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Abstract

The study of quantum systems from the perspective of Reservoir Computing is a promising
angle that has been increasingly raising interest in the past few years, since our current
technology allowed for the experimental realisation of such systems. This work explores the
relation between the coherence present in the quantum reservoir and its ability to process
information in the context of the resource theory of coherence. For this we take the transverse-
field Ising model as our reservoir, which we study in its different dynamical regimes as a
function of the intensity of the magnetic field and the disorder present within. We are able to
link the operational regimes of the reservoir with higher values of the coherence, and relate the
dynamics of each phase to its processing capacity. In addition, we perform an analysis of the
robustness of these reservoirs to phase and bit flip noise, which shows that the latter is more
destructive than the former for the system’s ability to process information. Our results also
establish a link between quantum correlations and high-order degrees of nonlinear processing
capacity.
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Chapter 1

Introduction

In the past couple of decades there has been a remarkable burst of new technologies brought
about by the advent of a Machine Learning (ML) approach to a great variety of fields, both
inside physics and outside of it [1]. Versatile tasks like pattern recognition, image and speech
processing and temporal series prediction are among the most cost-effective applications. The
burgeoning enthusiasm about the possibilities that may be unlocked with ML techniques has
turned them into an extremely active field of research.

As a part of this scenario, Reservoir Computing (RC) [2, 3, 4] is increasingly gaining
attention because of its potential for fast, real-time data processing. A RC processor which is
embedded in a larger machine, say by being a part of it already, facilitates the implementation
problem and avoids the possible losses that may take place during the transport of information
away from the main device. This fact, together with the profits of the rich dynamics present
in quantum systems, point to Quantum Reservoir Computing (QRC) [5, 6, 7] as a topic of
great interest. In this context, the transverse-field Ising model has emerged as a candidate
system for QRC with discrete variables, with its experimental realisation as a reservoir being
already accessible by the current technology. In the work presented here, we will extend
the study of this class of systems, both in the more canonical case of a uniform magnetic
field and in the case where it exhibits local fluctuations. We will explore these systems more
thoroughly from the QRC perspective and characterise some of their purely quantum aspects,
so as to lay the groundwork for the identification of possible quantum advantages. For this, we
will characterise how the system’s ability to predict nonlinear time series is reflected through
coherence, a strictly quantum property of the spin network.

This Master thesis aims to be rather self-contained, motivating the investigation in RC and
the advantages this model has in the quantum realm first, as well as illustrating its basic inner
workings, before moving on to the analysis of the particular models under study. Sections 1.1
and 1.2 set the current scenario in the ML and RC scenes and their translation into a quantum
setup. The methodology we follow in order to assess the system’s processing capacity is also
introduced in this section. Section 1.3 reviews some ideas about quantum coherence and how
we will quantify it throughout the study. In order to conclude our theoretical basis, we make
some further remarks on the theory or quantum thermalisation in Section 1.4 and move on to
the detailed description of the simulation procedure in Section 1.5. At this point we are ready
to begin with the numerical simulations for the characterisation of the system’s dynamics
in Chapter 2. The study of the relation between the system’s coherence and its processing
capacity is presented in Section 3.1, as well as the assessment of its robustness in the presence
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of a noisy environment in 3.2. Finally, we highlight the conclusions and outlook of this work
in Chapter 4 and include some complementary notes in the Appendices.

1.1 Relevant Machine Learning concepts

ML technologies are most commonly materialised in Artificial Neural Networks (ANNs),
a collection of structures and architectures (either hardware- or software-based) designed to
effectively mimic the processing of information that takes place in our brains. These pro-
cessing tasks may be of two types: static (e.g., classification) or dynamic (e.g., prediction),
corresponding to non-temporal and temporal tasks respectively. The first type is addressed
with the so-called Feed-Forward Neural Networks (FFNNs), while the second is tackled by
Recurrent Neural Networks (RNNs) 1 . The latter manage to retain information about pre-
vious entries from the input sequence by introducing closed loops in their inner connections,
which allows this past information to influence the current output. In the following, our focus
will be centred on RNNs, since these are the ones the concept of Reservoir Computing (RC)
originally derives from.

As in every ML instance, the construction of an ANN undergoes two major steps: training
and testing. In supervised learning, the framework this work is set in, the network is adjusted
during a training phase from a set of training examples in which we provide the system with
the desired result. In more strict mathematical terms, we are provided with a training set
consisting of n input samples, where each sample may be of dimension p (Xµ ∈ Rp, with
µ = 1, ..., n) and a series of n outputs, each of dimension d (yµ ∈ Rd), and we are looking
for a function f that approximates f(X) to y. For this process to be considered successful,
however, the approximation must be good for any other data set the system has not been
trained with; only then will we know that the system has properly extracted the universal
rule from its particular realisation in the training set. Thus, a testing phase for ensuring that
this phenomenon has taken place is indispensable. The most common procedure for finding
this function f is to express it in terms of a set of weights w ∈ Rk, such that the current rule
of the network may be expressed as fw. This fw is optimised on the basis of a certain loss
function L[fw(Xµ), yµ] that scores lower the closer the prediction y′ = fw(Xµ) and the target
y are. This minimisation procedure is usually carried out through gradient descent methods
[1]. A schematic illustration of this process is presented in Fig. 1.1a.
Fig. 1.1b, on the other hand, shows the different layers present in an ANN. The input layer
regulates how the input is leaked into the whole system, a mechanism that remains fixed in
the case of RC. In the quantum systems we will focus on, we feed the information through
an observable of a single qubit and it spreads out through the system’s dynamics, which
determines the Win. The output layer and the weights corresponding to the hidden layer (or
layers) are thus the ones to undergo the training process. It has long been known that, in order
to approximate an arbitrary nonlinear function, the network must have at least one hidden
layer [8] (which is where the recurrent connections are accommodated), hence the distinction
between the hidden and output layers. This necessary amplification of the parameter space
has to do with the impact of dimensionality in the learning process, an effect we will discuss
in more detail for the systems studied in this work as well. In short, high dimensionality in

1As it usually happens, not everything is black or white. Classification of images may be performed by
feeding the pixels to a RNN as a temporal sequence, and a FFNN may perform temporal tasks as well if
equipped with a delayed embedding that turns the temporal problem into a spatial one [2].
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(a) Generic Neural Network workflow
(b) Typical ANN scheme

Figure 1.1: Outline of the inner workings of ANNs.

prediction tasks is linked to a better performance because it allows the network to read out
spatiotemporal dependencies in the input sequence [9]. However, this characteristic cannot
be taken to the extreme arbitrarily or one may incur in overfitting, where the system adjusts
too much to the training set and fails to predict a different one.

RNNs have achieved great performances in a wide variety of temporal tasks since the 1980s.
However, this high accuracy is brought about along with a massive amount of hidden nodes,
which makes the training of the hidden layer very demanding computationally. A way around
this problem was proposed in the early 2000s with the development of the models of the
Echo State Network (ESN) [10] and Liquid State Machine (LSM) [11], the direct precursors
of the RC model. The idea they investigated was the requirements for a network in which
it was sufficient to train only the readout weights, thus sparing the complex optimisation of
the weights in the hidden layer (which remain fixed). In other words, they introduced the
concept of reservoir.

1.2 Reservoir Computing

The lesson we learn from LSM and ESN is that, if the network’s dynamics is complex
enough, it is sufficient to train only the readout layer of the machine. Evidently, the notion
of “complex enough” needs to be further determined, which will be the first of the main tasks
of this section. The second is presenting a more rigorous definition of the classical RC scheme
before we move on to RC based on physical systems instead of in silico architectures.

In the RC language, a reservoir machine M has two essential parts: a reservoir R and a
readout layer ψ.

M = (R, ψ) (1.1)

The reservoir remains fixed over time and it is the one to carry out the processing of informa-
tion, i.e., the computation in the strict sense. The output layer, on the other hand, is trained
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for each particular task and acts merely as a translator from the language of reservoir states to
a form of data we can understand. Luckily, since all the nonlinear computation is performed
in the reservoir, a linear transformation suffices in order to extract the desired output from
the machine. Least squares minimisation is the most common choice for the training of the
output layer because of its simplicity, sometimes with some slight regularising additions. This
will also be the training methodology of the study presented here.

For a system to successfully perform any information processing task, thus qualifying as a
good reservoir, it must satisfy some key properties: separability and the echo state and the
fading memory properties [12]. These are, in fact, quite general, so much so that they are
often fulfilled by an arbitrary physical system. This realisation brought about the paradigm
of physical RC, where the neural network which constitutes the reservoir in conventional RC
becomes any suitable physical, dynamical system, and the computation is left to the physical
phenomena that naturally take place in it (see Fig. 1.2). Many lines of research are already
focusing on this computational scheme because it allows for a most convenient processing
of on-line information coming from a bigger physical system, if the reservoir is simply part
of the latter. This saves up time and prevents possible losses in the transport of data to
the information processing machine, as well as considerably simplifying the implementation
of such element in the main system. The studied physical reservoirs are as diverse as the
areas that benefit from it, from plain water inside a bucket for pattern recognition [13] to
a silicone octopus arm for dynamical data processing [14]. Electronics, biology, brain and
cell-related projects, photonics or spintronics are some other areas actively exploring the
computational capabilities of the associated physical systems, be it for the purpose of energy-
efficient ML hardware, understanding the processing of information on biological systems or
simply exploring computation on novel substrates [9].

