alignment [1–5] are heuristic, and the alignments obtained by applying
these techniques to the same biological networks often differ considerably and do not
provide a true, consensus alignment. On the other hand, an exact solution to the network
alignment problem can be obtained by an integer quadratic programming formulation
[6], but its linearization [7] has a huge number of binary variables and constraints.

In this paper, we present a compact integer linear programming reformulation of
the protein-protein interaction network alignment problem, which can be solved using
state-of-the-art mathematical modeling and integer linear programming software tools.
We also present empirical results showing that small biological networks, such as the
virus-host protein-protein interaction networks in the STRING Viruses database [8], can
be aligned in a reasonable amount of time on a personal computer and the resulting
alignments are structurally coherent and biologically meaningful.

Results
The STRING Viruses database [8] contains sequences for 9,660,620 viral and host
proteins and protein-protein interaction data for 230 viruses and 3 hosts: Homo sapi-
ens (11,437,065 interactions), Saccharomyces cerevisiae (2,007,278 interactions), and
Escherichia coli (1,166,900 interactions). We downloaded from STRING Viruses the
virus-host protein-protein interaction data for Homo sapiens and all the protein sequence
data (see Availability of data and materials).

Each of the protein-protein interactions is annotated with a combined score, an indi-
cator of confidence ranging from 0 to 1, where a combined score of 0.5 indicates that
roughly every second interaction might be a false positive. Therefore, we discarded any
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protein-protein interaction with a combined score under 0.510, keeping only interactions
in the last 10% of the distribution of combined scores. Also, host-host protein-protein
interactions were discarded since the alignment purpose in this experiment is the rela-
tion between the proteins of a virus and its host. Nevertheless, in a more general setting
host-host protein-protein interactions can be also considered. Further, we discarded the
smallest networks, those with 64 or less interactions, and focused our alignment exper-
iments on the remaining 25 largest networks, which have between 56 and 735 viral and
host proteins and between 65 and 957 virus-host protein-protein interactions. These net-
works are listed in Table S1, ranked by the number of interactions, and the viral proteins
involved in them are listed in Tables S2–S26 [see Additional file 1].

Then, we aligned all possible pairs of these 25 networks. Due to the symmetry of the
network alignment problem, we actually aligned 25 · 24/2 = 300 pairs of networks. We
performed each of these 300 alignments using the compact integer linear programming
formulation presented in this paper with AMPL version 2018.10.22 [9] and Gurobi Opti-
mizer version 8.1.0, and also with some of the most popular protein-protein interaction
network alignment tools: PINALOG [1], SPINAL [2], HubAlign [3], L-GRAAL [4], and
AligNet [5], using default parameters for all of them. All of the alignments where com-
puted using a personal computer with an Intel Core i7-8550U quad-core processor at 1.80
GHz and 32 GB of memory running Ubuntu 18.04 LTS. We took either the optimal solu-
tion or the best feasible solution that could be computed within a solver time limit of 60
minutes.

While our method is aimed at finding exact solutions to the problem of aligning
protein-protein interaction networks, all of the aforementioned protein-protein interac-
tion network alignment tools use an heuristic algorithm to obtain the final alignment.
The general idea behind all of these alignment tools, is to define a node similarity mea-
sure that combine the similarity of the protein sequences with some network structure
similarity. Then, the actual alignment is obtained based on node similarity. More pre-
cisely, in PINALOG, network structures are “communities,” which are scored and aligned
based on a node similarity score that combines protein sequence similarity and GO terms,
and aligned communities are extended to obtain the network alignment. In SPINAL, node
similarity score is defined based on sequence similarity of nodes and of their neighbours,
this score is iterated until some stability is reached, and the network alignment is obtained
by a greedy, seed-and-extend approach. In HubAlign, network structures are “hubs” and
“bottlenecks,” a score or weight is assigned to each node and edge of a network using
an iterative minimum-degree heuristic algorithm to measure the topological and func-
tional importance of a node (that is, the likelihood of being a hub or bottleneck), and
the network alignment is obtained by choosing protein pairs with high alignment score
by, again, a greedy, seed-and-extend approach. In L-GRAAL, node similarity is measured
by considering 2-node to 4-node graphlet (connected subgraph) degree similarity and,
based on node similarity, seeds are obtained using Integer Linear Programming (ILP) and
Lagrangian relaxation and then extended to a network alignment using a greedy heuris-
tic algorithm. Last, but not least, in AligNet, an overlapping clustering for every node
in every network is computed. Then, all clusters pairs are aligned and scored based on
sequence similarity of proteins and their neighbours. Finally, the clusters in one network
are aligned with the clusters in the other network using the Hungarian algorithm, and
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local network alignments are first obtained as solutions to weighted bipartite hypergraph
problem instances and then extended to a global network alignment.

