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We introduce the multipartite collision model, defined in terms of elementary interactions between
subsystems and ancillas, and show that it can simulate the Markovian dynamics of any multipartite open
quantum system. We develop a method to estimate an analytical error bound for any repeated interactions
model, and we use it to prove that the error of our scheme displays an optimal scaling. Finally, we provide a
simple decomposition of the multipartite collision model into elementary quantum gates, and show that it is
efficiently simulable on a quantum computer according to the dissipative quantum Church-Turing theorem,
i.e., it requires a polynomial number of resources.
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Introduction.—The collision approach represents one of
the most successful methods to describe the dynamics of an
open quantum system, being based on the intriguing idea
that enviroment-induced decoherence and dissipation arise
because of rapid repeated collisions between each system
unit and a set of environment ancillas, occurring during a
time step Δt. This framework, whose origins can be traced
back to some important works of the previous century
[1–3], has given birth to a plethora of “collision” or
“repeated interactions” models [4–13], which have been
receiving increasing attention in recent years, especially
due to their fundamental importance in the fields of
quantum thermodynamics and open quantum systems.
For instance, collision models have been proven useful
to investigate flux rectification [14], Landauer’s principle
[15,16], the emergence of thermalization or nonequilibrium
steady states [17–26], quantum thermometry [27], quantum
batteries [28], and quantum thermal machines [29–33], as
well as to analyze the thermodynamics of nonthermal baths
[34–36] or in the presence of strong coupling [37].
Applications outside the field of thermodynamics include
the study of open quantum optical systems [38–41],
simulation of non-Markovian effects [9,11,13,42–48] and
cascade models [8,15,49–51], quantum synchronization
[52,53], entanglement generation [54–56], quantum trans-
port [57], and quantum Darwinism [58,59].
The structure of any single-qubit collision model and the

correspondence with an equivalent master equation is well
understood [6,60,61]. In contrast, while some collision

models for multipartite systems have been presented in the
past few years [8,45,54,62], a universal protocol suitable
for efficient simulation of multipartite open system
dynamics via collision models, described in terms of
elementary collisions between subsystems and ancillas,
has not been provided yet. Reproducing any possible open
dynamics by means of elementary collision models prom-
ises to be particularly valuable to deal with the microscopic
description of multipartite open systems, where global
master equations are needed [69–71] and one cannot
always rely on local descriptions, that may display funda-
mental differences, e.g., from the thermodynamic point of
view [72,73]. Here, collision models are extremely useful
to study the elementary exchange of heat and energy, and
the microscopic production of work in each single inter-
action between a unit of the system and an environment
ancilla [74–76]. For instance, a collision model analysis
resolves the violation of the second law of thermodynamics
when using a local master equation [76,77].
In this Letter, we introduce the multipartite collision

model (MCM), based on elementary interactions between
each unit of a multipartite system and a set of ancillary
qubits of the environment. We show that the MCM is able
to reproduce any Gorini-Kossakowski-Sudarshan-Lindblad
(GKLS) master equation [78,79] in the limit of small time
step Δt → 0þ, therefore describing any possible divisible
dynamical map. After providing a simple decomposition
into elementary quantum gates, we prove that the MCM is
efficiently simulable on a quantum computer under the
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assumptions of the dissipative quantum Church-Turing
theorem [80], as it requires a number of resources that
scales polynomially as a function of the number of
subsystems, time, and the inverse of desired precision.
This allows for the efficient simulation of a whole range of
complex open quantum systems under the Markovianity
assumption: by tuning our model in an intuitive way, we
can mimic the effect of different types of separate and/or
common baths (bosonic, fermionic, spin, etc.) at any
temperature, as well as reproduce each elementary sys-
tem-bath interaction characterizing a generic global master
equation, with or without a nonlocal unitary system
dynamics. Non-Markovian effects may be then simulated
by Markovian embeddings of pseudomodes into the MCM
[45]. Furthermore, by developing a method valid for any
collision model, we calculate an analytical error bound for
the simulation of a generic semigroup dynamics by means
of the MCM, proving that its scaling is optimal.
To guarantee the generality of the MCM, we will show

that it can simulate the dynamics driven by any GKLS
master equation, both in the diagonal [78] and nondiagonal
form [79]. The latter can be expressed by means of the
Liouvillian superoperator L as

