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Gapped bilayer graphene can support the presence of intragap states due to kink gate potentials
applied to the graphene layers. Electrons in these states display valley-momentum locking, which
makes them attractive for topological valleytronics. Here, we show that kink-antikink local poten-
tials enable modulated scattering of topological currents. We find that the kink-antikink coupling
leads to anomalous steps in the junction conductance. Further, when the constriction detaches
from the propagating modes, forming a loop, the conductance reveals the system energy spectrum.
Remarkably, these kink-antikink devices can also work as valley filters with tiny magnetic fields.

I. INTRODUCTION

For many years, there has been considerable interest
in providing with reliable platforms that can create, ma-
nipulate and detect qubits. Eventually, these quantum
information processing tasks are to be supplemented with
protected communication channels to transmit quantum
states between distant sites. Graphene has emerged as an
excellent candidate in scalable solid-state architectures
due to its ultra long decoherence times for spin qubits
and its ability to host additional isospin (valley) degrees
of freedom1–3. These emerge as theK andK ′ points from
the Dirac cones in the reciprocal space of the graphene
hexagonal lattice.

However, pristine graphene lacks a bandgap, which
handicaps potential applications of this material for na-
noelectronics. This circumstance can be surpassed with
the employment of two graphene sheets (hereafter, bi-
layer graphene or BLG)4,5. Interlayer coupling in a
Bernal stacking structure (common also to graphite) gen-
erates a huge band splitting of the order of 380 meV,
although two bands still remain degenerate at the neu-
trality point. Further application of a perpendicular elec-
tric field creating a potential difference between the two
layers finally lifts the electronic degeneracy6,7. The gap
thus opened can now be used to design tunnel barri-
ers and quantum point contacts8,9. Unlike monolayer
point contacts that are fabricated by etching10,11 and
show trapped states due to edge roughness, BLG quan-
tum wires display clear conductance quantization steps.
Further, if two of these barriers are connected in a series
the device works as a quantum dot12–15. Therefore, ro-
bust spin or valley qubits can form in BLG dots showing
a discrete spectrum.

An even more exciting possibility arises in BLG sys-
tems. When the perpendicular electric field becomes in-
homogeneous by changing its sign in different regions of
the BLG, the domain wall separating the two opposite
fields holds topological states propagating next to the
wall (edge states)16,17. These types of domain wall and
propagating states are known as kink and kink states,
respectively. The topological character originates from
the field induced band inversion and confinement. Inter-
estingly, the valley index remains a good quantum num-

ber18 and as a consequence the kink states become chi-
ral with different valleys traveling in opposite directions
along the kink19. Crucially, such propagating states exist
at zero magnetic field and for vanishing spin-orbit cou-
pling. Hence, if electrons are injected from the side into
a straight kink using a small dc bias, the output flux
becomes valley polarized. If the structure is built zero
dimensional like a dot, the bound states are valley degen-
erate but chiral. These topological states can even show
Luttinger behavior20 or become massless Dirac modes21

in the presence of interactions or periodic potentials, re-
spectively.

The challenge then is how to probe and manipulate
these unique kink states. This can be achieved with pairs
of gates whose voltage is tuned independently in both
the top and bottom layers22,23. Experimentally, a con-
ductance of 4e2/h is observed, which demonstrates the
presence of two current-carrying spin-degenerate valley-
polarized modes. Alternate combinations of dual gates
can be implemented for guiding these modes in valley
valves and beam splitters24,25. However, signatures of
disorder are detected, inducing backscattering and inter-
valley mixing. What is needed is a controlled source of
backscattering that would allow to shape ballistic beam
splitters for, e.g., topological valleytronic interferome-
try26. Here, we show that this is possible with a careful
distribution of top/bottom gate pairs, enabling the for-
mation of a lateral constriction over two parallel kinks,
as sketched in Fig. 1a. The two kinks have symmetric
changes in the field polarity and opposite propagation
directions for a given valley, thus one kink being the an-
tikink of the other16,17. We below demonstrate that a
kink-antikink constriction is able to modulate the trans-
mission electrostatically, what paves the way for the fab-
rication of topological quantum point contacts and wires.

