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RESUM

La primera detecci6 d’ones gravitacionals (OGs), detectades el 14 de setembre de 2015, va marcar I'inici de
I’astronomia d’ones gravitacionals. Totes les OGs que han estat detectades fins ara han vengut de fusions
de sistemes binaris compactes, un tipus de senyal que és detectable durant segons o uns pocs minuts.
Un tipus completament diferent d’ona gravitacional sén les ones gravitacionals continues, senyals de
llarga duracié majoritariament produides per estrelles de neutrons (tant aillades com a sistemes binaris)
asimetriques que es troben rotant. Hi ha hagut moltes cerques que han intentat trobar aquest tipus de
senyal, pero cap d’elles ho ha aconseguit. Encara que les ones continues poden ser monitoritzades durant
molt de temps, es prediu que la seva amplitud és uns quants ordres de magnitud menor que I"amplitut de
les ones provinents de fusions de sistemes binaris compactes: les ones ja detectades tenen una amplitut
habitual al voltant de 1072, mentre que cerques d’ones continues sense deteccions impliquen que aquesta
amplitut hagi de ser menor que 10726 per alguns piilsars, fet que remarca el gran repte que detectar
aquestes ones representa.

Les cerques d’ones continues poden dividir-se entre cerques d’ones provinents de pilsars coneguts o
cerques d’ones provinents d’estrelles de neutrons desconegudes. Al contrari que per el primer tipus de
cerca (per les quals la posicié al cel, la freqiiéncia de rotacid, i el ritme amb que aquesta freqiiéncia
es redueix sén coneguts), les cerques de fonts que no han estat detectades mitjangant radiacié electro-
magnetica requereixen algoritmes capagos d’analitzar espais de parametres gegants, ja que les dades han
de ser correlacionades amb els models d’ona teorics els quals depenen d’aquests parametres desconeguts,
que han de ser inclosos per tenir en compte les diferents modulacions com la modulacié Doppler produida
per la rotacié de la Terra i la seva orbita al voltant del sol. Desafortunadament, no hi ha prou potencia
computacional disponible per cercar un espai de parametres tan gran i gairebé continu en posicié al cel,
freqiiencia, i ritme de frenat. Per aquesta rad, el desenvolupament d’algoritmes no optims que puguin
gestionar aquest espai de parametres és una tasca important dins el camp d’analisi de dades.

Aquesta tesi esta separada en dues parts diferents. La primera part es compon de tres capitols que
presenten introduccions a diferents temes que sén necessaris per comprendre la recerca d’ones continues:
com es generen i propaguen les ones gravitacionals, que sén les estrelles de neutrons i com poden generar
ones gravitacionals, i quins metodes estadistics s’han d’usar per detectar un senyal continua i estimar els
seus parametres.

La segona part consta de quatre capitols que resumeixen els resultats originals que han estat publicats
en revistes d’alt impacte. El primer d’aquests capitols esta dedicat a la millora d’'un metode de recerca
ja existent per a senyals d’ones gravitacionals continues de fonts desconegudes, anomenat SkyHough.
Aquestes noves incorporacions milloren la sensibilitat d’aquest metode sense incrementar el seu cost
computacional, augmentant aixi la probabilitat de detectar un senyal d’ona continua. Aquestes millores
s’apliquen a una cerca utilitzant dades d’Advanced LIGO O2. Encara que no hi ha deteccions, els limits

superiors de I’amplitud d’ona gravitacional milloren en comparacié amb els resultats anteriors. El segon



capitol de resultats presenta una expansié del metode SkyHough que permet la cerca d’ones continues
procedents d’estrelles de neutrons en sistemes binaris, ja que el metode original només permetia la cerca
de sistemes aillats. Aquest tipus de cerca té el cost computacional més alt dins les cerques d’ones
continues, ja que cal tenir en compte més parametres que descriuen I’orbita binaria. Abans d’aquest nou
desenvolupament només existia un algoritme capag de fer aquest tipus de cerca. Els resultats presentats
en aquest capitol mostren que el nou algoritme és més sensible que l'algoritme que existia previament.
El segiient capitol presenta una aplicacié d’aquest nou algoritme, on també es realitza una cerca de fonts
desconegudes utilitzant dades d’Advanced LIGO O2. No hi ha deteccions, pero els nous resultats milloren
els resultats anteriors en un factor 17. L’altim capitol presenta un estudi sobre com caracteritzar el soroll
de llarga durada que pot estar present en els detectors interferometrics. A més de presentar metodes
que permeten la deteccié d’aquest soroll, mostrem una serie d’investigacions que van reduir o eliminar

algunes fonts de soroll que eren presents al detector d’ones gravitacionals de Hanford.



RESUMEN

La primera deteccién directa de ondas gravitacionales (OGs), detectadas el 14 de septiembre de 2015,
marcé el comienzo de la astronomia de ondas gravitacionales. Todas las OGs que se han detectado hasta
ahora provienen de fusiones de sistemas binarios compactos, un tipo de senal que es detectable durante
segundos o unos pocos minutos. Un tipo completamente diferente de ondas gravitacionales son las ondas
gravitacionales continuas (CWs), que son ondas de larga duracién producidas principalmente por estrellas
de neutrones (aisladas o en sistemas binarios) asimétricas en rotacién. Aunque se han realizado muchas
bisquedas de CWs, ninguna de ellas ha logrado una deteccion. A pesar de que las CWs se pueden
rastrear durante tiempos mucho mas largos que las fusiones de sistemas binarios compactos, se cree que
la amplitud de estas ondas es muy menor: la amplitud de las OGs ya detectadas es de alrededor de
102!, mientras que las biisquedas de CWs estan limitando esta amplitud a menos de 10~26 para algunos
pulsares, hecho que remarca el enorme desafio de detectar CWs.

Las busquedas de CWs se pueden dividir entre busquedas de OGs de pilsares conocidos y btsquedas
de OGs de estrellas de neutrones desconocidas. A diferencia de las biisquedas de OGs de los pilsares
(cuyas ubicaciones, frecuencias de emisién de ondas gravitacionales, y ritmos a los que estas frecuencias
se reducen son bien conocidas), las busquedas de fuentes electromagnéticamente silenciosas requieren
algoritmos que analicen espacios de parametros mucho maés grandes, porque los datos tienen que ser
correlacionados con formas de onda tedricas que dependen de estos parametros desconocidos, que deben
incluirse para tener en cuenta las diferentes modulaciones que estan presentes, como la modulacién
Doppler producida por la rotacién de la Tierra y su orbita alrededor del sol. Desafortunadamente, no
hay suficiente potencia de computo disponible para buscar un espacio de parametros tan grande y casi
continuo en posicion del cielo, frecuencia y ritmo de frenado. Por esta razén, el desarrollo de algoritmos
no éptimos que puedan manejar este enorme espacio de parametros es una tarea importante dentro del
campo de andlisis de datos.

Esta tesis estd separada en dos partes diferentes. La primera parte se compone de tres capitulos que
presentan introducciones a diferentes temas que son necesarios para comprender las btisquedas de CWs:
cémo se generan y propagan las ondas gravitacionales, qué son las estrellas de neutrones y cémo pueden
generar ondas gravitacionales, y qué métodos estadisticos deben usarse para detectar una senal continua
y estimar sus parametros.

La segunda parte consta de cuatro capitulos que resumen los resultados originales que han sido
publicados en revistas de alto impacto. El primero de estos capitulos estda dedicado a la mejora de un
método de busqueda ya existente para senales de ondas gravitacionales continuas de fuentes desconocidas,
llamado SkyHough. Estas nuevas incorporaciones mejoran la sensibilidad de este método sin incrementar
su coste computacional, aumentando asi las probabilidades de detectar una senal de onda continua.
Estas mejoras se aplican a una buisqueda utilizando datos de Advanced LIGO O2. Aunque no hay

detecciones, los limites superiores de la amplitud de onda gravitacional mejoran en comparaciéon con los

11



resultados anteriores. El segundo capitulo de resultados presenta una expansiéon del método SkyHough
que permite la buisqueda de ondas continuas procedentes de estrellas de neutrones en sistemas binarios,
yva que el método original solo permitia la busqueda de sistemas aislados. Este tipo de busqueda tiene el
coste computacional mas alto dentro de las busquedas de ondas continuas, ya que es necesario tener en
cuenta mas parametros relacionados con la 6rbita binaria. Antes de este nuevo desarrollo solo existia un
algoritmo capaz de hacer este tipo de bisqueda. Los resultados presentados en este capitulo muestran que
el nuevo algoritmo es mas sensible que el algoritmo que existia previamente. El siguiente capitulo presenta
una aplicacién de este nuevo algoritmo, donde también se realiza una busqueda de fuentes desconocidas
utilizando datos de Advanced LIGO O2. No hay detecciones, pero los nuevos resultados mejoran los
resultados anteriores en un factor 17. El dltimo capitulo presenta un estudio sobre cémo caracterizar el
ruido de larga duracion que puede estar presente en los detectores interferométricos. Ademads de presentar
métodos que permiten la deteccién de este ruido, mostramos una serie de investigaciones que reducieron
o eliminaron algunas fuentes de ruido que estaban presentes en el detector de ondas gravitacionales de
Hanford.



ABSTRACT

The first direct detection of gravitational waves (GWs) on September 14 2015 marked the beginning of
gravitational-wave astronomy. All of the GWs that have been detected until now came from compact
binary coalescences, a type of signal that is detectable during seconds or a few minutes. A completely
different type of gravitational waves are continuous gravitational waves (CWs), which are long-lasting
waves mainly produced by asymmetric rotating neutron stars, either isolated or in binary systems. Al-
though many searches for CWs have been done, none of them has reported a detection. Even though
CWs can be tracked during much longer times than compact binary coalescences, the amplitude of these
gravitational waves is expected to be many orders of magnitude smaller: the amplitude of the detected
GWs is around 1072', whereas CW searches are constraining this amplitude to be less than 10726 for
some pulsars, which clearly underlines the challenge of detecting CWs.

CW searches can be divided between searches for GWs from known pulsars and searches for GWs
from unknown neutron stars. Unlike searches for GWs from pulsars (whose locations, gravitational wave
emission frequencies, and spin-down rates are well known), searches for electromagnetically quiet sources
require algorithms that look at vastly larger parameter spaces, because the data has to be correlated
with theoretical waveforms that depend on these unknown parameters, which have to be included to take
into account the different modulations such as the Doppler modulation produced by Earth’s rotation and
orbit around the sun. Unfortunately, there is not enough computing power available to search such a
large and nearly continuous parameter space in sky position, frequency, and spin-down rate. For this
reason, developing non-optimal algorithms that can deal with this huge parameter space is an important
task within the data analysis community.

This thesis is separated in two different parts. The first part is made up of three chapters that give
introductions to different topics that are needed to understand CW searches: how gravitational waves are
generated and propagated, what neutron stars are and how they can generate gravitational waves, and
what statistical methods have to be used in order to detect a CW signal and estimate its parameters.

The second part is made up of four chapters that summarize original results that have been published
in high-impact journals. The first of these chapters is devoted to the improvement of an already existing
search method for continuous gravitational wave signals from unknown sources, called SkyHough. These
new additions improve the sensitivity of this method without incrementing its computational cost, thus
increasing the probabilities of detecting a continuous wave signal. These new improvements are applied
to an all-sky search using Advanced LIGO O2 data. Although no detections are reported, the upper
limits on the gravitational-wave amplitude are improved as compared to the previous results. The second
results chapter presents an expansion of the SkyHough method that allows the search of CWs from
neutron stars in binary systems, whereas the original method only allowed the search from isolated
systems. This type of search has the highest computational cost within the CW searches, since more

parameters related to the binary orbit need to be taken into account. Prior to this new development,
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only one pipeline capable of doing this kind of search existed. The results presented in this chapter
show that the new pipeline is more sensitive than the previous pipelines. The next chapter presents
an application of this newly developed pipeline, where an all-sky search also using Advanced LIGO O2
data is done. No detections are reported, but the new results improve on the previous results by a
factor of 17. The last chapter presents a study of how to characterize long-duration noise that can be
present in interferometric detectors. Besides presenting methods that allow the detection of this noise,
we show a number of investigations that mitigated some noise sources that were present in the Hanford

gravitational-wave detector.
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Part 1

Theoretical introduction

The first three chapters of this thesis present a theoretical introduction to the topics that are needed
to understand the original results obtained and presented in the second part of the thesis. The first
chapter presents a mathematical derivation of gravitational waves and their properties, a brief explanation
of the different astrophysical sources of gravitational waves, and a summary of the different types of
gravitational-wave detectors and a basic understanding of how they work. The second chapter gives an
introduction to neutron stars, pulsars, and describes mathematically the continuous gravitational wave
signals and how they can be generated. The third chapter introduces the basic statistical framework
that is needed to understand how continuous gravitational waves can be detected and characterized, a
summary of different continuous waves detection methods, and an introduction to the method used to
obtain the results of this thesis, SkyHough.



CHAPTER 1

GRAVITATIONAL WAVES

In 1905, Einstein published his theory of special relativity [2]. In this theory, phenomena like time dilation

or conversion of mass into energy were explained. The two main principles of special relativity are:

e Principle of relativity: the results of any experiment performed by any observer do not depend

on the speed relative to other observers that are not involved in the experiment.

e Universality of the speed of light: the speed of light in vacuum has always the same value,
regardless of the relative motion between the light’s source and the observer.

Ten years later Einstein published the theory of general relativity (GR) [3], which explains the inter-
action between energy distributions and the curvature of spacetime, and it is a description of gravity as

a geometric property of spacetime. The equation that explains this interaction is:

G = SZTGTW, (1.1)
where G, is the Einstein tensor that describes the geometry of spacetime, 7, is the stress-energy tensor
that describes the matter and energy density content in a region of spacetime, G is the gravitational
constant, and c is the speed of light in vacuum. GR presented a whole new theoretical interpretation of
gravity, and was soon experimentally tested since two of its key predictions were confirmed: the correct
value for the advance of the perihelion of Mercury’s orbit, and the experimental verification that light
could be bended by gravity.

One year after the publication of the theory of general relativity, Einstein published a paper describing
gravitational waves (GWs) [4], presenting an equation that described the rate of energy emitted by a
time-varying mass quadrupole. The actual physical existence of GWs was highly debated until the Chapel
Hill conference in 1957, where a thought experiment known as the sticky bead argument was proposed,
which showed that gravitational waves would change the proper distance between two objects and that
energy would be substracted from these waves. Furthermore, a calculation by Pirani showing the tidal
effect that a GW has on a ring of particles also showed that GWs produced measurable effects [5].

After GWs were theoretically proven to exist, the hunt for their experimental detection begun. The
first detection of GW effects, although indirect, was due to the observed decay of the orbital period of
the binary pulsar PSR 1913416 (which was the first binary pulsar ever found), discovered by Hulse and
Taylor in 1974 [6]. After several years of data-taking, they saw that the orbital period of the system (the
time to complete a full orbit around the center of mass) was decreasing, and this decrease was perfectly
fitted by the predictions of general relativity. This system has been used to test general relativity and

constrain other theories of gravitation [7], as well as others detected after this first measurement.
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Gravitational waves Electromagnetic waves
Oscillations of spacetime Oscillations propagated through spacetime
1 mass sign 2 charge signs
2 polarization states rotated by 45° 2 polarization states rotated by 90°
Frequencies: ~ 107 - 10'! Hz Frequencies: ~ 10* - 102° Hz
Hardly interact with matter Strongly interact with matter
Propagate at speed of light Propagate at speed of light
Amplitude decays with distance as &< 1/d | Amplitude decays with distance as o 1/d

Table 1.1: Comparison between gravitational and electromagnetic waves.

The quest for a direct detection of a GW had begun in the 1960s with the design of the resonant-mass
antennas pioneered by Joe Weber, who also attended the 1957 Chapel Hill conference. Although he
claimed to have detected GWs, none of the other groups that had antennas could replicate his results. It
was not until 2015 that GWs were directly detected by the LIGO collaboration. The first direct detection
of a GW was made the 14th September 2015 [8], when a signal from a binary black hole merger located
around 410 Mpc was found. Furthermore, in August 2017 the first detection of gravitational waves from
a binary neutron star merger was made [9]. This was the first detection of gravitational waves and
light from the same system: after the merger of the two neutron stars, light from the collision and the
aftermath was collected [10]. Furthermore, this was the first time that the equation of state of neutron
stars had been constrained by using gravitational waves. This event also confirmed the hypothesis that
short gamma-ray bursts are produced by mergers of neutron stars. All the other detections made during

the first two observing runs of the second generation ground-based detectors are reported in [11].

The rest of this chapter is organized as follows: in section 1.1 we introduce the mathematical foun-
dation of gravitational waves; in section 1.2 we describe the different types of sources that can produce
gravitational waves; in section 1.3 we present a brief review of gravitational wave detectors and how they
work.

1.1 | Introduction to gravitational waves

Gravitational waves (GWSs) are ripples or perturbations in the fabric of spacetime. When any energy
distribution that has an asymmetry is accelerated, the curvature of spacetime is changed, and this change
(which according to special relativity must propagate at a finite speed) is emitted from the source as
gravitational radiation. General relativity predicts that gravitational waves travel at the speed of light,
although other theories of gravitation speculate that this speed might be smaller due to a massive graviton.
As shown in table 1.1, this form of radiation shares some properties with other kinds of waves, such a
as electromagnetic waves; however, one must notice that the latter are waves traveling within spacetime,

while the former are perturbations of spacetime itself.

When GWs from astrophysical events reach the Earth they have an extremely small amplitude. This
is related to the fact that gravitational interaction is the weakest of all known interactions and also due
to the enormous distances to these systems. For this reason, we only expect to detect gravitational waves
coming from the most violent and catastrophic events in the Universe, such as mergers of black holes or

neutron stars, isolated spinning neutron stars, or supernova explosions.

In the next two subsections we present the mathematical formalism that describes the generation of

gravitational waves and how they propagate through vacuum.
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1.1.1 | Propagation of gravitational waves

Most sources of detectable gravitational waves are located very far away from us. The propagation of
gravitational waves through a flat background is usually described by linearized general relativity.

Linearized theory is a weak-field approximation to GR: the Einstein equations are solved in a nearly
flat spacetime, with a small perturbation acting on top of a flat background. With this formulation, we
can separate the “static” and the oscillating parts of the metric. This approximation can be used for the
description of gravitational waves passing through Earth since any likely source of detectable GWs will
be very distant, and the amplitude of the GWs will be very small when they reach our detectors.

In linearized theory, the metric can be decomposed as a flat background plus a small perturbation [12]:

Juv = N + Py, (1.2)

where g, is the metric of spacetime, 7,, = diag[—1,1,1,1] is the Minkowski metric, and h,, < 11is a
small perturbation of flat spacetime. All these quantities are symmetric tensors, and, for this reason, they
only have ten independent components. Linearized theory is an approximation to general relativity that
is correct to first order in the size of the metric perturbation h,,. An example of a weak-field situation
is the solar system, where |h,, | = |®|/c* o« GMg /(Rec?) ~ 107°, where @ is the gravitational potential
for a point mass and M and Rg are the mass and the radius of the Sun respectively.

The linearized Einstein equation is derived hereunder, following the derivation of [12]. The Einstein

tensor is defined as:
1
Guu = Ruy - Qg/,LI/R7 (13)
where R, is the Ricci tensor, defined as the contraction of the Riemann tensor (a comma indicates a

partial derivative):
Ruw=R), =T, —TL , +T5,T% —T9T7, (1.4)

where I'g are the Christoffel symbols, defined by:

« 1 «
Ig, = 59 "(Gusy + Guv, — 98v.)s (1.5)

where g,,,, is the metric defined in equation (1.2), and R is the Ricci curvature scalar, defined by:
R=g""R,,. (1.6)

Equation (1.5) can be linearised using the metric defined in equation (1.2):

1 v 124
Pop = 50" + 1) (av,s + g0y = Mo + havp + hpuy = hapw)

1, 1
= 30" (havg + hpvy = hap) = 5(h g+l o = i), (1.7)

where in the first line we have used the fact that |h,,| < 1 and that the derivatives of the Minkowski
metric 7, are zero. Also, we have used 7, instead of g,, to raise the indices of the components h,,,
because h,,, behaves like a tensor defined on a flat spacetime, for which the metric is 7,,,,. From equations
(1.4) and (1.7), we obtain:
« « 1 (0% (0% (o7

R#V = F/u/,a - F/}.()L,l/ = i(hu,ua + h’u,ua - h,uu,a - h7IJ'V)’ (18)
where the last term is h ,,, = hg_’l“, = naﬁhagw,. If R, is contracted once more, the curvature scalar R
is obtained, which can be combined with equation (1.8) and substituted in equation (1.3):

1 @ @ @ fled
G = 5 (Wi + s = Mo = P = M (B35 — b)) (1.9)

po,v va,p v,
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The last equation can be simplified by introducing a modified expression for the metric perturbation,

called the trace-reversed metric perturbation:

- 1
hp,l/ - hp,l/ - inul/h- (110)

The Einstein field equation is rewritten as:

_ ol - _ 167G
R = M B R R = —a T,

pv, po,v va,u T C4 J2 (1.11)

The coordinate freedom of GR gives the possibility of choosing any coordinate system or gauge. This
means that there might be other coordinate systems in which the metric can still be written as the
Minkowski metric plus a perturbation as shown in equation (1.2), but this perturbation will be different.
For this reason, the decomposition of the metric into a flat background plus a perturbation is not unique.
Gauge transformations correspond to symmetries of the field equations, meaning that the field equations
are invariant under such transformations. We will use the harmonic gauge (equivalent to the Lorentz

gauge condition of electromagnetism), given by:
Ozt =0, (1.12)

in which the following condition is true:

hitt, = 0. (1.13)

There is still some gauge freedom remaining, since the coordinates can be shifted by (infinitesimal)
harmonic functions:
o't =gk + 4, (1.14)

which induces a redefinition of the gravitational field tensor:

B:u/ = BU«V - gu,u - fu,u + nuufi\- (1.15)

It can be proved that £* must satisfy:
0 =0 (1.16)

so that the new gravitational field is in agreement with the harmonic gauge condition.
Within the harmonic gauge, all the terms on the left side of equation (1.11) become zero, except

for the first one (that represents the d’Alembert operator), and the linearized Einstein field equation

becomes: o2 o
- 1 - 16m
~ Ol = (- 557+ VHhu = s (1.17)
which in vacuum (absence of any sources) is:
Ohy,, =0, (1.18)

which is the typical wave equation. For example, when there is one spatial dimension and one time

dimension, this equation can be written as:

1 02 0% -
(~zgm * g2t =0 (1.19)

A general solution to equation (1.19) is the plane wave solution (more generally, there could be a

superposition of different plane waves that would still solve the wave equation):
P (t, ) = R[A, (F)e™="] = A, (k) cos (kaa®), (1.20)

where R denotes the real part, and the components A,,,, and k,, are the amplitude tensor (whose compo-

nents depend on the wave vector k but are independent of Z and t) and the wave vector k,, = [w, kz, ky, k-]
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respectively, where w is the frequency of the wave and k; are the wavenumbers, both constant. The am-
plitude gives the strength of the wave (the displacement of spacetime that it creates), and it is related to
the source of the gravitational waves.

When the solution given by equation (1.20) is inserted in equation (1.18) the next condition is obtained:

0% 8,00 hyy = 0770, (ikohy) = =0 kpkohyuy = —kak®hyy =0 — kok™ =0, (1.21)

which can be read as —w? + k2 + ki + k2 = 0, implying that the wave vector is light-like (meaning
that gravitational waves travel at the speed of light). Applying the harmonic gauge condition given by
equation (1.13) to the plane wave solution, we find:

DR =8, (Aﬂ”a““aff”) = Ak =0 — Aok =0, (1.22)

implying that the amplitude tensor is orthogonal to the wave vector (the waves are transverse). This rela-

tion can be written as four equations that impose four conditions on A4,,., which reduces the independent

pos
components of the symmetric amplitude tensor from ten to six.

Due to the coordinate freedom (the freedom in choosing the four components of the vector ), the
actual number of independent components of A,, can be reduced to two. We will use the transverse-
traceless (T'T) gauge (a subgauge of the harmonic gauge, also called radiation gauge) to do this. The TT
gauge consists of a choice of coordinates (¢,x,y, z) corresponding to an inertial (Lorentz) frame in the
unperturbed flat background, which makes explicit that the perturbation is transverse (orthogonal to the
direction of propagation), and traceless (A% = 0), meaning that the perturbation does not compress or
expand elements of spacetime, but instead induces a (volume-preserving) strain only. Assuming that the

waves propagate in the z direction (k, = k, = 0) and making use of the T'T" gauge, we can write A, as:

0 O 0 0 0 0 0 0

ATT (¢ 2) = v and hIT(t 2) = Y , (1.23)
. 0 Ay —Aze O a 0 hgy —hge O
0 O 0 0 0 O 0 0

where hgy = Ay cos(w(t — 2)) and hay = Agy cos(w(t — z)). In the TT-frame, hil = hlT.
In general, a gravitational wave propagating along the z-axis can be expressed in the TT-frame as a
linear combination of two polarizations, usually named plus polarization hy = h,, and cross polarization

hy = hgy (the two independent components of the amplitude tensor):

h = h+€+ + hxex, (124)
where ey =2 @& —J® ¢ and ex =& ® ¢+ § ® & are the vector basis of the wave (® indicates a tensor
product):

00 0 O 0 0 0 0
01 0 O 0 01 0
er = and ey = 1.25
T loo -1 0 ““lo 1 0 0 (1.25)
00 0 O 0 0 0 O

These two polarizations are not uniquely defined, as other combinations can be used. For example,

the right-handed and left-handed circular polarizations basis can also be defined [14]:

1 1
er = —(ey +ie and e = —(ey —iey), 1.26
R \/ﬁ( + X) L \/5( + X) ( )
1 1
(er+er) and ey =—(egr—er). (1.27)

er = —

NG V2i
When only one of the two polarizations is active, the wave is said to be linearly polarized. If instead
both polarizations are active and equal, the wave is said to be circularly polarized. Otherwise, if both

polarizations are active but not equal, the wave is said to be elliptically polarized.
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To obtain the expressions of this subsection we have assumed that no sources or additional perturba-
tions exist between the source and the observer. The propagation of GWs would be modified if this were
not the case, as for example happens in lensing of gravitational waves, which modifies the amplitude and
phase of the emitted waveforms [15], opposite to what can be seen in equation (1.20), where the com-
ponents of the amplitude tensor do not depend on time or the spatial coordinates. Even in an idealized
Universe containing only GWs, the interaction between them would produce backscatter and tails [16],

which would modify the previous expressions.

1.1.2 | Production of gravitational waves

In the previous subsection we described the propagation of gravitational waves, assuming an ideal situ-
ation where the stress-energy tensor is equal to 0 in all spacetime. In order to describe the generation
of gravitational waves, this assumption cannot be made, and the equation that needs to be solved is (in

linearized theory) [13]:

167G

Oh,u (t, ) = —TTW(t,:E). (1.28)

This differential equation can be solved using a Green’s function G(t,Z,t',#") (where &' is a vector to

position inside the source of GWs):

_ 1
By (t,7) = — LS /d4:c’G( ot 2T (). (1.29)

cd

Green’s function can be found by solving the following equation:

OG(t, z,t', ) =6(t —t',#— &) =6t — t')6(% — &), (1.30)
which depends on boundary conditions. This function describes the field generated at the point (¢, Z) by
the source point (¢, Z"). For a radiation problem, the standard solution is the retarded Green’s function:

1 ! !
47T|f— f’| 5(tret t )G(t t )’ (131)

G(t,z,t',7) =
where the Dirac delta term means that we are evaluating the function only at retarded time t,.; =
t — |Z — Z'|/c and the function O(t — ¢,¢:) represents the step function, meaning that only times at the
future of ¢’ are taken into account. For the Newtonian case, Green’s function represents the potential

produced by a point mass located at Z'. We can apply this expression to equation (1.29):

4G

C4

Py (£, T) = /d3 /dtlm_lqé(tmt’)Tw,(t’,f’)4G/d3’ L ==/ 7). (1.32)

ct |7 — 2|

This equation shows that the disturbance of the metric at time ¢ and position & is produced by a sum
(integral) of the influences from the energy and momentum sources given by the tensor T),, at time t,.;
and positions &', belonging to the past light cone, as shown in figure 1.1. At an observing point far (at
distance d) from a source of size R, we can expand the term |7 — #| ~ d — &’ - 2 + O(R?/d).

The stress-energy tensor 7}, can be expressed in terms that ease its integration over the source. We
follow the multipolar expansion described in [13], which is based on a Taylor expansion in the parameter
Z' - fi/c with the condition of wsR < ¢, where wg is a typical frequency of the source (low-velocity
expansion). After applying this Taylor expansion, the stress-energy tensor is:

x/znl

d 1,
Tt = |7 = [ /e, @) = Ty (t — E,x’) + 0Ty + @x' I I 03T, + . (1.33)

where derivatives are evaluated at (¢t — d/c,Z’). Substituting into (1.32):

i AG d 4G tip
Py (£, ) ~ @/de’Tw(t — S &)+ — /d%’x C" 0Ty + ... (1.34)
4G

d _,. nt. d _,
=" (s,.0t-2 L ). 1.
(Su(t Ca:)—&—CSM (t Ca:)+ ) (1.35)
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Figure 1.1: Schematic showing that the effect at time t and position ¥ comes from the integrated sources (red

circle) at time trer and positions &', which are contained within the past light cone.

This expression is the basis for the multipole expansion: each new term has an extra factor of v/c
compared to the previous one.
In order to clarify the physical meaning of the terms S of the previous equation, we will express them

in terms of the mass M and momentum P! moments, such as [13]:

M= — /d3 "TO(t, ) (1.36)
M’:c2 d32'T(t, )2 (1.37)
Mijzcl2 32Tt & )a'x? (1.38)
Pl = i / 32T (t, 7)) (1.39)
PY = i / 3T (t, 7' )a? (1.40)
Pk — 1/d3 Tt &)l (1.41)

From the conservation of the stress-energy tensor (V, T}, = 0) it is possible to relate the time derivatives

of these moments, as described in [13]:
M=0, M'=P, MY=Ppiypi (1.42)
Pi=0, PY=g89  pik=gik_ gikj (1.43)
The conservation of mass and momentum expressed in the previous equations is due to the linearized

theory formalism, where back-reaction effects are neglected (these effects only appear at higher v/c

orders). After some calculations, the following expressions are derived:

T
SY = §MU (1.44)
ik 1.y 1 /a0 ik .y
§% = il +§(PJ + pitk _op J). (1.45)
To lowest order, the gravitational wave given by equation (1.35) is
- o 2G d _,
hij(tax)%@M](t_va)7 (146)

where (to lowest order) the second mass moment can be expressed as M = [ d3a2/p(t, ¥ )z, where p

is the Newtonian density of the source. Working in the TT-frame, the gravitational wave is:

2G d
- = MET(t— E,w’). (1.47)

The previous expression shows that time-varying monopolar and dipolar moments do not emit gravi-

TTT )y =
hij (t, %) =

tational waves. The dipolar moment of a collection of particles is d = >, miZ;. As in electromagnetism,
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the electric dipolar emission depends on the second time derivative of the dipolar moment. Taking the
first derivative, we see that d = >, m;U; = p is equal to the linear momentum, which is a conserved
quantity. Furthermore, electromagnetism has the dipolar magnetic moment, which in the gravitational
case can be expressed as d, = > @i x (m;U;), equal to the angular momentum, which also is a conserved
quantity. For this reason, no gravitational dipolar radiation emission can exist.

Since we work in the TT-frame, it does not matter whether the tensor that represents the mass

moment has a trace or not, since it will be removed by the projection onto the TT frame:
1 ki Kl
Qij = Lij = 30iTkr — NijiI™ = Aiju@”, (1.48)

where the projection tensor A is explained below. This is why different definitions or quantities are
usually used within the quadrupole formula, such as the second mass moment M, the quadrupole tensor
Q), or the inertia tensor I. All of these tensors are rank-2 tensors representing the second-order moment
of mass with respect to position, but with different projections of their diagonal (i = j) and off-diagonal
(i # j) components. Canonically, the quadrupole tensor is used to quantify deviations from sphericity.
For example, the moment of inertia of a sphere is I = diag[0.4M R?,0.4M R? 0.4M R?), with off-diagonal
components equal to zero. It can be seen that the definition of the quadrupole, which is the traceless
moment of inertia, is constructed to give a 0 quadrupole tensor for a sphere (i.e. non-zero quadrupole
tensors indicate non-sphericity). The mass-quadrupole moment can also be defined as the coefficient of
the 1/r® term in an expansion in powers of 1/r of the Newtonian gravitational potential (far from the
source), thus establishing a clear relationship with a measurable quantity.

Now we want to compute the amplitudes of a wave that propagates in a direction given by n =
[sin 8 sin ¢, sin 6 cos ¢, cos 6] in the TT frame, where the angles denote the difference of orientation between
the frame where the moments are calculated and the direction of the wave. To do this, the matrix My,
has to be rotated to that specific frame, since the TT frame is defined differently for different directions
(i.e. the transverse components in different directions are not equal). The TT projection tensor is given
by [13]:

1 1
N = P P — §Pijpkl — MZT = NjjuuMy = (Pip Py — §Pijpkl)Mkl, (1.49)
where
100 (sinfsing)?  sin®@singcosp cosfsinfsing
Py=6;-nmmn;=10 1 0|—[sin®?fsingcos¢  (sinfcosp)> cosfOsinfcoso |, (1.50)
0 0 1 cosfsinfsing  cosfsinfcos ¢ cos? 6
which gives:
A B 0
M =AM =B —A 0 (1.51)
0O 0 O
A = M (cos® ¢ — sin® ¢ cos® ) + Mao(sin® ¢ — cos® ¢ cos” 0) — Mg sin® §
— My2sin2¢(1 + cos? ) + M3 sin ¢ sin 20 + Mas cos ¢ sin 26) (1.52)

B = (Mll — Mgg) $in 2¢ cos 0 + 2M5 cos 2¢ cos @ — 2N 5 cos ¢ sin 0 + 2Mo3 sin ¢ sin 6. (1.53)

The two polarizations of the strain can be calculated from the previous equation and equations (1.47)
and (1.25):
¢

1 [My1(cos® ¢ — sin® ¢ cos® 0) + Ma(sin® ¢ — cos® ¢ cos® §) — Mz sin® 0

Ul

h+ (ta 97 (rb) =

9

— My sin 2¢(1 + cos? 0) + Mz sin ¢ sin 20 + Mag cos ¢ sin 20))]

hy (t,0,0) = g%[(l\%l — M22) sin 2¢ cos 0 + 2 M5 cos 2¢ cos 0

— 2M;5 cos ¢sin 0 + 2Mos sin ¢ sin 6. (1.54)
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Thus, once the moments M are known it is easy to calculate the strain produced by a source. This
quadrupolar formula shows that a gravitational wave is created only if the time derivative of a distribution
of energy is not equal to zero. It can be seen that the gravitational wave emission is anisotropic, i.e.
the strength depends on the direction. For example, for a black hole binary or an asymmetric rotating
neutron star it is known that the radiation is stronger in the direction of the total angular momentum, i.e.
when the system is observed face-on (the direction of angular momentum directed towards the observer).

We have obtained the canonical quadrupole formula starting from linearized general relativity. As
explained in many references like [17], in principle this is not a correct procedure to obtain the GWs
generated from objects such as neutron stars, since linearized GR assumes a weak-field gravity, a situation
that is not true inside or very close to a neutron star. A more correct procedure is to use a Post-Newtonian
(in powers of v/c) and Post-Minkowskian (in powers of G) expansion using the relaxed Einstein equations,
where it is not assumed that h,, < 1 (where now h,, = 1., — (—g)l/zgw) and a pseudo-tensor that
contains the stress-energy produced by the gravitational field itself (called Landau-Lifshitz pseudo-tensor),
which depends on h,,,, is added to the usual stress-energy tensor. Even though this is true, several studies
have shown that equation (1.47) is correct to lowest order since by using the correct formalism it is also
obtained [18].

The energy emission rate (also called gravitational wave luminosity) is given by [13]:

1G ... ..k
Lew = 36*5<Mjij ), (1.55)

where (- - -) denotes a temporal average over several periods. As an example, we can calculate the emission
rate of a rotating neutron star. If it is perfectly symmetric, the derivative of the quadrupolar mass tensor
is zero, but if it has an asymmetry, characterised by the ellipticity parameter € = (I, — Iyy)/I., the
derivative is not equal zero, and the emission rate is approximately given by:

Law ge%fzy@’, (1.56)
where I,, ~ M R? is the moment of inertia with respect to the rotation axis, and v is the frequency of
rotation. Assigning specific values to these parameters, we can arrive at an estimate of the gravitational
wave luminosity: G/c® ~ 10753 s/J, I,, ~ 103® kg m? (the canonical moment of inertia for a neutron
star), € ~ 1079, and v ~ 100 Hz, giving a value for the luminosity of Loy ~ 10%* W, which is lower than
the luminosity of the Sun due to electromagnetic radiation (Ls = 1025 W).

1.2 | Astrophysical sources of gravitational waves

As seen in the previous section, any accelerated mass emits gravitational waves. For example, humans
can produce GWs, but the amplitude of such waves would be extremely weak [20]: h ~ 10743, From the
wide variety of objects that we find in the Universe, we will only take into account those moving close to

relativistic speeds and which have high compactness:
C=—— (1.57)

where R is the radius of the source and M its mass. This compactness parameter attains its maximum
of 1 for a Schwarzschild black hole, which has R = 2GM/c%.

The astrophysical and cosmological sources of gravitational waves that we expect to detect with the
current detectors are usually divided in four different groups, depending on the duration that the signal
is detectable and on the knowledge that we have about the emitted waveform:

e Compact Binary Coalescences (CBC): gravitational waves coming from binary systems with
two black holes, two neutron stars, or a black hole and a neutron star. When these compact

objects are orbiting each other, they emit gravitational waves due to the time-changing quadrupole
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moment. This emission of gravitational waves gradually carries away some of the orbital energy,
thus gradually decreasing the separation of the two objects. This happens slowly at first, but as the
orbit gets tighter the gravitational wave amplitude and the frequency become higher and the process
accelerates until eventually these objects collide and merge, creating the characteristic chirp in the
frequency evolution. The gravitational waves emitted by binary mergers are not random bursts of
energy, but highly structured waveforms that carry a lot of information about the emitting systems,
such as the masses of the two inspiraling objects or their spins (how fast they are rotating around
their own axes). These signals are only present in the ground-based detectors during seconds or
minutes, because only a few orbits before the merger can be measured. This is the type of signal
that the second generation ground-based interferometric detectors have detected until now: ten
detections of binary black holes and one of a binary neutron star (prior to the beginning of the
third observing run of the Advanced detectors) [11]. Because the waveform is analytically well
understood, optimal detection methods such as matched filtering can be used.

e Burst: burst signals are expected to come mainly from supernovae and gravitational collapse,
but other exotic objects like cosmic strings or unknown phenomena could produce them as well.
Gravitational collapse is one of the most violent events known to astronomy, and probably, the
least understood source of gravitational radiation. This is because we have little direct information
about what is happening in the interior of the collapse, and accurate predictions about the shape
of the radiation are not possible. These signals have a very short duration, and accurate theoretical
models of the waveforms do not exist. Because there is no theoretical model for these types of
signals, matched filtering cannot be used and other unmodeled methods such as coincidence tests

between different detectors are routinely used.

e Stochastic background: the stochastic background of gravitational waves comes from the su-
perposition of a large number of unresolved gravitational wave sources of astrophysical and cosmo-
logical [21] origin. Unresolvable sources are those which we cannot distinguish individually, either
because they are too quiet or because there are simply too many occurring at once. Cosmolog-
ical backgrounds are predicted to have been produced by sources that existed in the very early
Universe, as for example during the inflation period (at ~ 10736 seconds after the Big Bang),
while astrophysical backgrounds are predicted to have been produced by systems of massive stars
such as the neutron stars and black holes that we see today. Thus, depending on the type of
gravitational-wave background we detect, we may learn about the state of the Universe just a few
moments after the Big Bang or how the Universe is evolving in more recent times. The strength of
the gravitational-wave background at different frequencies strongly depends on the type of sources
that produce it, but it is usually much lower than the already detected CBC signals. Similarly to
the burst case, analytical models of the waveforms do not exist and the search pipelines mainly
depend on correlating the data streams from different detectors in order to find a coincident signal.
The stochastic background is assumed to be continuous and search methods can integrate data for

longer durations.

e Continuous gravitational waves (CWs): the main topic of this thesis, CWs mainly come from
rotating neutron stars with an asymmetry around their rotating axis. These waves are almost
monochromatic (their frequency changes very little) and have a very long duration. The signal
amplitude is very low and long observation times (up to months or even years) are required to build
up enough signal-to-noise ratio to be detectable. More details about CWs are discussed in chapter
3.

Besides these four main groups, more sources can produce gravitational waves outside of the frequency
band of the ground-based detectors. Figure 1.2 shows the different types of sources and the frequency
of the GWs that they can emit, which is related to the size and the mass of the system emitting them.
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Figure 1.2: Gravitational-wave spectrum, showing the different frequencies and their corresponding sources and
detectors. Plot made with [22].

The frequency band of good sensitivity for the current ground-based detectors is located between ~ 20
Hz and several kHz, so with these detectors we will only be able to detect the sources that emit GWs
in this range. For this reason, many sources such as black holes orbiting a supermassive black hole or
galactic white dwarf binaries will only be detected with other types of gravitational-wave detectors such
as LISA, which are discussed in the next section.

1.3 | Gravitational wave detectors

In order to detect gravitational waves, extremely sensitive detectors need to be designed and built to
sense changes in length many orders of magnitude smaller than the diameter of the proton. In this
section we review past, current and future gravitational wave detectors such as resonant-mass antennas
and interferometers.

The first operative gravitational-wave detectors were resonant-mass antennas. The main idea behind
these detectors is that a passing gravitational wave will excite the longitudinal modes of the antenna
by absorbing energy from the GW, and by using a transducer this excitation can be measured. In the
1960s, Weber designed the first resonant-mass antenna, an aluminium cylindrical bar of 3 m long and
0.6 m of diameter, which weighed around a ton [23]. After this first antenna, several more antennas
with very similar characteristics were built around the world. Although Weber claimed several times to
have detected gravitational-wave events, none of the other experiments could confirm these detections.
In the 80s and 90s new designs and improvements were proposed that formed the second generation of
resonant-mass antennas, such as the implementation of cryogenic temperatures or different shapes such
as spherical. Up until now, none of these resonant-mass detectors has detected any gravitational wave.
Typical sensitivities of the first generation of detectors were around 10~'7 Hz~!/2, while the second
generation antennas improved this sensitivity up to a thousand times, although such sensitivities are only
attained within a narrow frequency bandwidth, of the order of tens of Hertz. A detailed review about
resonant-mass detectors can be found at [23]. New developments in resonant-mass detectors are still being
proposed, such as a new idea called TOBA (Torsion-Bar Antenna) that was proposed in 2010 [24], which
already has a working prototype. This new instrument is made of two perpendicular bars, where instead

of measuring internal excitations of each bar a relative rotation between both bars is sensed. TOBA is
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supposed to detect gravitational waves in the 1 mHz to 1 Hz regime at a sensitivity only slightly worse
than the proposed space-based detectors such as LISA, which are discussed below. Furthermore, another
new idea consists of using superfluid helium as the resonant-mass in order to detect gravitational waves
around a small bandwidth at kHz frequencies, where preliminary studies show that sensitivities similar
or even better than interferometric ground-based detectors could be achieved [25].

Another type of instrument that can sense gravitational waves is the interferometric gravitational-wave
detector. The seeds of the idea for interferometric detectors date from the 50’s [26], and the first detailed
descriptions of these detectors were produced in the 70’s [27] by Rainer Weiss. The first interferometric
detectors were constructed in the 90’s, and began operations in the 00’s. Some of the ground-based
interferometric gravitational wave detectors that exist are (more details about how these interferometers

work are given in the next subsection):

e LIGO: the Laser Interferometer Gravitational-Wave Observatory (LIGO) consists of two 4 km
detectors, one in Hanford (WA) called H1 and another in Livingston (LA) called L1 (Initial LIGO
had a third detector of 2 km called H2 inside H1). These two observatories are separated by ~ 3000
km, and they are operated by the LIGO Scientific Collaboration. Figure 1.3 shows an aerial picture
of the Hanford interferometric detector. The Initial LIGO detectors were operating between 2002
and 2010, in six different science runs, not finding any gravitational wave signal. From ~ 2010—2015
the detectors underwent a series of major upgrades to enhance their sensitivity, becoming the first
“second generation” gravitational-wave detectors, called Advanced LIGO [28]. These enhancements
have made Advanced LIGO almost an order of magnitude more sensitive than Initial LIGO. A third
Advanced LIGO detector of similar characteristics is expected to be built in India and to begin

operations around 2025.

e Virgo: the Virgo (V1) detector is a 3 km interferometer located in Cascina (Italy), operated by the
Virgo Collaboration. Similarly to LIGO, this detector was active during its first generation phase,
and it was upgraded to Advanced Virgo during the first years of the 2010s, joining the last month

of the O2 observing run and participating in the first detection of a binary neutron star [29].

e KAGRA: a Japanese 3 km detector located in the same place as the Kamioka neutrino observatory
(200 meters beneath Earth) [30]. KAGRA participated with GEO in a short observing run called
0O3KG that begun just after the O3 observing run was finished. KAGRA test masses are maintained
at very low temperatures with cryogenic technology, thus decreasing the Brownian/thermal noise
and improving its sensitivity. Before KAGRA there was TAMA-300, which was a 300 m interferom-
eter built in the city of Tokyo. The aim of the project was to develop advanced techniques needed

for building a future interferometer. TAMA was followed by CLIO, a 100 m cryogenic detector.

e GEO: GEO-600 is a 600 m detector built as a collaboration between the United Kingdom and
Germany, located near Hannover (Germany) [31]. Its short length makes it the least sensitive
detector, and, because of this, it cannot compete with the other detectors. It has been mainly used
as a test bank for the technology that can be implemented in the other interferometric detectors,
and it operates in the so called astro-watch mode, which covers epochs when the other detectors

are not operational in case that an unexpected but big event such as close-by supernova happens.

A science or observing run is a period of time during which the detectors are active, taking data that
will be analysed to search for gravitational-wave signals. Due to periodic maintenance, seismic noise,
equipment failures, and other problems, the duty cycle of a science run (the fraction of time where the
detectors are recording data that will be analysed to search for gravitational waves) is always less than
100%, varying for each detector an each science run, usually having values between ~ 50% and ~ 90%.

The Initial LIGO interferometers carried out six initial science runs called S1 to S6 of varying dura-

tions (Initial Virgo carried out four science runs called VSR1 to VSR4), while for the second generation
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Figure 1.3: Aerial image of the LIGO Hanford gravitational wave observatory, located in Washington, EEUU, with
4 km arms. Source: Caltech/MIT/LIGO Lab, https: //www. ligo. caltech. edu/ WA/ image/ 11go20150731f .

of interferometers there have been three observing runs up until now, called O1 (which started on 12
September 2015 and ended on 19 January 2016, with only the two Advanced LIGO detectors partici-
pating), O2 (which begun on 30 November 2016 and lasted until 25 August 2017, with Advanced Virgo
joining for the last month), and O3 (which started on 1 April 2019 and ended on 27 March 2020). Plans
for future observing runs are discussed in [32].

Currently there is an ongoing discussion about the planning and design of the third generation ground-
based detectors, which aim to increment the sensitivity by at least an order of magnitude. There are
two main proposals: Einstein Telescope, an European project currently at design phase, which will be
underground and use cryogenic techniques, with arms of 10 km [33]; Cosmic Explorer, a North-American
project which aims to build a 40 km detector at ground level also with cryogenic techniques [34]. The
construction of both facilities is expected to start during the 2030s decade.

Besides resonant-mass detectors and classical interferometers, new ideas and techniques are being
proposed in order to do ground-based gravitational-wave detection. MAGIS-100 is an atom interferometer
of 100 meters that uses falling atoms instead of hanging mirrors as their test masses [35]. It is being
constructed in order to test the performance and the possibilities of a future 1 km atom interferometer that
would have a sensitivity around 10~ Hz~'/2 between 0.1 and 10 Hz, due to the absence of seismic noise,
which would complement the frequency band of the current detectors. Another idea is the speedmeter,
where the velocity of the test masses instead of their position is actively measured [36]. Different types
of speedmeter designs exist which show promising improvements in sensitivity, although more detailed
and thorough tests are pending [37].