L½ρSðtÞ� ¼ −i½H̃S; ρSðtÞ� þ
XJ
j;k¼1

γjkDFj;Fk
½ρSðtÞ�; ð1Þ

where DO1;O2
½ρ� ¼ O1ρO

†
2 − 1

2
fO†

2O1; ρg, H̃S is an effec-
tive system Hamiltonian, γjk is the semipositive
Kossakowski matrix, while we term fFkgJk¼1 as Gorini-

Kossakowski-Sudarshan (GKS) operators [79]. If HS ¼
⨂M

j¼1
HðjÞ

S is the Hilbert space of the system composed of

(for simplicity identical) M subsystems with dimðHðjÞ
S Þ ¼

d (d < ∞), in general we have J ¼ d2M − 1. We obtain the
diagonal GKLS form by diagonalizing the Kossakowski
matrix through a suitable unitary matrix C: we introduce
the Lindblad operators [78] Lk ¼

PJ
j¼1

CjkFj, and we

derive the corresponding decay rates Γk as the eigenvalues
of γjk.
For the sake of clarity, we begin by assuming that each

GKS operator Fk acts nontrivially on a single subsystem
only, although the MCM is not restricted to it, as we will
see in the following. This assumption is satisfied by a wide
range of local and global master equations [71], and
corresponds to neglecting environment-mediated many-
body interactions between the subsystems. Under this
assumption, the total number of Lindblad operators reduces
to J ¼ Mðd2 − 1Þ, and the index j ¼ ðm; αÞ can be
decomposed into two additional indexes: m ¼ 1;…;M
labeling the subsystems and α ¼ 1;…; ðd2 − 1Þ selecting
the specific GKS operator acting locally thereon.
Multipartite collision model.—The procedure to imple-

ment the MCM under the assumption of local GKS

operators is depicted in Fig. 1. For the nondiagonal case
we can identify the following five steps:
(1) For each pair of GKS operators Fm;α and Fm0;α0

appearing in Eq. (1), consider an independent ancillary
qubit of the environment labeled by p ¼ ðm; α; m0;α0Þ, and
construct the sequence of local elementary subsystem-
ancilla interactions given by

UpðΔtÞ ¼ Uðm;αÞ
p ðΔt=2ÞUðm0;α0Þ

p ðΔtÞUðm;αÞ
p ðΔt=2Þ; ð2Þ

where (ℏ ¼ 1)

Uðm;αÞ
p ðΔtÞ ¼ expð−igIΔtHðm;αÞ

I;p Þ: ð3Þ

Hðm;αÞ
I;p ¼ ðλðm;αÞ

p Fm;ασ
þ
p þ H:c:Þ, gI is a fixed constant with

the units of energy and λðm;αÞ
p is a dimensionless parameter

we can freely tune.
(2) Compose all the unitary evolutions associated to each

pair of GKS operators into a global unitary operator
describing the overall interaction with the environment,
choosing freely the order in which we insert the former:

UIðΔtÞ ¼
Y
p∈P

UpðΔtÞ; ð4Þ

FIG. 1. (a) Pictorial representation of the MCM. The ancilla p
generates a term in the master equation that couples subsystems 1
and 2. The ancilla p0 interacts with subsystem 3 only, and yields a
local term in the master equation. (b) Circuit scheme of the
interaction between ancilla p and subsystems 1 and 2. If the
system is made of qubits, three two-qubit gates are required.
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where the elements of the set P are all the possible
pairs ðm; α; m0; α0Þ.
(3) Add a unitary system evolution driven by the

dimensionless system Hamiltonian HS to obtain the final
global operator for the simulation of the MCM:

