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Abstract

The aim of this project is to present the current state of Neutron Star-Black
Hole system detections and give a sense of how they can be studied and what can
be learned from them. For that, it walks the reader through the basics of General
Relativity and Gravitational Waves theory, with an overview of linearized theory,
the wave solutions of the Einstein Equations and the quadrupole approximation.
Then, the physics of the formation and composition of the sources that radiate
gravitational waves are explained in order to show how they affect the emitted ra-
diation. Namely, these sources are black holes, neutron stars and white dwarfs in
binary systems, and detecting and understanding their effects on the gravitational
wave radiation would help to better comprehend them and allow the inference of
their equation of state. In addition, it describes the process of detection and sub-
sequent data analysis and reviews the models utilized to characterize gravitational
waveforms using analytical and numerical solutions. This leads to the discussion
of the gravitational-wave signals detected so far, specifically the only two Neutron
Star-Black Hole detections to date. Finally, a comparison of the agreement between
different waveform models is used to better understand their reliability and the sig-
nificance of possible systematic errors in terms of the current and future sensitivity
of gravitational wave detectors.
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1 Introduction

Gravitational wave astronomy has brought about a breakthrough in the study of the
universe, unveiling information hitherto concealed. Gravitational Waves (GWs) allow
new ways for testing General Relativity and the detection of processes invisible by any
other means, and they can also be used to complement data from other “messengers”,
such as photons, neutrinos and cosmic rays, providing in this way even more information
about their sources.

The first direct gravitational wave detection was made on September 14, 2015 by the
Advanced Laser Interferometer Gravitational-Waves Observatory (LIGO). The signal was
discovered to be generated by a black hole binary of initial masses of 36+5

−4M� and 29+4
−4M�.

Since then, three observation “runs” (O1, O2, O3) have already been conducted with
the advanced generation of interferometric GW detectors. Breaks between observation
runs were exploited to upgrade the detectors and increase their sensitivity. The third
observation run was split into two: O3a, which ended on October 1st 2019, and O3b,
which was suspended on March 26 2020, almost a month prior to the scheduled end, on
account of the COVID-19 pandemic. The next observation run, O4, is scheduled to start
after April 2022 and the detectors are intended to achieve the planned design sensitivity,
for after which further detector upgrades have already been mapped out.

While the first two runs had a total of 10 binary black hole (BBH) and a single
binary neutron star (BNS) detections, O3a has confidently detected 37 BBH mergers and
2 possible neutron star-black hole (NSBH) mergers. Also, already 17 detections from
O3b have been publicly announced, of which two have been identified as NSBH mergers,
GW200105 and GW200115 (Abbott et al., 2021). In this thesis we will discuss these
recent results regarding the discovery of NSBH systems, and compare different models of
the signals, in order to test for systematic errors in the signal models.

1.1 Gravitational Waves Theory

Gravitational waves are distortions of spacetime that travel in the form of transverse
waves at the speed of light. They are caused by aspherical accelerating mass, and carry
information about the dynamics of the sources and gravity itself. However, it turns out
that spacetime is very rigid, consequently the magnitude of these spacetime distortions is
very small, and gravitational wave detectors can only measure waves that originated from
violent, highly energetic cosmic events. Not only is it very difficult for matter to distort
spacetime, but likewise gravitational waves also transfer very little energy to matter. Their
observation is thus not based on transfer of energy, but on the distance modulation of
freely falling (at least in one dimension) test masses. As a consequence of the very small
interaction with matter, gravitational waves propagate undisturbed over long distances
and cannot be “shielded”, e.g. by dust clouds, in the same way electromagnetic (EM)
waves are. Binary systems are one of the most effective mechanisms to accelerate masses.
As it is, all signals directly observed have been so far generated by the coalescence of
compact binaries. Moreover, the more heavy and compact the source, the easier the
gravitational radiation it emits will be detected, and therefore black hole binaries have
had the most presence in detections to date.
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As mentioned before, the first gravitational wave detection was not possible until
2015, although their existence had already been predicted by Albert Einstein in 1916
and experimental evidence was found in the 1980s by observing orbital energy loss in the
binary pulsar PSR B1913+16, which was discovered in 1974 by Hulse and Taylor (Hulse
and Taylor, 1975).

Einstein’s theory of General Relativity originates in the need to make gravitation
consistent with special relativity while also being consistent with Newton’s Laws in an
appropriate limit. This is achieved by formulating gravity as a geometric property of
a dynamic, curved space-time. The intrinsic curvature is described by the Riemann
tensor, Rc

acb, which has the property that parallel transport of a vector along a closed
path rotates the vector by an amount proportional to the Riemann tensor. The Riemann
tensor vanishes if and only if the space is flat. Simpler quantities can be computed from
the Riemann tensor, such as the Ricci tensor and scalar.

According to General Relativity, test particles move along geodesics, which is the
generalization of a straight line in curved space. That curvature is caused by the mo-
mentum and energy of radiation and matter, and the relation between these attributes is
manifested in the Einstein Field Equations (EFE),

Rab −
1

2
Rgab =

8πG

c4
Tab. (1.1)

Here, Rab is the Ricci curvature tensor, R is the scalar curvature, gab is the metric tensor,
G is Newton’s gravitational constant, c the speed of light in vacuum and, finally, Tab is
the stress-energy tensor. Note that both the left and right hand sides of Eq. (1.1) are
divergence free, which expresses local energy conservation. The Ricci curvature (or Ricci
tensor), which is a combination of derivatives of the Christoffel coefficients, can be derived
as a contraction of the Riemann tensor:

Rab = Rc
acb =

∂Γcab
∂xc

− ∂Γcab
∂xb

+ ΓcabΓ
d
cd − ΓcadΓ

d
bc, (1.2)

where the quantities Γcab are the Christoffel symbols,

Γcab =
gad

2

(
∂gdb
∂xc

+
∂gdc
∂xb
− ∂gbc
∂xd

)
. (1.3)

Finally, the scalar curvature R is the trace of the Ricci curvature tensor, R = gabRab =
Ra
a, and can be interpreted as the rotation of a vector under parallel transport over a

closed path on a surface. If the spacetime is flat, the vector does not rotate and R=0.
In vacuum, the stress-energy tensor Tab is zero, which results in the vacuum Einstein
equations: Rab = 0.

The EFE are very complex partial differential equations, but can be extremely sim-
plified when written in tensor algebra. It is these equations which describe and predict
phenomena such as black holes (BH), gravitational waves (GW) or the expansion of the
universe.

2 Gravitational wave observation of binary systems

2.1 Linearized Theory

The simplest starting point for a discussion of GWs is linearized gravity. Spacetimes that
only slightly deviate from a flat space can be described as the flat metric, ηab, with a
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perturbation, expressed by the metric perturbation, hab, which will obey the following
condition.

gab(x) = ηab + hab(x), ||hab|| � 1. (2.1)

Here ηab is defined to be diag(-1,1,1,1), and the condition for hab means the perturba-
tion is assumed weak and the coordinate system approximately inertial and Cartesian.
Consequently, terms of higher order than linear in hab will be discarded.

We will first discuss the propagation of gravitational waves through the universe, e.g.
in the vicinity of a detector, which is far from the source and where the amplitude of
the waves can therefore be considered very small. We thus postpone the consideration of
sources and, for simplicity, consider the propagation of the waves in a vacuum. We insert
Eq. (2.1) into Rab=0, and expand to first order in hab. The first term is the Ricci tensor
of flat space, which vanishes, and the second is its first-order perturbation, for which we
need to compute the Christoffel symbols:

δΓcab =
1

2
ηcd (∂bhda + ∂ahdb − ∂dhab) , δRc

ab = ∂cδΓ
c
ab + ∂bδΓ

c
ac +O(h2) (2.2)

Since the zeroth component of the Christoffel symbols vanishes due to the components
of ηab being constant, only the first-order perturbation terms remain. Combining the two
equations from (2.2), we obtain the linearized vacuum EFE:

δRab =
1

2
(−�hab + ∂aVb + ∂bVa) = 0. (2.3)

Here, � = ηab∂a∂b stands for the d’Alembertian, which is the flat-space wave operator,
and the vector Va is defined as Va = ∂ch

c
a+ 1

2
∂ah

c
c. The equation (2.3) corresponds to a set

of ten linear, partial differential equations for hab(x). Notice that indices on perturbations
can be raised and lowered with the flat space metric.

A gauge symmetry exists, which corresponds to the freedom of choosing coordinates,
and can be identified with changes of coordinates in the form of xa −→ x′a = xa + ξa(x),
where ξa are four arbitrary functions that must obey |∂aξa| ∼ |hab| to respect the condition
on |hab| (Eq. (2.1)). Applying the transformation to the metric yields

g′ab(x
′) =

∂xc

∂x′a
∂xd

∂x′b
gcd(x) = ηab + h′ab = ηab + (hab − ∂aξb − ∂bξa). (2.4)

This gauge transformation is analogous to the Lorenz gauge in electromagnetism, where
the gauge freedom in the vector potential, Aa −→ Ab + ∂aΛ , is used to impose that the
vector potential is divergence free. Therefore, similarly to that case we now choose the
four arbitrary functions ξa(x) so V ′a = 0, thus cancelling both terms with derivatives of the
vector V in Eq. (2.3). Additionally, this condition is consistent with energy-momentum
conservation in linearized theory, δaTab = 0.

