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ABSTRACT We report the complete 8.94-Mb genome sequence of the type strain
of Cupriavidus basilensis (DSM 11853 =CCUG 49340 = RK1), formed by two chromo-
somes and six putative plasmids, which offers insights into its chloroaromatic-biode-
grading capabilities.

T he complete genome sequence of the type strain of Cupriavidus basilensis (/
Wautersia basilensis / Ralstonia basilensis / Ralstonia sp.) (1–4) has been deter-

mined. Strain RK1T (=DSM 11853T = CCUG 49340T) was isolated from sediment from a
freshwater pond in Amponville, France, with 2,6-dichlorophenol as the sole carbon and
energy source (1).

Strain DSM 11853T was cultivated on Reasoner’s 2A (R2A) broth, at 30°C, for 48h. Genomic
DNA was isolated, using a GenElute bacterial genomic DNA kit (Sigma-Aldrich) and a Wizard
genomic DNA purification kit (Promega) for Illumina sequencing and a previously described
protocol (5) for Oxford Nanopore sequencing. A DNA library was prepared, using a Nextera XT
kit (Illumina) and sequenced on an Illumina HiSeq platform at MicrobesNG (Birmingham, UK),
generating 3,305,358 paired-end reads of 251bp. Another library was prepared, using a
TruSeq Nano DNA sample preparation kit (Illumina), and sequenced on an Illumina MiSeq plat-
form at ChunLab, Inc. (Seoul, South Korea), resulting in 4,445,298 paired-end reads of an aver-
age length of 292bp. The reads were trimmed using Sickle v1.33 (Phred quality cutoff, Q30)
(6) and assessed using CLC Genomics Workbench v12.0.3 (Qiagen).

Two Oxford Nanopore libraries were prepared, using a rapid barcoding sequencing
kit (SQK-RBK004), and sequenced on a MinION device (Oxford Nanopore). The Nanopore
reads were base called, using Guppy v2.3.7 and v3.1.5 (Oxford Nanopore) and evaluated,
using NanoPlot v1.26.3 (7). The sequencing runs yielded 1.82 and 1.72Gb, distributed in
291,236 and 243,691 reads, with N50 values of 11,574 and 12,956bp, respectively.

The Illumina and Nanopore reads were assembled de novo using Unicycler v0.4.7
(8), resulting in complete circular sequences for all replicons except for chromosome 1,
which was completed by assembling all Nanopore reads de novo, using Canu v1.5 (9).
Subsequently, the sequence was polished with Illumina reads, using the tool Polish
with Reads in CLC Genomics Workbench v20 (one round) and Pilon v1.20 (10) (two
rounds). For Pilon, the reads were mapped using BWA v0.7.17 (11). The assembly statis-
tics were obtained, using QUAST v5.0.2 (12). The complete genome sequence is com-
posed of eight circular replicons, two chromosomes, and six putative plasmids, totaling
8,942,610bp (Table 1). The sequence was annotated, using PGAP v4.13 (13) and BlastKOALA
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v2.2 (14), revealing 8,060 coding sequences (including 1,082 hypothetical proteins), 7 ribo-
somal operons, 67 tRNAs, and 236 pseudogenes, with a G1C content of 65.0mol%.

The key genes involved in chloroaromatic degradation, encoding chlorophenol
monooxygenases (GenBank accession number QOT82435 and QOT82420), chlorohy-
droquinone 1,2-dioxygenase (QOT82419), and chlorocatechol 1,2-dioxygenases
(QOT82433 and QOT82442), are located on plasmid pRK1-5 (CP062809). Additionally,
C. basilensis DSM 11853T has extensive catabolic potential, harboring nearly all major
central pathways for aromatic compounds (15), including catechol 1,2-dioxygenase
(QOT79538), catechol 2,3-dioxygenase (QOT80779), protocatechuate 3,4-dioxygenase
(QOT80900 and QOT81306), homoprotocatechuate 2,3-dioxygenase (QOT78968), gen-
tisate 1,2-dioxygenase (QOT81130), and homogentisate 1,2-dioxygenase (QOT81322),
all of them located on chromosome 2 (CP062804), among other ring-cleavage
enzymes.

This complete genome sequence represents a valuable taxonomic reference within the
genus Cupriavidus and the family Burkholderiaceae and offers a genetic basis for elucidating
the catabolic pathways for chloroaromatic compounds in this specialized bacterium.

Data availability. This complete genome sequence has been deposited in DDBJ/
ENA/GenBank under the accession numbers CP062803, CP062804, CP062805, CP062806,
CP062807, CP062808, CP062809, and CP062810. The versions described in this paper are the
first versions. The Illumina and Oxford Nanopore raw sequence reads are available in the
Sequence Read Archive under the accession numbers SRR12739612, SRR12739613,
SRR12739614, and SRR12739615.
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No. of
CDSa

No. of
ribosomal
RNAs

No. of
operons

No. of
tRNAs

No. of hypothetical
proteins (percentage
of CDS)a
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