Importantly, the setup can be slightly rearranged to
also furnish bound states when the kink-antikink con-
striction (Fig. 1b) transforms into a side loop (Fig. 1c).
Previous works on similar BLG islands assumed a sharp-
potential kink27 or infinite-mass boundary conditions28

that create rings exhibiting Aharonov-Bohm energy lev-
els. However, these are closed systems and as such their
properties would be difficult to examine in an experi-
ment. In contrast, our loops are weakly coupled to the
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FIG. 1. (a) Schematic of a bilayer graphene kink-antikink
system with lead regions (L and R) and a central scatterer
(C). The electric field direction on the graphene layers (gray
sheets) is controlled by the voltages applied to the nine top
and bottom gates (blue and orange regions). The values of
the Va applied potentials to the lower gates (not shown) are
reversed with respect to the top gates. The field inversion be-
tween the blue and orange regions creates an interface (white
region) where topological modes emerge. Additionally, a volt-

age V
(C)
s is applied only to the central region. Red lines rep-

resent these propagating topological modes for the valley K.
K′ modes are obtained by reversing the arrows. Current is
generated from the left (source) terminal to the right (drain)
terminal. Dimensions and position of the central scatterer are
given by Lx, Ly and y0, while the asymptotic separation of
the two kinks is L′

y. (b,c) Selected configurations represent-
ing a constriction (b) and a side loop (c), the latter formed
when y0 > L′

y. (d) Energy bands of a translationally invari-
ant kink-antikink wire of width L′

y = 300 nm, kink potential
height Va = 10 meV and potential smoothness s = 38 nm.
Each band is fourfold degenerate (spin and valley) in the ab-
sence of magnetic fields.

external (side) kinks, topological as well. We show that
the measured conductance peaks correlate with the sys-
tem levels and the setup is therefore most suitable for
doing spectroscopy of chiral bound states.

Let us discuss in more detail our proposal, as illus-
trated in Fig. 1a, and highlight our main findings. The
system consists of a BLG with the same gate distribu-
tion in both the upper and lower graphene layers (gray

sheets). The applied potentials to the lower gates, not
shown in Fig. 1a, reverse the values for Va with respect

to the top gates but keep the same value for V
(C)
s , as

detailed below in Sec. II. The changes in electric field
orientation occur in the white interfaces defining, respec-
tively, the topological kink and antikink that form the
quasi-one dimensional (1D) propagating channels. The
arrows in Fig. 1a qualitatively indicate electron propa-
gation for a given valley on the BLG planes when the
kink and antikink are well separated. x is the transport
direction, the edge states are confined along y and the di-
rection perpendicular to the graphene layers is denoted
with z (not shown here). Electronic motion is determined
by chirality due to valley-momentum locking (we only de-
pict states from valley K). A narrow central constriction
allows for a controlled transmission of the injected beams
(see Fig. 1b). We find anomalous steps of the conduc-
tance as the central potential is varied. If the constriction
detaches from the left and right channels, a loop then
forms (Fig. 1c) and the conductance now displays reso-
nant peaks, their location giving information about the
energy levels inside the loop. Altogether, the structure
is a remarkable playground for electrical transport stud-
ies of both propagating and localized topological valley
states.

II. MODEL

We use an effective eight-component model, valid for
low energies near the Dirac points of the BLG crystalline
band structure. The Hamiltonian reads4,5

H = vF

(
px − ~

y

l2z

)
τzσx + vF pyσy

+
t

2
(λxσx + λyσy ) + Vs + Va λz , (1)

with three characteristic pseudospins (valley τxyz, sub-
lattice σxyz and layer λxyz) described by corresponding
Pauli matrices while px and py are momentum opera-
tors. Two of the model paremeters are intrinsic of BLG,
namely, the graphene Fermi velocity ~vF = 660 meV nm
and the interlayer coupling t = 380 meV. Then, lz =√
~/eB is the magnetic length for an external magnetic

field B whereas Vs and Va are respectively the symmet-
ric and asymmetric potentials applied to the layers. For
uniform potentials, Vs is just a global energy shift while
Va is a displacement energy that opens a gap in the BLG
spectrum.

We first discuss the spectrum that arises from Eq. (1)
for a kink-antinkink system at B = 0 and Vs = 0. When-
ever Va = Va(y) changes its sign the gap is inverted and
as a consequence four topological states per valley ap-
pear at each kink16,17. These correspond to the branches
seen around zero energy in Fig. 1d. The states above
E = 4.2 meV are extended states that do not remain at-
tached to the kinks in contrast to the topological states.
Further, the energy bands in Fig. 1d are not bounded
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either from below or from above since Eq. (1) describes
Dirac fermions. We also note that H is both valley diag-
onal (so that each valley can be independently treated in
a four-component subspace) and diagonal in the real spin
basis. However, whereas all states are hereafter degen-
erate for spins up and down, the spectrum is not valley
degenerate but obeys E(k, τz → 1) = E(−k, τz → −1)
due to time reversal symmetry. As a consequence, kink-
antikink currents are valley unpolarized. Later, we will
remark that a magnetic field breaks time reversal sym-
metry and thus valley polarizations can be observed in
the measured conductance.

