
Riding the wave of genomics to investigate aquatic
coliphage diversity and activity

Slawomir Michniewski,1 Tamsin Redgwell,1

Aurelija Grigonyte,1 Branko Rihtman,1

Maria Aguilo-Ferretjans,1 Joseph Christie-Oleza ,1

Eleanor Jameson,1 David J. Scanlan 1 and
Andrew D. Millard 2*
1School of Life Sciences, University of Warwick, Gibbet
Hill Road, Coventry CV4 7AL, UK.
2Department of Genetics and Genome Biology,
University of Leicester, University Road, Leicester LE1
7RH, UK.

Summary

Bacteriophages infecting Escherichia coli (coliphages)
have been used as a proxy for faecal matter and water
quality from a variety of environments. However, the
diversity of coliphages that is present in seawater
remains largely unknown, with previous studies largely
focusing on morphological diversity. Here, we isolated
and characterized coliphages from three coastal loca-
tions in the United Kingdom and Poland. Comparative
genomics and phylogenetic analysis of phage isolates
facilitated the identification of putative new species
within the genera Rb69virus and T5virus and a putative
new genus within the subfamily Tunavirinae. Further-
more, genomic and proteomic analysis combined with
host range analysis allowed the identification of a puta-
tive tail fibre that is likely responsible for the observed
differences in host range of phages vB_Eco_mar003J3
and vB_Eco_mar004NP2.

Introduction

Bacteriophages are a key component of microbial commu-
nities playing important roles such as increasing the viru-
lence and driving the evolution of their bacterial hosts and
influencing major biogeochemical cycles (see Breitbart
et al., 2007, 2018; Suttle, 2007; Perez Sepulveda et al.,
2016 for reviews). It is estimated that there are 1031 viruses
in the biosphere with each millilitre of seawater containing

millions of these viruses (Suttle, 2017), largely infecting the
numerically dominant bacterial genera Synechococcus,
Prochlorococcus and SAR11 (Suttle and Chan, 1993;
Wilson et al., 1993; Sullivan et al., 2003; Mühling et al.,
2005; Kang et al., 2013; Zhao et al., 2013; Deng et al.,
2014). Culture- and metagenomics-based approaches have
shed much light on their genetic diversity (Millard et al., 2009;
Sullivan et al., 2010; Hurwitz et al., 2013; Brum et al., 2015;
Gregory et al., 2016) including the description of several pre-
viously unknown phage groups that are widespread in the
environment (Sabehi et al., 2012; Holmfeldt et al., 2013;
Kang et al., 2013; Zhao et al., 2013; Chan et al., 2015).

In the context of marine systems, bacteriophage infecting
Escherichia coli, commonly referred to as coliphage, have
perhaps received less attention even though they have
been widely studied as a proxy for drinking water quality
and the presence of faecal coliforms and enteric viruses
(Hilton and Stotzky, 1973; Vaughn and Metcalf, 1975;
Snowdon and Coliver, 1989; Palmateer et al., 1991).
Thus, much is known about how the use of different
E. coli strains or growth media used can lead to variable
estimates of phage abundance (Havelaar and Hogeboom,
1983; Jofre, 2009; Muniesa et al., 2013) and this has
resulted in global standards for using coliphages as a mea-
sure of water quality (ISO, 2016). These standards rely on
the use of E. coli C strains derived from ATCC13706, which
have been shown to detect increased titres over E. coli B
and E. coli K12 derivatives (Havelaar and Hogeboom,
1983). The presence of coliphage in marine waters is
assumed to be the result of anthropogenic input and not
due to any ongoing increase in situ as a result of infection
and replication (Borrego et al., 1990). However, while the
consensus seems to be that coliphage replication in situ is
not a significant issue (Jofre, 2009), more recent research
provides evidence that coliphages may well replicate in
the environment (Reyes and Jiang, 2010).

Regarding the diversity of coliphages found in seawa-
ter, studies have largely focused on morphological diver-
sity (Muniesa et al., 1999; Reyes and Jiang, 2010;
Burbano-Rosero et al., 2011; Jofre et al., 2016) and
assessing the number and range of E. coli hosts they
can infect. This has shown that many coliphages have a
broad host range, with detection of coliphages compris-
ing members of the Siphoviridae and Myoviridae families
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off the Californian (Reyes and Jiang, 2010) and Brazilian
coasts (Burbano-Rosero et al., 2011) with Siphoviridae
being the most frequently observed taxa.

Coliphages in general are one of the most sequenced
phage types with ~450 complete phage genomes within
Genbank, isolated from a variety of sources including ani-
mal faeces (Niu et al., 2014; Smith et al., 2015; Sazinas
et al., 2016; Golomidova et al., 2018), human faeces
(Dalmasso et al., 2016), urine (Malki et al., 2016), river
water (Alijošius et al., 2017), agricultural surface waters
(Liao et al., 2018), lagoons (Ngazoa-Kakou et al., 2018),
sewage (Trotereau et al., 2017) and animal slurries
(Sazinas et al., 2016). However, much less is known about
the genetic diversity of coliphages in seawater. To shed
light on this, we isolated coliphages from three locations in
the United Kingdom and Poland and undertook genomic
and proteomic characterization of the isolated phages, to
provide insights into their phylogenetic position and func-
tional potential.

Results

Newly isolated coliphages—phylogeny and taxonomy

For all samples tested, the titre of coliphage detected was
extremely low, generally <1 pfu ml−1 (Table 1). A total of
10 phages were isolated and purified from three different
seawater samples and one phage from a freshwater urban
pond. These phage were purified and their genomes
sequenced to assess their genomic diversity (Table 1). Coli-
phage genomes were first compared against each other
using MASH (Ondov et al., 2016) in an all-versus-all
approach, which revealed three groups of phages based
on similarity to each other: Group1: vB_Eco_mar003J3 and
vB_Eco_mar004NP2; Group2: vB_Eco_mar005P1,
vB_Eco_mar006P2, vB_Eco_mar007P3 vB_Eco_
mar008P4 and vB_Eco_mar009P5; Group3: vB_Eco_
swan01, vB_Eco_mar001J1 and vB_Eco_mar002J2. Each
phage was then compared against a database of all
complete phage genomes using MASH (April 2018)
(Ondov et al., 2016).

Genus Rb69virus

Phages vB_Eco_mar005P1, vB_Eco_mar006P2, vB_Eco_
mar007P3, vB_Eco_mar008P4 and vB_Eco_mar009P5
had greatest mash similarity to phages APCEc01 (acces-
sion KR422352) and E. coli O157 typing phage 3 (accession
KP869101), neither of which are currently classified by
the ICTV but are similar to other phages within the
Tevenvirinae. To further investigate the phylogeny of these
phages, the gene encoding the major capsid protein (g23)
was used to construct a phylogeny, as it is widely used as
a phylogenetic marker including being used previously to
classify phages within the Tevenvirinae (Adriaenssens and
Cowan, 2014). The g23 sequence for the five newly iso-
lated phages (vB_Eco_mar005P1, vB_Eco_mar006P2,
vB_Eco_mar007P3, vB_Eco_mar008P4 and vB_Eco_
mar009P5) were identical, therefore only one copy was
included in the phylogenetic analysis. The analysis placed
the new phage isolates within a clade that contains
APCEc01, E. coli O157 typing phage 3, HX01, vB_EcoM_
JS09 and RB69 (Supporting Information Fig. S1). The latter
three of these form part of the genus Rb69virus, suggesting
the newly isolated phages are also part of this genus
(Supporting Information Fig. S1).

The genomes of phages from the genus Rb69virus
were further compared together with phage phiE142,
which is classified as part of the Rb69virus genus, and
has an ANI of ~91% compared to the new isolates in
this study. The ANI of all phages was calculated and
compared in an all-v-all comparison. The newly isolated
phages possessed an ANI of >95% compared to HX01,
JS09 and RB69 suggesting they are representatives of
one of these species based on current standards
(Adriaenssens and Brister, 2017). In fact, with the excep-
tion of phiE142 (Supporting Information Table S1), all
phages had an ANI >95% with at least one other phage
(Fig. 1, Supporting Information Table S1). To further eluci-
date the evolutionary history of these phages, a core gene
analysis was carried out. In the process of doing this, it
became apparent phiE142 was ~50 kb smaller than the
other phages within this group. Furthermore, it lacks
essential genes that encode the major structural proteins

Table 1. Locations of water samples, titre of coliphages detected and phage isolates from each location. ND—titre not determined.

