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In this paper, the standard theoretical model accounting for a double barrier quantum well resonant tunneling diode
(DBQW-RTD) connected to a direct current (DC) source of voltage is simplified by representing its current-voltage
characteristic with an analytically approachable, anti-symmetric N-shaped function. The time and variables involved
are also transformed to reduce the number of parameters in the model. Responses observed in previous, more physically
accurate studies, are reproduced, including slow-fast dynamics, excitability and bistability, relevant for spiking signal
processing. A simple expression for the refractory time of the excitable response is derived and shown to be in good
agreement with numerical simulations. In particular, the refractory time is found to be directly proportional to the
circuit’s intrinsic inductance. The presence or absence of bistability in dependence of the parameters is also discussed
thoroughly. The results of this work can serve as a guideline in prospective endeavors to design and fabricate RTD-based
neuromorphic circuits for power and time-efficient execution of neural network algorithms.

Nanoscale resonant tunneling diodes have a potential
application as fundamental units (i.e., nodes) in spik-
ing neuromorphic processors given their locally nega-
tive differential conductance, small size and high fre-
quency. In prior theoretical studies1–3, a resonant tunnel-
ing diode connected to DC voltage has been demonstrated
as a class-2 excitable spike generator (i.e., excitability is
achieved when the circuit is biased in the proximity to
an Andronov-Hopf bifurcation4). In these works, the
non-ohmic current-voltage characteristic is represented
by Schulman’s formula5 which, while physically accu-
rate, is also analytically complex. Here, a more simple,
anti-symmetric, N-shaped current-voltage characteristic,
made by a linear function minus a sigmoid, is used in-
stead. This, together with the normalization of the time
and variables involved in the equations, provides a sim-
plified model with a reduced number of parameters that
reproduces most of the typical responses reported in the
works mentioned above. The simplified model also allows
for an approachable description of the equilibrium solu-
tions and their transitions in terms of the parameters on
the analytical, numerical and geometrical basis. In par-
ticular, the model may or may not exhibit a coexistence of
fixed-value response with self-oscillations (i.e., bistability),
which represents a hindrance for the purpose of excitable
spike generation. Based on an adiabatic approximation
and slow-fast dynamics, an analytically simple expression
for the refractory time (i.e., the duration of the excitable
spike) is integrated. This expression is shown to be directly
proportional to the circuit’s intrinsic inductance and is in
good agreement with numerical simulations.

I. INTRODUCTION

During the last years, the field of Artificial Intelligence (AI)
has experienced an explosive growth. Every day, Neural Net-
works and Machine Learning algorithms find new applica-
tions in both industry and academic research, with the sub-
sequent increase in the demand for competent professionals
and hardware. Nonetheless, one of the most significant ob-
stacles that stagnate these applications lies on the very archi-
tecture modern computers are designed under, inspired by the
Von Neumann model and the Complementary Metal Oxide
Semiconductor (CMOS) technology. The cornerstone behind
AI is learning by mining and analyzing large amounts of pre-
existing data and current computers are able to execute these
algorithms only at the cost of long waiting times and high en-
ergy consumption. The causes are numerous and include the
inability of processors to distinguish instructions from data,
unnecessary data displacements between physically distant
units within integrated circuits and heat dissipation in elec-
tronic junctions.

Several efforts are being carried out with the purpose of
designing a new architecture able to meet the requirements
discussed above. Examples include the IBM TrueNorth chip6

and Intel Quark SE chip7, as well as an optoelectronic imple-
mentation by Robertson et al8 and an all-optical implementa-
tion by Feldmann et al9. These projects share a common core
idea: to emulate the dynamics of the Human brain and neu-
rons, based upon generation and propagation of short voltage
spikes at arbitrary moments. This is possible because neurons
are excitable systems, i.e., they respond to an external stimulus
solely in the case that such stimulus is stronger than a certain
threshold. The response is complex and drives the system far
away from its natural state of equilibrium, but only for a short
span (in the ms range), known as refractory time4,10,11. Dur-
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ing the refractory time, the system is unable to respond to any
subsequent stimulus, regardless of its strength. Data process-
ing in the form of excitable spikes has the expressiveness of
analogical signaling as well as the advantage of lower energy
consumption and robustness in presence of noise, proper of
digital signaling.

A fast, low-power spike-signaling architecture based on
resonant tunneling diodes (RTDs) has been proposed in pre-
vious works1,12. An RTD is a non-ohmic device with a
highly nonlinear current-voltage characteristic, resulting from
its multi-layer semiconductor structure, aimed to produce a
double barrier quantum well (DBQW). An incident electron
may cross the DBQW with a probability that is locally max-
imized if its Fermi energy level matches one of the confine-
ment eigen-energy levels of the barrier. Consequently, the
current intensity across the RTD exhibits local maximal points
at finite, nonzero voltages, with local minimal points in be-
tween. This in turn defines regions of positive differential con-
ductance (PDC) and negative differential conductance (NDC).
This property allows RTDs to exhibit self-oscillations in re-
sponse to a direct current (DC) input. Indeed, RTDs are the
smallest and fastest oscillators up to date, able to emit sig-
nals in the terahertz (THz) frequency range13,14. The po-
tential of RTDs in ultrahigh-rate digital signaling has been
vastly explored15,16. However, an RTD can also behave as an
excitable spike generator with the proper specifications and
configuration1–3,17. With this in mind, nanoscale RTDs can
be used as single units (i.e., nodes that emulate the dynamics
of a spiking neuron) in RTD-based neuromorphic processors,
which could in turn execute machine learning and neural net-
work algorithms efficiently.

On this regard, it is essential to have an understanding of
the responses that RTD-based circuits exhibit in terms of the
parameters that define them. To this end, a theoretical model
is proposed by Romeira et al1 that describes the dynamics of
an RTD connected to electrical and optical inputs. The model
includes an analytical expression accounting for the current-
voltage characteristic provided by Schulman5. This formula is
derived by applying the Fermi-Dirac statistics in an idealized
DBQW-RTD with a single NDC region embedded in between
two PDC regions, separated by one peak and one valley. Thus,
the I-V characteristic has a well known N-shaped profile like
those typically observed in micro and nanoscopic RTDs13–16.
Romeira’s model with Schulman’s curve is also studied in a
successive work2, where a wide variety of phenomena, such as
self-oscillations, slow-fast dynamics, bistability, mixed-mode
oscillations (MMOs) and localized structures, are discussed.
In a following work by Ortega et al3, the model is used to
emulate an RTD connected to a DC voltage source and the
responses in terms of the system’s parameters are thoroughly
described.