In order to evaluate the alignments we considered the work reported in [10, 11] where
several topological coherence and biological coherence measures were proposed for the
comparison of protein-protein interaction network alignment methods and tools. It is
shown in [11] that there is a strong correlation among the various topological coherence
measures and also among the various biological coherence measures, while there is a weak
correlation between the topological coherence measures and the biological coherence
measures. Therefore, we have chosen one topological coherence measure and one biolog-
ical coherence measure for assessing the quality of virus-host protein-protein interaction
network alignments: EC, the edge correctness score, defined as the ratio of the interactions
that are preserved by the alignment over the total number of interactions [10], and the
sequence similarity score, a measure of functional coherence (FC), defined as the normal-
ized sum of the sequence similarities (correlation of amino acid composition [12]) of the
aligned proteins.

In Fig. 1 we show the boxplot of the edge correctness scores obtained for every align-
ment with the six alignment methods and tools considered in this study. We can observe
there that L-GRAAL and our ILP method obtained the best results, with mean EC scores
of 0.83 and 0.78, respectively. As far as biological coherence goes, in Fig. 2 we observe that
PINALOG, being the alignment tool with the lowest EC scores, is the tool that reached
the highest FC scores, with a mean FC score of 0.92, followed by our ILP method, with
a mean FC score of 0.90. We can also observe that, as stated in [10, 11], some alignment
methods and tools obtain either high EC scores but low FC scores, or low EC scores but
high FC scores. As a measure of a balance between topological and biological coherence,
we took the mean of the EC and FC scores, whose boxplot we show in Fig. 3. We can

Fig. 1 EC Scores (λ = 0). Boxplot of EC scores for the 300 alignments of 25 virus-host protein-protein
interaction networks from the STRING Viruses database, for λ = 0. L-GRAAL and ILP obtained the highest
scores
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Fig. 2 FC Scores (λ = 1). Boxplot of FC scores for the 300 alignments of 25 virus-host protein-protein
interaction networks from the STRING Viruses database, for λ = 1. PINALOG, followed by ILP, obtained the
highest scores

observe that, again, L-GRAAL and our ILP method obtained the best scores, followed by
HubAlign and AligNet.

Table 1 shows the mean edge correctness and sequence similarity scores for all the
six alignment approaches considered in this text, for the 300 pairs of virus-host protein-
protein interaction networks from the STRING Viruses database described above. More-
over, Table 2 illustrates the trade-off between the conservation of interactions and the
alignment of similar proteins, for a subset of 45 pairs of virus-host protein-protein inter-
action networks, as a function of a parameter λ ∈[ 0, 1] that controls the balance between

Fig. 3 Combined EC and FC scores (λ = 0.5). Boxplot of the mean of EC and FC scores for the 300 alignments
of 25 virus-host protein-protein interaction networks from the STRING Viruses database, for λ = 0.5. ILP and
L-GRAAL obtained the highest scores
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Table 1 Edge correctness score and sequence similarity score (mean values) for several
protein-protein interaction network alignment methods and tools, for 300 pairs of virus-host
protein-protein interaction networks from the STRING Viruses database, for λ = 0.5. Sequence
similarity scores are normalized global alignment scores

Alignment method or tool Edge Correctness Sequence Similarity

L-GRAAL 0.8297 0.8979

Integer Linear Programming 0.7845 0.9044

AligNet 0.5471 0.8823

PINALOG 0.3920 0.9210

HubAlign 0.6461 0.5777

SPINAL 0.5054 0.6900

protein similarity scores and protein-protein interaction weights in our model (see the
“Methods” section for more details). With λ = 0, we obtain an alignment with the
highest topological coherence but with the lowest biological coherence, while λ = 1 pro-
duces an alignment with the lowest topological coherence but with the highest biological
coherence.