UsimðΔtÞ ¼ USðΔtÞ∘UIðΔtÞ; ð5Þ

with USðΔtÞ ¼ expð−igSΔtHSÞ, where HS ¼ H̃S=gS and
gS is a fixed constant with the units of energy, defining the
order of magnitude of H̃S.
(4) Prepare the set of environment qubits with p ∈ P in

an initial separable state ρEð0Þ ¼ ⨂p∈Pηp, where
ηp ¼ cpj↓iph↓j þ ð1 − cpÞj↑iph↑j, with 0 ≤ cp ≤ 1, is a
diagonal state in the basis of σzp.
(5) Apply a single step of the MCM on the system state

ρS as the quantum map:

ϕΔt½ρS� ¼ TrE½UsimðΔtÞρS ⊗ ρEð0ÞU†
simðΔtÞ�; ð6Þ

where the trace over the environment E includes the trace
over each environment ancilla with p ∈ P.
We show in the Supplemental Material [62] that under

certain requirements the dynamics generated by the MCM
corresponds to the one driven by a general GKLS master
equation, Eq. (1). Specifically, we follow the standard
derivation of a collision model [45]: we assume the limit of
small time step Δt → 0þ, with gS ≪ gI ≪ Δt−1, and
limΔt→0þ g2IΔt ¼ γ, where γ is a finite energy constant.
For simplicity, the coefficients λðm;αÞ

p in Eq. (3) are taken of
the order of Oð1Þ. Under the above assumptions, the
evolution generated by a single application of the quantum
map corresponds to

ϕΔt ¼ I þ ΔtLþOðΔt2Þ; ð7Þ
where the Liouvillian superoperator reads [62]

L½ρS� ¼ −i½H̃S; ρS� þ
X
p∈P

ðγ↓pDFm;α;Fm0 ;α0 ½ρS�

þ γ↑pDF†
m;α;F

†
m0 ;α0

½ρS� þ H:c:Þ: ð8Þ

The coefficients are

γ↓p ¼
�
γcpλ

ðm;αÞ
p ðλðm0;α0Þ

p Þ� if m ≠ m0 or α ≠ α0

γ
P

p̄ cp̄jλðm;αÞ
p̄ j2 otherwise

γ↑p ¼
�
γð1 − cpÞðλðm;αÞ

p Þ�λðm0;α0Þ
p if m ≠ m0 or α ≠ α0

γ
P

p̄ð1 − cp̄Þjλðm;αÞ
p̄ j2 otherwise;

ð9Þ

with summation over all the unordered pairs of GKS
operators p̄ ¼ ðm; α; m̄; ᾱÞ. These coefficients give rise

to a semipositive Kossakowski matrix, i.e., the master
equation Eq. (8), is already in GKLS form. Equation (8)
also contains all the terms associated with the adjoint GKS
operators with Kossakowski matrix γ↑p, that can be removed
by setting cp ¼ 1∀p (i.e., by preparing each ancilla in the
ground state). Given the freedom in the choice of λðm;αÞ

p and
λðm

0;α0Þ
p in the Hamiltonian of each elementary subsystem-
ancilla interaction introduced in Eq. (3), we can engineer γ↓p
in order to reproduce any Kossakowski matrix for the GKS
operators of the master equation Eq. (8), and therefore any
nondiagonal GKLS master equation Eq. (1) with effective
Hamiltonian H̃S. We can therefore conclude that repeated
rapid applications of the MCM simulate the quantum
semigroup dynamics driven by any Liouvillian L:

lim
Δt→0þ

ðϕΔtÞn ¼ expLt; with t ¼ nΔt: ð10Þ

This is our first major result. For a small but finite Δt, the
MCM reproduces the open dynamics only for discrete
times t ¼ nΔt, where the resolution given by Δt can be
thought of as the coarse graining of the master equation
[81]. Finally, it is not always necessary to take one ancilla
for each pair of jump operators. In certain scenarios we may
rely on a simpler version of the MCM that requires a
smaller number of resources [62].
The collision scheme introduced above is particularly

useful in situations where one has to apply the MCM to a
symbolic GKLS master equation that cannot be diagonal-
ized analytically. In all other cases, the MCM realizes the
diagonal form of the GKLS master equation by following
the same lines described above, with the prescription that
we just need one ancillary qubit for each Lindblad operator
Lk. Indeed, under the assumption of local GKS
operators, we can write Lk ¼