The studies discussed above have proven to be difficult
from the analytical point of view, given the complexity of
Schulman’s curve. Therefore, it would be desirable to have
a more simple expression to represent the I-V characteristic
that retains its N-shaped profile and reproduces the observed
phenomena that are key to spike signaling: excitability, slow-
fast self-oscillations and bistability (the presence of bistability

is detrimental for the purpose of spike generation because it
may lead to bursting4). The FitzHugh-Nagumo model, which
makes use of an N-shaped, third-degree polynomial as the
current-voltage characteristic18,19, seems to be the most befit-
ting choice. However, this model does not exhibit bistability
when the circuit’s resistance is low. In addition, the N-shaped
third-degree polynomial is unique (save normalization) and its
shape cannot be tuned. This is relevant to bistability because
its presence or absence depends sensitively on the second and
third derivatives of the I-V characteristic20. To capture these
elements, we propose a simplified model with a tunable, N-
shaped I-V characteristic consisting of a linear function mi-
nus a sigmoid. Such a curve lacks the physical foundations of
Schulman’s formula and it is not suitable for quantitatively
reproducing (or fitting) the I-V characteristic of micro and
nanoscale RTDs. However, it allows for our model to pro-
vide a qualitatively reliable and comprehensible description
of the RTD’s responses in terms of a reduced number of pa-
rameters and reproduces the phenomena that are key to spike
signaling. Finally, a simple analytical expression for the re-
fractory time of the excitable response is computed in terms
of the model parameters. A short refractory time is desirable
in order to transmit a large amount of information in the form
of excitable spikes in a short time span.

The paper is structured as follows. In section II, the the-
oretical model and current-voltage characteristic used are de-
scribed in detail, as well as the parameters and equilibrium so-
lutions. This simplified model reproduces slow-fast dynamics
and excitability, as explained in section III. A thorough dis-
cussion on the model responses in terms of its parameters is
provided in section IV. Bistability is discussed in section V.
An analytical expression for the self-oscillation period in the
slow-fast regime is derived in section VI, which leads to a
more simple expression for the refractory time. A summary
and final discussions are presented in section VII.

II. SIMPLIFIED RTD MODEL

A. Derivation of the simplified model

We start with the standard physical model accounting for
the dynamics of a double barrier quantum well resonant tun-
neling diode (DBQW-RTD or RTD for short) connected to a
DC source of voltage,

C
dV
dt

= I−F(V ), (1)

L
dI
dt

=V0−V −RI. (2)

Eqs. (1,2) are derived from the laws of Kirchhoff. Fig. 1
shows a scheme of the circuit. Here, V (t) and I(t) are the
voltage and current across the RTD. V0 is the input bias DC
voltage. R,L,C are the circuit’s intrinsic resistance, induc-
tance and capacitance. F(V ) is the RTD nonlinear, N-shaped
current-voltage characteristic. This curve tends to be irregu-
lar and rough in micro and nanoscale RTDs, and more so in
the latter, where the quantum effects are more pertinent (see
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F

FIG. 1. Schematics of a DBQW-RTD connected to a DC source
of voltage, together with a typical current-voltage characteristic ob-
served in micro and nanoscale devices.

Fig. 1). However, they typically exhibit a region of negative
differential conductance (NDC) embedded in between two
regions of positive differential conductance (PDC). In prior
studies1–3, F(V ) has been represented by using an analytical
expression derived by Schulman5. The solutions in equilib-
rium are characterized and responses that suggest potential ap-
plications in spiking signal processing (namely, slow-fast dy-
namics, excitability and bistability) are identified. Schulman’s
formula is physically accurate and suitable for experimental
fitting, but it is analytically complex and has a large number
of parameters (which add to R,L,C,V0). Instead, we introduce
a simple N-shaped expression that allows for a minimal model
with a reduced number of parameters, able to qualitatively re-
produce the same phenomena and provide analytically simple
descriptions. The following properties are assumed on F(V ),
which will be necessary in the steps leading to the simplified
model:

• F(V ) has a single NDC region embedded in between
two PDC regions, delimited by peak and valley voltages
Vp and Vv, with 0 <Vp <Vv. This confers an N-shaped
profile to F(V ).

• F(V ) is anti-symmetric with respect to the NDC region
central axis; i.e., given Vc =

1
2 (Vp +Vv), it follows that

F(Vc−V ) =−F(Vc +V ) for all V .

• The (negative) differential conductance F ′(V ) is mini-
mal at V =Vc.

After defining a normalized time τ = t/
√

LC and a coeffi-
cient µ =

√
C/L, Eqs. (1,2) read,

µ
dV
dτ

= I−F(V ), (3)

dI
dτ

= µ(V0−V −RI). (4)

It is explained in Ortega et al’s study3 that µ levels the
stiffness of the dynamics in the circuit. Note that the sys-
tem of Eqs. (3,4) has 3 parameters instead of 4. This system

is also invariant under translations along both voltage and cur-
rent axes. Indeed, after defining, V = V −Vc, I = I−F(Vc),
V0 =V0−Vc−RF(Vc), F(V) =F(V )−F(Vc), Eqs. (3,4) read,

µ
dV
dτ

= I−F(V), (5)

dI
dτ

= µ(V0−V−RI). (6)

Note that F(V) is an anti-symmetric function (i.e.,
F(−V) = −F(V)), with a peak and a valley at V = −Vm and
V=+Vm, where Vm = 1

2 (Vv−Vp). Also, F′(V) is minimal at
V = 0, with F′(0) < 0. The last step is to normalize the vari-
ables by defining, v=V/Vm, y= I/(Vm|F′(0)|), r = |F′(0)|R,
m = µ/|F′(0)|, v0 = V0/Vm, f (v) = F(V)/(Vm|F′(0)|).
Eqs. (5,6) now read,

m
dv
dτ

= y− f (v), (7)

dy
dτ

= m(v0− v− ry). (8)

f (v) is also anti-symmetric, with its peak and valley points
at v = −1 and v = +1, respectively. Its derivative is minimal
at the origin, as well as unitary (i.e., f ′(0) =−1). Besides the
assumptions made on the current-voltage characteristic F(V ),
there is no loss of generality in the transformations leading
from Eqs. (1,2) to Eqs. (7,8). All the variables and parame-
ters, v,y,τ,r,v0,m, involved in Eqs. (7,8) are normalized in the
sense that have no physical units. However, each one is lin-
early related to one original physical quantity, V, I, t,R,V0,µ ,
respectively. Therefore,we will refer to the normalized vari-
ables as voltage, current, time, resistance, input bias and stiff-
ness coefficient for the rest of this paper. Likewise, we will
refer to the normalized function f (v) and its derivative as
current-voltage characteristic and differential conductance.

B. Simplified current-voltage characteristic

A very simple choice for an origin-centered, anti-
symmetric, N-shaped current-voltage characteristic with its
peak and valley points at v = ±1 would be the third-degree
polynomial, f (V ) = 1

3 v3− v .This choice turns Eqs. (7,8) into
the FitzHugh-Nagumo (FHN) model18,19. The FHN model
however, does not reproduce bistability when the circuit’s re-
sistance is low. In contrast, bistability is observed in Ortega’s
work3, where Schulman’s curve is used. Moreover, there is
no other third degree polynomial that satisfies the conditions
mentioned above. This means that the shape of the polyno-
mial curve cannot be tuned. Alternatively, a simple, tunable
N-shaped curve can be made with a linear function minus
a sigmoid. Such is the case in the Morris-Lecar model4,21,
where the hyperbolic tangent is used. The Hodgkin-Huxley
model4,22 constitutes a more complex example, where the lo-
gistic function is used to model the ratio of open and closed
voltage-gated channels in the neuron’s cell membrane, such as
the Na+ and K+ channels. The logistic function is also typi-
cally used in non spike-based neural nodes23. In the simplified
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FIG. 2. Examples of normalized current-voltage characteristics used
in the simplified model, Eqs. (7,8). The regions of positive and neg-
ative differential conductance are also shown as yellow and green
areas, respectively. a) a = 0.01, b) a = 0.1, c) a = 0.4, d) a = 0.9.

model proposed here, we choose the arctangent function since
it leads to an approachable expression for the differential con-
ductance, which in turn allows for a manageable derivation of
the refractory time, in section VI B.

f (v) = kv−harctan
( v

w

)
, (9)

where k,h,w > 0. Consequently, the differential conduc-
tance reads,

f ′(v) = k− hw
v2 +w2 . (10)

Provided that h > kw, then f (v) is N-shaped, as it has a lo-
cal maximum at v = −vM and a local minimum at v = +vM ,

where vM =
√( h

k −w
)

w. These values delimit an NDC re-
gion embedded between two PDC regions. In particular,
f ′(0) = k− h

w < 0 is the minimal differential conductance. On
the other hand, if h≤ kw, then f (v) is monotonic and there is
no NDC region.