In order to measure the amount of variation or dispersion of the EC and FC scores
used to evaluate the topological and biological coherence of the alignments, we intro-
duced some noise to the virus-host protein-protein interaction networks by randomly
adding and deleting 5% of the interactions. We computed 10,000 alignments between 100
random perturbations of the Marburg marburgvirus (taxid 11269) and 100 random per-
turbations of the Zaire ebolavirus (taxid 186538) virus-host protein-protein interaction
networks. The mean and standard deviation of the EC and FC scores are 0.955413 and
0.012193 for the EC score and 0.991356 and 0.003269 for the FC score. That is, small
perturbations of the virus-host protein-protein interaction networks produced small
variations of the EC and FC scores.

While these results are based on a particular view of sequence similarity as correlation
of amino acid composition, as mentioned above, it is possible to use the protein-protein
interaction network alignment method with any measure of sequence similarity, including

Table 2 Edge correctness score and sequence similarity score (mean values) for 45 pairs of virus-host
protein-protein interaction networks from the STRING Viruses database, for the integer linear
programming formulation and different values of the λ parameter. The maximum sum of the edge
correctness and sequence similarity scores is achieved at λ = 0.4, followed by λ = 0.5. Sequence
similarity scores are normalized global alignment scores

λ Edge Sequence

Correctness Similarity

0.0 0.8655 0.7444

0.1 0.8654 0.8529

0.2 0.8648 0.8622

0.3 0.8647 0.8681

0.4 0.8612 0.8731

0.5 0.8565 0.8770

0.6 0.8493 0.8801

0.7 0.8299 0.8872

0.8 0.7820 0.8960

0.9 0.6698 0.9057

1.0 0.1054 0.9144
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alignment-free measures such as the Euclidean distance between k-mer frequencies [12]
and also alignment-based measures such as a normalized global alignment score. Table 3
shows the mean edge correctness and sequence similarity scores for different measures of
sequence similarity (Euclidean distance between k-mer frequencies, for k between 1 and
4, and normalized global alignment score), for a subset of 45 pairs of virus-host protein-
protein interaction networks with λ = 0.5. The higher the value of k, the lower the
mean sequence similarity score, with normalized global alignment giving the lowest score,
but the mean edge correctness score is unaffected by the choice of sequence similarity
measure.

Discussion
To reinforce the statement that the integer linear programming formulation of the
network alignment problem provides biologically meaningful alignments of virus-host
protein-protein interaction networks, we analyzed the alignments in term of agreement
on virus taxonomy. Namely, we considered the taxonomy classification of the virus in
every virus-host protein-protein interaction network and assumed that the highest align-
ment scores must be obtained when considering closely related viruses. Indeed, Table 4
shows that the best alignment (measured by the mean value of edge correctness and
sequence similarity) for each of the 25 virus-host protein-protein interaction networks in
Table 5, correspond to a network in the same Baltimore class [13] for 21 of the 25 best
alignments. Table 5 also shows the taxonomy classification of the 25 viruses considered
in our study.

As a matter of fact, in class I (double-stranded DNA viruses), the Alphapapillomavirus
9 network is best aligned with the Human alphaherpesvirus 2 network; the Human beta-
herpesvirus 5 network is best aligned with the Human betaherpesvirus 6B network; the
Human alphaherpesvirus 3 network is best aligned with the Human alphaherpesvirus
1 network; the Human alphaherpesvirus 1 and Human alphaherpesvirus 2 networks
are best aligned with each other; and the Human betaherpesvirus 6A and Human
betaherpesvirus 6B networks are also best aligned with each other.

