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Ginkgo biloba and Helianthus annuus show different strategies to adjust 
photosynthesis, leaf water relations, and cell wall composition under water 
deficit stress
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Abstract

Cell wall thickness (Tcw) determines photosynthesis and leaf elasticity. However, only a few studies in angiosperms 
addressed cell wall composition implication in regulating photosynthesis and leaf water relations through mesophyll 
conductance (gm) and bulk modulus of elasticity (ε) adjustments, respectively. Thus, we compared the phylogenetically 
distant Ginkgo biloba L. and Helianthus annuus L. under control and water deprivation to study the relationship between 
changes in cell wall composition (cellulose, hemicelluloses, and pectins) with gm and ε. Although no changes were 
found for Tcw, both species differently modified cell wall composition, resulting in different physiological consequences.  
H. annuus increased cellulose, hemicelluloses, and pectins in a similar proportion, maintaining ε. Additionally, it reduced 
photosynthesis due to stomatal closure. G. biloba did not decrease photosynthesis and largely increased hemicelluloses, 
leaf mass area, and leaf density, enhancing ε. Nonetheless, no association between cell wall composition and gm was found 
in either of the two species.
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determine gm across plantsꞌ phylogeny and in response 
to different environmental conditions (Terashima et al. 
2001, Evans et al. 2009, Flexas et al. 2012, Tomás et al. 
2013, Carriquí et al. 2015, 2019, 2020; Tosens et al. 2016, 
Onoda et al. 2017, Peguero-Pina et al. 2017, Veromann-
Jürgenson et al. 2017). Hence, as thick cell walls limit 
gm and, simultaneously, potentially increase cells rigidity 
(enhanced bulk modulus of elasticity, ε) (Tyree and Jarvis 
1982, Peguero-Pina et al. 2017), a trade-off between gm 
and net photosynthetic rate (PN) with ε was demonstrated 
in a wide range of species under nonstress conditions 
(Nadal et al. 2018). Nonetheless, the mechanistic basis of 
ε and its intraspecific dynamics during plant's acclimation 
to changing environmental conditions are still poorly 
understood. Although Niinemets (2001) and Sack et al. 
(2003) proposed that leaf structure, particularly leaf mass 

Introduction

Photosynthesis is a complex phenomenon that involves 
both diffusional and biochemical processes (Flexas et 
al. 2004, von Caemmerer et al. 2009). The diffusional 
process consists of the CO2 pathway from the atmosphere 
to the substomatal cavity (stomatal conductance, gs) across 
the mesophyll tissue (mesophyll conductance, gm) until 
reaching its carboxylation sites at chloroplasts stroma, 
where biochemical processes occur (Flexas et al. 2004, 
Evans et al. 2009, von Caemmerer et al. 2009). Even though 
the mechanistic nature of gm is not yet fully understood 
(Evans et al. 2009, Flexas et al. 2012), some studies have 
evidenced that leaf anatomical traits, particularly cell wall 
thickness (Tcw) and chloroplasts surface area exposed to 
intercellular air spaces per leaf area (Sc/S), are crucial to 
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area (LMA) and leaf density (LD), was the main driver of 
ε, more recent studies suggested that cell wall composition 
and properties could be also relevant for determining ε 
(Moore et al. 2008, Solecka et al. 2008, Álvarez-Arenas  
et al. 2018, Roig-Oliver et al. 2020).