The restrictions vM = 1 and f ′(0) =−1 constitute a system
of two equations for k,h,w and its solution set can be com-
puted as a parameteric form,

k =
a

1−a
, h =

√
a

(1−a)3 , w =

√
a

1−a
, (11)

where 0 < a < 1. Note also that kh/w = a. Fig. 2 shows
some N-shaped curves given by Eqs. (9,11) for different val-
ues of a, which turns out to tune the sharpness of the curve.
The smaller a, the spikier the peak and the valley of the
current-voltage characteristic and the less curved the sections
in the PDC and NDC regions. On the other hand, r and v0
set the slope and position coefficient of the (normalized) load
line, v0− v− ry = 0. Finally, it will be explained in section

v

y

v

y y

v

y

v

FIG. 3. Stable and unstable solutions in equilibrium of Eqs. (7,8) un-
der different parameters. Stable (unstable) fixed points are depicted
as black (white) dots. Stable (unstable) periodic orbits are depicted
as solid (dashed) red lines. The I-V characteristic (solid blue line)
and load line (dashed yellow line) are included. a) a = 0.6, r = 0.05.
m = 1.2, v0 =−1.5. b) a = 0.6, r = 0.2, m = 1.2, v0 = 0. c) a = 0.6,
r = 0.1, m = 1, v0 = 0.89. d) a = 0.6, r = 1.4, m = 0.48, v0 = 0.

III A that m levels the stiffness of the dynamics. Summarizing,
Eqs. (7,8,9,11) define a simplified model with only four free
parameters: a,r,m,v0. In what follows, the analytical expres-
sions resulting from this simplified model will be computed in
terms of either k,h,w or a, depending on what notation makes
each expression more succinct. However, it is important to
emphasize that k,h,w are now defined as functions of a ac-
cording to Eqs. (11), and are not independent parameters.

C. Equilibrium solutions

Depending on the parameters a,r,m,v0, the simplified
model exhibits solutions in equilibrium in the form of fixed
points (Fig. 3a) and limit cycles (Fig. 3b). These solutions
may be stable or unstable depending on the associated eigen-
values in the case of a fixed point and the Floquet multipliers
in the case of the limit cycle24. There is also the possibility
of multiple solutions coexisting. For instance, a stable fixed
point and a stable limit cycle can coexist if an unstable limit
cycle lies in between (Fig. 3c). When this happens, we say
that the system is bistable. It is also possible that the system
exhibits multiple fixed points if the load line intersects the I-
V curve in more than one place (Fig. 3d). On this regard, the
critical resistance, defined in3 as the absolute value of the re-
ciprocal of the minimal differential conductance in the NDC
region, is significant. In the context of the simplified model,
the critical resistance is a normalized quantity with no physi-
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FIG. 4. Stable limit cycle on the phase space (solid red line) for a =
0.6, r = 0.1, v0 = −0.5, and two different values of m: a) m = 0.4,
b) m = 0.1. The current-voltage characteristic (solid blue line) and
load line (dashed yellow line) are included. c,d) Evolution over time
of the output variables v and y corresponding to the limit cycles in
(a) and (b), respectively. The system exhibits stages of slow and fast
dynamics when m is sufficiently small.

cal dimensions,

rC =− 1
min{ f ′(v)}

.

For the I-V characteristic defined in Eq. (9), the critical
resistance is given by,

rC =− 1
f ′(0)

=
w

h− kw
,

which is reduced to 1 when k,h,w are given by Eqs. (11).
Indeed, if the circuit’s resistance is over the critical value, the
load line may intersect the I-V curve in multiple points, with a
maximum of three. Indeed, its not difficult to demonstrate that
looking for the intersection points is equivalent to intersecting
a straight line with a sigmoid, which cannot intersect at more
than three points.

III. SPIKE GENERATION IN THE SIMPLIFIED MODEL

A. Slow-fast dynamics

It is often mentioned in the literature relevant to micro and
nanoscale RTDs than they exhibit self-sustained oscillations
(i.e., a stable limit cycle) when biased in the NDC region and
a steady response (i.e., stable fixed point) when biased in one
of the PDC regions1,12,15. In general, the limit cycle is well-
rounded and the dynamics is quite smooth (Fig. 4a,c). How-
ever, if m is several times smaller than 1, the limit cycle in the
simplified model takes a stiff shape and stages of slow and fast

FIG. 5. a) Square voltage pulses used to perturb the simplified model
with parameters a = 0.6, r = 0.1, m = 0.1 v0 = −1.25. b) Current-
responses to the perturbations over time. c) Responses to the per-
turbations on the phase plane. Responses to suprathreshold pertur-
bations exhibit stages of slow and fast dynamics. Suprathreshold
(Subthreshold) perturbations and their responses are plotted in red
(green). The insets zoom over the responses to sub-threshold pertur-
bations.

dynamics can be recognized (Fig. 4b,d). In the stages of slow
dynamics, the orbit remains close to the I-V curve in the PDC
regions, until reaching either the peak or the valley, where the
orbit quickly jumps towards the other PDC region. In this
fast stage, the normalized voltage v suddenly changes in a
very short time, with little change in the normalized current
y. Thus, every period of the limit cycle has two slow stages
and two fast stages. A physical interpretation of the slow-fast
dynamics is provided by Ortega et al3. In the slow stages,
y≈ f (v), all the incident electrons cross the DBQW and none
are accumulated in its ends (represented by the intrinsic ca-
pacitance C, see Fig. 1). In the upper fast stage, v suddenly
raises and the DBQW charges. In the lower fast stage, v sud-
denly drops and the DBQW discharges.

How small the stiffness coefficient really needs to be for
the system to exhibit slow-fast dynamics is actually subjected
to the parameter a in the simplified model and to the specific
shape of the I-V curve in more realistic models and experi-
ments. For a = 0.6, slow-fast dynamics is present for m under
0.1. However, if a = 0.3 (a rather sharp curve), m has to be
reduced down to 0.05. In that sense, it is accurate to say that
a also influences the stiffness of the dynamics.
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FIG. 6. Bifurcation diagrams over the input bias voltage v0 for different values of a,r,m. Solid (dashed) blue line: y-coordinate of the stable
(unstable) fixed point. Solid (dashed) red line: y-extreme values of the stable (unstable) limit cycle. Solid (blank) yellow dots: y-extreme
values of the small (big) homoclinic curves. AH: Andronov-Hopf bifurcations. SN: saddle-node bifurcations. F: limit cycle folds. Insets zoom
over the right AH bifurcation. a) a = 0.9,r = 0.1,m = 0.2, b) a = 0.9,r = 0.5,m = 0.2, c) a = 0.9,r = 1.23,m = 0.6. d,e,f) Period of the limit
cycles shown in (a,b,c). Right side boxes zoom over the right AH bifurcation.