Figure 1.2: The two possible models for RC depending on the nature of the reservoir. Figure
taken from [9].

Coming back to the general RC framework, we will now explain in more detail the afore-
mentioned required properties for an arbitrary reservoir, which were separability, the echo
state property and the fading memory property. Separability refers to the system’s ability to
produce different outputs for different inputs, i.e., the map implemented by the reservoir must
be injective. The echo state and fading memory properties are strongly interconnected, and
in fact it has been proven that a contractivity of the map and a compact input set imply the
presence of both of them [15]. In order to be able to perform nonlinear operations, a reservoir
must inspect the previously received input upon the arrival of each new instance in order to
produce an output. In engineering, such a device is referred to as a filter. For an optimal
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computation, we want our system to remember previous data, but only up to a certain point:
it is essential that it forgets its initial condition, otherwise we would never be able to get the
same output from a given input string. The echo state stresses the filter’s reminiscence ability
while the fading memory guarantees that the system’s starting point will stop being relevant
over time, but both characterise the reservoir as a filter. The mathematical definition of the
echo state and fading memory properties can be found in Appendix A.

To close this section we proceed to the description of the general mathematical framework
of RC, which we will later particularise to the case of our own model and implementations.
Consider an arbitrary time series u that maps each time instance t ∈ Z to a value of the
bounded set U, such that

u : Z→ U (1.2)

ui ∈ [umin, umax] umin, umax ∈ R (1.3)

Since the reservoir is a dynamical system, its current state will inherently depend on the
previous one, which amounts to a dependence on the past input history. Thus, given a time
series u, the reservoir implements a transformation such that:

xt = T (xt−1, ut) (1.4)

where x is the state of the system and T (·) is the functional encoding the action of the reservoir
after the injection of new input. The output layer then translates the state of the reservoir
as follows:

ot = h(xt) (1.5)

where h(·) is a functional. This is the most general description we can make of the mapping
implemented in our numerical experiments, which will be further illustrated in Section 1.5.

1.2.1 Quantum Reservoir Computing

The benefits of high complexity for ML in general are what makes the quantum realm an
interesting playground for all the ideas we have talked about so far. In classical systems,
this complexity is achieved by connecting a number of nodes that is between large and mas-
sive. However, the high dimensionality of a Hilbert space allows one to obtain such levels of
complexity with exponentially less elements to control: note that in a classical reservoir the
number of degrees of freedom grows only polynomially with system size (d.o.f ∼ N), while
in a quantum reservoir it does so exponentially (d.o.f ∼ 4N in the case of a spin-1/2 system).
This landscape naturally fits into the picture of reservoir computing, since most of the com-
putation takes place by means of nodes we are not accessing through the observables we have
chosen to measure (acting as hidden layers) but which may be monitored through merely a
few true nodes. We recall that a node corresponds to a degree of freedom of the system, and
thus by a true node we are not referring to a physical component of the system (such as a
qubit) but to a degree of freedom we directly access, i.e., an independent magnitude that is
measured. An illustration of the Quantum Reservoir Computing (QRC) scheme we have just
described may be found in Fig. 1.3.

QRC has already proven very successful in the processing of quantum information [6], albeit
this work is limited to the task of time series prediction of classical information. We further
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Figure 1.3: Comparison between the classical RC and QRC schemes. The output layer is
directly referred to as a linear readout (LR) in this figure, which was taken from [16].

comment that, although the practical implementation of QRC systems remains technologically
challenging, today’s laboratories are already prepared to build and monitor small versions of
these reservoirs with optical systems [17] (an approach particularly promising in terms of
scalability), Nuclear Magnetic Resonance (NMR) [18] and cold ions [19, 20]. These last two
allow for the implementation of transverse-field Ising reservoirs, a promising QRC candidate
proposed in 2017 by [16] that has spurred further research from this perspective, including
the work we concern ourselves with here.

1.2.2 Information Processing Capacity

It is hard to define a “better” or “worse” reservoir as an abstract entity beyond the prop-
erties already described at the beginning of this section. Once we have good reservoir, i.e.,
exhibiting separability, the echo state and the fading memory property, we do not expect it
to perform optimally at every task. Such reservoir will have finite capacity of retaining past
information, for example, which may or may not be enough for providing a good performance
in the particular task at hand. This question raises not only on RC, but on the whole ML zoo.
To address it, the most common practice is examining how well the system performs on some
benchmark tasks, which give an idea of the system’s weaknesses and strengths. For example,
the timer task is an indicator of how far back the system can reach for previous input. In this
task, the system is trained to identify the change of the input string from zeros to ones with
a certain delay. If this delay exceeds the system’s linear memory capabilities, the system will
fail to respond correctly and a reliable threshold for this property is obtained (see Fig. 1.4).
When it comes to examining the nonlinear processing capacity of a system, however, the pos-
sibilities are much more diverse, and one can only extract a general idea of a system’s capacity
rather than more concrete information. The NARMA tasks are particularly widespread for
this purpose, each of them consisting on approximating a fixed nonlinear polynomial function
[16, 18, 21]. Luckily, on 2012 a more general measure of a system’s processing capacity was
introduced [22]: the IPC (Information Processing Capacity). This measure allows us to scan
the system’s whole skill-set and see the fraction of it that addresses n-degree nonlinearities,
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Figure 1.4: Example of the performance of N = 6 qubits in the timer task for different delays
(τ). y refers to the prediction given by the reservoir, which in this case should approximate
to a delta of height 1 for delay (dashed lines).

though it comes with a high computational cost.

The IPC aims to avoid the artificial distinction that is usually made between linear and
nonlinear information processing, creating a scale that allows us to compare different dynam-
ical systems on several levels. Each of this levels is associated to a degree d of nonlinearity in
the processing of information. This is done by evaluating the system’s performance in a class
of tasks that consist on approximating a certain polynomial target function of such degree d.

yk =
∏
i

Pdi [s̃k−i]
∑
i

di = d (1.6)

The Pdi appearing in Eq. (1.6) refers to the Legendre polynomial of degree di, and the
s̃k−i to the input with a delay of i time steps. The performance of the system for each of
the tasks described in (1.6) is quantified by a certain capacity CL, where the L indicates a
long-time average over the input string of size L. The sum of all the capacities of the tasks
corresponding to a given d (Cd) provides the capacity we associate to that degree. The order
in which one should collect all these contributions in order not to miss any, a non-trivial
matter, is explained in the supplementary material of [22].

CL = 1−
min{W}MSEL(y, y)

〈y2〉L
(1.7)

In Eq. (1.7), 〈y2〉L is the square average of the target and min{W}MSEL(·) is the mean
squared error between the prediction produced from the weights W (the ones resulting from
the minimum least squares fit, analogous to the w we discussed in Section 1.1) and the target
function.
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〈y2〉L =
1

L

L∑
k=1

y2
k (1.8)

MSEL(y, y) =
1

L

L∑
k=1

(yk − yk)2 (1.9)

One of the most interesting results in [22] is that the sum of the capacities for all degrees
Cd, which we will call CTOT = C, is bounded from above by the number of output functions.
Furthermore, if the system has fading memory this bound is saturated.

0 ≤ C =
∞∑
d=1

Cd ≤ N (1.10)

The ∞ in the upper bound of the degree to be computed is not to be feared, since the
contributions become less significant as the degree is increased. In practice, for the system
sizes concerning us, the summation in (1.10) may be truncated at d = 6. We have conveniently
named the number of output functions N in Eq. (1.10) because in our system we will obtain
our output functions by measuring each of the spins present (a detailed explanation can
be found in Section 1.5), so that in our case the number of output functions will coincide
with the number of spins in the network. As a result, we will always present the capacity
already normalised by this factor in the present work. Some additional notes on the numerical
obtention of the IPC are explained in Appendix B.

1.3 The resource theory of coherence

In a way, coherence constitutes one of the conceptual bridges between classical and quantum
dynamics. It’s an expression of the “quantumness” of a given state, which may be comple-
mentary to the presence of correlations. In a closed multipartite system with interactions,
coherence usually builds up on its own up to a certain value due to the system’s natural
dynamics. However, in the presence of interactions with the environment (i.e., dissipation),
there is a flow of information leaking out of the system and thus coherence tends to decrease.
In the stationary regime (t → ∞) of this process there may be a non-zero coherence, but it
will be, in any case, lower than that of the closed system.