The plant cell wall, a complex structure considered as 
a protective barrier to face those biotic and abiotic stresses 
occurring during plantsꞌ life, is mainly compounded 
by cellulose microfibrils (Carpita and Gibeaut 1993, 
Cosgrove 1997, 2005; Somerville et al. 2004, Sarkar et al. 
2009, Tenhaken 2015, Houston et al. 2016, Rui and 
Dinnery 2019). Between those closely packed microfibrils, 
noncellulosic neutral sugars (hereafter ‘hemicelluloses’) 
are placed, conferring stability to the wall (Carpita 
and Gibeaut 1993, Cosgrove 1997, 2005; Somerville 
et al. 2004, Sarkar et al. 2009, Tenhaken 2015, Rui and 
Dinnery 2019). This cellulose–hemicelluloses network 
is embedded in a pectin matrix which has been proposed 
as a crucial structure to maintain an appropriate cell wall 
hydric status, especially during water deficit stress (Vicré 
et al. 2004, Cosgrove 2005, Leucci et al. 2008, Moore  
et al. 2008, 2013; Schiraldi et al. 2012, Le Gall et al. 
2015, Houston et al. 2016). Additionally, the pectin matrix 
seems to be a key structure determining wall porosity 
and thickness (Somerville et al. 2004, Cosgrove 2005, 
Tenhaken 2015, Houston et al. 2016, Rui and Dinnery 
2019), leading to the suggestion that it could influence 
CO2 diffusion and, thus, photosynthesis. However, only a 
few studies directly focused on the relationship between 
modifications in cell wall components and gm (Ellsworth 
et al. 2018, Clemente-Moreno et al. 2019, Carriquí et al. 
2020, Roig-Oliver et al. 2020). Particularly, Ellsworth  
et al. (2018) provided first evidence on how gm reductions 
could be attributed to anatomical alterations due to cell 
wall changes testing cslf6 rice mutants. Then, Clemente-
Moreno et al. (2019) specifically identified pectins and/
or the ratio of hemicelluloses to pectins as main drivers of 
gm changes in Nicotiana sylvestris subjected to different 
environmental conditions. The relationship between mo-
dified cell wall composition and gm changes could not 
be exclusively attributed to pectins as Roig-Oliver et al. 
(2020) showed that only cellulose correlated with gm in 
Vitis vinifera cv. Grenache acclimated to contrasting 
conditions. Nonetheless, at an interspecific level and under 
nonstress conditions, the ratio of pectins to cellulose and 
hemicelluloses determined gm in conifers (Carriquí et al. 
2020). Thus, it appears that the relationship between cell 
wall main composition and gm could be species-dependent 
(Roig-Oliver et al. 2020) and could be attributed to specific 
growing conditions.

Some studies have determined that cell wall composi- 
tion differs among plants belonging to different phylo-
genetic groups (Popper and Fry 2004, Sørensen et al. 2010, 
Popper et al. 2011, Bartels and Classen 2017). Additionally, 
several studies have characterized cell wall composition 
changes in different monocot and dicot species under 
stressing conditions (see, for instance, Sweet et al. 1990, 
Vicré et al. 1999, 2004; Leucci et al. 2008, Moore et al. 
2008, Solecka et al. 2008, Suwa et al. 2010, Carvalho et al. 
2013, Baldwin et al. 2014, Zheng et al. 2014, Clemente-

Moreno et al. 2019, Roig-Oliver et al. 2020). However, 
to our knowledge, no information is known regarding 
stress-induced changes in cell wall properties in other 
plant groups. Moreover, how these differences in cell wall 
composition in response to stress could be linked to differed 
strategies to regulate photosynthesis, leaf water relations 
and anatomical adjustments remain to be elucidated. In 
the current study, we compared the gymnosperm living 
fossil Ginkgo biloba L. (Ginkgoaceae) and the herbaceous 
angiosperm Helianthus annuus L. (Asteraceae) acclimated 
to two different experimental conditions (well-watered, 
i.e., control, and water deficit stress) to induce changes in 
cell wall composition that could influence photosynthesis, 
anatomical and/or leaf water relations responses.

Materials and methods

Plant material and growth conditions: One-year-old  
G. biloba plants were acquired from a garden center in 
horticultural alveolus. H. annuus seeds were individually 
sewed in horticultural alveolus using a mixture of 3:1 
substrate:perlite. All plants were placed in a growth 
chamber at 22°C with 12/12-h light/darkness daily 
fluctuation receiving PPDF of 200–300 μmol m–2 s–1. Water  
irrigation was assessed every two days to ensure plant 
growth. Three weeks later, when all plants had fully-
developed leaves, they were transplanted to 3-L pots 
containing a mixture of 2:2 and 3:1 substrate:perlite for 
G. biloba and H. annuus, respectively. At this moment, six 
individual replicates per species were randomly subjected 
to two treatments: control (i.e., well-watered) and water 
deficit stress. Water-stressed plants were monitored every 
two days to maintain pots field capacity at 50% by replacing 
evapotranspired water and control plants were daily 
irrigated to keep field capacity at 100%. To identify the onset 
of new leaves during plants' acclimation to experimental 
conditions, already emerged ones were labeled. In both 
cases, treatments lasted 40 d. All measurements were 
performed in new fully developed leaves developed under 
control or water-stressed conditions.