B. Excitable response

Fig. 4d shows that as a result of the slow-fast dynamics, an
RTD biased in the NDC region produces spikes periodically
(i.e., self-oscillations with a spike-like profile). It has been
discussed in previous works1,3,12 that an RTD can be con-
figured to produce spikes in arbitrary fashion by setting the
bias in the proximity to the NDC region and perturbing the
circuit. If the perturbation is sufficiently strong, above a cer-
tain threshold, the system responds with a single spike (i.e., a
single orbit, a precursor of the stable limit cycle) and returns
to the stable fixed point equilibrium proper of a PDC-biased
RTD. If the perturbation is weak, the system quickly returns
to the fixed point and no spike is elicited. This property to
respond only to suprathreshold perturbations is known as ex-
citability and was first observed in neurological systems4,10,11.
For the duration of the excitable response, known as refrac-
tory time, any additional perturbation –weak or strong– will
not elicit a second response from the system.

Fig. 5 shows that the simplified model, Eqs. (7,8) is able to
reproduce the excitable behavior observed in RTDs. Here, the
system is biased at the left side of the NDC region, close to
the peak of the NDC region, and perturbed with a square volt-
age pulse, i.e., the input bias v0 is changed for a brief time
∆τ = 2. For this configuration in particular, the threshold
value to trigger the excitable response is ∆v0 = 0.2. If the
amplitude of the square pulse is above ∆v0, a single down-
stroke spike is elicited. Otherwise, the system quickly decays
into the fixed point. It can be inferred from the anti-symmetry
of the current-voltage characteristic curve that an excitable re-
sponse in the form of an up-stroke spike can be achieved by

biasing the RTD at the right side of the valley and injecting
a negative square voltage pulse. More importantly, excitabil-
ity in the simple model is a robust phenomenon in the sense
that the model behaves as an excitable spike generator pro-
vided that it is biased close to the NDC region regardless of
the other parameters or the shape of the I-V characteristic.

IV. BIFURCATION ANALYSIS

A. Bifurcation diagrams

The fixed point equilibrium solution of Eqs. (7,8) is given
by the intersection between the RTD I-V characteristic
(y = f (v)) and the load line (v0− v− ry = 0). This leads to
the equation v0− v− r f (v) = 0, for which there is no analyt-
ical solution given our choice of the function f (v). However,
it is possible to derive a parametric form for the fixed point
branch by computing the coordinate v and the input bias v0 as
functions of the coordinate v,

v0 = v+ r f (v), (12)
y = f (v). (13)

Eqs. (12,13) can be used to trace a bifurcation diagram in
terms of v0 (see Fig. 6). Note that the shape of the branch is not
affected by the stiffness coefficient m. Its stability, however,
is. The Jacobian matrix associated to Eqs. (7,8) reads,

J =

[
− 1

m f ′(v) 1
m

−m −mr

]
.
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The eigenvalues of J are given by,

λ± =
1
2

(
tr(J)±

√
tr(J)2−det(J)

)
, (14)

where the trace and determinant of J are in turn given by,
tr(J) = −

( 1
m f ′(v)+mr

)
and det(J) = r f ′(v) + 1. A fixed

point (v,y) is stable if and only if both eigenvalues are ei-
ther negative or complex conjugates with negative real part.
Andronov-Hopf (or simply, Hopf) bifurcations have been re-
ported in previous studies on RTD models2,3 and they are also
observed in this one (see Fig. 6). A Hopf bifurcation takes
place when λ± are complex conjugates and their real part
shifts sign4,24, i.e., tr(J) = 0 and det(J) > 0. The first con-
dition is satisfied when v =±vAH , where vAH is given by,

vAH =

√
hw

m2r+ k
−w2. (15)

It is inferred from Eq. (12) that two Hopf bifurcations oc-
cur at the input bias values v0 = ±vAH + r f (±vAH). This
is possible only if vAH is real, i.e., m2r < h

w − k = 1. Note
that both ±vAH are necessarily in the NDC region, since
f ′(±vAH) = −m2r < 0. On the other hand, the second con-
dition (evaluated at v =±vAH ) is satisfied when mr < 1.

Note that if r� 1, the r f (v) term in Eq. (12) becomes neg-
ligible and the fixed point branch resembles the N-shaped I-V
curve (see Fig. 6a). As r increases, the branch adopts a more
“italicized” shape (Fig. 6b). However, if r > 1 the branch
becomes a non uniquely evaluated curve, as it folds back
and forth in two saddle-node bifurcations (thus becoming Z-
shaped, as seen in Fig. 6c). It is geometrically intuitive that
the saddle-node fixed point bifurcation occurs when dy/dv0
diverges, i.e., dv0/dv = 1+ r f ′(v) = 0. The solutions to the
latter equation are v =±vSN , where vSN is given by,

vSN =

√
rhw

1+ rk
−w2, (16)

and we infer from Eq. (12) that the two saddle-node folds
take place at v0 = ±vSN + r f (±vSN). The latter is possible
only if vSN is real, i.e., r > w

h−kw = 1. This is consistent with
the results presented by Ortega et al3, where sadddle-node bi-
furcations arise only if the circuit’s resistance is larger than
the critical resistance.

The limit cycle branches shown in Fig. 6 have been numer-
ically computed using MATLAB DDE-BifTool. From each
Hopf bifurcation, a limit cycle branch emerges. The limit cy-
cle may be stable or unstable depending on whether the Hopf
bifurcation is supercritical or subcritical4,24. The nature of the
Hopf bifurcation can be determined by a formula derived after
a normal form analysis20,25,26,

Ω =
r f ′′(vAH)

2

1− (mr)2 − f ′′′(vAH). (17)

If Ω is negative (positive), the Hopf bifurcation is super-
critical (subcritical) and the limit cycle is stable (unstable).
The case of our interest is when RTD can behave as an ex-
citable spike generator, i.e., m is very small. In that case,

FIG. 7. Homoclinic solutions of Eqs. (7,8) (brown lines) for a =
0.9,r = 1.23,m = 0.6 and different values of v0. Stable (unstable)
fixed points are depicted as black (white) dots. Stable periodic orbits
and nullclines are included as light-shaded lines. a) v0 = −0.049
(“big” homoclinic). b) v0 = −0.04 (“small” homoclinic). c) v0 =
0.04 (“small” homoclinic). d) v0 = 0.049 (“big” homoclinic).