In our calculations, the kink potentials vary smoothly
in y by means of a diffusivity s (see App. A for details of
the potential modeling). This smoothness becomes im-
portant when the kink-antikink separation is small, i.e.,
the constriction in Fig. 1b or the loop in Fig. 1c. Then, s
couples the kink states running on the two sides, a mech-
anism that is eventually responsible for the transmission
modulation. Along the transport direction x, the po-
tential interfaces are considered sharp. This assumption
is well justified since the mode wavelength λ is much
larger than the characteristic length la for inversion of
the static potentials. Electrostatic modeling in bilayer
graphene22,23 yields an estimate la < 50 nm, while in our
calculations we typically have λ & 300 nm.

We next consider the inhomogenous situation with L,
C and R regions along the transport direction x, sketched
in Fig. 1a. The distribution of applied potentials is seen
in Fig. 1a for the top layer. Gates on the bottom layer

have reversed Va and the same central shift V
(C)
s . We

solve the scattering problem in the presence of either the
constriction or the loop using complex band structure
methods29,30. This technique is especially well suited to
describe piecewise homogenous potentials in topological
systems. For each region a = L,C,R in Fig. 1a, a large

set of complex wavenumbers and eigenstates {k(a), φ(a)k }
is determined by exact diagonalization31. These sets of
solutions are then properly matched at the interfaces be-
tween central (C) and side regions (L,R). The ensu-
ing linear system of equations yields the transmission
amplitudes tn′n from input mode n to output mode n′.
The electric conductance is then determined by the two-
terminal formula G = (2e2/h)

∑
nn′ |tn′n|2, where spin

degeneracy is already taken into account and we assume
zero temperature (the experiments in Ref. 8 are done
at a very low temperature of 1.7 K). The set of com-
plex wavenumbers and wavefunctions of each region is
obtained with a finite difference discretization of a 1D
equation depending only on y since the x dependence dis-
appears thanks to the homogeneity of each region along
the transport direction. This 1D character enables an
accurate numerical resolution for large numbers of y grid
points, while no grid in x is needed.

The use of grid discretization methods for Dirac-
like problems leads to the infamous Fermion doubling
problem32–34, which introduces spurious replica states.
These are characterized by very short wavelength oscil-

lations, strongly fluctuating from one grid point to the
next. Similar replicas are obtained in our approach when
calculating the complex band structure of each region

{k(a), φ(a)k }. We filter out the replicas by coarse grain-
ing, performing an average with the right or left neigh-
boring point and neglecting those states whose norm is
affected by coarse graining. For dense grids, we easily
arrive at an unambiguous identification of the physical
states, which need to be smooth on the grid by definition.
Thus, the Fermion doubling problem does not affect the
linear system that determines the conductance since G
is based only on the sets of previously filtered solutions

{k(a), φ(a)k } and no further spatial grid is required near
the interfaces.

III. RESULTS

We study two systems formed with the gate distribu-
tion and geometry depicted in Fig. 1a: (i) when y0 < L′y
propagating modes can exist within the central area and
a quantum point contact behavior is expected (Fig. 1b);
(ii) when y0 > L′y a loop detaches from the left and
right leads (Fig. 1c) and we will consequently find quan-
tum resonance effects. In both devices, a key parameter

is the symmetric potential V
(C)
s in the central region,

which acts as an effective local probe allowing energy
spectroscopy of the constriction.

A. Quantum point contacts

We first present results for the narrow point con-
tact with a kink-antikink separation of 100 nm. This
value is compatible with the width of presently avail-
able BLG point contacts8,9. We set the kink diffusivity
to s = 40 nm, which is taken from the electric potential
distribution in dual split gate BLG devices22,23, and as-
sume an almost vanishing Fermi energy E = 0.02 meV,
close to the charge neutrality point.