In class IV (positive-sense single-stranded RNA viruses), the Human coronavirus 229E
network is best aligned with the SARS-related coronavirus network. In class V (negative-
sense single-stranded RNA viruses), the Influenza A virus network is best aligned with
the Marburg marburgvirus network; the Human orthopneumovirus, Mumps rubulavirus,
and Hendra henipavirus networks are best aligned with the Human metapneumovirus
network; the Marburg marburgvirus and Zaire ebolavirus networks are best aligned with
each other; and the Human metapneumovirus and Measles morbillivirus networks are
also best aligned with each other.
Table 3 Edge correctness score and sequence similarity score (mean values) for 45 pairs of virus-host
protein-protein interaction networks from the STRING Viruses database, for the integer linear
programming formulation with λ = 0.5 and different sequence similarity measures [12]

Sequence Edge Sequence

Similarity Correctness Similarity

1-mer 0.8540 0.8831

2-mer 0.8572 0.7229

3-mer 0.8581 0.5928

4-mer 0.8585 0.5619

Alignment 0.8465 0.3194
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Table 4 Best alignment for the virus-host protein-protein interaction networks for human viruses in
the STRING Viruses database considered in our study. Twenty-one of the 25 networks are aligned
with networks corresponding to viruses of the same Baltimore class. Sequence similarity scores are
normalized global alignment scores

Virus Virus Edge Sequence

Tax Id Tax Id Correctness Similarity

10298 10310 0.9961 0.9950

10310 10298 0.9961 0.9950

10335 10298 0.9955 0.9877

10359 32604 0.9736 0.9638

10376 11137 1.0000 0.8885

11103 11269 1.0000 0.9057

11137 694009 1.0000 0.9933

11161 162145 0.9953 0.9951

11234 162145 1.0000 0.9934

11250 162145 0.9953 0.9969

11269 186538 1.0000 0.9964

11320 11269 1.0000 0.8824

11676 11269 1.0000 0.8836

11709 194441 1.0000 0.9078

162145 11234 1.0000 0.9934

186538 11269 1.0000 0.9964

194440 194443 1.0000 0.9980

194441 194443 1.0000 0.9984

194443 194441 1.0000 0.9984

32603 32604 0.9956 0.9933

32604 32603 0.9956 0.9933

337041 10310 0.9890 0.9050

37296 186538 1.0000 0.8867

63330 162145 0.9953 0.9949

694009 11137 1.0000 0.9933

Finally, in class VI (positive-sense single-stranded RNA viruses that replicate through
a DNA intermediate), the Human immunodeficiency virus 2 network is best aligned with
the Primate T-lymphotropic virus 2 network; the Primate T-lymphotropic virus 1 net-
work is best aligned with the Primate T-lymphotropic virus 3 network; and the Primate
T-lymphotropic virus 2 and Primate T-lymphotropic virus 3 networks are also best aligned
with each other.

Conclusions
The compact integer linear programming reformulation of the protein-protein inter-
action network alignment problem can also be applied to similar alignment problems
on graph-based representations of molecular structures, such as metabolic pathways
and gene regulatory networks. The application to virus-host protein-protein interac-
tion networks provided high scored alignments in both network topology and biological
coherence, which constitutes evidence that the alignments obtained with this approach
are biologically meaningful.

The alignment of virus-host protein-protein interaction networks may contribute to
discover the effect of viral infection to their host. New databases with virus information
have been created in the last years from the analysis of new metagenomics data [14–16].
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However, one of the problems to deal with nowadays is to understand the mechanism by
which viruses infect a host and to determine the viral proteins interacting with host pro-
teins that are responsible for such an infection. New sets of Gene Ontology classes have
been developed that are applicable to microbes and their hosts, improving both coverage
and quality in this area of the Gene Ontology [17]. Therefore, the alignment of virus-host
protein-protein interactions can reveal a useful tool to predict new functions of viral pro-
teins related to host infection, as it has been proven to be useful for inferring new protein
functions.