The consideration of coherence as a resource has already proven useful in several fields, such
as quantum metrology, quantum algorithms, quantum thermodynamics, the witnessing of
quantum correlations and even quantum biology and transport phenomena [23]. In this work,
we aim to explore how coherence may present itself as a resource for a quantum dynamical
system to function as a reservoir. The basic argument is that a proper flow of information
within the system (and, with it, a proper performance of the reservoir) can be traced through
its coherence, being better the former the higher the latter is. In fact, quantum coherence has
already come to the attention of some researchers as a feasible probe for studying a system’s
different dynamical regimes [24], a line of research this work contributes to.
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The coherence measure we are going to use is presented in [23], and it corresponds to the
most direct illustration we may have of this magnitude; the sum of the off-diagonal elements
of the density matrix:

Cl1(ρ) =
∑
i 6=j
|ρij | (1.11)

We comment that the somewhat cumbersome notation of Cl1 comes from the fact that it a
particular case of the general matrix norm Clp [23]:

Clp(ρ) =

∑
i 6=j
|ρij |p

1/p

(1.12)

According to definition (1.11), the natural state to take as a reference for how much coherence
a system has is the maximally coherent state Ω, for which Ωij = 1/2N ∀ i, j = 1, ..., 2N . It is
easy to check that the corresponding maximum coherence for system of N qubits is

Cl1(Ω) = Cmax(N) = 2N − 1 (1.13)

which corresponds exactly to the number of degrees of freedom in the system in a pure state.

1.4 Notes on the ergodicity of quantum systems

Before we move on to the introduction of our system, it will be interesting to go through
some important concepts regarding the ergodicity of quantum systems. Our aim is to build
the bridge between the description of a quantum system and that of a reservoir in order to
fully dive into QRC. This will consist, on the one hand, on detailing the way in which a
quantum system may hold a fading memory, which relates to the concept of thermalisation
in quantum mechanics. On the other hand, some aspects of Many-Body Localisation (MBL)
will be outlined, since this phenomenon will be present in our system in a number of cases.

The Eigenstate Thermalisation Hypothesis

Describing the quantum analog of what we call ergodicity in the classical world is not a
straight-forward task. Under careful inspection, we realise that the common definition is
based on the concept of trajectory, and thus cannot be directly translated into the quantum
realm. To be more precise, a system is said to be ergodic if all its microstates are accessed
with equal probability over a long period of time. This requires that the system completely
forgets where it came from, a property that seems impossible to fully achieve in quantum
mechanics just by looking at its algebra. Consider a closed system evolving unitarily:

|ψ(0)〉 =
∑
α

Aα|α〉 (1.14)

|ψ(t)〉 = e−iHt|ψ(0)〉 =
∑
α

Aαe
−iEαt|α〉 (1.15)
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The probability of finding the system in a given eigenstate |α〉 is pα = |Aα|2, which implies
that the initial condition {Aα} remains forever encoded in the state of the system even for
infinitely long times.

A new approach to the definifion of ergodicity on quantum systems was intoduced by
von Neumann in 1929 [25], stating that a closed/open quantum system may be considered
thermalised if all its observables reach the expectation values given by the microcanonical/-
macrocanonical ensemble. The long-time average of any observable for the system in Eq.
(1.15) is described as

〈O〉∞ = lim
T→∞

1

T

∫ T

0
〈ψ(t)|O|ψ(t)〉dt =

∑
α

pα〈α|O|α〉 (1.16)

A way for a system to adjust to von Neumann’s definition taking Eq. (1.16) into account is
to have each of the system’s eigenstates satisfy it individually, i.e.,

〈α|O|α〉 = Omc(Eα) (1.17)

Eq. (1.17) summarises the Eigenstate Thermalisation Hypothesis (ETH), which is the theoret-
ical basis for what we currently understand about quantum thermalisation in closed systems.

Many-Body Localisation

The phenomenon of Many-Body Localisation is fairly rare in natural systems because it
implies the lack of thermalisation in the presence of interactions in the infinite time limit. An
illustration of this violation of ETH can be seen in Fig. 1.5a, where eigenstates corresponding
to the same energy density ε present different values of an observable in the infinite-time limit
and thus cannot satisfy Eq. (1.17). To be more precise, we are always implicitly considering
an interval [ε − δε, ε + δε] due to environmental noise or experimental precision. Thus, Eα
in Eq. (1.17) is virtually the same for all eigenstates contained in such band (Eα ' ε), and
Omc(Eα1) ' Omc(Eα2) ' ... ' Omc(ε). The main ingredient in MBL is the presence of
disorder [26, 27, 28]. We may think of MBL as a localisation in configuration space resulting
from this strong disorder. If this property survives despite the driving of the injection of
input, it will amount to the system lacking a fading memory, yet another way to emphasise
that a system in this phase cannot constitute a good reservoir. Nonetheless, this phase is still
capable of spreading quantum information throughout the system (i.e., the system will reach
a stationary state after we feed it input), although it does so at a considerably slower rate
than an ergodic system [26, 27].

The properties described above can be explained by the emergent integrability that arises
in MBL systems. It so happens that MBL eigenstates are nothing but slightly deformed
product states, and thus a quasi-local unitary transformation is sufficient to diagonalise the
Hamiltonian in this given product state basis. A unitary operator U is said to be quasi-local
if it can be written as the product of n-site operators (n = 2, 3, 4, ...)

U =
∏
i

... U
(3)
i,i+1,i+2 U

(2)
i,i+1 (1.18)

where the higher n operators induce exponentially smaller rotations. For a system of spins like
the one we will concern ourselves with, a fully connected network with a transverse magnetic
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field with local fluctuations, in the case of strong disorder (i.e., strong fluctuations) the product
state basis will be given by the operators σzi . Thus, the operators τ zi = U †σzi U commute with
the Hamiltonian and constitute a complete set of quasi-local integrals of motion, commonly
referred to as LIOMs. We remind the reader that, since the action of the high n-site operators
is exponentially small, the τ zi have a vanishing effect far away from site i, thus giving rise to
this localisation. The quasi-local transformation we have just described is represented in Fig.
1.5b.

(a)
(b)

Figure 1.5: Schematic illustration of some of the main characteristics of MBL. (a) shows
a comparison of the different eigenstates sorted by energy in thermalising (left) and MBL
(right) regimes. The different colours indicate the expected value of the z-component of the
spin at site i, a local observable, for that eigenstate. Note that the level spacing would not be
identical for both cases in reality, but in this schematic representation we have made no such
distinction. (b) represents the transformation induced by the quasi-local operator U in the
product states so as to produce MBL eigenstates (left figure, illustrated in the tensor network
fashion), and in the local operators {σzi }, which produces the set of LIOMs {τ zi } (right figure).
Figures adapted from [27].

1.5 Methodology

This section is dedicated to the description of the scheme of the numerical simulations. We
begin with a system of N spins in an initial state described by a density matrix ρ of size
2N × 2N . The unitary evolution of the network will be described by a Hamiltonian H, such
that at every time step of length ∆t the system is transformed as follows:

ρ[(k + 1)∆t] = e−iH∆tρ[k∆t]eiH∆t (1.19)

The task posed to the system is always predicting a time series. All input strings used here
are random numbers uniformly distributed between 0 and 1, in both training and testing sets
as well as for the warming up set necessary for reaching a stationary state. The data is fed to
the system at the beginning of each ∆t time step always through the same qubit, which we
will identify as the first. This is done by modifying its state according to the following map:

ρ1[sk] =

(
1− sk 0

0 sk

)
(1.20)
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Note here that {s}k ∈ [0, 1], so if the original data does not satisfy this criterion it must
be rescaled first. This is our case for the calculation of the IPC, in which the Legendre
polynomials are evaluated between -1 and 1, so that s̃k ∈ [−1, 1] in Eq. (1.6). In this case,
both input strings are related by s̃k = 2sk − 1. Then, the information is introduced into the
whole system by letting the system evolve naturally from its new state ρ′ according to Eq.
(1.19), where ρ′ is nothing but the tensor product of the new density matrix ρ1 and the partial
trace of the whole system over the first spin.

ρ′[k∆t] = ρ1 ⊗ Tr1ρ[k∆t] (1.21)

For the collection of data from the system, we measure the z-component of each of the
spins of the network. The choice of this observable is guided by experimental simplicity and
following the work of [16]. As a result, our reservoir has N true nodes and a maximum of N
independent output functions, which will set the normalisation constant of the total capacity
for the system (see Section 1.2.2). Following [16], in our simulations we are always considering
a setup where we have a large number of copies of the system, an assumption that allows us
to disregard the back-action after measurement. Let it be further noted that when we refer
to “a copy” of the system we actually mean a large number of them, since we are directly
considering the expected value in our numerical simulations and this physically constitutes
the average over several measurements of an identical system. Thus, the data is collected as
shown in Eq. (1.22) and the density matrix of the system remains the same afterwards.

xi(k∆t) = 〈σzi 〉 = Tr [σzi ρ(k∆t)] (1.22)

where i = 1, ..., N and σzi is the ordered tensor product of the 2× 2 identity matrix for j 6= i
and the z-component Pauli matrix for spin i (σzi = I1 ⊗ ...⊗ Ii−1 ⊗ σzi ⊗ Ii+1 ⊗ ...⊗ IN ). We
also add a constant bias term (xN+1 = 1) in order to regularise the training algorithm of the
output layer.