Water source Titre Phage isolates Date of isolation

Oliva stream estuary, Jelitkowo, Gdansk, Poland 0.28 pfu ml−1 vB_Eco_mar001J1 30.01.2017
vB_Eco_mar002J2 30.01.2017
vB_Eco_mar003J3 30.01.2017

Martwa Wisla Estuary, Nowy Port, Gdansk, Poland 0.11 pfu ml−1 vB_Eco_mar004NP2 30.01.2017
Swanswell Pool, Coventry, United Kingdom 0.0125 pfu ml−1 vB_Eco_swan01 08.12.2016
Great Yarmouth, United Kingdom ND vB_Eco_mar005P1 08.12.2016

vB_Eco_mar006P2 08.12.2016
vB_Eco_mar007P3 08.12.2016
vB_Eco_mar008P4 08.12.2016
vB_Eco_mar009P5 08.12.2016
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and small and large subunit terminase. Therefore, it was
excluded from further analysis as it is incomplete despite
being described as complete (Amarillas et al., 2016).
The core-genome of the genus Rb69virus consisted of

170 genes, which accounted for 60.3%-68.3% of the total
genes in each phage (Supporting Information Table S1). To
further classify these phages, the GET_PHYLOMARKERS
pipeline was used to identify suitable genes for phyloge-
netic analysis (Vinuesa et al., 2018). Only 89 genes were
identified that did not show signs of recombination when
tested with Phi test (Bruen, 2005). This test was carried out
as recombination is known to result in inaccurate phyloge-
nies and branch lengths (Didelot and Maiden, 2010).
Eighty-six of these passed further filtering to remove
genes that were considered significant outliers using the
KDETREES test (Weyenberg et al., 2014). The resulting
top nine genes (Supporting Information Table S1) as
determined via GET_PHYLOMARKERS (Vinuesa et al.,
2018) were selected for phylogenetic analysis, and a
concatenated alignment was used for phylogenetic anal-
ysis. Phylogenetic analysis placed the newly isolated
phages in a clade with Escherichia phage APCEc01
(accession: KR422352) further confirming they are part
of the genus Rb69virus.
Current taxonomy classifies RB69, HX01, JS09 and

Shf125875 as four species within the genus Rb69virus
(Kropinski et al., 2015a). This is based on the definition
that phage species with >95% similarity based on BLASTn
to another phage are the same species (Adriaenssens

and Brister, 2017). In our analysis, the nucleotide identity
between genomes was estimated using ANI by fragmenta-
tion of the genomes (Goris et al., 2007) rather than sim-
ple BLASTn comparison (Fig. 1). Using an ANI value of
>95% did not differentiate between phage species and
maintained the current taxonomy, with each phage hav-
ing an ANI >95% to multiple phages suggesting that
Rb69virus should contain only two species. Neverthe-
less, the phylogeny clearly supports multiple species
within the Rb69virus genus, suggesting a cut-off of 95%
ANI may not be suitable (Fig. 1). Consequently, if an
ANI of >97% was used to differentiate species, this closely
resembled the observed phylogeny (Fig. 1). The higher ANI
cut-off value discriminates between RB69 and Shf125875,
maintaining their previous classification as separate spe-
cies. Furthermore, this will split the genus Rb69virus into
ten species, which are represented by Shf125875, phiC120,
RB69, vB_EcoM_PhAPEC2, SHSML-52-1, STO, HX01,
JS09, E. coli O157 typing phage 3 (strains E.coli O157 typ-
ing phage 6) and APCEc01 (including the five new isolates
in this study). This suggests the five phage isolates identi-
fied in this study are representatives of a new species
within the genus Rb69virus (order Caudovirales, family
Myoviridae, subfamily Tevenvirinae).

The phage isolated in this study vB_Eco_mar005P1,
vB_Eco_mar006P2 and vB_ Eco_mar008P4 are identi-
cal. Phages vB_Eco_mar007P3 and vB_Eco_mar009P5
share the same gene content but are distinguishable by
differences in single nucleotide variations.

Fig. 1. Phylogenetic analysis of phages within the genus Rb69virus. The tree is based on the nucleotide sequence of nine concatenated genes [nrdC
(GeneID:1494209), rnlA (GeneID:1494352), ndd (GeneID:1494384), regA (GeneID:1494173), g52 (GeneID:1494381), g14 (GeneID:1494292), td
(GeneID:1494357), g053 (GeneID:1494168) and g30.3 (GeneID:1494331)] using a GTR+F+ASC+R2 model of evolution, with 1000 bootstrap repli-
cates using IQTREE (Nguyen et al., 2015). Current phage species as defined by the ICTV are marked with an *. Bootstrap values above 70%
are marked with a filled circle, with the size proportional to the bootstrap value. The ANI value between phages is represented as a heatmap,
with only values >97% coloured. The phages included in the tree are RB69 (acc:AY303349), Shf125875 (acc: KM407600), phiC120 (acc:
KY703222), vB_EcoM_PhAPEC2 (acc:KF562341), SHSML-52-1 (acc:KX130865), ST0 (acc:MF044457), HX01 (acc:JX536493), vB_EcoM_JS09
(acc:KF582788), E. coli O157 typing phage 3 (acc:KP869101), E. coli O157 typing phage 6 (acc:KP869104), APCEc01 (acc:KR422352), and
vB_Eco_mar005P1 (acc:LR027390). [Color figure can be viewed at wileyonlinelibrary.com]
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Genus T5virus

A similar approach was used for classification of the
newly isolated phages vB_Eco_mar003J3 and vB_Eco_
mar004NP2, which were most similar to phages within the
genus T5virus based on MASH identity. All phages that
are currently listed as part of the genus T5virus were
extracted from GenBank (April 2018). Initially, the gene
encoding DNA polymerase was used to construct a phy-
logeny, which has previously been used for the classifica-
tion of phages within the genus T5virus (Sváb et al., 2018)
(Supporting Information Table S2). This confirmed that
phages vB_Eco_mar003J3 and vB_Eco_mar004NP2
were related to other phages within the genus T5virus
(Supporting Information Fig. S2). Determination of the
core-genome revealed 19 genes formed the core when
using 90% identity for identification of orthologues using
ROARY. However, when using this value and then apply-
ing the same filtering parameters as used for the genus
Rb69virus, no genes were deemed suitable for phyloge-
netic analysis. Therefore, an iterative process was used
whereby the identity between proteins was lowered by 5%
on each run of ROARY and the analysis repeated until a
number of phylogenetic markers passed the filtering
criteria. This was reached at a protein identity of 75%.
At this point, 44 core genes were identified, of which
only 14 passed further filtering steps (Supporting Infor-
mation Table S2). The top nine markers as selected by
the GET_PHYLOMARKERS pipeline were used for phy-
logenetic analysis (Vinuesa et al., 2018).

Phylogenetic analysis on the selected marker genes con-
firmed that vB_Eco_mar004NP2 and vB_Eco_mar003J3 fall
within the genus T5virus (order Caudovirales, family
Siphoviridae) (Fig. 2). Phage vB_Eco_mar004NP2 is a
sister clade to that of phage SPC35 (HQ406778) and
vB_Eco_mar003J3 and a sister group to that of phage
LVR16A (MF681663) (Fig. 2). Phage vB_Eco_mar004NP2
represents a new species within the genus T5virus as it
has <95% ANI with any other phage within the genus
(Adriaenssens and Brister, 2017). For phage vB_Eco_
mar003J3, it is not clear if the phage represents a new
species. It has an ANI >95% with phages saus132 and
paul149, which have recently been described as new spe-
cies (Sváb et al., 2018). However, these phages are not the
closest group based on a phylogenetic analysis (Fig. 2).
When an ANI value of >97% is used then currently defined
species are more congruent with the observed phylogenetic
analysis, suggesting vB_Eco_mar003J3 is a novel species
(Fig. 2). Applying this threshold of 97% ANI across the
entire genus would maintain the current species and create
a total of 23 species across the genus.