Ω ≈ r f ′′(vAH)
2 − f ′′′(vAH). It turns out that f ′′′(vAH) =

2w(4kw− 3h) = 8
3 wh

(
a− 3

4

)
(see Eq. (11)). If a > 3

4 , then
f ′′′(vAH) > 0 and Ω may be positive or negative depending
on r. For r sufficiently small, Ω < 0, the Hopf bifurcations
are supercritical and the limit cycle is always stable. Such is
the case in Fig. 6a. As r increases however, Ω becomes pos-
itive. The Hopf bifurcations are now subcritical and unstable
limit cycle branches emerge from each one. These branches
then fold (becoming stable) and connect, as shown in Fig. 6b.
As a consequence, there are ranges of v0 where the system is
bistable, as a stable fixed point and a stable limit cycle coex-
ist (see Fig. 3c). If m is small, these ranges are very narrow
(order 10−3 or less) because the size of the limit cycle emerg-
ing from each Hopf point increases explosively with v0 (thus
being canard solutions27). On the other hand, if a < 3

4 then
Ω > 0 and the system exhibits ranges of bistability regardless
of r.

As a consequence of the fixed point branch becoming Z-
shaped, the system may exhibit homoclinic bifurcations4, il-
lustrated in Fig. 6c. The corresponding homoclinic solutions
are shown in Fig. 7. As the limit cycle emerging from each
Hopf point increases in size, it may encounter the middle fixed
point, which is a saddle with one attractive and one repulsive
eigendirection. The limit cycle connects with these eigendi-
rections and becomes a homoclinic curve that surrounds ei-
ther the upper or the lower fixed point (Fig. 7b,c, respectively).
This type of solution is known as “small” homoclinic curve4.
Likewise, the unstable limit cycle coming from each fold may
also coalesce with the middle saddle point and become a ho-
moclinic curve. This coalescence is not visible in Fig. 6c be-
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Hopf bifurcation  

saddle-(unstable) node 

saddle-(stable) node 

limit cycle fold  

big homoclinic 

small homoclinic 

Bogdanov-Takens bifurcation  

Cusp bifurcation 

Bautin bifurcation  

 

single fixed point 

double fixed point 

limit cycle 
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double FP + LC 

BT 
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B 

FIG. 8. (color online) a) Bifurcation branches and stable solutions on the (v0,r) plane for a = 0.3,m = 0.2. The lower panels zoom over
the triple stability region (double FP + LC). b,c) Bifurcation branches and stable solutions on the (v0,r) plane for: b) a = 0.6,m = 0.3. c)
a = 0.9,m = 0.4.

cause it occurs from the side of the saddle point rather than
from above or below, but it can be appreciated in Fig. 7a,d.
These are known as “big” homoclinic curves because they
surround the three fixed points4. Note that the homoclinic bi-
furcations result in discontinuities in the unstable limit cycle
branches.

Fig. 6d,e,f shows the period of the limit cycles depicted in
Fig. 6a,b,c, respectively. As a limit cycle emerges from each
Hopf bifurcation, its period increases explosively (regardless
of whether the Hopf bifurcations are super or subcritical),
reaches a peak value and then decreases. Thus the period ex-
hibits a concave basin with a local minimum at v0 = 0. It
makes sense that the limit cycle period is a symmetrical curve
of v0 given the anti-symmetry of f (v). The peak values of the
limit cycle are not at the fold points (in case there is any), but
slightly inwards.

B. Bifurcation branches on the space of parameters

In this section, the evolution of the bifurcation branches is
tracked in terms of the system parameters (a,m,r,v0). In or-
der to simplify this study, only the m < 1 case is considered,
as our interest lays on the slow-fast dynamics and excitable
response. In section IV A, the input bias values for which
the Hopf bifurcations and saddle-node bifurcations take place
were computed,

vAH
0 =±(vAH + r f (vAH)) , (18)

vSN
0 =±(vSN + r f (vSN)) . (19)

where vAH and vSN are given by Eqs. (15) and (16), respec-
tively . This allows to compute the Hopf and saddle-node

branches in the plane of parameters defined by v0 and r, il-
lustrated in Fig. 8. In panel (a), the remaining parameters
are fixed at a = 0.3,m = 0.2. Both bifurcations have actu-
ally two branches each with opposite v0 values (the “±” acts
as a common factor since in this simplified model, f (v) is per-
fectly anti-symmetric). As r increases, the fixed point branch
takes a more “italicized” N-shape and the Hopf points become
closer. At r = rC = 1, the fixed point branch becomes Z-
shaped (see Fig. 6c) and the two saddle-nodes emerge from
a cusp4. The saddle-nodes become more distant from one
another with increasing r. Now that the fixed point branch
is not uniquely evaluated, the Hopf points may switch sides.
For a = 0.3,m = 0.2, this occurs at about r = 1.8 (Fig. 8a,
lower-left panel). As r further increases, the saddle-nodes ap-
proach the Hopf points and they coalesce at r = 1

µ
= 5, in a

Bogdanov-Takens bifurcation4. Here, the Hopf branches van-
ish, as discussed in section IV A.

The Hopf branches delimit the regions where the fixed point
is stable or unstable (see Fig. 8). As the fixed point-branch
becomes Z-shaped and the Hopf points switch sides, a new
region arises in the space of parameters where the system ex-
hibits two stable fixed points in coexistence. This region is
first delimited by the Hopf branches. Above the Bogdanov-
Takens bifurcations, there is no Hopf points and the region is
delimited by the saddle-nodes. In order to understand this,
it is worth computing the eigenvalues at the saddle-nodes.
It was explained in section IV A that at the saddle-nodes,
det(J) = 1 + r f ′(v) = 0. Substitution in Eq. (14) leads to
λ1 = 0 and λ2 = tr(J) = − 1

m f ′(v)−mr = 1
mr −mr. The sec-

ond eigenvalue is positive only if r < 1
m . This means that for

r < 1
m each saddle-node gives rise to an unstable node and a

saddle (also unstable), with the former eventually transition-
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FIG. 9. Numerical estimation of the input bias bistability range as a function of m for different values of a and r. a) a = 0.3. b) a = 0.6. c)
a = 0.9. The dashed line marks quadratic rate. Note that in (c) the system does no exhibit bistability only for r ≤ 0.1. The outlayers in (a,b)
are attributed to numerical imprecision.

ing into an unstable focus and then into a stable focus later
at the respective Hopf point (see Fig. 6c). On the other hand,
for r > 1

m each saddle-node gives rise to a stable node and a
saddle.

The limit cycle fold branches were numerically com-
puted with MATLAB DDE-BifTool. When a = 0.3,m = 0.2
(Fig. 8a), these branches remain close to each Hopf bifurca-
tion, at a distance mostly unchanged by r. As r increases,
the folds become closer and at about r = 2.07, they connect
(Fig. 8a, lower-right panel). The limit cycle folds delimit the
region where the system exhibits a stable limit cycle, and, to-
gether with the Hopf branches, they delimit the regions where
the limit cycle coexists with a stable fixed point, i.e., the sys-
tem is bistable. These two ranges of bistability intersect right
under the peak of the limit cycle fold branches (Fig. 8a, left
panel). In this intersection, the stable limit cycle coexists with
two stable fixed points, i.e., the system exhibits a triple stabil-
ity.