After an initial number of time steps ζ in which we let the system reach a stationary state,
we collect data for Lt time steps and use the least squares method to obtain N + 1 weights.
These are the ones that will be used to make predictions from the testing input string, of
length Luk. Usually, we will have Lt = Luk = L, although this is not a necessary ratio.

Error estimation

Throughout this work we are dealing with randomly generated systems from a given set of
parameters, and thus it is frequently necessary to average over a number of systems Nsys in
order to obtain an accurate picture of the general behaviour under study. When measuring
a certain magnitude A in the stationary regime (the coherence, for example), we proceed as
follows: after letting the system n reach such stationary regime with ζ time steps, we measure
it in the following L time steps and obtain a mean an and a variance ∆an from that data
string. Once we have these values for each different system, we consider the final measure
of the desired magnitude to be the mean value of the an, and its associated deviation ∆A is
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calculated by simple error propagation.

A =
1

Nsys

Nsys∑
n=1

an (1.23)

∆A =
1

Nsys

√√√√Nsys∑
n=1

(∆an)2 (1.24)

In any case, the biggest contribution to the deviation from the mean A comes from the
different system realisations rather than the fluctuations relative to a single system.
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Chapter 2

The system

One of the interesting candidates for QRC are networks of spins, the paradigmatic example
of QRC with discrete variables. The proposed models of this type can be brought to life in a
lab with trapped ions or NMR (Nuclear Magnetic Resonance) settings. The work presented
here contributes to the research into the performance of transverse-field Ising systems as
reservoirs, opened by [16] and continued in [29, 21, 30].

We consider an ensemble of N spins with random all-to-all interactions drawn from a
uniform distribution, and subject to a magnetic field in the transverse direction. It is akin to
the Sherrington-Kirpatrick model [31], one of the simplest 1 devised to explain the spin glass
(SG) phenomenology. In this model the magnetic field is the same at every site, so that the
system is described by the following Hamiltonian:

H =
∑
i>j

Jijσ
x
i σ

x
j + h

∑
i

σzi (2.1)

where σαi is the α-component of the spin acting on qubit i and the {Jij} are uniformly
distributed over the interval [−Js/2,+Js/2]. We further comment that throughout this work
we have taken Js = 1 in order to set our energy scale. Systems like the one described in Eq.
(2.1) already are experimentally feasible with the technology of trapped ions, as demonstrated
in [20], although here the coupling constants {Jij} were not drawn from a uniform distribution
but decrease algebraically with the distance between spins. As it will be confirmed in our
analysis, this model harbours a quantum phase transition between an ergodic and a non-
ergodic phase, the latter materialising in a SG phase.

Afterwards, we will consider a more general version of this model in which we allow the
magnetic field to have random local fluctuations. These will be bounded by a parameter W
and uniformly distributed, such that

H =
∑
i>j

Jijσ
x
i σ

x
j +

∑
i

hiσ
z
i (2.2)

1In the sense that it is exactly solvable, but the mathematical machinery required to do so is, in fact, quite
sophisticated. In Sherrington-Kirpatrick, the couplings are drawn from a gaussian distribution instead of a
uniform one.
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where hi = hmean + wi for wi ∈ [−W,+W ]. This introduction of further disorder allows for
the appearance of Many-Body Localisation (MBL) for high W . A more exhaustive discussion
of the MBL phase is presented in Section 1.4, so here we simply recall that it is non-ergodic,
making this regime unsuitable for computation. MBL has been identified in similar spin
systems as well, as the Sherrington-Kirpatrick model [32]. Although the model in Eq. 2.2
has been less studied in the literature (at the time of the redaction of this work), the phase
diagram it produces has already been characterised in other works, both theoretical [21] and
experimental [19].

Determination of an appropriate time scale

Before the beginning of the study, a suitable time step between inputs ∆t for capturing
the dynamics of the system must be set, long enough for the information fed to be properly
processed. There is a threshold ∆t setting this distinction for a given set of system parameters,
which corresponds to the minimum time the system needs to relax after the quench produced
by the injection of input. Here, we have numerically determined the threshold ∆t (as shown
in Fig. 2.1) for a given set of parameters and chosen to fix a value sufficiently far from this
threshold, ∆t = 10, so that it is still suitable for other system sizes we will be considering.
We will mainly focus on the case N = 5 because it provides a good compromise between
the visibility of interesting effects and computational time, but we will occasionally consider
N = 6 and N = 10 as well.

0 2 4 6 8 10 12 14 16
t

2

4

6

8

C l
1

Figure 2.1: Stationary value of the coherence starting from an incoherent initial condition
and averaging over 100 systems after ζ = 103 steps for N = 6, h = 1 in the uniform field
Hamiltonian. The point corresponding to ∆t = 0.1, however, was calculated with ζ = 104,
since for such a small interval between inputs the system needs much more time to reach
stationary dynamics.
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2.1 Uniform magnetic field

The model depicted in Eq. (2.1) interpolates between the dynamics of independent spins
under the action of a magnetic field h in the limit h � Js (which we will refer to as the
paramagnetic regime) and the dynamics of a SG for h � Js. From this very description we
can already presume that this system will not constitute an appropriate reservoir at least in
the latter case, since SGs have long been known to retain memory of their initial condition.
For h� Js, however, the fading memory condition will be satisfied (in the presence of input)
because of the strong influence of the magnetic field, but the flow of information back and
forth throughout the system will also be hindered by its rigidity, which should somehow limit
its processing capacity. Since the network won’t be able to store and mix previous input
as effectively, we expect these systems to have a lower non-linear processing capacity. The
intermediate regime, on the other hand, should hold the most interesting properties of both
extremes from the point of view of reservoir computing: an external magnetic field strong
enough to dilute the initial condition but with important interactions between nodes, allowing
for the proper flow of past inputs in the network.

We can already catch a glimpse of these differences by looking at the unitary evolution of
the z-component of the spins. We start by looking at the dynamics in the SG regime, both
unitary (see (2.1)) and with the insertion of input (adding the mapping (1.21)).
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(a) Unitary evolution
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(b) Evolution with input

Figure 2.2: Typical evolution of the system described by the Hamiltonian in Eq. (2.1) for
h = 0.01 (a) and with the addition of the reservoir computing map (b). The thicker line in (b)
corresponds to the spin through which random input is being fed to the system (spin 1), visible
in the “kicks” it experiences. The point t = 0 corresponds to when we begin the measurement
of the system, after it has reached the stationary state starting from a maximally coherent
initial condition.

Fig.2.2a already shows how, in this regime, spins establish themselves in stationary states with
their own periodic orbits, without interfering with each other any further. This independence
persists when we introduce our data into the system, as we can see in Fig.2.2b, where the rest
of spins remain essentially idle to the activity of the first one. Since information does not flow
properly through the system, our previous assertion of it constituting an inadequate reservoir
in this parameter regime is confirmed.

We may now look at the more promising cases for the purpose of RC: the intermediate and
paramagnetic regimes. Figs. 2.3 and 2.4 present the evolution of a typical system in both
scenarios for the non-dissipative and the dissipative case, respectively.
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(b) Paramagnetic regime

Figure 2.3: Unitary evolution of all spins for the intermediate and paramagnetic cases for the
same system with (a) h = 1 and (b) h = 100 in the stationary regime after starting from a
maximally coherent initial condition. The inset in (b) presents a zoomed-in version of the
trajectories in this regime, which have a considerably smaller amplitude than the intermediate
case. The colour coding of the figure is explained in Fig. 2.2.

The difference between regimes that appears in the unitary dynamics of the system is in good
agreement with our previous argument of the magnetic field limiting the flow of information
through the network. Fig. 2.3 shows that the amplitude of oscillation of the spins is about
an order of magnitude lower for h = 100, which points to a weaker response to the changes
suffered by the rest of the network overall.
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(a) Intermediate regime
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Figure 2.4: Spin trajectories for the intermediate and paramagnetic cases, for a system with
identical coupling strengths and (a) h = 1 and (b) h = 100, when the same input sequence is
fed to both of them (red squares). Results correspond to the stationary regime after starting
from a maximally coherent initial condition.

Despite the considerable difference observed between both regimes during the unitary evolu-
tion of the system in Fig. 2.3, Fig. 2.4 shows that the driving of the injection of input is
strong enough to induce a very similar response in both cases. Note that in the case where
we are introducing the input, the rest of spins follow the dynamics of the first. This is clearly
seen, for example, around t = 660 in Fig. 2.4, where the peak of spin 1 produced by the
injection of input is translated to spins 3 and 5 at t = 665 and t = 671, respectively.