Gas-exchange and fluorescence measurements: At the 
end of the treatments, simultaneous measurements of gas 
exchange and chlorophyll a fluorescence with an open 
infrared gas-exchange system coupled with a 2-cm2 fluo-
rescence chamber (Li-6400-40XT, Li-Cor Inc., Lincoln, 
NE, USA) were performed in one leaf per plant in each 
species and treatment. Measurements were performed at 
saturating PPFD (1,500 μmol m–2 s–1 for H. annuus; 1,250 
μmol m–2 s–1 for G. biloba; 90/10% of red/blue light, 
respectively, in both cases), 25°C block temperature, and 
300 µmol min–1 flow rate. All gas-exchange measurements 
were corrected for CO2 leakage in the leaf-gasket interface 
(Flexas et al. 2007). PN, gs, substomatal CO2 concentration 
(Ci), and photochemical yield of PSII (ФPSII) were recorded 
after steady-state conditions were reached (15–30 min) at 
ambient CO2 concentration (Ca) of 400 µmol mol–1. PN–Ci 
response curves were then performed by changing Ca in 14 
steps (3–4 min), from 50 to 1,500 μmol(CO2) mol–1(air). 
Light curves under nonphotorespiratory conditions (1%  
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O2) were performed to determine light respiration (Rlight) 
and the PPFD fraction harvested by PSII (s) (Yin et al. 2009, 
2011; Bellasio et al. 2016). From previous parameters, the 
electron transport rate (ETR) was calculated as described 
in Bellasio et al. (2016). The CO2-compensation point 
in the absence of respiration (Γ*) for G. biloba and  
H. annuus were obtained from comparing PN–Ci curves 
under ambient (21%) and low O2 (1%) conditions as 
described in Bellasio et al. (2016). Finally, mesophyll 
conductance (gm) was determined by the curve-fitting 
method (Sharkey 2016) using Rlight as an input and the 
Rubisco kinetics (Kc, Ko) from tobacco (Bernacchi et al. 
2002). The mean Γ* value obtained for each species under 
well-watered conditions was used for water-stressed plants 
as in vivo methods are not reliable under stress (Galmés  
et al. 2006).

Anatomical measurements: A portion of the leaves used 
for gas-exchange measurements were cut in small pieces 
avoiding main foliar structures to be fixed under vacuum 
pressure using glutaraldehyde 4% and paraformaldehyde 
2% prepared in 0.01 M phosphate buffer (pH 7.4). Samples 
were post-fixed in 2% buffered osmium tetroxide for two 
hours and dehydrated by a graded ethanol series. The 
obtained pieces were embedded in LR White resin (London 
Resin Company) and placed in an oven at 60°C for 48 h 
(Tomás et al. 2013).

Semi-fine (0.8 μm) and ultra-fine (90 nm) cross-sections 
were cut using an ultramicrotome (Leica UC6, Vienna, 
Austria). Semi-fine sections were dyed with 1% toluidine 
blue to be viewed in a bright field with an Olympus BX60 
optic microscope. Pictures at 200× magnifications were 
taken with a digital camera (U-TVO.5XC, Olympus, Tokyo, 
Japan) to determine the fraction of mesophyll intercellular 
air spaces (fias). Ultra-fine sections for transmission 
electron microscopy (TEM H600, Hitachi, Tokyo, Japan) 
were contrasted with uranyl acetate and lead citrate to 
obtain pictures at 1,500× and 30,000× magnifications. The 
chloroplasts surface area exposed to intercellular air spaces 
per leaf area (Sc/S) and the cell wall thickness (Tcw) were 
measured from ultra-fine images at 1,500× and 30,000× 
magnifications, respectively. A cell curvature correction 
factor was determined according to Thain (1983) making 
an average length/width ratio of five randomly selected 
cells from both palisade and spongy mesophyll types for 
Sc/S estimation. Final values for measured parameters 
were obtained as an average of ten measurements from 
randomly selected cell structures using the ImageJ 
software (Wayne Rasband/NIH, Bethesda, MD, USA). 