Defining ξa(x) reduces the 10 degrees of freedom left in the symmetric 4x4 tensor hab
to 6. In GR, this gauge is called harmonic gauge, and greatly simplifies the linearized
vacuum EFE:

�hab = 0 (2.5)

which, since � = −(1/c2)δ20 + ∇2, admit a superposition of plane waves as a solution,
gravitational waves, that propagate at the speed of light:

hab = aab(k)eikx, (2.6)
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where kµ = (ω/c,k) and ω/c = |k|. The tensor aab, or polarization tensor, has the same
properties as hab (4x4 symmetric) and gives the amplitude of the wave components, which
are not arbitrary but can be simplified by making further gauge choices in addition to har-
monic gauge. Explicit calculations show that the metric perturbations are purely spatial
(h0i = 0) and traceless (haa = 0). Moreover, the conditions of the Lorentz gauge imply that
the spatial metric perturbation are transverse and that h00 is time independent. There-
fore, it can be interpreted as the static gravitational interaction, or Newtonian potential
of the source, which in our case would be zero. This gauge is called the transverse trace-
less gauge (TT gauge) and, adding these 4 conditions to the harmonic gauge, reduces the
degrees of freedom of our problem to 2. Thus, choosing the z axis parallel to the direction
of propagation, both degrees of freedom are completely defined by the amplitudes of the
perturbation in the x-y plane, and are usually called “plus” and “cross” polarizations.

hTTab (x) =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 eikx . (2.7)

In order to understand how gravitational waves are generated, at least in a weak field
situation, we have to consider the linearized Einstein equations in the presence of matter
fields, i.e. when the energy momentum tensor is not zero. One can again use the Lorenz
gauge and obtain

�hab = −16πG

c4
Tab . (2.8)

Using the property that stress-energy tensor Tab is divergence free, in weak fields the
influence of the stress-energy tensor on the gravitational field can be approximated by its
time-time component T 00, which can be interpreted as the energy density of matter ρ,

ρ = T 00. (2.9)

For consistency with weak gravitational fields we also restrict ourselves to low-velocity
sources, meaning the velocities inside the source are considered to be much smaller than
the speed of light c. It is then possible to write the gravitational wave signal in terms of
time derivatives of the quadrupole moment Qij of the mass density of the source,

Qij =

∫
d3xρ(t,x)(xixj − 1

3
r2δij), (2.10)

obtaining [
hTTij (t,x)

]
quad

=
1

r

2G

c4
Q̈TT
ij (t− r/c). (2.11)

Here i, j are spatial indices and t− r/c is the retarded time.
The fact that the mass quadrupole generates the leading order multipole of the grav-

itational radiation field can be understood as follows: when performing the multipole
expansion, we see that the first term, mass monopole, relates to the total mass-energy
in the system, which must be conserved. Similarly, the second term, mass dipole, relates
to the center of mass of the system and its derivative to the system’s momentum, which
must also be conserved. Thus the lowest remaining order affecting gravitational radiation
generation is the mass quadrupole.
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Furthermore, the quadrupole approximation can be used to find a simple expression
for the radiated energy, or luminosity, of a source:[

dE

dt

]
quad

=
G

5c5
〈
...
Q
TT

ij

...
Q
TT

ij 〉. (2.12)

The average is understood as a temporal average over several periods of the GW.

2.2 Sources

2.2.1 The basic physics of binary systems in general relativity

A first approximation to gravitational wave emission by binary systems is to consider
circular Keplerian orbits and the quadrupole approximation for the emitted gravitational
wave signal, from which one can compute the radiated power. The loss of energy will
cause the orbital radius to decrease, but we will consider the transition of orbit to be slow
and adiabatic. In the Newtonian approximation and center-of-mass frame, the dynamics
of two point-like compact stars, with masses m1, m2 and positions r1 and r2, reduces
to a one-body problem with mass equal to the reduced mass µ = m1m2/(m1 + m2), and
equation of motion r̈ = −(Gm/r3)r, where m = m1+m2 is the total mass and r = r2−r1,
the relative coordinate.

In this context, one can extract from Eq. (2.11) expressions for the amplitudes of the
plus and cross polarization terms of the stress metric:

h+(t) =
4Gµω2

sR
2

rc2
1 + cos2θ

2
cos(2ωst), h×(t) =

4Gµω2
s

rc2
cosθsin(2ωst), (2.13)

where ωs is the orbital frequency and R, the orbital radius. Notice that the gravitational
wave frequency is twice the frequency of the source, ωGW = 2ωs. Furthermore, computing
the quadrupole moment of the binary system and inserting it into equation (2.12), one
can write the quadrupole radiation power emitted during the inspiral as

P =

[
dE

dt

]
quad

=
32c5

5G

(
GMcωGW

2c3

)10/3

. (2.14)

The loss of energy caused by GW emission forces the orbital radius to decrease over time
(Eorbit ∝ −R−1) and, according to Kepler’s third law, if R decreases, ωs increases. On
the other hand, if ωs increases, the power radiated increases (2.14) making R to decrease
further. This runaway process leads, after a sufficiently long time-scale, to the coalescence
of the binary system.

Subsequent development yields expressions for the time evolution of the GW frequency:

fGW (τ) =
1

π

(
5

256τ

)3/8(
GMc

c3

)−5/8
, τ =

5

256
(πfGW )−8/3

(
GMc

c3

)−5/8
, (2.15)

where Mc = µ3/5m2/5 is the chirp mass, tcoal is the coalescence time from a time of
reference and τ is the time until coalescence (τ = tcoal − t). Notice that it is possible to
express the dependence on the intrinsic source parameters through the single parameter
Mc.

We see from the above equations that both the amplitude and frequency of the wave-
form increase as the coalescence is approached (see Figure 1 right panel for a graphical
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representation). This behaviour is referred to as “chirping”, since when translated into
air pressure waves, the sound it produces resembles the chirp of a bird.

We can now discuss real scenarios by inserting the numerical values in equations (2.15):

fGW (τ) = 135Hz

(
1.21M�
Mc

)5/8(
1s

τ

)3/8

, τ = 2.18s

(
1.21M�
Mc

)5/3(
100Hz

fGW

)8/3

,

(2.16)
where 1.21M� has been taken as a reference for Mc, which corresponds to a binary system
with two 1.4M� stars. Considering this reference case, at 10 Hz we detect the radiation
emitted at about τ = 17 min to coalescence; at 100 Hz, from the last two seconds, and
at 1 kHz, we get the radiation from the last few milliseconds. When fGW = 1 kHz,
the separation between the two 1.4M� bodies is R ' 33km (Eq. 2.19), which can only
be reached by very compact bodies, such as black holes or neutron stars. For the only
two currently published NSBH detections, the chirp mass is around Mc = 3M�, which
produces a signal that enters the detectors’ sensitive frequency bandwidth (10 Hz) about
4 min before the merger.

Another interesting quantity is the number of cycles the interferometers are able to
detect in terms of their sensitivity, because the more cycles before merger are detected,
the more information to characterize the waveform we get. Thus, for a binary with slowly
varying orbital frequency, i.e. in the inspiral, the number of cycles Ncyc is described as

Ncyc =
1

32π8/3

(
GMc

c3

)−5/3 (
f
−5/3
min − f−5/3max

)
' 1.6× 104

(
10Hz

fmin

)5/3(
1.2M�
Mc

)5/3

,

(2.17)

where
(
f
−5/3
min − f

−5/3
max

)
' f

−5/3
min is assumed, as is typically the case. Setting fmin to 10 Hz,

we get thousands of cycles for low mass binaries such as the NSBH detections. However,
for higher total mass binaries such as a BBH with m1 = 1000M�, m2 = 100M�, we can
only detect the last dozen cycles.

Now, using equation (2.15) and Kepler’s third law, we can find an ordinary differential
equation that relates the increase of frequency and the shrinking of the orbital radius,

Ṙ

R
= −2

3

ω̇GW
ωGW

= − 1

4τ
, (2.18)

which integrates to the evolution of the orbital separation over time,

R(τ) = R0

(
τ

τ0

)1/4

, (2.19)

where R0 is the value of R at the initial time t0, and τ0 = tcoal − t.
In the inspiral phase, the flat background approximation used in all of the above

computation is valid, and therefore our model of slow adiabatic succession of quasi-circular
orbits driven by the emission of gravitational radiation is still accurate. However, in
the Schwarzschild geometry exists a minimum of the radial distance beyond which the
gravitational field is rather strong, affecting the dynamics of the binary system when
the two objects get close. Mainly, this effect is observed as a plunge of the two stars
toward each other, caused by the fact that the Schwarzschild geometry no longer allows
for circular orbits. In the left panel of Figure 1 we can see the evolution of the orbital
radius taking only the quadrupole power loss into account (Eq. 2.19). Considering strong
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Figure 1: Left panel: The time evolution of the separation R(t) between the two bodies
until coalescence. Right panel: The evolution over time of the GW amplitude in the
inspiral phase of a binary. Both computed in the lowest-order Newtonian approximation.

gravitational fields, we would see a more sudden transition from the inspiral phase to the
plunge and merger. The limit at which that would happen, i.e. the orbital radius inside
which the orbits can no longer be supposed circular, is called Innermost Stable Circular
Orbit (ISCO) and can be defined by the value of the Schwarzschild radial coordinate
r = rISCO, located at

rISCO =
6Gm

c2
(2.20)

Therefore, the waveform computed above is only valid up to a maximum frequency fmax.
Thus, from the third Kepler’s law one can compute the source frequency fs that marks
the end of the inspiral phase,

(fs)ISCO =
1

6
√

6(2π)

c3

Gm
. (2.21)

Inserting the numerical values,

(fs)ISCO = 2.2 kHz

(
M�
m

)
, (2.22)

we can study the maximum frequency for some standard systems. This is of interest
because in order to be detected, the frequency must lie within the detectors sensitive
band, which will be discussed in Section 2.3. For instance, a NS binary with total mass
m ' 2.8M� (corresponding to two typical 1.4M� neutron stars) yields (fs)ISCO ∼ 800
Hz, while a BH-BH system with a total mass m = 10M� yields (fs)ISCO ∼ 200 Hz.
For reference, fs is of the order of mHz when two supermassive BHs with m ∼ 106M�
coalesce.