Apart from the ground-based gravitational-wave detectors, there is a project called LISA that intends
to send an interferometric detector to the outer space, with a planned launch around the 2030s [38]. LISA
is a laser interferometer consisting of three spacecrafts in solar orbit, with near equilateral triangular
configuration of around 10° km baselines. Due to unequal arm lengths, frequency noise from the laser
is not exactly canceled when light is recombined at the beamsplitter. For this reason, a time-shifted
combination of the output from the different spacecraft is combined to cancel this noise and achieve
good sensitivity, in what is called Time Delay Interferometry [39]. Being outside Earth, LISA will not
be affected by seismic noise as the ground-based detectors are, making it a perfect instrument to detect

sources at frequencies approximately between 10~° and 0.1 Hz, complementing the frequency range of
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current detectors. A mission sent in 2015 to test LISA technologies called LISA Pathfinder has published
the first set of results [40], attaining an even better than expected sensitivity. Besides LISA, other future
space-based detectors such as DECIGO, TianQin/Taiji, Big Bang Observer, AMIGO, and AIGSO are
also being planned, which may have slightly different configurations than LISA.

Two more techniques are used to detect gravitational waves at even lower frequency regimes, com-
plementing the range of the ground-based and space-based detectors. Firstly, pulsar timing array (PTA)
uses the precise arrival times of the electromagnetic signals from pulsars as the tool to measure the
waves [41]. If a gravitational wave passes between the pulsar and the Earth, the time of arrival of the
pulse will change, and this variation (correlated between all pulsars) will be seen in the arrival times of
the pulses as a residual between the best fitted model and the data. The gravitational-wave frequencies
that PTA can detect are around 102 and 10~7 Hz, and are produced mainly by mergers of supermassive
black holes, although GWs from decaying cosmic strings and relic post-inflation are also a possibility.
The latest data release consists of timing from 65 pulsars, with no detection of GWs up to date [42].
Secondly, at frequencies even lower than 10~ Hz, another possibility is the indirect detection of gravi-
tational waves in the very low frequency band based on measurements of the B+ polarization modes of
the cosmic microwave background produced by primordial gravitational waves [43,44]. These indirect
detections could give information about the early Universe that is not accessible through electromagnetic

radiation.

1.3.1 | How does an interferometric gravitational wave detector work?

As we explained before, in general relativity gravitational waves have two polarisations, with directions
rotated by 45° and phases differing by 90°. A passing gravitational wave will stretch and squeeze space in
the direction of every polarisation, and the proper distance between test masses will change. If this change
of proper distance between the masses can be detected, we would be able to directly detect gravitational
waves.

A typical example of the effect on matter of a passing gravitational wave is pictured in figure 1.4. It
shows the effect of the passage of a plane gravitational wave, propagating along the z-axis, on a ring of
test particles. The upper panel of the figure shows the case where the metric perturbation has ATT = (

and Agf = 0. The lower panel shows the opposite case, where the metric perturbation has ALT =

T
and ALT # 0. Gravitational waves with AT # 0 are identical to gravitational waves with AZT # 0,
except for a rotation of 7/4 radians. These two cases represent two gravitational wave polarization states,
usually denoted by “4+” and “x” respectively.

The change in the proper distance between the test particles during the passage of the gravitational
wave is the physical quantity which gravitational wave detectors aim to measure, called AL. These
detectors sense the difference between the travel time of a laser beam going back and forth along the
arms of a Michelson interferometer, whose lengths are changing due to the passing of gravitational waves.
Within these interferometric detectors, the ring of test particles is substituted by two test masses situated
at the end of two perpendicular arms.

In figure 1.5 the composition of a dual-recycled Fabry-Perot Michelson interferometer is shown. Four
masses (test masses) are hanging inside two perpendicular arms with an “L” shape, forming a 90°
intersection. A laser shoots a beam of light that reaches the beamsplitter, and then half of the laser
light is transmitted into one arm while the other half goes into the other arm. Afterwards, light travels
through these two arms, reaching the end of the arms where very reflective mirrors are located (the test
masses). The laser light travels back and forth many times: the arms are Fabry-Perot cavities which
increase the power of the laser’s light. After bouncing, the light returns to the beamsplitter, where
it interferes with the beam coming from the other arm. If no gravitational wave passes through the
detector during the time that the laser’s light was traveling, the beams from the two arms will cancel

out due to a perfect interference and no light will be detected by the photodetector. On the contrary,
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Figure 1.4: Illustration of the effect of a gravitational wave traveling in the z direction (perpendicular to the page)
on a ring of test particles. It shows the two polarisations, whose direction differs 45°. Time goes from left to
right. Every panel shows five different phases (different values of wt) of the oscillation of the wave, the first and
the last one being the same (finishing a full cycle). Source: [45].

if a gravitational wave passed through the detector, the beams will not completely cancel out, and the
photodetector will detect some light. The evolution of the pattern formed by the light received at the
photodetector gives us information about the gravitational wave, like its amplitude, frequency, etc. Of
course, current gravitational-wave detectors such as Advanced LIGO are very complicated apparatus
with lots of interacting subsystems, and the previous explanation is a simplification that tries to give a
general idea of how an interferometer can detect GWs.

Now, we derive an analytical model to calculate the changes of light travel time between the two arms
when a GW has passed. As equation (1.2) shows, the perturbed metric is (for a wave traveling in the z
direction) [12]:

-2 0 0 0
0 14+hy hy O
v = Ny + Ay = (1.58)
a a hy 1—hy O
0 0 0 0

For the sake of simplicity, let us assume a linearly polarized wave hy = 0 with its wave vector per-
pendicular to the interferometer plane and its main oscillating directions aligned with the interferometer

arms. The light from the laser follows a light-like geodesic, which can be expressed as:
ds® =0 = g datde” = —c*dt* + (1 + hy)da? 4+ (1 — hy)dy? (1.59)

From the last expression we can calculate the time it takes light to travel a certain distance in this

perturbed spacetime. For example, when light follows the z-axis direction, the result is:

g — Y1t

1.
. T, (1.60)

where the + differentiates between the travel from the beamsplitter at zo to the mirror at zq + L and
the return trip, which has opposite sign. This equation can be integrated:
rotl T+ h rotl 1 4 hy /2 + O(K2 L Lhy L h
T1=/ AL +/ (+>dx%f+ + +
c

= —(14+ — 1.61
c c 2¢c c( + 2)7 ( )

where in the first approximation we have used a Taylor expansion (when h, is of the order of 10720, it
can be seen that higher order effects can be dismissed) and in the second one we have assumed the long

wavelength approximation, which assumes that the perturbation h; does not depend neither on time or
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Figure 1.5: Scheme of an interferometric detector: two masses located close together in the vertex of the “L”
shaped structure and the other two at the end of each of the interferometer’s arms. The laser shoots a beam that
is separated in the beamsplitter, and travels down through both arms, reaching the end and returning to the beam-
splitter. When a gravitational wave passes by, light does not interfere completely and reaches the photodetector.
The upper right inset shows the quadruple suspension system that is used to seismically isolate the test masses,

and the complementary suspension chains that are used to actuate on the test masses. Source: [46].

space coordinates, since the wavelength of the wave is much longer than the arm and any finite length
travel effects can be dismissed. It can be seen that when hy = 0, the unperturbed solution T, = L/c
is recovered. The change from unperturbed to perturbed time is ATy = Ty — L/¢c = Lh/(2¢). This
equation shows the importance of the length of the detector arms: for the same external perturbation
hzz, doubling the length of the arms means that the difference between perturbed and unperturbed times
doubles.

The return trip is:

*o 14+ hy/2 L h
Ty z/ —;Jr/dx: 21+ (1.62)

zo+L c c 2

L hy Lhy
ATy =—-——(1+—F7)+L/c=— . 1.

p=——(+=)+1L/c 5 (1.63)
We define the variation on the travel time during a complete round-trip as AT, = ATy + AT, = %,
and correspondingly for the light traveling through the y arm we have AT, = —% (we have assumed

that the unperturbed lengths of the two arms are equal).

Combining the strains produced in both x and y arms, we define the detected strain as:

AL AL, —AL, AT, — AT Lh, Lh
_ v, A e R T OO (1.64)

h=—1 L L L' ¢ c

The variation in time/length produces a variation of the phase of the laser traveling within the arms

of the detector, which is what the photodetector senses:

2 2
Ap = %AL = §2Lh+. (1.65)

In a realistic scenario, hy will be a sinusoidal function and A¢ will oscillate between positive and negative

values around a central point.
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1.3.2 | Noise in ground-based interferometric detectors

A gravitational wave with an amplitude of h = 1072! will only produce a change in the length of the
arms of AL oc hL = 4 x 1072! km (much shorter than the width of a proton), with L = 4 km being the
length of the detector arms. The difficulty of performing such a measurement stems from the fact that the
detector is not an ideal instrument: it has some sources of noise of instrumental and environmental origin
that can mask the gravitational wave signals we are looking for. This makes the task more challenging:
we have to identify these noise sources and understand how they behave in order to minimize them and
to prevent confusions between noise and real gravitational wave signals.

The main sources of noise are:

e Quantum noise: due to the quantum properties of the photons of the laser. The quantum shot
noise comes from the randomness of the times of arrival of the photons at the photodetector, which
creates a fluctuation in the power received. Furthermore, the photons of the laser inflict a pressure
on the mirror surfaces, called quantum radiation pressure noise, which generates a stochastic force
that shakes the mirrors. Quantum noise is the main source of noise at frequencies higher than 10
Hz.

e Thermal/Brownian noise: due to movements of the atoms in the mirrors, the coatings of the
mirrors, and the suspensions. Thermal noise can be analytically estimated using the fluctuation-

dissipation theorem. Thermal noise has a high contribution at frequencies lower than 100 Hz.

e Technical noise: a wide variety of effects contribute to technical noise, such as laser frequency
noise, noise coming from the feedback loops that are used to maintain the interferometer arms
in resonance, or noise from the photodetectors. A discussion of technical noise sources and their

contribution during O1 is given in [47].

e Environmental noise: due to external sources such as electromagnetic fields, wind and storms, or
acoustic noises. The most important environmental noise sources are seismic and gravity-gradient
noise, which come from the motion of Earth’s ground and from the fluctuations of local gravity
fields around the test masses. The use of pendulums (the test masses are hanged with a complex
system of fiber suspensions as shown in figure 1.5) reduces the seismic noise by filtering out the
frequencies above the natural frequency of the pendulum. For a 0.5 m pendulum, filtering above a

few Hz is achieved. Seismic noise is the biggest source of noise at frequencies lower than ~ 10 Hz.

The sum of these noise sources make up a total contribution which is usually characterized as a
random Gaussian process. This sum of noises is what limits the sensitivity of the detectors, and it can
be characterized by the single-sided power spectral density (PSD) S,,, which is the Fourier transform of

the auto-correlation function ~(7):

(oo}
S, (f) :2/ y(r)e ™I dr. (1.66)
— 00

The PSD can be estimated through different ways, one of them being the Welch method. It consists of
dividing a series of data in shorter chunks, taking the Fourier transform of each of them, calculating the
amplitudes for each frequency bin (thereby obtaining a periodogram) and finally combining these chunks
by taking a mean between them. As can be seen in any spectrum of gravitational-wave data (such as
figure 4.6), the noise can be described as nearly Gaussian (as explained below) but not white, since the
value of the PSD is highly dependent on the frequency. This means that the different noise processes
maintain a certain correlation.

Two of the main noise artifacts that contribute to the non-stationarity and non-Gaussianity of the

detector are lines and glitches.
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Lines are sinusoidal-like features that are coherent over long-duration stretches of time, and can be
clearly seen in the PSD of a detector as peaks above the noise floor. Lines come from different sources
(both known and unknown) such as: the power harmonics of the electricity components (60 or 50 Hz
and its harmonics); the violin modes created by the suspensions of the mirrors; the calibration lines,
deliberately inserted disturbances that are used to calibrate the detector; environmental disturbances,
such as external magnetic fields. The frequency of these lines can be constant in time or it can be time-
dependent. Chapter 7 will be devoted to further describe these lines and to list some efforts made during
the O2 and O3 observing runs in order to characterize and eliminate them.

Besides lines, there are also many transient artifacts called glitches. Glitches appear with many
different shapes, and the sources for most of them are unknown [48]. They can mimic the shape of some
gravitational-wave events, thus decreasing the sensitivity of the pipelines. Short-duration glitches not only
affect transient searches, since that each time there is a glitch the PSD of the detector is elevated from
the noise floor over a wide range of frequencies, thereby also decreasing the sensitivity of longer-duration
searches. Both lines and glitches contribute to deteriorate the efficiency of the different search algorithms
that try to detect and characterize gravitational waves. For this reason, eliminating or reducing these
noise sources is an important endeavour, done side by side to the other improvements which try to lower
the other Gaussian noise sources.

In order to study all these different sources of noise and their coupling mechanisms, the output of
the detectors not only consists of the main gravitational-wave channel h(t). More than 200000 auxil-
iary channels are outputting data constantly, which can be used to localize sources of noise affecting
different systems or locations of the interferometer [49]. Some examples of these auxiliary channels are
magnetometers, microphones, cosmic ray detectors, or an array of photodetectors.

Periods of time in which there are significant problems with the quality of the data are vetoed.
To record these vetoes, LIGO uses a system of flags and triggers to classify the data, which typically
exclude periods of data on the order of seconds to hours. For example, there are times when some
of the photodetectors used to sense the laser field in the detector are overflowing their analog-to-digital
converters, and these times have to be vetoed. Data quality triggers are short duration vetoes generated by
algorithms that identify significant statistical correlations between a transient in h(¢) and transient noise
in auxiliary channels. There are three data quality categories, classifying the least and most usable data:
CAT1, when a critical issue with a key detector component not operating in its nominal configuration has
been identified; CAT2, when there is a known, understood physical coupling to the gravitational wave
channel; CAT3, when there is statistical coupling to the gravitational wave channel which is not fully

understood.

1.3.3 | Antenna beam pattern functions of an interferometric detector

Gravitational waves travel almost unaltered (because of the little interaction of gravitational waves with
matter) from the source to the detector at the speed of light, as predicted by general relativity. As
discussed in subsection 1.1, GWs are transverse waves. Because the plane of the detector will not
coincide with the plane of the GW oscillation, the GW has to be projected onto the detector’s plane in
order to accurately describe the real physical effect of the gravitational wave on the time of travel of the
laser.
As discussed in subsection 1.1.1, the traveling gravitational-wave H,, can be described in the wave
frame (explained below) by:
Hy = hpep =hyeq +hyex. (1.67)
P
To transform the strain H,, described in the wave frame to the strain Hp in the detector frame,
we have to concatenate three frame transformations: wave to celestial, celestial to cardinal, cardinal to

detector. Each of these frames is an orthogonal Cartesian frame defined as:
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e Wave frame: the z direction is the direction of propagation, while the x direction forms a counter-

clockwise angle v to the projection of the East axis in the sky.

e Celestial frame: also called equatorial frame, the x direction points from the centroid of the Earth to
the vernal equinox, the z direction points to the celestial North pole and y axis forms a right-handed

orthogonal basis.

e Cardinal frame: the x direction points to the East, the z direction points to the zenith and the y
axis forms a right-handed orthogonal basis. In this way, the xy plane is tangent to the surface of
the Earth.

e Detector frame: the z direction coincides with the cardinal frame, and the x direction is aligned

with the bisector of the two arms of the detector.

For each of these transformations from frame 1 to 2, we perform three rotations given by three Euler
angles, defined as: ¢, the angle between Z5 and N ; 0, the angle between 25 and Z1; ¢, the angle between
1 and N , where N is the line of nodes defined as the intersection between the planes Z1-91 and Z3-9s,
calculated as Z; X Z3. We apply the three Euler rotations following the zxz convention, i.e. a first rotation
around the axis 2, by an angle ¢, a second rotation around the axis Zs by an angle  and a last rotation
around the axis 2o by an angle .

Firstly, we go from the wave frame to celestial frame. This first transformation does not involve any

time dependence since the wave and celestial frames do not rotate. It is given by:

= R:(¢)R.(0)R=(¢) =

sm(¢) sin(y) — cos(#) cos(¢) cos(v) cos(y) sin(¢) + cos(f) cos(¢) sin(vp)  cos(¢) sin(6)
cos(6) cos(v)) sin(¢p) + cos(¢) sin(yp)  cos(d) cos(p) — cos() sin(¢) sin(yy) —sin(f)sin(¢) | . (1.68)
— cos(v) sin(6) sin() sin(¢)) —cos(6)

The Euler angles can be related to the sky positions (the right ascension « and declination §) by:
p=a+m7/2, O=m/2—0. (1.69)

This can be viewed graphically, or can be obtained by doing the dot product between the corresponding
vectors. We define the polarisation angle ¢ as [13]:

cos(p) =n- (L x 2) and sin(yp) =|L-2— (L -7)(2-7)], (1.70)
where 7 is the unit vector pointing to the source from the detector and L is the unit angular momentum
of the source. @ can be defined as the angle between the direction 7 x Z and the z-axis of the TT
wave-frame (corresponding to the “+” polarization), where Z = (0,0,1) is the unit-vector pointing to
the celestial north pole, or it can also be defined as the counterclockwise angle from the z,, axis to the
projection of the East axis in the sky.

The second transformation goes from the celestial frame to the cardinal frame. The three Euler angles
can be related now to the latitude A and a rotating longitude L by ¢ = L + 7/2 and § = 7/2 — A, and
1 = 0. The rotation matrix is:

sinA\cosL sinAsinL —cosA
My = —sin L cos L 0 . (1.71)

cosAcosL cosAsinL  sin A

It can be seen that this transformation depends on time, since the angle L = ¢, + €2t changes because
the Earth is rotating.
The last transformation goes from the cardinal frame to the detector frame, where a simple rotation

of the x-y plane is needed since the z axes of both frames are the same. The rotation matrix, composed
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by a rotation of v (which gives the angle between the East axis or ¢ and the bisector of the arms) and
a rotation of —(/2 (where (/2 is the angle between the bisector and one of the arms), is:

—sin(y+¢/2) cos(y+¢/2) O
Ms=] —cos(y+¢(/2) —sin(y+¢/2) 0 |. (1.72)
0 0 1

After these three transformations, the axis of the wave frame will coincide with the axis of the detector
frame. The complete matrix of rotation is M = MzM,M;. Now we can obtain Hp:

Hp=M-H, M. (1.73)

For example, for the plus polarization h, = A, e, we have that e, p = Me, M7T.

The equation describing the projection of a gravitational wave (already expressed in the detector
frame) onto an interferometric detector whose response is given by D = dy ® dy — do ® do, where d; and
ds are the unit vectors parallel to the detector arms, is:

1 A 1 N
h(t) = HpD = di Hpdy — 5dj Hpds, (1.74)

where Hp is the expression in equation (1.67) in the coordinate frame of the detector.
The unit vectors parallel to the arms can be written in the detector frame as d; = [1,0,0] and

dy = [cos ¢, sin ¢, 0], which make the detector response:

1—cos?¢ —cosCsin¢ 0
D=d®d —dy®dy=| —cos¢sin¢ —sin®¢C 0 |. (1.75)
0 0 0

With equations (1.73) and (1.75), the gravitational wave signal at the detector can be described as:
Bt) = by (O)F4 (8) + B (8)F 1), (1.76)

where Fy (t) and F (t) are the antenna pattern functions. They depend on the sky position of the source,
the polarisation angle, the position of the detector and the angle between the detector arms. They can
be expressed with these equations [13]:

F. (t) = sinla(t) cos 2¢) + b(t) sin 2¢)]
Fy (t) = sin¢[b(t) cos 2¢p — a(t) sin 2¢], (1.77)
where [50]:
a(t) = 1—16 sin 29(3 — cos 2X)(3 — cos 20) cos [2 (o — ¢ — Q,t)] — i cos 27ysin A(3 — cos 20) sin [2 (o — ¢ — Q,:t)]
+ i sin 2+ sin 2\ sin 20 cos [a — ¢ — Q8] — % cos 2y cos Asin 20 sin [a — ¢, — Q8] + % sin 27 cos? A cos? §
= A cos[py — 2Q,t] + Agsin[pg — 2Q,.t] + As cos[dpr — Qt] + Agsin[pr — Q. t] + A5 (1.78)
b(t) = cos2ysin Asind cos[2 (o — ¢ — Qt)] + i sin 2(3 — cos 2\) sindsin [2 (a — ¢ — Q,t)]
+ cos 27y cos Acos d cos [a — ¢ — Qpt] + % sin 27 sin 2\ cos d sin [av — ¢, — Q1]
= Bj cos[pg — 2Q,.t] + Ba sin[po — 2Q,.t] + B3 cos[¢d1 — Q,t] + By sin[¢; — Q,.1]. (1.79)

These functions make the gravitational wave amplitude depend on time due to Earth’s rotation. As
can be seen, these functions have two different periodicities: one with a period equal to one sidereal day,
and another with a half sidereal day period. Taking both into account, the antenna pattern functions

have a periodicity of a sidereal day, as shown in figure 1.6. When a source of gravitational waves is in
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Figure 1.6: Antenna patterns a(t) and b(t) for the H1 and L1 detectors. The starting time is 1126072080 GPS,
while o =1 and § = 0.5.

a position of the sky that makes the antenna pattern functions equal to zero, the detector is unable to
detect these waves.

It can be observed with equation (1.76) that the amplitude modulation produced by these antenna
patterns will split the signal hy or hy at five different peaks in the frequency domain: one at the same
frequency, and two for each of the two different modulations (the half sidereal day periodicity and the
full sidereal day periodicity). This comes from the mixing of the frequencies, caused by the sinusoidal

products:

cos [6+ 2 1] cos [ + 2 fyt] = 5 (cos [+ By + 2t(f + )] + cos [ — g + 2mt(] — )]

Sin [+ 27 f 1] in [ + 27 fot] = = (c08 [0 — 6y + 2L(f — f)] — o[+ b + 27(f + £,)])

)

cos [¢ + 27Tft] sin [¢r + 27Tfrt} = 5 (Sin [¢ + ¢r + 27Tt(f + fT)] — sin [¢ - ¢r + 27Tt(f - fr)]) ’ (180)

where f is the gravitational-wave frequency and f, is the inverse of Earth’s rotational period.

The long wavelength approximation (LWA) assumes that the length of the detector arms is much
smaller than the wavelength of the incoming gravitational wave. For this reason, the length of the arms
can be neglected and changes of the gravitational wave itself during the round trip time of the photons are
not taken into account. The full detector response without applying the LWA is presented and discussed
in [52], where it can be seen that the functions F. and Fy are modified to contain frequency dependent
terms. It is shown that by using the LWA, errors are smaller than 1% for frequencies smaller than 2
kHz. These effects need to be taken into account for searches using LISA data, whose arms length are
comparable to the wavelengths of the GWs it tries to detect.

The procedure to calculate the antenna patterns for other non-GR polarizations mirrors the calcula-
tions presented here, the only difference being the polarization tensor e, given by equation (1.67), which

differs between polarizations. A more detailed discussion can be found in [53] and references therein.



CHAPTER 2

NEUTRON STARS

This chapter contains an introduction to neutron stars. In the first section we present a brief summary
of the history and basic physics of neutron stars, while in the second section we describe the pulsar
population. The third section discusses how neutron stars can build asymmetries that can trigger the
emission of GWs, and the last section describes mathematically how different geometric configurations

of the neutron star create different gravitational waveforms.

2.1 | Basics of neutron star physics

Neutron stars (NSs) were proposed in 1933 (one year after the discovery of the neutron) by Walter Baade
and Fritz Zwicky [54]. This first idea consisted of an astrophysical ball made up of neutrons and protons.

When a star stops being able to burn its nuclear fuel, different scenarios can happen depending on
several properties of the star, such as its mass and metallicity. If the mass is lower than a certain value,
the star will not go supernova, but if the mass exceeds this threshold it will. After the supernova takes
place, the final state depends also on the mass of the remnant: if it exceeds a certain value, the core that
is left after the supernova explosion will become a black hole. Otherwise, the core will remain visible and
it will become a neutron star. Stars with masses approximately between 8 and 30 solar masses (or with
cores above the Chandrasekhar limit of 1.4 Mg ) will be converted to neutron stars. When the core of the

progenitor star is collapsing enough free energy is available for the inverse beta decay reaction to occur:
pT e +1.36 MeV — n + 7. (2.1)

Neutrons generated from this reaction should be unstable and turn back into an electron and a proton
within 10 minutes via beta decay. This does not happen because the degenerate electron gas in the star
has filled all of the available electron states in the core. For this reason, no electrons of energies smaller
than 1.36 MeV can be formed, which makes the neutrons stable.

The typical expected value for the mass of a neutron star is between 1 and 2 solar masses, and its
radius is approximately between 10 and 20 km. The minimum and maximum mass value (and thus
radius) are important for population synthesis models that try to understand the amount of neutron
stars, black holes and other types of objects that are present in our and other galaxies at different
moments of their evolution. Their mass and radius make them the second densest object in the Universe,
with a compactness (C' = 2GM/Rc?) value of C' ~ 0.2, placing them between black holes and white
dwarfs. Due to this compactness, NSs attain density values at their center higher than the nuclear

3

density p, = 1.4 x 10'* g/cm3. This supranuclear density makes neutron stars a very valuable cosmic
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laboratory which allow us to study the behaviour of matter at such extreme environments, a possibility
that does not exist at Earth.

One of the biggest uncertainties about neutron stars is their equation of state (a review can be found
in [55]). The equation of state describes the relation between the energy density and the pressure inside
of the star (alternatively, it relates the mass and the radius of the star), and at such high densities it
is unknown. For this reason, the state and structure of matter near the core of neutron stars is one
of the most important mysteries within nuclear physics that could be solved with astrophysics. The
most external part of the star (without taking into account a possible atmosphere) is the crust, which
most models predict as being solid and made up mostly of iron-like atoms ordered in a crystalline array
(although non-solid crusts are also a theoretical possibility). Moving radially towards the center, the
pressure rises rapidly and neutrons begin to drip outside of nucleus, in a process known as neutron drip.
This fluid of neutrons and protons can be in a superfluid state, and the protons can be in a superconductor
state. Between the external crust and the internal core, the nuclei start to lose their normal shape and
form what is usually called nuclear pasta [56]. In the innermost core, the quarks that make up the
neutrons could be located out of the neutron, a process known as quark deconfinement. The relative
widths between the crust and the core are highly uncertain, with different models predicting different
outcomes: the EOS determines the thickness of the crust, while the atomic composition of the crust
determines its shear modulus [57]. These properties are schematically shown in figure 2.1. All of these
extreme properties summarize why neutron stars represent an interesting object and why they are hard
to model and simulate.

Neutron stars were just a theoretical object until 1967, when Shklovsky [59] correctly claimed that
the first X-ray source detected outside of the solar system, discovered in 1962 by Giacconi (Scorpius X-1),
was a neutron star [60]. Also in 1967 (after the identification of Scorpius X-1 as a neutron star) the first
pulsar was discovered by Jocelyn Bell and Antony Hewish [61]. A pulsar is a neutron star with a fast
rotational speed and and an electromagnetic jet coming out from its poles (usually modeled with a dipole
magnetic field) strong enough to make the star visible to us. The emission of electromagnetic radiation
by the poles and the rotation of the star makes the pulsar look like a lighthouse: when it is pointing to us,
we can see it, and a moment afterwards it is gone; this pattern is repeated with a very stable frequency.
In fact, this frequency (and its evolution) is so stable that pulsars are one of the most accurate clocks that
exist. This is used to search for gravitational waves with pulsar timing array techniques, as explained in
the previous chapter [42]. This dipole model of the magnetic field may be too simple for some neutron
stars, as new observations from the NICER experiment show: the observation of hot spots that emit
X-rays seems to indicate that the magnetic field may be in a diquadrupolar configuration, where instead
of having a simple north-south dipole the two hot spots are situated in the same hemisphere, and one of
them follows a more elongated shape instead of a circular spot [62].

As discussed in the previous chapter, the first indirect evidence of gravitational radiation emission
from neutron stars came from the Hulse and Taylor binary system. GR predicted that the orbital period
would decay due to the emission of gravitational waves, which was afterwards observed and fitted almost
exactly. This indirect detection won the Nobel Prize in 1993. In August 2017, the first direct detection of
gravitational waves from a binary neutron star system was made [9]. This detection was groundbreaking,
since it confirmed that short gamma ray bursts originate in binary neutron star mergers, and it was the

first neutron star mass and radius measurement made with gravitational waves.

2.2 | Demographics and parameters

In this section we describe the different types of pulsars that have been discovered and the different
parameters that characterize them. After pulsars were detected for the first time, pulsar astronomy has

been improving its methods and thus incrementing the number of detected pulsars and their variety. Up



Demographics and parameters 25

A NEUTRON STAR: SURFACE and INTERIOR
. ‘Swiss ‘Spaghetti’

CORE:

Homogeneous
Matter

ENVELOPE
CRUST
OUTER CORE

field

Neutron Superfluid +
Neutron Vortex  Proton Superconductor
Neutron Vortex

Figure 2.1: Theoretical structure of a neutron star. Source: [63].

Parameter | v [Hz] vy [Hz/s) d [kpc] Ts [yr] B; [G]
Maximum | 716.36 | —3.8 x 10710 | 59.70 | 9.41 x 10'° | 2.1 x 10'°
Minimum 0.04 —4.0 x 1018 0.09 218 4.5 x 107

Table 2.1: Observational mazimum and minimum of some pulsar (isolated and in binary systems) parameters,
taken from [64]. vo is the rotational frequency, v1 is the rotational spin-down, d is the distance to Farth, 15 =
—wo/(211) = P/(2P) is the spin-down age (where P = vy ' is the rotational period), Bs is the surface magnetic
field.

to now, there are around 2800 pulsars that are catalogued by the Australia Telescope National Facility
(ATNF), which maintains a list of all the discovered pulsars up to date and a database with all their
properties [64]. Tables 2.1 and 2.2 show the maximum and minimum of some parameters of known pulsars.
These pulsars can be separated in several subpopulations. Firstly, for isolated pulsars (about 2494), there
are: radio/normal pulsars, millisecond pulsars, and magnetars (soft gamma-ray repeaters and anomalous
X-ray pulsars). Secondly, for pulsars in binary systems (about 306), there are: low-mass and high-mass
X-ray binaries (LMXB and HMXB), nuclear-powered pulsars (NXPs) and accreting millisecond X-ray
pulsars (AMXPs), and double pulsars/neutron star systems.

There are probably around 10% neutron stars in the Milky Way [65]. This number is calculated by
estimating the supernova rate in our galaxy and restricting it to stars in the adequate mass range, which
gives an order of magnitude estimate of 1 neutron star per century, assuming an age of 1010 years [66].
From these 108 neutron stars, around 10° are estimated to be pulsars (with only around 2800 discovered
up to now), and approximately 107 (unseen) dead magnetars.

One of the most important parameters of a neutron star for this thesis is the ellipticity, which is a
quantity that measures the deviation from sphericity and was defined in equation (1.56). In section 2.3
we will study what processes can build and sustain such ellipticity and afterwards we will see how this
ellipticity influences the gravitational wave emission. Hereunder we discuss the other parameters that

characterize a neutron star.
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Parameter | vy [Hz| v1 [Hz/s] P, [days] ap [s] e Mass [Mg]
Maximum | 716.36 | —9.9 x 10713 16835 13580 0.964 2.14
Minimum | 036 | —1.6x107'" | 0.065 | 3.0x107° | 1.14x 1077 1.174

Table 2.2: Observational mazimum and minimum of some binary pulsar parameters, taken from [64]. vo is the
rotational frequency, v1 is the rotational spin-down, Py is the orbital period, a, is the projected semi-major axis

amplitude, e is the eccentricity, My is the mass in solar masses.

Rotational frequency and spin-down

Figure 2.2 shows the derivative of the rotational period versus the rotational period for all known pulsars,
usually called P-P diagram. Two clearly distinct populations can be seen: the normal pulsars and the
millisecond pulsars. Normal pulsars have higher periods and higher spin-down rates, while millisecond
pulsars spin faster and more steadily. The majority of the detected pulsars which are supposed to emit
CWs in the frequency band of the ground-based detectors (from 50 to 1000 Hz, approximately) are
millisecond pulsars, as this diagram shows. Furthermore, it can be seen that more than half of the
millisecond population belongs to binary systems, while very few pulsars of the normal population are
not isolated. Another distinct population can be seen in the top right corner: the magnetars. As the lines
of constant magnetic field show, these are pulsars with very high magnetic fields. The orange shaded
region marks the pulsar death line, below which it is believed that radio emission ceases to be viable.

The observed values of the period derivatives are (to varying degrees) different than the true intrin-
sic values due to different processes: radial accelerations due to proper motion (the Shklovsky effect);
differential Galactic rotation; and local forces (for pulsars in globular clusters). These effects should be
taken into account if one wants to work with the intrinsic period derivatives instead of the observed ones.
Pulsars with observed negative period derivatives (not shown in the diagram) can be due to these effects,
or also due to accretion in a binary system.

It is believed that most millisecond pulsars are recycled pulsars: they are or were part of a binary
system, and they were spun up with accretion of matter from a companion. This process may explain the
lower absolute value of the first frequency derivative of binary pulsars, since the accretion balances the
rotational energy that is lost through emission of electromagnetic or gravitational waves [67]. Further-
more, accretion of matter can bury the magnetic field of the NS [68]. Decreasing the magnetic field lowers
the electromagnetic energy emission, which makes the rotation more stable (since the rate of change of
frequency is related to the energy loss), thus reducing their spin-down. This lowered electromagnetic
energy could also explain why there have been more electromagnetic detections of normal pulsars than
millisecond pulsars.

An estimate of the initial rotational frequency of neutron stars can be obtained if the angular momen-
tum J = I is conserved when the star is collapsing (we assume that the angular momentum and angular

frequency are directed trough the same axis, which does not change orientation during the collapse):

2
I, MBS

Liw; = Ifwf — 27'l'ff = 271']02'21.c — Pf =F
where we have used I = 2/5M R?. As an example, if the mass of the neutron star is 0.1 the mass of the
initial star and the radius is 0.001 the radius of the initial star, it can be seen that the frequency will be
107 times higher than the rotational frequency of the initial star.

The maximum rotational frequency found so far is from pulsar J1748-2446ad, which spins at 716
Hz. This means that at the equator, this pulsar has a linear velocity of 2rR/P = 62982596.3 m/s for
R = 14 km, which is around 0.21 times the speed of light, a fact that displays the extreme properties
that neutron stars can possess. Different models try to explain why no other pulsars have been found at
higher frequencies, since the Keplerian break-up frequency (also called mass-shedding limit, a theoretical

maximum that highly depends on the equation of state), which is obtained by equating the centripetal
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Figure 2.2: Rotational period and first period derivative for all discovered pulsars. Data taken from [64] and
downloaded with [69].

acceleration to the gravitational acceleration at the equator and assuming perfect spherical shape [70]:

C};—J\;f = Ruw?,, — Vmae = %\/%, (2.3)
can be as high as 1500 Hz. A possible explanation is that the emission of gravitational waves acts as a
braking torque which stops the spin-up of the neutron star. This would explain why no AMXP has been
found at such high frequencies: the magnetic field from the neutron star builds a mountain (a process
detailed in section 2.3) from the accreted matter and thus the gravitational wave emission becomes
stronger. Another possible explanation is that the magnetosphere interacts with the accretion disk and
a torque that removes rotational energy from the NS is created [71]. Furthermore, another explanation
comes from the possible gravitational-wave emission through r-modes, which could become efficient at
the observed maximum rotational frequency, even when no long-term mass quadrupole deformations
are present in the neutron star [72]. Nevertheless, the maximum allowed rotational frequency is EOS
dependent, as explained in [73], and the minimum value for minimal EOS assumptions seems to be
around 1200 Hz, clearly above the maximum detected. For this reason, an observation of electromagnetic
or gravitational radiation of a NS with unusually high rotational frequency could point us towards the
right EOS (i.e. if a frequency is observed which is higher than the maximum allowed by some EOS, those
EOS would be ruled out by that observation).

Another important parameter of pulsars is the relation between the frequency of rotation and its
derivative. This parameter is called the braking index, which can provide information about the energy
loss mechanisms of pulsars, including GW emission. The spin-down of pulsars is expected to follow this
equation [74]:

r=—-Kv" (2.4)

where v is the spin frequency of the pulsar, © is the frequency derivative, K is a constant of proportionality

related to the pulsar’s moment of inertia and magnetic field structure, and n is the braking index. More
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specifically, this can be written as [75]:
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where pg = 47 x 1077 N A2 is the magnetic permeability of vacuum. Taking the time derivative of

equation (2.4) results in the following equation:

vy

n=-—x
p2’

(2.6)

where ¥ is the second-derivative of the spin frequency. If the torque is dominated by an outflowing wind,
then n = 1; if magnetic dipole dominates, then n = 3; if magnetic quadrupole dominates, then n = 5;
if gravitational-wave emission dominates, then n = 5; if the gravitational-wave emission from r-modes
dominates, then n = 7. A measurement of n can be made only for the youngest pulsars for which ¥ is large
enough to be detectable on human timescales, since for most other cases this value is dominated by other
phenomena like timing noise or glitches. A recent survey has computed the braking index for 19 pulsars,
with values ranging from 2.8 to 2890 (excluding two pulsars with negative braking index), showing that
the the simple dipolar spin-down model (n = 3) is clearly imperfect, although these measurements have
a wide range of uncertainties [76].

The rotational phase of a neutron star can be described with very good accuracy by a Taylor expansion
of a few orders around a reference time. Sometimes, pulsars show anomalous behaviour that produces
sudden jumps of the rotation rate and the higher-order terms, which usually are called glitches. The first
glitches were detected in 1969 for the Vela and Crab pulsars [77], and they showed a sudden increase of
the rotational frequency (opposite sign as normal, since normally the period is decreasing due to energy
emission). Since then, more than 300 glitches have been observed in hundreds of different pulsars. The
timescale for the glitch is very rapid, around 30 s, although the exact timescale has not been resolved.
The rotational frequency increases have ranged from 107! to 10~° Hz, also accompanied by an increase
of the spin-down rate.

Although the origin of glitches has not been confirmed, the strongest hypothesis proposes that although
the neutron star is spinning down, the neutron superfluid in its interior is not since it is composed of
several vortices that are pinned (whose positions are fixed). When the difference between rotation rates
attains a certain threshold, some vortices may unpin and angular energy is liberated through glitches.
Another hypothesis is related to starquakes, where due to the rigidness of the crust and because the star
is spinning down, the crust maintains its shape until the strain on the crust reaches a critical level and
energy is released. For a review of different glitching models see [78]. The effect that glitches produce on
CW searches is discussed in [79]. A catalogue of glitches can be found in [80].

Besides glitches, regular timing of pulsars shows a different irregularity, called timing noise [81].
Timing noise is probably indicative of irregularities in pulsar rotation; its physical origin remains unclear.
There appears to be a small correlation between timing noise and some pulsar spin parameters: pulsars
with short periods (high spin frequencies) have less timing noise, and pulsars with low spin-down rates

(small frequency derivatives, small P) also have less timing noise.

Mass, radius, and moment of inertia

Masses of neutron stars have been measured for some pulsars, an updated catalogue and review of
mass measuring methods can be consulted in [82]. Minimum and maximum masses can be seen in
table 2.2, while the full population of galactic neutron stars can be fit with a mixture of two Gaussian
probability distributions [83] (although only pulsars in binary systems are taken into account). There are

theoretical bounds both for the maximum and minimum mass that NSs can have. The maximum mass
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for a non-rotating star is given by the Tolman-Oppenheimer-Volkoff (TOV) limit, which is analogous
to the Chandrasekhar limit for white dwarves, and is highly dependent on the equation of state. The
maximum mass is also dependent on the rotational frequency v of the star (faster rotations allow for
higher maximum masses), a bound schematically given by Max = Mrov (1 + av?), where a and j are
parameters that depend on the equation of state and Mroy is the maximum mass for a non-rotating
star [58]. The increase in maximum mass due to rotation can be up to 20%, and this number can be even
higher if differential rotation is taken into account [85]. The minimum mass of neutron stars depends
on the supernova mechanism and the metallicity of the core of the progenitor star, with some models
being able to accommodate the 1.17 Mg measurement [86]. Understanding the maximum and minimum
masses has important consequences for stellar evolutionary and population models, and also to constrain
the equation of state. New methods to measure NS masses such as gravitational waves or NICER (which
can measure masses from isolated sources) will help to increment the amount of total measurements.

Radii of neutron stars are more difficult to measure (due to biases produced by unmodeled atmospheric
re-processing and interstellar absorption), and for this reason only around 20 radii have been collected,
mainly from NSs for which thermal X-ray and optical radiation has been observed. A minimum radius for
a certain mass is imposed by general relativity, since the radius has to be larger than the Schwarzschild
radius of 2GM/c2.

Although the moment of inertia of a simple body only depends on its mass, radius, and a geometrical
factor, for a fully relativistic body with a realistic equation of state the relation is more complicated.

In [88], an empirical fit is given by:

I~ (0.237+0.008)MR? |1+ 42— =490
( ) + + Mo R

M km M km\*
= 2.
w0 w) | >0

which for normal neutron stars is almost universal (i.e. independent of the equation of state). The
moment of inertia could be directly measured by studying the effects of spin-orbit coupling of neutron
stars in binary systems. The precession induced by this coupling changes the angle ¢, between the line
of sight and the total angular momentum J = L + S4 + Sp [88]:

dt _E(l_

dLb G ™ I’i (4M1 + 3M_L) - .
&% 62)3/2 Z sin 0; cos ¢;, (2.8)

MiCLQPi

where i = A, B, —i = B, A, 0, is the angle between S; and E, ¢; is the angle between the line of sight
to pulsar ¢ and the projection of S; on the orbital plane, and a is the semi-major axis of the effective
one-body orbital problem, which is equal to the sum of the semi-major axes of the two stellar orbits. A
measurement of the moment of inertia can be used to constrain the equation of state of neutron stars as
shown in [88]. This is very useful for systems where a radius measurement is not possible or less accurate

than the moment of inertia measurement.

Magnetic field

Equation (2.5) shows the relation between the spin-down of a neutron star and the strength of its magnetic
field. For this reason, the spin evolution will be highly coupled to the evolution of the magnetic field.
When a star is collapsing, the magnetic flux through its surface is going to be constant. If the initial

magnetic field and the initial and final radius are known, the final magnetic field can be calculated:
R\ 2
BiAnR} = BfAtR; — By = B; (Rf) ~ 4.84 x 10°B;, (2.9)
where we have used the radius of the Sun and a radius of 10 km for the neutron star. If we assume that

that the magnetic field of the Sun is about 1 G, then the neutron star has a magnetic field of 4.84 x 10°

G. This simple argument helps to understand why neutron stars reach such high values of magnetic field.
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Magnetars are neutron stars that have magnetic fields higher than around 10'* G, and all of them
possess rotational periods higher than a second. It is clear that the previous simple argument is not
enough to explain these high values. The source of such high magnetic fields is uncertain, although
two main processes are usually proposed: dynamo process in the core or magneto-rotational instability
during the supernova collapse [89]. To generate their strong magnetic fields through a dynamo process, it
is hypothesized that magnetars must be born rotating fast, with period less than 1 ms, but due to their
high magnetic fields the spin-down is very high and they rapidly move to higher rotational periods. A
catalogue of magnetars can be found in [90].

The magnetic field is usually decomposed in two different parts in polar coordinates: poloidal B,
(B, and By directions) and toroidal B; (B direction) components. The field is usually simulated with
an internal toroidal component and an external poloidal component, where the internal field is much
stronger than the external field. The internal magnetic field will evolve in time mainly due to Ohmic
dissipation (i.e. Joule heating), and the external field may also change due to accretion processes. Some
measurements suggest that some neutron stars have external magnetic field strengths several orders of
magnitude larger than the fields predicted by the simple vacuum dipolar magnetic field model [91,92].

Temperature

Neutron stars have typical surface temperature values around 10 K, whereas accreting neutron stars
can have temperatures up to several 10® K. Although the initial temperature is much higher (around
10! K), neutron stars rapidly cool down after their formation mainly through neutrino emission (direct
Urca process), and they keep cooling down at a much slower rate throughout their evolution [93, 94].
The temperature also depends on the radial coordinate: closer to the core, neutron stars have higher
temperatures than at their surface. The Fermi temperature (the temperature at which thermal effects
are comparable to quantum effects associated with Fermi statistics, calculated as the energy difference
between the highest and lowest occupied single-particle states divided by the Boltzmann constant) of
a neutron star is around 10'2K, much higher than the actual temperature of the star: for this reason

neutron stars are said to contain cold matter, regardless of their high temperatures.

Sky distribution

Figure 2.3 shows the distribution on the sky in equatorial coordinates of all the known pulsars. An over-
density following the disk of the galaxy (a region where lots of new stars are born) can be clearly seen.
It is believed that most neutron stars are born in the disk of the galaxy, and may be ejected out from it
due to natal kicks from the supernova collapse. These natal kicks give neutron stars a fraction of their
proper motion, which can be up to a few 1000 km/s [95]. While normal pulsars are usually in the disk
of the galaxy, millisecond pulsars are more uniformly distributed around the halo of the galaxy, a zone
where the oldest stars are expected to reside. Some studies mention that there might be a correlation
between the direction of motion of pulsars and the orientation of their angular momentum [96]. The
direction of the angular momentum has been measured only for a small number of pulsars. The main
method consists of taking advantage of pulsar wind nebula around the pulsar, which has the shape of a
torus [97].

Binary parameters

Almost half of the pulsars with gravitational-wave frequencies in the most sensitive band of the second
generation ground-based detectors (approximately between 50 and 1000 Hz) are located in binary systems.
Of the known pulsars in binary systems, four different types of companions can be distinguished: 177 are
white dwarves, 24 are main-sequence stars, 20 are neutron stars (one of these systems is a double pulsar:
PSR J0737-3039), and 54 are ultra-light objects (with masses less than 0.08 solar masses) [64].
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Figure 2.8: Sky positions of all the known pulsars, where orange circles show isolated pulsars and blue circles show

pulsars in binary systems. Data taken from [64] and downloaded with [69].

The movement of pulsars in binary systems can be described by a classical Keplerian orbit (when
any kind of radiation is neglected). Five parameters are needed to describe it: the orbital period P,
the projected semi-major axis amplitude a,, the eccentricity e, the time of ascending node ¢,5., and the
argument of periastron w. For a Keplerian orbit, the projected semi-major axis amplitude and the orbital
period follow the relationship given by the third Keplerian law:

__ ans . G /3 2/3 M;/s sin Ly
ap:Tsme: (47r2> P, MiNsT’

where ays = aMy /My is the semi-major axis amplitude of the pulsar’s orbit, Myg is the mass of the

(2.10)

NS, and Mg is the mass of the companion star. The left plot of figure 2.4 shows values of these two
quantities for the known pulsar population. The different companion masses and angles of inclination
tp account for the spread in the vertical axis. Along with the observational data, we have plotted four
lines which follow equation (2.10) for two different values of the companion mass and two values of the
inclination angle (for a 1.4 Mg neutron star).

The eccentricity (defined as e = m, where a and b are respectively the semi-major and
semi-minor axis of the binary orbit) of pulsars in binary systems is shown in figure 2.4. We observe that
for most of the pulsars with measured eccentricity, it is smaller than 0.01 (for 167 out of 215). Pulsars
in globular clusters are believed to have higher eccentricities, since the environments have higher stellar
density and there are substantial gravitational interactions with nearby stars that can make an initially
circular orbit acquire a substantial eccentricity.