Methods
The following notation will be used in this section. A protein-protein interaction network
is represented by means of an undirected graph G = (V , E), where each node v ∈ V
corresponds to a protein and each edge {u, v} ∈ E corresponds to an interaction between
the proteins represented by the nodes u ∈ V and v ∈ V . Let G = (V , E) and G′ = (

V ′, E′)

be the two protein-protein interaction networks to be aligned, let V = {v1, . . . , vm} and
V ′ = {

v′
1, . . . , v′

n
}

be their respective sets of nodes and A = (
aij

)
and B = (bk�) be their

respective adjacency matrices. Let S = (sik) be a similarity matrix between the nodes of
the two networks, with each sik the similarity score of vi ∈ V and v′

k ∈ V ′.
An alignment of G and G′ can be represented by a binary matrix X = (xik), where xik =

1 if the i-th node, vi, of the first network is aligned with the k-th node, v′
k , of the second

network, and xik = 0 otherwise. Then, the protein-protein interaction network alignment
problem has the following simple integer quadratic programming (IQP) formulation in
terms of the binary variables xik [6].

Problem IQP. Objective:

max λ

m∑

i=1

n∑

k=1
sik xik

+ (1 − λ)

m∑

i=1

n∑

k=1

m∑

j=1

n∑

�=1
aij bk� xik xj�

subject to the constraints

(Q1) xik ∈ {0, 1}, i = 1, . . . , m, k = 1, . . . , n
(Q2)

n∑

k=1
xik � 1, i = 1, . . . , m

(Q3)
m∑

i=1
xik � 1, k = 1, . . . , n

In this problem’s objective function, λ is a parameter, with 0 � λ � 1, that controls the
balance between protein similarity scores and protein-protein interaction weights: only
node scores are considered when λ = 1, and only edge scores are taken into account when
λ = 0. Constraints (Q2) and (Q3) enforce that, for every i = 1, . . . , m, at most one xik is
equal to 1 (that is, that the matrix X = (xik) defines a, possibly partial, mapping) and that,
for every k = 1, . . . , n, at most one xik is equal to 1 (that is, that the mapping defined by
X is injective) and hence that the matrix X defines an alignment between the networks G
and G′, given by

{(
vi, v′

k
) ∈ V × V ′ : xik = 1

}
.
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The objective function above comes from the PathBLAST [18] idea that protein-protein
network alignment be based on a log-probability-like criterion, with matching terms
corresponding to both proteins and interactions [6]. The first sum in the objective
function,

m∑

i=1

n∑

k=1
sik xik ,

represents the global similarity of the pairs of matching proteins, while the second sum,
m∑

i=1

n∑

k=1

m∑

j=1

n∑

�=1
aij bk� xik xj�,

represents the number of edges that are preserved by the alignment; that is, of pairs of
edges

(
vi, vj

) ∈ E and
(
v′

k , v′
�

) ∈ E′ such that vi is aligned with v′
k and vj is aligned with v′

�.
This quadratic formulation has a linearization with O

(
m2n2) binary variables and con-

straints [7], of no practical use with current integer linear programming software tools
such as IBM ILOG CPLEX Optimization Studio or Gurobi Optimizer. We present next
a much more compact linearization, with only O(mn) binary variables, integer variables,
and constraints, along the lines of a well-known linearization of the quadratic assignment
problem [19–21].

In addition to the binary variables xik above, we introduce an integer variable yik for
each vi ∈ V and each v′

k ∈ V ′. Each such new variable yik is intended to represent

yik = xik

m∑

j=1

n∑

�=1
aijbk�xj�

for i = 1, . . . , m and k = 1, . . . , n. In this way, if xik = 0, yik = 0, and if xik = 1, yik is the
number of edges incident to vi in G that are preserved by the alignment.