Writing out the power radiated (2.14) per unit solid angle and integrating over the
time domain, we can use the Fourier transform of h+ and h× to obtain dE/dfdΩ which,
after integrating over a sphere surrounding the source, yields the energy spectrum

dE

df
=
π2/3

3G
(GMc)

5/3f−1/3. (2.23)

Integrating up to the maximum GW frequency fmax, which we can approximately set at
fmax = 2(fs)ISCO for the quadrupole limit of the inspiral phase, and inserting numerical
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values, we see that the total energy radiated during the inspiral phase depends only on
the reduced mass µ and is

∆Erad ∼ 8× 10−2µc . (2.24)

For the two detected NSBH binaries, GW200115 and GW200105, the reduced masses
are around 1.2M� and 1.6M�, and the total energy radiated during the inspiral phase is
∆Erad = 5.73 · 1037J and ∆Erad = 7.64 · 1037J , respectively, which are huge amounts of
energy.

Up until now, we have seen simple solutions of binary coalescence with the lowest-order
Newtonian approximation. However, more accurate and complex solutions can be found
by going further along the Newtonian expansion and applying higher-order multipole
moment terms to the description of the fields generated by still slowly moving and weakly
self-gravitating sources. This post-Newtonian (PN) expansion is widely used by actual
waveform models (section 2.4).

On top of that, it is useful, as in any other radiation problem, to study the angular
dependence of the radiation. This can be accomplished by combining both strain am-
plitude tensors into a complex quantity, h(t, r) = h+(t, r) + ih×(t, r). Then, taking into
account that, at large distances to the source, the strain is inversely proportional to that
distance

h(t, r) =
h0(t, r̂)

r
+O(r−2) , (2.25)

the complex tensorial quantity h(t, r) can be expanded in terms of spin-weighted spherical
harmonics (SWSHs) with spin weight s = −2 (Goldberg et al., 1967),

h(t, r) =
1

r

∑
l,m

hl,m(t)Y −2l,m (θ, φ) . (2.26)

Here, the coordinates θ and φ stand for the standard polar angles on the unit sphere, thus
giving the direction r̂. Given this expression, it is sensible to study directly the mode
amplitudes hl,m(t) instead of the strain function in any direction, since handling a few
functions that depend solely on time is significantly simpler than dealing with a single
function depending on two angles and time.

In the non-relativistic quadrupole aproximation (see Eq. 2.13) one can demonstrate
that binary systems without orbital precession emit gravitational waves mainly in the
direction orthogonal to the orbital plane, i.e. θ = 0, π. We can follow this symmetry
aligning the z-axis with that direction, which shows that mode amplitudes obey an inher-
ent hierarchy, its value decreasing with l and with |m| in each l. The dominant modes of
the wave are then those described by the (l = 2, m = |2|) spherical harmonics.

2.2.2 Compact objects in general relativity

When stars run out of fuel for nuclear fusion, they contract until new equilibrium between
pressure and gravitation are found, or, if no such equilibrium exists, they undergo complete
collapse to a black hole. In any case, the new object is much more compact than the
original star, and stellar remnants such as white dwarfs, neutron stars, or black holes,
or in fact any object with a similar level of compactness, i.e. a similar ratio of mass to
radius, is called a compact object. Stars typically have angular momentum and are thus
not exactly spherically symmetric, however it turns out that the basic principles of the
formation of compact objects can indeed already be understood in spherical symmetry.
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The metric for the vacuum region of a spherically symmetric spacetime, e.g. the
region outside of a compact object, had already been found in 1916 by Karl Schwarzschild
(Schwarzschild, 1916), and is called the Schwarzschild solution. The line element is

ds2 = −
(

1− 2GM

rc2

)
dt2 +

dr2

1− 2GM
rc2

+ r2dΩ2, (2.27)

where M is the total mass and dΩ2 = dθ2 + sin2θdϕ2.
Spherical symmetry and stationarity restrain our freedom to choose a set of coordi-

nates. By assuming dΩ2 to be a part of the invariant interval ds2, φ and θ are constrained
to be interpreted as variables labeling directions in space. Furthermore, φ and θ have a
natural geometric interpretation as angles, and the time coordinate t directly expresses
a symmetry (the metric does not depend on it). Reparameterizing t in any non-trivial
way would make the metric depend on t and hide the symmetry. However, no natu-
ral choice exists for the radial coordinate r, which needs to be chosen carefully. The
Schwarzschild metric can be restricted to the coordinate spheres t = t0, r = r0, given by
g|t=t0,r=r0 = r20dΩ2, which is positive and definite. This means with the choice for r made
above, the coordinate spheres are actual geometric spheres with area A = 4πr20. Conse-
quently, the radial coordinate chosen in Eq. (2.27) possesses a geometric interpretation in

terms of the surface area of nested round spheres, and can be described by it: r =
√

A
4π

.

It can also be defined in terms of the measured circumference around the black hole at
fixed r, θ and t: C =

∫
ds = r

∫
dφ = 2π. Both ways, the r coordinate has a useful

physical interpretation, and becomes radial distance in the flat-space limit.
The Schwarzschild line element shows two singular points, at r = 0, and r = 2GM/c2.

The singularity at r = 0 is a true physical singularity, where the curvature diverges,
while the singularity at r = 2GM/c2 is only a coordinate singularity. Inspecting the line
element one can see that when the radius r approaches the value of r = 2GM/c2, i.e. at
the “Schwarzschild radius”, the metric component gtt, and thus the norm of the timelike
basis vector (∂/∂t)a, vanishes. The interpretation is that this timelike vector becomes null,
so you would need to move outwards at the speed of light to stay in place. Therefore,
anything past the Schwarzschild radius will not be able to escape the gravitational pull,
not even light. This boundary is what is now known as event horizon: the surface which
causal influences can cross only inwards. The region of space-time delimited by that
surface, from which neither matter nor radiation can escape, is what we call a black hole.

Until now, we have discussed the static, spherically symmetric solution, Schwarzschild
geometry, but it can be generalized by including charge and angular momentum. The
spacetime geometry for an axisymmetric, charged black hole is called the Kerr-Newman
solution (Newman and Janis, 1965), but it can be simplified by considering angular mo-
mentum or charge to be zero, yielding the Reissner–Nordström (Reissner (1916) and Nord-
ström (1918)) and Kerr (Kerr, 1963) solutions respectively. Astrophysical black holes are
expected to have non-zero spin, since stars are generally rotating. And since any existent
net charge is expected either to attract the opposite and neutralize or be expelled by the
intense electromagnetic fields around rotating astrophysical bodies, we will focus on the
rotating, uncharged axially-symmetric solution, also called Kerr metric or Kerr geometry.
By the no-hair theorem (see Israel (1967) and Israel (1968)), hair being a metaphor for
extra parameters other than mass, charge and angular momentum, Kerr black holes can
be parametrized by just mass and spin.

We now consider a spherically symmetric region of spacetime that contains matter.
We start off with a general time-invariant, spherically symmetric metric as ansatz, quite
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similar to the Schwarzschild metric/line element:

ds2 = −e−2φ(r)dt2 +
dr2

1− 2m(r)
r

+ r2dΩ2, (2.28)

where the functionsm(r) and φ(r) are chosen for convenience to simplify the interpretation
of the gtt and grr metric components.