Relativistic effects in binary motion can be expressed in terms of five post-Keplerian parameters that
describe departures from Keplerian motion [99]. In any given theory of gravity, the post-Keplerian (pK)
parameters can be written as functions of the pulsar and companion star masses and the Keplerian
parameters (assuming point masses and negligible spin contribution). The first of these parameters to be
measured was the precession of the periastron w, given in GR (in fact, it is equivalent to the effect that

causes the excess of advance of Mercury’s perihelion) by [99]:
G =3(Py/2m) " (T M) (1—€2) 7, (2.11)

where w is the longitude of periastron measured from the ascending node, My = Myg + M¢c, and Ty =
GMg/c® = 4.925490947 ps. The next post-Keplerian parameter is v, which describes the combination of
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Figure 2.4: The left plot shows the projected semi-major axis amplitude and orbital period of known pulsars in
binary systems. The four lines show different combinations of assumed companion mass and inclination angle
for a 1.4 Mg neutron star, following equation (2.10). The right plot shows the eccentricity of pulsars in binary
systems as a function of their rotational frequency. Data taken from [64] and downloaded with [69].

gravitational redshift and 2nd-order (or transverse) Doppler shift, given in GR by:
v =e(Py)2m) P TP My P Mo (Mys + 2Mo) . (2.12)

Another post-Keplerian parameter is B,, the orbital decay due to the emission of gravitational waves
from the system, given in GR by:

B 1927G3/3 [ P,

—5/3 7/2 73 37 1/3
S oven T [ 2o 2\~ Y2 b4 -
By= (277) (1—e?) <1 + 57+ 5ce ) MysMc M2, (2.13)

As happened with the period derivative, the measurement of this parameter is also affected by radial
accelerations due to proper motion, differential Galactic rotation, and local forces (for pulsars in globular
clusters). The two final post-Keplerian parameters are related to the Shapiro delay (range and shape)
suffered by the pulsar signal while passing through the curved spacetime surrounding the companion star.
They are given by:

r=To Mg (2.14)
B\,
s=a, (27’;> T MMt (2.15)

The Shapiro delay is generally only observable when the orbital inclination is relatively close to 90° (when
the orbit is seen close to edge-on).

The measurement of any two post-Keplerian parameters determines the mass of the two objects in
the system. If more than two pK parameters have been measured, they can be used to test and constrain
theories of gravitation, i.e. by using the two masses of the system the other three pK parameters can be
predicted and compared to the measurements, serving as a check for self-consistency. Other theories of
gravity, such as those with one or more scalar parameters in addition to a tensor component, will have
somewhat different mass dependencies for the pK parameters, thus producing different predictions for
their values. Reference [99] shows a table with all the systems that have measured some pK parameters.

When the angular momentum of the NS is not aligned with the total angular momentum of the
system, spin-orbit effects appear. This produces a precession (called geodetic precession) of the NS
angular momentum around the total angular momentum given by (in GR):

2

—5/3
Q, - 1 (Pb> T2/3 Mc (4Mys + 3MC). (2.16)
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Neutron stars in binary systems may be accreting matter from its companion. If this is happening,
the NS may experience the so-called spin wandering (SW), where the rotational frequency of the star
changes accordingly to changes in the accretion rate [100]. The spin-down produced by the torque N
generated by the accretion is given by:

; — N —-13 M P i3 T'm 12 1038 kg le
fSW = ﬁ ~ 1.6 x 10 <10_10]\4®yr_1> (s) a f s (217)

where 7, is the magnetic radius and r., is the co-rotation radius. The mass accretion rate can be

decomposed in two terms:
M(t) = (M(t)> + AM(t). (2.18)

The instantaneous fluctuations given by AM (t) are what create the SW. As explained in [100], the mass
accretion rate presents different timescales.

2.3 | Asymmetries of neutron stars

In this section we discuss how NSs can generate and sustain the asymmetries that are needed for GW
emission. We define the fiducial quadrupole ellipticity or asymmetry of the star as € = (Ipz — Iyy)/I.2,
where I, is the moment of inertia of the star with respect to the principal axis aligned with the rotation

axis. We can relate these quantities to the mass quadrupole moment Q22 of the star by [101]:

8T Qa2
151,

€ =

(2.19)

Q22 is the mass quadrupole moment associated to the distortion, i.e. excluding the contribution from
rotation, which is necessarily axisymmetric and is not associated to GW emission.

This fiducial ellipticity can be related to a more physically measurable relativistic ellipticity €,, defined
from quantities at the surface of the star: the star’s equatorial circumference, s., and its longest polar
circumference, s, [102]. This new ellipticity is defined as:

&= % (2.20)
For a simple constant density ellipsoid, the fiducial ellipticity and the physical ellipticity are related by
€y, =€/8.

Before describing actual mechanisms that generate asymmetries, we can try to quantify what is the
maximum elastic asymmetry that a neutron star can sustain. The maximum ellipticity can be written
schematically as [103]:

€maz = (breaking strain) x (shear modulus) x (geometry). (2.21)

The geometry term depends on the equation of state and is uncertain by a factor of a few. The shear
modulus increases with density and is given by the ratio between stress and strain (i.e. for a fixed stress,
an object with higher shear modulus will suffer a smaller strain). Simulations of molecular dynamics
show that the maximum strain that a solid crust can support before breaking (crustal breaking strain,
up) is approximately 0.1 [104,105]. These simulations are strictly applicable only to the outer crust
(i.e., no neutron drip), but since the reason for this high breaking strain is that the extreme pressure
simply crushes away defects that contribute to early fracture, it may apply to the inner crust (the major
contributor to ellipticity) as well. A more specific estimation gives [106]:

_ u
man = 2 X 1075 (0—”1) . (2.22)



34 Asymmetries of neutron stars

If instead of normal matter, we assume a solid strange quark star the result is [107]:

€max;ql = 6 x 1074 (%) 5 (223)

while for a crystalline color-superconducting quark phase [108]:

Emazigz = 1072 (%) . (2.24)

Note that for these exotic quark phases the molecular dynamics simulations previously cited do not apply.
As can be seen, detections or upper limits can constrain the value of uy,.

The crust is suffering some strain due to the rotation quadrupole and more contributions from other
multipole terms, so the ellipticity produced by a GW-emitting quadrupole can only be a percentage of
the maximum strain that the crust can sustain. The asymmetry caused by the rotation of the NS is
estimated as the ratio between rotational energy and gravitational energy: eq ~ G%;/R = 0.1( k-—l’:IZ)Q,
and it makes the star oblate (although this quantity is not easy to evaluate, as the exact level of strain
depends on the reference shape of the crust, which in turn depends on the history of the star). In this
sense, neutron stars with higher rotational frequencies produce a larger [,m = 2,0 quadrupolar strain
(where | and m are spherical harmonics indices), and thus leave a smaller percentage of the maximum to
be strained to the 2,2 quadrupole.

A fully relativistic estimation of the maximum quadrupole for different equations of state is presented
in [101]. Results depend on the mass of the NS, its equation of state, and the thickness of the crust (thinner
crusts giving smaller maximum deformations), but overall results show that the maximum ellipticity is
smaller than 1075 for non-exotic stars. For exotic stars, it is shown that the maximum ellipticities can
be even higher than the previously presented values. A general property of these simulations is that the
quadrupole decreases with the compactness of the star. A consequence of this fact is that CW searches are
biased towards low-mass stars (for non-exotic stars), in the sense that for the same geometry, magnetic
field and strain, they will have a larger quadrupole deformation, which makes them an easier target to
observe [109].

Another way to estimate the maximum ellipticity that neutron stars can have is by using the spin-
down upper limit on ellipticity. The argument is the following: if the spin-down of a neutron star is only
caused by gravitational-wave emission (i.e. we assume that there is no electromagnetic radiation), we
can obtain an upper limit to the existing ellipticity. Equating the gravitational-wave luminosity given by

equation (1.56) to the derivative of the rotational energy (E,..; = 2m2v21,.):
Low = —Eyo = 2022100 + 1,17z, (2.25)

where 0 < 2 < 1 is a factor that represents the amount of gravitational-wave emission (1 for the spin-
down limit, 0 for no gravitational-wave emission). Assuming a constant moment of inertia and = = 1,
the result is:
N - CO LN (2.26)
2(4m)AGI,, \ f?
By assuming a certain moment of inertia, we can plot the spin-down upper limit on ellipticity €sq for all
the known pulsars. It should be noted that recent targeted searches have surpassed this value for some
of the known pulsars, constraining the amount of gravitational-wave radiation that they emit [110].
Besides the maximum attainable ellipticity, there has been discussion of a minimum ellipticity which
neutron stars might have due to the observed properties of the pulsar population [111]. We can plot in
the P-P diagram lines of constant ellipticity, calculated by assuming an ellipticity and a period value and
GW emission only. The line of e = 1079 at short period and low spin-down values seems to mark a region
where no other pulsars have been detected beyond it, suggesting that this may be a minimum ellipticity.

In [111], a Bayesian model selection analysis is done and this is highly favoured. The explanation for this
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minimum ellipticity of millisecond pulsars can be due to a buried magnetic field of 10'* G (the observed
external field is of the order of 10® G), or also due to asymmetric accretion.

In the next subsections we summarize three different scenarios that show how neutron stars can
generate and sustain asymmetries. The asymmetry of a real neutron star could be due to any of these
or to a combination of them. There are more mechanisms besides the three described below, such as
asymmetries inherited from the supernova (the initial crust may be asymmetric if it forms on a timescale
on which the neutron star is still perturbed by its violent formation and aftermath, including perturbations
due to the fluid r-modes, and asymmetries may slowly relax due to mechanisms such as viscoelastic creep),
but these three mechanisms are the ones that could sustain a long-lived asymmetry with more probability.

2.3.1 | Magnetic deformations

The idea that magnetic stresses can deform a star was originally proposed in [112]. As discussed pre-
viously, neutron stars possess an internal magnetic field, and the asymmetry that it creates can be

approximated as the ratio between magnetic and gravitational energies:

Ep  R3(B?)

~N N 2.27
‘B~ Ee T GMZ/R’ (2.27)
although a more exact equation is:
15 5R 1
- == —B? 2.2
‘BT <3GM2) / gn ot dV) (2:28)

where B; stands for the internal toroidal field and the integral represents an average over the volume of
the star.

The quadrupole ellipticity eg can be positive or negative: the shape of the star can be oblate or
prolate, depending on the magnetic field structure. Neutron star magnetic fields can have poloidal or
toroidal structure, and poloidal fields tend to deform the star to an oblate shape, while toroidal fields
tend to deform it to a prolate shape. When poloidal and toroidal components are both present, the
deformation has both positive and negative contributions. The deformation produced by an internal
magnetic field is global, whereas for accreted mountains on the polar caps it is a local deformation.

If the magnetic field axis is not aligned with the rotation axis, this asymmetry will be the source of
CWs. The actual value of this asymmetry is highly dependent on the magnetic field geometric configu-
ration: most models assume a purely poloidal or toroidal magnetic fields, but analytical and numerical
studies show that these types of fields are unstable. More realistic models include a mixture between
poloidal and toroidal components, for which the asymmetry is [113]:

B (B?)

~45x 107 —L— (1 -0.64-5L5 ). 2.29

- 107 G ( B2 (2.29)

Other models also include a sum of several multipoles (orders higher than the dipolar), for which the

ellipticity generated can increment, as it is the sum of the ellipticity created by each magnetic multipole,
as shown in [114]. The relative importance of each multipole depends on their relative energy.

The size of the asymmetry also depends on the state and structure of matter inside the neutron star.

For example, by allowing a superconducting phase in the core, the estimate is (for a purely toroidal field):

€B ~ 10‘6(Bl5>10[1{7;(}, (2.30)
where H. is the critical field strength characterizing superconductivity and Bis = 10'° G.

An interesting aspect of magnetic stresses is that they will evolve in time, since the magnetic field (both
the strength and structure) will change. Furthermore, the angle between the angular momentum and the
magnetic axis also evolves with time in a complicated manner that depends on the starting frequency
and magnetic field strength, as shown in [115,116]. These two aspects will make the asymmetry depend

on time.
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2.3.2 | Thermal deformations

When a neutron star is accretting matter from a companion, the infalling matter can get buried and
compressed inside the NS. Due to nuclear reactions (electron capture processes, whose rate depends on
temperature) that happen to this infalling matter, heat is released and a temperature gradient is formed
inside the star. This temperature gradient gives rise to a quadrupolar deformation. The deformation due

to a temperature quadrupole component 677 is [117,118]:

4 6Tq ( Q )3
6105 K30 MeV’ ’

er ~1071°R (2.31)
where Rg = 10% cm and Q@ is the threshold energy of electron capture by nuclei (a parameter controlling
how deep the nuclear reactions start to take place). The quadrupolar thermal gradient is just a fraction
of the total thermal gradient, expected to be at most around 10 K. The value of this fraction is highly
uncertain and could be much smaller than the value 0.1 used previously, which would lower even more the
size of the mountain. Since the mountains formed by these temperature gradients are elastic mountains,
the elastic strain limits explained at the beginning of this section apply to them.

Recently, thermal deformations have been brought up in order to explain the state of PSR J1023+0038,
which transitions between a radio millisecond pulsar state and a LMXB state, showing increased spin-
down while in this second state. The increase in spin-down may be explained by a ~ 107! deformation

created in the accretion phase, which makes the NS emit CWs and increase its spin-down rate [119].

2.3.3 | Exotic deformations

If neutron stars have cores made of quarks in a color superconducting state, they could present larger
quadrupolar deformations [120]. Examples of such cores made of quark matter are: the color-flavor-
locked (CFL) state, which has top, down, and strange quarks; the two-flavor superconducting (2SC)
state, which only has top and down quarks; the crystalline color-superconductor (CCS) state, which
has a solid crystalline core. The properties of quark matter in neutron stars are largely uncertain and
therefore the following theoretical predictions should be viewed as giving orders of magnitude estimates.

The cores from the two first states form an array of quantised vortices in a similar way that fluxtubes
are formed in type II protonic superconductors, and these vortices are both magnetic and color conducting.
The latter component is the dominant one and the energy per unit length of a color-magnetic vortex can
be 2 or 3 orders of magnitude higher than that of a conventional protonic fluxtube. This produces an
amplified vortex array tension that can create a large deformation in the CFL/2SC core of a neutron
star. The ellipticity of this internal color-magnetic mountain can be estimated by means of the ratio of

the vortex array tension energy to the gravitational energy, which for a CFL core is:

_ V., 7 2
7 q q
€~ 10 (B12) (Vstar> (400 MeV) , (2.32)

where p, is the strange quark chemical potential (normalised to a canonical value), V; is the volume of
the quark core, and By = 1012 G.

For the CSS case, its shear modulus p.cs is estimated to be several orders of magnitude higher than
the shear modulus of the crust. For this reason, the elastic deformability that this star could sustain is

much higher, and an estimate of the ellipticity is:

2
s~ eV o qo-a (Va (s )2 = (5) (2.33)
" GM?/R Vatar / \400 MeV 10 MeV 0.01/’ '

where A, is a quark gap parameter.
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2.4 | Continuous gravitational waves from neutron stars

After having described the general properties of neutron stars and the asymmetries that they can support,
we explain how NSs can generate gravitational waves. We will focus on long-lived continuous gravitational
waves, leaving aside other mechanisms (such as bursts of magnetars, mergers of two neutron stars, or long-
duration transients) through which neutron stars can emit shorter-lived gravitational waves. Furthermore,
we will not discuss CWs generated by fluid oscillations/perturbations like f-modes or r-modes, although
most of the results from searches can be re-interpreted under the model explained in [121].

As we have seen in subsection 1.1.2 of the first chapter, in order to have emission of gravitational
waves a time-varying quadrupole moment needs to be present. Deformations of rotating neutron stars
were proposed as sources of continuous gravitational waves shortly after the discovery of pulsars and the
realization that they are rotating neutron stars [122-125] (see [126] for an early review).

The following two subsections present two different models of continuous waves emission, the first
one being more simple and the second one more general. As we will see, the CWs can be described in
the Fourier domain by just a couple of frequencies, where the number of frequencies and their relative
amplitude depends on the specific model of emission. These two models only take into account emission
from the [ = 2 mass quadrupole, without calculating the emission from the current quadrupole, mass

octupole, or higher-order terms.

2.4.1 | Gravitational waves from rotation around a principal axis

The simplest type of CW emission generated by a rotating neutron star (modelled as a rigid body
ellipsoid) is due to an asymmetry around its axis of rotation. We define two different coordinate systems,
one which is fixed, given by (z,y, 2) and another one that follows the rotating body given by (z’, 4/, ).
If we pick 2’ as the rotation axis, the rotation matrix R (relating both coordinate systems) is given by:

cosg(t) sing(t) 0
R=| —sing(t) cos¢(t) 0], (2.34)
0 0 1

where ¢ = wt (assuming no spin-down, which would add more terms to this expression) and w is the
angular rotational frequency. Since the rotation is around a principal axis, the inertia tensor in the
rotating coordinate system is just made of diagonal entries, while the inertia tensor in the fixed coordinate
system is, applying I = R7 I'R where 7T indicates a transpose:

2 cos 2wt

I; JE I, - I
Iy = I}, cos® wt + I, sin? wt = 11;— 2 4 112 2

I, -1
Lo =1 =11 "2 5 22 §in 2wt

Ity Lh—I

19 5 5 cos 2wt
Isz = Iy
113 = 131 = 123 = 132 =0. (235)

From equation (1.54), we can calculate the gravitational-wave emission of this simple model:

4G (I, — Ihy)w? 1 + cos®
=— c

hyi(t) = — pi o0s 2wt
C
4 I/ 7]'/ 2

hy(t) = —f% cos ¢ sin 2wt. (2.36)
C

It can be seen that there is emission at twice the rotational frequency if I7; # I%,. The relative am-

plitude of the plus and cross polarisations depends on the inclination angle ¢, and these two polarisations
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are /2 out of phase. The overall amplitude hg is:

_ An?Gelys f?
ot d ’

where as explained in the previous section we have defined a fiducial ellipticity factor e = (I1; — I}y)/Is3.

ho

(2.37)

For the rigid-body ellipsoid case, the ellipticity is € = (b*> — a?)/(b* + a?), where a and b are the axes of
the ellipse in the x-y plane.

This is the CW emission that most of the published searches refer to when discussing emission mecha-
nisms, showing emission only at f = 2v = w/7. Including spin-down terms in the definition of the rotating
angle ¢ = ¢o +w(t —tg) + 0.5w; (t — to)? would only add extra terms proportional to the spin-down term,
such as:

Iy — Iy

2

I, -1

Iy =—4 [w 4 wi(t — to)]* cos 2¢(t) — 2w, Tﬂ sin 2¢(t), (2.38)

where the second term is present because of the addition of wy, but for realistic values of this parameter
this second term is always much smaller than the first term and can be dismissed. The physical intuition
behind the emission at twice the rotational frequency is due to the fact that the ellipsoid will look equal
to any observer after a 180° rotation.

From this simple model it is clear that a [, m = 2,0 quadrupole moment produced by the centrifugal
bulge will not emit CWs, since this quadrupole is symmetric around the rotation axis and thus I, =
I,, # I... Looking at equation (2.36), it can be seen that the strain will be 0 in this case.

Instead of modeling the neutron star as a rigid-body ellipsoid with axes a, b, ¢, we can model the
asymmetry as a small mountain on top of a spherically symmetric body, where the mountain is situated
at angles (¢, 0) (that in the inertial frame will depend on time) with point mass density p,, = md(Z — x)
with } = [Rsin 6 cos ¢, Rsin 0 sin ¢, R cos §]. The total moment of inertia is the sum of the spherical body
and the mountain, and we have [130]:

I}, — Iy = —mR?sin® § cos 2, (2.39)
which results in an asymmetry given by:

_bdm
€m = —5 77 i 6 cos2¢ (2.40)

and the same emission as before. It can be seen that the ellipticity is proportional to the mass ratio
and that it also depends on the position of the mountain relative to the principal axis: if the mountain
is located at the poles (defined by the rotation axis), there will be no emission (the ellipticity grows as
the mountain gets closer to the equator); also, the same will happen if the mountain is located halfway
between the two principal axis perpendicular to the rotation axis, since the two moments of inertia will
be equal (the ellipticity is maximum when the mountain is located at one of these two axes). Assuming
optimal positioning, we see that the maximum ellipticity values presented in the previous section (around

107°) correspond to a mass ratio around 1076.

2.4.2 | Gravitational waves from general rotation

In a more general case, the neutron star will not be spinning around one of its principal axes. As in the
previous case, we need to express the inertia tensors in an inertial frame, and to do so we have to perform
several rotations. We follow the same conventions as in subsection 1.3.3, where the rotation matrix is
given by M = M3M,M; following the zxz convention. The Euler angles are now a function of time, such
as 0 = 0y + 0t.

In the inertial frame, the angular momentum J is conserved and we define it to be directed trough
the inertial z axis, i.e. Jr = [0,0,J]. In this way, the angle 0 is the angle that is called “wobble angle”,

between the angular momentum and the third principal axis.
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The angular velocities have the following directions: &y is directed through the line of nodes; &y is
directed through the zr axis; Jy is directed through the z; axis. They can be expressed in the rotating
frame as:

Wy = [9 cos 1), —fsinp, 0]
o= [ sin @ sin 1, ¢ sin @ cos 1, ¢ cos 0]
Gy = [0,0,7]. (2.41)

To find the time-dependence of the Euler angles, we need to solve the system J = I& in the rotating

1

frame, where the matrix I is diagonal and & = g + Wy + Dy
Im(écosw + ésin@sinw) = Jsinfsingy
Iyy(fﬂ- sin ) + ¢ sin d cos ) = Jsinf cos
I.(¢) + dpcos ) = J cosb. (2.42)
These equations can be converted to these non-linear equations for the angles:

cos21)  sin?e

i
R
Q*J(Lfi)sinf)sinwcosw

1 cos?y  sin?e

) cos b, (2.43)

which do not have a simple analytical solution. Following the results from [129], the angles are described
by complicated Jacobi elliptical functions. An approximated analytical result can be obtained if we
expand in terms of these parameters:

I..a

— 1 Izz Iyy - I:rz
T

T 161, L. — I,

and kK (2.44)

where a = w,(t = 0) and b = w, (¢t = 0). The parameter v describes the precession angle while x describes
the non-axisymmetry I,, — I, relative to the axisymmetric non-sphericity I., — I,,. The result, up to

second order in these expansion parameters is:

hy = A4 g cos [2w,t] + At 1 cos [(wr + wp)t] + Ay 2 cos [2(w, + wp)] (2.45)
hy = Ay osin 2w, t] + Ay 1 sin [(wr + wp)t] + Ax 2 sin [2(w, + wp)t], (2.46)
where
Ai o= ho(1/2) (1 + cos 1) (2.47)
AL 1 =2h{g (0)sinccost (2.48)
Ap o =2h{g* (6p) (1 + cos®1) (2.49)
AX’() = h(] COS L (250)
Ay 1 =2h{g () sine (2.51)
Ay 2 = 4hjyg* (6p) cost (2.52)
and
14Gw?
ho = d & (Lo — Iyy) (2.53)
/ 1 G (wr +Wp)2 Low + 1y
— - I, —=ZZ Y 2.54
o d ct = 2 (2.54)
I..a
g (6y) = ~ 0. (2.55)

I..b
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The precession frequency is defined as:

wb [(Ls — Iy) Lz — Ina)
= 2.
“P T 9K (m) \/ Lool,, ’ (2:56)

where K (m) is the complete elliptic integral of the first kind and m = Jyy—Taa)lava®

Toa=Tyy ) 12207
The most striking difference between this model with precession and (the ﬁfg‘z model is the appearance
of new terms on the waveform. It can be seen that this model predicts emission of gravitational waves at
three distinct frequencies: at twice the rotational frequency, which was already present in the simplified
model of the previous subsection; at the rotational frequency plus the precession frequency, and at twice
the rotational frequency plus twice the precession frequency.
If we set 6y = 0 (the wobble angle is zero), we recover the simplified case of the previous subsection,
where the rotation axis was aligned with a principal axis.
If I, = I,y = Iy, then it can be seen that 6= 0, i.e. the angle between the angular momentum J and
the third rotating axis is constant, and that ¢ = J/Iy and ¢) = Jcosf(1/I., — 1/Iy). We can compute

the waveform for this simplified biaxial precessing model:

hy = A4 1 cos(wt) + A4 o cos(2wt) (2.57)
hx = Ay 1sin(wt) + Ax 2 sin(2wt), (2.58)
where
Aiq = hy sin 26'sin ¢ cos ¢ (2.59)
Ay o= 2h8 sin® 6 (1 + cos” ¢) (2.60)
A1 = hg sin 20 sin ¢ (2.61)
Ay 5 = 4hy sin? 0 cos . (2.62)
" 4n?G (Tea—Tea) f? . . ) . )
and hy = ;= ==—r2— This model is the same as the one described in [132], where instead of a

precessing biaxial star, a non-precessing star with a pinned superfluid with a symmetry axis different

from any principal axis is described.

2.4.3 | The signal at the detectors

The previous two subsections have presented two different models that describe how the signal looks like
in the source frame, and section 1.3.3 has shown how to project a traveling GW onto the detector frame.
In this section we join these two notions and also include other effects such as the Doppler modulation
in order to describe the GW in the detector frame.

The CWs emitted by a neutron star can be generally described in the detector frame by:
h(t) =) Ay () Fy (b1, 7) coslp(t) + Avx (8) Fx (¢, 9, 7) sin 16(1)], (2.63)
1

where the sum over [ implies a sum of different spectrum frequencies, where different models predict a
different number as we have seen in the previous two subsections. In order to describe the GW in the
detector frame, we need to relate the time at the source 7 with the time at the detector t.

From electromagnetic observations of pulsars it is known that the rotational phase at the source frame
can be described with a Taylor expansion in powers of frequency (usually one or two frequency derivatives
are enough to describe the detected electromagnetic pulses, which are tied to the rotation of the star) with
respect to a reference time 7, (where 7 refers to time in the source frame). Since the gravitational-wave
phase is assumed to be locked to the rotational phase, we can also describe the GW phase with a Taylor

expansion:

bs(T) = ¢o + 27 [fo(T — 7)) + = (T — 1) + .., (2.64)
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where we define fp and f; as the frequency and first frequency derivative (spin-down/up), respectively, at
7 and ¢g as an initial phase. As discussed in section 6.3 of [76], it is known that higher-order frequency
derivatives such as fy could be present due to a wide binary orbit.

To relate the phase in the source frame to the phase in the detector frame we need the timing relation

between the source time and the detector time. The full relation is derived from the geometrical relation:
s = dit — 7 (2.65)

i.e. to go from the Solar System Barycenter (SSB) to the source is the same as to go from the SSB to
the detector and then from the detector to the source (Fpg). Usually, finite distance effects are not taken
into account and this vectorial relation is translated to (for an isolated source, and neglecting relativistic
wave propagation effects such as Einstein and Shapiro delays):

(t)-n d

— _¢ 2.66
TElF (2.66)

where 7 is the position of the detector with respect to the SSB and 7 is the position of the source in sky
(a full timing relation can be found in [133]). The second term in the right-hand side takes into account
the Doppler modulation due to Earth’s movement respective to the SSB, while the third term gives the
time of travel between the source and detector. If the source is in a binary system, then:

R(7) Ft)-n d

T+ :t+r - (267)
C C C

where R(7) is the radial distance of the binary orbit projected along the line of sight (R > 0 means
that the NS is further away than the binary barycenter, R < 0 means otherwise). By neglecting the
relativistic effects, we are assuming that the binary orbit can be described with a classical Keplerian
orbit and that the relativistic effects such as the decay of orbital period do not produce a noticeable
effect in our analysis. The decay of the orbital period is proportional to be5/ 3 (where Py is the orbital
period), shorter periods producing faster decays. For a period of 0.01 days and a binary of stars with
solar masses, the orbital decay is of the order of 107! s/s.

The projected radial distance of an ellipse is given by [134]:
R =a(l —ecos E)sintsin (w+ v) = a(l — ecos E) sin p(sinw cos v + coswsinv), (2.68)

where v is the true anomaly, e is the eccentricity of the orbit, a is the semi-major axis amplitude, ¢ is the
angle of inclination of the orbital angular momentum with respect to the observer’s sky plane, the angle
w is the argument of periastron and the angle E is the eccentric anomaly, given by the transcendental
equation:

E —esinE

q (2.69)

T—Tp =

where () = 27/P, is the angular frequency, 7, is the time of periastron passage (where E = 0) and the

true anomaly v is related to the eccentric anomaly by:

cosFE —e
= 2.70
cosv 1—ecosF ( )
Combining equations (2.68) and (2.70) we have:
R(7) . . 3
= ap[sinw(cos E — e) + coswsin E1/1 — e?], (2.71)
c

where we have defined a, = asin,/c. This equation depends on five orbital binary parameters: a,, w,
Q, 7, and e, which fully describe the Keplerian elliptical orbit.
If we choose to consider only orbits with small eccentricity (¢ < 1), the ELL1 model gives an ap-

proximation to lowest order in e to equation (2.71), which is analytically tractable [134]. This model
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substitutes the time of periastron passage 7, with the time of passage through the ascending node Tasc,
a quantity that remains well-defined even for circular orbits. These two times are related by:
w

a

For the ELL1 model the projected radial distance becomes:

(2.72)

Tasc = Tp —

R .
(7) = ap sin[Q7T — Tase)] + ap ceosew SIn[2Q(7 — Tase)]—ap esme

. cos[2T — Tase)] + O(e?).  (2.73)

Now we want to express the phase evolution given by equation (2.64) in the detector frame. The first
step that we take is to redefine the constant reference time 7, to t,. We also drop the constant d/c term,
which is just changing again the reference time ¢, by a constant offset (this virtually joins the SSB and

the binary barycenter). Firstly, for an isolated source, we have:

(t) - n
) -n

MO0 -+ T2 o)

7(t) - 7

o(t) = ¢ + 2m fo(t —tr +

~ gy + 2mfo(t —t. + )+7rf (t—t.)* +2mfi(t —t,) + O(f2). (2.74)

Since now we have the phase model in the detector frame, we can derive the frequency of the gravitational

wave in the detector as:

f(t)_; Ccl;f fo+ fo

This frequency evolution only depends on four parameters: two sky positions, fo and fi.

ot ) L (2.75)

For the binary case, with equations (2.67) and (2.73) we can derive a relation between the times in the
two different frames. We redefine the constant 7,sc by tasc, which again just changes the reference time
by a constant factor. We express R(7) as R(tgsp). The error created by this approximation is shown in
figure 2.5, where it can be seen that it becomes larger for higher frequencies and shorter periods. The

timing equation now reads:

7(t)-n € cosw

T=t+ — a, SI[Q(t — tase)] — SIN[2Q(t — tase)] + ap—

0S[2Q(t — tasc)].  (2.76)

With the previous equation, the phase model (without frequency derivatives in the source frame) at the
detector frame now reads:

B(t) = g +27Tf0(t—tr +

EORD

ceoe in[m(t—tasc)}+ap$cos[m(t—tasc)]). (2.77)

Since now we have the phase model in the detector frame, we can derive the frequency of the gravi-

—ay Sin[Q(t — tasc)] — ap

tational wave in the detector as:
1d v(t) - n
10 = 5= —fy g T 0,008 [0~ tan)]

2 dt
— foapQe cosw cos [2Q(t — tasc)] — foapQesinwsin [2Q(t — tase)]. (2.78)

If we assume that e = 0, the frequency-time pattern is:

(t) -

f@#) = fo+fo

which depends on six parameters: two sky positions, fo, £, a, and tasc.

— foapScos [Qt — tase)], (2.79)

This model assumes that the neutron star does not suffer any glitches during the observing time, and
that the effect of spin-wandering (stochastic variations on the rotational frequency due to the accretion
process), if present, can be neglected.

The phase and frequency models given by equations (2.74, 2.75, 2.77, 2.78), jointly with equation
(2.63), completely define the waveforms that we want to search in the gravitational-wave data. Methods
to do this will be described in the next chapter. Figure 2.6 shows some examples of the frequency-time
pattern given by equations (2.75, 2.79) with different zoom levels, where the different modulations can

be observed.
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Figure 2.5: Error in the frequency-time pattern during one month made when assuming that R(7) = R(tssB).

The different colors show three different combinations of fo and orbital period Py.
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Figure 2.6: The left plot shows the frequency-time pattern of an isolated neutron star during 1.5 years. The yearly
and daily (in the inset) Doppler modulations are shown, where the spin-down effect can be seen by noticing the
different frequency in the mazimum of the first year and the maximum of the second. The right plot shows a
frequency-time pattern for a neutron star in a binary system without spin-down. The daily Doppler modulation is

less clear due to the binary Doppler modulation.



CHAPTER 3

DATA ANALYSIS AND CONTINUOUS WAVE SEARCHES

This chapter presents an introduction to data analysis, and its application to the search of continuous
waves. The first section gives a brief introduction to important statistical concepts such as decision
theory, parameter estimation, and mismatch. The second section presents an overview of the different
types of continuous waves searches, and the different types of search methods. The last section explains
with more detail a particular search method, called SkyHough, which is the starting point for the results
obtained in this thesis.

3.1 | Gravitational-wave data analysis

The problem of detecting a signal with unknown parameters buried in noise is classically studied in terms
of hypothesis testing. After having detected the signal, the unknown parameters have to be estimated as
accurately as possible.

In this section we give an introduction to both hypothesis testing and parameter estimation, and we

also introduce the concept of mismatch.

3.1.1 | Preliminary definitions
Fourier transforms

The data & = [zg,21,...,£Nn—1] recorded from a gravitational-wave detector with a sampling frequency
of fs = 16384 Hz is usually described as being noise n (hypothesis Hy) or as a sum of noise and an

astrophysical signal h (hypothesis Hj):
T; =n; + hj, (31)

where j indexes time (t; = to+ jAt) and At is the inverse of sampling frequency. The noise (known to be
the result of many small independent effects that may change with time, as discussed in subsection 1.3.2)
is modeled as a stochastic process with statistical properties given by the joint probability distribution
p(7) (usually modeled with a colored Gaussian distribution), while the signal is modeled as a deterministic
process that depends on multiple parameters. No interactions (non-linear effects) between the noise and
signal are considered.
The discrete Fourier Transform (DFT) is defined by:
N—-1
Iy = F(Z) = At Z xje*Q’Tijk/N, (3.2)
j=0

44
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where ¢ is the imaginary unit and k is a frequency bin index. The resolved or bin-centered frequencies

are given by:
fe =EkAS, (3.3)

where Af = 1/(NAt) and k only needs to go from 0 to N/2, since the DFT of a real-valued signal is
hermitian. Because z; is dimensionless, it can be seen that Zj has dimensions of time. The Fourier

transform is a linear operator, which implies that:
F(ii + h) = fig + hy.. (3.4)
The DFT of a bin-centered sinusoidal signal h; = A cos (27 fsjAt 4 ¢o) is (where bin-centered means
that fs = fi for some k):

AR 0 13— 1)+ i+ 1)) (35)

where 0(fr £ fs) is only nonzero when fi, = +f;. It can be seen that only a single frequency bin (the
ANAL igo
2

F(h) =

same with positive and negative frequency) will be different than zero, with amplitude hy =
~g A2N?(At)?

and power hy = ——;—"~.

When the DFT is calculated, it is common to multiply the time-series by a window function w (a

summary of different window functions can be found in [135]):

At = y
Ty = rel Z zjw;e” kN (3.6)
=0

where C = (1/N Z;V;Ol w]z)l/ 2. This is done in order to alleviate spectral leakage of the signal to
neighbouring frequency bins. The time-series has a finite duration, and this dataset without windowing
can be understood as having an implicit rectangular window that sets the data to zero beyond the initial
and ending times. The Fourier transform of the rectangular function R of duration T is proportional to
the cardinal sine function:

F(R) =TsincnfT. (3.7

A multiplication in time-domain is equivalent to convolution in frequency-domain. For this reason, the
convolution of F(R) and the Fourier transform of the sinusoidal will be a cardinal sine function centered
on the frequency fs of the signal. Although windowing is widely used as a tool to alleviate leakage, it
might not be the optimal way to achieve the best sensitivity, as discussed for example in [136].

It can be seen that when f; is coincident with one of the frequencies of the DFT given by fr = kEAf,
the center of the cardinal sine function will fall at the center of one frequency bin, and the value of the
cardinal sine will be exactly zero at all other bins (the zeroes are located at multiples of 1/T). When
the frequency fs of the signal does not coincide with the resolved frequencies of the DFT, there will be
leakage, since the values of the cardinal sine function at the other frequency bins will no longer be 0
(intuitively, this means that the number of cycles contained in the integration time are not an integer
number, i.e. the point at ¢g is not equal to the point that would be obtained at ¢x). The appearance of
leakage is unrelated to the presence of noise from the detectors.

Defining the frequency f; where | = k — ¢ and § = [—1/2,1/2], the Fourier transform of the non-
centered sinusoidal windowed signal is given by:

hi, = ANAt [e"° Dy (k — 1) + e "Dy (k +1)] (3.8)

D _ imz(1-1/N) sin(mz) 3.9

n(z)=e Nsin(mz/N)’ (39)

where Dy is the Dirichlet kernel, which is related to the sine cardinal function. The left plot of figure

3.1 shows three different examples: one with a resolved frequency (blue circles) and two with unresolved
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Figure 3.1: DFT amplitudes of a 1 s signal with arbitrary amplitude. The left plot shows DFTs without spin-
down/up at three different frequencies, while the right plot shows six DFTs with different frequencies and spin-
down/up.

frequencies (orange and green circles). It can be seen that for 6 = 1/2 (orange circles), the reduction in
amplitude can be as high as 0.36.

Even if by chance fs is a resolved frequency, due to the different phase modulations affecting the signal
(due to spin-down/up, Doppler modulation) the frequency will not stay resolved during the time of a
single DFT. The amount of signal lost to neighbouring bins depends on the factor A fT (where Af is the
range of variation of the frequency): the higher this factor is, the more percentage of signal will be shared
with other frequency bins. Furthermore, the amplitude modulation discussed in 1.3.3 will split the signal
in five different frequencies with different amplitudes, so even if the central frequency is bin-centered the
other four frequencies may not be.

As will be seen later, by design many CW algorithms restrict the product A fT to not be greater than
1, but as we can see even for smaller values the amplitudes are smeared. This is shown in the right plot
of figure 3.1, where for example the brown crosses show that an amplitude factor of 0.37 can be lost. The
brown and purple crosses are almost equal, showing that when the number of bins that are crossed by the
signal are equal (in this case two bins), the quantity that is significant is the value of central frequency,
not the absolute value of the spin-down/up. The green points marked with a + symbol show that if we
took a long-duration Fourier transform with a CW signal in it (meaning that many frequency bins would
be crossed), the signal would be spread in many frequency bins, thus complicating its detection above

noise. Analytical estimations of the complete spectrum of CW signals are given in [137] and [138].

Likelihoods

The likelihood of measuring a single value ; when hypothesis Hy is true is given by [208]:

1 P
P(x;|Hy) = N (3.10)
J

where we have assumed that the noise distribution is given by a Gaussian with 0 mean and standard

deviation o;. The probability of measuring an entire dataset & of N points is then given by:

L 1 1 .
P(./L"H()) = Wexp —5 ;xj’y]l x|, (311)

where det(-) denotes the determinant, and the non-diagonal elements of the correlation matrix ~y;; =

E[n;n;] quantify the correlation between samples j and ! and the diagonal elements represent the variance

1

for each sample (when no correlation exists and the variance is the same for all samples, v~ can be
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substituted for a constant ¢?). When 7 only depends on the time difference and not on the absolute
value of time, the noise is said to be wide-sense stationary.

When data from more than one detector is included, the expression is:

- 1 1 1
P(Z|Hy) = Brdet(7)] V2 exp | —5 Z TV ITKL| (3.12)
1K jl
where I and K are indices that go over the different detectors (i.e. for two detectors, I = 0, 1). If the noise
is uncorrelated between detectors yrjx; = 07k Sn;1,ji. The single-sided power spectral density (PSD) S,

is defined as the Fourier transform of the noise auto-correlation function:

Snik (f) = 2/ YK (T)e P Tdr. (3.13)
The PSD can also be approximated by [158]:
2 .
Sl = B [I(7)P]. (3.14)

which holds exactly in the limit of infinite duration Ty, of the time-series. The PSD is estimated from
the data itself, either by calculating the mean of different groups of samples (more than one group is
needed) or by fitting the frequency-domain values to a physical model of the spectrum.

The probability (likelihood) of data & when hypothesis H; is true is given by:

P(F|H,) = b |~ Sl — by e — o) | (3.15)

1
2rdet(y)]V72 =

since when we subtract the exact h from x only the noise remains. We define an inner product given
by [208]:

_ [T Ny O+ Nalf) ., [T RESTS)]
(xy) —/_DQ 5. df_4/0 S0 df, (3.16)

where @ means taking the real part of a complex quantity and the last equality is only true when x and

y are real-valued signals. For more than one detector, the inner product is:
@ =1 [ REDSNTE O =13 [ REOSIAT O @
0 T Jo

where in the last equality we have assumed uncorrelated noise between the different detectors. With this

inner product, the likelihoods can be expressed as:

P(Z|Hy) = e~ 2(@l®) (3.18)

e~ z(@—hlz=h), (3.19)

1
rdet(7)]"/?
P(3H)) = t

[27det ()] V/2

The signal-to-noise ratio (SNR) of a signal is defined as:
SNR = +/(h|h). (3.20)

3.1.2 | Hypothesis testing

Before explaining what hypothesis testing is, we summarize the main differences between the two major
schools of statistical inference: frequentism and Bayesianism. The most basic difference is related to the
concept of probability. While frequentism understands probability as a measure of the long-term (ideally

infinite) frequency of events, Bayesianism understands probability as a measure of the degree of confidence
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in a statement. Another major conceptual difference is related to the data and the parameters of a model:
while frequentism assumes that the parameters of a model are fixed and the data is one realization of an
ensemble of possible data realizations, Bayesianism thinks of the data as fixed and parameters as unknown
variables described by prior and posterior distributions. The main mathematical tool for Bayesianism
is Bayes’ formula, which relates the posterior distribution to the prior distribution and the likelihood
function. Since frequentism does not rely on prior distributions, it only uses the likelihood function.
Hypothesis testing consists of quantifying the relative probabilities between the different proposed
hypotheses. The most basic form of hypothesis testing is a simple test between two different hypotheses,
when all the parameters that define the signals in the hypotheses are known. In our case, Hy represents
the hypothesis that there is no signal in the data (i.e. h; = 0 for all j), while H; stands for the hypothesis
that there is a nonzero signal h(@7 t), where 6 is a vector that contains all the parameters of the signal.
The frequentist procedure to decide between the two hypotheses given a dataset & is defined by
computing a scalar detection statistic A(Z), and comparing it to a pre-defined threshold A, such that
H, is accepted if A(Z) < Ay, while H; is accepted otherwise. From the probability distributions of &
under both hypotheses, the two conditional probabilities P(A|Hy) and P(A|H;) can be calculated. When
deciding which hypothesis is true, two different types of error can be made: type I error «, also called
false alarm probability, which happens when Hj is true but H; is selected; type II error 3, also called
false dismissal probability, which happens when H is true but Hy is selected. They are defined [208]:

a(Ay) = P (A|Hp) dA (3.21)
Ain
Ain

B (Am) = (8 (Aun, ©))o = / dOp(©)5 (s, ©) = / d0p(6) / P (AJH,©) dA. (3.22)

—o0
The last line represents the global false dismissal probability, which is an average over the parameters
of the population. The detection probability is defined as n = 1 — . Another useful quantity that can
be defined is 7’ =1 — 8 — @ = n — «, which can be interpreted as the detection probability only due to
the presence of a signal, with the contribution from noise removed (i.e. the probability of the threshold
being exceeded because the signal was present, rather than because of the detector noise) [136].

The only thing that is left to choose is the scalar function A. The Neyman-Pearson criterion for the
optimality of a hypothesis test A(z) is that the test should maximize the detection probability at a given
fixed false alarm probability. This is given by the likelihood ratio, which is defined as:

. P(#H,) e @-hlE-h)
A@ = B = —ww (3.23)
I A(F) o< (z[h) — %(h|h), (3.24)

where it can be seen that the only term that depends on the data is the inner product (x|h), which is
known as the matched filter.

In case that we have a composite hypothesis (when any of the hypotheses present unknown param-
eters), the likelihood depends on these unknown parameters. This happens for example if the signal in
H, depends on an unknown amplitude, which is the case for gravitational-wave searches. The common
procedure is to use the generalized likelihood ratio or maximum likelihood estimation, where the likeli-
hood P(Z#|H;) is maximized with respect to the unknown parameters. Then, these maximum likelihood
estimators are substituted back into the likelihood, and the maximum likelihood is found, which is inde-
pendent from the maximized parameters. Furthermore, when the analytical maximization is not possible,
a search over a range of values for these unknown parameters has to be done by using some algorithm,
like a deterministic search within a defined grid or through stochastic sampling. An example of such
generalized likelihood ratio test is the F-statistic [50], where the four amplitude parameters that define
the triaxial aligned model of subsection 2.4.1 are analytically maximized, and the four phase parameters

have to be numerically searched.
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The generalized likelihood ratio does not provide an optimal detection statistic, in the sense of it
having the best detection probability at a certain false alarm probability across the entire parameter
space spanned by the unknown parameters. For the CW detection case, an example of this can be seen
in [139], where it is shown that the frequentist maximum likelihood ratio test carries and implicit prior
distribution of the signal parameters, which does not produce the most powerful test across the full range
of parameter space. The performance of a composite hypothesis detection statistic can be compared with
the ideal performance of a simple hypothesis test where the parameters are known, thus providing an
upper bound on the best possible performance. An example of this comparison for the continuous wave
case can be seen in [140].

A high value of the likelihood ratio test does not immediately imply that there is an astrophysical
signal in the data: the hypothesis ratio test only says that the signal model fits the data better than the
Gaussian noise model. A more complete hypothesis testing would include more hypotheses that would
cover other non-Gaussian noise hypotheses or non-astrophysical signals. Instead of proposing an a priori
model for the Hy hypothesis, the background could be better modeled by estimating it from the data. A
way to do this without being biased by possible signals is to use time-slides, where the data samples are
reordered at random and the background distribution of the likelihood ratio test is estimated.

The overall false alarm probability az of crossing the threshold in A trials is related to the individual
false alarm probability for a single trial (assuming independence between the different trials):

ar=1-(1-a)N =aN. (3.25)

where for the approximation we have assumed that a/N' < 1 and only kept the first-order term. Repeating
a search over different independent trials can be seen as repeating the single trial search over different
noise realizations.

The main difference with the Bayesian framework (besides the usage of priors) is that for the composite
hypothesis test, the unknown parameters are integrated out (marginalized) instead of being maximized.
This procedure is optimal if the signal parameters of the underlying population of signals are correctly
described by the used prior distributions. A disadvantage of this method is that the marginalization
usually cannot be performed analytically, and the integrals have to be solved or estimated by an algorithm
that highly increases the computational cost. As will be seen later, CW searches use both the Bayesian

and frequentist methodologies, depending on the type of search.

3.1.3 | Parameter estimation

After having detected a signal, or having strong indications that there might be a signal in the data, we
want to estimate its parameters as accurately as possible. The accuracy of any estimation is limited due
to the presence of noise in the detectors. Different point estimators © (functions of the data) can be
proposed, and their accuracy can be measured using different loss functions, such as the mean-squared-
error (MSE) [141]:

) + (E[6] — ©) = var(©) + bias?(0),
(3.26)

®>

MSE = E[(6 — 6)?] = E[((6 — £[6)) + (B[6)] - @))2] — var(

where it can be seen that there are two contributions, one coming from the variance of the estimator and
another from the bias of the estimator.

One of the most important frequentist point estimators are the maximum likelihood estimators (MLE),
already mentioned previously when discussing the generalized likelihood ratio test. An example of these
maximum likelihood estimators can be seen in the continuous wave F-statistic [50], where the MLE for
the four amplitude parameters are found by analytically maximizing the likelihood ratio. The MLE

are known to reach the Cramer-Rao lower bound (explained below) when the number of data samples
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tends to infinity. Moreover, it can be demonstrated that when a uniform prior distribution is used, the
maximum likelihood estimation is equivalent to the maximum a posteriori Bayesian estimation [141].

In the frequentist case, the best precision achievable by an unbiased estimator is given by the Cramer-
Rao bound, which gives a lower bound on the variance of the estimator. These bounds can be obtained
from the Fisher information matrix, which describes the extent to which detector noise introduces random

2y o

It can be seen that it depends on the second derivative of the likelihood around the true parameters

errors in the estimations:

oh
00!

Fij = —(0;05logp (¥|H1,©0)), = <<

O, meaning that if the likelihood is Gaussian the Fisher matrix calculates the curvature around the
maximum. The inverse of the Fisher information matrix gives the lower bounds on the variance of the
estimators, and they can be interpreted in three different ways, as explained in [142,143]:

1. Asymptotically (when the SNR of the signal tends to infinity or equivalently in the limit in which
the waveforms can be considered as linear functions of source parameters) it is equal to the variance-
covariance of the posterior distribution (i.e. it gives the error for a singular data realization) when

priors are not important.

2. Asymptotically (when the SNR of the signal tends to infinity or equivalently in the limit in which
the waveforms can be considered as linear functions of source parameters) it is the frequentist error
covariance for the maximum-likelihood parameter estimators (which in this limit are unbiased),

assuming Gaussian noise.