The homoclinic branches have also been computed with
MATLAB DDE-BifTtool. These branches emerge close to
the intersection between the saddle-node and Hopf branches,
at about r = 1.74 (Fig. 8a, lower-left panel); one small homo-
clinic and one big homoclinic from each side. If m is small,
the homoclinic branches remain close to the limit cycle folds.
As r increases, the homoclinics approach the v0-axis. At about
r = 2.02, the small homoclinics switch sides (Fig. 8a, lower-
right panel). They do not coalesce, since each homoclinic
surrounds a different fixed point. As r further increases, the
small homoclinics approach the Hopf points and they coalesce
together with the saddle-nodes at the Bogdanov-Takens bifur-
cations at r = 1

m (Fig. 8a, upper panel). On the other hand,
the big homoclinic branches fold at r = 2.04 and coalesce in
the same point where the small homoclinics meet, at r = 2.02.
(Fig. 8a, lower-right panel).

Fig. 8b,c shows the bifurcation branches and stable solu-
tions on the (v0,r) plane for a = 0.6 and a = 0.9, respectively.
As the dynamics is more stiff, the branches are closer to one
another and the regions of multiple stability are smaller. How-
ever, there is no changes on the qualitative basis, with the
exception of the limit cycle fold at low resistance. If a < 3

4
(Fig. 8a,b) the Hopf bifurcations are always subcritical; an

unstable limit cycle branch emerges from each, which either
folds to become stable or ends in a (small) homoclinic bifur-
cation. On the other hand, if a > 3

4 and r is sufficiently small,
the Hopf bifurcations are supercritical and a stable limit cy-
cle branch emerges from each; there is neither limit cycle fold
nor bistability. These arise when the Hopf bifurcations be-
come subcritical (i.e., Bautin bifurcation4), when Ω = 0 (see
Eq. 17). The solution to this equation is numerically estimated
at r = 0.357±0.001, in agreement with our results.

V. BISTABILITY RANGE

As explained in section IV B, the limit cycle fold and the
subcritical Hopf bifurcation at each side of the NDC region
delimit a range on the v0-axis where the stable limit cycle and
the stable fixed point solutions coexist. This bistability is un-
wanted in the context of spike generation since it may lead to
bursting4. From a didactic point of view, perturbing the circuit
with a square voltage pulse equates to displacing the load line
into the NDC region for a brief moment, which may trigger
the stable limit cycle response. If the system has a sufficiently
wide range of bistability, it will follow the cycle of hysteresis
once the perturbation ends, which may have the system exhibit
more than a single orbit of the limit cycle. The system may
also exhibit stochastic bursting when injected with noise1–3,
generating spikes at unwanted moments.

Fig. 9 shows the bias range of bistability, ∆v0, for differ-
ent values of a, r and m (note that the ranges at both sides
of the NDC region have the same size given the symmetry of
the space of parameters. See Fig. 8). We observe that for m
under 0.1, ∆v0 increases with m at quadratic range, remaining
under 0.01 in most cases (for comparison, remember that the
peak and valley of f (v) are at v =±1). It also increases with
r and decreases with a although the influence of these param-
eters is little compared to that of m. As m increases above
0.1, ∆v0 increases at a less steep rate, reaches a maximum and
decreases. The size and position of maximum ∆v0 are both
higher at higher r. Although not shown in the figure, ∆v0 is
expected to become zero at a large, yet finite m, provided that
r ≤ 1. This has been observed by Ortega et al3 and it is also
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predicted by Eq. (17). From the discussion in section IV A, we
infer that the maximal value of m for which there is any Hopf
bifurcation is m = 1√

r . Since 1
m f ′(v) +mr = 0 at the Hopf

point, we know that f ′(vAH) =−m2r =−1, the minimal neg-
ative differential conductance. Therefore, f ′′(vAH) = 0 and
f ′′′(vAH) > 0. Thus, as m approaches 1√

r , the first term in Ω

approaches zero while the second term remains negative (see
Eq. (17)). Finally, Ω becomes negative, the Hopf bifurcations
become supercritical and there is no bistability.

As discussed in section IV A, if a < 3
4 and m is small, the

system exhibits bistability regardless of r. This is in agree-
ment with Fig. 9a,b. However, if a > 3

4 the system exhibits
bistability only for a sufficiently large resistance. Such is the
case in Fig. 9c, where a = 0.9, as there is a non-zero bias
range only if r = 1. This is also in agreement with Eq. (17).
Indeed, numerical computations show that for a = 0.9 and
r = 0.1,0.01,0.001, the coefficient Ω is negative regardless
of m.

It is worth comparing the results in this section with those
presented by Carmona et al28, where a 2D slow-fast model is
studied. The nullclines are a piecewise linear N-shaped func-
tion and a vertical load line. This model can be interpreted
as accounting for the dynamics of a zero-resistance RTD con-
nected to DC voltage. In Carmona’s work28, it is found that
∆v0 = αm + βm3/2 + O(m2). This seems to contradict the
quadratic rate relation reported here, although the N-shape
curved used in both models are ultimately different in nature.
Our choice of the N-shaped curve resembles a piecewise lin-
ear function for small values of a (under 0.1). It would be
interesting to compute ∆m0 for small values of a, m and r to
establish a proper comparison between the models.

VI. LIMIT CYCLE PERIOD AND REFRACTORY TIME

A. Limit cycle period

A relatively simple expression for the period of the stable
limit cycle can be provided when m� 1. To this end, an adia-
batic approximation is applied, as illustrated in Fig. 10a; Dur-
ing the first slow stage, the orbit remains over the I-V curve
in the first PDC region. Upon arrival to the I-V curve peak
at v = −vM = −1, the orbit instantaneously and horizontally
jumps to the second PDC region, at v = vA, where f (vA) =
f (−vM) = yA. Here, the second slow stage takes place, and
the orbit travels along the current-voltage characteristic until
reaching the valley at v = vM = 1. From here, there is another
instantaneous, horizontal jump towards the first PDC region
at v = −vA, given by f (−vA) = f (vM) = −yA. Although vA
cannot be computed analytically under our choice of f (v), de-
fined in Eq. (9), an approximation formula can be provided. In
Fig. 10b, numerical estimations of vA for different values of a
are plotted in log-log scale and fitted against a quadratic poly-
nomial via least squares regression; lnvA = p(lna), where,
p(x) = p0 + p1x + p2x2 and p0 = 0.6862± 0.0003, p1 =
−0.6487± 0.005, p2 = −0.0133± 0.0001. Hence, vA is ap-
proximated as ep(lna). Fig 10c illustrates the relative error of

vM

–vM vA

–vA

yA

–yA

v

y

fast
(Δτ≈ 0)

fast
(Δτ≈ 0)

slow
(Δτ2)

slow
(Δτ1)

FIG. 10. a) Schematics of the stable limit cycle under adiabatic ap-
proximation (solid red line). The nullclines are included as light-
shaded lines. b) Numerical computation of vA as a function of a
(orange dots), together with a quadratic fit of the logarithms (blue
line). c) Relative error of the quadratic fit as a function of a.

the approximation, which remains under 1% For a > 0.003.
According to the adiabatic approximation, y = f (v) dur-

ing the slow stages, when the orbit travels over the I-V curve.
Substitution of the latter in Eq. (8) allows to derive a one-
dimensional equation for v(τ),

dv
dτ

=
v0− v− r f (v)

f ′(v)
. (20)

The period of the stable limit cycle is estimated as ∆τ =
∆τ1 + ∆τ2, where ∆τ1,∆τ2 are the duration of the first and
the second slow stages, while the time spent at the fast
stages is neglected. Integration of Eq. (20) over the intervals
[−vA,−vM] and [vA,vM] leads to the following expressions for
∆τ1 and ∆τ2,