Inserting the ansatz (2.28) into the Einstein equations yields ordinary differential equa-
tions for the functions m(r) and φ(r). The equation for m(r) can directly be integrated
to

m(r) =

∫ r

0

4πr′ 2ρ(r′)dr′, (2.29)

which gives the total mass enclosed in a sphere of radius r. Notice that given a mass
distribution where 2m(r) = r is satisfied at a certain r, the radial component of the line
element diverges (2.28) and, therefore, the star collapses. The equation for φ(r) reads

dφ(r)

dr
=
m(r) + 4πr3P/c2

r
[
r − 2m(r)G

c4

] . (2.30)

In the Newtonian limit c→∞ this becomes the equation for the Newtonian gravitational
potential,

φ′N =
m(r)

r2
,

which justifies our ansatz for φ(r).
We have thus obtained equations for the metric components in terms of the functions

m(r) and φ(r) and yet unspecified mass density ρ(r) and pressure P (r). We assume
for simplicity that our matter takes the form of an ideal fluid, which has the energy
momentum tensor

Tab = ρuaub + P (gab + uaub). (2.31)

This specific choice of energy momentum tensor obeys the general property of an en-
ergy momentum tensor, which is the law of differential conservation of energy and linear
momentum,

∇aT
ab = 0. (2.32)

In addition we will assume that both the matter density and pressure are non-negative,

ρ, P ≥ 0. (2.33)

Finally, by plugging the tensor field for a perfect fluid (2.31) into the EFE and using
Eq. (2.32), one can derive the Tolman–Oppenheimer–Volkoff (TOV) equation for the
structure of a static, spherically symmetric relativistic star (Wald, 1984):

dP

dr
= −(ρ+ P )

m(r) + 4πr3ρ

r [r − 2m(r)]
. (2.34)

The variables P and ρ are related by an equation of state (EoS) specific to the star,
which is necessary to solve the TOV equation. Taking the non-relativistic limit, the TOV
equation becomes the Newtonian hydrostatic equation:

dP

dr
= −ρm(r)

r2
. (2.35)
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Comparing Eq. (2.34) to Eq. (2.35), we see both the pressure term and the 4πr3ρ term
are positive quantities that contribute to internal pressure needing to be higher to hold
against gravitational collapse. Furthermore, one can solve the equation for the general
potential φ(r) by finding solutions for equations (2.29) and (2.34) and plugging them into
(2.30), which is decoupled from the other two.

Due to the complexity of characterizing a realistic EoS (which will be briefly discussed
below) and solving the TOV equation with it, we may consider a uniform density star to
find an exact solution:

ρ(r) =

{
ρ0 (r ≤ R)

0 (r > R)
, (2.36)

where R is the radius of the star. By definition of surface of a bound star in vacuum,
we can define the boundary condition on the pressure P (r = R) = 0. This is not a very
accurate estimate, but very dense objects such as the center of a neutron star can be
roughly approximated to constant.

The expression for P (r) in Newtonian physics for a constant density spherical object
is quite simple: P (r) = 2π

3
ρ0(R

2 − r2), but no so much in general relativity. Therefore,
we will restrict ourselves to study only the central pressure, Pc = P (r = 0). The TOV
equation yields

Pc = ρ

√
1− 2M

R
− 1

1− 3
√

1− 2M
R

. (2.37)

Notably, Pc diverges when M
R

= 4
9
. This is called the Buchdahl limit, and yields an upper

limit R < 2.25M , just a little bit larger than the Schwarzschild radius. Similar results for
more complicated scenarios indicate the Buchdahl limit to be universal. Moreover, from
this expression follows a relation to compute the maximal mass of a body, which was the
original purpose of the TOV equation,

Mmax ∝
1
√
ρ0
, (2.38)

meaning the higher the central density, the smaller the maximal mass.
Different compact objects can be found throughout the universe, each with different

composition and therefore varying densities. Using the results extracted above, one can
approximate a maximal mass for each type of them.

These compact objects are usually cores of stars that have died out. Stars are held
up by the energy generated by fusion reactions: hydrogen atoms combine into helium,
those into lithium an so on until iron, after which fusion becomes endothermic. As a
result, the star starts running out of elements to fuse, the energy generated decreases
and the internal pressure can no longer hold against gravitational collapse. If the stellar
mass is typically under 9M�, the core collapses into a white dwarf. Otherwise, the
collapse triggers an explosive reaction called supernova, which expels several solar masses
of material. Sometimes, the core will coalesce into something even more compact than
white dwarfs, namely neutron stars or black holes.

White dwarfs, as stellar cores that no longer undergo fusion reaction, have no source
of energy except stored thermal energy, which causes the faint luminosity they give off.
Instead, the process preventing their collapse is the pressure generated by Pauli’s exclu-
sion principle, which states that no two fermions can occupy the same quantum state.
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Thus, the electrons in a white dwarf behave as a Fermi gas, holding it against the self-
gravitational pull. Electron-degenerate matter density is of the order of 109 kg/m3, making
white dwarfs 4 orders of magnitude denser than the core of the Sun.

The results of the TOV equation and physics of degeneracy yield a maximal mass
for white dwarfs over which the electron degeneracy pressure can no longer prevent the
collapse (Chandrasekhar limit). This critical mass is about 1.44M�, also called the Chan-
drasekhar mass due to its relation to the Chandrasekhar limit (Chandrasekhar, 1931). If
this mass is surpassed, the core collapses further and reaches temperatures higher than
109K, giving protons and electrons enough energy to form neutrons via electron cap-
ture, thus releasing a flood of neutrinos. Neutrons, being also fermions, also obey the
Pauli exclusion principle, though the fact that they are more massive than electrons (and
therefore have a much shorter wavelength at a given energy) allows for a smaller sep-
aration between the degenerate neutrons. Consequently, a degenerate neutron gas can
reach pressures much higher than that of a degenerate electron gas. When core densities
reach nuclear density of 4 × 1017 kg/m3, a combination of neutron degeneracy pressure
and strong force repulsion stops the contraction, the neutrinos produced in the neutrons’
creation flings the infalling outer layer of the star outwards, expelling several solar masses
of material. This explosion is known as a supernova, and its luminosity is akin to that
of entire galaxies and can take various weeks until it completely fades away. Supernovae
can emit gamma ray bursts (GRB), which are the most energetic electromagnetic events
known in the universe, lasting from several milliseconds to hours. After the initial flare of
gamma rays, light of longer wavelength is commonly emitted for a longer period of time
(“afterglow”), which permits the observation of the aftermath of supernovae explosions.

However, core collapse isn’t the only way to cause a supernova. In a binary system, the
core of a white dwarf can reach the ignition temperature for carbon fusion as it approaches
the critical mass by accreting mass from its companion, or by merger if the companion is
another white dwarf. Within a few seconds of the start of nuclear fusion, a significant part
of the white dwarf undergoes a runaway fusion reaction, which releases sufficient energy
to cause a supernova explosion (Wikipedia, 2021). This type of supernova, supernova Ia,
is particularly interesting because it produces a fairly consistent peak luminosity due to
the fixed critical mass at which a white dwarf will explode. Therefore, type Ia supernovae
can be used as standard “candles” to measure the distance to their host galaxies, or to
study the expansion of the universe and dark energy.

After the explosion, the core can coalesce back and settle into a neutron star or, if the
remaining mass exceeds the maximal mass for neutron stars (2M� ∼ 3M�, depending on
how high the rotational breakup limit is assumed), the internal pressure gives in to gravi-
tational collapse and a black hole is formed. This formation channel, per the conservation
of angular momentum of the original “progenitor” star, usually produces rapidly rotating
compact stars, since the radius of the spinning cloud of material is extremely reduced in
the coalescence. Highly magnetized spinning neutron stars (and sometimes white dwarfs),
or pulsars, emit pulses of electromagnetic radiation in the radio spectrum. This radiation
is shot out of their magnetic poles so, due to misalignment between the spin axis and
magnetic axis, detection is only possible when that direction points towards the observer,
giving the pulsed appearance and evoking the behaviour of a lighthouse. When pulsars
are found in binary systems, the orbital shift usually causes the beam to no longer pass
over us, thus becoming invisible to our telescopes. This is what happened to the Hulse
and Taylor pulsar (Hulse and Taylor, 1975), which can no longer be seen from the Earth.
Since neutron stars are very dense and have short, regular rotational periods, the pulses

12



are produced at very precise intervals, which range from milliseconds to seconds. Pulsars,
like supernovae, are also candidates for the source of ultra-high-energy cosmic rays.

Before the discovery of gravitational waves, phenomena like supernovae, GMB and
pulsar radiation were the only window to study observed or theoretical objects like black
holes, neutron stars, and white dwarfs. Whereas now, gravitational wave detection has
broadened multimessenger astronomy, allowing us to observe the same event through
different lenses and learn much more about their nature, the matter they are made of and
their possible equations of state. An example of this is the discovery of event GW170817
(Abbott et al., 2017). It consisted in the detection through GWs of the inspiral and merger
of a binary system of two neutron stars (BNS), combined with the observation of an EM
counterpart, 170817A, detected by Fermi-GBM 1.7s after the merger. This observation
confirms the hypothesis of a neutron star merger and links these with short gamma ray
burst through direct evidence for the first time. Short GRB appear to originate when
the development of a resonance between their crust and core, product of the immense
tidal forces experienced in the seconds that precede the merger, causes the outer layer of
the star to bust (Tsang et al., 2012). Transient counterparts across the electromagnetic
spectrum where later spotted in the same direction and distance, further supporting
the interpretation of this event as the merger of a BNS system. This unprecedented
joint electromagnetic and gravitational observation proves an example of the future of
multimessenger astronomy, and casts some light on gravitation, dense matter, cosmology
and astrophysics.