P
M
m¼1 F̃

ðkÞ
m , where F̃ðkÞ

m ¼P
d2−1
α¼1 CαkFm;α is a local sum of GKS operators, and the

evolution in Eq. (2) is replaced by the sequence of
elementary interactions

UkðΔtÞ ¼
YM
m¼1

UðM−mþ1Þ
k ðΔt=2Þ

YM
m0¼1

Uðm0Þ
k ðΔt=2Þ; ð11Þ

and UðmÞ
k ðΔtÞ ¼ exp½−igIΔtðλkF̃ðkÞ

m σþk þ H:c:Þ�, so that
Γk ¼ limΔt→0þg2IΔtjλk2j is the decay rate of the kth
Lindblad operator. Correspondingly, the product in the
global unitary operator for the interaction with the envi-
ronment in Eq. (4) runs over k ¼ 1;…; J instead of the
pairs p ∈ P.
Temperature.—Note that a suitable engineering of the

parameters of the MCM allows for the simulation of any
thermal bath at any (even negative) temperature. For
instance, to mimic a single thermal bath at temperature
T, one can use a single ancilla prepared in a thermal state at
temperature T, and the strength of the decay rates can be

engineered by tuning the parameters λðm;αÞ
p as a function of
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T [62]. Our model also allows for energy-nonconserving
elementary interactions (e.g., with counterrotating terms
such as a†σþp þ H:c: for a bosonic mode a and a qubit
ancilla labeled by p). This may generate squeezinglike
terms, which corresponds to the ancillas not having the
same temperature as the effective bath, and any complex
scenario with multiple baths can be realized. This engineer-
ing overcomes the physical constraints of previous open
system quantum simulations based on qubit ancillas [82].
Extension to many-body GKS operators and

time-dependent semigroups.—The MCM also works in
the case of many-body GKS operators that cannot be
trivially decomposed into single subsystem-ancilla
interactions (e.g., when a GKS operator is written as
Fj ¼ σ−1 σ

þ
2 [83]). In this scenario, we will have an

elementary collision in Eq. (3) with Hamiltonian

HðjÞ
I;p ¼ λðjÞp Fjσ

þ
p þ H:c:, where Fj acts nontrivially on

more than one subsystem, and therefore cannot be
represented by a single two-qubit gate on a quantum
computer. Its action may be implemented by multiqubit
gates, as already done in quantum simulation of open
systems [84], or by a decomposition in terms of two-qubit
gates [85]. In general terms, we may assume to have
at our disposal a set of R Hamiltonians for each GKS
operator Fj (or Lindblad operator Lj in the diagonal case),

HðjÞ
r ¼ GðjÞ

r σþp þ H:c: (p labels a generic ancilla),
that we are able to simulate by elementary multiqubit
gates in our lab, through which we can build any
required GKS operator Hamiltonian in Eq. (3)

as HðjÞ
I;p ¼ P

R
r¼1 μ

ðp;jÞ
r HðjÞ

r . Then, we can simulate

the MCM by the decomposition expð−igIΔtHðjÞ
I;pÞ¼Q

R
r¼1U

ðjÞ
p;R−rþ1ðΔt=2Þ

Q
R
r0¼1

UðjÞ
p;r0 ðΔt=2ÞþOðg3IΔt3Þ, with

UðjÞ
p;rðΔtÞ ¼ expð−igIΔtμðp;jÞr HðjÞ

r Þ, which still brings an
error of the order of OðΔt2Þ in Eq. (7) [62]. Note that, if
we go back to the condition of local GKS operators, for
simplicity we can assume to be able to directly implement