The conductance for a 1µm-long constriction (here-
after the wire) as a function of the central potential is
shown in Fig. 2a. We observe that G is strongly sup-

pressed around V
(C)
s = 0 (region A). This is in principle

a surprise since the presence of the edge states at E = 0
in Fig. 1d would imply a fully transparent constriction.
However, when we plot in Fig. 2b the wire band structure
we notice that the topological bands display an absolute
gap (for any k) in region A (details of this gap are dis-
cussed in App. B). The kink potentials in the constric-
tion couple the edge states, leading to an almost complete
backscattering and hence a reduction of the conductance.
G does not reach zero because the electrons can traverse
the constriction by tunnel effect, which yields in any case

a tiny value for G. Then, as V
(C)
s increases the energy

exceeds the gap and we find in region B two propagating
states with positive velocity, per valley and spin. It fol-
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FIG. 2. Results for a narrow constriction (inset in panel
a) with Ly = 100 nm, y0 = 200 nm and a Fermi energy
E = 0.02 meV. (a) Conductance for Lx = 1µm as a func-

tion of the central potential V
(C)
s . (b) Energy bands for a

kink-antikink wire having the same parameters of the con-
striction. The capital letters and horizontal lines indicate the
correspondence with the conductance ranges of panel a. (c,d)
Same as panels a and b, respectively, with a magnetic field of
B = 50 mT. The two colors mark the two different valleys.

lows that G quickly reaches the quantized value of 8e2/h.

If V
(C)
s is further enhanced we enter region C, where a

single mode is only allowed, thus bringing G down to an

anomalous step of 4e2/h. Finally, larger values of V
(C)
s

approach us into region D, where another mode starts to
contribute and G grows again. The oscillations seen in
Fig. 2a are due to quantum interference of several modes
coexisting in the wire. We can thus conclude that there is
a remarkable correspondence between G and the wire en-
ergy bands. In fact, the particle-hole symmetry of Fig. 2b

implies that G(V
(C)
s ) = G(−V (C)

s ), as found in Fig. 2a.
We also point out that for nonzero temperatures the con-
ductance curves will be thermal smeared.

A small magnetic field, in the mT range, suffices to
yield large effects on the constriction conductance even
if the valley splitting of the energy bands is small (Fig.
2c). Here, we choose to separately display each valley
contribution to the conductance. Accordingly, the scale
of G reduces a factor 2e2/h as compared with Fig. 2a.
We find that the conductance shifts in opposite direc-
tions for the two valleys τz → ±1, making it possible
the creation of highly polarized valley currents, where
one valley component is essentially blocked while the
other is transmitted. The valley split bands are shown
in Fig. 2d. This behavior can be also seen with a sin-
gle kink due to valley-momentum locking. However, if
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FIG. 3. Density distribution, in arbitrary units, correspond-
ing to the conductance curves of Fig. 2c. Panels a and b are for
the two different valleys K and K′, respectively. Parameters:
Lx = 1000 nm, Ly = 100 nm, L′

y = 300 nm, y0 = 200 nm,

B = 50 mT, E = 0.02 meV and V
(C)
s = 0.2 meV.

we wish to invert the current valley polarization with a
kink we would need to revert the extended lateral gates
defining the kink whereas Fig. 2c shows the interesting
possibility of switching the valley polarization by simply

changing V
(C)
s , leaving both the lateral gates defining the

kinks and the magnetic field fixed. Therefore, our sys-
tem would work as an electrically tunable, fully reversible
valley filter using tiny magnetic fields.

This is better seen in Fig. 3, where we plot the density
distribution when electrons are injected from the source
terminal (left side). The two valleys (Fig. 3a and Fig. 3b)
contribute differently since the magnetic field is finite.
While for valleyK electrons impinge from the bottom left
kink (Fig. 3a), the opposite valley K ′ electrons (Fig. 3b)
enter from the top left kink. The former (latter) are
mostly transmitted (reflected), giving rise to a valley po-
larized current in the drain terminal (right side).

The dependence of G on the constriction length Lx
(see Fig. 4) further supports our interpretation. We dis-

play the conductance for V
(C)
s corresponding to the four

regions indicated in Fig. 2a. In the gapped region A the
conductance decays exponentially for large values of Lx,
which agrees with a transport mechanism based on tun-
nel effect. In regions B and D the conductance shows
an oscillatory behavior up to arbitrarily large distances,
implying a Fabry-Perot interference between propagat-
ing modes in the central area. The conductance becomes
quantized at 4e2/h in region C, which occurs when the in-
terfaces between the leads and the constriction becomes
transparent. Finally, in region D we recover the oscil-
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FIG. 4. Dependence of the conductance on the constriction

length Lx for the results of Fig. 2a and selected values of V
(C)
s ,

as given in parenthesis. A-D labels are used to indicate the
same regions of Fig. 2a.

latory behavior due to the activation of a new trans-
port channel. In all cases the role of quantum tunnel-
ing for small Lx is clearly seen because the conductance
increases as Lx shrinks to zero and scattering thus dis-
appears.