Compact Binary Coalescence (CBC) are key sources for gravitational-wave astronomy,
since, as explained in Subsection 2.2.1, the emission of GWs reduces the distance between
the two compact bodies, augmenting the orbital frequency and therefore increasing the
total energy carried away by gravitational radiation. Thus, orbital motion is a particularly
effective way to accelerate astrophysical objects. Furthermore, compact objects allow for
very small separations, and so, at the final stages of the coalescence, they can emit
GWs of high frequencies and energies, which are easier to detect. However, the ability
to observe binary systems is dependent on their mass, since, as we will see in Section
2.3, ground-based detectors have a specific frequency band of sensitivity and frequency
is indirectly proportional to the total mass. Black Hole Binaries (BHB) are the most
effective known source of gravitational waves, seeing that they are the most compact
astrophysical objects, and can therefore orbit at the smallest separations and highest
frequencies. Compact binaries can have one of two origins: “dynamical interaction” or
“isolated binary evolution”. The first happens when two objects pass close enough to
each other to fall into a stable orbital motion, and are more likely to occur in dense
stellar environments such as globular clusters; the latter means the two objects were
already in orbit before going supernova and becoming compact objects. To distinguish
between them, spin and orbital angular momentum alignment give a strong hint. If a
NSBH system, for example, was formed by isolated binary evolution, we would expect
the neutron-star to orbit around the black hole equatorial plan. In contrast, formation
by dynamical capture should not have a preferred direction of the spin, and therefore
the NS orbit could have any orientation relative to the black hole’s equatorial plane. For
supermassive BH binaries, arbitrary orientation is expected, since they have to be formed
by the merging of lighter ones at the core of galaxies, which collide at random angles.

Per the aforementioned no-hair theorem, the parameter space of a BHB can be defined
by eight parameters, namely two masses and two spins. For eccentric orbits, two more
parameters would be needed to characterize the orbit (its orientation and eccentricity).
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Such orbits are sparse, however, because they are prone to rapidly circularize when no
other interactions are present (Peters, 1964). Therefore, efforts of current data analysis
are focused on circular binaries, which need no further parameters due to the relation
between the separation between the two masses and the velocity. In vacuum general
relativity, geometrized units (G = c = 1) are commonly used, since the lack of other
fundamental constants allows the mass to act as purely a scale parameter. The parameter
space is therefore further reduced to seven, since the information of both masses can be
encoded within the mass ratio, q = m1/m2 ≥ 1.

The coalescence of two compact objects can be dissected into three phases. The first is
the inspiral, where they revolve around each other for long periods of time, slowly loosing
orbital energy by the runaway GW emission process explained in Subsection 2.2.1. This
ends with the plunge and subsequent merger, where both objects combine into an unstable
one. This final compact object oscillates, emitting GWs until it stabilizes into, if it has
enough mass, a Kerr black hole. This last stage is called the ringdown, since it consists
in an exponential decrease of GW amplitude: from its maximum in the merger to the
effective null amplitude of a stable Kerr black hole. Good qualitative descriptions of the
inspiral and ringdown signals can be provided by analytic approximation techniques, but
no so much during the plunge and merger. The simplest version of these calculations is
the one viewed in the previous subsection (2.2.1) based on Newtonian orbital dynamics
and Einstein’s quadrupole formula.

However, for a more accurate description of GWs emitted by binaries with at least one
material body (i.e. not a black hole), other phenomena need to be taken into account.
We will center our attention on neutron star-black hole (NSBH) binaries, as they are
the focus of this project. The key difference between black holes and material bodies
during the inspiral is that the latter deform significantly under tidal stress. That is, the
gravitational pull on the neutron star is greater at the closest point than at the furthest,
and this difference gives rise to a strain on the neutron star material. This tidal interaction
modifies the inspiral rate and can in principle be observed in the gravitational wave signal.
The rotation of the star causes this strain to be applied in different directions, falling into
a pattern of expansions and contractions in synchrony with the neutron star’s rotational
period (the same process that caused the loss of rotational energy of our moon and
consequent synchronization with its orbital period). In the latest stages of the coalescence,
when distances between the bodies are short and the gravitational pull strongest, the tidal
deformations can become too violent for the star to hold against, breaking into a cloud
of neutron star material that is absorbed by the other object. This process, called tidal
disruption, would be seen as a sudden decrease in the GW amplitude at high frequency
and observing it could provide valuable information about the extreme form of matter
that makes up neutron stars.

2.3 Data Analysis

In essence, gravitational wave detectors are Michelson-Morley interferometers. They mea-
sure the gravitational wave strain as a difference of length of their arms, which leads to
an interference between the originally in-phase laser beams that travel through each arm.
This transmits an optical signal proportional to the strain of the wave (see Figure 2 for
a simplified bluprint). However, these length variations are 10−21 times smaller than the
4km-arms, and thus comparable to a thousandth of the width of a proton, so the phase
shift of the two beams is of the order of a trillionth of their wavelength, making the inter-
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Figure 2: Left panel: Aereal views of the the LIGO Hanford and LIGO Livingston inter-
ferometers. Right panel: Basic schematic of LIGO’s interferometers. Images recovered
from LIGO Caltech.

ference signal variations extremely faint. As a consequence, great effort is needed to reach
the required sensitivity and reduce the effects of thermal and seismic noise, other noise
sources and optical phase fluctuations. Some of the measures taken are using very smooth
mirrors held by silica threads to gain precision in the detection of the phase variation,
extremely low-pressure vacuum chambers to reduce interactions with the megawatt laser
beams, and building different detectors at different sites: LIGO Livingston and Hanford
(See Figure 2, left panel), Virgo and Kagra, which not only helps eliminate local noises,
but also allows for a more precise location of the source;.

Despite the efforts to reduce detection noise, it still embodies most of the detector’s
output. So the only way to extract a signal much smaller than the floor of the noise
is to know, at least to same level of accuracy, the form of h(t), aside from the typical
scales of variations of the noise, and use bayesian statistics and match-filtering techniques
to recover the gravitational wave signal. Thus, we describe the detector’s output as
d(t) = s(t) + n(t), where s(t) is what we expect to be a GW signal, and n(t) is the
detector noise. The spectral noise density or power spectral density (PSD) Sn(f) is defined
so that the ensemble average over different noise realizations of n2(t), 〈n2(t)〉, is obtained
integrating this function over the physical range of frequencies 0 ≤ f < ∞, rather than
from −∞ to ∞,

〈n2(t)〉 = 〈n2(t = 0)〉 =

∫ ∞
−∞

dfdf ′〈n∗(t)n(f ′)〉 =

∫ ∞
0

dfSn(f) . (2.39)

If n(t) is dimensionless, Sn(t) must be in Hz−1 and therefore the noise generated
inside the detector can be characterized by the spectral strain sensitivity, which has units
of Hz−1/2 and can be computed with

√
Sn(f), called the spectral strain amplitude. See

Figure 3, which shows the sensitivity upgrade from the initial detectors (green) to the
Advanced interferometers used in O1. Even still, the sensitivity of these earth-based
detectors is limited at low and high frequencies, and the most sensitive frequency band is
between 100 Hz and 300 Hz. To gain access to lower frequency gravitational radiation and
a more flat spectral sensitivity curve overall, a space-based interferometer will be needed,
which is planned to be launched in 2034. The Laser Interferometer Space Antena (LISA)
will consist of three satellites in an heliocentric orbit working as an effective triangular
Michelson-Morley interferometer, and will be able to detect not only binaries of compact
objects within the Milky Way, but also extreme mass ratio inspirals, mergers of massive
black holes at the centre of galaxies, and possibly other cosmological sources, such as the
initial stages of the Big Bang, and speculative astrophysical objects like domain boudaries
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Figure 3: The spectral sensitivity of the total strain noise in units of strain per
√
Hz.

Image recovered from Martynov et al. (2016).

and cosmic strings (Amaro-Seoane et al., 2013). Furthermore, it is expected that LISA
will be able to anticipate the LIGO detections by a few weeks or months (see Eq. (2.17)),
resolving about 100 binaries before they are detected on Earth at merger, the time of
which it will be able to accurately predict beforehand and locate the direction of the
event with very high precision. This will greatly improve the possibilities of finding EM
counterpart events (Amaro-Seoane et al., 2017).

As mentioned above, a data analysis strategy often used is to perform match filtering
(see e.g. Maggiore (2008), ch. 7 for textbook development). The main idea of this
method consists in applying many different templates h(t, θN), where θN = θ1, θ2, . . . , θn
is the discrete parameter space characterizing the shape of the pulse and its temporal
width, to the data by computing the scalar product between the template and the output
of the detector d(t), chosen so the signal-to-noise ratio (SNR) is maximized. Constructing
the scalar product between two real variables as

(A|B) = 4 ·Re
∫ ∞
0

df
Ã∗(f)B̃(f)

Sn(f)
, (2.40)

the SNR can then be defined as the coefficient of S, the expected value of a quantity which
depends on the template and the output of the detector, and N, its RMS value when the
signal is absent. Thus, applying the SNR definition to the scalar product yields

S

N
=

(h|d)√
(h|h)

, (2.41)

from which follows that the optimal value of SNR is
√

(h|h), and so(
S

N

)2

opt

= 4

∫ ∞
0

df
|h̃(f)|2

Sn(f)
. (2.42)
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For Gaussian noise, optimizing the SNR over the time shift and complex phase parameters
of the templates h(t, θN) would suffice to recover the signal from under the noise floor.
In reality, however, most events surpassing the set minimal SNR would be due to non-
Gaussian transients and “glitches”, so significant effort goes into reducing the number of
glitches, though they cannot be completely removed. Consequently, the analysis must
also exert methods to discern signal from noise transients, such as χ2 consistency tests
with coherent and coincidence searches (see Harry and Fairhurst (2011)).