3. It gives the Cramer-Rao bound on the expected variance of any unbiased estimator over repeated

measurements while keeping the parameter fixed.

For low SNR signals, the non-Gaussian shapes (such as multi-modalities, present in the likelihoods of
continuous waves signals as discussed in [144]) of the posterior distribution contribute to lowering the
validity of these bounds, making the real variances larger than predicted. Even for high SNR signals, the
bounds from the Fisher matrix may not be accurate due to the usage of prior distributions, as seen in [143].
This is because prior distributions may produce biased estimators, but their correspondent variance can
be lower than the variance of unbiased estimators, thus lowering the MSE defined in equation (3.26), as
seen in example 10.1 of [141]. As happened in the previous hypothesis testing subsection, although the
Bayesian framework can produce better results (besides producing full posterior distributions instead of
point estimators), the multi-dimensional integrals that need to be solved in order to produce the posterior
distributions increase the computational cost and may not be practical. Similarly to the hypothesis testing
case, CW searches use both Bayesian and frequentist parameter estimators, depending on the search.
Besides the noise present in the detectors, another limitation to the parameter estimation precision
comes from systematic calibration errors present in the current gravitational-wave data [46]. Even if the
SNR is very high, an error in the estimations of the calibration parameters will produce a shift on the
estimation of the astrophysical parameters, which can be greater than the shift produced by the noise,

as shown in [146].

3.1.4 | Mismatch and resolution

The previous subsection described the best precision that can be expected when estimating signal param-
eters, which is limited by the noise present in the detectors. A different but related notion of precision
or resolution arises from the difference between the shape of two waveform templates, produced by a
difference of their signal parameters. This difference produces a change on the value of the likelihood
ratio or the inner product present in the signal-to-noise ratio, given by equation (3.20), creating a notion

of resolution between different parameters.
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Figure 3.2: Matched filter between a sinusoidal signal of f = 100 Hz and another sinusoidal signal of f =
100 + /m/(T?n?), where m is the mismatch parameter shown in the z-axis. I represents the matched filter
defined in equation (3.28). The integration time T is 3600 s.

This notion is independent of the noise present in the detectors, and can be exemplified by studying
how the value of a matched filter operation between two distinct waveforms changes as the parameters
describing them are changed, and how this depends on the coherent integration time. A simple example
is shown in figure 3.2, where the value of the matched filter given by (where we have assumed the noise

to be constant and factored out):

= S s

is calculated as a function of the frequency difference between two normalized sinusoidal signals.

T
/O z(t)y(t)dt, (3.28)

The mismatch p (complementary to the fitting factor FF or overlap used in other fields) can be defined

by the loss of signal-to-noise ratio produced when filtering with an incorrect waveform [149]:

_ SNR®-SNR; = SNR; . (h|W)
~ SNR*  SNR®  (hlh)

. (3.29)

The mismatch is a number between 0 (fully recovered SNR) and 1 (no recovered SNR), where SNR, is
the recovered signal-to-noise ratio and SNR is the optimal signal-to-noise that would be obtained if the
matching was performed with a template calculated with the true signal parameters (when noise is not
present in the data). This expression could be used by methods that do not rely on the matched filter,
such as the Hough method later explained.

As previously discussed, an exploration of the parameter space of a signal might be necessary in order
to detect a signal in the data. Two main methods exist to do this: a gridded search, where the parameter
space is divided in different cells in a deterministic way, or a stochastic method such as Markov chain
Monte Carlo (MCMC) sampling where the parameter space is explored in a non-deterministic way. For
the deterministic methods, we need to define the resolution of parameter space in the different dimensions,
which is going to decide the spacing between the different waveform models in order to construct the
template bank that contains the templates that are going to be searched. This spacing can be estimated
from the mismatch.

To estimate this mismatch, a local (in the sense that global correlations such as those explained

in [147] and [148] between parameters are not taken into account) approximation is used, which can be
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obtained by doing a Taylor expansion around the true signal parameters and only keeping second-order
terms (the zero-order term is zero since the mismatch is 0 at the true parameters and the first-order term

is zero since at that location there is a minimum/maximum):
1= gap(0)dOdO° + O(de?), (3.30)

where g, is the parameter space metric (¢ and b go from 0 to the number of parameters), © represents all
the different parameters such as amplitude, frequency, or sky position, and d© = O, — ©, where O, are
the parameters of the signal. In [150] it is discussed that this may not be the best local approximation,
since a sinusoidal function gives a better local approximation.

This metric depends both on the amplitude and phase parameters. When the amplitude parameters
have been analytically maximized or are not explicitly searched over, we need to project the general
metric into the subspace of phase parameters. In [149] it is shown that for high-frequency signals (where
a high number of cycles are present in the integration time, i.e. fT > 1) this is equivalent to using the
phase metric, which consists of assuming a constant amplitude and only taking into account the phase
parameters A:

gab = (0aP(N)0pp(A)) = (0up(N))(Fpd(N)), (3.31)

where (¢g) = 1/T fOTg(t)dt, 0 denotes a partial derivative, and ¢ is given by equation (2.77). This
approximated mismatch is unbounded and can be higher than 1, and from previous studies it is known
that it highly overestimates the actual mismatch for mismatches higher than 0.5 [149].

As a quick and simple example, if ¢ = ¢9, it can be seen that g4,4, = 0, meaning that no SNR is lost
when using a wrong initial phase, or that no search over this parameter is needed. For a simple sinusoidal,
¢ = 27 fot, s0 gfop, = 4m2(T?/3 — T?/4) = T?n?/3. If the required mismatch is 0.1, then the needed
resolution is dfy = \/m/gs,f, = 1/0.3/(T2n2). This can be reversed, and we can get the mismatch as
m = df¢T?n?/3. This can be compared to the resolution of the DFT, which is 1/7"

dfo(m) _ V3mT _ 0.17\/5”71. (3.32)

dfOFT T T

From this comparison it can be seen that the resolution obtained from mismatch arguments is much finer
than the resolution given by the DFT algorithm. Many CW search algorithms use the resolution obtained
from the mismatch metric to construct their template banks, such as [202] or [186]. The mismatch metric
approach is also used for other types of gravitational-wave searches, such as Compact Binary Coalescence
searches [151], or even for searches of gamma rays from unknown neutron stars [152].

The semi-coherent (the difference between a coherent and semi-coherent search is explained in section
3.2) metric is obtained by averaging the different coherent metrics. Search methods such as SkyHough
do not use the metric to obtain the resolution needed to limit the maximum mismatch in their template
bank, as shown in subsection 3.3.3. Other arguments can be used to estimate the resolution equations,
such as calculating the minimum measurable shift in the waveform’s frequency-time path, as done in [158].

A related problem to the per-dimension template (parameter space points) placement is how to
optimally place the templates in more than one dimension in order to cover as optimally as possible
a given range of parameter space [153]. This is a complementary problem to the description of the
distance between templates at each dimension, governed by the mismatch as just explained. The optimal
placement of parameter space points is similar to the sphere covering problem, where a given volume of
space has to be covered with the smallest possible amount of spheres. CW search methods are able to use
the optimal lattice when the parameter space metric given by equation (5.8) is independent of the signal
parameters, as in the case of directed searches, whereas for all-sky searches non-optimal lattices have to

be used [154]. The parameter space points can also be drawn in a stochastic way, as shown in [155].
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3.2 | Continuous waves searches: targets, methods, and past re-

sults

Continuous waves (CWs) are nearly monochromatic long-lasting gravitational waves that have not yet
been detected. They can be generated by multiple sources, such as asymmetric rotating neutron stars (as
discussed in the previous chapter), which are the focus of this thesis, white dwarves in individual [159]
and binary systems [160], supermassive black hole binaries [161], boson clouds around black holes [162], or
dark matter inside stars or planets [163,164]. The main instrument to detect CWs in the frequency range
around 20 to 2000 Hz are ground-based interferometer detectors such as LIGO or Virgo. Furthermore,
as discussed before, CWs could be also be detected with the resonant-mass detectors described in section
1.3 or other new ideas such as [25].

There are several types of CW searches for signals from neutron stars, differentiated by the available

information about their targets. From highest to lowest sensitivity:

e Targeted searches: searching for CWs from known pulsars (in isolated and binary systems). Since
the rotational phase parameters of the targets are known and are assumed to be equal to the
gravitational-wave phase parameters, only the amplitude parameters need to be estimated, and the
most sensitive search methods can be used with small computational cost. More recently, narrow-
band searches have been developed to complement the traditional targeted methods. These searches
allow for a small mismatch between the electromagnetic and gravitational-wave phase parameters
such as the initial frequency, and do a search over a small range around the known value. A brief
list of past targeted searches is: [165-175].

e Directed or spotlight searches: searching for CWs from sources at known sky positions, such as
globular clusters, the center of the galaxy, supernova remnants, or low-mass X-ray binaries like
Scorpius X-1. Although the sky positions are known, the initial frequency and frequency derivatives
are not, and a search over these parameters has to be done. For this reason, the most sensitive
methods used for targeted searches cannot be used (or they have to be used with a reduced set of
data). A brief list of past directed searches is: [176-189].

e All-sky searches: searching for CWs from unknown neutron stars (in isolated and binary systems),
these searches have the highest computational cost since both the sky positions and frequency

parameters are unknown. A brief list of past all-sky searches is: [190-205].
All-sky searches, which are the focus of this thesis, possess interesting particular properties such as:

1. A very small percentage of the estimated neutron star population in our galaxy has been detected
as pulsars [65]. We expect that these unseen neutron stars (perhaps with more extreme properties
than the detected pulsar population) may emit detectable CWs. Furthermore, all-sky searches
inspect regions of parameter space that targeted and directed searches leave unexplored, making

all-sky searches a valuable endeavour.

2. Even if the rotational evolution of the electromagnetic poles and the gravitational quadrupole
rotational evolution are different (possibly due to an internal asymmetry combined with differential
rotation), the semi-coherent methods used for all-sky searches (explained below) are robust to these
kinds of mismatches, since they do not use electromagnetic information. Furthermore, these semi-
coherent methods are also more robust against other phase fluctuations such as the ones produced

by glitches or timing noise [79].

3. Due to the possible high mismatch in the initial search stage and/or the usage of a signal model
that is not completely accurate (for example, due to not including higher-order spin-down/up terms,

proper motion, or spin-wandering), when a signal is found in the first stage, the SNR that can be
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recovered after lowering the mismatch and correcting the signal model is much higher, possibly
even more than an order of magnitude higher than the initial SNR. For this reason, the detection
confidence could be increased even more by searching the signal at other frequencies (which might
be present as explained in subsection 2.4.2) that at the initial stage might have been undetectable
(depending on the geometry of the neutron star), or with other less sensitive detectors. This
argument is even stronger for all-sky searches from neutron stars in binary systems, since their

initial stage mismatch is expected to be higher.

4. All-sky searches are able to constrain physical parameters of the full galactic population within a

single search, instead of just constraining parameters from individual targets.

There are two main ways to analyse the data from the gravitational-wave detectors: coherent and semi-
coherent methods. Coherent methods demand amplitude and phase coherence between the templates
and the data during all the observation time, while semi-coherent methods break up the data in shorter
segments and only demand coherence within each of these segments, but not between them. The semi-
coherent F-statistic method is an example of this: a coherent F-statistic is calculated for each segment
by finding the analytical maximum likelihood amplitude estimators, but it is not demanded that these
amplitude parameters (hg, cost, ¥ and ¢g) are the same for all segments. Between segments, semi-
coherent methods only demand coherence of the frequency-time pattern.

Since coherence is only required within each segment, semi-coherent methods do not need search
grids to be as fine as coherent methods do. This is related to what was explained in subsection 3.1.4:
the longer the comparison between template and data is, the finer the spacing between templates needs
to be in order to maintain a constant mismatch level. For these reasons, semi-coherent methods have a
smaller computational cost when compared to coherent methods, and they can be used to do the more
expensive directed and all-sky searches. To perform all-sky searches with a limited computational budget,
semi-coherent methods have been proven to be more sensitive than coherent methods [157].

The difference in sensitivity between coherent and semi-coherent procedures stems from the fact
that the background distributions of semi-coherent searches have a much higher number of degrees of
freedom (NN times higher, where N is the number of segments), and for this reason at the same threshold
level many more candidates from the background distribution will cross it, so to attain the same false
alarm probability this threshold has to be increased for semi-coherent searches. Although the number of
templates for the coherent search would be much higher, even when this higher number of trials is taken
into account the higher number of degrees of freedom of semi-coherent methods has more weight.

The enormous difference in computational cost between coherent and semi-coherent methods can
be understood by looking at the scaling of the required number of coherent A, and semi-coherent N
templates per parameter-space volume d*) of a 4-dimensional all-sky search for isolated neutron stars

with one spin-down/up [208]:

AN oc \/|detgap|d* N o< TS, f2d*\ (3.33)
AN o< Tops T f2d* N, (3.34)

One example of a coherent method used for targeted searches is the time-domain Bayesian targeted
pipeline [209], which is the most sensitive CW pipeline. This method is able to heterodyne (multiply
the data by a complex exponential to remove the phase modulations) the data for each of the searched
pulsars, since the phase parameters are known. After heterodyning only the amplitude modulation is
left, and downsampling the data to one sample per minute reduces the computational cost. If the phase
parameters were not known, the heterodyning procedure could not be applied, and a Bayesian nested
sampling search over at least an 8-dimensional parameter space and using the full time-domain data
would need to be used, which would increase by many orders of magnitude the computational cost of this

search.
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Another coherent method relies on the F-statistic, which is the frequentist likelihood ratio maximized
over the amplitude parameters. The way this detection statistic is calculated is detailed in [210]. It can
be calculated by heterodyning the data or by resampling as explained in [211]. Several modifications of
this coherent statistic exist. For example, when the two orientation parameters of the neutron stars are
known, it is substituted by the more sensitive G-statistic, defined in [140]. Moreover, in [139] it was shown
that the F-statistic can be derived from a Bayesian point of view by proposing an unphysical prior (which
was implicit in the derivation of the F-statistic), and a more sensitive statistic name the B-statistic with a
physical prior was developed. Although CW signals from neutron stars in binary systems can be searched
with the F-statistic, further modifications (which are not a maximum-likelihood estimator) can be done
in order to lower the computational cost of these high-dimensional searches. These are the C-statistic,
the Bessel weighted F-statistic, and the J-statistic, explained in detail in [212].

Regarding semi-coherent methods, many different pipelines exist and they differ between both the
coherent detection statistic that they calculate and the way that these results are combined between
segments. Usually, the coherent step consists of either calculating the F-statistic (or one of its variants)
for a given T., or on calculating the power in frequency bins of DFTs from the time-domain data.
The advantage of using the F-statistic is that it takes into account both the amplitude and phase
modulations that the signal has, and for this reason T, can be arbitrarily long, which for the DFT powers
case is not true, since the phase modulations would distribute the power of the signal to neighbouring
bins. This increases the sensitivity when compared to using power from Fourier transforms of the data
(also increasing the computational cost, so the overall sensitivity might not be better if the mismatch
parameters are not low enough, as recent results have shown [213]). Some methods allow T, to be longer
even when using DFT powers, such as the Cross-Correlation [214] method or the Loosely-Coherent
approach [215]. Although these semi-coherent methods can achieve higher sensitivity due to the usage of
longer segments, their computational cost is much higher and are usually only used for directed searches or
for follow-ups of candidates from all-sky searches, although a new implementation of the Loosely-Coherent
approach called Falcon has been recently applied to an all-sky search [205]. A different semi-coherent
method is used by the TwoSpect pipeline [98], which searches for all-sky signals from neutron stars in
binary systems. This pipeline starts from a time-series of frequency bin powers, but then applies a further
Fourier transformation (after having corrected for the amplitude and Earth’s modulations) for all time-
series of each different frequency bin, in order to reveal excess power at frequencies that are harmonics
of the binary orbital period.

For the combination of the results from different segments, there are four different mechanisms:

e Sum the coherent statistics (possibly after weighting them by the noise and antenna patterns of the
detectors) along the frequency-time pattern of the signal, as for example done by the PowerFlux
pipeline (a technique usually called “stack and slide”). The most sensitive pipeline that uses this
technique relies on the usage of the Einstein@Home infrastructure, which uses idle CPU time from
the computers of volunteers. The parameter space to be searched is divided in smaller portions, and
each of these portions can be independently done by different volunteers. For this reason, a huge
computational power is available, and longer coherent times (while maintaining small mismatch
parameters) can be used.

e Apply a threshold to the (weighted) coherent detection statistics to convert them to 1s and 0s, and
sum them along the frequency-time pattern, done by the Hough pipelines. Although the sensitivity
that can be achieved is smaller, this method is more robust to huge power contributions from noise
artifacts and its computational cost is smaller, so for a limited computational power its sensitivity

can be the same or better that the previous method.

e Search for coincidences between the results from the different coherent segments, as done by the

all-sky Time-Domain F-statistic pipeline.
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e Sum the coherent statistics but instead of following a deterministic frequency-time pattern (different
for each of the different searched templates), use a stochastic technique to predict the most probable
path of the signal. This technique can be applied with the Viterbi algorithm, as explained in [216]
or [217].

As mentioned previously, all-sky searches have to search over (at least) a 4-dimensional parameter space,
and their computational costs are the highest ones. For this reason, all-sky searches use the less compu-
tationally demanding semi-coherent methods.

The first proposed method to do all-sky searches dealt with resampling (stroboscopic or nearest-
neighbour) the data in order for it to contain a monochromatic sinusoidal signal, and then doing a FFT.
This had to be repeated for all different points of parameter space, so the computational cost was very
high and only a small amount of data could be used [218]. Later [156] it was studied that instead of
performing a coherent search over all different templates, if the data was divided in smaller segments
and combined in an incoherent way, and afterwards candidates from this first stage were followed up by
incrementing the coherent time (a strategy called hierarchical search) the total amount of data could be
incremented and the sensitivity would be higher. This was the first time that a semi-coherent approach
was proposed. In that study it was already mentioned the need for a finer resolution in the incoherent
combination step, since residual errors may cause the combination of the incorrect frequency powers
(even if the coherent demodulation correctly combined all the power in a single frequency bin). A further
study showed that the optimal hierarchical procedure consisted on doing 3 semi-coherent stages and a
subsequent final fully coherent stage [219].

The first search for CWs was reported in [220], where seismic waves on Earth produced by CWs
were used to put an upper limit around 1077 for 4 different pulsars. The first search for CWs with
interferometers was done in 1972 [221], where data from a 30 m laser interferometer was used to search
for CWs from the Crab pulsar, setting an upper limit of 3 x 10717,

The first CW search using large-scale interferometers was reported in [222], where 50 days of TAMA300
data were used to put an upper limit of 5 x 10723 at 934.9 Hz for CWs from the supernova remnant
SN1987A. The first CW search using data from the LIGO detectors was [165], where GWs from the pulsar
J1939+4-2134 were searched, obtaining an upper limit around 10~22 using around 17 days of S1 (the first
science run of Initial LIGO) data. These results show a great improvement from the previous upper limits
due to the usage of large scale interferometers. As can be seen, the first searches were all targeted towards
known pulsars due to their lower computational cost and more straightforward data analysis techniques.
The first published all-sky search using more than one day of LIGO data was reported in [190], where
the best upper limits were around 4 x 1072 at 200 Hz using S2 data. A more detailed summary of CW
searches up to S4 can be found in [208], and a public webpage listing all the published CW searches from
the LVC can be found in [223]. A summary of results of O1 searches is given in [224].

The difference in sensitivity between using a coherent or semi-coherent method can be clearly seen
when results from a targeted search and an all-sky search are compared, as shown in figure 3.3, where
the upper limits on the gravitational-wave amplitude hg for the O2 observing run are presented. The
difference in sensitivity can be more than an order of magnitude. This figure also conveys the huge
improvement in sensitivity between the first searches with LIGO data and the current level, of more
than two orders of magnitude, both due to improvements in the detectors and also to the data analysis
pipelines.

Due to the high computational costs of directed and all-sky searches, and since their sensitivity is
limited by the available computational power, an important area of research and improvement is related
to how to optimally distribute the available computational resources between the different regions of
parameter space, and how to select the best parameters defining a search, such as the maximum allowed
mismatches for each dimension or the amount and length of the segments. If a sensitivity function

depending on all these factors can be defined, and if the computational cost of the search (which is also
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Figure 8.3: Comparison of the O2 upper limits between the targeted search [110] and the best results from the
all-sky search [213].

a function of these parameters) can be analytically predicted, an optimization procedure like the one
provided by Lagrange multipliers can be used to find the optimal solution. Attempts have been made for
how to best select the input data for searches [227,228,232], and a more complex optimization procedure
dealing with how to select the optimal parameter space regions and mismatch parameters has also been
proposed, both for all-sky searches [156,157] and for directed searches [225,226].

None of the CW searches done until now has detected a gravitational wave signal. Even though most
of the directed and all-sky searches have many candidates crossing the thresholds at several standard
deviations, this is not enough to confidently claim a detection, since non-Gaussian features in the noise
are known to be able to generate these candidates. In order to increase the confidence of candidates truly
being generated from an astrophysical signal, several tests or vetoes are routinely used (many of them
summarized in [228]):

e Lines veto: if the frequency-time pattern of the candidate intersects any of the frequencies of
known artifacts (discussed and listed in chapter 7), the candidate can be dismissed as there is a
high probability that it is generated by the detector.

e Consistency veto: when a search over multiple datasets is done, the significance values have to be
consistent between these datasets. For example, for two datasets from two detectors with similar
amount of data and noise floors, the significance should be at the same level. Enormous differences
between significances are normally caused by artifacts present in only one of the detectors or during

only a specific epoch.

e Permanence veto: the coherent detection statistics for the multiple segments can be inspected, and
it can be checked if the final value is accumulated in a smooth way, or if a great portion of it is
accumulated during a short time. The former is true for a real CW signal, while the latter can be
generated by a transient noise artifact present in one of the detectors. Highly related to these veto
is the x? veto, which quantifies how the detection statistic of a signal should be distributed within
each of these segments, and compares the obtained value with the theoretical prediction.

e Coincidences [213]: if the search has been separated in multiple datasets (for example multiple
detectors or datasets from different epochs), a candidate must be present in the output from all

datasets, since the opposite case hints at the candidate not being truly astrophysical. Usually, a
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range around the parameters of the candidate is selected, and this range is searched for candidates
in the complementary datasets. Searching for coincidences can be related to the consistency and

permanence vetoes.

e Population veto: it is known that for a true astrophysical signal not only a single candidate will
attain a high value of the detection statistic: a neighbourhood of high significance values around
the true signal parameters will be present. If this is not the case, the candidate can be dismissed

as not being astrophysical.

e “Doppler Modulation off” veto [229]: the obtained detection statistic value can be compared with
the result of a new search done with the Doppler modulations produced by the Earth assumed
to be zero (i.e. as if the Earth was located at the Solar System Barycenter and not rotating). If
the significance of the detection statistic value increases, it is more probable that the candidate is

generated from an artifact of the detectors than from a real astrophysical signal.

e Follow-up [144,253]: if all previous tests are passed, the coherent time can be increased and/or the
mismatch parameters can be decreased, in order to increase the statistical confidence on the signal.
In order to keep a low computational cost, the amount of refinement is limited by the number
of outliers to be followed-up. This fact governs the number of follow-up stages than have to be

employed to reach a final fully coherent stage.

If a candidate passes all the previous tests, we can still try to increase the confidence (both statistical
and subjective) in it. One of the first steps would be to check all the auxiliary channels. Although the
lines veto has been passed, some noise artifacts may not be present in the lines/combs list used to veto
outliers, because that list is generated from short Fourier transforms averaged over all an observing run,
and a signal with these phase modulations would not appear above the noise and would not be noted.
If a signal with the same parameters and modulations is found in any auxiliary channel (which are not
sensitive to gravitational waves) such as a magnetometer, the confidence on the signal being astrophysical
would be much lower. Due to the continuous nature of CW signals, another strategy would be to wait for
more data to be obtained and analysed, to further increase the SNR and to narrow the uncertainty on
the signal parameters. A further check that the candidate is not being generated by a software bug could
be done by repeating the last coherent stage with a different pipeline. For example, the analysis could
be done both by a search that calculates the coherent F-statistic and by a search that calculates the
Bayesian Bayes factor with a stochastic algorithm such as nested sampling. Furthermore, for an outlier
coming from an all-sky search, if not all available detectors have been used in the last coherent follow-up
stage (possibly due to different sensitivities), these additional detectors can be used since at this stage
they might increment the SNR. A similar procedure would be to use data from previous observing runs.
Moreover, if the signal has been found only at a single frequency, the same signal at other frequencies
(given by the models explained in subsection 2.4.2) could be searched. A final check would be to try to
find an electromagnetic counterpart in the radio, X-ray, or gamma-ray bands, situated at the same sky

position of the detected signal.

3.2.1 | Upper limits and estimation of sensitivity

When a search pipeline is designed, modified, or improved, its sensitivity needs to be estimated in order
to compare it to other pipelines or to other possible configurations. The sensitivity is defined as the
smallest gravitational-wave amplitude that an analysis can detect with a certain statistical confidence
(i.e. it will detect at least a certain percentage of signals over a population in one observation, or it will
detect a signal over an ensemble of observations with the same statistical properties) at a given fixed

false alarm probability.
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Although the sensitivity is a useful quantity, it only takes into account how deep into the noise-floor
of a dataset a pipeline can detect a signal. A more complete description would take into account other
important aspects such as the parameter estimation accuracy, the size of the parameter space to be
analysed, the computational cost of the pipeline per unit of volume, or its robustness against deviations
from the model. Mock Data Challenges (MDCs) are designed to provide a controlled environment where
different properties (such as sensitivity, parameter estimation accuracy, robustness, or computational
cost) of many different pipelines can be compared when analysing the same parameter space. In these
MDCs, many signals (whose parameters can be shared with the participants or can be kept unknown)
are simulated and added to real or simulated noise with diverse statistical properties. Examples of Mock
Data Challenges applied to CW searches are [230] or [231].

In order to obtain an analytical estimation of the sensitivity of semi-coherent pipelines, many ap-
proximations need to be taken, such as assuming that the number of segments is large, that the noise
is Gaussian, or that the astrophysical signal is small. An example of such a sensitivity estimation is
developed in subsection 3.3.3. These analytical estimations can serve as a first order comparison between
similar pipelines, but they usually overestimate the absolute sensitivity of the pipeline. Besides being
used to compare different pipelines, an analytical equation that relates the sensitivity of a pipeline to its
different tuneable parameters (such as mismatch or duration of segments) can be used to optimize the
sensitivity, as was previously discussed.

To derive the analytical sensitivity, the statistical properties of the detection statistic have to be
calculated. Firstly, the probability distribution function of the detection statistic needs to be known.
Many detection statistics follow a non-central y? distribution of a given number of degrees of freedom
(such as the F-statistic), while others may follow a Gaussian or binomial distribution. Secondly, the
false alarm probability is calculated: for a given desired false alarm probability, what is the threshold
that is needed? The false alarm probability equation is inverted, and the threshold can be calculated.
The last step consists of calculating the detection probability for the given threshold, which includes an
integration of a function that depends on the non-centrality parameter. Since this parameter depends on
many parameters of the astrophysical signal, an integration over these parameters needs to be done too,
in order to obtain an average detection probability over the complete parameter space.

The optimal SNR can be defined by using the inner product, given by equation (3.16), and assuming
a triaxial aligned model:

SNR? = (h(t)|h(t)) = —2 /TO/Q h(t)2dt

Sn (f) —To/Q
h(% 1 2 \2 To/2 2 2 To/2 2
= — (14 cos“t / Fdt 4+ cos L/ FZdt|, 3.35
Sn(f) |4 ( ) ~Ty/2 + T2 (3:35)

where the term proportional to the product Fy Fy has been dropped out since its integral over time
equals to zero. For coherent integration times longer than a day, as shown in [50], the squared SNR
depends linearly on the integration time, whereas for shorter times the expression has an extra term with
a different oscillatory dependence on T.,.

For a semi-coherent search, the total SNR? is given by the sum of the SNR2 of each segment. If the
coherent times of each segment are much less than the sidereal periodicity of the antenna patterns (such

as 1800 s), the expressions Fy and Fy can be taken as constant during each segment:
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where the index J can belong to multiple detectors (we have assumed uncorrelated noise between detec-

tors). A well-known result regarding semi-coherent searches is that their sensitivity is proportional to
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N~025 (in the limit of large N and false alarm probability), but this scaling may be incorrect for certain
setups, as discussed in [233].

A quantity that is currently widely used to measure the sensitivity of a pipeline is the sensitivity
depth D, firstly proposed in [228]:

, (3.37)

where in this case S, is the harmonic mean over all segments used in the search. The advantage of this
quantity is that it is independent of frequency, since the frequency dependence from S,, is removed, i.e.
it is a measure of sensitivity independent of the noise floor. In [207], a comparison of the sensitivity
between different searches in terms of their sensitivity depth is presented.

When no detections are reported in a search, the common procedure is to present upper limits on
the gravitational wave amplitude with a certain confidence probability. An upper limit is a probabilistic
bound over a certain parameter. The strict definition of what an upper limit represents is different within
the frequentist and Bayesian frameworks, due to the different meaning of frequentist’s confidence intervals
and Bayesian’s credible regions, as discussed in subsection 3.1.3, and explained in [234]. The Bayesian
upper limit h¢ corresponds to the interval [0, hJ] that contains the true value of hy with probability 7,
i.e. it the point of the distribution where the credible region reaches a total of 7 of its area. On the
other side, the frequentist upper limit is defined as the weakest signal amplitude h{ that can be detected
(meaning that it is above a threshold dy, on a statistic d(x) selected for a given false alarm probability)
with a given detection probability n (typically chosen as 90% or 95%).

In order to calculate these upper limits, the analytical methods that are used to estimate the sensitivity
are not precise enough, since they assume Gaussian noise (besides other approximations), which is not
the true case for a real search. This is empirically known from previous searches, where the analytical
sensitivity and the obtained upper limits are very different. Usually, frequentist upper limits are estimated
through the usage of a massive set of Monte-Carlo injections (a procedure called population-averaged
upper limits), where signals taken from an underlying distribution (usually isotropic in position and
orientation, while uniform in the other parameters) are added to the data from the observing run, and
for each of these signals the search is repeated with the same configuration as the real search.

To find the upper limits at a particular detection confidence 7, signals are added with varying hg
values, and the hy point where a fraction 1 (such as 0.9 or 0.95) of the injections is recovered is selected
as the upper limit value. Usually, this point is not within the hy values that have been used, and
an interpolation procedure has to be used. A common function to use for this fitting is a sigmoidal.
This is related to the fact that many analytical estimations find that the sensitivity depends on the false
dismissal through an inverse complementary error function (which has a sigmoidal shape), as the example
in subsection 3.3.3 shows.

Since running again the full search over a great number of injections has a non-negligible computational
cost, a common procedure is that injections are only added at a reduced number of frequencies, and then
a mean value obtained from these frequencies is generalized to the full frequency range. This can easily be
done with the sensitivity depth, which are obtained (with a certain confidence value) at these frequency
bands, and the hg upper limits for the full frequency range are easily calculated by using the amplitude
spectral density in equation (3.37). This is the procedure that we use to calculate upper limits in chapter
4.

Bayesian upper limits do not need to perform large scale MCMC simulations, since they can just
marginalize the full (usually over the 4 amplitude parameters) posterior distribution and obtain a 1-
dimensional posterior distribution over hy. From there, obtaining the value with n confidence is trivial.
Besides the Bayesian upper limits, there are other methods that do not rely on adding simulated signals
to the data, and instead compute frequentist upper limits, such as the Feldman-Cousins method [235]

or the Universal Statistics procedure [236]. The advantage of these methods is that they do not require
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adding simulated signals, thus saving up the required computational cost and researcher’s time. Another
advantage of the Universal Statistics procedure is that it can produce upper limits even in the most

contaminated frequency bands.

3.2.2 | Parameters measurable with CWs

In this subsection we detail the astrophysical information that can be obtained after the detection of a CW
signal. This information depends on the type of CW signal that is detected, and on if an electromagnetic
counterpart is also detected. Detecting a CW from a NS in a binary system gives the possibility not only
of measuring the five Keplerian parameters, but also of trying to measure post-Keplerian parameters and
using that signal to test general relativity, as has been done with electromagnetic signals from pulsars in
binary systems (such as the Hulse-Taylor pulsar).

Furthermore, the information to be learned also depends on the geometric configuration of the NS,
like its wobble angle 6 or if the star is precessing. For the simplest signal model, eight different parameters
can be measured: four amplitude parameters and four phase parameters. The amplitude parameter hg
depends on the combination I,.ef2/d o< Qa2 f?/d, where f will have been measured. If no EM counterpart
is detected, then a disentangled measurement of the distance and the quadrupole moment is not possible,
but if an EM measurement of the neutron star is achieved, then its distance could be estimated, and
the quadrupole Q22 would be known. This would be possible even without an EM detection, if the sky
position of the found CW signal lies within a known globular cluster, since then the distance to the NS
could be assumed to be the distance to the globular cluster.

If from the EM detection an independent measurement of the moment of inertia can be done, then the
ellipticity € could be directly measured, and from its value different mountain building mechanisms could
be compared. For example, by knowing the frequency, the first frequency derivative, and the ellipticity,
equation (2.5) can be used to infer values of the product R6B2. If the radius has also been measured
with EM information, the value of the external magnetic field could be estimated. This approximate
relation can also be seen from equation (2.27), which estimates the ellipticity by comparing the magnetic
and gravitational energy (by substituting the mass with M o I/R?). It is clear that if an EM detection
is not done, the amount of parameters that can be estimated is reduced.

When the signal is detected with multiple frequencies, geometric quantities like the wobble angle can be
obtained. If the signal is detected at a single frequency, these geometric quantities can be constrained by
comparing the SNR at the different frequencies. Assuming that the SNR is given by SNR = hov/T (a4 Fy+
ax Fx)//Sn, we can compare the optimal SNR at two different frequencies:

SNle _ Sn(f2) a+;1F+;1 + a><;1F><;1 (3 38)
SNRZf Sn(fl) a+;2F+;2 + a><;2F><;2 ’ ’
which averaging over sky positions and polarization angle ¢ and using equation (2.62) gives:
SNR? S, in220 = sin?ccos? 1+ +sin?.
< L > =2 (f2) Sin” 20 g SIn"LCOS L+ GSMTL iy (3.39)
SNR3; i w(f1) sin® @ £(1+cos?1)? + 3 cos?e

where the last two terms (named B and C') depend on geometric angles 6 and ¢ and the first term A
depends on the ratio of noise background at the two different frequencies. With this equation an estimate
can be made about the relative signal-to-noise ratio, or inversely, from SNR measurements at two different
frequencies an estimate of the wobble angle can be made (since ¢ can be estimated from an individual
frequency). Figure 3.4 shows the product BC, showing a very similar shape to figure 5 of [237], while
figure 3.5 shows the square root of the noise ratio term A. These figures also show that for an all-sky

search, if the initial SNR can be increased by an order of magnitude, other frequencies which had 0.1 of

SNR?2

1f> > 0.1).

that SNR could be detected (signals with parameters <W
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Figure 3.4: The colormap shows the product BC given by equation (3.39). The black line marks the limit between

regions where SNR%f is higher (below the line) or lower than SNRgf (assuming equal power spectral densities).

When multiple frequencies are detected, a more complex (and realistic) distribution of unequal mo-
ments of inertia could be estimated, following equation (2.52). Furthermore, the method described in [84]
explains that when detecting two different frequencies, the Shapiro delay due to the mass of the NS is
different for each of them, and an estimation of the mass of the NS can be done, with accuracy depending
on the SNR of the signal. Even if this measurement is not possible when the signal is first detected, due
to the continuous nature of CW signals, more observation time can be accumulated and the accuracy
of these types of measurements can be improved, although the accuracy in the long term is limited by
calibration systematic errors discussed in [238].

Besides parameters of individual neutron stars, when multiple detections exist global parameters of
the galactic NS population could be estimated as proposed in [239], as now is routinely done for the binary
black hole population [240]. Many properties could be investigated with more detail after a detection of
multiple sources, such as the distribution of ellipticities, a possible dependency of the orientation vector
with proper motion direction, the sky distribution of galactic neutron stars, or the unknown distribution

of rotational frequencies.

Continuous waves can also be used to test theories of gravitation. For example, [241] estimates how
accurately a possible difference between the speed of gravitational waves and the speed of light could
be measured. Furthermore, [242] proposes a method to measure polarizations that are not predicted by

general relativity, such as vector and scalar polarizations.

Finally, it can also be mentioned that even not detecting CWs can help to constrain astrophysical
parameters of the galactic population such as the ellipticity. For all-sky searches, the upper limits on the
gravitational-wave amplitude can be converted to upper limits on the ellipticity at a certain distance,
as shown in the results sections of chapters 4 and 6. Thus, we can claim that up to a certain distance
(assuming the canonical moment of inertia and a certain detection confidence, usually 95%) there are no
neutron stars with an ellipticity higher than a certain value. This constraint can also be used to constrain

the internal magnetic fields of these unseen neutron stars, by assuming a certain magnetic field model.

It is important to notice (as discussed in [103]) that the ellipticity upper limits obtained by an all-sky
search do not constrain the maximum ellipticity €,,,, of the galactic NS population, which is a common
quantity to all neutron stars and is a function of the properties of dense matter. What is really constrained

are the current e values of the population, which may not be at their maximum possible values.
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Figure 3.5: Square root of the ratio between power spectral densities at frequencies 2f and f for the H1 detector
during O2.

3.3 | SkyHough

In this section we review the SkyHough (SH) method used up to and including O1, and leave the expla-
nation of new added improvements to the respective results chapters.

The Hough transform is a pattern recognition algorithm that was originally invented to analyse
bubble chamber pictures from CERN [243]. It was later patented by IBM [244], and it has found many
applications in the analysis of digital images. Although initially it was only used to recognise lines, it
was later generalised (named “Generalized Hough Transform”) to more complex patterns such as circles
and ellipses [245].

The main idea behind the Hough transform is to try different combinations of the parameters describ-
ing the shape that is being searched and calculate which one fits better the input data/image. Imagine a
discrete input dataset, where only values of 1 or 0 are allowed (such as an image with only black and white
pixels). If we want to find a single line in this image, different combinations of slope and initial value of
the vertical axis are tried (also assumed to be suitably digitized), and the combination that collects or
touches more of the black pixels is selected as the most probable combination of parameters describing
the line. For our CW case, we substitute the parameters describing a line by parameters describing the
frequency-time pattern.

The SkyHough pipeline is a semi-coherent method designed to do all-sky searches of continuous grav-
itational waves from isolated neutron stars, and was initially described in [158]. It has been used
in past searches using data from the Initial LIGO S2, S4 and S5 and Advanced LIGO O1 observing
runs [190, 191,195,201, 203], and it is the pipeline that we have used (after making some changes and
improvements) to obtain the results of this thesis. The Hough pipeline substitutes the frequency bin
powers to 1s and Os after applying a threshold, and performs a weighted sum of these 1s and 0s along the
frequency-time pattern of the signal, which is different for every different template. The main advantage
of this pipeline is its low (relative to other all-sky CW pipelines) computational cost. This is achieved
by reusing the same Doppler modulation for several frequency bins, which makes the SkyHough pipeline
the cheapest all-sky semi-coherent method (more details in subsection 3.3.2). This pipeline is also more
robust against transient spectral disturbances because no matter how large a spectral disturbance is in a

single SFT, it will contribute at the most with a 1 (instead to the full power) to the final semi-coherent
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detection statistic. The code for the main part of the search is called lalapps_DriveHoughMulti and is part
of the publicly available LALSuite package [51]. The Hough method of substituting coherent results by
1s and Os has also been used for an Einstein@Home search with S5 data, where in this case the threshold
is applied to F-statistic values instead of SFT powers [194].

3.3.1 | Input data

SkyHough starts by splitting the data from an observation run into smaller chunks of duration T. (a
quantity that might depend on frequency) and then produces Short Fourier Transforms (SFTs) from the
calibrated and windowed z(t) data produced by the different ground-based detectors such as H1, L1 or
V1.

The sensitivity of a semi-coherent method increases with the coherent time T, so in principle one
should aim to use coherent times as long as possible. On the other side, the computational cost increases
with longer coherent times, setting a limit to this value. Furthermore, the spread of power to neighbouring
bins (as discussed in the beginning of this chapter) limits the maximum SFT time baseline that can be
used (which for our method is equal to the coherent time). To calculate the maximum possible coherent

time, we demand that the signal is contained in half a single frequency bin:
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We can estimate the maximum frequency derivative through the frequency evolution model from

(3.40)

equation (2.75) (the binary case will be treated in chapter 5):

f= fod'Tﬁ + fi1, (3.41)

where @ is the acceleration vector of the detector in the SSB frame. The highest contribution to the
acceleration due to detector motion comes from the daily rotation of the Earth [158], which simplifies the
previous equation to:
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+ f1, (3.42)

where R, is the radius of the Earth and T, is a sidereal day. Introducing this last equation in (5.17), we
have:
1
T, < .
V2f1 +2.246 x 10-10 f,

(3.43)

It can be seen that the maximum coherent time depends on the frequency fo and on the spin-down/up f1
(the spin-down/up term will only be significant when compared to frequencies less than ~100 Hz). The
optimal search strategy should use SFTs with different coherent times (the maximum allowed, following
equation (3.43)) in different regions of the parameter space. In realistic set-ups, only a small amount of
different coherent times are selected, mostly to ease the later calculation of upper limits (which will need
different characterization for each different coherent time).

The data x; obtained by the detectors and its DFT Z; is described at the beginning of this chapter.
The dataset to be analysed is split in a number Ngprs of different chunks, which are used to produce
a spectrogram (a matrix of frequency-time bin powers). These powers are afterwards normalized by the

estimated background noise (nj):

Pk = |:EL2II€| (3 44)
J <an>2’ .
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where J is the SFT index, k is the frequency bin index, and (n;)? is calculated with a running median
over a number of frequency bins (usually 101 bins are used). The estimated noise is related to the PSD
Sp,y by:

(k) % S (i), (3.45)

Other pipelines estimate the background noise (nj;)? in a different way. For example, the Frequency-
Hough pipeline estimates it using an auto-regressive algorithm.

The spectrogram is replaced by 1s and 0s by defining a power threshold p;p, (if the power in a bin is
above this threshold, it is substituted by a 1, otherwise it is substituted by a 0). The FrequencyHough
pipeline also demands that the peak is a local peak, meaning that 1s are only placed in frequency bins
with more power than their two neighbours, although in [136] it is shown that this is not an optimal
procedure in terms of sensitivity, although the computational cost savings achieved by this requirement
should also be taken into account. In [158] it was found that for a signal embedded in Gaussian noise
(without taking into account the weights) the optimal choice for this threshold is py, = 1.6. These 1s
and Os are multiplied by per-SFT weights (calculated at the mid-time of each SFT), given by:

a% +b%
wyg X Sn;J s

(3.46)

where a(t) and b(t) are explained in subsection 1.3.3 and given by equation (1.79). This weighting scheme
aims to give more importance to times when the data has lower noise and when the detectors are optimally

oriented to the specific sky position being searched. These weights were derived in [246].

3.3.2 | Partial Hough map derivatives and look-up table approach

The SkyHough pipeline calculates the so-called “Partial Hough Map Derivatives” (PHMDs) at each
timestamp and frequency bin [158]. These structures contain the weighted 1s and 0s and are calculated
by using the fact that at a given time, a circle of sky positions produces the same Doppler modulation,

given by:

cosf= 20 C - , (3.47)

where 6 is the angle between ¥/ (the velocity vector of a detector) and 7 (the position of the source on
the sky), and f is given by equation 2.5 of [158].

Due to the limited resolution in frequency, the group of sky positions producing the same modulation
is given by an annulus (centered on the velocity vector of the given detector) of a certain width A# instead

of a circle:
cos Af = Eﬁ = E, (3.48)
vf(E) Mo
where ¢ f is the width of a frequency bin and n is a number which indexes the frequency modulation,
from 0 to a maximum of ng = fv/(cdf). At a given time and for an observed frequency, all the sky is
covered by a finite amount ng of annuli produced by the Doppler modulation.

Each PHMD contains all the possible annuli for a certain sky-patch (set of sky positions) compatible
with a given time and observed frequency. In other words, one sky position will produce different
modulations at different timestamps, and for this reason it will be mapped to different frequency bins at
different timestamps.

After calculating all the PHMDs, as pictured in figure 3.6, the pipeline adds one PHMD for each
timestamp by following the frequency path created by the source frequency variation (given by fo + f1t),
which is the change produced by the spin-down/up of the source. This produces a final Hough map for
each combination of fy, fi and sky-patch.
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Figure 3.6: An example showing the PHMD scheme for the SkyHough pipelines. The dotted line shows the
type of tracks which the BinarySkyHough pipeline (developed in chapter 5) uses to combine PHMDs at different
timestamps, while the dashed lines show some tracks given by different spin-down/up parameters, which are used

by the SkyHough pipeline.

The usage of the PHMDs greatly reduces the computational cost of the pipeline since many sky
positions are analysed at once (the ones in the sky-patch), because only the borders of the selected
annulus need to be tracked.

Furthermore, SkyHough uses the look-up table (LUT) approach. This method reuses the same Doppler
modulation for contiguous searched frequency bins. This means that it calculates the PHMDs once instead
of calculating them for each searched frequency. The same frequency which appears in the denominator
of equation (3.47) is used for a number of searched frequencies (up to a maximum, given by equation
4.24 of [158]), changing only the starting frequency fy to calculate the source frequency variation. The
LUT approach produces computational savings in exchange of searching for modulations which are not
exact, which lowers the sensitivity of the search (a quantitative estimation of the effect of the LUT in

sensitivity has not been published).

3.3.3 | Detection statistics and sensitivity

The analysis of the full parameter space is split in smaller frequency bands and in smaller regions of the
sky called sky-patches (whose size may depend on frequency). The resolution for the different dimensions
is derived in [158]:

1
Frequency resolution: dfo = T (3.49)

(6]

1
Frequency derivative resolution: dfy = T (3.50)
cL obs
1

Sky resolution: df = ———— 3.51
Y TefoPr? (8:51)

where T, is the coherent time of the SFTs, T, is the observation time (i.e. from the highest analysed
epoch minus the lowest analysed epoch, not the true time duration of the dataset, which is NgprsTe.), Pr
is the pixel-factor, v is the speed of the detector and c is the speed of light in vacuum. For simplicity of
the template-bank construction a hyper-cubic lattice is used to place the templates, although it is known
that these lattices are not the optimal ones.

The frequency resolution comes from the resolution of the SFT, but a higher resolution could be
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used in order to decrease the mismatch, since when the frequency-time pattern produced by fo + fit is
used to locate the pertaining PHMDs, a higher amount of f values would produce different tracks. The
same happens with fi: although its resolution is obtained by demanding that at least there is a shift of
one frequency bin when the track reaches the last SF'T (in order to distinguish the track from the zero
spin-down/up track), a higher amount of f; values would contribute to lower the mismatch, so the best
resolution achievable is not given by (3.50).

For each of these regions a toplist is produced, which contains information about the most significant
candidates in that region. The detection statistic that ranks the searched templates is the number count

significance, given by:

SH = 5 (352)

where (n) and oy are the expected mean and standard deviation of the Hough number count n (the
weighted sum of 1s and 0s summed along the frequency-time pattern of the signal) when only noise is

present:

NsFrrs

(ny = e P Z wy (3.53)
J=1

Nsrrs

og =e P (1—ePn) Z w?. (3.54)
J=1

This detection statistic is used to rank all the searched templates and put them ordered by significance
in a toplist. Afterwards, only the top candidates (a very small percentage in order to deal with compu-
tational costs) are passed to the post-processing and follow-up stages. Since we have assumed Gaussian
stationary noise, these significance values cannot be understand as a faithful account of significance, only
as a ranking statistic. In order to really believe these significance values, we should obtain the noise
distribution from the data itself and not from an a priori analytical Gaussian distribution.

With these ingredients, we can try to estimate the sensitivity (defined to be the smallest hg that
would cross the threshold ny, for a given false alarm and false dismissal probabilities) of this basic setup
(i.e. without taking into account posterior vetoes, post-processing, or follow-up, and without taking
mismatches into account). In order to estimate the sensitivity of the search, we follow the procedure
outlined in subsection 3.2.1: relate the SNR to the false dismissal probability and invert this equation to
obtain the dependence of hy on the false alarm and dismissal probabilities.