∆τ1 =
1
m

∫ −vM

−vA

f ′(v)
v0− v− r f (v)

dv (21)

∆τ2 =
1
m

∫ vM

vA

f ′(v)
v0− v− r f (v)

dv (22)

Thus, ∆τ is inversely proportional to m. Numerical estima-
tions of the limit cycle period reported by Ortega et al3 are in
agreement with this. Remember that ∆τ is the period in nor-
malized units (see section II B). Therefore, we expect the limit
cycle period in real time units to be directly proportional to the
circuit’s intrinsic inductance, L. This has been discussed by
Romeira et al1 as well. For the piecewise linear model stud-
ied by Carmona et al28, a more complex expression for the
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FIG. 11. Numerical estimation of the limit cycle period (red line)
together with its analytical estimation (yellow line) as a function
of v0 for different values of a,r,m. Stable (unstable) solutions
correspond to solid (dashed) lines. a) a = 0.5,r = 0.1,m = 0.01.
b) a = 0.5,r = 0.1,m = 0.05. c) a = 0.9,r = 0.1,m = 0.01. d)
a = 0.9,r = 0.1,m = 0.05.

refractory time is derived. Moreover, the slow-fast parameter
and variable normalization are different than those used here.
Nonetheless, it can be demonstrated after proper variable con-
version and Taylor expansion that ∆τ ∼

(
1+O(m2)

)
/m when

m is very small.
It is worth discussing the possibility of the integrand be-

coming singular (i.e., r f (v)+v+v0 = 0) in Eqs. (21,22). This
corresponds to the intersection of the nullclines, at a fixed
point. In principle, the stable limit cycle arises when the fixed
point is unstable. This requires v to be in between ±vAH ,
which are in the NDC region, in between ±vM (see section
IV A). In this case, the singularity is in neither integration do-
main. It is also possible that the system is bistable, and ex-
hibits a stable limit cycle with a stable fixed point in one of the
PDC regions, close to either ±vM . In this case, the integrand
has a 1

x -type of singularity and the corresponding integral is
undefined. Nonetheless, the infinite areas under the curve at
each side of the singularity have opposite signs and cancel out
(likewise, the integral of 1

x between±1 is undefined but the to-
tal area under the curve is zero). In that sense, we say that the
integral has a principal value29. The last scenario is that the
fixed point is exactly at either±vM . In this case, the integrand
has a 0

0 limit, found via L’Hôpital’s Rule to be f ′′(±vM), the
singularity is repaired and the integral converges.

Ortega et al report that the refractory time is mostly unaf-
fected by the circuit’s resistance3. Together with the change
of variables v→−v in Eq. (21) and the anti-symmetry of f (v),
this leads to,

∆τ =
1
m

∫ vA

vM

2v f ′(v)
v2− v2

0
dv. (23)

FIG. 12. Numerical simulations of Eqs. (26,27) for a = 0.6, r = 0.1,
m = 0.05, v0 = 0.95 and different values of η . a) η = 0.012, b)
η = 0.018, c) η = 0.024.

Finally, substitution of f ′(v), VM and VA allows to solve the
above integral,

∆τ =



1
m

((
k− hw

v2
0+w2

)
ln
∣∣∣∣ e2p(lna)−v2

0
1−v2

0

∣∣∣∣
+ hw

v2
0+w2 ln

(
e2p(lna)+w2

1+w2

))
, |v0| 6= 1,

k
m ln

(
e2p(lna)+w2

1+w2

)
, |v0|= 1.

(24)

Eq. (24) is valid for v0 between the Hopf bifurcation points
(±vAH

0 ) if they are supercritical and between the limit cy-
cle fold points otherwise. Note that The upper expression in
Eq. (24) is undefined when v2

0 = 1, as the first logarithm has
a diverging argument. However, the factor multiplying this
logarithm turns out to be the differrential conductance, f ′(v0),
which becomes zero when v2

0 = 1. Thus, we have a 0× ln(∞)

type of limit. It can be demonstrated that the limit when v2
0

approaches 1 is, in fact, the lower expression in Eq. (24). This
corresponds to the case discussed above, where the integrand
singularity is at either −1 or +1 and can be repaired. Hence,
the singularity in ∆τ is also repaired.

In Fig. 11 numerical and analytical estimations of the sta-
ble limit cycle period are compared for different choices of
parameters. Indeed, the analytical curve reproduces the con-
cavity of the numerical curve along the v0-axis and its valley
at v0 = 0. Both curves are in good agreement in most of the
domain with a relative error of about 2% when m = 0.01 and
10% when m = 0.05. However, Eq. (24) loses validity at the
boundaries of the domain, where the numerical curve reaches
a peak and then decays, while the analytical curve contin-
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FIG. 13. Numerical estimation of the normalized refractory time of the excitable response as a function of m for different values of a,r,η , to-
gether with its analytical estimation (dashed brown line). The insets show the relative difference between numerical and analytical estimations.
a) a = 0.3,η = 0.05. b) a = 0.6,η = 0.02. c) a = 0.9,η = 0.02.

ues to grow. This is even more notorious if the Hopf bifur-
cations are supercritical (Fig. 11c,d), since beyond the peaks
the numerical estimation decays rapidly while the limit cycle
remains stable. This loss of validity is expected at the bound-
aries, where the canard explosion takes place and the assump-
tions about slow-fast dynamics and adiabatic regime that led
to Eqs. (21,22) are no longer valid.

B. Refractory time of the excitable response

The refractory time is the duration of the excitable response
to a suprathreshold perturbation. During the refractory time,
the system does not respond to any other perturbation, weak
or strong. The excitable response is a single orbit, precursor
of the stiff, stable limit cycle, with slow and fast stages, that
takes place after an suprathreshold perturbation that momen-
tarily drives the system into the region of the space of param-
eters where the stable periodic solution arises, beyond either a
supercritical Hopf branch or a limit cycle fold branch. There-
fore, the refractory time is expected to be similar to the limit
cycle period close to the boundary of the aforementioned re-
gion. We propose Eq. (24) evaluated at |v0| = 1 since it is a
simple expression and close to the borders of the domain,

∆τref =
k
m

ln

(
e2p(lna)+w2

1+w2

)
. (25)

In order to check the validity of Eq. (25), numerical simu-
lations of Eqs. (7,8) are carried out with additive noise,

dv
dτ

=
y− f (v)

m
+ηξ (τ), (26)

dy
dτ

= µ(v0− v− ry). (27)

Here, ξ (τ) is a time-uncorrelated white noise function (i.e.,
〈ξ (τ)〉= 0 and 〈ξ (τ1)ξ (τ2)〉= δ (τ2−τ1)) and η is the noise
intensity. For given values of the parameters a,r,m, the sys-
tem is biased at v0 = vonset

0 + δv0, where vonset
0 is the onset of

the stable limit cycle at the right side of the current-voltage

characteristic (either vAH
0 if the Hopf bifurcation is supercrit-

ical or the limit cycle fold point otherwise) and δv0 = 0.005.
Under this configuration, the deterministic system does not
exhibit periodic solutions. However, provided that the fluc-
tuations are sufficiently strong, excitable spikes are triggered
randomly1–3. The higher the noise intensity, the more fre-
quently spikes arise, as shown in Fig. 12. This can be used
to estimate the refractory time as the shortest time in between
two consecutive spikes over a simulation. The results are sum-
marized in Fig. 13. Since the normalized refractory time ∆τref
is inversely proportional to m, the actual refractory time in
physical units is directly proportional to the circuit’s induc-
tance, L (see section II). Fig. 13 also shows that the refractory
time decreases with increasing r and increases with increasing
a. Still, m remains as the most influential parameter. This is
consistent with the results reported by Ortega et al3. Fig. 13
also shows good agreement between numerical and analytical
estimations, with a relative difference under 2% provided that
r < 0.1 and µ < 0.01.