Tunavirinae

Phages vB_Eco_mar001J1, vB_Eco_mar002J2 and
vB_Eco_swan01 had greatest nucleotide sequence

similarity to pSf-1 and SECphi27, which are the members
of the subfamily Tunavirinae. Phage isolates vB_Eco_
mar001J1 and vB_Eco_mar002J2 were found to be
identical.

To classify the newly isolated phages, a phylogenetic
analysis was carried out using the gene encoding the
large subunit terminase that has previously been used to
classify phages within the subfamily Tunavirinae by the
ICTV (Kropinski et al., 2015b). The analysis included all
current members of the subfamily Tunavirinae (April
2018). The newly isolated phages vB_Eco_mar001J1,
vB_Eco_mar002J2 and vB_Eco_swan01 form a clade
with phages pSf-1, SECphi27 and Esp2949-1 (Supporting
Information Fig. S3). This clade is a sister to the clades
that represent the previously defined genera KP36virus
and TLSvirus, thus clearly placing these new phages
within the subfamily Tunavirinae (order Caudovirales, fam-
ily Siphoviridae) (Supporting Information Fig. S3).

To further clarify the phylogeny of these phages, a core
gene analysis of all members of the subfamily Tunavirinae
was carried out. Given these phage form part of a taxo-
nomic sub-family, using ROARY with similarity cut-off values
of 90% resulted, unsurprisingly, in the detection of no core
genes. Therefore, an alternative method was used using an
orthoMCL approach from within the GET_HOMOLOGUES
software (Contreras-Moreira and Vinuesa, 2013).
OrthoMCL-based analysis identified a core of only nine
genes, which were then filtered in the same manner as for
the Rb69virus and T5virus genera. A phylogeny was then
constructed based on the concatenated alignment of four
core genes (Fig. 3). Phylogenetic analysis confirmed the
previously defined genera within Tunavirinae, with the five
genera of Kp36virus, Roguevirus, Rtpvirus, T1virus and
TLSvirus also supported by good bootstrap support values
(Fig. 3). Furthermore, a clade which is sister to that of
the genus TLSvirus was identified with good bootstrap
support comprising vB_Eco_mar001J1, vB_Eco_mar002J2,
vB_Eco_swan01, SECphi27 (accession KC710998) and
pSf-1 (accession NC_021331). Their clear separation from
existing genera within the subfamily suggests this clade is a
new genus. The phages within this putative genus all share
an ANI >75% with other phages in the genus, compared to
60%–70% ANI with phages in the other described genera
within the Tunavirinae. All phages within the putative genus
have a conserved genome organization and share thirty
orthologues. We propose that this clade represents a new
genus and should be named as pSFunavirus after pSF-1,
the first representative isolate (Woo et al., 2013). Further-
more, we propose the unclassified phage Esp2949-1
(NC_019509) is the sole representative of a new genus,
as it does not currently fit within currently defined genera.
Phylogenetic analysis indicates that phages of the genus
TL1virus, TLSvirus, psFunavirus all have a common
ancestor, with Esp2949-1 ancestral to phages in the
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genus TL1virus and psFunavirus. (Fig. 3). Comparative
genomic analysis also supports this, with Esp2949-1 hav-
ing <70% ANI to phages of the genera TL1virus or
TLSvirus, its closest relatives. Phages within the putative
genus psFunavirus were further analysed to determine the
number of species. Using a cut-off of 95% or 97% ANI,
the genus will contain three species vB_Eco_swan01
(SECphi27 and vB_Eco_swan01), vB_Eco_mar002J2
(vB_Eco_mar001J1 and vB_Eco_mar002J2 which are
identical) and the orphan species pSF-1.
Phylogenetic analysis demonstrated that of the

10 phages isolated, five represented novel species. A rep-
resentative of each of these newly identified groups was
further characterized both morphologically and physiologi-
cally. The representative phages were vB_Eco_swan01
and vB_Eco_mar002J2 (new species within the Tunavirinae),
vB_Eco_mar003J3 and vB_Eco_mar004NP2 (new spe-
cies within T5virus), and vB_Eco_mar005P1 (new species
within Rb69virus).

Genomic properties

The phages isolated in this study ranged in size from
50.34 kb (vB_Eco_mar002J1) to 167.77 kb (vB_Eco_
mar005P1), with between 78 (vB_Eco_mar001J1) and
267 (vB_Eco_mar005P1) predicted genes per genome.
While vB_Eco_mar004NP2 and vB_Eco_mar003J3 are
both part of the genus T5virus, their genome sizes were
107.6 and 115.47 kb, respectively (Supporting Informa-
tion Table S4). This ~7.8 kb difference in genome size
is a reflection of the diversity of phages within the genus
T5virus, whereby the core gene content constitutes a
small proportion of the total gene content. For vB_Eco_
mar004NP2 and vB_Eco_mar003J3, the core-gene con-
tent is 10.7% and 10.2% of the total genes, respectively.
Genomic comparisons across the genus T5virus reveal
multiple regions that are present in some phages and
not others (Fig. 4, Supporting Information Fig. S4, and
Supporting Information Table S2). In contrast, the core

Fig. 2. Phylogenetic analysis of phages within the genus T5virus. The tree is based on the nucleotide sequence of two concatenated genes
(locus tags: MAR004NP2_00031 and MAR004NP2_00005) using a GTR+F+ASC+R2 model of evolution, with 1000 bootstrap replicates using
IQTREE (Nguyen et al., 2015). Current phage species as defined by the ICTV are marked with an *. Bootstrap values above 70% are marked
with a filled circle, with the size proportional to the bootstrap value. The ANI value between phages is represented as a heatmap, with only values
>97% coloured. The phages included in the tree are T5 (acc:AY543070), T5 strain ATCC 11303-B5 (acc:AY587007), T5 strain st0 deletion
mutant (acc:AY692264), EPS7 (acc:CP000917), phiR201 (acc:HE956708), SPC35 (acc:HQ406778), bV_EcoS_AKFV33 (acc:HQ665011),
AvB_EcoS_FFH1 (acc:KJ190157), Stitch (acc:KM236244), DT57C (acc:KM979354), DT571/2 (acc:KM979355), Shivani (acc:KP143763),
APCEc03 (acc:KR422353), 100268_sal2 (acc:KU927497), 118970_sal2 (acc:KX017521), SP01 (acc:KY114934), phiLLS (acc:KY677846),
BSP22A (acc:KY787212), SSP1 (acc:KY963424), slur09 (acc:LN887948), SH9 partial (acc:MF001363), OSYSP (acc:MF402939), chee24 (acc:
MF431730), pork27 (acc:MF431731), pork29 (acc:MF431732), saus47N (acc:MF431733), saus111K (acc:MF431734), poul124 (acc:MF431735),
chee130_1 (acc:MF431736), saus132 (acc:MF431737), poul149 (acc:MF431738), chee158 (acc:MF431739), cott162 (acc:MF431740), saus176N
(acc:MF431741), LVR16A partial (acc:MF681663), SP3 partial (acc:MG387042), vB_SenS_PHB06 (acc:MH102285), vB_Eco_mar003J3 (acc:
LR027389) and vB_Eco_mar004NP2 (acc:LR027384). [Color figure can be viewed at wileyonlinelibrary.com]
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gene content of Rb69virus constitutes a much larger
proportion. In vB_Eco_mar005P1, this is 63% of the total
genes, with greater conservation in gene content across
the genus (Supporting Information Fig. S5 and Supporting
Information Table S1). The phages vB_Eco_mar001J1,
vB_Eco_mar002J2 and vB_Eco_swan01 only had four
core genes with other members of the Tunavirinae, all of
which are hypothetical proteins (Supporting Information
Table S3). Comparison of phages just within the proposed
new genus psFunavirus reveals a conservation in gene
content and phylogeny (Supporting Information Fig. S6).