any elementary gate Uðm;αÞ
p in the lab, and therefore for the

nondiagonal case R ¼ 1. In the diagonal case, we can
interpret R as the number of different elementary sub-
system-ancilla interactions in Eq. (11), therefore R ¼ M.
Finally, extensions to time-dependent semigroups in
which the Kossakowski matrix in Eq. (1) depends on
time, γjkðtÞ semipositive for any time t, are immediate: we

just need to set a time-dependent parameter λðm;αÞ
p ðtÞ in the

Hamiltonian of Eq. (3), and to make it vary as a function
of t. Analogously, we can make the system Hamiltonian
depend on time as well, as HSðtÞ.
Error estimation.—Previous treatments of the error

analysis for a collision model have usually neglected
higher-order terms in the Taylor expansion, e.g., see the
detailed discussion in Ref. [12]. Sometimes this may not be
accurate, since the infinite series of higher-order terms may

bring a non-negligible contribution [86]. Here, we estimate
an analytical error bound for the MCM by keeping all the
terms of the infinite Taylor expansion through a method
based on Suzuki’s higher-order integrators [87] which can
be found in the Supplemental Material [62], whose validity
applies to any collision model. For the sake of a general
description, we compute the error bound without assuming
the GKS operators locality, and therefore relying on the sets
of R many-body Hamiltonians HðjÞ

r introduced above.
To estimate the error bound we employ the 1 → 1

superoperator norm kT k1→1 and the operator norm
kAk∞ [88]. We can identify four different kinds
of error made by approximating the semigroup
evolution through the collision model: Global error:
ϵg ¼ k expLt − ðϕΔtÞnk1→1, with Δt ¼ t=n; Single-
step error: ϵs ¼ k expLΔt − ϕΔtk1→1; Truncation
error: ϵt ¼ k expLΔt − ðI þ ΔtLÞk1→1; Collision error:
ϵc ¼ kϕΔt − ðI þ ΔtLÞk1→1.
Following Lemma 2 in Ref. [90], we have ϵg ≤ nϵs, and

according to the triangle inequality ϵs ≤ ϵt þ ϵc. The latter
errors can be bound as [62]

ϵt ≤ 2eðRΛð1þ JRΛÞΔtÞ2; 2RΛð1þ JRΛÞΔt < 1;

ð12Þ

ϵc ≤ pol1ðΛ;Ξ; gS; γÞΔt2 þ pol2ðΛ;Ξ; gS; γÞΔt3; ð13Þ

where pol1 and pol2 are polynomial functions of gS;
γ;Λ ¼ maxr;j;pðkHSk∞; kμðp;jÞr HðjÞ

r k∞Þ and Ξ, equal to
the total number of different elementary unitary evolutions
driven by a single HðjÞ

r in Eq. (4) (in the case of the MCM
for the diagonal master equation, we have Ξ ¼ RJ, for the
nondiagonal scenario Ξ ¼ RjPj). The exact expressions of
pol1 and pol2, as well as the above bounds under the
assumption of k locality [80], are discussed with further
details in the Supplemental Material [62]. Here, we just
remark that the global error of the MCM follows the
behavior

ϵg ¼ OðnΔt2Þ ¼ Oðt2=nÞ: ð14Þ

This scaling is optimal for the error made by simulating an
open system dynamics via a general scheme of repeated
unitary evolutions [91], and therefore via general collision
models. Such scaling, for instance, is always saturated by
the truncation error ϵt, which is the same for any model of
rapid repeated interactions. This is our second major result.
Resource estimation for quantum simulation.—To

address the quantum simulation efficiency of the MCM
we assume the k locality of the Liouvillian L, namely, that
it can be written as a sum of Liouvillians Lσ nontrivially
acting on k subsystems only: L ¼ P

K
σ¼1 Lσ. This is a

standard assumption for quantum simulation on a circuital
quantum computer, introduced by Kliesch et al. for open
systems [80,92], and first imposed in the seminal paper by

PHYSICAL REVIEW LETTERS 126, 130403 (2021)