Notice that the SNR is dependant on the amplitude of d(t), which is useful for many
types of analyses, but if we are only interested in the overlap of the shapes of h(t, θN) and
d(t), we must then also divide by the amplitude of d(t):

m =
(h|d)√

(h|h)(d|d)
. (2.43)

After optimizing over time shift and complex phase (rotation), which does not affect the
shape of the waveform, m becomes the match between h(t, θN) and d(t), which goes from
0 to 1.

Data analysis for compact binary signals observed by current ground based detectors is
commonly carried out as a two-step process: first, searches are performed (see e.g. Usman
et al. (2016)) to detect as many events as possible while minimizing the false alarm
rate. The most sensitive search techniques are based on matched filtering with banks
of astrophysically plausible signals. Such banks typically contain around 105 templates
h(t, θN), where the templates are chosen sufficiently dense in the parameter space to
not loose more than 10% of the signals. It is also possible to perform generic transient
searches, where no specific template bank is assumed, and events are identified based
on their amplitude above the background and the evolution of the frequency in time.
This allows to discover unmodelled signals. Both matched filter and unmodelled searches
assign a statistical significance to candidate signals, which is typically quantified as a false
alarm rate (FAR). When a matched filter search is performed, the templates that yield
the highest SNR provide a rough estimate of the source parameters.

For detected events a more detailed procedure is then used to compute the best es-
timate of the source parameters, as well as error estimates. This step is usually called
“parameter estimation” and uses the framework of Bayesian statistics and Bayesian in-
ference (see e.g. Veitch et al. (2015)). For this step using a fixed template bank would be
prohibitively expensive, and algorithms like Markov-Chain-Monte-Carlo or nested sam-
pling are used to perform random walks that sample the parameter space and allow to
compute expectation values, variances, and related quantities. Typically 107– 109 evalua-
tions of waveform models are required to accurately determine the source parameters and
determine the specifics of the GW sources. Said parameters are the intrinsic parameters
(masses and spins) and the extrinsic parameters (polarization, inclination, distance, sky
location and coalescence phase). Bayesian statistics are applied to infer a probability dis-
tribution of the source parameters (of the two coalescing bodies and of the final object),
as well as the total energy radiated, giving the most likely values and the error estimates.

2.4 Waveform models

In a first approximation, i.e. neglecting tidal effects and when disruption does not oc-
cur, BH models can be used to describe any compact-object binary. Even so, to precisely
model their gravitational waveforms a combination of analytical and numerical methods is
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needed: while the inspiral and ring-down stages of the BH coalescence can be described by
perturbative techniques, the merger requires a non-perturbative treatment and thus nu-
merical solutions of Einstein’s equations. Such numerical simulations are computationally
very expensive and so it is computationally prohibitive to densely sample the parameter
space of BH coalescences. In the last 15 years the waveform modelling community has
constructed a “zoo” of waveform models, combining analytical and numerical- relativity
results to describe all stages of the coalescence. This has dramatically improved the sen-
sitivity of searches for GWs from BH binaries and the accuracy of estimating the source
parameters. Two main families of these models exist: the time domain family based on
the effective one-body approach, “EOBNR” (Rettegno et al., 2020), which mostly use
integration of PN energy flux to indirectly calculate the waveforms; and the phenomeno-
logical frequency domain family, IMRPhenom (Inspiral-Merger-Ring-down) (Ajith et al.,
2011), which make use of physical insight to directly model the waveforms, and therefore
being much faster than the former. Each of these have been upgraded over the years (e.g.
SEOBNRv4 (Rettegno et al., 2020) or PhenomP and PhenomX (Pratten et al., 2020)),
and the differences between them have diffused; although for computations in the presence
of noise (such as searches or match-filterings, for instance), it is most sensible to make
use of frequency domain-based models since, aside from being faster, noise is more eas-
ily characterized in the frequency domain. Moreover, hybrid models (MacDonald et al.,
2011) are able to use perturbative theory in the inspiral phase and numerical relativity
(NR) for the plunge merger and ring-down, granting more precision while using analytical
solution for a good portion of the waveform. Finally, surrogate models (Field et al., 2014)
use exclusively NR to compute waveforms on a limited parameter space, making them
much more precise but with some setbacks, such as finite time intervals and no results in
extremes of the parameter space due to lack of NR material. Surrogate models can be
used over EOB or even hybrid models to improve the speed of computation.

When taking tidal effects into account, two types of corrections to BBH models are
applied in order to capture the effects of tidal deformations on the morphology of the
waveform. The first one is a phase shift occurring during the inspiral, on which most efforts
to improve current models (such as NRTidal, see Dietrich et al. (2019)) are focused. The
second one is a correction on the waveform’s amplitude in order to model tidal disruption,
which would cause the amplitude to suddenly decrease. In NSBH models, the phase shift
in the inspiral is yet too hard to detect (it has only been detected in particularly strong
BNS signals, see Abbott et al. (2017)). The point at which tidal disruption occurs is still
not very well constrained. Currently, it is believed to only occur at mass ratios lower
than 8 (q < 8), making both NSBH detections (q around 4) interesting cases. The lack
of tidal disruption telltales in the amplitude of the signals may hint at equations of state
describing more compact neutron stars, harder to disrupt, but it may very well be due
to detection sensitivity and model precision being too poor. The insignificance of tidal
effects detected so far with the current sensitivity is the reason why using uncorrected
BBH models on non-disrupting NSBH signals is most sensible for the time being.

2.5 NSBH observations to date

Already before the first detection of gravitational waves, 19 binary neutron star systems
had been identified in our Galaxy in the past four decades, and astrophysical models
predicted the event rates of ground based gravitational wave detectors to be dominated
by signals from binary black holes. Mixed neutron star-black hole binaries had however
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Figure 4: Data of the normalized energy carried by the gravitational radiation emitted by
GW200105 (left column) and GW200115 (right column) represented in the time-frequency
space. The spots that stand out in the GW200105 data from the LIGO Livingston detector
below 25Hz correspond to light-scattering noise are shown after glitch subtraction. For
GW200105, the LIGO Livingston data are shown after glitch subtraction. Image recovered
from Abbott et al. (2021).

remained elusive in both EM and GW surveys before the third LIGO-Virgo observation
run (O3), and the discovery of a pulsar in an NSBH binary remains a key objective for
current and future radio observations. On the other hand, surveys in the Milky way show
X-ray binaries with a BH component, which according to binary evolution models are one
of the possible progenitors of NSBH binaries. The absence of NSBH candidates in LIGO’s
and Virgo’s first two observing runs (O1 and O2) indicated an upper limit on the local
merger rate density of NSBH systems of RNSBH ≤ 610Gpc−3yr−1 (all measurements are
quoted at the 90% credible level).

Distinguishing between black holes and neutron stars in gravitational wave observa-
tions is difficult: EM counterparts can indicate the presence of a neutron star in a binary,
but such counterparts are expected to be rare. Tidal deformation can influence the grav-
itational wave signal as discussed below, but is a sub-dominant effect and hard to detect.
The main criterion thus is a mass larger than 3 M�, the upper limit of neutron star
masses, as discussed above.

During O3a, two events stood out as possible NSBH candidates, based on the observed
masses of the components. First, GW190426 152155 (Abbott et al. 2021b) was identified
as a marginal NSBH candidate with a high false-alarm rate (FAR; 1.4 yr−1), it this could
also plausibly be a noise artifact. The second event is GW190814 (Abbott et al. 2020c).
Although the mass of GW190814 smaller component, m2 = 2.59+0.08

−0.09M�, probably exceeds
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Figure 5: Left panel: Summary of the known component masses of the objects that pro-
duced GW200105 and GW200115, and also the two O3a NSBH candidates. The color-
shading marks mass-combinations consistent with the data,with darker shading denoting
better agreement, i.e. a higher probability for such mass-combinations. The top panel
shows the information about the primary mass m1 (black hole). The right panel sum-
marizes the information about the secondary mass m2, where green shadings represent
the current astronomical knowledge about the maximal mass of neutron stars (one using
the TOV equation explained in Subsection 2.2.2), showing that the secondary masses ob-
served for all events (except possibly GW190814) are small enough to be neutron stars.
Image recovered from Abbott et al. (2021). Right panel: The masses of black holes and
neutron stars measured through EM observations (purple and yellow, respectively) and
GW (blue and orange, respectively). The NSBH signals, GW200105 and GW200115, are
highlighted as the merger of neutron stars with black holes. Image recovered from LIGO
Science Summaries.

the maximal mass supported by slowly spinning NSs, it could be a NS spinning near its
breakup frequency. Otherwise, it is the lightest BH ever detected. After the O3a run, of
the 59 gravitational-wave signals that have had been detected, only two had properties
consistent with NSBH binaries (Abbott et al., 2021).