In conclusion, this preliminary study of the system by looking at the time evolution of
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its observables has revealed the following: in the low-h regime of the system described in
(2.1), we expect computation to be unfeasible, since it remains in a spin-glassy phase and
thus cannot forget its initial condition. The other two regimes, however, seem much more
promising, since a noticeable magnetic field allows for the dilution of the initial condition and
for the precession of spins in planes more parallel to each other. This last feature facilitates
the appearance of resonances, which allow information to flow through the whole system.

2.2 Disordered magnetic field

We will now perform a similar study on the model from Eq. (2.2). This Hamiltonian has
also been studied from the perspective of QRC with a disorder distribution different from
the one presented here in [30] and with our same distribution in [21]. In particular, we are
interested in the effect of this further disorder, characterised by W and introduced via spatial
fluctuations in the transverse magnetic field. The theory presented in Section 1.4 predicts
the appearance of an MBL phase at high disorder (W � Js), in which computation will not
be possible due to the violation of ETH (and, equivalently, the fading memory condition).
Here we will merely present the evolution of the observables relative to hmean = 0.01 since if
W � hmean results will be qualitatively similar to those of a uniform magnetic field. Thus,
we are going to set ourselves in what we previously referred to as the SG phase and see to
which other dynamical regimes disorder takes us.
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(a) Unitary evolution
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(b) Evolution with input

Figure 2.5: Spin trajectories for the cases with unitary evolution (a) and input injection (b),
for systems with identical coupling strengths {Jij}, W = 0.01 and hmean = 0.01. The colour
code for the different spins is the same as in the previous section. Results correspond to the
stationary regime after starting from a maximally coherent initial condition, and the colour
coding of the figure is explained in Fig. 2.2.

We see that Fig. 2.5 shares its main features with Fig. 2.2: in the unitary case, each spin
follows its own independent orbit, although somewhat distorted by the fluctuations of the
magnetic field in the former case. The input map does bring about more differences, like
the considerable reduction in the amplitude of oscillation of the rest of spins (whose origin
remains unclear), but in any case none of them are able to follow the input signal. Therefore,
this region remains unsuitable for RC, as the disorder is not enough to spur the transport of
information.
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Figure 2.6: Spin trajectories for the cases with unitary evolution (a) and input injection (b)
for the same system with W = 1 and hmean = 0.01. Results correspond to the stationary
regime after starting from a maximally coherent initial condition, and the colour coding of
the figure is explained in Fig. 2.2.

The picture presented in Fig. 2.6 as we increase W is now more reminiscent of what we
had observed in the ergodic regime for the case of a uniform magnetic field, in particular to
the intermediate regime due to the amplitude of the unitary trajectories and a certain lack of
smoothness in the case with the input map. In the multiple-valley picture of a spin glass 2 ,
the disorder has flattened out the landscape and the system is now able to diffuse and process
information efficiently.

However, when disorder is too strong we return to a situation in which the landscape’s local
minima are shaped by the disorder on the magnetic field, and the system gets stuck in them
over again. This corresponds to the MBL phase, represented in Fig. 2.7. Despite the feasible
analogy, one must not equate the phases that appear in both extremes (SG and MBL), as
they are qualitatively different states born through different mechanisms. In particular, MBL
is a strictly quantum phenomena while a spin glass may exist without the need to introduce
the concept of superposition [26].
Fig. 2.7b shows best the many-body character of the states accessible to the system, as the
input kicks generate a minimal little effect over the rest of spins and the first spin remains
essentially static around the position it was set in. This picture proves consistent with the
phenomenon of localisation and evidences that this system cannot constitute a good reservoir,
as we had already predicted from the theory.

Previous studies [21] report a full characterisation depending on magnetic field and disorder
parameters of the regimes we have inspected in this chapter. In particular, ergodicity is
identified by looking at more specific features, like the average level spacing or the convergence
of two final states starting from different initial conditions. We present some of these results
in Fig. 2.8, as the ergodicity and non-ergodicity of the different phases will prove to be of
great importance for the system’s IPC. This characterisation has been made by looking at the
spacing between the system’s energy levels, more precisely the ratio between adjacent gaps r:

r =
min (δn, δn+1)

max (δn, δn+1)
(2.3)

2Spin glasses are well illustrated by their free energy landscape in state space, which presents many local
minima. The system tends to get stuck in these valleys, thus failing to explore the rest of the phase space.
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Figure 2.7: Spin trajectories for the cases with unitary evolution (a) and input injection (b)
for the same system with W = 10 and hmean = 0.01. The inset in (b) shows a close-up over
some of the spins, so that the abrupt change of their state with the injection of new input
may be noticed. Results correspond to the stationary regime after starting from a maximally
coherent initial condition, and the colour coding of the figure is explained in Fig. 2.2.

where δn = En − En−1. It is an established fact that, for a thermalising system, the Hamil-
tonian’s eigenvalues are distributed according to Wigner-Dyson statistics, while localisation
generates a Poisson distribution [26]. According to [33], a Hamiltonian satisfying ETH must
have 〈r〉 ' 0.535, while one that presents localisation will have 〈r〉 ' 0.386. Thus, the lighter
regions in Fig. 2.8 indicate that the system is ergodic for that set of parameters, while the
dark regions indicate the contrary. Looking past the slight deformation in shape due to the
difference in system size, in the next chapter we will be able to properly confirm that the
intermediate and paramagnetic regimes we have previously referred to belong to the ergodic
area, while the SG and MBL regimes stand in the dark region. As a last reminder before
we move on to the study of the system’s coherence and IPC, we once again stress the fact
that ergodicity is a necessary requirement for a system to be able to act as a reservoir, since
it guarantees that information spreads through the reservoir and that the system tends to a
state independent of the initial condition.
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Figure 2.8: Level spacing ratio 〈r〉 as a function of the magnetic field and disorder for a system
of N = 10 spins. Results are averaged over 1200 realisations. This plot was extracted from
[21] with the authors’ permission.
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Chapter 3

Results

We will now move on to the presentation of two different sets of results. First, we will
identify the different regimes we examined in the previous section through the system’s co-
herence, associating it to its information processing capacity in that region. Afterwards, we
will analyse the system’s response when it is submitted to an undesired dissipation process.
Our goal here is to explore purely quantum aspects of such system, which constitute a funda-
mental tool towards the exploration of possible quantum advantages. We will also probe the
robustness of this model in the presence of decoherence, providing a more realistic picture of
the performance of an experimental realisation of our reservoir.

3.1 Coherence vs. IPC

Now that we have familiarised ourselves with the system, both by itself and as a reservoir, we
may focus on the analysis of its coherence and the information about the processing capacity
we may extract from it. We begin by presenting a heatmap of the stationary coherence of
the system as a function of W and hmean (i.e., directly considering the more general case
of Hamiltonian (2.2)) in order to relate the different phases we identified in the previous
section with our coherence measure. For the realisation of this set of simulations we have
always considered a completely incoherent initial state with all spins pointing upwards. This
is relevant in the case of the non-ergodic phases, since they will reach a higher stationary
coherence if their initial condition is the maximally coherent state than if they start start
from a maximally incoherent one. The obtained results are presented in Figs. 3.1 and 3.2.
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Figure 3.1: Stationary coherence 〈Cl1〉 for a system of N = 5 spins. The resulting value
of each point has been averaged over 100 systems, within which we have also averaged over
L = 1000 measurements taken after ζ = 1000 steps.
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Figure 3.2: Associated deviation from the average stationary coherence ∆Cl1 . Simulation
parameters are the ones stated in the caption of Fig. 3.1.

Despite the deformation caused by the different sizes of the network, Fig. 3.1, where N = 5,
presents the same structure as Fig. 2.8, where N = 10, establishing a link between ergodicity
and a high coherence. Indeed, this measure is also able to indicate, e.g., when a moderate
amount of disorder (0.15 < W < 1.5) brings the system into the ergodic regime at low hmean,
pulling it away from the SG phase. Coherence seems to indicate a further distinction within
the ergodic area that is not visible in Fig. 2.8: the area around the SG phase presents a
somewhat higher average coherence than the one with high hmean, which presents a very
stable average value (hmean & 0.1 and W . 2). This plateau is more visible in Fig. 3.2,
where it appears as the square where the error is highest. We will refer to this area as the
“deep ergodic” region, and it corresponds to what we had referred to as the paramagnetic
regime in the previous chapter. The rest of the ergodic area, corresponding to the one where
coherence is highest, we will identify as the intermediate region. We will further invertigate
the differences between both regimes from the reservoir perspective throughout this chapter.
For the sake of a more direct comparison between the information provided by Fig. 2.8 and
the system’s coherence, we present in Fig. 3.3 another similar heatmap. Despite having
considerably less resolution, we see that the quantitative value of the parameters at the
boundaries of the high-coherence area roughly coincide with those of the ergodic region in
Fig. 2.8.
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Figure 3.3: Average stationary coherence 〈Cl1〉 for a system of N = 10. Despite the reduced
set of points calculated here, the structure present in Fig. 3.1 is still observed.