First of all, we will calculate the false alarm and false dismissal. The power defined in equation (3.44)

can be seen as the sum of two random variables (assuming stationary and Gaussian noise) [158]:
2k = 21 + 23, (3.55)

where the two z’s are given by:

o V2R [Z k) and 2 — V2S [ 5 (3.56)

{J7sl?) (Il

where R denotes the real part and S the imaginary part. Therefore the random variables z; and zy are
normally distributed and have unit variance (but nonzero mean). Thus 2p;j is distributed according
to a non-central x? distribution with 2 degrees of freedom with non-centrality parameter \s; (equal to
the optimal squared SNR, which changes at different frequency bins k and different SFTs J due to the
non-stationarity of the noise and to the amplitude modulations caused by the antenna patterns):

- 2
, 4 ‘hJ (fk)’

e = (Bla)” + (Bla)” = 75— 5

(3.57)
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The distribution of pj is given by:

AJk
P (pakl k) = 2x% (2psk[2, Ask) = exp < Pk — 2) Io(\/2Xskpak), (3.58)

where I is the modified Bessel function of zeroth order. The mean and variance of this distribution are:

A
E[p,]k]zl—i—% and o [psi] = 14 A (3.59)

When there is no signal, this is just an exponential distribution. SkyHough substitutes these powers for

1s and 0s. The false alarm and false dismissal probabilities for the bin selection are:

a@mw=/mp@wmp=eﬂw (3.60)
8 (punl) = /O " (N (3.61)
n=1-f~a{1+ 2 +00)}, (3.62)

where in the last approximation we have assumed a small signal (i.e. A < 1):

A Y A Y
plparlAgi) = e=F7 (1 ok Sk +(’)()\3)> (1 § PIATE | P +O()\3)>

2 8 2 16
_ A STy 1
= e (14 Mo - A 2Ly 4 o)) (3.63)

The false alarm probability of the bin selection is used to obtain the optimal threshold p;;, = 1.6 [158].
The probability of the full dataset of weighted 1s and Os is given by a binomial distribution with mean

and variance [246]:

Nsrrs
n= Z njwy = Aa + agth Z 'lUJ)\J (364)
J=1 J=1
Nsrrs o 1—2a Nsrrs
(1—n5)=a(l - 2 — ZA 3.65
g JnJ 77J) Oé( O[)”WH ( + 2||W||2 1—a ng wy J> ( )

where in the second equalities we have applied the small signal approximation, the weights are given by

equation (3.46), and

Nsrrs Nsrrs

Z wy and |w|?= Z w?. (3.66)
J=1 J=1

When the number of SFTs is large (i.e. Ngpps > 1000), the binomial distribution function is well

approximated by a Gaussian with the same mean and variance:
1

p(nlpm, A) = 5

V2o

Then, we can calculate the false alarm and false dismissal probabilities of the full Hough pipeline:

e 1 Nty — Ao
ag = / p (n|ptn, 0) dn = erfc ( ) (3.68)
nen V2a(1 - a)||wlf?

1 . — Nth
B = 2erfc < Toom > . (3.69)

To derive the previous false dismissal equation, a population of constant SNR has been assumed, which

e~ (n=n)*/20% (3.67)

results in an overestimation of the sensitivity as discussed in [233]. From the false alarm we can obtain

the number count threshold needed to have a certain false alarm:

nin = @A + /2| w[2a(l — a)erfc™ (2ag), (3.70)
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which corresponds to a threshold in significance of sy, = ﬂerfc_l(Qa 1), a similar expression to equation
3.5 of [233]. Notice that oy is the false alarm probability for a single trial, whereas the total false alarm
probability is ag N (only true when the different trials are statistically independent), where A is the
number of templates that are analysed.

Expanding Sy in powers of A; (which may not be appropriate for small false dismissal values, since
the signals needed to achieve such low values and cross the threshold, for realistic false alarm probabilities,

will be strong) we obtain this approximation [246]:

2 NsFrs A 1-_9 NSFTs
S = erfcfl(aH) + erfcfl(QBH) = XPih J=1  WIAJ | Pth @) i Wiy

L) fe 1 (2a).
SA-a) Wl f 1o wp o

(3.71)

Usually only the first term is kept since it is proportional to \/Ngprs, while the second term does not
grow with Ngpprs when Ngprs is large.
The only thing left to do is to relate the non-centrality parameter to the amplitude hg:

4R (fi) 2 2 g2 thu—nﬂuf
Ay = ~ ALFL  + ALFL . 3.72
7 TcSn;J Sn J ( o J) ™ (f - fk) Tc ( )
We can obtain a population average by using these expressions:
2 2
2 . 2 _aj+ bJ
<(F+;J) >w = <(F><;J) >w == (3.73)
2h3T, (a? +b?)
4 2T,
A = 0.7737 x ——2=¢ 3.75
< J>L,w,a757Af 25 S’n;J ( )

where the 0.7737 comes from averaging the leakage (i.e. taking a uniform distribution of the signal
frequency between -1/2 and 1/2 of the center of the bin). Joining the last equation and equation (3.71)

we obtain the final sensitivity to the average population (assuming zero mismatch between template and

[[w]]
ho = 3.38y/ 2[4l 3.76
’ T\ @ X (376)

2 b2
X, = aJS“LJ g (3.77)

signal):

When all weights are unity, we recover the classic result derived in [158]:

\/> n 8.54 n 1/4 Sn Sn
ho = 5.3\ [ = [ 7 = 85N [ = Y5 (3.78)
SFTs SFT

where D is the sensitivity depth, and in the second equality we have used a false alarm probability of
0.01 and a false dismissal probability of 0.1. Since this calculation does not take into account the loss in
SNR due to mismatch and leakage, and it is assuming stationary Gaussian noise, we can treat it as an
upper bound of the real search sensitivity.
Using the previous equation (unweighted case) we can obtain the number of SFTs needed to detect a
signal of a certain amplitude with a given false alarm and false dismissal probabilities:
4¢2¢2 4
Ngprs = 53%5; = 5319? (3.79)

C

where in the last equality we have used a false alarm probability of 0.01 and a false dismissal probability
of 0.1.
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3.3.4 | Post-processing

As we mentioned before, high significance values do not mean a 100% confidence on a true CW signal.
More tests have to be passed in order to eliminate candidates coming from pure noise and increase the
confidence, as described in section 3.2.

The final product of the main SkyHough search is one toplist per analysed dataset for each region in
parameter space (e.g. one toplist for H1 for each 0.1 Hz band), which contains the top templates ordered
by significance. This lists can be huge, each of them containing around 10* or more candidates (the
larger the allowed size of the list, the more sensitive the analysis will be, but the computational cost will
increase accordingly).

If more than one dataset has been analysed, such as from two detectors or from different epochs,
the first step followed by the SkyHough pipeline is to search for coincident candidates between these
different datasets. In order to search for coincidental pairs between the toplists, we calculate the distance
in parameter space and select the pairs that are closer than a certain threshold. The optimal value
for this threshold is not analytically known, since its value depends on a balance between being more
sensitive and having too many outliers. A reasonable value can be found by doing simulations. For
each coincidental pair, its centroid (average locations in parameter space weighted by significance) is
calculated. The distance d in parameter space is given by:

(AR (AR A\t Ay’
e=(5) ~(5) < (&) +(%) (3.40)

where the numbers in the numerators represent the difference between two templates and the numbers
in the denominators represent the parameter resolution. This distance is dimensionless and is given as a
number of bins. The quantities x and y represent the cartesian ecliptical sky coordinates projected into
the ecliptical plane.

After searching for coincidences, clusters are found within the list of coincident candidates in order
to reduce the amount of candidates. Real astrophysical signals are thought to produce multiple nearby
candidates with elevated significance values, and clustering these candidates can help in improving the
parameter estimation and also reducing the amount of computational cost that will be needed to use in
further follow-up stages. In order to find clusters, we set a threshold in parameter space distance and
find candidates which are closer than this distance. Clusters are found by analysing the distance of each
template from all other templates, and keeping a list of indices of members with distances below the
threshold. Each template can only be part of a cluster, so if a template was already in a cluster its newly
generated cluster and the old one will be joined to form a unique cluster. Afterwards, the centroid of
each cluster is found. This is calculated as a weighted (by significance) average among all the members
of the cluster. SkyHough usually keeps the most significant cluster per 0.1 Hz band (if any), selected by
the summed significance of all its members. This produces the final list of outliers of the search.

SkyHough tries to find coincidences first and then searches for clusters, although other pipelines may
only use one of the two approaches or do them in the inverse order. If only clusters are searched, another
distance threshold between the top template in a cluster and all the other members of the clusters is
calculated, which eliminates all members that are further away than a certain threshold. This step is not
needed after finding coincidences since many candidates are already eliminated, but if this is not the case
the clusters can grow too wide and the final parameter estimation might be deteriorated unless a cut is
made, due to a high number of cluster members being too distant form the true signal values.

Even after these two post-processing steps, we cannot claim that the found clusters represent a real
astrophysical signal, because from previous searches it is known that instrumental noise or spurious
coincidences can also end up in the final list. For this reason additional vetoes and follow-up procedures
that remove spurious candidates, increase the significance of CW signals, and enhance their parameter
estimation are used, as briefly discussed in section 3.2. Some veto procedures routinely used by the

SkyHough pipeline include the x? veto, the population veto, and the lines veto. SkyHough searches prior
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to the ones presented in this thesis did not need a follow-up stage, since the previous vetoes already
removed all candidates minus the hardware injections. Since we wanted to increase the sensitivity of the
search, we allowed more candidates by increasing the false alarm probability. For this reason, not all
the candidates were eliminated by the vetoes, and new veto procedures (described in their corresponding
results chapter) had to be developed, together with two different follow-up procedures, also described in

the results chapters.
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Part 11

Results

The following chapters describe the different original results that have been obtained during the
development of this thesis. Chapter 4 presents results from an all-sky search for CWs from neutron stars
in isolated systems using Advanced LIGO O2 data, while chapter 6 uses the same the data for an all-sky
search of CWs but from neutron stars in binary systems. Chapter 5 introduces a new method developed
to do all-sky searches from neutron stars in binary systems. Lastly, chapter 7 gives an introduction
to the characterization and mitigation of long-duration noise artifacts present in the interferometric

gravitational-wave detectors.
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CHAPTER 4

ALL-SKY SEARCH FOR CONTINUOUS GRAVITATIONAL WAVES
FROM ISOLATED NEUTRON STARS USING O2 ADVANCED LIGO
DATA

In this chapter we present results of an all-sky search for continuous gravitational waves (CWs) from
isolated neutron stars using data from the second observing run of the Advanced LIGO detectors. Three
different semi-coherent methods (FrequencyHough, SkyHough, and Time-Domain F-statistic) are used,
although we focus on the description of the search design and results from the SkyHough pipeline. Sky-
Hough searches a gravitational-wave frequency band from 50 to 1500 Hz and a first frequency derivative
from —1 x 107® to 1 x 107 Hz/s. None of these searches has found clear evidence for a CW signal, so
we present upper limits on the gravitational-wave strain amplitude hy (the lowest upper limit on hg is
1.7 x 10725 in the 123-124 Hz region) and discuss the astrophysical implications of this result. This is the
most sensitive all-sky search ever performed over the broad range of parameters explored in this study.
The material in this chapter is adapted from [213].

4.1 | Introduction

Fast-spinning neutron stars in the Milky Way can generate continuous gravitational waves via various
processes which produce an asymmetry. Crustal distortions from cooling or from binary accretion, or
magnetic field energy buried below the crust could lead to the non-axisymmetry necessary for detectable
emission. Recently, some evidence for a limiting minimum ellipticity was discussed in [111]. A compre-
hensive review of continuous gravitational wave emission mechanisms from neutron stars can be found
in [247]. The detection of a CW, possibly combined with electromagnetic observations of the same
source, could yield insight into the structure of neutron stars and into the equation of state of matter
under extreme conditions, as discussed in the previous chapters.

In this chapter we present the results of an all-sky search of CWs by three different semi-coherent
pipelines (FrequencyHough [248], SkyHough [158], Time-Domain F-statistic [50]) using O2 data from
the Advanced LIGO detectors. Each pipeline uses different data analysis methods and covers different
regions of the parameter space, although there exists some overlap between them. Overall, we search
the whole sky for gravitational wave frequencies from 20 to 1922 Hz (this number was chosen in order
to avoid the violin modes of the test masses found at higher frequencies) and a first frequency derivative
from —1 x 1078 to 2 x 1072 Hz/s (the different regions of parameter space searched by each pipeline are
shown in figure 4.9). No detection has been made, and upper limits on the gravitational wave amplitude

are presented.
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Furthermore, we present a detailed account of how some parameters of the SkyHough pipeline were
selected, such as the coherent time, and we present several improvements to the pipeline that helped to

improve its sensitivity with a negligible increase of the computational cost, such as:
e The coherent time is not the same for all frequencies: we use four different coherent times.

e The size of the toplist (number of candidates per 0.1 Hz band that go to the post-processing stage)
is incremented by at least an order of magnitude (this can be done because a new follow-up strategy

is used).
e The size of the sky-patch changes with frequency, which produces savings in computational cost.

e Addition of two extra detection statistics, calculated in the second stage of the main search (where

just the top 4000 templates per patch are used).
e Usage of an extra second set of complementary SFTs in the second stage.

e New follow-up based on the F-statistic: the characterization and usage of a sensitive follow-up
method is very important to improve the sensitivity of the pipeline. Previously, after the main
search only veto methods were used, and for this reason only a small number of outliers were
allowed to reach the final stages. With a follow-up method, more outliers are allowed to arrive to
the final stage, implying that the false alarm threshold can be lowered, and thus the possibility of

detecting smaller signals increases.

The signal model has been described in detail in subsection 2.4.3. We remark again that the frequency-
time pattern that we search is:
1 d¢

ft) = o dt '—Vfo-f—foﬁ(t)c.ﬁ

+ fit. (4.1)

This assumes that the neutron star is isolated. In case it is part of a binary system, the frequency
evolution is complicated by the binary system orbital motion, which introduces an additional frequency
modulation. Such modulation, on a signal of frequency f and neglecting the binary system ellipticity, is

given by:

27
Aforb =~ Fapfv (42)

where P is the binary orbital period and a, is the projected orbital semi-major axis (in light-seconds).
By imposing that the orbital frequency modulation is contained into a frequency bin §f = 1/T,, where
T, is the duration of the data chunks which are incoherently combined in the analysis (see section 4.4),
we find that two of the search pipelines (FrequencyHough and SkyHough) used in this chapter would be

fully sensitive to a CW signal from a NS in a binary system if:

B, foN (T N\
. . 4.
ap < 0.076 (1day) <100Hz) (18005) § (43)

For larger orbital frequency modulations the pipelines would start to lose signal-to-noise ratio but a

detailed study of this issue is outside the scope of this chapter.

4.2 | Preparing the search

In this section we present some preliminary studies that helped to design the search and the different

improvements that were added between the previous O1 search and the current O2 search.
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4.2.1 | Number of valid frequency bins for the look-up table approach

The SkyHough pipeline uses the so called look-up tables, an approach that saves a lot of computational
time but introduces a small error in the annuli that are calculated this way. The look-up tables are a way
to re-use the Partial Hough Map Derivatives (PHMD) for several frequency bins at once in the Hough
map computation.

The maximum number of valid frequency bins that fy can be changed by so that the annuli changes
by only a fraction r of the pixel size df is (taken from line 309 of the DriveHoughMulti code available
within LALSuite [51]):

_ r (fOTc%)2
b= PF“;\/<foTcz . 4

where Pp is the pixel-factor, and r is the fraction of the pixel size that we allow the annuli to be moved.
In the current version of the code, r is hard-coded to be equal to 0.5.

The PHMD structure has a size of nfSize, which is equal to nSpinDown +nSpinUp + 1. The frequency
bin for which the look-up table is constructed is fy, and this is the bin around which the PHMD is
constructed. Since we are using more templates with negative frequency derivative than positive, the
maximum difference in frequency bins will be for the negative derivatives. The minimum bin of the
PHMD is:

Sfvinmin = fo — nfSize + nSpinUp + 1 = fy — nSpinDown. (4.5)
Thus, the maximum difference in frequency bins from the look-up table bin to the PHMD is:
A frmaz = abs(foinmin — fo) = nSpinDown. (4.6)

This maximum difference has to be smaller than the allowed number of valid frequency bins for the

look-up table:

. r (fOTcy)2
nSpinDown < & —1. 4.7
P - PF?\/(fojcﬁl)Q ( )

If we know the number of spin-down values, the frequency, the coherent time, and the pixel-factor, we

can calculate the fraction r that is needed for this equation to be valid:

SpinD Pr?
p> DOPOWITF . (4.8)
(foTC%)z 1
(foTcZ-1)2 —

For this O2 search, we use four different coherent times (as explained in subsection 4.4.1). The number
of spin-down values is 835, 625, 418 and 209 (for 3600 s, 2700 s, 1800 s and 900 s), the pixel-factor is 2
and v/c is 107*. We can calculate the maximum 7 that we need in each of the four different 7, stretches:

T.=3600s and f=300Hz—r>1.22

T.=2700s and f=550Hz — r>1.07

T.=1800s and f=1300Hz — r>0.90

T.=900s and f=1500Hz — 7 > 0.34. (4.9)

These are the maximum values needed in each stretch. A more optimal design would be to calculate
r for each 0.1 Hz frequency band, and use that value, which is a more optimal choice than setting a
constant value for the variable nFreqValid in the code. The left plot of figure 4.1 shows the minimum
value of r that is needed at each frequency. The dashed trace of this figure shows the result for the
parameters from the previous O1 search: nSpinDown ~ 200 and a constant coherent time of 1800 s. We

can see that r never crosses 0.5 (as opposed to the O2 search case).
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Figure 4.1: The left plot shows the minimum value of v that is required for the look-up table approach to be valid,
computed from equation (4.8). The black, green, yellow, and red lines correspond to the different (incrementing)
coherent times, and the blue line marks the path of our choice of coherent time across frequencies. The dashed
blue trace shows the result for the O1 parameters, where the number of spin-down values was around 200 and the
constant coherent time was 1800 s. The right plot shows the corrected traces when the observing run has been split

in two datasets of approzimately 90 days each.

A study of the decrease in sensitivity when r is increased is needed if we use this approach. Another
possibility to avoid having to increase r would be to decrease the range of spin-down values to be searched,
but this is not ideal since we do not want to decrease the range of spin-down values if possible.

Another alternative is to construct two different datasets by joining data from H1 and L1, but using
half of the observing time for each detector in each dataset, thus decreasing the total observation time
of each dataset and decreasing the needed resolution in the first frequency derivative. This can be seen
in the right plot of figure 4.1, where the value of r is always less than 0.5 if we take this approach.

4.2.2 | Size of the sky-patches and RAM formula

As mentioned in the introduction, we want to make the size dO of the sky-patches frequency dependent,
since the SkyHough code is more efficient when the sky-patches are bigger. When the size of the sky-
patches is increased, the Random Access Memory (RAM) used by each job is increased, since the number
of templates in each patch is increased. This imposes a maximum sky-patch size. Furthermore, because
we are using weights calculated at the center of each sky-patch, the smaller that these sky-patches are
the more accurate the weights will be, slightly improving the sensitivity of the search.

If we have an analytical formula for the RAM that depends on the sky-patch size, we can invert that
equation and choose the maximum sky-patch size that is allowed at each frequency by a certain available
RAM. To estimate the amount of RAM used by a job, we have to know the size in bytes of the structures
that occupy the higher amount of memory (we do not have to take into account each individual variable,
since compared to the big structures that depend on the number of SFTs or frequency derivative values

they will not be important). We want an equation for the memory M that has the following structure:
M = (ad®? +bdO + ¢)Nsprs — adO? +bdO + K = 0, (4.10)

where K = ¢ — M/Ngprs, and a, b and ¢ are some constants. This has the classical solution for the

quadratic equation:

b+ VB —4aK

d
© 2a

(4.11)

of which we only use the + term, since the other one is negative.
By reading the code, the different structures are called: LoadSFTs, VelV, timeV, timediff, weightsV,
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Figure 4.2: Maximum size of sky-patches for 8 GB of memory. The number of SFTs used for 3600 s, 2700 s,
1800 s and 900 s is, respectively: 2544, 3460, 5283, 10801.

pgV, upgV, best, LUT, PHMDVs, patches. Of all these structures, the biggest ones are:

best = 20 + 85 + Nsprs(70 + S + S nPeaks) (4.12)
LUT =4+ S+ Nsprs(42 + 25 + maxBorders(14 + S + 2 ySide) + 16maxBins) (4.13)
PHMDVs = 28 + S + Ngprs nfSize(17 4+ 3S + ySide + 2(S maxBorders + 14 + S + 2ySide)), (4.14)

where S is the size of the pointers (8 bytes on a 64-bit machine), and:

) 4tan(0.25dO) v
Side= ——————+ ~ —PpT.fodO 4.15
R VTS Rl (1)
xSide = ySide (4.16)
maxBorders = 1 + 2min(1 + ZfOTc%, 1.5 max(xSide, ySide)/Pr) = Schﬂ)d@ (4.17)
maxBins = 1+ 2foTL2 ~ 2foTho (4.18)
c c
nPeaks = 0.2(AfT. + 2[(fo + A f)%Tc +101 + nfSize]) ~ 0.4( fO%Tc + nfSize). (4.19)
After some algebraic operations, the constant factors are:
a=6P ( foT, 3)2
- F 0 CC
b= (5Pp + 6S)nfSizefoT,—
c
¢ = (45 + 5.45)nfSize + 0.4(80 + S)foTc%
M
K=c— . 4.20
Nsrrs (4.20)

Now, we can solve equation (4.11) with the parameters from the O2 search and a maximum memory
of 7.5 GB. We have to be aware that the real memory used by the jobs will usually be higher than this,
since the previous equations were a simplification which only took into account the biggest terms. For
this reason, we input a memory of 7.5 GB instead of 8 GB (which will be the RAM of the machines that
we will use in the search) in the equation. The results are shown in figure 4.2. It can be seen that for
low frequencies (f < 200 Hz), we could use a sky-patch size bigger than 0.7 rad, but we do not obtain
much computational cost savings and the sky weighting becomes less accurate. These results have been

obtained by using two datasets separated by different epochs, as explained in the last subsection.
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4.2.3 | Extra detection statistics

The previous searches that used the SkyHough algorithm used the weighted Hough number count as their
detection statistic (a detection statistic is a function which depends on the data, and it is used to sort
the templates being searched depending on the probability of containing an astrophysical signal). In this
subsection we present two new detection statistics, and test them with injections in O1 data.

The SkyHough pipeline can be divided in two stages. At the first step, the pipeline uses the so-called
“look-up table approach”. It allows to use the same Doppler modulation pattern for several contiguous
frequency bins, speeding up the calculation. At the end of this first stage, an approximated number count
significance is calculated for each template. Only N.q.q are then passed to the second stage of the pipeline,
which recalculates the significance (and calculates values for the x? veto) using the correct frequency-time
path, and calculates the weights at each exact sky position. More than 90% of the computational cost
comes from the first stage, since Noand/Nrotal < 1.

The new idea is that at the second stage two detection statistics (besides the number count signifi-
cance) are calculated: the weighted power and the combined (from n frequency bins around the central
bin) weighted power, which should be more sensitive than the Hough number count. The increase in
efficiency is produced because more templates than those that will be used in the post-processing are
recalculated, thus reordering the final toplists and producing three different ones (one for each detection
statistic) with different templates in each of them. Furthermore, the ability to calculate these three
detection statistics incorporates the benefits of all of them at once, such as the robustness of the Hough
number count and the higher sensitivity of the power. In order to calculate these new detection statistics,
few modifications to the code have to be done, and the new additions do not increment the computational
cost in a significative way, since the second stage of the search is much faster.

The weighted power is defined as:

NsFrrs
P S wp, (@21
J=1
=~ 2 2 2
where p i = % is the whitened power and w; agfl}’ are the weights at each SF'T. This detection

statistic is very similar to the one used by the PowerFlux pipeline. The final statistic that we report is
the significance of the power, defined by:
P—P

= 4.22
Sp op ) ( )

where P = Ngprs is the mean of the Erlang distribution and op = 4/ ]}fifT w% is its standard deviation.

The weighted power is near optimal when the frequency of the signal is resolved, i.e. if the frequency
of the signal coincides with the center of a Fourier frequency bin. If this is not the case, the signal power
will be spread into more than one frequency bin. The weighted mixed power is a detection statistic that
combines the complex values of 2P frequency bins around the central bin, and it was derived in [136].

The weighted mixed power is given by:
T=zTMz, (4.23)

where x is a vector of complex values of frequency bins, xT is the complex transpose and M is given by:

AJ2

My = (=1)"7™ /_A/2 Jo(m(n + 0))jo(m(m + 0))do (4.24)

where n and m are indices that run from —P to P, § is the distance to the frequency of the central bin

and jg is the spherical Bessel function.
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As an example, for A =1and P =1, M and x are:

Tn—1

T = Tn

Ln41

0.0786983  —0.0588504 —0.0588504
M = | —0.0588504  0.773695  —0.0588504
—0.0588504 —0.0588504  0.0786983

As it is shown in [136], this detection statistic can be understood as the average power in a continuous
interpolated spectrum within a frequency band of width £A /2 around the central bin. For this detection
statistic we also report its significance, defined in a similar way to equation (4.22).

The sensitivity of the full search is limited by the sensitivity of the first stage. Only N.,,q are
recalculated in the second stage, where the sensitivity of the search can be increased by using the new
detection statistics. Since the first stage is an approximation, the best strategy to follow is to select enough
Neana to be recalculated, more than the final candidates that we will keep for the post-processing stages.
In this way, the loss in sensitivity due to the approximation done in the first stage can be “surpassed”,
and we obtain a cheap procedure with nearly the same sensitivity as the pipelines which use the power
since the first stage, but with a reduced computational cost. With this strategy, the first stage can be
understood as a first look at the parameter space to investigate which portions are interesting enough to
be passed to the second stage.

We have tested the new detection statistics with injections in O1 data. We have injected 500 signals at
14 different sensitivity depths, making a total of 7000 injections. The signals have been injected at three
different frequency bands, and are isotropically distributed in the sky, uniformly random distributed in
spin-down between —10~% and 10~ Hz/s and have uniform random distributions in cos¢, ¢o and 1.

The results can be seen in figure 4.3 (we show the results at 872.1 Hz, a frequency band which was used
for the O1 upper limits calculation), where the green trace represents the efficiency using the weighted
mixed power statistic, the red trace represents the weighted power and the blue trace represents the usual
Hough number count significance. The results for the mixed statistic that are shown were obtained using
P =3 and A =1, i.e. using the information from three bins at each side of the central bin and allowing
the maximum distance in frequency to be half a bin. An increase in efficiency can be seen for the two
new statistics, with a greater increase for the weighted mixed power. An improvement over the weighted
power statistic was also seen for P = 1 and for P = 2, but the improvement was greater for P = 3.

4.2.4 | Creating additional SFTs

For previous SkyHough searches, the detector data was divided in non-overlapping SFTs. Following an
idea from [206], we predict that an improvement in sensitivity may come from creating additional SFTs
that combine data in a coherent way which was not coherently combined in the original set of SFTs.
The idea consists of combining data using the same coherent time as before, but with SFT starting
times separated by an amount T./q s, where ¢ is an integer that specifies the number of times in which
we will recombine the segments. For example, if T, = 1800 s and ¢ = 2, each new extra SFT will begin
900 s after a previous SFT. This is bound to the condition that the new times must be contained in
the “science” segments, i.e. times in which the data is not vetoed. For this reason, the new amount
of SFTs will usually be less than ¢ times the amount of previous SFTs. We can use any integer g,
but with increasing ¢ the computational cost of the search increases, and we note that the sensitivity
improvement that can be achieved is bounded. A visualization of this idea can be seen in figure 4.4, where
the procedure to obtain the additional SFTs from the initial set is exemplified. We note that this idea

is different than overlapping windowed time-series, as for example done with the 50% overlapping Hann
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Figure 4.3: The plot shows the efficiency curve at 14 different sensitivity depth points evaluated with different
detection statistics. The blue points are from the Hough number count significance, the red points are from the

weighted power significance, and the green points are from the weighted mized power significance.

windowing. As happened with the extra detection statistics, this new addition will not highly increment
the total computational cost since the extra SFTs are only used in the second stage of the search.

We have tested this idea by adding injections in the O1 data (the same injections that were used in
the previous subsection). The results for ¢ = 2 can be seen in figure 4.5. We observe an improvement in
efficiency over just using the original SFTs. For example, at sensitivity depth 51 Hz /2 the difference
in efficiency between the original number count significance and the weighted mixed power significance
with additional SFTs is 0.25558 — 0.13360 = 0.12198.

4.3 | Advanced LIGO O2 observing run

The LIGO second observing run (called O2) started on November 30 2016 and finished on August 25
2017. During this time, three different gravitational-wave detectors of second generation were active and

Regular SFTs:
Tc

_ > «—> > > —>
Datapolnts e o 06 0 0 0 0 o o o o 0o o e o 060 0606 0 0 0 0

Additional SFTs:
Tc

) > —> «—> > —>
Datapolnts e e 0000 0 0 e o 0 0 0 e e 00000000
<> «—> —>

Tc

Figure 4.4: Simple sketch showing how the additional set of SFTs is obtained.
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Figure 4.5: The plot shows the efficiency curve at 14 different sensitivity depth points evaluated with different
detection statistics at 872.1 Hz. The blue points are from the Hough number count significance, the red points are
from the weighted power significance and the green points are from the weighted mizred power significance. The
points with a non-continuous trace are calculated using the standard set of SF'Ts, and the points with a continuous

trace are calculated using the standard SFTs plus the additional ones with ¢ = 2.

producing data: Advanced LIGO [28], consisting of two detectors with 4-km arm lengths situated in
Hanford, Washington (H1) and Livingston, Louisiana (L1), and Advanced Virgo [29], a 3-km detector
located in Cascina, Pisa. Advanced Virgo first joined the run at the beginning of August 2017, with less
sensitivity than the LIGO detectors, so we have not considered its data for the search described in this

chapter.

A representative noise curve from O2 for each LIGO detector and a comparison to O1 is shown in
figure 4.6. We can observe an improvement of the amplitude spectral density, and we can also observe
that the spectra features a number (greatly reduced as compared to O1) of narrow lines and combs
affecting several frequency bands, which contaminate the data and complicate the analysis often raising
outliers which look like the searched CW signals [249]. A cleaning procedure was applied to H1 and L1
data during post-processing in order to remove jitter noise (for H1) and some noise lines (more details are
given in [250]). All of the searches of this chapter used this cleaned dataset. The calibration of this dataset
and its uncertainties on amplitude and phase are described in [46]. These searches do not use all the data
from the observing run, since times where the detectors are known to be poorly behaving are removed from
the analysis (the used segments are listed in [251], where the files with the “minusContaminatedPeriod”
tag are selected). This means that the effective amount of data used is smaller than the full duration of
the run. As in previous observing runs, several artificial signals (called hardware injections) have been

physically injected in the detectors in order to test their response and to validate the different pipelines.

For the reasons mentioned in the previous subsection 4.2.1, we decided to split all the data in two
datasets belonging to different epochs, listed in table 4.3. The nine month O2 run is not “continuous” in
time: there was a two-week break for Christmas, and there was a three-week break in May for maintenance
operations. We select as the splitting point between the two datasets this three week maintenance stop.
Since more data is present before the stop than afterwards, we do not use all that data, and we throw

away data from the beginning of the run until approximately the same amount of data is present in both
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Figure 4.6: Amplitude spectral density (ASD) /S plots for the L1 (left panel) and H1 (right panel) detectors
during O1 (blue trace) and O2 (orange trace). The ASD is obtained by averaging over FFTs of 1800 s obtained

for the entire run.

datasets (the initial data of an observing run is usually the worse portion, since many improvements are
made throughout the run).

An extra safety check was done for the data from both detectors, in order to see if the noise level was
approximately constant during all the observing run. An example of these kinds of tests can be seen in
figure 4.7, where the average amplitude spectral density over groups of two weeks can be seen. With this
plot one can check if any two-week period is much worse than all other periods at certain frequencies.

4.4 | Description of the search methods

In this section we introduce and summarize the different pipelines that have been used in this work,

focusing on SkyHough.

4.4.1 | SkyHough

The SkyHough method has been used in other searches using data from the Initial LIGO S2, S4 and
S5 and Advanced LIGO O1 observing runs [190,191,195,201,203]. This method has been explained in
section 3.3. Here we summarize its main characteristics and the new features that have been implemented
in this search. The code for the main part of the search is called lalapps_DriveHoughMulti and is part of
the publicly available LALSuite package [51].

Initial analysis steps

This pipeline uses Short Fourier Transforms (SFTs) of the time-domain h(t) as its input data. The
coherent duration of each chunk changes as a function of the searched frequency, as shown in table 4.1).

This is selected by using this equation (for a maximum spin-down/up of 10=% Hz/s):

1
T. < ,
V2 X 1078 +2.246 x 10-10f

(4.25)

which was obtained in subsection 3.3.1. More than four coherent times could have been used, but this is
not done because the amount of sensitivity that can be gained by slight increases of the coherent time
is small, and using a higher number of coherent times would increase the work that needs to be done to

characterize the different vetoes, follow-up pipelines and upper limits calculations.
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Figure 4.7: The amplitude spectral density is shown at 100 Hz intervals for the H1 O2 data. The different points
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Figure 4.8: The blue line shows the mazimum coherent time allowed at each frequency by equation (4.25) (the
coherent time that we use should be under this curve). The four constant red lines show four different coherent
times: 3600 s, 2700 s, 1800 s and 900 s.
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Frequency [Hz] T [s] Nspr
(50, 300) 3600 2544 (4755)
[300, 550) 2700 3460 (6568)
[550, 1300) 1800 5283 (10195)

[1300, 1500) 900 10801 (21200)

Table 4.1: Coherent times and number of SFTs for each frequency range searched by the SkyHough pipeline. The
last column shows the number of SFTs per dataset, and the numbers in parenthesis the SFTs used at the second

step of the search.

From the SFTs the peak-grams are created, which are spectrograms with the normalized power
substituted by 1s (if the power is above a certain threshold p; = 1.6) and 0Os, where the normalized power
in a frequency bin was defined in equation (3.44).

We use the Hough transform to track the time-frequency evolution of the signal including the Doppler
modulation of the signal at the detector. In the first stage the pipeline employs a look-up table (LUT)
approach, taking into account that at a given time the same Doppler modulation is produced by an
annulus of sky positions which correspond to the width of a frequency bin as given by equation (3.48). The
algorithm tracks the sky positions which produce observed frequencies with powers above the threshold.
It then stacks these sky positions by following the evolution of the source frequency given by the spin-down
term at different timestamps and produces a final histogram. The LUT approach reuses the same Doppler
modulation pattern for different search frequencies (more details in [158]), which produces computational
savings in exchange for not following the exact frequency-time pattern.

For each template (described by fo, f1, @, §) being searched, a detection statistic called number count

significance is calculated:

n—(n)

(4.26)

Sp =
On

where (n) and o, are the expected mean and standard deviation of the Hough number count n when

only noise is present. The number count n is the weighted sum of 1s and 0s, where the weights (which are

proportional to the antenna pattern functions and inversely proportional to the power spectral density)

were derived in [246].

The parameter space is separated in 0.1 Hz frequency bands and in small sky-patches. A toplist is
calculated for each of these regions, which has the top templates ordered by the number count significance.
For the top templates, a second step is performed where instead of using the LUT approach the exact
frequency path is tracked. At this second step two extra detection statistics are calculated, and we end
up using the power significance, which is defined as:

sp = P;<P> (4.27)

op

where instead of summing weighted 1s and Os the weighted normalized powers given by equation (3.44)
are summed. This detection statistic improves the sensitivity of SkyHough with a very small increase of
computational cost, as shown in the previous subsection 4.2.3. The best 5000 templates per sky-patch
and 0.1 Hz band are passed to the second step, and only the best 1000 candidates per sky-patch and 0.1
Hz band are used for the post-processing. Furthermore, at the second step more SFTs are used than in
the first step. This is achieved by sliding the initial times of each SFT that was used at the first step,
obtaining more SFTs (approximately twice the previous amount), all of them of T, contiguous seconds.

The grid resolution was obtained in [158] and it is given by equation (3.51), where we have set Pp = 2

for all frequencies.
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Post-processing
The post-processing consists of several steps:

1. The output of the main SkyHough search is one toplist for each dataset (there are two datasets, each
one with data from two detectors, detailed in table 4.3) and each region in parameter space. We
search for coincidental pairs between these toplists, by calculating the distance in parameter space
and selecting the pairs which are closer than a certain threshold called d.,. For the coincidental
pairs the centers (average locations in parameter space weighted by significance) are calculated.

The parameter space distance is calculated as:

2 2\ 2 2 2
= (35" (;{) () (2), (428

where the numbers in the numerators represent the difference between to templates and the numbers

in the denominators represent the parameter resolution (this distance is unitless and is given as a
number of bins). The parameters x and y are the Cartesian ecliptic coordinates projected in the

ecliptic plane.

2. Search for clusters in the obtained list of centers. This will group different outliers which can be
ascribed to a unique physical cause, and will reduce the size of the final toplist. Again, we set a
threshold in parameter space distance (called d.)) and we find candidates which are closer than this
distance.

3. Finally, we calculate the centers of the clusters. This is done as a weighted (by significance) average,
taking into account all the members of the cluster. We order the obtained clusters in each 0.1 Hz
by their sum of the power significance of all the members of a cluster, and we select the highest
ranked cluster per 0.1 Hz band, if any. This produces the final list of clusters with their parameters
(fo, f1, @, 8) which will be the outliers to be followed-up.

Follow-up

We describe a follow-up method based on the F-statistic and the GCT metric method [252]. This method
uses the lalapps_HierarchSearchGCT code, part of the publicly available LALSuite [51], and it is similar
in spirit to the multi-step follow-up methods described in [253] or [144].

The goal is to compare the F-statistic values obtained from software injected signals to the F-statistic
values obtained from the outliers. We want to compare the F-statistic obtained at different stages which
scale the coherent time. It is expected that for an astrophysical signal the F-statistic value should increase
if the coherent time increases.

The resolution in parameter space is given by [252]:

5f = Yizm (4.29)

)
38

. 720m
of = T2y (4.30)

5o = Yok (4.31)

mfre

where m and mgy, are mismatch parameters, v is a parameter which gives the refinement between the
coherent and semi-coherent stages and 7. = 0.021 s represents the light time travel from the detector to
the center of the Earth.

We now enumerate the different steps of the procedure:

1. Calculate the semi-coherent F-statistic of outliers with T, = 7200 s in a cluster box.
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Stage index T, [s] m Mgky
I 7200 0.1 0.01
1I 72000 0.1  0.003
111 720000 0.1 0.0005

Table 4.2: Coherent times and mismatch parameters at each different stage of the SkyHough follow-up.

2. Add injections to the original data using a sensitivity depth (v/S,/ho) value which returns F-
statistic values similar to the values obtained with the outliers in order to compare similar signals.
We inject signals in 8 different frequency bands with 200 injections per band, with a sensitivity
depth of 42 Hz= /2. Then, search in a small region (around 10 bins in each dimension) around
the true parameters of the injections with 7, = 7200 s. Finally, analyse the distances in parameter

space from the top candidates to the injections.
3. Repeat the previous step increasing the coherent time to 7, = 72000 s.

4. Calculate Fra000s/Fra00s for each of the 1600 injections using the top candidates. The threshold
will be the minimum value.

5. Calculate the F-statistic values of outliers with 7. = 72000 s around the top candidate from the

first stage. The size of the window to be searched is estimated from the distances found in step 2.

6. Calculate Frao00s/Fra00s using the top candidate for all outliers. Outliers with values higher than
the threshold obtained in step 4 go to the next comparison, and the process is repeated from step

2 increasing the coherent time.

Table 4.2 summarizes the parameters that we have chosen at each different stage. As we will see in

the results section, only two comparisons between three different stages were needed.

4.4.2 | Comparison with the other pipelines

We first compare the SkyHough pipeline to the FrequencyHough pipeline, since they are very similar
in spirit. The FrequencyHough algorithm does not use the partial Hough map derivative and look-
up table approaches. Instead, for each sky position the frequency bins are shifted, so that only the
linear modulation produced by the spin-down/up is left. Afterwards, the FrequencyHough algorithm
transforms the peaks of the frequency-time plane to the fy and f; parameters of the source. This
pipeline also separates the search in two datasets, but separated by detector are not by time (thus, the
needed resolution in spin-down/up is much finer). Furthermore, the follow-up procedure still uses the
Hough method but with longer coherent times, where this can be achieved by heterodyning the data.

The Time-Domain F-statistic is a method that uses the F-statistic as its detection statistic, and for
this reason it can use much longer coherent times (on the order of days). This causes higher computational
costs, and for this reason the mismatch parameters (that define the grid resolution) have to be increased.
The incoherent combination of the coherent detection statistics is not a sum, but instead a search for
coincidences between the multiple segments.

It can be seen that both of these pipelines use coherent times that are longer than SkyHough. Another
difference is that both of these pipelines used cleaned data, as opposed to SkyHough that only uses the
default calibrated data (in this O2 search the H1 data was cleaned to remove a jitter-noise disturbance).
This extra cleaning is mainly composed of a removal of short-duration glitches, with a procedure described
in [248]. This cleaning helps to remove wide-band elevations of the noise floor and thus increases the

sensitivity of the search without any extra computational cost.



88 Results

© TimeDomain F-statistic
SkyHough
" FrequencyHough

--------
........
........
........
........
........
........
........
........
........
........
........
........
........
........

Frequency derivative [Hz/s]

--------

0 250 500 750 1000 1250 1500 1750 2000
Frequency [Hz]

Figure 4.9: Regions in frequency and first frequency derivative covered by each pipeline.

H1 1167545839/1174691692
L1 1167546403/1174688389
H1 1180982628/1187731792
L1 1179816663/1187731695

Dataset 1

Dataset 2

Table 4.8: Start/stop times in GPS units of each dataset used by the SkyHough pipeline. The observation time
parameter used for the spin-down resolution given by equation (3.51) is Tops = 7915032 s, the mazimum span of

these datasets.

4.5 | Results

In this section we detail the results obtained by the SkyHough pipeline and the outliers that were found,
and we also present 95% confidence level (CL) upper limits on the strain hyg. We also compare these
results to the other two pipelines. The region in frequency and first frequency derivative searched by
each of the three different pipelines is shown in figure 4.9.

4.5.1 | SkyHough

SkyHough has analysed frequencies from 50 to 1500 Hz and spin-down values from —1078 to 1079 Hz/s
as shown in figure 4.9. The four different coherent times that have been used are shown in table 4.1.
This analysis uses the C02 cleaned dataset [46], and splits the data from H1 and L1 in two datasets,
divided by time as shown in table 4.3, where the start and stop times for each dataset are indicated. The
main search generates a toplist per dataset per 0.1 Hz band of 10000 candidates with a maximum of 1000
per sky-patch. The number of sky-patches depends on the frequency: to minimize the computational
cost of the search, we try to minimize the number of sky-patches for a limited amount of RAM. From
50 to 850 Hz, there are 28 sky-patches; from 850 to 1000 Hz, 31 sky-patches; from 1000 to 1150 Hz, 38
sky-patches; from 1150 to 1250 Hz, 45 sky-patches; from 1300 to 1500 Hz, 28 sky-patches. After applying
the post-processing stage previously described (with distance thresholds of d., = 3 and d.; = \/ﬁ), we
are left with 4548 0.1 Hz bands (from a total of 14500) having coincidental pairs.

We apply the population veto, used in many past searches, which demands that each dataset con-
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Figure 4.10: Results from software injections for the first (left panel) and second (right panel) comparisons between
the first and last two stages of table 4.2 of the SkyHough follow-up. The vertical axis shows the quotient between
the top candidates at the two stages, and the horizontal axis shows the values of the top candidates at the stage
with lowest T.. The lowest points, equal to 1.47 and 3.66 respectively, set the thresholds for the follow-up veto.

Each color represents a different frequency band.

tributes to each cluster with at least two different templates. After applying this veto, only 1539 outliers
remain.

The next step is to apply the F-statistic follow-up method described in section 4.4.1 to these 1539
outliers. The thresholds obtained are 1.47 and 3.66 for the first and second comparison respectively, as
shown in Fig 4.10. Only 17 outliers are above the threshold at 3.66, as shown in figure 4.11. All of the
outliers which are above the final threshold correspond to one of the hardware injections listed in table
4.5 or to one known source of instrumental noise, listed in [249]. The 17 surviving outliers and their
parameters are listed in table 6.3, with comments about their likely origin.

We recover 6 of the 9 hardware injections that are in the SkyHough searched parameter space. We
lose the other three mainly for two reasons: there were brief periods when the hardware injections were
not active, which causes the increase of the F-statistic to not be as high as it should be (this happens
to two of the three lost hardware injections, which are present in our initial list of 1539 outliers); we
only select one cluster per 0.1 Hz band, and if in that band there is a more significant cluster due to a
noise disturbance the signal cluster will not be followed (this happens to one of the three lost hardware
injections, which forms a cluster but a more significant noise disturbance is present in that 0.1 Hz band).

Although no detections were made, we produce all-sky averaged upper limits on the strain of the
signal ho (these upper limits are valid for all the frequency bands except the ones which have one of the
1539 outliers). We add software simulated signals to the original data by using lalapps_Makefakedata_v.
We have injected signals at 10 different 0.1 Hz bands for each of the four coherent times (a total of 40
bands), which can be seen in table 4.4. These are bands which don’t have outliers or instrumental known
sources of lines or combs.

We have used 5 different sensitivity depths at each coherent time, with 400 signals per sensitivity

depth. The sensitivity depth is given by:

VSn

D =
ho ’

(4.32)

where S, is the one-sided power spectral density. We inject signals at random positions in the sky,
covering the full spin-down range and with random polarization, inclination and initial phase. For each
band and depth, we calculate the efficiency (number of detected signals divided by total number of
signals). We follow the same procedure as in the all-sky search: we run the main search and then apply

coincidences, clustering and the population veto. We assume that a signal is detected if the total distance
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Figure 4.11: Results of the second follow-up comparison (using stages II and III) for the SkyHough outliers. Only

17 outliers are above the threshold. The horizontal line marks the threshold at 3.66, which was obtained in section

44.1.

T, Frequency Injected D DI5%
[s] [He| [1/Hz"]  [1/Hz" ')
110.3,136.1,148.3, 29.5, 30.5,
3600 165.6,182.6,206.1, 31.5, 32.5, 324
225.6,241.5,261.3,286.7 33.5
311.6,325.4,342.5, 26.5, 27.5,
2700 363.3,394.0,412.4, 28.5, 29.5, 29.2
432.8,441.2,523.4,547.8 30.5
594.6,661.1,741.4, 23.0, 24.0,
1800 805.0,866.2,933.1, 25.0, 26.0, 25.2
977.6,1064.7,1141.5,1250.7 27.0
1313.4,1331.7,1358.4, 22.0, 23.0
900 1370.3,1388.8,1402.4, 24.0, 25.0, 22.3

1423.1,1430.3,1443.4,1464.6 26.0

Table 4.4: The second column shows the frequency bands used to estimate the SkyHough upper limilts on
gravitational-wave signal amplitude ho. The third column shows the injected sensitivity depth values given by

equation (4.32), and the last column shows the sensitivity depth at 95% confidence for each group.
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Figure 4.12: The left plot shows the efficiency as a function of sensitivity depth and fitting at 148.3 Hz for the
SkyHough pipeline. The vertical error bars for the blue points show the 1-sigma binomsial error. The 95% efficiency
point (indicated with a black cross) also shows a 1-sigma error bar, calculated with equation (4.34). The right plot
shows the 95% sensitivity depths at each of the 40 frequency bands, with a I1-sigma error bar, for the SkyHough
pipeline. The three vertical lines separate the four regions with different coherent time (3600 s, 2700 s, 1800 s and
900 s).

from the recovered cluster to the actual injection is less than 13 bins.

At each of the 40 frequency bands, we fit a sigmoid given by:

1

An example of this fitting can be seen in figure 4.12. From the estimated coefficients a and b along with

the covariance matrix Cyp, we calculate the 1-sigma envelope (the error) on the fit, which is given by:

55\ 2 55\ 2 0s 0s
[ i\/(&z) Caa + (5()) Cbb + 2@500‘[7. (434)

After finding the 95% efficiency sensitivity depth at each of the 40 frequency bands (which can be

seen in the right plot of figure 4.12), we calculate a mean sensitivity depth for each of the four different
frequency regions. The results are given in table 4.4. From these results and by using equation (4.32),
we calculate the upper limits on hg, which are shown in figure 4.13. The trace has a shadow enclosing a
7.5% error, which we obtain by estimating the maximum difference in each of the four frequency regions
shown in the right plot of figure 4.12 between the 10 different points and the mean sensitivity depth.
Figure 4.13 also shows a comparison with the results obtained in the previous search with O1 data. The

new upper limits are approximately 1.5 times better than the O1 upper limits.