Cell wall extraction and fractionation: The same leaves 
used for gas exchange and anatomy sampling were kept 
under dark conditions overnight to minimize starch 
content. The following morning, around 1 g of fresh leaf 
tissue per plant was cut in small pieces and they were 
placed in glass tubes containing absolute ethanol (1:10, 
w/v). They were boiled until bleached and cleaned twice 
with acetone > 95% obtaining the alcohol insoluble residue 
(AIR), an approximation of the total isolated cell wall 
content. After dried, samples were grounded and starch 

remains were removed with α-amylase digestion. Then, 
three analytical replicates of each AIR weighting 3 mg  
were taken to be hydrolyzed with 2 M trifluoroacetic acid  
for an hour at 121°C. They were centrifuged at 13,000 × g 
for the obtention of two phases: the supernatant (noncellu-
losic cell wall components) and the pellet (cellulosic cell 
wall components). Whilst the supernatant was kept at 
–20°C to quantify hemicelluloses and uronic acids (i.e., 
pectins), the pellet was cleaned twice with distilled water 
and acetone > 95%. Once dried, pellets were hydrolyzed 
in 200 μl sulphuric acid 72% (w/v) for an hour, diluted 
to 6 ml with distilled water, and heated until degradation. 
Once cooled, the obtained aqueous samples were used 
for cellulose quantification. Cellulose and hemicellulose 
quantifications were determined following Dubois et al. 
(1956). Thus, samples absorbance was read at 490 nm and 
both sugars concentrations were estimated by interpolating 
sample values from a glucose calibration curve. Finally, pec-
tin quantification was performed following Blumenkrantz 
and Asboe-Hansen (1973). Hence, samples absorbance 
was read at 520 nm and pectin content was calculated 
by interpolating sample values from a galacturonic acid 
calibration curve. In all cases, a Multiskan Sky Microplate 
spectrophotometer (ThermoFisher Scientific) was used.

Pressure-volume curves: A fully developed leaf neigh-
boring the one used for the gas exchange was rehydrated 
with distilled water and kept under dark conditions 
overnight. The next morning, leaf water potential and 
mass were measured simultaneously to obtain pressure–
volume (P–V) curves of, at least, ten points. Leaf water 
potential was determined using a pressure chamber (Model 
600D, PMS Instrument Company, Albany, USA). From 
P–V curves analysis, leaf water potential at turgor loss 
point (Ψtlp), osmotic potential at full turgor (πo), relative 
water content at turgor loss point (RWCtlp), apoplastic 
water fraction (af), and leaf area specific capacitance at  
full turgor (C*ft) were obtained (Sack and Pasquet-Kok 
2011). The bulk modulus of elasticity (ε) was determined 
using standardized major axes (SMA; Sack et al. 2003). 

Leaf structure: The same leaves used for P–V curves 
were utilized to calculate the leaf mass area (LMA), 
the leaf density (LD), and the leaf area (LA) (Pérez-
Harguindeguy et al. 2013). Leaves were rehydrated 
overnight and pictures of the LA including the petiole 
were analyzed with the ImageJ software (Wayne Rasband/
NIH). Then, leaves were placed in an oven at 70°C for  
72 h to obtain their dry mass. Leaf thickness was determined 
from six measurements per leaf avoiding main veins with 
a digital caliper. Thickness per area was used as a proxy to  
calculate LD.

Statistical analysis: Thompson test was performed to 
detect and eliminate outliers for all studied parameters. 
Two-way analysis of variance (ANOVA) and subsequent 
LSD test was assessed to determine significant (P<0.05) 
‘species’ and ‘treatments’ effects and differences between 
groups, respectively. All analyses were performed using 
the R statistical software (ver. 3.2.2, R Core Team, Vienna, 
Austria).
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Results

Physiological characterization: Under control conditions, 
H. annuus achieved the highest PN and gs [26.30 ± 2.27 
µmol(CO2) m–2 s–1 and 0.40 ± 0.06 mol(CO2) m–2 s–1, 
respectively], which were largely reduced under water 
deficit stress (Fig. 1A,B). Contrarily, G. biloba showed 
much lower assimilation under control conditions [7.91 ± 
0.43 µmol(CO2) m–2 s–1], but neither PN nor gs experienced 
significant changes due to water deficit stress (Fig. 1A,B). 
Only H. annuus experienced an increase in WUEi under 
water deficit stress conditions (Fig. 1C). Additionally, 
water-stressed H. annuus also showed reductions of 
both gm (Fig. 1D) and ETR, the latter being also slightly 
reduced in G. biloba (Fig. 1E). Finally, Rlight only revealed 
differences at P=0.053 for the ‘treatments’ effect as it 
slightly decreased under water deficit stress (Fig. 1F).