TEM

TEM analysis confirmed vB_Eco_swan01, vB_Eco_
mar005P1, vB_Eco_mar002J2, vB_Eco_mar003J3 and
vB_Eco_mar004NP2 were all members of the order
Caudovirales (Fig. 5, Table 2), which contains all known
tailed bacteriophages. Furthermore, phages vB_Eco_
mar002J2, vB_Eco_mar003J3, vB_Eco_mar004NP2
and vB_Eco_swan01 were observed to have long non-
contractile tails with a polyhedral head, which are signa-
tures of the family Siphoviridae, thus confirming the

phylogenetic analysis. The head length: width ratio further
classified the phages within subgroup B1 (Ackermann
and Krisch, 1997). Phage vB_Eco_mar005P1 was also
observed to have a long contractile tail, with tail fibres
clearly observable and a distinct prolate head which allows
classification within sub group A2 of the Myoviridae
(Ackermann and Krisch, 1997) (Fig. 5, Table 2).

Proteomic characterization

As with most phages, the majority of the genes predicted
within each genome encode hypothetical proteins with
unknown function. In order to identify further structural pro-
teins or proteins that may be contained within the capsid,
proteomic analysis of representative phages was carried
out using electrospray ionization mass spectrometry (ESI-
MS/MS). The number of identified proteins per phage was
five, five, seven and eight for phages vB_Eco_mar005P1,
vB_Eco_swan01, vB_Eco_mar003J3, and vB_Eco_
mar004NP2, respectively (Supporting Information
Table S5a). This allowed the confirmation of two anno-
tated structural proteins (SWAN_00017 and SWAN_00019)
and the identification of a further three structural proteins
(SWAN_00025, SWAN_00026 and SWAN_00027). Based

Fig. 3. Phylogenetic analysis of phages within the subfamily Tunavirinae. The tree is based on the nucleotide sequence of four concatenated
genes (locus tags, MAR001J1_00001, MAR001J1_00004, MAR001J1_00010, and MAR001J1_00077) using a GTR+F+ASC+G4 model of evolu-
tion, with 1000 bootstrap replicates using IQTREE (Nguyen et al., 2015). Current phage genera as defined by the ICTV are marked with the first
coloured strip chart. Bootstrap values above 70% are marked with a filled circle, with the size proportional to the bootstrap value. The ANI value
between phages is represented as a heatmap, with only values >97% coloured. The phages included in the tree are Rtp (acc:NC_007603),
vB_Eco_ACG-M12 (acc:NC_019404), phiEB49 (acc:NC_023743), e4/1c (acc:NC_024210), JK06 (acc:NC_007291), vB_EcoS_Rogue1 (acc:
NC_019718), phiJLA23 (acc:KC333879), C119 (acc:KT825490), bV_EcoS_AHP24 (acc:KF771236), vB_EcoS_AHS24 (acc:NC_024784),
vB_EcoS_AKS96 (acc:NC_024789), vB_EcoS_AHP42 (acc:NC_024793), PKP126 (acc:NC_031053), F20 (acc:JN672684), KLPN1 (acc:
KR262148), 1513 (acc:KP658157), Sushi (acc:KT001920), MezzoGao (acc:MF612072), GML-KpCol1 (acc:MG552615), KP36 (acc:NC_029099),
Shfl1 (acc:NC_015456), ADB-2 (acc:NC_019725), pSf-2 (acc:NC_026010), T1 (acc:NC_005833), JMPW2 (acc:KU194205), JMPW1 (acc:
KU194206), Esp2949-1 (acc:NC_019509), Stevie (acc:NC_027350), TLS (acc:NC_009540), SP126 (acc:KC139513), YSP2 (acc:MG241338),
pSf-1 (acc:KC710998), vB_Eco_swan01 (acc:LT841304), SECphi27 (acc:LT961732) and vB_Eco_mar002J2 (acc:LR027385). [Color figure can
be viewed at wileyonlinelibrary.com]
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on the core-gene analysis this allowed annotation of
orthologues of SWAN_00017, SWAN_00019 and SWAN_
00025 in vB_Eco_mar001J1, vB_Eco_mar002J2 and
SECphi27, and SWAN_00026 and SWAN_00027 in
vB_Eco_mar001J1 and vB_Eco_mar002J2.
For phage vB_Eco_mar005P1, five proteins were

identified three of which confirmed annotations as
structural proteins (MAR005P1_00047, MAR005P1_00051
and MAR005P1_00054) all of which are core genes to
phages within the genus Rb69virus, along with an

ADP-ribosyltransferase protein (MAR005P1_00076) that is
packaged within the phage capsid. An additional structural
protein (MAR005P1_00015) was confirmed that was previ-
ously annotated as a hypothetical protein, which is also
found in phages vB_Eco_mar005P1, vB_Eco_mar006P2,
vB_Eco_mar007P3, vB_Eco_mar008P4 and vB_Eco_
mar009P5.

Both phages vB_Eco_mar004NP2 and vB_Eco_mar003J3
are part of the genus T5virus, although distantly related.
For phage vB_Eco_mar004NP2, eight proteins were

Fig. 4. Genomic comparison of phages within the genus T5virus. All phages were compared to phage T5 (accession: AY692264) with BRIG
(Alikhan et al., 2011) using blastn settings of minimum e-value 0.001 and minimum length of 100. Each phage is represented by a single ring of
different colour. Nucleotide identity of 80%–100% is shaded in colour for each ring, with darker shading representing higher identity. An identity
between 50%–80% is shaded in light grey. The outer two rings contain the genes from T5 (accession: AY692264) and annotation. [Color figure
can be viewed at wileyonlinelibrary.com]
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detected that confirmed their annotation as various structural
components of the capsid and tail (Supporting Information
Table S5a). For proteins MAR003J3_00086 and MAR003J3_
00094–97, the orthologous proteins in vB_Eco_mar004NP2
were also detected. Proteins MAR004NP2NP2_00151,
MAR004NP2_00157 and MAR004NP2_00160 were only
detected in vB_Eco_mar004NP2. However, orthologous pro-
teins were detected in vB_Eco_mar003J3 through core-gene
analysis. Protein MAR003J3_00081, which is a putative tail
fibre, was only detected in vB_Eco_mar003J3, with no
orthologue in vB_Eco_mar004NP2 based on core-gene anal-
ysis (Supporting InformationTableS2andSupporting Informa-
tion Fig. S4).

Phage infection parameters

The burst size, latent period and eclipse period for repre-
sentative phage isolates was also determined (Table 2).

There was considerable variation in these parameters
across all isolates, with burst size ranging from 31 (vB_Eco_
mar005P1) to 192 (vB_Eco_mar004NP2) (Table 2). Similar
variation was observed for the latent period varying from
12 min (vB_Eco_mar002J2) to 40 min (vB_Eco_mar003J3),
while the eclipse period ranged from 9 min (vB_Eco_
swan01 & vB_Eco_mar002J2) to 26 min (vB_Eco_
mar003J3). For phages vB_Eco_mar003J3 and
vB_Eco_mar004NP2 that are part of the same genus
(T5virus), there was considerable variation in all three
parameters, with the burst size of vB_Eco_mar004NP2
(193) double that of vB_Eco_mar003J3 (76).

Phage host range

The host range of representative phage isolates was
determined using a range of bacterial hosts via a spot
test assay (Supporting Information Table S6).

Fig. 5. Morphology of phage isolates. Phages vB_Eco_swan01, vB_Eco_mar005P1, vB_Eco_mar002J2, vB_Eco_mar003J3, vB_Eco_mar004NP2
were stained with 2% (w/v) uranyl acetate and imaged in a JEOL JEM-1400 TEM with an accelerating voltage of 100 kV.

Table 2. Morphological and lytic properties of representative phages.