We now move on to establishing the relation between coherence and information processing
capacity of the system. For this purpose, we will examine some sections of the heatmap in
Fig. 3.1 and compare them with the evolution of the IPC along those lines.
We begin by looking at the scenario presented by the Hamiltonian (2.1), where W = 0, in
Fig. 3.4. A couple of features are to be highlighted here. First, we observe that the maximum
capacity (C/N = 1) is reached just as we enter the high coherence area (which we have already
linked to the ergodic regime), where Cl1 > 6, and corresponding to h ' 0.1. Thus, we are
able to equate a number of features that characterise the system from different perspectives:
high coherence, ergodicity and a saturated Information Processing Capacity. We will see that
this correspondence remains unchanged throughout the analysis carried out in this section.
We also observe that the maximum of the coherence coincides with the minimum of linear
capacity and thus with a maximum in the nonlinear processing capacity, as we had predicted
at the beginning of Chapter 2. However, we notice that the difference of the linear capacity
with respect to the deep ergodic phase (a representative of which is the last bar in Fig. 3.4b)
remains at a 10% over the total capacity. That is, we go from a linear capacity of 0.6 at the
minimum to 0.7 in the deep ergodic phase. We will always refer to percentages in this sense
in this discussion. On the other hand, the third-degree capacity is also incremented by an
approximate 10%, so the most striking difference in the second-degree capacity, which loses a
20% over the total capacity. A study performed in larger sizes confirmed this trend for these
cases as well.

We will now look at a fixed hmean in order to observe the variation in the processing capacity
induced by disorder. We choose hmean = 0.002, which lies outside the charted heatmap, in
order to probe the deep SG phase as well. We will also consider a larger system size in this
case, N = 6, with the aim of attaining a better resolution, since in the low-hmean regime the
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Figure 3.4: Measured coherence (a) and IPC (b) for a system of N = 5 and W = 0. Results
in (a) are averaged over 100 systems and systems, and over L = 1000 measures taken after
ζ = 1000 steps. The black squares correspond to the approximate location of the points
where the IPC in (b) was evaluated, and the shaded area represents the associated uncertainty
(negligible in this case, appearing just as a slightly thicker line). The maximum coherence
is reached at h = 0.22, which corresponds to the minimum of the linear capacity in (b). In
(b), results were averaged over 100 different systems. The full capacity is reached at around
h = 0.1, that is, shortly before the coherence maximum, and the brown dots illustrate the
corresponding coherence at that point, quantified in the right axis.

system exhibits more fluctuations and larger sizes always provide a lower error. The results,
presented in Fig. 3.5, show the correspondence between a saturated IPC and high coherence
as well, since the region of full processing capacity (0.18 . W . 1.4) coincides with that of
Cl1 & 6. We note that this reference value is not absolute, it only coincides with what we
observed in the case W = 0, N = 5 because these system sizes are close enough. The higher
value of the maximum coherence in Fig. 3.5a with respect to that in Fig. 3.4a is only due to
the different system sizes: it has been checked that otherwise they would be approximately
the same. This is consistent with the fact that they are both situated in the intermediate
regime.

As a side note, we comment that the maximum coherence of each heatmap section, as
well as the coherence of the deep ergodic region, are not simply proportional to the maximum
coherence achievable at that system size. In fact, the fraction of coherence relative to Cmax(N)
(see Eq. (1.13)) is exponentially decreased as N increases, as it is shown in Fig. 3.6. This
already points to the fact that the saturation of the IPC of the system may be sustained even
with a lower coherence than what the system actually exhibits, an issue we will get back to
when we analyse the robustness of the reservoir in the presence of noise in Section 3.2.

Finally, we will further investigate the differences between the intermediate and the param-
agnetic regimes with disorder by analysing the transverse cut at W = 0.5, again in a system
with N = 5 spins. The results, presented in Fig. 3.7, highlight the fact that this distinction
has no significant consequence on the IPC in the presence of disorder. This is consistent with
what was observed in Fig. 2.6, which evidences how the input map drives the two regimes
into virtually the same dynamics. This similarity is also reflected in the little variation of the
system’s coherence for the different hmean, which remains between 5.7 and 6.3.
We also highlight the difference between the IPC for the higher values of the magnetic field
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Figure 3.5: Measured coherence (a) and IPC (b) for a system of N = 6 and h = 0.002. Results
in (a) are averaged over 100 systems, and over L = 1000 measures taken after ζ = 1000 steps
(and ζ = 104for the first 10 points, in order to overcome the slow dynamics of the SG
regime). The black squares correspond to the approximate location of the points where the
IPC in (b) was evaluated, and the shaded area represents the associated error (negligible
in this case, appearing just as a slightly thicker line). The maximum coherence is reached
at W = 0.43, which corresponds to the minimum of the linear capacity in (b) within error
bars. In (b), results were averaged over 100 different systems, and the brown dots illustrate
the corresponding coherence at that point, quantified in the right axis. The full capacity is
reached at around 0.18 .W . 1.4.

4 5 6 7 8 9 10
N

0.05

0.10

0.15

0.20

0.25

0.30

C l
1

/C
m

ax

e 0.34 N + 0.01

data

Figure 3.6: Fraction of coherence over the maximally coherent state at the point h = 1,
W = 0. Results are averaged over 100 stationary measurements after ζ = 1000 steps and over
10 different systems.
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shown in Fig. 3.7b and those for the case W = 0, in Fig. 3.4b. We see that in the absence
of disorder the contribution to the IPC coming from higher-order degrees (n > 2) is more
important than in the W = 0.5 case. This may be explained in the semiclassical picture,
where a uniform magnetic field concentrates the dynamics of the spins in planes parallel to
each other, thus easing the flow of information between them and producing higher degrees
of nonlinearity. However, disorder disrupts this effect. In fact, in the disordered case the sys-
tem’s processing capacity seems more similar to that of the intermediate regime for W = 0,
where the second-degree nonlinearities are enhanced as a whole.
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Figure 3.7: Measured coherence (a) and IPC (b) for a system of N = 5 and W = 0.5, averaging
over 100 systems in both cases. Results in (a) are also averaged over L = 1000 measures taken
after ζ = 1000 steps. The black squares correspond to the approximate location of the points
where the IPC in (b) was evaluated, and the shaded area represents the associated error.
The maximum coherence is reached at hmean = 0.11. In (b), results were averaged over 100
systems, and the brown dots illustrate the corresponding coherence at that point, quantified
in the right axis.
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3.2 Robustness to noise

In practice, any system is inevitably subject to some degree of noise, so it is of great
interest to study how well the system will perform under non-ideal conditions. To this end,
in this section we analyse the robustness of our reservoir through the implementation of a
dissipative process between measurements. The particular transformations we have chosen
to implement are the phase flip and bit flip channels [34, 35], which are standard ways of
simulating decoherence. Such noise acting on a single spin amounts to performing the following
transformation:

Phase flip: Ez[ρ] = (1− p)ρ+ p σzρσz (3.1)

Bit flip: Ex[ρ] = (1− p)ρ+ p σxρσx (3.2)

where p is the error probability. This p is given by a certain noise strength γ and the duration
of the time interval during which the process may take place, δt, as follows:

p = perr =
1− e−2γδt

2
(3.3)

The parametrisation defined in Eq. (3.3) is a standard choice, since after the phase flip noise
acts for a time δt the off-diagonal elements of the density matrix are reduced by a factor e−γδt

(the diagonal remains intact). A deeper characterisation of the action of both channels can be
found in Appendix C, but we can already expect for their effects to be different: the magnetic
field concentrates the dynamics around the z-direction, so we expect the bit flip noise, which
projects the system onto the x-axis, to erase more information than the projection over the
z-axis caused by phase flip.
The generalisation of this process to a system with more than one spin is not straightforward,
since many different possibilities arise, but we have chosen to consider that dissipation happens
independently in all qubits, following the scarce literature on the subject [35]. In this protocol,
we implement η dephasing steps between inputs, where on each dephasing step we first let
the system evolve unitarily for a time δt = ∆t/η and then apply the dissipative map:

Eα[ρ] = (1− p)Nρ+ (1− p)N−1p
∑
i

σiαρσ
i
α

+ (1− p)N−2p2
∑
i 6=j

σiασ
j
αρσ

i
ασ

j
α + ...+ pNσ1

α...σ
N
α ρσ

1
α...σ

N
α (3.4)

where α = {z, x} and i, j = 1, ..., N , so that σiα corresponds to the Pauli matrix of coordinate
α acting on spin i. It is only after the series of dephasing steps have taken place, that is, right
before feeding new input, that we perform the measurement.