In January of 2020, however, two further gravitational-wave signals were detected
within the span of fifteen days, both of them with a high probability of having been caused
by NSBH binaries. Assuming these events as representatives of their population, the local
merger rate density of NSBH systems inferred is narrowed down to R ≤ 45+75

−33Mpc−3yr−1.
Inferring the local merger density rate assuming a broader distribution of component
masses instead, yields R ≤ 130+112

−69 Mpc−3yr−1.
The first NSBH detection, GW200105 162426 (nicknamed GW200105), was detected

on the fifth of January only by the LIGO Livingston and Virgo detectors, since the LIGO
Hanford detector was not operative. But it was effectively a single-detector event in
LIGO Livingston due to the small SNR in Virgo. The second one, GW200115 042309
(nicknamed GW200115), was a coincident detection of all three interferometers confi-
dently targeting it as an astrophysical GW event. Figure 4 shows the time-frequency
representation of the two event. The top left panel shows the time-frequency data of
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GW200105, were a track of excess power with increasing frequency stands out. No sim-
ilar tracks are visible in the other panels as the SNR is lower in each of the detectors
and the signal is longer for GW200115. We can also see light-scattering noise in LIGO
Livingston at around 20 Hz.

To infer the physical properties of the sources of GW200105 and GW200115, a param-
eter estimation was conducted via a coherent Bayesian analysis of data from all detectorsr
(except LIGO Hanford for GW200105, since it was inoperative). Due to the different du-
ration of the signals, up to 64 seconds were analyzed of the GW200115 signal, and only
32 seconds of the higher mass signal. A low-frequency cut-off was set at flow = 20Hz
for all likelihood evaluations except for the LIGO Livingston detection of GW200115,
which was set at 25 Hz to avoid the light-scattering noise. Parallel Bilby (PBILBY) and
DINESTY nested sampling software were the main tools used to sample posterior distri-
bution of the sources parameters, as well as RIFT for the most computational expensive
analyses and LALINFERENCE for verification. The waveform models used as base for
the main analyses of both signals were BBH models with spin induced orbital preces-
sion and higher order multipole GW moments, although they do not include tidal effects.
Specifically, one of each BBH waveform model families were used: IMRPhenomXPHM
and SEOBNRv4PHM. Of course, the impact of neglecting tidal effects should be quanti-
fied; and for that, two NSHB models with tidal effects were used to analyse the waveform
assuming all spins were aligned with the orbital angular momentum and their values re-
stricted to the region of applicability of NSBH models, i.e. χ1 = 0.5 and χ2 = 0.05 for
the PhenomNSBH model and χ1 = 0.9 and χ1 = 0.05 for the EOBNR model. After that,
analyses performed with aligned-spin BBH waveform models found good agreement with
those performed with NSBH models, further validating the use of BBH waveform models
to analyze the two NSBH signals. Specifically, two models using only dominant quadruple
moment (IMRPhenomXAS and SEOBNRv4) and two others with higher order moments
(IMRPhenomXHM and SEOBNRv4HM).

There is no direct evidence indicating that the secondary masses are NSs, since neither
tidal disruption nor other tidal effects were measured and no EM counterparts were found
for either detection. Therefore, both detections are compatible with BBH merger signals.
However, given the properties and distances of the two events, the absence of tidal mea-
surements and EM counterparts is to be expected. Nevertheless, parameter estimation for
the component masses sets the primary objects within the BH mass range and yields val-
ues for the secondary objects that suggest they indeed are NSs. Concretely, the primaries
have masses of 8.9+1.2

−1.5M� and 5.7+1.8
−2.1M�, for GW200105 and GW200115 respectively,

which is well beyond the NS maximal mass and within the range of BH observed through
both electromagnetic and gravitational radiation. Therefore we can confidently assume
them to be BH. The secondaries have masses of 1.9+0.3

−0.2M� and 1.5+0.7
−0.3M� which, when

compared to the maximum allowed NS mass, fall within the known range of NS masses
with probabilities of 89%-96% and 87%-98%, respectively. See Figure 5 (left panel) for
the probability distributions of these masses, as well as those of both O3a candidates
mentioned before.

Owing to the nature of the detections, location of the sources is not very well con-
strained. Both signals were found to be born at great luminosity distances, DL = 280+110

−110
and DL = 300+150

−100 for GW200105 and GW200115, respectively. Sky location accuracy
differs significantly between detections, however, owing to one being an effective single-
detector event and the other a joined detection. The source of GW200105, was localized
to sky area of 7200 deg2, whereas GW200115’s, was localized within 600 deg2, an order
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Figure 6: Sky localization for GW200105 (top) and GW200115 (bottom) in terms of
right ascension and declination. The shaded patch is the sky map obtained from the
preferred high-spin analysis, with the 90% credible regions bounded by the thin dotted
contours. The thick solid contours show the 90% credible regions from the low-latency
sky localization algorithm BAYESTAR. Image recovered from Abbott et al. (2021).

of magnitude smaller thanks to the presence of the data of LIGO Hanford (see Figure 6).
The evolutionary history of binary systems can be probed with the spin information

encoded in the gravitational waves they emit. Therefore, its study is of significance when
trying to discern the binary’s formation and its components origin. A useful magnitude
to describe the spin of binary components is dimensionless spin, χi, whose magnitude
(χi ≡ |χi|) is bounded by 1 for black holes (the rotation speed of the horizon is limited
by the speed of light) and which is related to angular momentum Si by χi = cSi/(Gm

2
i ).

From this, we can define the effective inspiral spin parameter, which is one of the best-
constrained parameters and encodes information about the binaries’ spin components
parallel to the orbital angular momentum, χeff = (m1

M
χ1 + m2

M
χ2) · L̂, where L̂ is the unit

vector along the orbital angular momentum.
The primary spins inferred for both signals are consistent with EM observations and

predictions of BH spins given by models of stellar and dynamical evolution of NSBH
progenitors. Context of predictions of BH spins given by models of stellar and dynam-
ical evolution and EM observations of NSBH progenitors finds agreement with primary
spins inferred for both signals being representative of BH population. Secondary spins,
however, are poorly constrained due to unequal mass between the components in both
signals; although pulsar timing observations of binaries that merge within a Hubble time
imply a highest dimensionless spin of ∼ 0.04. Spin magnitudes and orientation of black
holes in binaries are expected to span a varied range depending on the formation of the
binary. Bayesian inference yields posterior values of χeff = −0.01+0.11

−0.15 for GW200105,
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which is strongly peaked around zero, and χeff = −0.19+0.23
−0.35 for GW200115, which sup-

ports a negative projection over the orbital momentum (χz,1 = −0.19+0.24
−0.50) with an 88%

probability. More negative values of χz,1 than that are correlated with particularly small
primary masses reaching into the lower mass gap (3M� < m1 < 5M�). The probability
found for that scenario are 30% or 27%, each corresponding to the high-spin and low-spin
parameter estimation priors used to infer all given values, respectively.

Binary systems can also show the phenomenon of spin precession when at least one
of the components has a spin component in the orbital plane of the binary, however it
turns out that at the SNRs observed so far, precession is very hard to measure. The
spins are typically parameterized using the effective precession spin parameter, χp, which
is essentially the magnitude of the spin in the orbital plane of the larger component. For
GW200105 and GW200115, χp = 0.09+0.14

−0.07 and χp = 0.210.30
−0.17 were inferred respectively,

although attempts to assess the significance of a measurement of precession yielded in-
conclusive evidence. This was expected, however, due to the given SNRs and inferred
inclination angles of the orbits.

Low values of primary mass are strongly correlated with a negative projection of its
spin over the orbital angular momentum (χ1,z < 0), and therefore consistent with dynam-
ical capture as the binary formation channel, since it should produce random orientation
of the components’ spins within the orbit. Rates of such formation channel are unknown,
however, since predictions carry huge uncertainties. On the other hand, binaries formed
in isolation are expected to show small misalignments, but spin may misalign through
other processes, such as the kick of a supernova explosion and subsequent evolution via
mass transfer. Also, progenitor binaries born in young clusters can be perturbed by close
dynamical encounters before being thrown out of them. Thus, primary spin misalignment
does not suffice to discard any of the possible NSBH formation channels.

3 Analysis of NSBH waveforms

The aim of this section is to conduct a rough estimate of the validity of the analysis of
NSBH signals and the significance of systematic errors using different waveform models,
some mentioned in Subsection 2.4. To achieve that, I have computed the mismatch
M = 1−m (m being the match, defined in (2.43)), between pairs of templates from these
models (obtained from the open source LIGO Algorithm Library (LAL) (LIGO Scientific
Collaboration, 2018)) instead of matching a template to the detector’s output. These
calculations have been conducted in the frequency domain for the dominant spherical
harmonic mode (l = 2,m = 2) and within a discrete spin-spin parameter space in the
form of gridded mismatches, using functions from PyCBC (a software package used to
explore astrophysical sources of gravitational waves (Nitz et al., 2021)), in a python script.