4.5.2 | Global results

Although no detections have been made, we present 95% confidence level (CL) upper limits on the
strain hg, shown in figure 4.14. The best upper limit is ~ 1.7 x 1072 at around 120 Hz. These
results are significantly better (of a factor of about 1.4) than those obtained on O1 data with the same
pipelines [201,203], thanks to improvements in the pipelines themselves, to the better sensitivity of the
detectors and to the longer duration of the observing run. These upper limits do not take into account
the calibration uncertainty on amplitude, which over the run was no larger than 5% and 10% for H1 and
L1 respectively [46].

The best results from this search are comparable with the upper limits obtained in O1 by the Ein-
stein@Home project [202] over the range 20-100 Hz. Note, however, that the Einstein@Home search cov-

ered a spin-down range smaller by almost one order of magnitude. Moreover, while the Einstein@Home
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Figure 4.13: 95% upper limits on ho for the SkyHough pipeline. The orange trace shows the results for the O2
search, with a shadow enclosing a 7.5% error obtained from the right plot of figure 4.12, while the pink trace shows
the results obtained in the O1 search. These results are valid for all frequency bands except the 1539 bands where

one outlier is present.

search is, in principle, more sensitive due to the use of much longer data segments (compared to the Fre-
quencyHough and SkyHough pipelines), with 210 hr duration, it is also less robust in case of deviations
from the assumed signal model given by equation (4.1). At frequencies higher than 100 Hz, a direct com-
parison with the previous best upper limits (obtained by the PowerFlux pipeline [203]) is difficult, since
they were obtained assuming circularly polarized signals, while we calculate them by using an average
over an isotropic population.

The 95% CL upper limits on hg can be converted to upper limits on ellipticity € assuming a canonical

value for the moment of inertia of 1038 kg-m? and by using different distances:

€ — C4 hod
C Am2G L, 2

(4.35)

These results are shown in the left panel of figure 4.15. This has been obtained by using the best hg
upper limits between the three pipelines: from 20 to 1000 Hz, the FrequencyHough results have been
used; from 1000 to 1500 Hz, the results from SkyHough have been used; from 1518 to 1922 Hz the results
from Time-Domain F-statistic have been used. For sources at 1 kpc emitting CWs at 500 Hz, we can
constrain the ellipticity at ~ 1076, while for sources at 10 kpc emitting at the same frequency we can
constrain the ellipticity at 107°.

A complementary way of interpreting the limits on ellipticity is shown in the right panel of figure
4.15. The various set of points give the relation between the absolute value of the signal frequency time
derivative (spin-down) and the signal frequency for sources detectable at various distances, assuming
their spin-down is only due to the emission of gravitational waves. They have been computed by means
of the following relation obtained inverting the equation for the so-called spin-down limit amplitude h(s)d,

which is a function of the source distance d, frequency f and spin-down f, see e.g. equation (A7) in [110]:

|fl =1.54 x 10710 Lz (L ! ) [Hz/s] (4.36)
- 10% kg - m2 10-2¢ ) \100Hz ) \1kpe 2/sh '

where we have replaced the spin-down limit amplitude with the 95% upper limits shown in figure 4.14.
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Figure 4.14: Upper limits on the strain amplitude h85% for the three pipelines.

The dashed lines are constant ellipticity curves obtained from equation (A9) of [110]:

| = 1.72 x 10714 e fON ey H 4.37
[fl=1.72x 103 kg - m? ) \ 100 Hz (10—6) [Hz/s]. (4.37)

For a signal to be detectable, its spin-down would need to be equal or above the given traces (notice that,

as shown in figure 4.9, the maximum absolute spin-down searched is 10~% Hz/s, which marks a limit to
the signals we are sensitive to). For example, a source emitting a signal with frequency higher than about
500 Hz and ellipticity equal or greater than 10~% would be detectable up to a distance of about 1 kpc if
its spin-down is, in modulus, larger than ~ 10710 Hz/s.

The three searches carried out by the different pipelines have different computational costs: Frequen-
cyHough spent 9 MSU; SkyHough spent 2.5 MSU; Time-Domain F-statistic spent 24.2 MSU, where 1
MSU hour corresponds to 1 million Intel E5-2670 core-hour to perform a SPECfp computation. We
remind the reader that each of these pipelines covered different search bands. These numbers show that
although the SkyHough pipeline is the one that covers more parameter space, it is also the cheapest (three
times less than FrequencyHough).

4.6 | Conclusions

In this chapter we have presented the first results of an all-sky search for CW signals using Advanced
LIGO 02 data with three different pipelines (focusing on the results from SkyHough), covering a frequency
range from 20 to 1922 Hz and a first frequency derivative from —1 x 107% to 2 x 1072 Hz/s. For this
broad range in parameter space, this is the most sensitive search up to 1500 Hz. Each pipeline found
many outliers that were followed-up but none of them resulted in a credible astrophysical CW signal. On
the contrary, they were ascribable to noise disturbances, to hardware injections, or consistent with noise
fluctuations.

Although no detections have been made, we have placed interesting 95% CL upper limits on the
gravitational wave strain amplitude hg, the most sensitive being ~ 1.7 x 1072 in the 123-124 Hz region,
as shown in figure 4.14. The improved results over the O1 search are due to the better sensitivity of the
detectors, the use of a longer dataset and improvements of the pipelines. By converting the upper limits
to an astrophysical reach, as shown in figure 4.15, we see that the searches presented in this chapter
provide already astrophysical interesting results. For instance, in the bucket region (around ~ 150 Hz),

we would be able to detect a CW signal from a neutron star within a distance of 100 pc if its ellipticity
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Figure 4.15: The left panel shows the detectable ellipticity given by equation (4.35) as a function of frequency for
neutron stars at 10 pc, 100 pc, 1 kpc and 10 kpc for a canonical moment of inertia I, = 10%® kg-m?. The right
panel shows the relation between the absolute value of the first frequency derivative and the frequency of detectable
sources as a function of the distance, assuming their spin-down is due solely to the emission of gravitational waves.
The different colors correspond to the same distances of the left panel. Black dashed lines are lines of constant

source ellipticity, from € = 107° (bottom dashed line) to € = 107°.

were at least 1076, Similarly, in the middle frequency range, around ~ 500 Hz, we would be able to detect
the CW signal up to a distance of 1 kpc, with € > 1075, Finally, at higher frequencies (around =~ 1500
Hz) the same signal would be detectable up to a distance of 10 kpc if € > 107¢ and 1 kpc if € > 1077.
Such levels of ellipticity are comparable or below the maximum value we may expect for neutron stars
described by a standard equation of state [101].

The O3 observing run started in April 2019 and lasted approximately 1 year. The LIGO and Virgo
detectors have been upgraded and improved, and we expect that the noise floor in O3 run will be
significantly better than for O2. This, and the foreseen longer run duration, will make future searches
more sensitive, increasing the chances of a CW detection or allowing us to place tighter constraints on
the non-asymmetries of neutron stars in our galaxy and to put constraints on the unseen neutron star

population.
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Label  Frequency Spin-down « )
[Hz] mHz/s] [deg] [deg]
ip0  265.575533 —4.15 x 1072  71.55193 -56.21749
ipl  848.969641 —3.00 x 10~'  37.39385 -29.45246
ip2  575.163521 —1.37 x 10~* 215.25617 3.44399
ip3  108.857159 —1.46 x 1078 178.37257  -33.4366
ip4  1393.540559 —2.54 x 107! 279.98768  -12.4666
ip5 52.808324 —4.03 x 1077 302.62664 -83.83914
ip6  146.169370 —6.73 x 10°  358.75095 -65.42262
ip7  1220.555270 —1.12 x 10° 223.42562 -20.45063
ip8  191.031272 —8.65 x 10°  351.38958  -33.41852
ip9  763.847316 —1.45x 1078 198.88558  75.68959
ip10 26.341917 —8.50 x 1072 221.55565  42.87730
ipll 31.424758 —5.07 x 107*  285.09733 -58.27209
ipl2 38.477939 —6.25 x 10°  331.85267 -16.97288
ipl3 12.428001 —1.00 x 1072 14.32394  -14.32394
ipl4 1991.092401 —1.00 x 10=3  300.80284 -14.32394

Table 4.5: Parameters of the hardware-injected simulated continuous-wave signals during the O2 data run (pa-
rameters given at epoch GPS 1130529362).

Outlier  Frequency Spin-down « 0 Population Sp F Description
index [Hz] [nHz/s] [deg] [deg]
7 51.0002 —1.8346 x 10711 87.0087 -66.0873 6542 50.16 86.0406 1 Hz comb at H1 and L1
18 52.8083 2.2838 x 10712 299.6708 -83.3562 1433 124.12  654.9832 Hardware injection 5
36 56.0001 —6.3195 x 10712 88.8156 -66.4443 2765 210.17  157.7912 1 Hz comb at H1 and L1
39 56.4957 5.7155 x 10710 156.8932 -49.1672 111 9.04  72.64532 1 Hz comb at H1 and L1
113 70.0001 —1.2045 x 10711 88.1699 -66.1180 2080 121.85  165.2225 1 Hz comb at H1 and L1
125 72.0001 —5.4952 x 10712 89.4121 -66.5021 3471 57.69  64.56955 1 Hz comb at H1 and L1
149 76.6788 —1.7870 x 10719 74.5911 -59.0142 397 3266  444.1439 0.08843966 Hz comb at H1
150 76.9442 —1.8308 x 10710 74.6723 -58.9216 558  36.12  566.2429 0.08843966 Hz comb at H1
151 77.1207 —1.4130 x 10710 77.8483 -59.1510 129 26.81  507.6696 0.08843966 Hz comb at H1
152 77.2090 —1.3071 x 10710 79.0815 -59.5503 93  21.51  405.0106 0.08843966 Hz comb at H1
153 77.3855 —7.9419 x 10711 279.3909  70.9090 150  14.78  154.7181 Unknown line at L1
316 108.8567 4.3434 x 1071 182.2717  -29.6472 3050  72.87  275.9235 Hardware injection 3
485 145.9203  —6.7301 x 107°  358.7866 -65.2887 675  86.45  311.7228 Hardware injection 6
664 199.9977 —1.5070 x 10~ 89.5203 -66.2582 1249  83.46  130.1102 99.9987 Hz comb at H1
1629 575.1638 —2.9038 x 10711 215.4209 4.0846 636 564.51 4962.3050 Hardware injection 2
2303 763.8471 1.2199 x 10711 198.9249  75.6197 1798 637.28 2703.2552 Hardware injection 9
2584 848.9591 —3.4856 x 10710 37.3061 -28.8880 443 898.46 4473.9817 Hardware injection 1

Table 4.6: 17 outliers from the SkyHough pipeline which survived the follow-up procedure. All of them can be
ascribed to a hardware injection or to a known source of instrumental noise. The (fo, f1,,d) values correspond
to the center of the cluster returned by the post-processing stage. The Sp column shows the mean power significance
of the cluster, while F column shows the F-statistic mean over segments of the top candidate obtained at the last
stage of the follow-up. The reference time for these parameters is 1167545839 GPS.



CHAPTER b

BINARYSKYHOUGH: A NEW METHOD TO SEARCH FOR
CONTINUOUS GRAVITATIONAL WAVES FROM UNKNOWN
NEUTRON STARS IN BINARY SYSTEMS

As discussed in the introductory chapters, non-axysymmetric fast-spinning unknown neutron stars in
binary systems may emit continuous gravitational waves that can be detected by ground-based detectors
like LIGO and Virgo. In this chapter we present a new pipeline, called BinarySkyHough, that can carry
out all-sky searches for neutron stars in binary systems by exploiting the usage of graphics processing
units (GPUs). We give a detailed explanation of this new pipeline, and we present simulations that allow
us to estimate the sensitivity of the new pipeline, which is approximately twice as sensitive as the best
active pipeline with a comparable computational cost. This chapter is a reorganization of the material
presented in [254].

5.1 | Introduction

Approximately half of the known pulsars in the most sensitive frequency band of the ground-based
interferometric detectors belong to binary systems. Neutron stars in binary systems have an additional
modulation due to the NS movement around the binary barycenter (BB), as explained in subsection
2.4.3. Several directed searches for CWs from NSs in known binary systems (such as Scorpius X-1) have
been already performed, for example [186] using O1 data. These searches usually have to deal with a
four-dimensional parameter space comprised of the source frequency and three binary parameters, and
also rely on semi-coherent methods to deal with the high computational cost.

All-sky searches for NSs in binary systems present an even harder problem, since the two sky positions
need to be searched too, and the most sensitive semi-coherent methods used in all-sky searches for isolated
systems cannot be used due to limited computational power. Currently, there are only two pipelines that
can perform these searches, called TwoSpect [98] and NarrowBand Radiometer [255], and their sensitivity
compared to the all-sky searches for isolated neutron stars is approximately 3 times worse. Only one all-
sky search for NSs in binary systems had been published prior to the development of BinarySkyHough [197]
(by the TwoSpect pipeline), having no detections and producing upper limits on the gravitational-wave
amplitude. The lower sensitivity of these pipelines compared to all-sky searches for isolated NSs calls for
development of advanced techniques to improve the chances of detecting a CW signal from this type of
system.

In this chapter we describe a new method to perform all-sky searches for CWs from NSs in binary

systems, which we call BinarySkyHough. This method is an extension of the SkyHough [158] pipeline used

96
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for all-sky searches of isolated NSs, and it benefits from the usage of GPUs in order to have a manageable
computational cost.
In this chapter we assume that the gravitational-wave signal is described by the simple aligned triaxial

ellipsoid model explained in subsection 2.4.1:

1
h(t) = ol Py (1,16, 7) =" cos 6(t) + P (1,16, ) cos esin (1), (5.1)
where F; and Fy are the antenna patterns of the detectors (which can be found in [50]) for the two
different gravitational-wave polarizations, ¢ is the time at the detector frame, the inclination angle ¢
is the angle between the neutron star angular momentum and the observer’s sky plane, ¥ is the wave

polarisation angle, ¢(t) is the phase of the signal and hq is the amplitude of the signal given by:

B An?G 1, e f?
T d ’

ho (5.2)

where d is the distance from the detector to the source, f is the gravitational-wave frequency (equal
to two times the rotational frequency), € is the ellipticity or asymmetry of the star, usually given by
(Ing — Iyy)/1.,, and I, is the moment of inertia of the star with respect to the principal axis aligned
with the rotation axis. The phase of the signal in the detector frame for a neutron star in a binary system
has been described in subsection 2.4.3:

(1) = do +2m fo(t —t, + T“)T”

ceosw Sin[2Q(t — tasc)] + apm% cos[29Q(t — tasc)]), (5:3)

— ap SIN[Qt — tase)] — ap

while the frequency of the gravitational wave in the detector is:

10 = 5= gy g T g, 0c08 [0~ tan)]
— foapQe cosw cos [2Q(t — tasc)] — foapQesinwsin [2Q(t — tase)]. (5.4)

BinarySkyHough assumes a zero eccentricity model in order to deal with the high computational cost of

the search, given by:

o(t) -1
c

f@t)=fo+ fo — foapQcos [Qt — tasc)]s (5.5)

which depends on only three parameters: €2, a, and tac.

Again, we remark that this model assumes that the neutron star does not suffer any glitches during the
observing time, and that the effect of spin-wandering (stochastic variations on the rotational frequency
due to the accretion process), if present, can be neglected.

The majority of the detected pulsars that are supposed to emit CWs in the frequency band of the
Advanced detectors (from 50 to 1000 Hz, approximately) are millisecond pulsars, as shown in figure 5.1
(which is a zoom of figure 2.2). Almost half of the millisecond pulsars belong to a binary system. For this
reason, it is important to perform CW searches which take into account the different phase model which
these signals have. This figure also shows that millisecond pulsars have smaller frequency derivatives [67],
which makes the assumption of zero spin-down that was used to derive equation (5.5) valid.

The accretion process in a binary system can create and sustain quadrupole deformations which
can be the source of CWs. Because the maximum observed rotational frequency is well below the
maximum allowed by the limit imposed by the centrifugal break-up, it is believed that some process may
be counteracting the neutron star rotational acceleration before it reaches this maximum frequency. One
proposed process is the emission of CWs. With this emission, neutron stars could reach a balance between
accretion and emission of GWs, thereby sustaining a quadrupole which would emit CWs of amplitude

given by the torque-balance limit, which can be estimated from the emitted X-ray flux for some NSs
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Figure 5.1: Gravitational-wave frequency and absolute value of the gravitational-wave first frequency derivative
for pulsars with gravitational-wave frequency greater than 10 Hz. Black dots indicate the pulsars which are part
of a binary system. Data taken from [64] and downloaded with [69].

like Scorpius X-1. Furthermore, the Zimmermann-Szedinits mechanism may be operating, where the
principal axes of the moment of inertia are driven away from the rotational axes by this accretion [256].

The eccentricity (defined as m, where a and b are respectively the semi-major and semi-
minor axis of the binary orbit) of pulsars in binary systems is shown in figure 2.4. As said before, for
most of the pulsars with measured eccentricity it is smaller than 0.01. As we will see in section 5.3, our
pipeline is able to detect signals from systems with eccentricity up to 0.01 by using the zero-eccentricity
model given by equation (5.5).

For a Keplerian orbit, the projected semi-major axis amplitude a, and the orbital period P, follow

the relationship given by the third Keplerian law:

1/3 4/3 .
s . (G 2/3 My sin
Sty = <47‘r2> Pb mT’ (56)

_ aN
ap =

where anys = aMr/Mpg is the semi-major axis amplitude of the pulsar’s orbit, Mg is the mass of the
NS, and M¢ is the mass of the companion star. Values of these two quantities for the known pulsars
were shown in the left plot of figure 2.4. These observational points from known pulsars can guide the

choice of parameter space that we want to search, as we will discuss later.

5.2 | New method for CW all-sky binary searches

The SkyHough semi-coherent method is detailed in [158] and it has been described in chapters 3 and 4.
This method based on the Hough transform is used to perform all-sky searches of CWs from isolated
neutron stars. It exploits the Doppler modulations produced by Earth’s movement around the Solar
System Barycenter (SSB) by reusing the same Doppler modulation for several frequency bins in order
to save computational costs, which makes the SkyHough pipeline the cheapest semi-coherent method to
track modeled signals currently available and the best choice to be adapted for a search for NSs in binary
systems.

Figure 5.2 shows a flowchart which summarizes the different steps of the method, which have been

described in section 3.3. As can be seen in this figure, this pipeline can be run with two different options:
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Input dataset Generation PHMDs and number Recalculation of top candidates
1 of peak-maps count calculation and top-list generation \
Option A: Coincidences and Clustering Vetoes and
centers generation ; Follow-up :
Input dataset Generation PHMDs and number Recalculation of top candidates
N of peak-maps count calculation and top-list generation
Option B: Input dataset Generation PHMDs and nuxvnber Recalc ulakiun.nt top L‘an.diddtes Clustering Vetoes and
of peak-maps count calculation and top-list generation i Follow-up

Figure 5.2: Flowchart showing the steps of the BinarySkyHough algorithm for one search band. Red text shows
the steps performed with GPU kernels, and dotted boxes represent the post-processing stages (different vetoes and
follow-up procedures are not part of the BinarySkyHough pipeline). Option A shows the steps followed when the
data is divided in N different datasets, and option B shows the steps when the data is not divided. The main

difference is that option B does not apply the coincidences step in the post-processing stage.

option A divides the data in N different datasets, while option B does not. The main difference is
that option B does not apply the coincidences step in the post-processing stage as will be detailed in
subsection 5.2.5. The input data, the PHMD /LUT approaches, and detection statistics are all the same
as previously described.

BinarySkyHough is a new pipeline to perform all-sky searches of CWs from unknown neutron stars
in binary systems with low-eccentricity orbits. The new method is an adaptation of the SkyHough
semi-coherent method [158] which has been used for all-sky searches of CWs from isolated neutron
stars like [190, 191,195, 203]. SkyHough is the semi-coherent pipeline with lowest computational cost,
with a sensitivity similar to other methods that are an approximately an order of magnitude more
computationally costly [213,230]. This makes it an excellent candidate to be adapted to perform CW
searches in binary systems, which have a computational cost higher than isolated searches due to the

extra parameters that need to be searched.

5.2.1 | BinarySkyHough

The SkyHough pipeline calculates the PHMDs and then sums them following the path given by fo + fit.
To implement a search for neutron stars in binary systems, we substitute the search over spin-down/up
values with a search over binary parameters. This change is shown in figure 3.6. As we previously
mentioned, the frequency derivative of pulsars in binary systems usually is smaller than isolated NSs and
this parameter doesn’t need to be searched for. This means that the emission of energy from the neutron
star is balanced by accretion, which would produce a bright X-ray emission (as observed for Scorpius
X-1), although this might not be observable due to misalignment from the emission spot to the line of
sight or due to screening from other objects.

At this point in development we only allow circular orbits (zero-eccentricity), which are described by
three parameters: Q = 27/P,, a, and tas. As equation (5.5) shows, this model consists of six different
parameters: the initial frequency fy, the sky position given by the right ascension a and declination
6, and the three binary parameters. Comparing with the isolated case, we go from a 4-dimensional
parameter space to a 6-dimensional one. Although we assume the eccentricity of the system is 0, this
pipeline remains sensitive to systems with eccentricity e < 0.01 without the need to explicitly search over
it, as will be explained in sections 5.2.4 and 5.3.

The innermost loop over the binary parameters, which calculates the frequency-time path and sums
the different PHMDs, has been coded in CUDA (a parallel computing platform which allows to control
GPUs) in order to take advantage of the massive parallelism that GPU cards provide. Section 5.2.6
shows a comparison of timings for different runs, and we can see that without the GPUs this search

would take an unfeasible time to run. The final loop for each sky-patch, which calculates the second
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detection statistic for a limited number of templates, has also been coded in CUDA to further speed-up
the code.

5.2.2 | Resolution, parameter space range and number of templates
Resolution

In order to construct the template bank which contains the templates that are going to be searched,
we need to define the resolution of parameter space which decides the spacing between templates. The
usual metric which quantifies the needed resolution is the mismatch u, which gives one minus the ratio of
recovered squared signal-to-noise ratio SNR? to the SNR? which would be obtained if the matching was
performed with a template using the true signal parameters (when noise is not present in the data), as

explained in subsection 3.1.4. To estimate this mismatch, the phase metric approximation is used [149]:
1= Gap(N)dACdAY, (5.7)

where gqp is the parameter space metric (¢ and b run over the dimensions, given by the number of
parameters) and A represents the different parameters such as frequency or sky position. The phase
metric is calculated as:

gab = (0aP(N) 0P (X)) — (Bap(N))(Bsd(N)), (5-8)

where the factors inside (-) are averaged over different SFTs during the observing time, and ¢ is given
by equation (5.3).

The metric for directed binary searches was obtained in [257] and in [258]. We will use the equations
obtained in [257] for the semi-coherent short-segment regime (equations 62), where T, < P, which sets a
lower limit for the orbital periods that we will be able to search. The resolution for the binary parameters
is:

6m,

da, = T (5.9)
vV 72mg
N=———— 1
T fapThps (5.10)
6mt
= " 11
§tasc ﬂ_chapQQ ) (5 )

where m, are the mismatch parameters, which quantify the amount of lost SNR and define the desired
spacing between templates. These equations were obtained for a coherent detection statistic, which
instead of tracking the frequency-time evolution tracks the full i(t) evolution given by equation (5.1).
For this reason, in our case these mismatch parameters m, will not correspond to an actual mismatch
value and will only represent a tuneable parameter in our pipeline.

It can be seen that these equations depend on the region of binary parameter space for which they
are calculated, as opposed to the resolution for the spin-down/up which only depends on the coherent
time and the observing time [158]. For shorter periods (greater 2) the resolution is increased for all
three parameters, and the parameter space separation between templates is reduced. The total number
of templates will be proportional to Q*, which highly complicates the feasibility of the analysis for short
periods.

In [257], the resolution was obtained for a directed search, which does not search over sky positions
as all-sky searches do. For the frequency and sky positions we will use the resolutions obtained for the
isolated SkyHough pipeline [158]:

5f = Ti (5.12)

C

00 = oT.f P’

(5.13)
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where © represents any of the two sky positions and the pixel-factor Pg is another tuneable mismatch
parameter.

We have verified the scalings given by these equations through extensive simulations (shown in section
5.3), different mismatch values and across different regions of  and a,,.

Range of parameter space

The range in parameter space to be searched is primarily determined by the astrophysical prior informa-
tion and by the available computational power:

e The frequencies to be searched are determined by the sensitive frequency band of the detectors and
by the expected frequency of the emitted gravitational waves. Figure 5.1 shows that the maximum
gravitational-wave frequency is around 1400 Hz. For the past O1 and O2 observing runs performed
by the Advanced LIGO detectors, the most sensitive frequency band ranges roughly from 50 to
1000 Hz, with the best strain sensitivity occurring near 150 Hz.

e The range of binary orbital periods is bounded by the coherent time: periods lower than the coherent
time cannot be distinguished one from another, and the equation for the period resolution was
derived assuming T, < P,. The upper bound for the periods to be searched is mostly determined
from the astrophysical prior information, where we can see that the maximum period is around 103
days.

e The minimum value of a, is bounded by the minimum Doppler shift that we can observe. Figure 5.3
shows that for a given period, a minimum a, value needs to be selected in order for the frequency
modulation to be higher than 1 bin. If the modulation is less than 1 bin, we are not able to
distinguish different templates, and pipelines which look for GW signals from isolated NSs can
already discover them. The maximum a, value to be searched is determined by the maximum
amount of frequency bins that we can load at the same time, limited by RAM (Random Access
Memory), and by the astrophysical prior information extracted from the known pulsar population,
which figure 5.3 shows.

e The range in time of ascending node t,¢. that needs to be searched is uniquely determined by the
orbital period. Since we can redefine the time of ascension for every orbit by adding an integer
times the orbital period, we can define it in the orbit which is closer to the mid-time of the search

and we only need to search this area:

P P,
b < tasc < tmid + l (514)

tmid_?_ 2

Number of templates

After having defined the spacing between templates and the ranges that have to be covered in each
dimension, the total number of templates which are needed to carry out the search can be calculated.

The scaling of the total number of templates A is given by (and N7 for an all-sky search for isolated
NSs):

AN o< TP Tops fo aZdA, (5.15)
ANT X TAT,ps f2dN, (5.16)
where d) represents a volume element for each of the search dimensions. For the binary case, the scaling

with frequency is much steeper than for the isolated case, which will greatly increase the computational

cost at higher frequencies.
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Figure 5.3: The filled areas mark the regions in binary parameter space where the observed binary modulation is
less than one frequency bin, for T. = 900 s. Data taken from [64] and downloaded with [69].

Figure 5.4 shows the number of binary templates which need to be covered for different mismatch
configurations and for searches at different regions of binary parameter space. With these numbers, the
difference between a search for NSs in isolated systems and a search for NSs in binary systems becomes
clear: while for the former around O(10%) spin-down/up templates need to be searched (to cover a range
wider than the astrophysical informed range), for the latter more than O(10°) templates are needed to
cover a narrow astrophysical range. Figure 5.4 also clearly shows that if we want to cover a broad range
in frequency, the mismatch parameters will have to increase for higher frequencies, because a search with
constant mismatch (like 0.4) is unfeasible otherwise. Another way to solve this issue would be to decrease

the coherent time as the frequency increases.

5.2.3 | Maximum coherent time

The sensitivity of a semi-coherent method increases with the coherent time, so in principle one should
aim to use coherent times as long as possible. On the other side, the computational cost depends on the
coherent time, which sets a limit to this value. Furthermore, the spread of power to neighbouring bins (if
the frequency of the signal occupies more than one frequency bin during one SFT) limits the maximum
SFT time baseline that can be used (which for our method is equal to the coherent time).

To recover the maximum possible power from the signal, we have to avoid spectral leakage to neigh-
bouring frequency bins. To achieve this, we demand that the signal be contained in half a single frequency

bin (as was explained in subsection 3.3.1), which imposes a maximum coherent time:

A 1 . 1
szﬂ > T, — T, < ———.
¢ \/2thnaz

We can estimate the maximum frequency derivative through the frequency evolution model from

(5.17)

equation (5.5):

F= 10T foa @25 Ot — tane)], (518

where @ is the acceleration vector of the detector in the SSB frame. The highest contribution to the

acceleration due to detector motion comes from the daily rotation of the Earth [158], which simplifies the
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Figure 5.4: Number of binary templates for two searches covering different binary parameter spaces: for “HighP”,
Py, ranges from 10 to 30 days and a, from 9 to 25 seconds, while for “LowP” P, ranges from 0.1 to 0.15 days
and ap from 0.05 to 0.08 seconds. For each frequency, two different mismatch parameters are chosen (shown with
circles): 0.1 and 0.4 for 73.6 Hz; 1.6 and 6.4 for 436.9 Hz; 6.4 and 25.6 for 1200 Hz. The coherent time is 900
s, and the observation time is 11178584 s (the duration of the O1 run).

previous equation to:

: fo v? o Jo4m*Re
|f|maw =——=+ .anpQ - ? Tez

- + foa, 02, (5.19)

where R, is the radius of the Earth and T, is a sidereal day. It can be seen that the maximum coherent
time depends on the frequency fo and on the binary parameters a, and €. Figure 5.5 shows some
examples of these dependencies. It can be seen that lower coherent times are able to cover wider ranges
of parameter space.

The optimal search strategy should use SFTs with different coherent time (the maximum allowed) in
different regions of the binary and frequency parameter space. We note that the curves shown in figure 5.5
are conservative, since they are assuming the worst case scenario, and usually we will be in a more relaxed
case where we could use longer coherent times. These assumptions are that the two frequency derivative
terms are at their maximum values and they are aligned, and that we only allow half a frequency bin of
variation, because we assume that the frequency of the signal is at the center of the bin, which almost
never happens.

If the eccentricity is non-zero, two more factors would be present in equation (5.18). For eccentricities
smaller than 0.01, it can be seen that these factors (proportional to e) would contribute much less to the

frequency derivative. For this reason, we don’t take them into account in our previous estimation.

5.2.4 | Maximum eccentricity

Our final model for the frequency evolution, given by equation (5.5), assumes a zero-eccentricity orbit,
but our pipeline remains fully sensitive to signals with a certain eccentricity if this eccentricity does not
produce a noticeable change (less than a frequency bin) in the frequency-time evolution.

We can estimate the error in frequency tracking (by assuming that the eccentricity is exactly zero
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Figure 5.5: Mazimum coherent time allowed by equation (5.17) for four different choices of binary parameters.
The black horizontal lines mark 1800 s and 900 s.

when it is non-zero) by subtracting equations (5.4) and (5.5):

€ Ccos w esinw
cos [2Q2(t — tase)] +

[Af(#)| = 2foa,Q ( sin [2Q(¢ — tasc)]> . (5.20)

The maximum error at any time will be:
|Af|'maac = €f0apQ- (521)

We demand that this frequency difference is smaller than half a frequency bin, as was done in the

previous subsection:

1
efoapQd < —— —v e

< —. .22
2Tc - 2ch0apQ (5 )

If e is less than or equal to this quantity, the calculated frequency evolution will not deviate by more
than half a frequency bin from the true evolution. Again, this expression depends on the region of the
binary and frequency parameter space that we are in, so searches at different parts of this space can
remain sensitive to different levels of eccentricity.

For most of the SFTs this error will be smaller (again, this is a conservative estimation), so this
is a lower limit on the eccentricity that the orbit of the neutron star can have without producing any
noticeable difference. Figure 5.6 shows that the zero-eccentricity assumption does not affect our ability
to track systems with eccentricity smaller than 0.01 (for frequencies lower than 500 Hz for the worst case
shown in that figure). In section 5.3 we will show some simulations of how the eccentricity affects the
sensitivity of our method. An estimation of the sensitivity lost for signals with eccentricities higher than
this is left for future work.

5.2.5 | Post-processing

After finishing the main steps of the pipeline, we are left with one toplist per dataset for each region
in parameter space (i.e. each 0.1 Hz band), which contains the top templates ordered by a detection

statistic. If the pipeline was run with option A, we will have multiple toplists, while if it was run with
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Figure 5.6: Mazimum eccentricity allowed by equation (5.22) for three different choices of binary parameters, with

a constant choice of T, = 900 s. The third and fourth traces overlap.

option B a single toplist will be the output. The following steps detail the procedure which goes from
this point to the final list of outliers:

1. If we have multiple toplists, the first step consists of searching for coincidental pairs between these
lists, by calculating the distance in parameter space and selecting the pairs which are closer than a
certain threshold. The optimal value for the threshold cannot be found analytically, since its value
depends on a balance between being more sensitive and having too many outliers. A reasonable
value can be found by doing simulations. For each coincidental pair, its centroid (average locations

in parameter space weighted by significance) is calculated. The distance d in parameter space is

(AN (AN (AN (Ag,\ | (AN (At
=Gr) (@) ) (@) () () e

where the numbers in the numerators represent the difference between two templates and the

given by:

numbers in the denominators represent the parameter resolution. This distance is dimensionless
and is given as a number of bins. The quantities x and y represent the cartesian ecliptical coordinates

projected into the ecliptical plane.

When we compare two templates which are at different parts of the parameters space, the resolution
of the binary parameters is different at these points. To calculate the distances of equation (6.4),

we use a mean of the resolution at both points.

2. Independently of running the search with option A or option B, now we have a unique list. The
next step consists of searching for clusters in this list. This will group different templates which
can be ascribed to the same cause, and will reduce the number of final outliers. Again, we set
a threshold in parameter space distance and find candidates which are closer than this distance.
Clusters are found by analysing the distance of each template from all other templates, and keeping
a list of indices of members with distances below the threshold. Each template can only be part of
a cluster, so if a template was already in a cluster its newly generated cluster and the old one will

be joined to form a unique cluster.
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If the search is run with option B, another distance threshold between the top template in a
cluster and all the other members is calculated, which eliminates all members which are further
away than a certain threshold. This step is not needed with option A since the coincidence step
already eliminates many candidates, but with option B the clusters can grow too wide and the final
parameter estimation can be wrong unless a cut is made, due to a high number of cluster members

being too distant form the true signal values.

3. The final post-processing step consists of calculating the centroid of each cluster. This is calculated
as a weighted (by significance) average among all the members of the cluster. We keep the most
significant cluster per 0.1 Hz band (if any), selected by the summed significance of all its members.

This produces the final list of outliers of the search.

We cannot claim that these outliers represent a real astrophysical signal. As known from previous
searches, instrumental noise or spurious coincidences can end up in the final list. As shown in
figure 5.2, the final steps of any CW pipeline are the application of vetoes and follow-up procedures
which increase the significance of the candidates and enhance the parameter estimation. Due to the
extra parameters needed for a search for NSs in binary systems, follow-up procedures used in past
searches may not be applied to this case. A derivation of a follow-up procedure which can increase

the confidence on candidates from the BinarySkyHough pipeline is left for future work.

5.2.6 | Computational model

The sensitivity of CW searches is always limited by the available computational budget. Usually, a choice
must be made between doing a broader search trying to cover a large binary and frequency parameter
space, or a deep search which selects a small portion of the parameter space and has less mismatch,
which increases the sensitivity of the search. In order to estimate a priori the cost that a search will have
and to compare different setups, it is important to construct a computational model which can estimate
the total computational cost and required RAM of a search given some regions of parameter space and

resolution parameters.

Computational cost

The code spends the majority of the time in the inner-most loop over SFTs, sky positions and frequency
and binary templates that is done at the first step of the search, and a loop over the SFTs and a subset
N¢ of the total number of templates at the second step of the search. To estimate the total cost of
a search, we will characterize the scaling of these parts of the code by running it with different search
parameters.

The total cost will be slightly bigger than this estimation, due to other tasks like I/O and initialization
of variables, but this extra cost is negligible. Furthermore, we are going to estimate the cost for frequency
bands which are nearly Gaussian (i.e. don’t contain signals or excessive instrumental noise), and we will
assume that this will be valid for the vast majority of analysed frequency bands.

The computational cost can be estimated as:

N
C=NpNpNr »_ Nspii(Cri+ Cai), (5.24)

i=0
where Npg is the number of blocks of binary templates that must be analysed to cover the entire range
of binary parameters, Np is the number of datasets (assuming they have the same number of SFTs or
taking the maximum between all of them), N is the number of frequency templates in each frequency
band (the same number for each frequency band, e.g. 90 for a 0.1 Hz band with 7. = 900 s), and the
summation goes over the number of frequency bands in which we split the total frequency range. To

cover a wide range of binary parameters, more than one block of binary templates is usually needed, since
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the maximum number of binary templates that can be searched at once is limited by RAM constraints,
as will be seen in subsection 5.2.6.
The number of sky-patches in the ¢th frequency band Ngp,; can be estimated as:
47 47 (v/c)? PETE f?

5P N Ny 692 Nx Ny (5.25)

being Nx and Ny the number of sky pixels in each direction.
The cost C; of the first step of the search per one sky-patch and one frequency template is given by:

Ci.i = CiNTNsprs Nx Ny pr, (5.26)

where Ngprs is the number of SFTs, Nt is the number of binary templates in one binary block at the
ith frequency band, pg is a factor which controls the scaling with the selected peak threshold and Cp; is
the cost of running over 1 binary template when there is one SFT and one sky position. Cpg; is calculated

e Pth

when the threshold is py, = 1.6, and pr = <=5 is a simple scaling factor which takes into account the

different number of peaks that are present (the exponentials appear since the distribution of powers for
a Gaussian band is p(py) = e~ #*) when the threshold is changed.

The cost C;; of the second step of the search per one sky-patch and one frequency template is given
by:

Ca.; = CpaNeN;Nsprs, (5.27)

where A is the total number of templates at the ith frequency band, Ngprs is the number of SETS used
at the second step and Cps is the cost of the second step per template and per SF'T.

The code is run with a CPU and GPU. The code for the GPU execution is written in CUDA, which
has some parameters that can be changed (like the number of blocks and the number of threads per
block) which affect these estimations. Another important source of uncertainty is the different hardware
layouts between different GPUs, like the different number of cores. These differences do not affect the
predicted scalings given by the previous equations.

We have done several runs to test the different scalings. We have used two different GPUs, and we
also show a comparison by using only a CPU instead of a CPU+GPU. The results are shown in table
5.1. The listed configurations on blocks and threads for the GPUs are the ones that have given better
results. It can be seen that without using a GPU card this search would be unfeasible.

From these results we can estimate the cost that a complete search would have. For 1 binary block of
3 x 10° binary templates, with 1 dataset, 90 frequency bins per 0.1 Hz covering 400 Hz, and 50 sky-patches
per 0.1 Hz band, a search with configuration run 2 would need approximately 5000 hours. This assumes
that the number of binary templates would be the same in each frequency band, which requires that the
mismatch parameters are lowered as the frequency is increased.

If we want the binary resolution to remain constant across the frequency range, the number of binary
blocks would inrease with frequency. This number would also be greater than 1 if we wanted to cover
a larger range of binary parameters. With the same configuration as before but with 500 binary blocks,
the cost would increase to 2.5 x 10% hours. This order of magnitude is usual within all-sky semi-coherent
searches, and is comparable to the cost of the only published all-sky search [197]. Even though this
method explicitly searches over t,s., which TwoSpect does not, the costs are comparable due to the usage
of GPUs and the look-up table approach. With 500 binary blocks we could cover a large parameter space,

covering all the astrophysical interesting regions, or we could do a narrower search with low mismatch.

Random Access Memory (RAM)

In order to characterize the RAM required by our pipeline, a calculation of the number of bytes taken by
every data structure should be made. Of the many data structures in the code, two of them are many

orders of magnitude larger than the rest and are enough to give a rough estimate of the memory required.
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Run 1 Run 2 Run 3 Run 4 Run 5 Run 6
Hardware Cl;i C2;7J Cl;i C2;i Cl;i 02;2' Cl;i CQ;i Cl;i CQ;i Cl;i CZ;i
CPU + Tesla V100 0.15 0.11 041 030 080 054 045 035 22 1.8 0.07 0.05
CPU 4+ GTX 1050Ti 1.7 2.1 4.5 5.6 85 11.0 6.6 7.8 - - 0.8 1.1
CPU 122 316 - - - - - - - - - —

Table 5.1: Ci,; and Cay; timings (in seconds) for different run configurations. Each number is the mean over 500
runs with the same configuration. Both GPUs are used with 512 blocks and 6/ threads per block. The CPU used
is an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz. The compilation of the code was done with gcc and nvce,
with option -O38. All runs use Nc = 0.05.

Run 1: Ny =1 x 10°; NxNy = 49; Ngprs = 13304; Nsrrs = 25930. Run 2: Nr = 3 x 10°; NxNy = 49;
Nsprs = 13304; Nsprs = 25930. Run 3: Ny = 6 x 10°; NxNy = 49; Nsprs = 13304; Nsprs = 25930. Run
4.’ NT =1x 105; NxNY = 169,’ NSFTs = 13304,’ NSFTS = 25930. Run 5.’ NT = 6 X 105,' NxNY = 169;
Nsprs = 13304; Nsprs = 25930. Run 6: Ny =1 x 10°; Nx Ny = 49; Nsprs = 7235; Nsprs = 14220.

One of these structures is related to the PHMDs, and has a size in bytes of:
So = 6Nsprs K Nx Ny, (5.28)

where K is the number of PHMDs needed in the frequency axis (see figure 3.6), equal to the number of
searched frequency bins plus the maximum modulation produced by the BB Doppler modulation.

The other large structure holds the results of the first step of the search, and the size in bytes is given
by:

S, = 8Ny Nx Ny (5.29)

With these expressions and a number of Ngp7s to be analysed, we can calculate the RAM for different

number of binary templates and different number of PHMD bins given by different frequency band sizes.

5.3 | Sensitivity estimation

This section presents a characterization of the sensitivity of the BinarySkyHough pipeline. To do this,
we add many simulated signals to real or simulated noise in a Monte-Carlo way and we run the pipeline
with this data as input. We determine the number of detected signals, and we evaluate the parameter
estimation obtained. Simulations are used because an analytical estimation of the sensitivity of a pipeline
which takes into account all the steps of the procedure cannot usually be obtained. This is a widely used
procedure and it has been used in many past searches such as [110] or [203].

The purpose of this section is twofold: to estimate the sensitivity of the pipeline, and to see how it
changes by varying different internal parameters such as the mismatch or the fraction of templates N¢

which go to the second step of the search.

5.3.1 | Procedure

We have added signals (usually called injections) into the O1 Advanced LIGO data of detectors H1 and
L1 using the commonly used LALSuite code lalapps_Makefakedata_v5 [51]. We have used 3 different 0.1
Hz bands: 73.6, 170.2 and 436.9 Hz (the signals have a random frequency within each 0.1 Hz) and four
different parts of binary parameter space, indicated in table 5.2. We use different levels of amplitude hy,

selected to have certain sensitivity depths:

VSn

D = .
ho

(5.30)
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Name ap [s] Period [days|
BS1 0.03 - 0.08 0.1 -0.101
BS2 0.5-1.5 1-1.01
BS3 3-13 10 - 20
BS4 20 - 35 30 - 90

Table 5.2: Four ranges of binary parameters used for the simulations.

We have used 4 sensitivity depths (14, 18, 22 and 26 Hz~'/?) in order to be close to the 95% efficiency
point, a percentage usually used to ascertain the sensitivity of a search method, with 100 different
signals per sensitivity depth. Other amplitude parameters like cosine of inclination, initial phase and
polarisation are drawn from a uniform distribution (producing signals with random polarizations). We
have used a coherent time of 900 s for all the studies presented here. The injected signals are isotropically
distributed in the sky, with random argument of periapsis w and with eccentricity drawn from a log-
uniform distribution between 10~¢ and 1072,

In a real search the number of templates which get into the final toplist is limited, and this sets an
artificial threshold on the significance of templates which can be detected (if a signal produces a detection
statistic with a value lower than this threshold, it won’t be present in the final toplist). Before analysing
the injections (which are analysed in a reduced region around its real parameters, of around 20 bins in
each dimension), we run an all-sky search without added signals with the same configuration parameters
(parameter space resolution, N¢, etc.) to obtain this threshold, and we apply it when we analyse the
injections, thus ensuring a fair and realistic analysis. The number of candidates per injection that we
keep in the final toplist is 5000, the same number that is used for obtaining the threshold in detection
statistic.

For each group of 100 signals at each sensitivity depth, we calculate the efficiency, defined as the
number of detected signals divided by the number of injected signals, which will be the main indicator
of the method’s sensitivity. To count an injection as detected, we demand that its final parameters
estimated from the selected cluster are within 13 bins of the true parameters, a number which has been
used in past analyses (as will be shown later, most injections are recovered at less than two bins away).

All the results shown in this section use a coincidence window of 3 bins and a clustering window of
V/14 bins. These sizes are similar to the ones that were used for the isolated-star O1 and O2 analysis, and
we leave for future work a proper characterization of the effect that these sizes have on the sensitivity
and parameter estimation. All the injections have been analysed with a threshold in power of py, = 1.6.

Before discussing the results, we want to remark that the efficiency or the 95% sensitivity depth are
not the unique indicators of the value of a pipeline. Other factors, such as the range in parameter space
which can be covered (the computational cost), the robustness to deviations of the signal from the model
or to noise artifacts from the detectors, or the parameter estimation are also important indicators.

5.3.2 | Results

We have analysed the simulations by running the pipeline with varying parameters, such as mismatch,
and we compare the results obtained in order to get a general view of the sensitivity which this pipeline

can achieve. The plots are shown without error bars in order to ease viewing the results, but all these

E(1-E)
100

Firstly, figure 5.7 shows a comparison between different parts of binary space and two different fre-

efficiency points should have a vertical error bar equal to

, where FE is the efficiency.

quencies. These four runs share the same mismatch parameter of m = 0.4. All these choices of binary
parameters have approximately the same number of templates, and they all produce frequency modula-

tions wider than one frequency bin. We can observe that all of them have a 95% sensitivity depth above
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Figure 5.7: Efficiency versus sensitivity depth at different parts of the binary parameter space and two different
frequencies. All injections have been analysed with option B (H1+L1 data), Nc = 0.05, mg = 0.4 and Pr = 1.

14 Hz~'/2. For the first three sensitivity depth points, all efficiencies are comparable. We can begin to
see a wider spread at the last point, where the injections at a higher frequency band show the worse
sensitivity.

Secondly, figure 5.8 shows a comparison of runs with different resolution parameters, for the binary
space 2. For the first and second sensitivity depth points all efficiencies are very similar. A noticeable
decrease in efficiency for coarser resolutions only begins to take place at the last two sensitivity depth
points. Running with coarser resolutions also affects the parameter estimations results, effect that we
later discuss. The results for the other binary spaces have also been obtained and show similar scalings
to the ones shown in this figure.

Lastly, figure 5.9 shows the efficiency obtained by comparing runs with different N and comparing
option A with option B. The figure shows that running the pipeline with option B (all datasets together)
gives a better efficiency than option A. We also observe an increase in efficiency when increasing the
fraction of templates which go to the second step of the pipeline, but the improvement is not significative
until the last sensitivity depth point. A comparison with using Gaussian data (of the same noise level)
instead of O1 data is also shown. The results for Gaussian noise have been obtained by averaging over 10
different realizations of Gausssian noise. It can be seen that for these Gaussian noise realizations, results
are only greatly improved at the third sensitivity depth point, with no significant improvements at the
other points. These results have been also obtained for other mismatch configurations and other regions
of binary parameter space and they show similar behaviour.

These tests have been done with O1 Advanced LIGO data, using data from two different detectors.
The sensitivity of semi-coherent methods improves with longer observation times and by using data from
more detectors, so these results should be placed in this context. Furthermore, we have analysed four
sensitivity depth points, due to the high computational cost of doing more simulations, which provide
only a partial estimation of the full dependence of efficiency with sensitivity depth. Extrapolating from
the results presented, we can argue that the difference in efficiency between different run configurations
grows wider as the sensitivity depth is increased (i.e. as the amplitude of the signal gets smaller), but
the pipeline seems to have a minimum 95% efficiency at D = 14 Hz~'/2 for all the different tests that we

have done.
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Figure 5.8: Efficiency versus sensitivity depth for different mismatch configurations. All injections have been
analysed at the binary space 2, with option B (H1+L1 data) and Nc = 0.05.