B. Side loops

Let us turn to the loops created as the gate position y0
shown in Fig. 1a increases. Then, the edge states in the
central region detach as illustrated in Fig. 1c. Figure 5a
shows in this case a conductance pattern that strongly
differs from the wire system of Fig. 2a. G is characterized
by resonant peaks that reach values of the order of 4e2/h
(we plot G/2 for convenience). Interestingly, these peaks
are correlated with the discrete levels in the closed loop.
To see this, we plot in Fig. 5d the loop energy spectrum.
We find that the position of the conductance peaks agree,
apart from a slight renormalization due to the coupling
with to external edge states, with the level positions. The
particular peak structure is highly sensitive to the loop
dimensions (Lx, Ly) due to quantum confinement.

A small magnetic field splits the conductance peaks,
as shown in Fig. 5b where we plot the valley resolved G
for B = 50 mT. It is noticeable that the peak widths are
significantly reduced in the presence of B, thus leading
to smaller conductance minima; cf. Figs. 5a and 5c. The
conductance splitting is explained with the level behav-
ior as a function of B as shown in Fig. 5d. The field
acts differently on the two valleys, thus raising (lower-
ing) the energy for τz → 1 (τz → −1). B-splitting of
the two valleys is also present for the case of non topo-
logical bound states in graphene circular quantum dots,
discussed in Ref. 35, where states of the same angular mo-
mentum and opposite valleys show opposite dispersions
at low fields. Besides the splitting, the spectrum in Fig.

FIG. 5. Results for a side loop (inset in panel a) with
Ly = 150 nm, y0 = 310 nm and Fermi energy E = 0.02 meV.
(a,b) Conductance for Lx = 1µm as a function of the central

potential V
(C)
s for B = 0 (a) and B = 50 mT (b). (c) Conduc-

tance as a function of the magnetic field for Vs(C) = 0. (d)
Energy levels for the finite loop (Lx, Ly) = (1µm, 150 nm) as
a function of the field. The two colors in panels b-d indicate
the two different valleys.

5d for topological loops shows a pattern of almost parallel
lines for each valley, reflecting a quantization condition of
the topological states along the perimeter of the loop27.
Our results obey reciprocity, i.e., G is unchanged when
both B and the valley index are simultaneously reversed,
as can be seen in Fig. 5c. It is also worth stressing that
the valley and gate sensitivity allows, as in the constric-
tion, switching the valley polarization of the current by
soley tuning the gate potential, only that a finer tuning is
needed in the detached loop in order to hit the narrower
peak maxima.

Probability density distributions in space provide a
more visual support for this valley switch effect (see
Fig. 6). We note that just one valley is populating the
loop (Fig. 6b) while the other one is reflected (Fig. 6a).
Thus, the valley-split resonant conductances of side loops
in small magnetic fields imply high valley accumulations
on the loop for specific gate potentials.

We now briefly discuss the dependence on Lx. In Fig. 7
we show results for a wide loop of Ly = 150 nm as in

Fig. 5a. For V
(C)
s corresponding to a conductance val-

ley in Fig. 5a the conductance curve in Fig. 7a (black
line) shows a single-mode regular spacing, which is in
agreement with the degeneracy due to level crossing for

E = 0 of Fig. 7b. In contrast, for a V
(C)
s value that gen-

erates a G peak in Fig. 5a the conductance curve shows
multiple-mode spacings in Fig. 7a (light green line). Fur-
ther, we get accidental crossings at values of Lx that
lead to additional factor-2 degeneracies in Fig. 7b. The
case of a narrow loop (Ly = 100 nm) is shown in Fig. 8.
In contrast to the previous case, the conductance valley
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FIG. 6. Density distribution corresponding to the results of
a side loop depicted in Fig. 5b. The central gate potential is

V
(C)
s = 0.3 meV and it corresponds to a K′ valley peak (light

color) in Fig. 5b. Panels a and b are for the two different
valleys K and K′, respectively. Parameters: Lx = 1000 nm,
Ly = 150 nm, L′

y = 300 nm, y0 = 310 nm, B = 50 mT,

E = 0.02 meV and V
(C)
s = 0.3 meV.