Phage isolate Burst size
Latent
period

Eclipse
period

Head
width (nm)

Head
length (nm)

Tail
length (nm)

Tail
width (nm) Sub group Taxonomy

vB_Eco_swan01 78 � 9 15 9 53 � 2 56 + −1 154 � 10 10 � 1 B1 Siphoviridae, Tunavirinae
vB_Eco_mar002J2 51 � 17 12 9 55 � 4 56 + −4 143 � 13 11 � 1 B1 Siphoviridae, Tunavirinae
vB_Eco_mar004NP2 193 � 26 33 20 66 � 2 71 + −5 176 � 9 10 � 1 B1 Siphoviridae, T5virus
vB_Eco_mar003J3 76 � 22 40 26 67 � 5 70 + −5 185 � 19 9 � 1 B1 Siphoviridae, T5virus
vB_Eco_mar005P1 31 � 9 14 23 86 � 6 111 + −11 121 � 7 20 � 3 A2 Myoviridae,

Tevenvirinae, Rb69virus
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Phylogenetic analysis highlighted that the isolated coli-
phages were often closely related to phages that are
known to infect other Enterobacteriaceae, including Klebsi-
ella and Salmonella (Figs 1, 2, and 3). For this reason, the
host range of these phage was also tested against other
Enterobacteriaceae. Phage vB_Eco_mar005P1, a repre-
sentative of the genus Rb69virus, was only able to infect
its host of isolation (E. coli MG1655), whereas phages of
the genus T5virus and subfamily Tunavirinae were capable
of infecting between five and eight strains (Supporting
Information Table S6). While vB_Eco_mar002J2 was found
to infect the greatest number of strains (8), this was limited
to strains of E. coli, Klebsiella pneumoniae, and Klebsiella
oxytoca, whereas vB_Eco_mar004NP2 could also infect
Salmonella typhimurium, but fewer strains of E. coli.

Detection in viral metagenomes

The presence of these new coliphage species in viral
metagenomes was investigated using existing meta-
genomics databases. The Baltic virome data set was
chosen as it contains both DNA sequence data and RNA
expression data (Zeigler-Allen et al., 2017). Based on the
criteria of 75% genome coverage and 90% identity (Roux
et al., 2017), coliphage were not detectable in this viral
metagenomics data set. We then searched for evidence
of gene expression from these phages using the much
larger Baltic virome metatranscriptomics data set, using
cyanophage Syn9 as a control, since it has previously
been reported in this data set (Zeigler-Allen et al., 2017).
The majority of samples showed the expression of
cyanophage Syn9 genes, as previously reported (Zeigler-
Allen et al., 2017). Interestingly, the expression of genes
from coliphage NP2 and RB69 (Supporting Information
Fig. S7) was also detected, in samples GS852 and
GS677, respectively. These samples, GS852 and GS677,
were collected from low-salinity surface waters (Zeigler-
Allen et al., 2017). The reads mapping to these coliphages
were further analysed by BLASTn. As well as possessing
similarity to the coliphage they mapped against, these
reads were also similar to other closely related coliphages
and an unannotated prophage region in E. coli genomes,
confirming they are transcripts from coliphages or very
closely related enterobacterial phages.

Discussion

Using E.coli MG1655, we were able to isolate and char-
acterize ten phages (six unique phages) from coastal
marine waters and one from a freshwater pond. The titre
of coliphages in all water samples was extremely low
(range 0.0125 pfu ml−1-0.28 pfu ml−1). This low abun-
dance is lower than previous reports of coliphages in
coastal environments that are around 1 × 102 pfu ml

(Dutka et al., 1987; Janelidze et al., 2011; Burbano-
Rosero et al., 2011). This may be linked to water quality,
since coliphage abundance is known to be linked to faecal
contamination. Alternatively, the time of sampling may be
a factor, since previous work has found there are distinct
seasonal patterns in coliphage abundance (Janelidze
et al., 2011), or our choice of E. coli host strain, which has
also been shown to affect abundance estimates (Havelaar
and Hogeboom, 1983; Jofre, 2009; Muniesa et al., 2013).
Despite this low abundance, it was still possible to isolate
coliphages to further characterize their genetic diversity,
which was the focus of this study.

Given the small number of phages isolated and
sequenced, there was a surprising amount of phylogenetic
diversity (Figs 1, 2, 3). Five species of coliphage were identi-
fied in the 10 phages isolated. Phages vB_Eco_mar005P1,
vB_Eco_mar006P2 and vB_Eco_mar008P4 were identical,
with vB_Eco_mar009P5 and vB_Eco_mar007P3 only dif-
fering by a few SNPs. This similarity is probably due to the
enrichment method, which has enriched for a single phage
that has then proliferated in the enrichment and been
reisolated. It is also possible that seawater provides a
selection pressure and only certain types of coliphages
are able to survive. Phages vB_Eco_mar001J1 and
vB_Eco_mar002J2 also had identical genome sequences
despite being independently isolated and represent a
novel species. The remaining phages vB_Eco_mar003J3,
vB_Eco_mar004NP2 and vB_Eco_swan01 were all
unique and also represent new species.

Phages infecting Escherichia account for ~7% of all
phages sequenced to date. To discover a novel genus
from the sequencing of a just small number of coliphages
further highlights the vast diversity of phages present in
the environment and how much more there is to be dis-
covered. To accurately place phages in the context of
current phage taxonomy, we identified core genes and
used the GET_PHYLOMARKERS pipeline to select the
most appropriate gene for phylogenetic reconstruction,
that is, a gene that does not show signs of recombina-
tion, a process that could lead to inaccurate branch
lengths (Didelot and Maiden, 2010). Our phylogenetic
analysis of phage genomes using selected marker genes
was congruent with current classifications of phage spe-
cies. Some of these classifications are originally based on
historical phenotypic data such as the inability of phage
RB69 to recombine with phage T4 leading to its classifica-
tion as a separate species (Russell, 1967). Recently, this
inability to recombine with phage T4 DNA was postulated
to be caused by the arabinosyl modification of DNA in
RB69, likely caused by a novel glucosyltransferase present
in RB69 but not T4 (Thomas et al., 2018). In this study, the
gene thought to encode a putative arabinosyltransferase
(Thomas et al., 2018) was found to be core in all members
of the genus Rb69virus. Whether the phage isolated in this
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study also glycosylate their DNA in a similar manner to
RB69 remains to be determined. However, the genes
thought to be responsible for it are clearly a signature of
this genus.

While the phylogenetic analysis was congruent with cur-
rently defined species within the T5virus and Rb69virus
genera, combining this phylogenetic analysis with ANI data
demonstrated that using an ANI value >95% was insuffi-
cient to delineate species that were consistent with the
observed phylogeny when additional phage from this
study, and those present in GenBank but having undefined
species, were added. Phages that formed clearly distinct
clades had an ANI >95% with phages outside of the phylo-
genetic clades, suggesting 95% ANI is insufficient to dis-
criminate between species for some genera. We therefore
suggest an ANI of 97% should be used to discriminate
phage within the genera T5virus and Rb69virus, which has
previously been used for the demarcation of phage species
within the genus Seuratvirus (Sazinas et al., 2017).

In the context of coliphages in general, the phage iso-
lated in this study and subsequent analysis has further
expanded our knowledge of the genetic diversity of coli-
phages and identified new taxonomic groups. The closest
relatives of phages isolated in this study were all other coli-
phages or phages infecting other Enterobacteriaceae.
Exactly what constitutes a ‘coliphage’ is unclear, since, as
seen from this study, coliphages can also infect other
Enterobacteriaceae. Comparative genome analysis rev-
ealed a large difference in the genomic content of phages,
with phages of the genus Rb69virus having a large core-
genome while those of the genus T5virus have a much
smaller core-genome (Fig 4 and Supporting Information
Fig. S5). Whether this is due to different phage species
having more flexible genomes that allows frequent recom-
bination, or a reflection of the diversity of hosts used to iso-
late T5-like phages, requires further investigation.

Proteomic analysis of the representative phages resulted
in a relatively small number of proteins being detected per
phage. Despite this, it was still possible to confirm the anno-
tation of structural proteins and identify new structural pro-
teins in phage vB_Eco_mar005P1 and vB_Eco_swan01.
Combined with the core-gene analysis, it confirmed the
annotation of a large number of genes across all phage iso-
lates as structural proteins. In addition, the detection of an
ADP-ribosyltransferase in vB_Eco_mar005P1 suggests that
the carriage of this protein is common to phages in the
genus Rb69virus and presumably acts similarly to the ADP-
ribosyltransferase carried by phage T4, in modifying the host
RNA polymerase for early gene transcription (Koch et al.,
1995; Miller et al., 2003). For phage vB_Eco_mar003J3, a
putative tail fibre gene (MAR003J3_00081) was detected for
which there is no orthologue in vB_Eco_mar004NP2.