To begin the study of the introduction of such noise, we first observe the effect the number
of dephasing steps we introduce between measurements, presented on Fig. 3.8. The results
from 3.8 are explained by the fact that applying the decohering operation for smaller time
intervals results in a lower error probability, and thus an effectively weaker effect. Notice
the dependence of the time it takes the system to reach a stationary regime on the effective
strength of the noise (higher perr reach the stationary state faster) and on the dynamical

32



0 50 100 150 200 250
t

10 1

100

101

C l
1

50
100
500

(a) W = 0

0 50 100 150 200 250
t

10 1

100

101

C l
1

(b) W = 3

Figure 3.8: Measured coherence for a system of parameters hmean = 1 and the specified dis-
order W subjected to phase flip noise of strength γ = 0.9 and different number of dephasing
steps, always starting from the maximally coherent state. Results are averaged over 10 differ-
ent systems subjected to the same input sequence for each η. We highlight the fact that δt, the
time between decohering events, is changed for the different values of η as δt = ∆t/η = 10/η,
which also implies a lower perr. In particular, perr = 0.15, 0.08, 0.02 for η = 50, 100, 500.

regime of the system. This last feature stands out comparing Figs. 3.8a and 3.8b, where we
see that the point situated in the ergodic regime (W = 0, hmean = 1) reaches the stationary
regime considerably faster than its MBL counterpart (W = 3, hmean = 1), consistently with
the dynamical properties of this phase. Throughout the rest of this analysis we will fix the
number of dephasing steps as η = 50, which implies δt = 0.2. Moreover, we will always
start from a maximally coherent initial condition, in order to better appreciate the system’s
tendency to lose it as an effect of noise.
Before proceeding to the rest of the study we comment that, for the parameters we have
already fixed (∆t = 10, η = 50) and the number of measurements we usually average over
(L = 100 − 1000), we will only see some effect of the noise for γ & 10−3, so we will focus
on such noise strengths. The particular set of γ to be studied and their corresponding error
probabilities are presented in Table 3.1.

γ 1·10−3 2·10−3 0.01 0.1 0.9 1.74 100

perr 2·10−4 4·10−4 2·10−3 0.02 0.15 0.25 0.5

Table 3.1: Studied noise intensities γ and their corresponding error probabilities perr according
to (3.3).

It will be useful to study the effect the different channels have on the system in the absence
of the input map first (Fig. 3.9). This way, we may take note of the action of both kinds
of noise by themselves, without the dissipation caused by the repeated injection of input and
the partial trace. We will do so through the preferred measure of this work, Cl1 . In order to
observe an overall change in the system through the probing of coherence, we will scan the
whole spectrum of h we have been considering with a fixed W = 0. We have focused the
gross part of this analysis on this simplest case scenario of (2.1) in order to better understand
the effects of dissipation. However, some interesting remarks will be made about a case with
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disorder at the end of this section.
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Figure 3.9: Coherence for systems with W = 0 without the injection of input at different
noise intensities. Measurements were taken after ζ = 1000 steps and averaged over 8 different
systems, which were initiated at the maximally coherent state. The shaded area on the bottom
of the plots indicates the region where the obtained results must be considered with care, as
they may be affected by numerical precision.

Fig. 3.9 evidences some important differences between decoherence channels in the regimes
present for W = 0: the SG phase for low h and the ergodic phase for h & 0.1, within which
we had the intermediate region (0.1 . h . 0.3) and the deep ergodic or paramagnetic region
(h & 0.3). Nonetheless, we will merely focus on the latter, as it is the broader region of
interest for QRC. We notice that both channels begin having a strong effect starting from
γ = 0.1, but the bit flip channel shows a higher disruptive power in the ergodic regime
since coherence remains essentially static at a low value in this region. For the phase flip
case, however, coherence builds up for increasing h, even making the effect of noise negligible
for high enough h. It is also interesting to note the displacement of the coherence curves
produced by the various phase noise intensities in 3.9, which suggests that noise is distorting
the threshold of the ergodic phase. This effect is particularly important in the phase flip case
(see 3.9a) where, for increasing γ, it takes the system an increasingly higher magnetic field to
reach the asymptotic stationary coherence set by lower noise intensities.

Once we have characterised some main features of the noise channels under consideration,
we may move on to the central subject of interest: the robustness of the reservoir to the action
of such noise. We will first examine the coherences present in the system, in an analog picture
to the one in Fig. 3.4a for the set of noise strengths under consideration.
The results of Fig. 3.10 suggest that bit flip noise noise starts being truly disruptive at around
γ ∼ 0.1, where we find evidence that the deep ergodic phase may be close to its erradication
in the fact that the coherence is almost the same as it was in the SG phase, where the system
was not ergodic. Actually, for the highest noise intensities we see that it is even lower, nearly
dropping to zero, suggesting a breakdown of ergodicity.
The consequences of the bit flip channel, however, seem to be less dramatic even up to
perr = 0.5, as the plateau we associated to the deep ergodic phase in Section 3.1 appears in
any case. In fact, it even keeps the structure of a peak at the transition between phases we
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Figure 3.10: Stationary coherence of the reservoir computer as a function of h with W = 0
for different noise intensities. The lines without a marker correspond to phase flip noise and
the ones with markers to bit flip (both cases are indistinguishable for γ = 0, 0.001). Results
are averaged over 1000 measurements taken after ζ = 1000 steps and over 8 different systems.
(a) presents all the obtained curves, while (b) and (c) show close-ups of the beginning of the
ergodic phase and the whole phase flip curve for high noise intensities, respectively. Error
bars have been left out of these plots for the sake of clarity, but we comment that they are
rather small: the relative error ranges between 3% for low γ and 0.3% for high γ.
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had previously linked to the intermediate phase, visible in Fig. 3.10c.
Nonetheless, some differences do appear as well for γ & 0.1: fluctuations are considerably
flattened out (we remind the reader that the relative error for this noise intensity is around
0.3%, an order of magnitude lower than it was for lower γ) and the plateau develops at
increasing h as we turn up the noise, an effect we had already seen for the unitary case in
Fig. 3.9a. To know more about how these features affect the nature of our reservoir, however,
we must directly look into the system’s IPC. The high computational cost of simulating a
system with decoherence and the complexity of the different dynamics of each possible regime
force us to focus our understanding efforts in selected points. We have mainly focused on the
ergodic regime, where the system may act as a reservoir, but we will also present an analysis
of a point in the MBL region.

3.2.1 Ergodic region

As representatives of the computationally adept regime, we have chosen to study the points
h = 1, W = 0, located in the deep ergodic phase but not too far away from the intermediate
region, and h = 0.02, W = 0.3, located in the intermediate region. However, since the
coherence analysis we have presented corresponds to the case without disorder, we will only
comment on the first point when extracting conclusions in relation to this magnitude.
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Figure 3.11: IPC at W = 0, h = 1 for a system subjected to increasing noise strengths.
Results are averaged over 10 different systems. In (b), the bars relative to γ = 0.9, 1.74 are
slightly underfilled, with C/N = 0.98, 0.95 when a filled bar is considered for C/N > 0.99.
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Figure 3.12: IPC at W = 0.3, h = 0.02 for a system subjected to increasing noise strengths.
Results are averaged over 10 different systems. In (b), the first bar that fails to saturate
corresponds to γ = 1.74, although the high error of γ = 0.9 must be taken into account. This
elevated error indicates that this point is most likely close to the transition to an unsaturated
capacity of the reservoir.

What we observed in Figs. 3.10a, 3.10c together with the results of Fig. 3.11a (and Fig.
3.12a) help us get a clearer picture of the robustness of a good performance of reservoir
against the phase flip channel. This type of noise seems to attack the correlations that make
up the non-linear processing capacity of the system, leaving the most essential pathways for
the flow of information along the system untouched. The story told by Figs. 3.10a and 3.11b,
however, is rather different: for γ ≥ 0.9, the IPC fails to saturate and the reservoir ceases to
be operational. In order to dive deeper into this matter, we will make a further comparison
between the state of the system and its factorised analog %, defined as

% = Tr{i}i6=1
ρ⊗ ...⊗ Tr{i}i 6=Nρ =

N⊗
i=1

ρi (3.5)

This will allow us to observe how far the system is from being completely factorised in each
case.
For this comparison we will make use of the mutual information measure I, which measures
the distance between the true state of the system ρ and its factorised counterpart %.