The possibility of chaos arising in the simplified model
when biased close to a Hopf bifurcation or in between them
and subjected to external modulation is an interest direction
to conduct research on in a future study. Romeira et al2 in-
vestigate the effects of modulated dynamics on an RTD-based
circuit, including mixed mode oscillations (MMOs) and po-
tentially chaos, as well as prospective applications in regener-
ative memory.

VII. SUMMARY AND CONCLUSIONS

A simple, bivariate mathematical model accounting for a
DBQW-RTD connected to a DC voltage input has been pro-
posed with the aim to find a proper configuration for the circuit
to generate excitable spikes at arbitrary times. Instead of using
Schulman’s formula to represent the current-voltage charac-
teristic of the RTD, as in previous works, a simple, N-shaped,
origin-centered expression is chosen, consisting of a linear
function minus an arctangent. Normalization of the variables
and time leads to a further simplification of the model, now
described in terms of four parameters: a,m,r and v0. These
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parameters tune the sharpness of the current-voltage charac-
teristic, the stiffness of the dynamics (i.e., the rate between
slow and fast time scales), the circuit’s normalized resistance
and the input bias voltage, respectively. Depending on the pa-
rameters, the system exhibits solutions in equilibrium in the
form of fixed point (i.e., steady response) or limit cycle (i.e.,
self-oscillations), with the possibility of coexistence between
multiple solutions. The model is minimal in the sense that it
is not possible to further reduce the number of parameters or
variables without losing reproducibility of the observed phe-
nomena described above.

The model successfully reproduces responses reported in
previous theoretical works that use Schulman’s curve1–3. A
low resistance circuit exhibits self-oscillations when biased
in the negative differential conductance region (delimited by
the peak and valley of the I-V curve) and a steady response
otherwise. As the resistance increases, the bias range where
self-oscillations arise narrows and eventually vanishes. With
the increase of the resistance, the system may also exhibit up
to two stable fixed points coexisting (which may additionally
coexist with the stable limit cycle), since the load line can in-
tersect the current-voltage characteristic up to three times (the
middle point always being a saddle). Provided that the stiff-
ness coefficient m is sufficiently small, the self-oscillations
show stages of slow and fast dynamics and thus spikes are
generated periodically. If the circuit is biased outside but close
to the bias range where self-oscillations arise, and subjected to
a suprathreshold perturbation (e.g., a square voltage pulse), it
responds with a single orbit, precursor of the periodic spiking
solution, and therefore behaves as an excitable spike genera-
tor.

The bias voltage ranges where the circuit responds with
a steady state or self-oscillations may overlap, thus produc-
ing ranges of bistability. From the Nonlinear Dynamics point
of view, this occurs because the unstable limit cycle branch
emerges from the fixed point at a subcritical Andronov-Hopf
bifurcation, then folds and becomes stable. The criticality of
the Hopf bifurcation is ruled by the sharpness of the I-V curve;
If a ≤ 0.75 (a relatively sharp I-V curve), there is always a
bistability bias range. If a > 0.75 and the resistance is suffi-
ciently small, the Hopf bifurcations are supercritical and there
is no bistability. These results are in agreement with previous
studies based on normal form expansion20,25,26. Bistability
represents a drawback in the context of spike signaling since
it may lead the circuit to respond to a single suprathreshold
perturbation with multiple spikes (i.e., deterministic bursting).
However, it is shown that for small-enough m, the bistability
bias range is very narrow.

The choice of a simple N-shaped I-V curve allows to de-
rive analytical expressions for the period of self-oscillations
and the refractory time of the excitable response in the slow-
fast regime. Both expressions are in good agreement with
numerical simulations. In addition, both expressions, when
normalized, are found to be inversely proportional to m. Con-
sequently, the period and refractory time in actual time units
are directly proportional to the circuit’s inductance, L. This
contradicts (or rather, amends) the notion suggested in prior
studies3 that the period and refractory time are similar to the

tank period,
√

CL, where C is the RTD parasitic capacitance.
The dilemma that these results present is that reducing L re-
duces the refractory time but may also compromise the slow-
fast regime, since m ∝

√
C/L. To avoid this, C must be chosen

to keep m small. Finally, the resistance has little effect on the
refractory time. Still, it is desirable to have a small resistance
to avoid energy dissipation and coexistence of multiple fixed
points.

The results presented in this work may serve as a guideline
for prospective attempts to design and fabricate neuromorphic
processors for time and power-efficient execution of machine
learning algorithms and neural networks, where nanoscale
RTD-based units would function as individual spiking sig-
naling nodes. Under no circumstance the simplified model
intends to be a quantitatively accurate or a physically faith-
ful representation of the dynamics of RTDs. The N-shaped
current-voltage characteristic of an RTD is typically irregu-
lar and with no recognizable symmetry with respect to the
NDC region. Furthermore, it tends to be even rougher for
nanoscale RTDs, where the quantum effects become more
pertinent, in contrast with the smooth and anti-symmetrical
curve used in this study. All the latter must be considered in
eventual attempts to model neural networks that resort to our
simplified model to represent individual nodes, which may
still have theoretical, computational and applicational inter-
ests, especially considering the reduced number of parameters
and lower power consumption.

In regards to biological neurons, the simplified model as
presented here is in principle not suitable for reproducing their
dynamics. Biological neurons are more complex systems than
RTDs; a wider variety of phenomena and behaviours have
been observed (such as class-1 excitability and spiking with
long latency4) and their models generally involve more dy-
namic variables, equations and parameters. The Hodgkin-
Huxley model4,22 and the Morris-Lecar model4,21 are well
known examples, where the conductance of the neuron’s cell
membrane is accounted for by one or more time-dependent
variables related to the voltage-gated channels that activate,
deactivate and/or inactivate depending on the membrane po-
larization voltage. In a more recent work by Yang et al30,
a Multi-compartment Conductance-Based Neuron model is
used to implement an architecture for neural networks. On the
other antipode, minimal models have also been proposed to
describe spiking in biological neurons, such as the integrate-
and-fire models4,31. However, an approach similar to ours can
also be applied to simplify biological neuron models and pro-
vide manageable and qualitatively reliable descriptions of the
phenomena of interest. For instance, the Morris-Lecar model
can be simplified in terms of number of parameters and an-
alytical complexity by using a linear-minus-sigmoid function
with few parameters to reproduce the N-shaped nullcline and
a single sigmoid to represent the S-shaped nullcline. Yang’s
architecture30 might also see performance benefits by a simi-
lar simplifying approach. The chosen sigmoid may not neces-
sarily be the hyperbolic tangent and its choice may be based
purely on analytical manageability.
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