The gene encoding MAR003J3_00081 is an orthologue
of ltfA in phage DT57C and DT571/2 which with ltfB

encode for L-shaped tail fibres that allow attachment to
different O-antigen types. This arrangement of two
genes encoding the L-shaped tail fibres is different from
T5, which encodes the L-shaped tail fibres in a single
gene (Golomidova et al., 2016; Nobrega et al., 2018).
vB_Eco_mar003J3 contains orthologues of both ltfA and
ltfB, suggesting that it too uses two gene products for
L-shaped tail fibres, whereas vB_Eco_mar004NP2 only
contains an orthologue of ltfB (MAR004NP2_00162)
and does not contain an orthologue of the single gene
used by T5 (ltf ). Comparison of the genomic context of
the region of ltfB in vB_Eco_mar004NP2 reveals two
genes immediately upstream of ltfB that do not have
orthologues in vB_Eco_mar003J3, one of which likely
encodes a protein to form the L-shaped tail fibre with
the product of lftB. Similarly, there are two genes
upstream of ltfAB in vB_Eco_mar003J3 that are absent
in vB_Eco_mar004NP2. However, immediately beyond
this the genome contains 10 genes either side of these
genes that are present in the same order in both genomes
(Supporting Information Fig. S4 and Supporting Informa-
tion Table S2). Given the observed difference in host
range between phages vB_Eco_mar003J3 and vB_Eco_
mar004NP2, we speculate that it is the differences in the
region that contains tail fibre genes that is likely responsi-
ble and contributes to the ability of vB_Eco_mar004NP2
to infect multiple genera of Enterobacteriaceae.

Differences in the properties of vB_Eco_mar003J3 and
vB_Eco_mar004NP2 were also observed in terms of their
replication parameters, with vB_Eco_mar004NP2 having
a burst size (193) twice that of vB_Eco_mar003J3 (76). It
has previously been reported that phage chee24, which
is also part of the genus T5virus, has a burst size of 1000
and a latent period of 44 min (Sváb et al., 2018). How-
ever, this number does appear to be an outlier because
other T5virus phages such as phage T5 and chee30
have burst sizes of ~77 and ~44, respectively, suggesting
considerable variation within the genus.

In comparison, there was similar variation in the burst
size of phages within the genus Rb69virus, with
vB_Eco_mar005P1 having a burst size that is very similar
to the reported burst size of 31 for phage RB69, but
smaller than the burst size of 96 for phage APCE01
(Dalmasso et al., 2016). Whether the lytic properties of
phages does correlate with phylogeny requires more data
than is currently available and would require standardized
growth conditions for like-for-like comparisons, given it is
known differences in temperature can influence burst size.

Detection of reads mapping to coliphages in the Baltic
virome metatranscriptomics data set was surprising given
coliphage are not thought to actively replicate in seawater
(Jofre, 2009), and that they were not detected in the meta-
genomics data set. However, the latter observation
may be explained by the substantially larger amount of
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metatranscriptomics data from Illumina sequencing
(138 Gb) in this Baltic virome data set compared to the
454 metagenomic sequencing data (~7.9 Gb).

Conclusions

We have begun to elucidate for the first time the genomic
diversity of coliphage within seawater, identifying phages
that represent several novel taxa, further expanding the
diversity of phages that are known to infect E. coli. Fur-
thermore, the analysis and identification of core-genes
and selection of genes suitable for phylogenetic analysis
provides a framework for the future classification of
phages in the genera Rb69virus, T5virus, and subfamily
Tunavirinae. We further suggest that an ANI of >95% is
not suitable for the delineation of species within the gen-
era Rb69virus and T5virus and that a value of >97% ANI
should be used. Characterization of phage replication
parameters and host range further reinforces that mor-
phologically similar phage can have diverse replication
strategies and host ranges. While we are cautious
about the detection of coliphage transcripts in seawater
metatranscriptomes, the most parsimonious explana-
tion is that coliphage are actively replicating, an obser-
vation that certainly warrants further investigation.

Materials and methods

Phage isolation

Escherichia coli MG1655 was used as the host for both
phage isolation and phage characterization work, as it
has previously been used to isolate a wide diversity of
coliphages (Smith et al., 2015; Sazinas et al., 2016,
2017; Michniewski et al., 2017). E .coli MG1655 was cul-
tured in LB broth at 37�C with shaking (200 rpm). Seawa-
ter samples were collected from United Kingdom and
Polish coastal waters (see Table 1), filtered through a
0.22 μm pore-size polycarbonate filter (Sarstedt) and
stored at 4�C prior to use in plaque assays. Plaque assays
were undertaken within 24 h of collecting these samples.
Phages were initially isolated and enumerated using a
simple single layer plaque assay (Van Twest and
Kropinski, 2009). However, where this was unsuccessful,
a modified plaque assay was used that allowed a greater
volume of water to be added. Briefly, filtered seawater
was mixed with CaCl2 to a final concentration of 1 mM
followed by addition of E. coli MG1655 cells at a 1:20 ratio
and incubating the mixture at room temperature for 5 min.
Subsequently, samples were mixed with molten LB agar
at a 1:1 ratio, final concentration 0.5% (w/v). Agar plates
were incubated overnight at 37�C and checked for the
presence of plaques. For samples in which no coliphage
were detected, an enrichment procedure was carried out.

Briefly, 20 ml of filtered seawater was mixed with 20 ml
LB broth and 1 ml E. coli MG1655 (OD600 = ~0.3 i.e. mid-
exponential phase) and incubated overnight at 37�C,
followed by filtration through a 0.22 μm pore-size filter.
Phages from this enriched sample were then isolated
using the standard plaque assay procedure. Three rounds
of plaque purification were used to obtain clonal phage
isolates (Van Twest and Kropinski, 2009) .

Host range

Host range for each phage was determined by spot assay.
Briefly, 1 ml of mid-log phase bacteria was mixed with
5 ml of molten 0.5% (w/v) LB agar, poured onto a base
layer of 1% (w/v) LB agar layer and incubated at 37�C for
1 h. Subsequently, phage stocks (~1 × 109 pfu/ml) under-
went serial dilution (down to 10−8), and 10 μl of each dilu-
tion was spotted on a bacterial lawn. The host was
deemed susceptible to phage infection when the size of
the clearing consistently decreased with the dilution, to the
point that single plaques could be observed.

Genome sequencing

Phage DNA was prepared using a previously established
method (Rihtman et al., 2016). DNA was quantified using
Qubit and 1 ng DNA used as input for NexteraXT library
preparation following the manufacturer’s instructions.
Sequencing was carried out using a MiSeq platform with
V2 (2 × 250 bp) chemistry. Fastq files were trimmed with
Sickle v1, using default parameters (Joshi et al., 2011).
Genome assembly used SPAdes v3.7 with the careful
option (Bankevich et al., 2012). Reads were then
mapped back against the resulting contig with BWA MEM
v0.7.12 (Li, 2013) and SAM and BAM files manipulated
with SAMtools v1.6 to determine the average coverage of
each contig (Li, 2013). If the coverage exceeded 100×
then the reads were subsampled and the assembly pro-
cess repeated, as high coverage is known to impede
assembly (Rihtman et al., 2016). Phage genomes were
then annotated with Prokka using a custom database of
all phage genomes that had previously been extracted
from Genbank (Seemann, 2014). Further annotation was
carried out using the pVOG database to annotate any
proteins that fall within current pVOGS using hmmscan
(Eddy, 2011; Grazziotin et al., 2017). Raw sequence data
and assembled genomes were deposited in the ENA
under project accession number PRJEB28824.