Leaf water relations: No treatment effect was detected 
for both Ψtlp and πo (P=0.337 and 0.139, respectively)  
(Fig. 2A,C). Although RWCtlp was maintained in G. biloba, 
it increased in water-stressed H. annuus in comparison 
to control (Fig. 2B). However, water-stressed G. biloba 
leaves were almost three-folds more rigid than control 
ones (61.17 ± 14.32 and 21.15 ± 2.36 MPa, respectively; 
Fig. 2D). Water deficit stress increased af and C*ft in  
H. annuus [0.55 ± 0.03 and 1.96 ± 0.25 mol(H2O) m–2 
MPa–1, respectively], but no changes were detected in  
G. biloba (Fig. 2E,F). 

Leaf structural and anatomical traits: Under water defi-
cit stress conditions, H. annuus and G. biloba experienced 
an increase in both LMA and LD, being more marked in 
the latter species as they doubled control values (Table 1). 
An opposite pattern was found for LA, which decreased 
significantly under water deficit stress conditions, especially 
in G. biloba (Table 1). However, water deprivation did not 
significantly change anatomical parameters (i.e., fias, Sc/S, 
and Tcw) in none of the two species (Table 1), which were 
evaluated from similar pictures to those from Fig. 3. 

Leaf cell wall composition: Water deficit stress induced 
different changes in cell wall composition in the two 
species. G. biloba significantly increased hemicelluloses 
while slightly decreasing cellulose, with no changes in 
the total AIR and pectins (Table 2). Instead, H. annuus 
significantly enhanced the total AIR with also increased 
amounts of cellulose, hemicelluloses, and pectins in a 
similar proportion (Table 2).

Discussion

A classic response to water deficit stress involves a 
reduction of PN associated to decreased leaf overall CO2 
diffusion (i.e., gs and gm) (Chaves et al. 2002, 2008; 
Flexas et al. 2004, 2012; Nadal and Flexas 2019), which 
promotes enhanced WUEi due to larger descents in gs than 
in gm (Flexas et al. 2013). In the current study, this pattern 
was only observed in water-stressed H. annuus plants as 
PN, gs, and gm did not significantly decrease in G. biloba 

Fig. 1. (A) Net photosynthetic rate 
(PN), (B) stomatal conductance (gs), 
(C) intrinsic water-use efficiency 
(WUEi), (D) mesophyll conductance 
(gm), (E) electron transport rate 
(ETR), and (F) light respiration 
(Rlight) in Ginkgo biloba and Heli-
anthus annuus across conditions (CL 
– control, WS – water deficit stress). 
Species (S) and treatments (T) 
effects were quantified by two-way 
ANOVA and differences between 
groups were addressed by LSD test. 
Different superscript letters indicate 
significant differences. Significance: 
***P<0.001; ** <0.01; * <0.05; 0 <0.1; 
ns >0.1. Values are means ± SE  
(n = 5–6).
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(Fig. 1A–D). Despite opposite patterns for photosynthesis 
regulation under water deficit stress, both species modified 
their foliage structure (i.e., increased LMA and LD, see 
Table 1) as previously reported by Niinemets et al. (2009). 
Additionally, water deficit stress strongly limited leaf 
development in both species as LA decreased significantly 
(Table 1), which has been described as a typical response 
to water deficit stress (Chaves et al. 2002). However, 
although Chartzoulakis et al. (2002) and Hafez et al. 
(2020) reported modifications in leaf, mesophyll, and 
epidermis thicknesses as well as in fias testing avocado 
and barley, respectively, under water deprivation, Tomás 

et al. (2014) did not detect strong subcellular anatomical 
alterations in water-stressed grapevine cultivars. In fact, 
in the present study neither Tcw nor other subcellular 
anatomical traits classically affecting gm were modified 
under water deficit stress (Table 1), suggesting that 
decreased gm in water-stressed H. annuus might be due to 
other nonstudied characteristics (e.g., aquaporins and/or 
carbonic anhydrases, see Pérez-Martín et al. 2014). 