Since
m∑

i=1

n∑

k=1
yik =

m∑

i=1

n∑

k=1
xik

m∑

j=1

n∑

�=1
aijbk�xj�

=
m∑

i=1

n∑

k=1

m∑

j=1

n∑

�=1
aijbk�xikxj�,

using these new variables, the objective function of Problem IQP can be rewritten as a
linear function:

λ

m∑

i=1

n∑

k=1
sik xik + (1 − λ)

m∑

i=1

n∑

k=1
yik

This motivates the following linear reformulation of problem IQP:

Problem ILP. Objective:

max λ

m∑

i=1

n∑

k=1
sik xik + (1 − λ)

m∑

i=1

n∑

k=1
yik

subject to the constraints

(L1) xik ∈ {0, 1}, i = 1, . . . , m, k = 1, . . . , n
(L2)

n∑

k=1
xik � 1, i = 1, . . . , m
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(L3)
m∑

i=1
xik � 1, k = 1, . . . , n

(L4) 0 � yik � xik
m∑

j=1

n∑

�=1
aijbk�, i = 1, . . . , m, k = 1, . . . , n

(L5) yik �
m∑

j=1

n∑

�=1
aijbk�xj�, i = 1, . . . , m, k = 1, . . . , n

This linear problem turns out to be equivalent to problem IQP, because of the following
lemma:

Lemma 1 A binary matrix (xik) is a solution to Problem IQP if, and only if, there is an
integer matrix (yik) such that ((xik), (yik)) is a solution to Problem ILP. Moreover, when
λ < 1, if (xik) is a solution to problem IQP and (yik) is such that ((xik), (yik)) is a solution
to Problem ILP, then

yik = xik

m∑

j=1

n∑

�=1
aijbk�xj�

for every i = 1, . . . , m and k = 1, . . . , n.

Proof If λ = 1, the second sum in the objective function of both problems vanishes and
therefore (xik) is a solution to problem IQP if, and only if, ((xik), (yik)) is a solution to
problem ILP for every integer matrix (yik).

Now, assume that λ < 1. It is clear from the problems’ objective functions that if (xik)

is a solution to problem IQP, then taking for every i = 1, . . . , m and k = 1, . . . , n,

yik = xik

m∑

j=1

n∑

�=1
aijbk�xj�

we obtain a solution ((xik), (yik)) to problem ILP.
Conversely, assume that ((xik), (yik)) is a solution to problem ILP. If xi0k0 = 0, constraint

(L4) implies that

yi0k0 = 0 = xi0k0

m∑

j=1

n∑

�=1
ai0jbk0�xj�.

And if xi0k0 = 1, by constraint (L5) we have that

yi0k0 �
m∑

j=1

n∑

�=1
ai0jbk0�xj� � xi0k0

m∑

j=1

n∑

�=1
ai0jbk0�

and this turns out to imply that, actually,

yi0k0 =
m∑

j=1

n∑

�=1
ai0jbk0�xj� = xi0k0

m∑

j=1

n∑

�=1
ai0jbk0�xj�.

Indeed, if xi0k0 = 1 and yi0k0 <
∑m

j=1
∑n

�=1 ai0jbk0�xj0�, then the pair of matrices
(
(xik) ,

(
ŷik

))
with ŷik = yik except for ŷi0k0 = ∑m

j=1
∑n

�=1 ai0jbk0�xj�, still satisfies con-
straints (L1) to (L5) and it has a larger value of the objective function in Problem ILP,
which would contradict the assumption that ((xik), (yik)) is a solution to problem ILP.

This implies that, when λ < 1, if ((xik), (yik)) is a solution to problem ILP, then

yik = xik

m∑

j=1

n∑

�=1
aijbk�xj�
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for every i = 1, . . . , m and k = 1, . . . , n. Since the constraints on (xik) are the same in both
problems, we conclude that (xik) is a solution to problem IQP.

Therefore, a solution ((xik), (yik)) of the linear reformulation ILP of the alignment
problem defines an alignment between the mapped proteins in the two networks via
{(

vi, v′
k
) ∈ V × V ′ : xik = 1

}
.
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