Bioinformatics and comparative genomics

A MASH database was constructed of all complete bac-
teriophage genomes available at the time of analysis
(~ 8500, April 2018) using the following mash v2 settings
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“–s 1000” (Ondov et al., 2016) (see Supporting Informa-
tion). This database was then used to identify related
genomes based on MASH distance, which has previously
been shown to be equivalent to ANI (Ondov et al., 2016).
From this initial set of genomes, single marker genes were
used for initial placement of the newly isolated phages on
a phylogenetic tree, using IQ-TREE. Following this, a more
detailed analysis of the most closely related genomes was
carried out. Phage genomes that were found to be similar
were reannotated with Prokka to ensure consistent gene
calling between genomes for comparative analysis
(Seemann, 2014). Core genome analysis was carried
out with ROARY using “--e --mafft -p 32 –i 90” as a
starting point for analysis (Page et al., 2015). These
parameters were adjusted as detailed in the text. The
optimal phylogenetic markers were determined using
the GET_PHYLOMARKERS pipeline, with the following
settings “-R1 –t DNA” (Vinuesa et al., 2018). Average
nucleotide identity was calculated using autoANI.pl
(Davis II et al., 2016). Phylogenetic analysis was carried
out using IQ-TREE (Nguyen et al., 2015), with models of
evolution selected using model test (Posada and
Crandall, 1998); trees were visualized in ITOL (Letunic
and Bork, 2007).

One-step growth experiments

Phage growth parameters (burst size, eclipse and latent
period) were determined by performing one-step growth
experiments as described by Hyman and Abedon (2009),
with free phages being removed from the culture by
pelleting the host cells via centrifugation at 10,000 g for
1 min, removing the supernatant and resuspending cells
in fresh medium (Hyman and Abedon, 2009). Three inde-
pendent replicates were carried out for each experiment.

TEM

Representative phages, as determined from genome
sequencing, were imaged using a Transmission electron
microscope (TEM) as follows: 10 μl of high titre phage
stock was added to a glow discharged formvar copper
grid (200 mesh), left for 2 min, wicked off, and 10 μl of
water added to wash the grid prior to being wicked off
with filter paper. Ten microliter of 2% (w/v) uranyl acetate
stain was added to the grid and left for 30 s, prior to its
removal. The grid was air dried before imaging using a
JEOL JEM-1400 TEM with an accelerating voltage of
100 kV. Digital images were collected with a Megaview III
digital camera using iTEM software. Phage images were
processed in ImageJ using the measure tool and the scale
bar present on each image to obtain phage particle size
(Rasband, 2016). Measurements are the average of at
least 13 phage particles.

Preparation of viral proteomes for nanoLC-MS/MS and
data analysis

Prior to proteomics high-titre phage stocks were purified
using CsCl density gradient centrifugations at 35,000 g
for 2 h at 4 �C. Subsequently, 30 μl of concentrated
phage was added to 10 μl NuPAGE LDS 4X sample
buffer (Invitrogen) heated for 5 min at 95�C and analysed
by SDS-PAGE as described (Kaur et al., 2018). Poly-
acrylamide gel bands containing all phage proteins were
excised and standard in-gel reduction with iodoacetamide
and trypsin (Roche) proteolysis was performed prior to
tryptic peptide extraction (Kaur et al., 2018). Samples
were separated and analysed by means of a nanoLC-
ESI-MS/MS using an Ultimate 3000 LC system (Dionex-
LC Packings) coupled to an Orbitrap Fusion mass spec-
trometer (Thermo Scientific, Waltham, MA, USA) with a
60 min LC separation on a 25 cm column and settings as
described previously (Kaur et al., 2018). Compiled
MS/MS spectra were processed using the MaxQuant soft-
ware package (version 1.5.5.1) for shotgun proteomics
(Cox and Mann, 2008). Default parameters were used to
identify proteins (unless specified below), searching an in-
house-generated database derived from the translation of
phage genomes. Firstly, a six reading frame translation of
the genome with a minimum coding domain sequence
(CDS) cut-off of 30 amino acids (i.e. stop-to-stop) was used
to search for tryptic peptides. Second, the search space
was reduced by using a database containing only CDS
detected in the first database search, again, looking for
tryptic peptides. Finally, the reduced CDS database was
also searched using the N-terminus semi-tryptic digest set-
ting to find the protein N-terminus. Analysis was completed
using Perseus software version 1.6.0.7 (Tyanova et al.,
2016). All detected peptides from all three analyses are
compiled in Supporting Information Table S5b. Only pro-
teins detected with two or more non-redundant peptides
were considered.
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Appendix S1: Supporting Information
Table S1. Core-genes, ANI and genes used for phyloge-
netic analysis of phages within the genus RB69virus. All
phages were re-annotated to ensure consistent gene
calling. ANI was calculated using autoANI. See attached
excel file.
Table S2. Core-genes, ANI, and genes used for phyloge-
netic analysis of phages within the genus T5virus. All
phages were re-annotated to ensure consistent gene
calling. ANI was calculated using autoANI. See attached
excel file.
Table S3. Core-genes, ANI, and genes used for phyloge-
netic analysis of phages within the subfamily Tunavirinae.
ANI was calculated using autoANI. See attached excel file.
Table S4. Genome properties of bacteriophages:
vB_Eco_mar004NP2, SWAN, vB_Eco_mar002J1, vB_Eco_
mar002J2, vB_Eco_mar003J3, vB_Eco_mar005P1,
vB_Eco_mar005P2, vB_Eco_mar005P3vB_Eco_mar005P4,
vB_Eco_mar005P5 and vB_Eco_mar005P6. See attached
excel file.
Table S5a. Proteomic analysis of phages vB_Eco_swan01,
vB_Eco_mar005P1, vB_Eco_mar002J2, vB_Eco_mar003J3
and vB_Eco_mar004NP2. See attached Word document.
Table S5b. Peptides detected in phages vB_Eco_swan01,
vB_Eco_mar005P1, vB_Eco_mar002J2, vB_Eco_mar003J3
and vB_Eco_mar004NP2. See attached excel file.
Table S6. Host range of coliphages vB_Eco_swan01,
vB_Eco_mar005P1, vB_Eco_mar002J2, vB_Eco_mar003J3
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and vB_Eco_mar004NP2 against Enterobacteriaceae hosts.
Infected hosts are marked with a black box and those that are
not infected with a -. see attached Word document.
Figure S1. Phylogenetic analysis of phages within the
genus RB69virus. The tree is based on the nucleotide
sequence of the major capsid protein (g23), using a
TIM2 + F + R5 model of evolution, with 1000 bootstrap rep-
licates using IQTREE (Nguyen et al., 2015). The phages
included in the tree are vB_MmoM_MP1 (acc:KX078569),
PS2 (acc:KJ025957), phiR1-RT (acc:HE956709), vB_YenM_
TG1 (acc:KP202158), JSE (acc:EU863408), Aeromonas
phage 25 (acc:DQ529280), 44RR2 (acc:AY375531),
44RR2.8 t.2 (acc:KY290948), Aeromonas phage 31.2 (acc:
KY290951), Aeromonas phage 31 (acc:AY962392), Riv-10
(acc:KY290957), L9-6 (acc:KY290956), SW69-9 (acc:
KY290958), Acj9 (acc:HM004124), Ac42 (acc:HM032710),
Acj61 (acc:GU911519), Merlin (acc:KT001915), Moon (acc:
KM236240), CF1 (acc:MG250484), STML-198 (acc:
JX181825), Melville (acc:MF957259), vB_SnwM_CGG4-1
(acc:KU867307), KP1 (acc:MG751100), PKO111 (acc:
KR269720), JD18 (acc:KT239446), vB_Kpn_F48 (acc:
MG746602), PG7 (acc:KJ101592), Pet-CM3-4, (acc:
LT614807), CC31 (acc:GU323318), JS10 (acc:EU863409),
vB_EcoM_VR5 (acc:KP007359), SP18 (acc:GQ981382),
vB_EcoM_VR20 (acc:KP007360), vB_EcoM_VR7 (acc:
HM563683), vB_EcoM_VR25 (acc:KP007361), vB_EcoM_
VR26 (acc:KP007362), PEi20 (acc:AP014714), PEi26 (acc:
AP014715), CHI14 (acc:MF036690), CBH8 (acc:MF036691),
X20 (acc:MF036692), PM2 (acc:KF835987), JS98 (acc:
EF469154), IME08 (acc:HM071924), MX01 (acc:KU878969),
WG01 (acc:KU878968), QL01 (acc:KT176190), Bp7 (acc:
HQ829472), E. coli O157 typing phage 3 (acc:KP869101),
E. coli O157 typing phage 6 (acc:KP869104), RB69 (acc:
AY303349), SHSML-52-1 (acc:KX130865), vB_EcoM_
PhAPEC2 (acc:KF562341), phiC120 (acc:KY703222),
APCEc01 (acc:KR422352), vB_Eco_mar005P1 (acc:
LR027390), Shf125875 (acc:KM407600), ST0 (acc:
MF044457), HX01 (acc:JX536493), vB_EcoM_JS09 (acc:
KF582788), HP3 (acc:KY608965), RB59 (acc:KM607003),
RB55 (acc:KM607002), T4 strain wild (acc:KJ477684), T4
(acc:AF158101), slur07 (acc:LN881732), PE37 (acc:
KU925172), vB_EcoM_UFV13 (acc:KU867876), T4T (acc:
HM137666), T4 strain GT7 (acc:KJ477686), T4 strain
147 (acc:KJ477685), ime09 (acc:JN202312), vB_CroM_
CrRp10 (acc:MG775043), Shfl2 (acc:HM035025), RB14 (acc:
FJ839692), vB_EcoM_112 (acc:KJ668714), RB51 (acc:
FJ839693), RB68 (acc:KM607004), vB_EcoM_ACG-C40
(acc:JN986846), SHFML-26 (acc:KX130862), EC121 (acc:
MF001359), RB32 (acc:DQ904452), RB33 (acc:KM607001),
pSs-1 (acc:KM501444), SH7 (acc:KX828711), PST (acc:
KF208315), SG1 (acc:MF001354), Sf22 (acc:MF158045),
EC04 (acc:MF001360), slur03 (acc:LN881728), slur14 (acc:
LN881736), slur08 (acc:LN881733), Sf21 (acc:MF327007),