Poorter et al. (2009) proposed that LD could reflect, to 
some extent, the cell wall content per leaf. Nonetheless, 
AIR variations only followed the same pattern as LD in  
H. annuus, as the slight increase detected in G. biloba 

Fig. 2. (A) Water potential at turgor 
loss point (Ψtlp), (B) relative water 
content at turgor loss point (RWCtlp), 
(C) osmotic potential at full turgor 
(πo), (D) bulk modulus of elasticity 
(ε), (E) apoplastic water fraction 
(af), and (F) leaf area specific 
capacitance at full turgor (C*ft) 
in Ginkgo biloba and Helianthus 
annuus across conditions (CL – 
control, WS – water deficit stress). 
Species (S) and treatments (T) 
effects were quantified by two-way 
ANOVA and differences between 
groups were addressed by LSD test. 
Significance: ***P<0.001; ** <0.01; 
* <0.05; 0 <0.1; ns >0.1. Values are 
means ± SE (n = 5–6).

Table 1. Leaf structural and anatomical traits of Ginkgo biloba and Helianthus annuus across conditions (CL – control, WS – water 
deficit stress). Average values ± SE are shown for leaf mass area (LMA), leaf density (LD), leaf area (LA), fraction of mesophyll 
intercellular air spaces (fias), chloroplasts surface area exposed to intercellular air spaces per leaf area (Sc/S) and cell wall thickness 
(Tcw). Species and treatments effects were quantified by two-way ANOVA and differences between groups were addressed by LSD test. 
Different superscript letters indicate significant differences. n = 5–6. 

Species and treatments LMA [g m–2] LD [g cm–3] LA [cm2] fias [%] Sc/S [m2 m–2] Tcw [μm]

G. biloba – CL 41.42 ± 1.22bc 0.15 ± 0.00c 85.36 ± 8.34a 30.87 ± 3.95b   9.73 ± 1.28b 0.39 ± 0.01a

G. biloba – WS 89.52 ± 5.16a 0.31 ± 0.02a 21.50 ± 9.61c 25.13 ± 1.83b 10.92 ± 1.13b 0.42 ± 0.03a

H. annuus – CL 32.04 ± 0.71c 0.16 ± 0.00c 40.79 ± 6.03b 45.50 ± 2.39a 17.24 ± 1.48a 0.18 ± 0.01b

H. annuus – WS 48.18 ± 1.02b 0.22 ± 0.00b 21.37 ± 0.49c 40.31 ± 0.58a 18.74 ± 1.59a 0.16 ± 0.01b

Species < 0.001    0.010    0.016 < 0.001 < 0.001 < 0.001
Treatments < 0.001 < 0.001 < 0.001    0.058    0.347    0.708
Species:Treatments < 0.001 < 0.001 < 0.001    0.921    0.914    0.177
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was not significant (Table 2). AIR enhancement due to 
water deficit stress was previously detected in N. sylvestris 
(Clemente-Moreno et al. 2019) and V. vinifera (Roig-
Oliver et al. 2020). Concerning specific cell wall main 
composition, it has been reported that variations in 
cellulose content may depend, for instance, on species, 
specific plant tissues, plantsꞌ age, and/or level of water 
deficit (Sweet et al. 1990, Zheng et al. 2014, Clemente-
Moreno et al. 2019, Roig-Oliver et al. 2020). Thus, 