Figure 5.10 shows some examples of the parameter estimation that this pipeline can achieve by
comparing different mismatch configurations. It shows the results for detected simulations from the
binary space 2. The errors in parameter estimation are estimated as the mean of the absolute value
difference between the final cluster parameters and their true value for each injection. We observe that
the different parameters show different behaviour: the configuration run with the worst estimation is
not the same for all parameters. For the binary parameters, it is interesting to notice that the worst
mismatch configuration usually has the best parameter estimation, both in bins and in natural units.
This might be related to the frequency: for higher frequencies, the binary modulation becomes wider
and the parameters can be better estimated. Comparing runs at the same frequency but with different
mismatch (between orange circles and stars, or orange crosses and sums), it can be seen that the run
with highest mismatch is always above the run with lower mismatch, as it should be.

5.3.3 | Comparison with other methods

With the previous results we can translate from the sensitivity depth points at which the efficiency is
95% to the estimated hg5% sensitivity. As discussed previously, for all different configurations the 95%
sensitivity depth is always at least at 14 Hz~'/2, so we will take this as our sensitivity.

We can compare this result with the SkyHough result for the O1 analysis, which for the low-frequency
range (from 50 to 475 Hz) was around 24 Hz~'/2 [201]. The difference between these two sensitivities

can be explained by these facts:

e The SkyHough search used a coherent time of 1800 s, which is twice as long as what we have
used in this analysis. Longer coherent times can be used for searches for isolated systems since
the frequency derivative is usually smaller. Doubling the coherent time can produce an increase in

sensitivity up to approximately 1.2, which explains a fraction of the difference.

e The search for NSs in binary systems has many orders of magnitude more templates. This increases
the maximum values of the detection statistic for the background distribution (only noise), which

has the effect of raising the thresholds in detection statistic needed to have the same false alarm
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Figure 5.9: Efficiency versus sensitivity depth for different run configurations. N¢ shows the fraction of total
templates which are passed to the second step of the search. All injections have been analysed at the binary space
2, with my = 0.4 and Pr = 1.

probability. This effect produces a decrease of the search sensitivity, since a signal which generates

the same detection statistic may be detected in one search but not in the other.

e The isolated search was run with Pr = 2, while we have used Pr = 1. This could also explain a

fraction of the difference in sensitivities.

The TwoSpect method described in [98] is the only pipeline which has been used in an all-sky search
for neutron stars in binary systems. From published results of a search with S6 data [197], we can
estimate a sensitivity depth at 95% efficiency of 5 for isotropically oriented neutron stars. Taking into
account the improvements developed in [259] and the difference in observation time between S6 and O1,
an estimated sensitivity depth with O1 data is around 6.5 Hz~'/2, which is approximately half as sensitive
as our pipeline. Furthermore, with a high number of binary blocks (e.g. around 500) our pipeline is able
to cover a similar parameter space as the one that the TwoSpect pipeline has covered in the mentioned
search, with a comparable computational cost.

Recently, an adaptation of the radiometer search for all-sky searches has been proposed [255]. This
unmodeled search looks for coherences between two or more detectors, by tracking a signal which is inside
a single frequency bin all the time. This search has a very cheap computational cost, but because it is
unmodeled and the frequency bins are much coarser (1 Hz, as compared to our 1/900 Hz bins), their
sensitivity is worse than our pipeline. In [255], a sensitivity of 1.2 x 10724 at a frequency of 245 Hz for an
O1 search is quoted (with a 90% confidence, compared to our 95%, for signals with circular polarisation
and by using Gaussian data instead of more realistic data (i.e. from an observing run). These facts make
a direct comparison difficult, but we can convert this value to a sensitivity depth, and try to make a
rough comparison. By dividing the quoted 1.2 x 10724 value by the amplitude spectral density at 245

—1/2 " A realistic factor to convert this estimation to one with 95% confidence,

Hz, we get a value of 7 Hz
from isotropically oriented neutron stars and with realistic data is complicated to calculate, but it can
be seen that our pipeline still remains at least twice as sensitive.

These comparisons are shown in figure 5.11 (only TwoSpect is shown). We remark that improving

the sensitivity by two means that we are able to detect signals from systems twice as far away as before,
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Figure 5.10: Figures showing the parameter estimation of the new method for simulations in the binary space 2,
with option B and Nc = 0.05. Top left: frequency. Top right: angular frequency 2. Bottom left: a,. Bottom
right: tasc. The left vertical axis shows the mean absolute error of detected signals in number of bins, while the

right vertical axis shows the mean absolute error of detected signals in the correspondent units.

or from neutron stars with asymmetries two times smaller at the same distance. A comparison of the
parameter estimation between the different pipelines has not been possible and we leave it for future
work.

It is also interesting to notice the difference between BinarySkyHough and other methods designed
to perform a directed search (known sky position) for a signal from a NS in a binary system. From the
published O1 results [186], we estimate a sensitivity depth of 30 Hz~'/2, which is approximately twice our
sensitivity. Since these methods don’t have to search for different sky positions, the computational power
can be spent in using methods which can increment the coherent time or in decreasing the mismatch

parameters for the same coherent time.

5.4 | Conclusions

We have described a new method to perform all-sky searches of continuous gravitational waves from
neutron stars in binary systems. This method is an extension of the SkyHough pipeline, which has been
coded to take advantage of GPU cards in order to overcome the prohibitive computational costs that this
pipeline would have by only using CPUs, as demonstrated in section 5.2.6.

Simulations indicate that this new method is at least 2 times more sensitive than previous pipelines, at
a comparable computational cost. It can be used to search for signals in any part of the binary parameter
space, showing comparable sensitivity at all locations of parameter space. With the simulations done, it

seems that regardless of the mismatch parameter chosen, the pipeline has a minimum sensitivity depth
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Figure 5.11: Estimated ho sensitivity at 95% confidence to random polarisated signals with Advanced LIGO O1
data compared to the SkyHough all-sky search for isolated NSs for O1 data and to the TwoSpect pipeline.

of 14 Hz~1/2 (for a coherent time of 900 s and an observation time equal to O1).

A possibility to improve the sensitivity of this pipeline would be to use cleaned data as input data.
Some procedures can remove time-domain disturbances which affect some of the generated SFTs, and
these cleaned SFTs can improve the sensitivity of a search with no additional computational cost, as
shown in [248]. Another improvement in sensitivity could come from the generation of modified SFT
bins, which take into account the leakage of power due to the signal not being at exactly the center
of a frequency bin [136]. Furthermore, coherently combining data from different detectors as explained
in [259] may also improve the sensitivity of the pipeline.

An optimal way of spending a limited computation budget should be developed in order to maximize
the chances of detecting a signal. An analytical estimation of how each parameter of the pipeline affects
the sensitivity and the computational cost would need to be estimated, but this development would
increase the possibilities of detection.

The BinarySkyHough pipeline could also be used to perform the first all-sky search which explicitly
looks for NSs in high-eccentricity systems. Two more parameters (e and w) should be included, and this
would further increase the computational cost of the search, narrowing the range of parameter space which
could be searched. This pipeline (with some modifications) could also be applied for a directed search
of a NS in a binary system, where the sky position is known but the frequency and binary parameters
are unknown. By eliminating two parameters of the search, the computational cost could be used for
analysing a broader frequency or binary range or to use lower mismatch parameters.

We plan to keep developing this pipeline to prepare it to analyse the upcoming O3 observing run, and

we also plan to apply it to a search using data from the O2 Advanced LIGO observing run (explained in
the next chapter).



CHAPTER O

FIRST ALL-SKY SEARCH FOR CONTINUOUS
GRAVITATIONAL-WAVE SIGNALS FROM UNKNOWN NEUTRON
STARS IN BINARY SYSTEMS USING ADVANCED LIGO DATA

In this chapter we present a search for continuous gravitational waves from unknown neutron stars in
binary systems with orbital period between 15 and 45 days. This is the first time that Advanced LIGO
data and the recently developed BinarySkyHough pipeline have been used in a search of this kind. No
detections are reported, and upper limits on the gravitational-wave amplitude are calculated, which

improve the previous results by a factor of 17. This chapter is based on the material presented in [260].

6.1 | Introduction

Continuous gravitational waves (CWs) are non-transient and nearly monochromatic gravitational waves
(GWs). Neutron stars can emit CWs through a variety of mechanisms, such as rotation with elastic
or magnetic deformations (which may be sourced from accretion by a companion), unstable r-mode
oscillations, or free precession (see [247] or [131] for a recent discussion of different emission mechanisms).
Close to their core, these stars have density values equal or higher than the nuclear density, which
make them valuable objects to study the unknown equation of state. Continuous waves also present
an opportunity to test deviations from general relativity, like searching for extra polarizations of the
waves [242] or finding differences between the speed of GWs and the speed of light [241]. Several searches
for CWs, both from neutron stars in isolated and binary systems, have been previously carried out
(see [224] for a recent review of CW searches), although none have conclusively detected a CW signal.
Nonetheless, interesting upper limits have been produced which already help to constrain some models
of neutron star shape [101].

All-sky searches look for emission of CWs from unknown neutron stars in our galaxy, and complement
the targeted searches which focus on CWs from known pulsars. Since only a small percentage of the es-
timated neutron star population has been detected as pulsars, carrying out all-sky searches is important
because such a search could discover emission by highly asymmetric neutron stars that have not been
detected electromagnetically as pulsars. These searches need to calculate the Doppler modulation (pro-
duced by Earth’s rotation and orbit around the Sun) for many sky positions, making their computational
cost orders of magnitude higher than the cost of a targeted search. For this reason, the most sensitive
methods like matched filtering cannot be used and semi-coherent methods that split the full observation
time in smaller chunks (which are incoherently combined) are routinely used. Semi-coherent methods

do not recover as much signal-to-noise ratio as coherent methods do, but the number of templates that
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need to be searched over in order to constrain the maximum mismatch between signal and template
is greatly reduced, thus highly decreasing the computational cost of the search. A recent comparison
between different semi-coherent methods is shown in [230].

All-sky searches for neutron stars in binary systems pose an even more difficult problem, since the
parameters that describe the orbit around the binary barycenter also need to be included in the search
parameters. These searches are valuable, since approximately half of the known pulsars with rotational
frequencies above 20 Hz belong to binary systems. Until recently, there was only one mature semi-
coherent pipeline which could carry out this type of search, called TwoSpect [98]. This pipeline has been
used once in a search for CW signals using the S6 and VSR2-3 datasets [197], reporting no detections.

Recently, we developed a new pipeline called BinarySkyHough (BSH) [254] (which was explained in
the previous chapter). This pipeline is an extension of the semi-coherent SkyHough pipeline [158], which
has been used in many past all-sky searches. It replaces the search over the spin-down/up parameter of
isolated sources for the three binary orbital parameters characterizing different possible circular orbits.
As explained in [254], this is computationally achievable due to both the usage of the massive paralleliza-
tion which GPUs (Graphical Processing Units) provide and the computational advantages employed by
SkyHough. Initial tests indicate that the BSH pipeline can provide roughly two times more stringent
upper limits, although these tests have been done over a smaller parameter space. In this chapter we
present the first application to real data of this new pipeline. No detections are reported, but the im-
proved quality of the datasets and the new pipeline allows us to improve the upper limits by a factor of
17.

A neutron star with an asymmetry around its rotation axis emits CWs, which produce a time-
dependent strain that can be sensed with interferometric detectors, given by equation (5.1). The ampli-
tude of this signal is given by [50]:

_ A?G 1, ef?

h'O C4 d )

(6.1)

where d is the distance from the detector to the source, f is the gravitational-wave frequency (equal to two
times the rotational frequency), € is the ellipticity or asymmetry of the star, defined by (Iz — Iyy)/I.-,
and I, is the moment of inertia of the star with respect to the principal axis aligned with the rotation
axis.
The time-dependence of the gravitational-wave frequency is given by [254]:
o(t) - n
c

f@&) =fo+fo — foapQcos [t — tasc)]s (6.2)

where 9(t) is the velocity vector of the detector, n is the vector pointing to the source, fo is the
gravitational-wave frequency defined at some reference time, and a,, € and t4s. respectively represent
the projected semi-major axis amplitude (in light-seconds), angular frequency of the binary orbit and
time of ascending node (the three parameters describing the binary orbit). This is the frequency-time
pattern that we search, which depends on six unknown parameters that need to be explicitly searched
over: fy, a (right ascension), ¢ (declination), €2, a,, and tasc.

This model assumes a circular binary orbit, but as discussed in the previous chapter, the main BSH
search remains fully sensitive to signals with eccentricity less than 1072, The model also assumes that the
neutron star does not suffer any glitches during the observing time, and that the effect of spin-wandering
(stochastic variations on the rotational frequency due to the accretion process) as estimated in [100],
if present, can be neglected. Although we don’t explicitly search over a spin-down/up parameter, this
search is sensitive to sources with spin-down/up approximately up to (T.Tpps) ' = 4.8 x 1071 Hz/s
(where T, = 900 s is the coherent time and T,5s = 23170808 s is the time span of the datasets), since
sources with this value or lower wouldn’t change the frequency-time pattern by more than a frequency
bin, thus not producing any observable change. All known pulsars in binary systems have spin-down

values lower than this quantity, as can be seen in figure 5.1.
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6.2 | Search

To perform the main search we use the BSH pipeline [254]. The full Advanced LIGO [28] O2 dataset [261]
(publicly available in [1]) is used, comprised of data from the H1 (Hanford) and L1 (Louisiana) detectors
without segments that contain epochs of extreme contamination (the used segments are listed in [251],
where the files with the “all” tag are selected). The O2 run started on November 30 2016 and finished
on August 25 2017. The H1 detector suffered from jitter noise, and a separate data stream (which we
use) that removes this contamination was created in order to improve the amplitude spectral density of
the detector (more details are given in [250]). The H1 and L1 datasets include artificially added signals,
called hardware injections, which help to test the performance of the detectors and the sensitivity of the
different search algorithms (although no hardware injections with binary orbital modulation are present).
The parameters of the hardware injections are given in table 4.5. Furthermore, these datasets contain
several lines and combs, described with more detail in [249] and chapter 7. These disturbances, usually
narrow in frequency, are problematic because they can imitate and/or mask the signals we are looking

for, thus lowering the sensitivity of our pipeline.

6.2.1 | Main search

The input data, described as a signal plus additive noise z(t) = h(t) +n(t), is converted to the frequency-
domain and kept as a collection of “Short Fourier transforms” (SFTs). Each of these SFTs has a coherence
time T¢ of 900 s, in order to constrain the gravitational-wave signal in a single frequency bin and not lose
power to neighbouring bins (due to the two orbital modulations that affect the searched signal) [254]. From
these constraints, 14788 and 14384 SFT's from H1 and L1 are obtained, making a total of Ngprs = 29172
which are analysed together.

Table 6.1 shows the parameter space that has been searched. We split the search in frequency bands
of 0.1 Hz, each of these covering all the sky and the full range of binary orbital parameters. The resolution
for each of these parameters is given by [254]:
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(6.3)

where v/c = 1074, © represents both right ascension and declination, m is a parameter which controls
the resolution of the binary parameters, and Pr the resolution of the sky position parameters. Different
values for m and Pr (shown in table 6.2) are selected depending on the frequency, in order to have a
manageable Random Memory Access usage and a nearly constant number of templates per 0.1 Hz band
across the frequency range.

For each of these bands the main search returns a list with a percentage of the most significant
templates ordered by a detection statistic. The main BSH search is divided in two main stages which
use different detection statistics (more details are given in the previous chapter). The top 5% templates
in each 0.1 Hz band go to the second stage, and the final toplist only contains the best 0.001% of the
templates passed to the second stage. The second stage of the search uses a complementary set of SFT's,
which is generated from the initial set by moving the initial time of each SFT by T./2 and creating a new
SFT at each new timestamp (if a contiguous set of data of T, seconds exists). This procedure slightly
increases the sensitivity of the procedure as explained in [206].

After running the main search, a clustering procedure is applied to the returned toplists (i.e. option
B of the procedure shown in figure 5.2). This procedure improves the parameter estimation and allows
us to reduce the number of candidates that need to be followed-up. For this search we use a clustering
distance threshold of v/14 (as used in past searches), where the distance is defined as:
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Parameter Start End
Frequency [Hz] 100 300
Right ascension [rad] 0 27
Declination [rad] —/2 /2
Period [day] 15 45
ap [s] 10 40

]

Time of ascension [s]  tmiqd - P/2  tmia + P/2

Table 6.1: Ranges of the different searched parameters. Period P is given by 27/, and tmiq is the mean between

the starting and ending times of the datasets.

Frequency range m  Pp

100, 125) 04 1
125, 150) 08 1
150, 200) 14 1
200, 250) 24 0.75
250, 300) 34 075

Table 6.2: Resolution parameters at different frequency ranges.

Quantities in the denominator represent the resolution in each dimension given by equations (6.3), and
x and y are the Cartesian ecliptic coordinates projected in the ecliptic plane. Clusters are found by
calculating the distance between all templates, and keeping a list with indices of members with distances
below the threshold. Afterwards, the center of each cluster is found as a weighted (by power significance)
sum for each of the six parameters. We keep the 3 most significant clusters per 0.1 Hz band, ordered
by the maximum detection statistic value of each cluster, only keeping clusters which have at least 3
members. This produces the list of 6000 outliers from the main search, coming from the 2000 frequency
bands.

The next step consists of applying vetoes to these outliers in order eliminate the ones produced by
non-astrophysical sources. The first veto that we apply is the lines veto, used in many past searches such
as [213]. This veto calculates the frequency-time pattern for each outlier and checks if it crosses any
frequency where there is a known line or comb, listed in [249]. After applying this veto only 4937 outliers

remain.

6.2.2 | Follow-up

In order to follow-up these outliers, we use the strategy of repeating the search in multiple steps with
an increased coherence time (still using a semi-coherent approach) and a reduced range of parameter
uncertainty. If the outlier is produced by a real astrophysical signal, the detection statistic will keep
increasing, while the same behaviour is not expected for Gaussian noise. The multi-detector F-statistic
(the frequentist maximum-likelihood statistic), derived in [50] and [262], can be used to perform searches
with longer coherence times without losing power to neighbour frequency bins. The computational cost
of a gridded F-statistic search over six parameters for such a long dataset would be too high, and for
this reason we need to use a method with stochastic placement of templates.

The procedure outlined in [144] and [263] consists of using a tempered ensemble walker MCMC
algorithm (called ptemcee [264]) to draw samples of the F-statistic and converge to the true signal
parameters. To use this procedure, the coherent time and the width in each dimension around the cluster

center that we want to follow need to be selected. Wider regions will achieve a higher rate of detected
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Figure 6.1: The left pot shows 2Fsum values for all the 4937 outliers which have been followed-up (the red dashed
line marks the threshold at 2000). The right plot shows 2Fsum values for all injections done at 10 different
frequency bands, with 4 different sensitivity depth values per frequency band (the total number of injections is
4578, and 9 of them are above 2000).

signals, since the centers of the clusters can be located at several bins from their true location, but
they will incur in higher computational costs because to reach convergence of the MCMC algorithm the
number of steps and/or walkers have to be increased. The same happens with T,: longer times are able
to achieve higher sensitivity, but they require more steps to converge.

The behaviour of the follow-up is characterized by adding simulated signals (called injections) to the
datasets. We use 4573 injections at 4 different values of hy and 10 different non-disturbed frequencies.
The hg values are located near the 95% detection efficiency point, which is derived later. Firstly, we run
BSH to obtain the clusters for each injection, and then we follow-up with 7, = 60000 s (the number
of segments is 387) the injections whose cluster’s centers are within 5 bins of the true parameters (the
injections which count as detected by BSH). All but 9 injections are recovered with a semi-coherent
F-statistic value 2F,., of more than 2000. This value is used as a threshold for the follow-up of the
outliers, which implies a false dismissal of 9/4573 = 0.1%.

From the 4937 outliers, only 27 have 2F,,, values above the threshold, listed in table 6.3, grouped
around 8 different frequency regions. Before running the next stage of the follow-up, we inspect them
carefully. This reveals that for the outliers at 7 of these frequency regions, the detection statistic in one
of the detectors is much higher than in the other one, and that most of it is accumulated during a small
portion of the run. These outliers can be safely attributed to disturbances which were present for a short
time, thus for this reason they are not present in the lines and combs database (since it is obtained by
using a mean amplitude spectral density of the full observing run).

The outliers remaining at the frequency region around 190.6 Hz present similar 2Fj,,, values in both
detectors, but also accumulate their statistic during a short portion of the run. After a closer inspection,
these outliers seem to be generated by one of the hardware injections present in the data: the recovered
parameters make the template closely resemble the frequency-time pattern of the hardware injection
during a few days, and due to their huge hg values, a high value of the detection statistic is accumulated
even for such short fractions of the run. Thus, all search outliers are caused by non-astrophysical sources
and are vetoed. No astrophysical signals are confidently detected in this search.

We show the 2F,,, values for all the outliers in the left plot of figure 6.1. Furthermore, the right
plot of that figure shows the 2F;,,, values for the injections. The threshold at 2F;,,, = 2000 is marked
with a dashed red line in both plots. Due to the small number of outliers which are above 2000, outliers

which are slightly below 2000 are also manually followed-up and they also appear in table 6.3.

As mentioned earlier, although the BSH search does not explicitly search over a spin-down/up pa-
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rameter, it is sensitive to signals up to (TCTObS)*1 =48 x 10711 Hz/s. For the follow-up case, a similar
argument gives (T, T,ps) 1 = 7.2 x 1072 Hz/s, which is also a higher value than almost all spin-down

values of known pulsars in binary systems.

6.3 | Results

Although no detections are reported, we set upper limits on the gravitational-wave amplitude.

6.3.1 | Sensitivity depth estimation

Signals are added to the datasets in all the 0.1 Hz frequency bands, at 3 different sensitivity depth
D = /S, /hg values (where /S, is the amplitude spectral density), using 150 signals per depth and
frequency. Then, we calculate the efficiency (the number of detected signals divided by the number
of injected signals) at each sensitivity depth. This procedure takes into account the first stage of the
follow-up, where only the injections that obtain a F-statistic value above the threshold are counted as
detected, and it is also required that the injection cluster has a maximum detection statistic higher
than the maximum detection statistic of the third cluster found in that 0.1 Hz frequency band, because
otherwise it would not have been detected. Then, at each of the frequency bands a sigmoidal fit is done
(an example is shown in the right plot of figure 6.2) and the 95% sensitivity depth value is found.

A widely used method to calculate the 95% sensitivity depth points is to do injections at a limited
number of frequency bands, and obtain a global sensitivity depth value by calculating the mean value
between these points. We used this procedure by doing injections at 95 frequency bands (19 for each of
the 5 groups of mismatch), and a constant sensitivity depth value was calculated for each of the 5 groups.
With this method, the results were: D% 4+ 1o = 21.0 +£0.7,19.9 £ 0.8,19.1 + 1.0,18.0 £ 0.8,18.0 £ 0.8
Hz=1/2. The left plot in figure 6.2 shows the value of these 95 sensitivity depth points, where the red
lines mark two standard deviations 2o.

The final results have been obtained by doing injections at all 0.1 Hz frequency bands (without
averaging). Results using this method are valid for all the frequency bands analysed. Since this procedure
is computationally intensive, we use the results of the previous method to guide us with the signal
amplitude values to be injected, and we have decided to not place upper limits in 292 bands as in those
bands a much higher number of injections would be required to converge to the 95% confidence level

upper limit.

6.3.2 | Upper limits

The upper limits, when converted into gravitational-wave strain amplitude, are shown in figure 6.3 (there
are 292 0.1 Hz frequency bands where we do not place upper limits, the complete list with the excluded
frequency bands can be found below). It can be seen that the lowest gravitational-wave amplitude is
located around 3.35 x 1072% at 195.1 Hz. This figure shows a comparison with the previous upper limits
obtained by analysing data from S6 and VSR2-3, discussed in [197]. The sensitivity to hq scales as [233]:

S, 1
ho o ) o —— . (6.5)
T. Ngips

At 150 Hz, for S6 the amplitude spectral density was around 2 x 1023 Hz~/2, which compared to 02
(~7x 10724 Hz =1/ 2) gives a factor ~3 of improvement. The S6 run covered a longer calendar period than
02, but the duty cycle was worse so the overall Ngprs factor from each run is comparable. Therefore, the
improvement of ~17 that can be seen in the figure is due primarily to the improved detector dataset as well
as using the new BSH pipeline. An important distinction remains that this search covers a much smaller

parameter space compared to the previous TwoSpect S6/VSR2-3 search. A more complete comparison
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Frequency « 1 ap P tase 2F sum Description

[Hz] [rad] [rad] [s] [s] [GPS]
100.22026  0.013 -0.608 13.90 3913534 1176008851 2027.90 Short disturbance in H1
100.21259 -1.205 -0.585 14.26 3316110 1175772093 1992.96 Short disturbance in H1
100.22268 1.639 -0.857 13.42 1833880 1176635113 1963.22 Short disturbance in H1
103.09979  2.718 0.051 24.74 3824964 1175503115 2003.03 Short disturbance in L1

145.79107 -2.818  0.498 21.59 3429767 1174617540 1987.54 Hardware injection
145.86610 -2.410 0.797 11.98 3142246 1174797410 1978.52 Hardware injection
145.90148  2.285 1.300 9.71 3671138 1176001528 1982.27 Hardware injection
145.92549 2487 1335  9.62 3349536 1175854186 1981.71 Hardware injection

166.66391  1.402 -1.459 10.32 2295263 1176280470 2059.17 Short disturbance in H1
166.64618 -1.237 -1.102 12.48 2228943 1175181758 1974.85 Short disturbance in H1
173.89725 -0.263 -1.045 21.01 3229318 1177345010 3254.80 Short disturbance in H1
173.87984 -0.354 -0.766 34.48 1764911 1175470277 3436.08 Short disturbance in H1
173.89072 -0.458 -0.944 28.90 2411275 1176754746 3383.46 Short disturbance in H1
173.90550 -0.302 -0.879 13.32 2246880 1175817043 3411.56 Short disturbance in H1
173.91856 -0.441 -0.632 27.44 1671568 1176760037 3339.30 Short disturbance in H1
173.90720 0.084 -0.671 18.69 1723682 1176402358 3211.92 Short disturbance in H1
176.68644  2.112 -0.876 33.65 1517400 1176111051 2561.38 Short disturbance in H1
176.66651  2.186 -0.923 32.46 1633407 1176627316 3021.95 Short disturbance in H1
176.68301  3.056 -0.616 32.97 1501423 1176061869 2890.82 Short disturbance in H1
176.69951  2.568 -0.906 23.70 1957761 1176132478 3096.21 Short disturbance in H1
176.71434  2.319 -0.835 33.67 1408988 1175655939 2943.29 Short disturbance in H1
176.70635  2.273 -0.852 35.86 2278473 1176412120 3061.56 Short disturbance in H1
182.02284  2.498 -0.156 18.15 3410134 1175957444 1962.52 Short disturbance in L1
182.02969 -1.035 -0.182 31.57 2480680 1176772000 2071.28 Short disturbance in L1
182.03574 -0.933 -0.128 18.23 2109858 1177216961 2105.25 Short disturbance in L1
182.62066  1.298  1.317 28.20 2041602 1176047775 1952.68 Short disturbance in L1
185.68991 -0.789  0.054 12.48 3641071 1174370500 3376.22 Short disturbance in L1
185.68562 -1.285 -0.012 18.75 2824333 1176879812 3125.18 Short disturbance in L1
185.68693 -1.074 0.118 19.24 2941083 1177477791 3248.15 Short disturbance in L1
185.70359 -0.592 -0.026 29.14 3721385 1176232839 3348.67 Short disturbance in L1
185.70019 -0.833 -0.110 21.53 3050708 1177293756 3385.85 Short disturbance in L1
185.70054 -0.217 0.100 10.33 2492984 1177394628 3375.33  Short disturbance in L1

190.54188 -0.187 -0.530 17.26 3815778 1176611444 2452.27 Hardware injection
190.58117 -0.363 -0.446 15.56 3738116 1176003880 2347.43 Hardware injection
190.64508 -1.080 -0.185  9.78 2901531 1177606154 1999.52 Hardware injection
190.69765 0.044 0.051 12.33 3354700 1177521960 2261.82 Hardware injection
190.69851  0.167  0.039 13.66 3621201 1174548675 2383.19 Hardware injection

Table 6.3: Outliers found by this search. All of them can be ascribed either to a hardware injection or to a noise
disturbance. The parameters correspond to the center of the cluster returned by the follow-up stage. The 2Fsum
column shows the summed semi-coherent F-statistic over segments of the top candidate obtained at the first stage
of the follow-up. The reference time for these parameters is 1164562334 GPS.
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Figure 6.2: The left plot shows the 95% sensitivity depth points for the injections done at 95 different frequency
bands (the red lines mark the position of two standard deviations). The right plot shows an ezample of a fit at
278.5 Hz. The three blue crosses show the efficiencies obtained at sensitivities of 13.5, 17.5, and 21.5 Hz'/2,
while the green cross shows the fitted 95 % efficiency point. The orange trace shows the sigmoidal fit, while the

two surrounding traces show the 1-o envelope, from which the 1-o error for the 95% point is obtained.

would need to take this distinction into account. Figure 6.3 also shows the previously published results
for the O2 all-sky search for CWs from isolated systems using the SkyHough pipeline [213]. The upper
limit results presented here for CWs from sources in binary systems is only a factor of ~2 worse, which
is a new achievement for this type of search.

In figure 6.4 we show a comparison between the result we obtained by doing injections at a limited
number of frequency bands and the final result that we obtain by doing injections at all frequency bands.
The orange area covers the mean value plus 2 standard deviations. It can be seen that for most bands
this uncertainty shaded region covers the true sensitivity depths, but for some of them they are either
too conservative or too optimistic.

The 95% upper limits on hg can be converted to upper limits on ellipticity € by using equation (6.1):

95% __ ! hgs%d
C Am2G I, f?

€ (6.6)

These results are shown in figure 6.5, where different values for the moment of inertia and distances are
used (the stricter upper limits trace is used). Assuming the canonical moment of inertia of I,, = 103®
kg-m?, for sources at 1 kpc emitting CWs around 300 Hz the ellipticity can be constrained at € < 5x1076;
at 100 Hz, € < 3 x 107°, while at 0.1 kpc and 300 Hz, ¢ < 5 x 1077, If we assume 1., = 3 x 10%®kg-m? (as
could be due to higher masses or larger radii), these upper limits are even more stringent, as shown by
the dashed traces in this figure. For example, at 0.1 kpc and 200 Hz, € < 3 x 10~7, while at 0.01 kpc and
300 Hz € < 2 x 1078, Several studies indicate that neutron stars should be able to support ellipticities
greater than 10~ [101], making our results interesting in terms of constraining the asymmetry which

neutron stars in binary systems have.

6.3.3 | Excluded frequency bands from the upper limits calculation

The 95% sensitivity depth value is not calculated for all 0.1 Hz frequency bands.

Frequency bands where the three generated clusters have been eliminated by the lines veto are not
analysed. Furthermore, for frequency bands where the minimum value of the detection statistic sp is
higher than 8.0 we do not place upper limits. These bands are noisier than the others, since the values
of the detection statistic are shifted to higher values. This makes the detection of a signal producing the
same detection statistic value harder than in a regular band, since the final toplist will not include it or

the maximum significance value of the generated cluster will be smaller than the third cluster of that
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Figure 6.3: Upper limits on the gravitational-wave amplitude ho at 95% confidence to isotropically polarized signals.
The middle blue trace shows the BinarySkyHough results, the upper dashed-orange trace shows the S6/VSR2-3
results produced by the TwoSpect pipeline [197], and the bottom dotted-green trace shows the results for the O2

CW all-sky search for isolated neutron stars using the SkyHough pipeline [213]. The vertical black lines show the

292 (out of 2000) 0.1 Hz frequency bands where the upper limits have not been computed.

0.1 Hz band. Bands with non-typical behavior are usually produced by lines and combs, as previously

discussed, or by an excessive presence of short-duration glitches that elevate the noise floor of the detector

over a wide frequency band. The two plots in figure 6.6 show the minimum significance value for all the

0.1 Hz frequency bands.
107 out of the 2000 bands (5.35%) have a minimum significance value higher than 8.0, while 243

bands are eliminated by the lines veto. This sums to the total 292 bands, since some of these bands are

repeated in the two lists.

These are the 292 0.1 Hz frequency bands where we do not place upper limits: [100.0, 100.2, 100.4,
100.5, 100.6, 100.7, 100.8, 101.0, 101.2, 101.6, 102.3, 102.4, 102.5, 102.6, 102.7, 102.9, 103.1, 103.9, 104.0,
104.1, 104.5, 104.6, 104.8, 104.9, 105.0, 105.5, 105.6, 105.9, 106.0, 106.9, 107.0, 107.1, 107.2, 107.3, 107.5,
107.9, 108.0, 108.6, 109.4, 109.6, 109.9, 110.0, 110.1, 110.9, 111.0, 111.1, 111.4, 111.5, 111.9, 112.0, 112.9,
113.0, 113.3, 113.9, 114.0, 114.9, 115.6, 115.9, 116.0, 116.9, 117.0, 117.6, 118.0, 118.6, 118.9, 119.0, 119.2,
119.4, 119.5, 119.8, 119.9, 120.0, 120.4, 120.5, 120.6, 120.9, 122.0, 122.3, 122.6, 123.5, 123.9, 124.5, 124.9,
125.0, 125.3, 125.5, 125.7, 128.0, 128.5, 128.6, 128.9, 129.5, 130.0, 130.2, 130.5, 130.8, 130.9, 131.1, 132.5,
133.2, 133.3, 133.5, 133.9, 134.5, 135.5, 136.5, 137.5, 139.5, 139.9, 140.0, 140.2, 140.5, 141.2, 141.5, 142.5,
143.5, 144.5, 145.5, 145.8, 149.9, 150.0, 150.5, 153.4, 153.5, 153.6, 153.7, 153.8, 153.9, 154.0, 154.1, 154.2,
154.4, 154.5, 154.6, 154.7, 158.2, 159.9, 160.0, 161.2, 161.3, 163.4, 166.6, 171.4, 173.4, 173.8, 173.9, 174.4,
175.4, 176.2, 176.3, 176.4, 176.6, 176.7, 177.4, 178.5, 179.2, 179.3, 179.4, 179.7, 179.8, 179.9, 180.0, 180.1,
180.2, 180.4, 181.4, 182.4, 185.6, 185.7, 186.3, 188.4, 190.3, 192.3, 192.5, 192.6, 194.3, 197.3, 197.4, 197.5,
197.6, 197.7, 197.8, 197.9, 198.3, 199.3, 199.8, 199.9, 200.0, 202.3, 204.3, 205.3, 206.3, 207.3, 208.3, 209.3,
210.3, 211.3, 212.3, 214.3, 217.2, 218.2, 221.2, 222.2, 223.2, 224.3, 225.2, 225.6, 226.2, 226.6, 226.7, 226.8,
226.9, 227.2, 227.6, 227.7, 227.8, 230.2, 231.2, 232.2, 234.2, 235.2, 236.2, 237.2, 238.2, 239.7, 239.8, 239.9,
240.0, 240.1, 240.2, 242.2, 243.1, 243.2, 244.2, 246.2, 246.3, 247.1, 247.2, 249.1, 249.2, 252.1, 253.1, 254.1,
254.2, 256.1, 257.1, 258.2, 259.1, 262.1, 263.1, 265.1, 265.4, 265.5, 265.6, 268.1, 269.1, 270.1, 271.1, 272.1,
273.0, 273.1, 274.1, 275.1, 278.0, 279.0, 279.1, 281.1, 281.5, 283.0, 284.0, 286.0, 287.0, 287.1, 288.0, 289.0,
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Figure 6.4: Comparison between the upper limits obtained by doing injections in all frequency bands (blue trace)
and the upper limits obtained by averaging the results obtained at a reduced number of frequency bands (orange

area).

290.0, 291.0, 292.0, 293.0, 294.0, 295.0, 297.0, 298.0, 299.1, 299.2, 299.3, 299.4, 299.5, 299.6, 299.7, 299.8,
299.9).

6.4 | Conclusions

The main search done by the BSH pipeline took 10000 CPU-hours to complete (by using a Power9 8335-
GTH + Tesla V100 GPU combination), which is a very small cost. The O2 data could be further searched
for signals in other regions of parameter space, both at higher frequencies and at lower and higher orbital
periods. This could also be done with the next set of Advanced detectors O3 data, which will have an

improved noise floor that will produce even tighter upper limits and enhance the possibilities of detection.
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0.1 Hz frequency band. The dashed red line at 8.0 marks the threshold. The right plot shows a zoom of the left
plot.



CHAPTER [

EFFORTS TO CHARACTERIZE AND MITIGATE LINES AND
COMBS DURING O2 AND 03

Searches for persistent gravitational waves from continuous and stochastic sources are under way in
Advanced LIGO and Virgo data. The sensitivity of these searches is degraded by the presence of narrow
spectral artifacts (lines) that are generated by instrumental or environmental disturbances. In this chapter
we describe a variety of methods used for finding, identifying and mitigating these artifacts, illustrated
with particular examples. Results are provided in the form of lists of line artifacts that can safely be
treated as non-astrophysical. Such lists are used to improve the efficiencies and sensitivities of continuous
and stochastic gravitational wave searches by allowing vetoes of false outliers and allowing data cleaning.
This chapter is based on [249], where some material has been removed and a new section dealing with

non-linearities has been added.

7.1 | Introduction

The near future may bring the discovery by the ground-based interferometric detectors of persistent
gravitational waves. Persistent sources of long-duration GWs can be broadly classified as continuous wave
(CW) sources, which have a deterministic phase evolution, and a stochastic gravitational-wave background
(SGWB), for which the signal is intrinsically random. The canonical sources for CWs (see [224] for a
review) are non-axisymmetric rotating neutron stars, emitting long-lasting and nearly monochromatic
waves, as described in chapters 2 and 3. When observed from Earth, these waves will be frequency-
modulated due to the Doppler effect produced by the daily rotation and orbital motion of the Earth
around the Sun. The SGWB is a superposition of many astrophysical and cosmological GW sources.

CW and SGWB searches look for long-duration signals, and are affected by different types of noise than
those affecting short-duration searches, as shortly described in subsection 1.3.2. While compact binary
coalescence and burst searches are degraded mainly by short-duration glitches (such as those described
in [49,265,266]), CW and SGWB searches are mainly affected by long-lived peaks in the frequency spectra,
especially narrow peaks, typically referred to as lines (although short-duration glitches increase the noise
floor over a wide frequency band and also decrease the sensitivity of these searches). CW searches can
be degraded because their signals are intrinsically highly narrow-band, while SGWB searches can be
degraded because of the tendency of a subset of instrumental lines in the two detectors to lie so close to
each other that they exhibit spurious coherence between the detectors.

This problem presents two main detector characterization tasks for long-duration searches: first, to
identify line artifacts that are non-astrophysical in origin, allowing them to be flagged as noise; and,

second, to determine the cause of those artifacts when possible in order to guide efforts to remove them
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at the detector sites. Spectral lines that affect the CW and the SGWB searches are typically quite narrow
(high Q-factor, i.e., the ratio of peak frequency to line width) during a given coherent integration time.
This focuses investigations for noise sources onto electronic components and mechanical components with
high Q-factor resonances, reducing the probability of noise from mechanical components with damped
mechanical resonances.

In this chapter we describe tools and methods used for data quality investigations relevant to long-
duration searches, and provide examples of issues faced during the second and third Advanced LIGO
observing runs: 02, and O3a (first half of O3). We note that all of the methods presented here can
be applied to all ground-based interferometric detectors such as H1, V1, or KAGRA, but we focus on
data quality applied to the LIGO detectors only, as at the time of this writing there is significantly
more Advanced LIGO observational data and only data from these detectors has been used in persistent

searches up until now.

7.2 | Effects of noise on CW and SGWB searches

Spectral artifacts can degrade analyses that search for long-duration signals in different ways. Artifacts
can lead search pipelines to return spurious outliers, which require laborious follow-up. For example, an
instrumental line produced by a continuous sinusoidal process will be picked up by a CW search by its
templates with zero spin-down/up and from sky positions that produce an almost non-existent Doppler
modulation. Furthermore, if there is a putative GW signal at a frequency corresponding or nearby to
a spectral artifact, then the signal power is obscured. For those analyses that rely on combining data
from different detectors (e.g. cross-correlation or coherently combining data), then detection of signals
overlapping with common detector artifacts may be impossible. On the other hand, some searches may
be able to cope with an artifact if it occurs in just one detector.

Continuous GWs from spinning neutron stars are nearly monochromatic, with nearly constant signal
frequency in the Solar System barycenter. When projected into the frame of a detector located on Earth,
the signal is Doppler shifted into many frequency bins. Conversely, a narrow, stationary spectral artifact
in the detector frame will impact many frequency bins when data is projected into the frame of the Solar
System barycenter. For searches of a signal from a known pulsar with a given ephemeris, the impact of
these artifacts is less than the impact on an all-sky search for unknown neutron stars (which may also
be located in a binary system). In extreme cases, an all-sky search may be blind to a wide region of
parameter space for a particular frequency range.

Searches for a stochastic GW background rely on cross-correlating GW strain channel data from
multiple detectors and looking for excess power. Excess cross-correlation requires a stable phase between
the two channels at a given frequency, and, thus, many single-detector artifacts are not found in the
cross-correlation analysis. Correlated noise that causes excess power in the cross-correlation analysis,
however, is excised from the analysis entirely by setting those frequency bins to zero (a process called
notching) before integration in the case of the standard search for a broadband SGWB. This reduces the
search sensitivity by a factor ~ \/]J:[Ii where N, is the number of frequency bins before notching and N,
is the number of frequency bins after notching.

For both CW and SGWB searches, lists of known instrumental artifacts are created following the end
of an observing run (further details are provided in section 7.7). Then, depending on the search, these
lists are used to: 1) clean the data before analysis by removing the affected data in the frequency domain
and replacing it with Gaussian noise measured in the nearby frequency bins; 2) avoid specific frequencies
in analyses that are impacted by the artifacts; or 3) reject outliers that are clearly caused by the detector
artifacts. This lets the analysis focus computational resources on regions of parameter space that are not
degraded by spectral features. If a search pipeline returns a signal candidate which does not coincide

with any known artifact, more detailed investigations are needed in order to assert that the signal cannot
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Figure 7.1: Locations of most auxiliary sensors at LIGO Livingston Observatory (LHO shares a similar layout).
The gray dashed lines separate the End X and End Y Stations, which are located at the end of the 4 km arms,
from the Corner Station building, located at the vertex of the detector. All stations contain an electronics room

(encased by purple points in the diagram), where the computers that control the interferometer are housed.

be produced by an artifact.

7.3 | LIGO data and noise sources for searches of persistent grav-

itational waves

The second Advanced LIGO observing run (O2) took place between 30 November 2016 and 25 August
2017, and the first half of the third observing run (O3a) took place between 1 April 2019 and 30 September
2019. The Advanced LIGO detectors are located in Hanford, Washington (H1), and Livingston, Louisiana
(L1). The LIGO detectors are dual-recycled Michelson interferometers with Fabry-Perot arm cavities of
~ 4 km (see [28] for a review of the Advanced LIGO detectors configuration and section 1.3 for a brief
discussion of gravitational-wave detectors).

LIGO detector data is typically characterized as stationary, Gaussian noise, but non-Gaussian detector
artifacts are also present in LIGO data, e.g., occasional, short-duration transients (“glitches”) and long-
duration narrow lines. Searches for transient GW signals will avoid analysing times when a glitch occurs
or will try to subtract the glitch from the data, while searches for persistent GW signals avoid analysing
data in frequency bands where narrow lines are present.

While most lines in detector data are stationary, some of the lines have time-varying behavior (often
called wandering lines), which can degrade detector sensitivity over a larger range of frequencies and
increase the difficulty of distinguishing these artifacts from astrophysical signals when searching for a
persistent signal from different sky locations. Some lines occur in a distinct pattern known as a comb,
with even-spacing in frequency between each tooth (each single line) of the comb. Tooth frequencies are
given by f, = fo +ndf, where f, is the offset (from 0 Hz) of the comb, Jf is the spacing, and n is an
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Figure 7.2: Noise-weighted averaged ASD showing the first harmonic violin mode region for HI1 (red trace) and
L1 (blue trace) for the O1 observing run.

integer. These combs are associated with linear or non-linear coupling of non-sinusoidal sources (such as
a train of impulses) or with non-linear coupling of sinusoidal sources (as exemplified in subsection 7.6.5).
A comb can also be recognized by a common time-dependent behavior of the teeth in the comb. The
Fourier coefficients of a comb in the frequency domain can be used to uncover the time-domain waveform
and help identify the source of the comb.

Lines and combs can have time-dependent behavior as the configuration of the detector changes,
especially during periods of commissioning and maintenance. Some lines and combs have high amplitude
and can be identified using only a short amount of data. Others have low amplitude and may only become
evident when using long integration times, which are also useful to better constrain the central frequency
and width of a given line or to find the spacing of a comb.

A schematic diagram showing locations of vacuum chambers, main interferometer optics, and most
of the Physical Environment Monitoring (PEM) sensors of the L1 detector can be seen in figure 7.1
(H1 has a similar layout). PEM sensors include, for example, accelerometers, microphones, temperature
sensors, magnetometers, seismometers, etc. PEM sensors, particularly magnetometers, are often helpful
in determining the causes of narrow spectral artifacts because they witness local noise sources that may
couple to the main GW channel, and the PEM sensors do not witness GW signals (except in cases of
complicated cross-coupling mechanisms, which can be identified using signal injections). Other auxiliary
channels may also be useful in the same way: besides the PEM sensors, each of the LIGO detectors
records many more auxiliary channels that monitor instrument behavior, adding up to over 200000
auxiliary channels [49]. These channels can be compared to the gravitational-wave strain main channel
to check if there any correlations or coherences.

Some of the lines observed in an amplitude spectral density of the detector data are well-understood:
for example, 60 Hz power mains, mechanical resonances of mirror suspensions known as “violin modes”
(see figure 7.2), calibration lines, and simulated GW signals known as “hardware injections”. Other lines
are less understood and require considerable investigation to determine their nature.

The majority of instrumental lines that degrade CW searches have Q-factors in excess of ~ 103. This
is, in part, because the astrophysical sources targeted by these searches have high intrinsic Q-factors,

and Doppler broadening caused the Earth’s orbital velocity does not decrease the Q-factor to less than
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~ 10*. Noise lines with low Q-factors (such as wide bumps) will not cause outliers since they will be
incorporated into the estimation of the background noise floor, as opposed to high Q-factor sources that
will not be included in the background estimation. This is because noise floor estimation methods use
running medians over for example 100 frequency bins, which are robust against sources appearing in one
or two bins but take into account sources appearing in a majority of the bins.

Similarly, the instrumental lines that have produced correlations between sites, degrading searches for
SGWB, have also had high Q-factors. This is because the correlations are produced not by single sources
affecting both of the widely-separated sites, but rather by similar sources at each site that are correlated
only because they produce signals at the same (or nearly the same) frequency. Some correlated lines
are due to electronic sources at each site that are set to the same frequency, controlled by a single clock
(GPS), which also controls the timing of the data acquisition systems. These lines have Q-factors that are,
in principle, infinite. When the frequencies are not exactly the same at each of the sites, the maximum
width of the instrumental lines that can produce correlations is associated with the duration of the data
segments used in the cross-correlations and the line amplitude. The typical length of Fourier-transformed
data segments is 60 s long and the lowest Q-factor lines that have produced inter-site correlations are the
power mains-related lines with Q-factors of ~ 10? (the LIGO sites are on different power grids that are
not synchronized).

The primary source of lines with sufficiently high Q-factors degrading both CW and SGWB anal-
yses are processes controlled by electronic clocks or oscillators. This includes digital processes, analog
electronics, and mechanical processes controlled by electronic clocks such as stepper motors. Most me-
chanical systems do not have Q-factors above 102 and so do not directly contaminate the searches by
causing additional outliers, but instead degrade the sensitivity of these searches. The main exceptions
are mechanical systems that are designed to have high Q-factors in order to concentrate noise in a narrow
frequency band, like the “violin” suspension modes.

Monitoring the frequencies associated with electronic systems is thus the main way we detect the
sources of problematic instrumental lines. Monitoring each individual electronic component in the com-
plex electronic system of LIGO would be difficult. Instead, we attempt to monitor multiple electronic
systems at once, using fluxgate magnetometers (Bartington Mag-03 series, with sensitivities of about
5 x 10712 T). The magnetometers are placed in the experimental areas and especially in important
electronics racks in the electronics rooms (see figure 7.3). These magnetometers can detect even low-
amplitude periodic currents controlled by oscillators and clocks that can produce high Q-factor line
artifacts (detecting as low as 5 x 107> A at 1 m from long wires or traces).