SHBML-50-1 (acc:KX130864), KPN1 (acc:KX452694),
KPN5 (acc:KX452698), SF25 (acc:MF327009), Sf24 (acc:
MF327008), ECML-134 (acc:JX128259), HY01 (acc:
KF925357), PEC04 (acc:KR233165), UFV-AREG1 (acc:
KX009778), RB3 (acc:KM606994), RB6 (acc:KM606996),
RB9 (acc:KM606998), RB10 (acc:KM606999), RB7 (acc:
KM606997), RB5 (acc:KM606995), RB27 (acc:KM607000),
wV7 (acc:HM997020), E. coli O157 typing phage 7 (acc:
KP869105), AR1 (acc:AP011113), Sf23 (acc:MF158046),
SHFML-11 (acc:KX130861), HY03 (acc:KR269718),
vB_EcoM-fFiEco06 (acc:MG781190), vB_EcoM-fFiEco01
(acc:MG781191), YUEEL01 (acc:KY290975), CF2 (acc:
KY608967), phiD1 (acc:HE956711), slur02 (acc:LN881726),
slur13 (acc:LN881737), slur11 (acc:LN881734), slur04 (acc:
LN881729). Phages in the genus RB69virus are coloured
in blue
Figure S2. Phylogenetic analysis of phages within the
genus T5virus. The phylogenetic tree is based on the
nucleotide sequence of the gene encoding DNA polymer-
ase, using a TIM2 + F + R3 model of evolution, with 1000
bootstrap replicates using IQTREE (Nguyen et al., 2015).
The phages included in the tree are HTVC010P (acc:
NC_020481), phiR201 (acc:HE956708), saus132 (acc:
MF431737), poul149 (acc:MF431738), saus176N (acc:
MF431741), chee158 (acc:MF431739), chee130_1 (acc:
MF431736), cott162 (acc:MF431740), vB_Eco_mar003J3
(acc:LR027389), Stitch (acc:KM236244), EPS7 (acc:
CP000917), BSP22A (acc:KY787212), SH9 (acc:
MF001363), 100268_sal2 (acc:KU927497), 118970_sal2
(acc:KX017521), LVR16A (acc:MF681663), APCEc03
(acc:KR422353), slur09 (acc:LN887948), SP3 (acc:
MG387042), bV_EcoS_AKFV33 (acc:HQ665011),
SPC35 (acc:HQ406778), SP01 (acc:KY114934), SSP1
(acc:KY963424), vB_Eco_mar004NP2 (acc:LR027384),
phiLLS (acc:KY677846), Shivani (acc:KP143763), SHSML-
45 (acc:KX130863), OSYSP (acc:MF402939), T5, st0 del
mutant (acc:AY692264), T5 (acc:AY543070), T5,ATCC
11303-B5 (acc:AY587007), DT57C (acc:KM979354),
DT571/2 (acc:KM979355), vB_EcoS_FFH1 (acc:KJ190157),
pork27 (acc:MF431731), poul124 (acc:MF431735), saus47N
(acc:MF431733), saus111K (acc:MF431734), chee24 (acc:
MF431730), pork29 (acc:MF431732).
Figure S3. Phylogenetic analysis of phages within the sub-
family Tunavirinae. The tree is based on the nucleotide
sequence of the terminase gene, using a TIM2 + F + R3
model of evolution, with 1000 bootstrap replicates using
IQTREE (Nguyen et al., 2015). The phages included in the
tree are phiEt88 (acc:FQ482085), JMPW2 (acc:KU194205),
T1 (acc:NC_005833), JMPW1 (acc:KU194206), Shfl1 (acc:
NC_015456), ADB-2 (acc:NC_019725), pSf-2 (acc:
NC_026010), Esp2949-1 (acc:NC_019509), vB_Eco_
mar001J1 (acc:LR027388), vB_Eco_mar002J2 (acc:
LR027385), pSf-1 (acc:KC710998), vB_Eco_swan01 (acc:
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LT841304), SECphi27 (acc:LT961732), SP126 (acc:
KC139513), TLS (acc:NC_009540), YSP2 (acc:MG241338),
Stevie (acc:NC_027350), PKP126 (acc:NC_031053), F20
(acc:JN672684), KLPN1 (acc:KR262148), 1513 (acc:
KP658157), KP36 (acc:NC_029099), MezzoGao (acc:
MF612072), Sushi (acc:KT001920), GML-KpCol1 (acc:
MG552615), Rtp (acc:NC_007603), vB_Eco_ACG-M12
(acc:NC_019404), vB_EcoS_Rogue1 (acc:NC_019718),
phiJLA23 (acc:KC333879), C119 (acc:KT825490), e4/1c
(acc:NC_024210), vB_EcoS_AKS96 (acc:NC_024789),
vB_EcoS_AHP42 (acc:NC_024793), bV_EcoS_AHP24
(acc:KF771236), vB_EcoS_AHS24 (acc:NC_024784).
Figure S4. Genomic alignment of phages
vB_Eco_mar004NP2 and vB_Eco_mar003J3. Genomes
were re-ordered from the gene encoding the terminase
large subunit to allow ease of comparison. Genomes
were compared with EasyFig (Sullivan et al., 2011) using
blastn (minimum length 100 e-value 0.001). Genes
detected by mass spectrometry are shaded in yellow.

Figure S5. Comparative genomic analysis of the genus
Rb69virus. All phages were compared to the type phage
RB69 (accession: AY303349) using BRIG (Alikhan et al.,
2015). From the inside out, each ring represents a blastn
similarity (e-value 0.001) to phage RB69. The darker the
shading within each ring, the higher the similarity. The
outer two rings mark the genes and annotation as
extracted from the Genbank file (AY303349).
Figure S6. Comparative analysis of the proposed genus
psFunavirus. All genomes were re-ordered with the gene
encoding the terminase subunit as a starting point. Genomes
were compared with blastn (minimum length − 100, e-value
−0.001) using EasyFig. Genomes were compared in a
pairwise manner, with the shading between genomes repre-
sentative of similarity between genome pairs. Genes where
a protein product was detected using mass spectrometry are
highlighted in orange.
Figure S7. The abundance of transcripts from representative
bacteriophages from the Baltic metatranscriptomic dataset.
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