cellulose increased in H. annuus as previously shown for 
other species (Sweet et al. 1990, Clemente-Moreno et al. 
2019, Roig-Oliver et al. 2020), but slightly decreased in 
G. biloba (Table 2). However, hemicelluloses have been 
found to either increase (Vicré et al. 1999), decrease 
(Sweet et al. 1990, Roig-Oliver et al. 2020), or stay 
constant (Clemente-Moreno et al. 2019) after exposure to 
water deficit stress. In our study, both species, especially 
G. biloba, presented increased amounts of hemicelluloses 
under water deficit stress (Table 2). Finally, pectins usually 
increase during water deficit because they play a key role 
in adjusting cell wall flexibility, thus, controlling cell wall 
hydric status (Sweet et al. 1990, Vicré et al. 1999, 2004; 
Cosgrove 2005, Leucci et al. 2008, Moore et al. 2008, 
2013; Le Gall et al. 2015, Tenhaken 2015, Houston et al. 
2016, Clemente-Moreno et al. 2019, Rui and Dinnery 
2019, Roig-Oliver et al. 2020). However, in our study 
pectins were only enhanced in water-stressed H. annuus 
in a similar proportion to cellulose and hemicelluloses 
(Table 2). Additionally, the potential importance of pectins 
in determining ε adjustments has already been proposed 
(Moore et al. 2008, Solecka et al. 2008, Niinemets 2016) 
and Roig-Oliver et al. (2020) provided empirical evidence 
for this in grapevines. Surprisingly, H. annuus maintained 
ε under water deficit stress, while G. biloba – having kept 
pectins constant – drastically enhanced leaves rigidity 
once subjected to water deficit stress (Fig. 2D) as usually 
reported for other species (Bowman and Roberts 1985, 
Lo Gullo and Salleo 1988, Abrams 1990, Kloeppel et al. 
1994). Although more experimental conditions should be 
tested to set concluding statements, our results suggest that 
ε adjustments in water-stressed G. biloba could be much 
more related to changes in leaf structure (i.e., decreased LA 
and enhanced LMA and LD) and hemicelluloses rather than 
to other cell wall components. However, while increased 
ε and LD have been proposed to involve reductions in 
gm (Niinemets et al. 2009, Nadal et al. 2018), G. biloba 
was able to maintain gm at control values under water 
deficit stress conditions. Oppositely, H. annuus differed 
from the previous strategy as leaf structure and cell wall 
composition changes were not reflected in ε modifications. 
Instead, increased AIR, cellulose, hemicelluloses, and 
pectins under water deficit stress were reflected as an 
increase in af and C*ft (Fig. 2E, F).

Fig. 3. Representative micrographs from semi-fine (left) and 
ultra-fine (right) cross-sections taken at 200× and at 1,500× 
magnifications, respectively, for Ginkgo biloba (A,B) and 
Helianthus annuus (C,D) under control and water deficit stress 
conditions, respectively. Black scale bars = 100 µm. Detailed 
quantitative analyses of studied anatomical parameters are 
reported in Table 1.

Table 2. Leaf cell wall composition of Ginkgo biloba and Helianthus annuus across conditions (CL – control, WS – water deficit 
stress). Average values ± SE are shown for alcohol insoluble residue (AIR), cellulose, hemicelluloses, and pectins contents. Species 
and treatments effects were quantified by two-way ANOVA and differences between groups were addressed by LSD test. Different 
superscript letters indicate significant differences. n = 5–6.

Species and treatments AIR [g g–1(DM)] Cellulose [mg g–1(AIR)] Hemicelluloses [mg g–1(AIR)] Pectins [mg g–1(AIR)]

G. biloba – CL 0.16 ± 0.03a 125.2 ± 12.9a 176.5 ± 18.3b   71.27 ± 6.52b

G. biloba – WS 0.19 ± 0.01a 100.2 ± 11.6ab 261.4 ± 30.6a   79.60 ± 4.16b

H. annuus – CL 0.09 ± 0.01b   86.6 ± 8.8b   79.7 ± 12.5c   73.09 ± 12.09b

H. annuus – WS 0.15 ± 0.01a 128.7 ± 5.2a 156.2 ± 9.8b 103.68 ± 3.45a

Species < 0.001 0.622 < 0.001 0.051
Treatments    0.012 0.406    0.001 0.013
Species:Treatments    0.351 0.003    0.847 0.133
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To our knowledge, this study provides the first evidence 
on how changes in cell wall main composition may play 
a role in determining different strategies to face water 
deficit stress by adjustments in ε and/or gm testing species 
from different phylogenetic groups. Contrary to Clemente-
Moreno et al. (2019) and Roig-Oliver et al. (2020), in 
the two species studied here, water deficit stress induced 
changes in cell wall composition that did not affect gm and 
photosynthesis, but differently modified water relations 
parameters. Thus, more detailed studies using a larger 
range of species and treatments are required for a better 
understanding of how cell wall composition – including 
other cell wall compounds such as lignins and cell wall-
bound phenolics – can involve changes in leaf physiology 
and to what extent these responses are species-dependent 
and/or change across plants phylogeny.
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