130403-4



Lloyd on Hamiltonian quantum simulation [93]. K ≤ Mk is
the total number of possible k-local terms, that for large M
goes as K ∼Mk=ðk!ekÞ [62]. We estimate the number of
resources focusing on the MCM for the diagonal GKLS
master equation only, given that this is certainly the most
convenient scheme for the simulation on a quantum
computer. We allow for many-body GKS operators, and
we count the number of elementary gates driven by the sets

of R Hamiltonians fHðσ;jÞ
r gRr¼1, corresponding to the

Lindblad operators Lσ;j of each Lσ . Note that k
locality implies R < d2k. Under these assumptions

and with HS ¼
P

K
σ¼1H

ðσÞ
S , the error bound in

Eq. (13) is conveniently rewritten by substituting

Λ → Λ0 ¼ maxr;j;σðkHðσÞ
S k∞; kμðσ;jÞr Hðσ;jÞ

r k∞Þ, Ξ → Ξ0 ¼
KRJk [62], where the total number of Lindblad operators
for k-local Liouvillians is bound by Jk ≤ d2k − 1. Λ0 does
not increase with the total number of subsystems, while Ξ0
scales polynomially with M. Moreover, the bound in
Eq. (12) is multiplied by K2 and modified with Λ → Λ0,
J → Jk as above, thus it scales polynomially with M.
Therefore, we can set ϵg ≤ fðMÞt2=n, where fðMÞ is a
polynomial function of the total number of sub-
systems [62].
For a single time step of the MCM, we need one ancilla

for each Lindblad operator of each k-local Liouvillian.
Therefore, we require KJk ancillas per time step. For the
simulation up to time t within a global precision of ϵg,
we need NA ¼ ⌈KJkfðMÞt2=ϵg⌉ ancillas, which is a poly-
nomial function polyðM; t; 1=ϵgÞ and therefore provides us
with an efficient number of ancillas [94] for quantum
simulation [80,89].
We need 2R − 1 elementary quantum gates for each

Lindblad operator of a single time step. Hence, the
total number of gates in a single time step is
ð2R − 1ÞKJk þ NðSÞ

G , where NðSÞ
G is the necessary number

of gates to simulate the free system evolution USðΔtÞ in
Eq. (5), which is efficient under the required assumptions
[93]. Consequently, to simulate the dynamics up to time t
making an error not bigger than ϵg, we need

NG ¼ ⌈½ð2R − 1ÞKJk þ NðSÞ
G �fðMÞt2=ϵg⌉ ð15Þ

gates. Under the condition of local GKS operators,
we can substitute R ¼ k in Eq. (15). Once again,
NG ¼ polyðM; t; 1=ϵgÞ and therefore the MCM is effi-
ciently simulable on a quantum computer according to
the dissipative quantum Church-Turing theorem. This is
our third major result. The total number of gates scales as
t2=ϵg, which is optimal [91] for collision models.
Conclusions.—We have presented the multipartite colli-

sion model (MCM), able to reproduce any Markovian
dynamics (or, more precisely, any divisible dynamical map)
of a general system made of M subsystems by means of
elementary interactions between each subsystem and a

single environment ancilla, which can be efficiently simu-
lated through elementary quantum gates. Furthermore, we
have derived an analytical error bound for the simulation of
generic semigroup dynamics via the MCM, and observed
that it displays an optimal scaling. In light of the above
findings, we believe that the MCM will play a major role in
the study and simulation of multipartite open quantum
systems in the future.
Our results pave the way towards general applications of

the collision approach to global master equations, many-
body dissipative collective effects like superradiance or
synchronization, transport in complex open systems, as
well as to a wide range of problems in quantum thermo-
dynamics, such as the study of Landauer’s principle in any
multipartite system, of composed thermal machines or of
the microscopic exchange of energy between subsystems
and ancillas. Finally, the efficient simulation of the MCM
on a noisy intermediate-scale quantum device is within our
reach through currently available technology [95].
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