The process of addressing lines or combs typically proceeds in three steps: identification of noise
in the GW strain channel, data analysis to determine properties of the noise (precise frequency, other
sensors that may witness the noise, start or end times, etc.) which may suggest a cause, and on-site
investigations or interventions to mitigate the noise at its source (more details are given in section 7.6).
This process is often iterative and experimental. Work on site is limited by available time, and also by
the risk of interventions creating new problems, so noise sources are typically prioritized for follow-up
by their strength, pervasiveness (number of bins contaminated), and the ease of addressing the most
probable cause of the noise. Lines which are not identified or cannot be mitigated during an observing
run are catalogued afterward; this is not ideal, but it does aid searches in cleaning data and rejecting
outliers.

Mitigation efforts can prove challenging. In many cases, low-level spectral artifacts and combs are not
visible in short-duration Fourier transforms. Only by performing averages over many days to weeks of
data, do these features become obvious; hence it can take of order days to weeks of new data collection
to determine if a mitigation attempt has improved the data or not. Unintended configuration changes
that lead to line generation can also take time to appear, be tracked down and mitigated. As a result,
significant epochs of an observing run can be badly contaminated in some spectral bands, even when

those bands are relatively clean at the start of the run.
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Figure 7.3: Method of monitoring electronic components and cables for frequencies of instrumental lines found
in the data. A Bartington fluzgate magnetometer (Mag-03 MCES100) is mounted on the horizontal white PVC
pipe in the back of an electronics rack containing electronics that control the position of important optics. If the
magnetometer detects fields from currents varying at the same frequency as an instrumental line, the source of the
line may be in the vicinity. In addition to helping with searches for sources of line artifacts, the magnetometer

can indicate that a spectral line is not astrophysical in origin.

As can be seen in figure 7.4, the amplitude spectral density (ASD) of L1 and H1 exhibit different line
artifacts and have somewhat different noise floors, explained in part by different configuration choices
and by different environmental influences [267]. As a result, the couplings and the noise sources are
different, and the lines and combs that need to be followed and eliminated differ between the detectors,
although some common artifacts can be studied jointly. This figure also shows the improvement in data
quality for long-duration searches from O1 data to O2 data, because of the investigation and mitigation
activities described in [249]. We show the spectrum only between 20-2000 Hz, over which the searches
for persistent GWs are typically performed.

7.4 | Noise coupling mechanisms to the gravitational wave chan-

nel

In this section we summarize some of the most important noise coupling mechanisms.

7.4.1 | Coupling through shared power and grounds

Most of the mitigated lines in Initial and Advanced LIGO have coupled through shared power supplies.
An electronic component draws current at a particular frequency from a power supply, which results in
a small periodic drop in voltage. If a sensitive piece of electronics, such as an optic actuator driver or
analog-to-digital converter, shares the power supply, the frequency can be imprinted on a signal controlling
alignment of an optic, for example, and thus causes a coupling to the interferometer light. This imprinting
may happen, if, for example, a gain or offset in the sensitive equipment varies with the voltage from the
power supply. The solution has been to place the source of the periodic current draw on a separate power

supply. This has led us to attempt to better regulate power, and to isolate noise-sensitive electronics on
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Figure 7.4: Average amplitude spectral density plots for the L1 (upper plots) and HI1 (bottom plots) detectors
during O1 (red trace) and O2 (blue trace). Each individual amplitude spectral density that contributes to the
average is weighted by the inverse square of its running median, so that those spectra with degraded sensitivity
(higher amplitude spectral density) are de-weighted (contributing less) in the final average. The left column plots
show data in the most sensitive frequency band of the LIGO detectors 20-2000 Hz. The right plots show data in
the low frequency region from 20 Hz to 120 Hz.

separate power supplies, but this is sometimes difficult to do in practice.
Coupling through shared grounds is a similar mechanism. Even when the source of the periodic
current draw is on a separate power supply from the sensitive electronics, the source may affect the

sensitive electronics by producing periodic voltage variation in shared grounds.

7.4.2 | Coupling through magnetic or electrostatic fields

Another common coupling mechanism has been direct coupling of magnetic fields to sensitive control
systems or signals. For example, we have observed fields from switching power supplies coupling mag-
netically to signals passing through analog-to-digital converters. We have also observed 60 Hz mains
magnetic fields coupling directly to permanent magnets that are mounted on certain optics for actuation.
However, in Advanced LIGO, our main magnetic coupling is through cables and connectors. Mitigation
efforts have included separating cables, smaller actuation magnets, electrostatic actuation, active cancel-
lation, reducing stray fields, and separating sources and coupling sites. Digital communication systems,
such as those that use Ethernet, are a common source, but it is not always easy to keep them away from
sensitive systems.

When electrostatic fields are generated inside of the vacuum chambers, they may couple directly to
the test masses. Electrostatic fields may also couple to control signals at locations where shielding is

imperfect, like connectors. Investigations have suggested that certain sources couple through periodically
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modulated electrostatic fields, although this mechanism has not been unequivocally demonstrated.

7.4.3 | Mechanical coupling

Thermally-excited high Q-factor resonances of the wires suspending optics have produced problematic
lines for the CW searches by vibrating the suspended optics, which causes modulation of interferometer
light, and thus couples optically to the GW strain channel. The precise frequencies of secondary suspen-
sions may not be known in advance. Most other mechanical components are low Q-factor by design, and
the broad lines that they produce typically only degrade search sensitivity for CW signals. Mechanical
systems that are controlled by clocks, like stepping motors or some fans, might have Q-factors that are

high enough to be problematic, but these have not been among the sources that we have found.

7.4.4 | Data acquisition artifacts and non-linear coupling

We have observed lines and combs produced by aliasing of high-frequency spectral artifacts, as well as
artifacts from digital-to-analog converters. Additionally, we have observed inter-modulation products
between lines of known or unknown sources during certain periods of data collection. It is also likely that
we have observed combs produced by occasional errors in transmission of digitized data within the data
acquisition system. The fundamental frequency of the comb is determined by the frequency (e.g., 16 Hz)

of a process associated with the error.

7.5 | Data analysis tools

In this section we briefly describe some data analysis tools used to monitor and analyse the data quality
for persistent gravitational wave searches. More details about the coherence tools (omitted here) are

given in [249].

7.5.1 | Finding lines in frequency domain

There are two main tools to find lines in the frequency domain: Fscan and NoEMi.

Fscan is a tool that finds and monitors spectral lines [268]. It uses data from the GW strain channel
and hundreds of auxiliary channels for each detector, and it produces “Short Fourier Transforms” (SFTs)
of 1800-s-long data segments. Fscan produces two different types of graphs: it averages the daily SFTs
(with a maximum of 48 SF'Ts) to produce normalized power spectra in bands of default 100-Hz width
and frequency binning of 1/1800 Hz for each channel, and it produces spectrograms with averaging of
adjacent frequency bins (default bin resolution of 0.1 Hz). In the absence of non-Gaussian artifacts, the
normalized spectra should be flat with random fluctuations about an expectation value of one, where the
underlying statistical distribution would be x2? with a number of degrees of freedom equal to twice the
number of SFTs used to construct the spectra. Figure 7.5 shows an example of these two types of plots.
Thousands of such graphs are generated automatically each day for each observatory from the GW strain
channel and auxiliary channels, to provide a reference archive for line investigations.

In addition, the strain channel SFTs are used to produce (unwhitened) inverse-noise-weighted spectral
averages for each day and cumulative from the start of the run through that day. The inverse noise
weighting is meant to mimic the weightings used in many CW searches such as [203], which weight
more heavily those time spans with better sensitivity. Comparing such spectral averages with arithmetic
averages also allows rapid identification of non-stationary line artifacts. Fscan can also produce coherence
plots between the gravitational-wave channel and auxiliary channels.

NoEMi (Noise frequency Event Miner) is a tool used for line monitoring and as a line database [269]. Tt
runs daily and weekly, using data from the GW strain channel and several auxiliary channels, calculating

FFTs with 1 mHz resolution. It creates time-frequency diagrams from the peaks found in the spectra;
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Figure 7.5: Typical plots produced by Fscan: the left plot shows a spectrogram of one day (23 April 2017) of Hanford
strain data (with color-coded amplitude) while the right plot shows the corresponding daily averaged normalized

power versus the frequency.

the program also calculates the persistency of the lines (number of peaks in that frequency bin divided
by the number of FFTs) and their critical ratio (difference between the peak amplitude and the mean
value of the spectrum, divided by the spectrum standard deviation). The persistency helps to identify
loud stationary lines, while the critical ratio helps to identify non-stationary lines lacking persistency.
NoEMi can provide the starting and end times of a line in the data. It can also follow wandering lines,
by allowing some change in frequency between different time periods. NoEMi looks for coincidences (lines
with the same frequency) between the GW channel and the other channels, calculating a value between
0 and 1 to quantify the probability of coincidence for each different auxiliary channel. This automated
coincidence monitoring is especially valuable when searching for causes of line artifacts seen in the GW

strain channel.

7.5.2 | Finding combs

FineTooth is a set of tools to help identify combs and monitor them over time [270]. It is comprised of a
plotting tool, a tracker for known combs, and a comb finding tool. The plotting tool creates interactive
browser-based plots using the Python library Bokeh, allowing the user to overlay combs and lines and
easily explore spectral features, as shown in figure 7.6. The tracker accepts a list of known combs and a
list of channels, and then draws from Fscan data to create plots showing the historical strength of each
comb in each channel. The comb finding tool searches for common spacings between peaks of comparable
heights, generating a list of potential comb candidates to be vetted by the user.

During observing runs, the FineTooth tracker is run daily on a series of magnetometer channels which
typically witness noise in nearby electronics, as well as on daily and run-cumulative spectra from the
GW strain channel, providing a summary page for data quality checks and a tool for rapid investigation
of specific combs. The comb finding and plotting tools are also used to provide an alert for new combs
appearing in the cumulative spectrum mid-run, and to aid in comb identification for the purpose of

generating vetted noise line lists.

7.5.3 | Lines and combs in time-domain: folding studies

Most line investigations are carried out in the frequency domain, but a tool has also been developed to
look directly at periodicity in time-domain data, since some spectral combs arise from periodic transient
glitches. The folding tool splits a long segment of data into short segments (typically a few seconds in

length, corresponding to some periodicity of interest, e.g. 1/5f or 1/f, for a comb) and averages the
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Figure 7.6: A screenshot showing the comb plotting feature of FineTooth, on a run-averaged spectrum from Hanford
in O2.

segments together to produce a summary plot. The data folding tool can generate daily, monthly, and
full-run plots, with or without a band-pass filter applied. Band-pass filtering often makes periodicity

more easily visible.

Folded data can reveal features of the periodic structures underlying spectral combs, making it useful
for spotting changes that may not be evident in the spectrum. It is typically most effective for magne-
tometer channels, where periodicity is stronger than in the GW data channel, but on occasion periodic
transients have been visible in the GW strain channel as well, most notably from blinking light emitting
diodes (LEDs), as discussed below.

7.5.4 | Finding long-duration non-linearities

The output of a gravitational-wave detector is usually described as z(t) = h(t) + n(t), where n(t) can be
described as the sum of many individual terms: n(t) = nq(t) + na(t) + ... This expression only contains
linear terms, but due to interactions between these different noise sources non-linear noise terms may
be present in the data, expressed as n(t) = nj(t) + na(t) + ni(t)n2(t) + ... The most common noise
characterization techniques such as amplitude spectral density or coherence are not well-suited to find

non-linearities that may be present in the data, and alternative techniques are needed.

These alternative techniques are related to higher-order statistics (higher than second-order). Second-
order measures (such as the power spectrum and autocorrelation functions) contain no phase information,
and for this reason certain types of phase coupling (associated with non-linearities) cannot be correctly
identified. This is related to the fact that a Gaussian signal is completely characterized by its mean and
variance (second-order statistics), but non-Gaussian signals (as present in gravitational-wave data) need

higher-order statistics to be completely described.

One of the most common non-linear interactions is the quadratic phase coupling (QPC), which involves

frequency triplets: f1, fo and f; + fo. QPC can be obtained with a non-linear interaction between two
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sinusoidal signals:
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QPC means that the sum of the phases at f1(¢1) and fa(¢2) is equal to the phase at frequencies f1 £ fo
(i.e. @1 £ ¢2), which is often an indication of second-order nonlinearities.

The two-point correlation function calculates the expected value of the product of two functions f

and g at two different points:

Cro(r) = (0t +7) = [ (0l + ), (7.2)

where the variable ¢ can represent time, spatial position or any other independent variable. The auto-

correlation function is defined as:
Crslr) = (O +7) = [ s+t (7.3)

In the discrete case with N points, the auto-correlation function is defined as:

CJ) = (f(0)f(i+J)) Zf fi+J). (7.4)

The power spectral density S¢s is the Fourier transform of the auto-correlation function, and the cross-
spectral density Sy, is the Fourier transform of the correlation function. Although the regular PSD does
not retain phase information, the cross-spectral density does. The (squared) coherence (a real value

between 0 and 1) between two signals is defined as:
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The coherence between two channels f and g measures the average phase difference between them: it is 1
if the phase difference is constant and goes to 0 if the phase difference is a uniformly distributed random
number. It is a statistic that is routinely calculated in order to find causes or clues of noise sources in
the main gravitational-wave channel, for example between magnetometers and h(t). An estimate of the
significance of a given value of coherence can be found by simulating Gaussian random series, calculating
coherence values and finding the desired coherence threshold at a given false alarm probability.
Higher-order spectra are defined as the Fourier Transform of the k order cumulant from the time

domain. For example, a third-order cumulant is (and its discrete counterpart):

C3(m1,72) = (f()g(t + T)h(t + 72)) = /Oo F@)g(t +m)h(t + 7)dt (7.7)

C3(J, K) = (f(i)g(i + J)h(i + K)) Zf (i + J)h(i + K). (7.8)
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The bi-spectrum B (f1, f2) is defined as the Fourier transform of the third-order cumulant. Similarly to

the coherence, the squared bicoherence is a normalized version of the bi-spectrum:

2, (fi.f2)

belf1s fo) = Syp (f1) Sgg (f2) Sun (f1 + f2) (7.9)
$2, (fi.f2)

U 12) = G Y 80 () S (s — o) (7.10)

where Stony (fi, f2) = (f(f1)3 (f2) B* (fi + f2)). The bicoherence quantifies the power and phase coher-
ence at a coupled frequency. For stochastic wide-band signals, the level of the bicoherence gives a measure
of the signal skewness while for deterministic signals a peak in the bicoherence indicates the presence of
Quadratic Phase Coupling (QPC). As with the PSD, we can define both a bispectrum (when f = g = h)
and a cross-bispectrum.

As happens with the ASD, the bi-spectrum needs to be estimated from the data. We can use a method
that resembles the Welch estimation method, which splits the data in M segments and calculates a mean
between them:

M M

Stgn+ (f1, f2) = : Z { h* (fr+ fa) }k = %Z laetbePohe ™00 ], . (7.11)
k:1 k=1

It can be seen that in the triple product, the phases of the first two factors will add, and will be compared

to the phase of the summed frequency component. The sum of the three phases is the biphase, and, if

the phase of the third factor is equal to the sum of the first two, then the biphase will be exactly zero.

Thus, in the case of QPC, we search frequency triplets where the biphase is zero.

The auto-bicoherence of the main gravitational-wave channel can be calculated by selecting a starting
frequency, for example 10 Hz, and then looping over all other frequencies, e.g. from 10 Hz to 1000 Hz,
and finding the complex value at f; + fo. After the inner loop is done, the starting frequency from the
outer loop is incremented and the inner loop is done again. From these two loops we obtain the ASD
values at f1, fo, and f1 + f2, and from them the bicoherence can estimated by averaging several segments
of data.

Detector characterization studies have already used the bicoherence to find non-linearities in the
data, as for example explained in [271], such as interactions between roll and violin modes or between
violin modes and microseism frequencies. These studies have focused on finding non-linearities when
short-duration glitches are present in the data, but no studies have tried to characterize long-duration
non-linearities. For example, due to different non-linear processes, a line present in the data might not
just be contaminating its own frequency band, but may be combined with other disturbances such as very
low frequency lines to produce additional lines through the QPC. An example of this can be seen around
the 60 Hz lines, which usually present wide shoulders around them, or near the violin mode regions, as

figure 7.2 shows.

7.6 | Results

In this section we describe some examples of specific noise sources that were mitigated during the O2
and O3a runs (a more complete list can be found in [249], including O1 investigations). Several plots
showing the improvement of the spectrum in the respective frequencies are also presented.

When a new feature in the detector strain data channel is discovered by using the tools mentioned in

the previous section, additional investigations to identify the source of the noise are performed:

1. Determine the Q-factor of the line affecting the search. This helps identify the source and type of
equipment that is producing the line. If the Q-factor is above 10°, the source is likely to be precision-

clocked electronics components, or equipment that is synchronized to GPS. Typical inexpensive
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clock chips in electronic devices have Q-factors of ~ 10°, though the Q-factors of newer inexpensive
chips may be higher. Lines from equipment using 60 Hz timing from the mains, have Q-factors of
roughly 103. The Q-factors of LIGO suspension wire resonances vary, but many of the secondary
optics are in the range of a few 10°.

2. Identify and investigate any transitions in line amplitudes. If there are sudden changes in amplitude
of the lines, it is often helpful to examine instrument logs for correlated changes in instrumentation

or software.

3. Search for lines of the same frequency in the fixed magnetometer signals. If the line is found, it may
help localize the cause. However, even if the frequency detected by the magnetometer may match
the instrumental line, it may not be the cause. The probability of incorrect attribution is higher

for lines that are at integer frequency values and are synchronized to GPS.

4. For lines that are detected in magnetometer channels, the location of the source can often be further

narrowed by moving around a portable magnetometer to maximize the line amplitude.

5. Search for lines in auxiliary channels, especially error signals for secondary optical cavities. The lines
for many secondary optic suspensions will have higher signal-to-noise ratios in auxiliary channels
than in the GW data channel.

6. Search for LEDs flashing at the frequency of the lines. The periodic current drawn for the LED

may cause the coupling by modulating power supply or ground voltages.

7. Temporarily shut down equipment in the candidate area, when possible, as a test. This is especially
helpful if a line is stronger in a magnetometer signal than in the interferometer signal because the

magnetometer can be used to more rapidly evaluate the effect of shutting down the equipment.

7.6.1 | 11.111 Hz comb (Vacuum sensors)

A 11.111 Hz comb was found at the beginning of May 2017 in the Hanford O2 data. After some
investigations with a portable magnetometer, it was found that this comb was present around cables
from the 24 V power supply that powered one of the Electrostatic Drives (ESD), which control the test
mass positions and so are one of the most sensitive components in the system. The components powered
by the cables from this supply were checked, and a strong 11.111 Hz magnetic field was detected near a
vacuum sensor.

A laboratory test confirmed that the communication frequency between this type of sensor and its
computer controller was 11.111 Hz, and that the LED on the sensor flashed at this frequency. The other
vacuum sensors at this station were powered by separate supplies but this sensor had been connected to
the ESD power supply in error. Placing the sensor on the proper power supply eliminated the comb from

the GW strain channel as shown in figure 7.7.

7.6.2 | 86 Hz line (Pcal high frequency injections)

A line at 86 Hz was discovered the 15th of June 2017 in the Hanford GW strain data [273]. After
investigating this with a coherence tool, we saw that this line was also present in some photon calibration
(Pcal) channels. The Pcal system applies calibrated forces to the end mirrors and is used for interferometer
output calibration [274]. The line had appeared for the first time exactly at the same time as the frequency
of a Pcal high frequency injection at 5950 Hz was changed. Turning off this injection made the line in
the GW channel disappear, as can be seen in figure 7.8.

While the coupling mechanism remains unclear, a working hypothesis is that the data acquisition

system down-converts the high frequency injection to low frequency lines. A phenomenological equation
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Figure 7.7: Comparison of noise-weighted averaged ASD using H1 data from 8 March 2017 to 8 May 2017 (blue
trace, vacuum sensors sharing ESD power supplies) with noise-weighted averaged ASD from 8 June 2017 to 25
August 2017 (red trace, vacuum sensors not sharing ESD power supplies). The 11.111 Hz comb is gone in the
second period, as we can see when we look at the harmonics 2, 8, 4 and 5, shown in the four panels by a black

dashed line.

to predict the frequency of the lines was derived: fiine = 2'% — fi,,; n, where fi,; is the frequency of the
injection and n is the nth harmonic (the observed line was the 11th harmonic). This equation was tested
changing the frequency of the injections, and it predicted correctly the frequency of the lines. After
discovering this, a similar line, also produced by down-conversion, was observed in the Livingston GW
strain channel at 119.9 Hz [275]. Down-converted lines due to photon calibrator actuation do not appear
appreciably in the GW spectrum above ~ 150 Hz because the force-to-length transfer function decays as

f~2. This working hypothesis seems to be proven after the work explained in subsection 7.6.5.

7.6.3 | Lines from bounce and roll modes

Besides the four main test masses, the Advanced LIGO detectors use additional smaller hanging masses,
such as the beam-splitter or the signal recycling mirror. These smaller masses are hanged on triple
suspension systems, whereas the main test masses use quadruple suspension systems. The movement
of these suspension systems can be described with many degrees of freedom or modes of motion, two
of them being the bounce and roll modes, each having a different resonant frequency (roll modes being
around 27 Hz and bounce modes around 40 Hz). Usually, filters that help to decrease the response of
these suspension systems at their resonant frequencies are used in the feedback systems, but these filters
can get misplaced in frequency during an observing run.

Lines around resonant frequencies of roll and bounce modes were seen in the main gravitational-wave
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Figure 7.8: Comparison of noise-weighted averaged ASD using data HI from 8 June 2017 to 15 June 2017 (blue
trace, PCAL high-frequency injection on) with noise-weighted averaged ASD from 14 July 2017 to 17 August 2017
(red trace, PCAL high-frequency injection off ). The 86 Hz line has disappeared in the second period.
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Figure 7.9: Comparison of averaged ASD wusing O3a H1 data from 5-7 June 2019 (blue trace) to 1-3 June 2019
(red trace). The roll mode at 27.71 Hz has been dramatically lowered, and the line at 27.59 Hz has also decreased.

channel, and coherence close to 1 with auxiliary channels related to these auxiliary masses was found.
By exciting the different optics, updated frequencies of these modes were found (as detailed in [276)),
and this allowed to update different filters, as detailed in [277]. This made some of these lines disappear
or be highly reduced, as can be seen in figure 7.9 (more details in [278]). The updated measurements of
roll and bounce frequencies are also useful in order to confidently assign lines in the spectrum to these

non-astrophysical sources.

7.6.4 | Non-stationary line around 70 Hz

A new line appeared around the 29 May 2019 in H1 data near 70 Hz, apparently after the maintenance
done the previous day. The frequency of the line was highly non-stationary, as can be seen in figure 7.10.
The new line was coherent with some PEM channels from the End Y station such as tilt sensors and
magnetometers, and also some channels related to seismometers.

After finding this new line, further investigations reported that one seismometer was saturating (more
details can be found here [279]). After solving this seismometer issue, the line disappeared. The exact
coupling mechanism is not clear, although this seismometer shared a power supply with more PEM

systems. This example shows the importance of constant monitoring of the main gravitational-wave
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Figure 7.10: Spectrogram showing the frequency-time evolution of a new non-stationary line found around 70 Hz.

channel, where a new noise feature was eliminated in one day, whereas many of the other long-duration
noise sources remain unknown and keep contaminating the spectrum after they appear for much longer

durations.

7.6.5 | Non-linearities in O3a data

In this subsection we show an application of the bicoherence to real O3a H1 data in order to find long-
duration non-linearities. An investigation started around the beginning of April 2019 showed that there
were many frequency triplets with bicoherence values close to 1 (full details in [280]). We realized that
many of these triplets were related to frequencies around the violin modes of the test masses (resonant
frequencies of the suspensions holding the test masses) and the calibration lines (artificial signals added
for calibration purposes, initially located at 15.1 Hz, 16.7 Hz, 35.9 Hz, 36.7 Hz, and 331.9 Hz). Prior to
this investigation, many new lines around the violin modes had appeared, with a symmetrical distribution
around them. These groups of lines were present around the 1st, 2nd, and 3rd order violin modes, and
could to be described by a comb of 0.8 and/or 0.6 Hz. An interesting fact is that very similar groups
of close lines separated by 0.8 and 0.6 Hz were also present in the O2 data. We realized that some of
these lines were located at frequencies that are the sum of a violin mode frequency and a calibration line
frequency. Some of these lines are: 552.68167 = 516.78167 + 35.9 Hz, 553.48167 = 516.78167 + 36.7 Hz,
521.58611 = 504.88611 + 16.7 Hz, 519.98611 = 504.88611 4 15.1 Hz, 531.88167 = 516.78167 + 15.1 Hz,
533.48167 = 516.78167+16.7 Hz, 1033.56334 = 516.78167+516.78167 Hz, 1033.98388 = 998.08388 +35.9
Hz, 1034.78388 = 998.08388+36.7 Hz, where the frequencies lower than 40 Hz are calibration lines and the
higher frequency lines are violin modes of the test masses. These combinations of lines were present both
at f1 4+ fo and f; — f2, increasing the evidence for a true non-linear process. Furthermore, non-linearities
in the calibration lines themselves also seemed to appear, since there were lines with bicoherence almost
equal to 1 at 72.6 = 35.9 4+ 36.7 Hz, 71.8 = 35.9 + 35.9 Hz, 73.4 = 36.7 + 36.7 Hz and 33.4 = 16.7 + 16.7
Hz.

The Digital-to-Analog Converter (DAC) is a card that takes a requested digital signal, such as the
calibration line, and converts it to an analog signal that can be used for different purposes, such as with
the laser signal that produces the calibration lines. LIGO uses many of these DAC cards, and we wanted
to test them to check if they were properly working. Tests of the 20 and 18 bit DACs were performed
by driving a signal of varying frequency and amplitude, and checking if non-linearities appeared in the
spectrum. The left plot of figure 7.11 shows the results obtained by injecting a signal of 100 Hz at half

219 counts). A comb of lines is produced, with spacing equal to the

the maximum amplitude (which is
injected frequency. By increasing the amplitude of the injected signal all the lines of the comb increase

their amplitude, and many more appear above the noise. The right plot of figure 7.11 shows an example
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Figure 7.11: The left plot shows the spectrum of a sinusoidal signal at 100 Hz produced by one DAC, where several

non-linear lines are observed. The right plot shows the miring between two signals at 100 and 125 Hz.

of two injected signals at 100 and 125 Hz. New lines that could not be seen when only injecting a single
signal at 100 or 125 Hz appeared. These new lines show a spacing of 25 Hz, suggesting some type of
beating between the two injected signals. This beating may explain some of the lines seen in spectrum
at frequencies that seem to be a beating of violin modes and calibration lines. More details about this
investigation can be found in [281].

Furthermore, by increasing the frequency of the injected signal, many lines start to appear in the low
frequency range. For example, for a signal of 5950 Hz, lines with a spacing of 86 Hz appear. These lines
appear to come from aliasing of the high frequency harmonics of the main comb discussed previously.
Harmonics that lie between 2!° Hz (Nyquist frequency) and 2'® Hz (sampling rate) are moved to the
main frequency range by 2! — n f, where n is the harmonic index. Harmonics between 2'6 and 2'7 are
moved by n f — 2'6. This pattern is repeated for all the produced harmonics, which get transported
to frequencies between 0 and 2'° Hz. The 5950 Hz frequency was chosen to replicate the line at 86 Hz
discussed in subsection 7.6.2. From this example it seems that high-frequency calibration lines can appear
as noise lines in the low-frequency region due to non-linearities of the DAC.

In order to test if a non-linearity is really responsible for some of these lines, the calibration lines were
moved by e.g. 0.1 Hz and the spectra was analysed again to see if the non-linear lines had moved. After
this was done, we took an average over spectra of 1800 s from before the calibration lines were moved
and after this was done. All of the non-linear lines between the calibration lines changed their frequency,
e.g. the three lines at 2 * 35.9, 2 % 36.7 and 35.6 + 36.7 Hz. As previously discussed, if those three lines
were really harmonics of those calibration lines it makes sense that they were gone since these lines have
been moved. New lines appeared, for example at 35.2 = 2 % 17.6 Hz, which could be linked to the new
calibration line frequencies. Figure 7.12 shows the ASD between 300 and 400 Hz. Not only the calibration
line at 331.9 Hz line has disappeared since it has been moved, also sidebands at 315.2 = 331.9 — 16.7 Hz,
348.6 = 331.9 4+ 15.9 Hz are gone.

Why do some of these non-linear lines appear and disappear several times during an observing run?
The non-linear lines only clearly appear in the spectra (are above the noise) at times when the violin
mode producing the non-linearity has a higher amplitude than usual (the amplitudes of the violin modes
continually grow with time and have to be manually damped after they reach a certain critical level).
The non-linearities may always be present, but they only show above the noise when a violin mode
has been excited over a certain value. This is problematic for CW searches since they use much longer
combinations of the data, so even if these features are not present during short combinations of data they
may affect searches after a full observing run has finished.

Figure 7.13 shows a frequency region around the 2nd order violin mode harmonics at a time when their
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Figure 7.12: The left plot shows the ASD between 300 and 400 Hz before the frequencies of the calibration lines
were changed, where some lines due to non-linearities can be seen. The right plot shows the same region after the

frequencies were changes, and the lines related to the calibration lines and their non-linearities have disappeared.
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Figure 7.13: A comparison between the H1 ASD from the first week of April 2019 (blue trace) and from the second
week of May 2019 (red trace). The three ellipses show the three (symmetric around the violin mode at 998.08389

Hz) groups of lines caused by non-linearities between the violin mode and several calibration lines.

amplitude was higher than usual. Many new lines appeared around the frequency 998.083889 Hz, which is
a violin mode of one of the test masses that was more excited than usual. Figure 7.13 shows a comparison
with a previous week where this mode was not as excited. Three groups of lines have appeared at each
side of this violin mode, each group containing lines exactly located at frequencies that are a combination
of the violin mode and one of the four calibration lines (15.6, 16.4, 17.1, 17.6), like 998.08388 — 17.6 Hz
or 998.08388 + 15.6 Hz (all of these lines show values of bicoherence close to 1). It seems that more than
one group of nonlinear lines is created around the violin mode. The extra groups of lines are also located
at nonlinear frequencies like 998.08388 — 2 % 17.6 Hz or 998.08388 + 3 * 15.6 Hz and also show values of
bicoherence close to 1 (bicoherence between a calibration line and the previous group of nonlinear lines).
These extra lines may be created due to a tri-linearity such as ASD(f1)? * ASD(f2) — ASD(2f1 + f2)
and higher order features, or due to a bi-linearity between the firstly created new non-linear lines (closest
group to the violin mode) and the calibration lines.

Although the DAC seems to generate non-linearities, it is not clear if it is the source of the observed
non-linearities, since they could be created by an interaction or coupling between the laser applying the

calibration lines and the suspensions themselves (the beating between calibration lines themselves seems
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more likely to be caused by the DAC cards).

This investigation has shown that many lines and combs present in the spectrum of gravitational-wave
detectors may be produced by non-linear combinations of different noise sources. For this reason, more
non-linearity investigations should be pursued. Further non-linearities could be found by calculating the
bicoherence between two different auxiliary channels and the main channel, although the computational
cost of this analysis over the full list of auxiliary channels is prohibitive and a subset of them should be

selected.

7.7 | Producing a list of known lines and combs for CW searches

In this section we briefly describe how lists of known instrumental lines are generated for each observing
run and we present a summarized O1/02 list of lines and combs. Different approaches are followed by
the CW group and the SGWB group, because the stochastic searches are only affected by lines that are
coherent between both detectors i.e. have the same frequency, whereas CW searches are also affected
by lines present in only one detector. Details about lists generated for the SGWB searches are given
in [249]. Tables 7.1 and 7.2 summarize the lines and combs that were found in the O1 and O2 datasets,

lines deemed safe to veto a priori in searches.

7.7.1 | List of known lines and combs for CW searches

Searches for CWs, such as recent all-sky searches for unknown isolated sources [203], typically use a list
of known lines and combs to veto frequency bands prior to running the searches or, afterward, for vetoing
outliers. We summarize here the procedure used to generate these lists.

We begin by generating Tukey-windowed short Fourier transforms (SFTSs), using the standard FFT
code that is part of the LALSuite library [51]. We generate 7200-s-long SFT's for each detector covering
all of the observing run time, because those are the lengths of the longest SFT's used in O1 semi-coherent
searches based on summing SFT powers. Then, we compute the inverse-noise-weighted average of the
SFTs as described in subsection 7.5.1.

The lines are found by visual inspection of the spectrum. Features that appear to be above the
neighbouring noise level are noted for further inspection. Since, in principle, a narrowband astrophysical
source might appear in the spectrum, this initial list is not regarded as safe for line vetoing or cleaning.

After this first pass, we try to correlate the found lines with other channels using the coherence and
NoEMi tools, we check which lines belong to previous known combs using the FineTooth tool (and try to
find new combs in the data), and we find the lines produced by known sources like the power mains, the
calibration lines, and the mechanical resonances of the different suspensions. This allows us to produce
a first list with lines that are safe to veto. This list is updated as more investigations are carried out,
including detector studies and targeted follow-up of outliers from searches. A more general list that
includes all found lines is also generated, and different searches may select either the safe list or the more
complete list. We remark that even if no plausible source for a line above the noise is found in auxiliary
channels, it is very likely that it is produced by a non-astrophysical source, since signals with amplitudes
as large as to produce a line above the noise in an averaged spectrum are not expected due to searches
over datasets from previous observing runs.

Some lines occupy a single frequency bin, while others occupy several bins. For the latter case, we
define the width of the line by noting the interval for which there is a statistically significant excess
above the background level estimated from neighbouring bins. Non-stationary “wandering lines” can be
narrow in a particular short time epoch, but vary in frequency over an observation run, leading to a
substantial widths in a run-averaged spectrum. Visual inspection is used in these studies, rather than
fully automated methods, because of the enormous range in line widths encountered, combined with

overlapping line structures that challenge automated tools.
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7.7.2 | Known lines and combs for O1 and 02

We present a table of lines and a table of combs for the O1 and O2 data runs, with a description of the
source of the noise in each case for which it is known. Updated and more detailed lists can be found
at https://losc-dev.ligo.org/olspeclines/. Table 7.1 shows a list of O1 and O2 combs that have
been identified at the time of this writing, while table 7.2 shows a list of O1 and O2 single lines which

do not belong to any known comb.

7.8 | Conclusions

We have demonstrated the methods used for identification of narrow spectral artifacts caused by non-
astrophysical disturbances. These efforts benefit searches for persistent gravitational wave signals by
identifying those frequency bands affected by such disturbances. Some artifacts are caused by sources
that can be mitigated. Several examples of such mitigation efforts have been presented. While some of
the most pervasive combs have been reduced or mitigated, the causes of other artifacts remain unknown
(see figure 7.4 and table 7.1).

As detector noise is reduced between observing runs, other previously unseen lines and combs are likely
to become apparent, requiring further identification and mitigation efforts. In addition, as described in
this article, detector maintenance activities can inadvertently create new spectral artifacts. Careful
monitoring of the data will continue to be required in order to prevent contamination of long epochs of
detector data. Mitigating narrow spectral artifacts will also be needed well into the advanced gravitational

wave detector era.
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Spacing Offset Range of Description Detector Run
(Hz) (Hz) visible harmonics
0.0470* 972.1417 0-1 Unknown H1 02
0.088425* 76.3235 0-14 Unknown H1 o1
0.08844* 153.4428 0-9 Unknown H1 02
0.2000 0.0000 106-191 Unknown L1 02
0.6000%* 0.5690 742-745 Unknown L1 02
0.9865* 18.7433 0-37 Unknown L1 o1
0.9878881 0.0000 21-64 Unknown H1 02
0.987925 0.0000 25-52 Unknown L1 02
0.98793 21.7344 0-27 Unknown L1 o1
0.99678913 0.0000 23-695 Unknown L1 02
0.9967943 0.0000 21-685 Unknown L1 02
0.99816 30.9430 0-30 Unknown H1 o1
0.9981625 64.8804 0-8 Unknown H1 o1
0.9991573 0.0000 26-89 Unknown H1 o1
0.999970 18.2502 0-35 Unknown L1 o1
0.999975 76.75 0-36 Unknown L1 o1
0.999979* 31.7512 0-24 Unknown L1 o1
0.9999862 0.2503172 20-52 Unknown H1 02
0.999989 20.5000 0-69 Unknown L1 o1
0.99999 19.2500 0-33 Unknown H1 o1
1.0000 0.0000 20-140/20-125 Unknown L1/H1 02
1.0000%* 15.7487 0-13 Unknown L1 o1
1.0000 16.0000 0-94 Unknown H1 o1
1.0000 8.5000 0-136 Blinking LEDs in timing system H1 O1
1.0000 0.1000 1238-1416 Unknown L1 02
1.0000 0.5000 20-77/20-136 Unknown L1/H1 02
1.0000 0.9987 23-114 Unknown H1 02
1.0000 0.9994 20-43 Unknown H1 02
1.4311 40.0737 0-5 Unknown L1 o1
1.7000 0.3500 25-31 Unknown L1 02
1.9464* 9.73203 0-27 Unknown L1 o1
2.040388 0.0000 9-34 Unknown H1 o1
2.074121875 0.0000 9-32 Unknown H1 o1
2.074231250 0.0000 9-32 Unknown H1 o1
2.109236 0.0000 14-30 Unknown H1 02
2.202136 0.0000 11-22 Unknown L1 O1
2.20458 0.0000 10-21 Unknown L1 o1
3.89284 37.0226 0-5 Unknown L1 o1
4.0000 27.7633 0-4 Unknown L1 o1
8.0000 0.0000 1-250 OMC length dither H1 o1
8.0000 0.0000 3-16 Unknown H1 02
11.1111 0.0000 1-6 Vacuum sensors H1 02
11.394784 0.0000 2-8 Unknown H1 02
11.395279 0.0000 2-8 Unknown H1 02
11.92117 19.8422 0-6 Unknown L1 o1
11.985395 0.0000 1-22 Unknown L1 o1
19.07328 9.53672 1-7 Unknown H1 02
20.83272 0.0000 1-46 Unknown H1 o1
31.4127 0.0000 1-2 Unknown H1 o1
31.4149 0.0000 1-2 Unknown H1 o1
56.840557 0.0000 1-7 Unknown H1 o1
60.0000 0.0000 1-9 Power mains H1/L1 01/02
66.665 0.0000 1-2 Unknown L1 o1
76.32344 0.0000 1-8 Unknown H1 o1
99.9987 0.0000 1-7 Unknown H1 02
99.99877 0.0000 1-12 Unknown H1 01/02
99.99925625 0.0000 4-20 Unknown L1 o1
99.99928 0.0000 1-20 Unknown L1 o1

Table 7.1: All identified combs at the time of this writing during O1 and O2 that appeared in the run-averaged
spectra (spacings marked with a * produced more than one comb with different offsets and showing at different
harmonics). The frequencies of the teeth of a comb are given by: fn = fo +ndf, where fo is given by the second
column, df is given by the first column and n is given by the third column. Most of the identified combs are from

unknown origin and have not been eliminated at the time of this writing.
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Freq. (Hz) Description Detector Run
28.6100 Coherent with safe PEM channel(s) H1 01/02
29.8019 Coherent with safe PEM channel(s) H1 01/02
35.7048 Coherent with safe PEM channel(s) H1 01/02
35.7065 Coherent with safe PEM channel(s) H1 01/02
35.7624 Coherent with safe PEM channel(s) H1 01/02
35.7628 Coherent with safe PEM channel(s) H1 01/02
35.9000 Calibration H1 01/02
36.7000 Calibration H1 01/02
37.3000 Calibration H1 01/02
44.7029 Coherent with safe PEM channel(s) H1 o1
59.5110 Coherent with safe PEM channel(s) H1 o1
59.5229 Coherent with safe PEM channel(s) H1 o1
74.5049 Coherent with safe PEM channel(s) H1 o1
83.3155 Coherent with safe PEM channel(s) H1 o1
89.4060 Coherent with safe PEM channel(s) H1 o1
99.9790 Coherent with safe PEM channel(s) H1 01/02
104.3068 Coherent with safe PEM channel(s) H1 o1

299.60 Beam-splitter violin mode H1 01/02
302.22 Beam-splitter violin mode H1 01/02
303.31 Beam-splitter violin mode H1 01/02
331.9000 Calibration H1 01/02
495-513 Test mass violin mode region H1 01/02
599.14 Beam-splitter violin mode H1 01/02
599.42 Beam-splitter violin mode H1 01/02
604.49 Beam-splitter violin mode H1 01/02
606.67 Beam-splitter violin mode H1 01/02
898.78 Beam-splitter violin mode H1 01/02
899.24 Beam-splitter violin mode H1 01/02
906.83 Beam-splitter violin mode H1 01/02
910.10 Beam-splitter violin mode H1 01/02
986-1014 Test mass violin mode region H1 01/02

1083.7000 Calibration H1 01/02

1456-1488 Test mass violin mode region H1 01/02
1922-1959 Test mass violin mode region H1 01/02
22.7000 Calibration L1 02
23.3000 Calibration L1 02
23.9000 Calibration L1 02
31.5118 Coherent with safe PEM channel(s) L1 o1
33.7000 Calibration L1 o1
34.7000 Calibration L1 o1
35.3000 Calibration L1 o1
35.7064 Coherent with safe PEM channel(s) L1 o1
35.7632 Coherent with safe PEM channel(s) L1 o1
39.7632 Coherent with safe PEM channel(s) L1 o1
99.9775 Coherent with safe PEM channel(s) L1 o1
100.0000 Coherent with safe PEM channel(s) L1 o1
100.0020 Coherent with safe PEM channel(s) L1 o1

306.20 Beam-splitter violin mode L1 01/02
307.34 Beam-splitter violin mode L1 01/02
307.50 Beam-splitter violin mode L1 01/02
315.10 Beam-splitter violin mode L1 01/02
331.3000 Calibration L1 01/02
333.33 Beam-splitter violin mode L1 01/02
497-520 Test mass violin mode region L1 01/02
615.03 Beam-splitter violin mode L1 01/02
629.89 Beam-splitter violin mode L1 01/02
630.17 Beam-splitter violin mode L1 01/02
630.39 Beam-splitter violin mode L1 01/02
918.76 Beam-splitter violin mode L1 01/02
926.63 Beam-splitter violin mode L1 01/02
945.35 Beam-splitter violin mode L1 01/02
945.72 Beam-splitter violin mode L1 01/02
991-1030 Test mass violin mode region L1 01/02

1083.1000 Calibration L1 01/02
1225.20 Beam-splitter violin mode L1 01/02
1457-1512 Test mass violin mode region L1 01/02
1922-1990 Test mass violin mode region L1 01/02

Table 7.2: Some known lines from O1 and O2 which do not belong to any found comb. Many more lines are found
in the run-averaged spectra, but only lines from known origin or also found in other channels are reported as being

safe to veto by the astrophysical searches.



CHAPTER 8

CONCLUSIONS

The main topic of this thesis has been continuous gravitational waves, long-duration quasi-monochromatic
waves that are mainly emitted by neutron stars. In this chapter we summarize the main results obtained

in this thesis and mention some ideas for future work.

8.1 | Summary

The first detection a continuous gravitational wave signal is one of the most anticipated events within the
gravitational-wave data analysis community. This detection will mark the beginning of the continuous
monitoring of GW sources. The astrophysical information that can be learned form these detections is
huge. For example, the equation of state of matter at supranuclear densities is one of the most sought-
after questions in modern physics, and CWs will be able to contribute with significant constraints that
will help to select the best models.

This thesis has been devoted to the search of continuous gravitational waves from unknown neutron
stars, both in isolated or binary systems. All-sky searches represent the most computationally demanding
type of search, due to both the high dimensionality of the parameter space and the wide ranges within
each dimension that need to be searched, since no prior information about the sources is known. Due
to the high number of unseen neutron stars that are expected to be present in our galaxy, searches for
CWs from unknown objects are very interesting because gravitational waves could be detected from more
extreme neutron stars than the ones that have been detected with electromagnetic radiation.

Since optimal methods such as matched filtering cannot be used due to their high computational cost,
other non-optimal procedures have to be developed and characterized in order to carry out these searches.
In this thesis we have focused on SkyHough, an algorithm that had been previously used in many all-sky
searches, with a sensitivity very similar to the best all-sky methods but with the lowest computational
cost. This algorithm is based on the Hough transform, a technique firstly developed to search for the
tracks generated by particles in bubble chambers.

The first part of this thesis has contained three introductory chapters, which have laid out with great
detail the theoretical basis that is needed to understand the original results presented in the second part.
These three introductory chapters have explained concepts related to: the mathematical description of
gravitational waves (both the generation of these waves and their propagation through vacuum); the dif-
ferent sources that are expected to emit detectable gravitational waves; an introduction to interferometric
ground-based detectors; a basic introduction to neutron stars and the pulsar population; how neutron
stars can generate gravitational waves; an introduction to basic data analysis concepts; an introduction

to continuous waves and the SkyHough algorithm.
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The second part of this thesis has been composed of four different chapters with original scientific
results that have been published in high-impact journals. Chapter 4 has shown different sensitivity
improvements to the already existing SkyHough pipeline, and an all-sky search with Advanced LIGO
02 data that has improved the past upper limits. Chapter 5 has presented a newly developed pipeline
called BinarySkyHough, which can perform all-sky searches from neutron stars in binary systems, a
search that is even more complex than isolated all-sky searches due to the higher dimensionality of the
parameter space. This new pipeline is the most sensitive method that is currently available to do these
kinds of searches. This pipeline has been used in chapter 6 to perform an all-sky search from neutron
stars in binary systems using O2 Advanced LIGO data. This has been the first search of this kind to
use data from second generation detectors, and has improved the previous upper limits by a factor of
17. Although the searches presented in this thesis have not detected a CW, they have placed the best
upper limits (in some regions of parameter space) on gravitational-wave amplitude to date. The last
chapter with original results has been chapter 7, which has explained the importance of characterizing
the long-duration noise present in interferometric detectors and how this can be done. This chapter has

shown several investigations that have mitigated noise that was present in the H1 detector.

8.2 | Future work

The main objective of these searches is the detection of a continuous wave, although the timeline for this
event is highly uncertain, due to the unknown distribution of the ellipticity parameter within the galactic
neutron star population. Nevertheless, the work presented in this thesis tries to improve the data analysis
methods in order to bring the first detection as close as possible.

There are multiple ways to improve the results presented in this thesis. The most obvious continuation
is to use the data from the next observing runs, such as O3, which will be more sensitive since the noise
of the detectors is reduced between observing runs. Besides the noise improvement, the O3 run will be
longer, thus further improving the chances of detection.

Regardless of the improvement of the detectors themselves, there are numerous ways that our algo-
rithms could be improved. The GPU implementation of the BinarySkyHough algorithm could be applied
to the isolated SkyHough pipeline, thus reducing its computational cost. This reduction could be applied
to reducing the mismatch, thus incrementing the probabilities of detection, or it could be used to increase
the range of parameter space that is searched. For both SkyHough and BinarySkyHough, the placement
of templates could be improved if a metric mismatch procedure together with a lattice grid (instead of
a cubic grid) is used to place the templates. An analytical study of how to optimize the distribution
of available computational power between the parameter space, and which mismatch parameters to use,
could also help to improve the chances of detection. Besides improving the algorithms that already exist,
another possibility is to invent new ones which could be more sensitive. A new option stems from the
machine learning research, which is beginning to be applied to gravitational waves.

The O2 all-sky search with BinarySkyHough has searched a very small part of the ranges of the
binary parameters. Searches targeting lower orbital periods are also interesting. Furthermore, a search
for eccentric systems could be done, but the computational complexity would again increase.

Detecting a continuous wave could be the next big achievement in the gravitational-wave data analysis
field. Besides the importance and merit of the achievement by itself (due to the massive computational
costs of these searches and the very small amplitude of CWs), we have discussed the multiple and diverse
astrophysical implications that a CW detection would have. Neutron stars are among the second most
compact objects in the universe, and they also possess the biggest known magnetic fields. The equation of
state near the center of these stars is unknown, and CWs could help to constrain and better understand
this equation. Furthermore, CWs can be used to test alternative theories of gravity and can be used to

perform population studies, once more than one detection is made.
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