In order to evaluate the significance of the mismatch, one can almost qualitatively
associate it with the SNR needed to be able to distinguish the discrepancies of the results
the paired models yield:

M <
D

2ρ2
, (3.1)

where M is the value of the mismatch, D is the number of model parameters (7 for a
binary system using the geometrized coordinates) and ρ is the minimum value of SNR
below which the mismatchM is imperceptible (Boyle et al., 2019). Thus, we can convert
the gridded matches plotting the minimum value of ρ corresponding to every value ofM
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Figure 7: Mismatches of the labeled models translated to SNR value needed for the
dissagreement between them to be significant. All computed for a spin-aligned orbit of
mass ratio q = 3.8 and total mass M = 7.2M�, which correspond to the expected posterior
values of GW200115 and are representative of low primary mass NSBH systems. The axis
variables “Chi1” and “Chi2” correspond to the primary and secondary spins, respectively.

on each point of the parameter space,

ρmin =

√
D

2M
. (3.2)

Taking this angle into the analysis of mismatches, we can study whether the possible
systematic errors (about which we know very little) committed in the process are signif-
icant compared to the statistical errors of Bayesian inference based on matched filtering
in terms of the SNR values of the detections. Within the context of current sensitivity,
we find most detections have SNR values between 10 and 15, with the loudest signals at
around 30. This means that for points in the parameter space at which the mismatch of
the different models yield SNR thresholds below 30, we cannot neglect the possible sys-
tematic errors and should consider those models unreliable. Moreover, upgrades planned
for the O4 run are expected to at least double the sensitivity, thus hoisting the SNR

24



threshold up to around 70 and rendering most of the current models unreliable in most
of the parameter space, as we will see in the following discussion of the plots. Matches
between five different models have been performed, of which only the four that yield the
most significant results are shown in Figure 7.

In all of them we can see, in more or less measure, that discrepancies increase at high
absolute values of the primary spin (although most notably in the negative spectrum), in-
dicating its significance over the value of the secondary spin in these calculations, as would
be expected for binaries with very unequal masses. However, the effects of secondary spin
are also noticeable, making the region of high negative spins the most troublesome.

The top left panel (match between IMPRPhenomXHM and a surrogate and hybrid
model) shows low levels of mismatch consistent with the high agreement of modern models.
On one hand, PhenomX is one of the latest families of phenomenological models, and
Hybrid Surrogate models, as explained in section 2.4, can yield results with high precision
albeit for concrete regions of the parameter space. Therefore, high levels of SNR would
be needed to discern this mismatch and raise the issue of possible systematic errors. The
only troublesome regions would be high positive primary spin, high negative primary spin
with negative secondary spin, and positive primary spin with high positive negative spin.
Notice that with the expected sensitivity of O4 run this will no longer be true, since SNR
values around 50 are anticipated to be commonplace.

The models of the top right panel (match between old and new higher order models
from the Phenom family) differ in a significant portion of the parameter space, mainly
medium-high negative primary spin. This showcases the improvement accomplished with
Phenom family upgrades in that most challenging region.

The bottom left panel (match between Effective-One-Body and Phenomenlogical NSBH
models) presents a very low SNR threshold for mismatch detection in most of the param-
eter space (notice the strange behaviour in the high mismatch area at low primary spin),
which proves they are not yet reliable for medium-high SNR detections even with the
current sensitivity.

The bottom right panel (match between IMRPhenomXHM and IMRPhenomNSBH)
exhibits a very similar plot to the top right’s, owing to the fact that NSBH models are
mostly amplitude corrections to older models, as PhenomNSBH is to PhenomHM. These
corrections are yet to be done to newer and more improved models, which could possibly
yield more accurate models describing NSBH systems.

An extended analysis of the mismatch variations when modifying the mass ratio and
total mass of the binary system is not possible, since these two parameters are very
limited in the parameter space to allow the use of all the models implemented; namely
the surrogate model which, as explained in section 2.4, does not work for high values
of both q and M , and the NSBH models, which restrain secondary masses below 3M�.
Since the focus of this project is NSBH binaries, we can restrain our analysis to this
region of the parameter space. Thus, Figure 8 shows a comparison between high and low
mass ratios for a fixed total mass within the allowed range. There, we can clearly see
that for a higher mass ratio, the primary spin becomes more significant, exhibiting high
levels of mismatch at high absolute values; whereas for lower mass ratio, good results are
obtained in a larger portion of the parameter space, and the effect of negative secondary
spin becomes more noticeable.

Nevertheless, to see the setbacks of being confined in this region of the parameter
space, we can use the BBH models to compare our mismatch to one corresponding to
higher total mass binary systems. Thus, four plots are shown in Figure 9 for higher-mass
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Figure 8: Comparison of the mismatch M between IMRPhenomHM and IMRPhe-
nomXHM for mass ratios q=2 and q=5 at fixed total mass M=9. The axis variables
“Chi1” and “Chi2” correspond to the primary and secondary spins, respectively.

binaries. As mentioned in other sections, high-mass binaries emit at lower frequencies.
This entails two consequences responsible of the dramatic change in the shape of the
gridded mismatch. The first one, is the shift between the sensitivity frequency distribution
and the signal, changing which phases of the coalescence we detect at high or low SNR,
and thus transferring the disagreement between models to other regions of the parameter
space: until now we have seen the most disagreement at high negative spins, where now
we observe very low levels of mismatch. The second one is related to the amount of
information we obtain from the detection. As seen in Eq. (2.17), for higher chirp mass we
are able to detect less cycles before the merger. From left to right and top to bottom, the
number of cycles we detect given the chirp masses of each binary (see caption) are 274, 171,
37 and 23, respectively. This lack of information compared to lower chirp mass binaries
(a few thousand cycles detected) negatively impacts our ability to distinguish between
different waveforms, so the differing results of each model become less noticeable. Notice
how the low mismatch region in the plots of Figure 9 increases with the chirp mass. On
the other hand, however, this means that for low chirp mass binaries we are not learning
all the information we could, because our models are unable to discern between different
waveforms at the level at which would be possible given the amount of information we
are getting; hence the higher mismatches.
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Figure 9: Mismatches between PhenomHM and PhenomXHM. Mass ratio and total mass
correspond to component masses of: m1 = 37.5M� and m2 = 7.5M�, with chirp mass
Mc = 14M� (top left panel); m1 = 3oM� and m2 = 15M�, with chirp mass Mc = 18M�
(top right panel); m1 = 125M� and m2 = 25M�, with chirp mass Mc = 46M� (bottom
left panel); and m1 = 100M� and m2 = 50M�, with chirp mass Mc = 61M� (bottom right
panel). The axis variables “Chi1” and “Chi2” correspond to the primary and secondary
spins, respectively.
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4 Conclusions

This work consists of an overview on the basics of gravitational wave theory and the
physics governing compact bodies, in order to better understand the current status on
detection and waveform modeling of signals from binary systems, specifically Neutron
Star-Black Hole binaries, as well as their reliability and systematic error significance. For
that, mismatches between different models have been conducted, arriving to the conclusion
that, for the design sensitivity expected to be achieved in O4, the waveform models will
require improvement in order to accurately match the new flood of information we will
receive; most notably NSBH models, which will be needed to characterize the equation
of state of neutron stars a the tidal corrections to the gravitational emission, and were
already behind in the O3 runs.

First, after obtaining the gravitational-wave solution in linearized theory, the first or-
der newtonian approximation, quadrupole approximation, was applied in order to obtain
analytic results, allowing to represent some typical numbers for specific cases. Then, the
line element for both static and rotating black holes was explained, as well as for space-
times with matter, until getting to the Tolkov-Oppenheimer-Volkov equation, from which
we extracted a simplified equation of state and an expression for maximal mass that would
help better understand the characteristics of Neutron Star-Black Hole binary systems and
the gravitational-wave radiation they emit, such as the effects of tidal interaction and tidal
disruption. In addition, a summarize of the physics governing compact object formation
and composition was done to better explain said effects. After that, an overview of the
detection process and data analysis was given describing the signal-to-noise ratio and the
match-filtering technique later used in the plots, as well as of the history and current state
of BBH and NSBH waveform models. In order to contextualize all the above in a real
framework, a run-through of the currently only two NSBH detections characteristics is
given, which have provided brand new information on the elusive NSBH systems. Finally,
an analysis of the reliability of different models was conducted in terms of SNR, in order
to ascertain the regions of a spin-spin parameter space for distributions similar to the
NSBH detections at which the systematic errors may become significant compared to the
statistical errors of the data analysis. Thus concluding that information on the NSBH
coalescences is being lost due to lack of precision of the current NSBH models, and also
that when the O4 planned sensitivity is achieved, the systematic errors of which we know
very little may become an issue.

To summarize, an increase of sensitivity would allow detections of sources further
away and at longer times before coalescence, but it would also allow to better observe
and understand waveform modifications due to tidal effects in the inspiral, getting us
closer to figuring out specific equations of state of compact objects like neutron stars
or white dwarfs. However, this upgrades on the sensitivity will also bring the models
discrepancies into view, rendering them unreliable. Therefore, NSBH models will need a
huge improvement in order to accurately match the signals we will detect. Otherwise, we
will not be able to infer faithful data to correctly characterize the equations of state or
model tidal disruption.
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