FIG. 7. (a) Lx dependence of the conductance for two selected

values of V
(C)
s for the parameters of the Ly = 150 nm side

loop of Fig. 5a. (b) Energy levels of the closed rectangular
loop with Ly = 150 nm as a function of Lx.

FIG. 8. (a) Lx dependence of the conductance for a narrow

loop (Ly = 100 nm) and two selected values of V
(C)
s with the

rest of the parameters as in Fig. 7. (b) Energy levels of the
closed loop with the same Ly = 100 nm as a function of Lx.

curve is quenched as Lx increases (black line in Fig. 8a)
whereas the peak curve exhibits a beating pattern over-
imposed to the peak sequence (green line). Figure 8b
shows the energy levels when the narrow loop is closed.
We observe regions with a bunching of levels separated
from others with regularly spaced levels. This is con-
sistent with the conductance peaks obtained in Fig. 8a.
Despite the fact that the conductance patterns depend
on the specific geometry of the loop (via Lx and Ly), in
all cases the conductance peaks are correlated with the
energy levels of the closed loop. Thus, the conductance
serves as an excellent tool to probe the internal structure
of topologically bound states.

IV. CONCLUSIONS

We have proposed a versatile nanodevice for topolog-
ical studies in quantum valley transport. Transmission
manipulation is achieved by means of a kink-antikink lo-
cal potential that allows the formation of (i) point con-
tacts with anomalous quantized conductance and (ii) side
loops with chiral quasi-bound states. The obtained con-
ductance curves provide information on the system en-
ergy spectrum. For tiny magnetic fields we obtain a val-
ley polarization effect and this polarization is tunable
with the gate potential.

These illustrative examples do not exhaust the capabil-
ities of our system, where more sophisticated setups could
be envisaged. Importantly, the predictions we make here
will be unaffected by disorder in realistic samples since
the device works at low energies with topological states
only, which are robust against weak or moderate disor-
der strengths36. Finally, our model could be straight-
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ba

FIG. 9. Sketch of the smooth asymmetric potentials in
(a) single kink and (b) double kink (also called kink-antikink
in the main text). The diffusivity parameter s controls the
degree of smoothness.

forwardly extended to multivalley materials other than
bilayer graphene such as silicene37, sonic crystals38 and
photonic platforms39.
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Appendix A: Potential smoothness

Smoothness in the space variation of the asymmetric
potential Va(y) is described with a logistic function. A
smooth step at position y1 and diffusivity s (equivalently,
the steepness inverse) is represented by

F(y, y1, s) =
1

1 + e(y−y1)/s
. (A1)

In detail, the case of a single kink at y1 reads

V (sk)
a (y) = Va [1− 2F(y, y1, s)] , (A2)

with the asymptotic values V
(sk)
a (±∞) = ±Va. In a

straightforward extension, the double kink forming a
kink-antikink system at y1 and y2 reads

V (dk)
a (y) = Va [1 + 2F(y, y1, s)− 2F(y, y2, s)] ,

(A3)

Sketches of single and double kinks with the above
parametrizations are shown in Fig. 9.

Appendix B: Kink-antikink gap

We address here how the gap of the kink-antinkink
band structure (see Fig. 2b) varies with the separation
Ly and the potential diffusivity s. The results are shown
in Fig. 10a and b, respectively, and they confirm, as was
anticipated, that the gap strongly increases when Ly de-
creases. However, it is remarkable that this dependence
is non monotonic, with oscillations and with particular
values of Ly and s for which the gap vanishes. This be-
havior can be attributed to the oscillations of the wave
functions16,17, as can be seen from the overlap of two
displaced kink states

O(Ly) =

∣∣∣∣∣∑
στλ

∫
dy ψ∗στλ(y)ψστλ(y − Ly)

∣∣∣∣∣ , (B1)

shown in the inset to Fig. 10a. In Eq. (B1) ψ is the
wave function for k near the branch crossing at zero en-
ergy of the single kink. For the steep potential in Fig. 10
(s = 12 nm) the Ly of minimum gap and the Ly of vanish-
ing overlap are in good agreement, while for the smooth
potential (s = 40 nm) the agreement is only qualitative.

FIG. 10. a) Energy gap of the kink-antikink band structure
as a function of the separation Ly and for two potential dif-
fusivities s. The data points are obtained from the numerical
band structure while the joining lines are a guide to the eye.
The inset shows the wave function overlap O of independent
kink and antinkink as a function of distance with the same
color code. b) Energy gap as a function of the diffusivity for
a fixed separation. Parameters: Va = 10 meV, Vs = 0.
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