I(ρ) = S(%)− S(ρ) =
N∑
i=1

S(ρi)− S(ρ) (3.6)

where S(ρ) refers to the von Neumann entropy of state ρ. Notice that I(ρ) = 0 when ρ = %, in
which case noise has completely cut off the ‘communication’ between spins. We have chosen
this measure instead of a coherence-based one, as could be the normalised coherence difference
between both states [Cl1(ρ)−Cl1(%)]/Cmax because the mutual information is built from the
truly fundamental structure of the state, thus making it much more general.
Fig. 3.13 confirms that the bit flip cases γ = 0.9, 1.74 and 100, for which the reservoir’s
proper operation is lost according to Fig. 3.11b, are completely factorised. It also shows
that a very few correlations between spins need to be preserved for the reservoir to retain its
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Figure 3.13: Mutual information for W = 0, h = 1 resulting from the average of L = 100
measurements taken after ζ = 1000 steps and averaged over 10 different systems. The inset
shows a close-up of the last three points, for which the bit flip channel scores an absolute 0
within numerical precision.

fading memory. For example, the phase flip point γ = 100 presents a mutual information of
the order of 10−5. In broader terms, Fig. 3.13 manifests that both channels have a tendency
to factorise the state of the system. This stems from the fact that both types of noise are local
and affect spins independently, which takes its toll on the non-linear capacity of the system,
as shown in Figs. 3.11 and 3.12 as a whole. The case of the second-degree capacity at γ = 0.9
and 1.74 in 3.11b seems to escape this tendency, an issue whose explanation requires further
research, but the capacity relative to higher orders does abide by this tendency here as well.

In order to give a consistent interpretation of all the results we have revised in this section,
we must recall the physical effect of the decoherence channels under study. The bit flip channel
corresponds to the most familiar form of dissipation, since the bit flip error exists in classical
systems as well. As we anticipated earlier, this channel was bound to erase information more
effectively since the magnetic field concentrates the dynamics along the z-direction, while the
bit flip operation projects spins into a perpendicular direction. On the other hand, the phase
flip channel is exclusive to qubits since it erases the relative phase between our basis states,
an inherently quantum magnitude. It does so by means of a projection onto the z-axis, so
in this case most of the information encoded in local populations will remain intact. Indeed,
from the results shown up to this point it remains clear that bit flip noise is much more
destructive for the reservoir than phase flip. Some further, more specific evidence for this
may be provided in the case of quantum correlations through an analysis of the concurrence,
a measure of entanglement that, consequently, only picks up on quantum correlations [36].
The definition of the concurrence is presented below:

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4} (3.7)
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where the λi are the eigenvalues of the operator R =
√√

ρρ̃
√
ρ in decreasing order, ρ is the

density matrix of a two-qubit state and ρ̃ is its bit-flipped counterpart, ρ̃ = (σy⊗σy)ρ∗(σy⊗σy).
This measure is bounded between 0 and 1, with the former corresponding to a product state
and the latter to a maximally entangled one (i.e., a Bell state).
Since concurrence is defined for a two-qubit state, each measurement is the arithmetic average
of the concurrences of all possible combinations of spins, where the two-spin matrices are
obtained tracing over the rest of spins. Unfortunately, concurrence provides a very small value
for low entanglement, so much so that high noise intensities become unreachable because they
go beyond our numerical precision. For this reason, we merely present the obtained values
for the highest γ within the ones relevant to the robustness analysis that we were able to
access through this measure (γ = 0.1) for both channels, as well as the concurrence for the
noiseless case. These results are provided in Table 3.2, where we see that this noise intensity
has already eliminated the quantum correlations we could have observed in the case of bit
flip, leading to the conclusion that this channel erases quantum correlations more efficiently
than the dephasing operation. This can be related to the faster disappearance of the n-degree
capacity for n > 2 in Fig. 3.11b than in 3.11a, suggesting a connection between these higher
nonlinearities and quantum correlations. There is some further evidence supporting that last
statement in the study of the IPC of the previous section (see Fig. 3.4b in particular), where
the third-order nonlinear capacity was highest in the paramagnetic regime. As the presence
of the transverse magnetic field is what brings out the quantum character of the Ising model,
quantum correlations are expected to be stronger in the high-h regime, where they induce
the resonances we briefly mentioned in the previous section. Fig. 3.14 illustrates this by
presenting the concurrence in the absence of decoherence for the case W = 0.

γ , noise channel 0 , - 0.1, phase flip 0.1 , bit flip

C (2.57± 0.02) · 10−4 (5.85± 0.02) · 10−5 (1.450± 0.004) · 10−5

Table 3.2: Resulting coherence for W = 0, h = 1 after an average over L = 100 measurements
taken after ζ = 1000 steps and averaged over 10 different systems.
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Figure 3.14: Concurrence for W = 0 without any kind of noise, resulting from the average
of L = 100 measurements taken after ζ = 1000 steps and further averaged over 10 different
systems. Error bars are too small to be visible in this plot.
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3.2.2 MBL regime

As a last remark, we highlight the interest a certain amount of noise may have in order
to push the reservoir into its operational regime rather than out of it. A system originally
standing in the MBL phase is a suitable candidate for the process we have just mentioned:
we recall that the lack of ergodicity in this dynamical phase comes from the strong quantum
correlations locking spins into a robust, many-body state that is unable to forget its initial
condition and to process each input non-locally in the reservoir. Fig. 3.15 shows that the MBL
phase arising for large W does, indeed, present considerably more correlations of quantum
origin, even though entanglement appears to diminish for increasing W deeper in the MBL
phase. The effect of noise is displayed in Fig. 3.16, where we examine the robustness of the
IPC for a system with W = 3 and hmean = 1, which is located in the MBL phase but not too
far from the ergodic frontier.
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Figure 3.15: Concurrence without any kind of noise, resulting from the average of L = 100
measurements taken after ζ = 1000 steps and further averaged over 10 different systems.
Error bars are too small to be visible in this plot.

The results of Figs. 3.16 and 3.17 are consistent with a mechanism where the destruction
of correlations appears together with an improvement of the IPC in the case of phase flip,
up to the point where it is fully restored for high noise intensities. This happens for the
bit flip channel as well, but only for a small window before the system suffers too much
damage. We also see that the irruption into the operational phase happens sooner in the bit
flip case (γ ≈ 0.1) than for phase flip (γ ≈ 0.9) because of the stronger disruptive effect of the
former. A way to preserve some degree of nonlinear processing for these reservoirs (greater
than second-degree) remains a subject for future research, as well as a deeper analysis of the
role of quantum correlations in this phase.
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Figure 3.16: IPC at W = 3, h = 1 for a system subjected to increasing noise strengths.
Results are averaged over 10 different systems. In (a), the first bar to be completely filled is
that with γ = 0.9, while in (b) the only full bar corresponds to γ = 0.1 (although γ = 0.9 is
filled within error).
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Figure 3.17: Mutual information for W = 3, h = 1 resulting from the average of L = 100
measurements taken after ζ = 1000 steps and averaged over 10 different systems. The inset
shows a close-up of the last three points, for which the bit flip channel scores an absolute 0
within numerical precision.
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Chapter 4

Conclusions and outlook

In this work we have elaborated the path set out by [16], where the transverse-field Ising
model was proposed as a reservoir, and continued in [29], where its performance was examined
from the point of view of the IPC. We have extended this analysis to the case of a magnetic
field with disorder and explored the reservoir’s capacity in the different dynamical regimes
that arise, which were already discussed in [21] in the context of dynamical phase transitions.
Original results are presented in the context of coherence, correlations and the effects of noisy
channels.

Our study has revealed a strong correspondence between the ability of a system to build
up coherence and its respective processing capacity. The obtained results in this respect show
that, starting from an initially incoherent state, the systems that reach a high stationary
coherence are those that exhibit a proper performance as reservoirs. Furthermore, these have
also been linked to an ergodic regime of the system. We stress that this correspondence does
not have to do with the absolute value of the coherence, but rather with the absolute value
of the change in coherence from the initial state up to the stationary one. A question that
remains open for future research is whether we would obtain a similar phase diagram if we
looked at the coherence along the x-axis, i.e., whether we would be able to identify the ergodic
regions through the change in coherence as well by looking at the system from this direction.
In any case, we also report that no identifiable threshold over which the reservoir holds the
fading memory property has been found, so the notion of “large” or “small” change depends
on the dynamical regime and the presence of noise. It has been shown that the reservoir may
function properly with very little coherence, as it is the case for strong phase flip noise, but
the results relative to bit flip link the complete factorisation of the state to the loss of a fading
memory. Our results also show that bit flip noise is more disruptive than phase flip for the
system’s ability to process information. We mainly attribute this asymmetry to the presence
of the magnetic field, which favours the z-direction in space, but it may be interesting to see
how much the system’s robustness is improved (if at all) for the bit flip channel when we
introduce the input through the first spin’s coherences rather than through a diagonal state
(e.g., though a mixed input state as the one we have used in this work of the eigenstates of σx

rather than those of σz). It would also be interesting to address the effect of noise in the IPC
when our measured observable is non-local. We expect the decoherence process analysed here
to be more disruptive in this case, and it may provide some more insight into how information
stops flowing through the network.

As for our particular reservoir under study, the transverse-field Ising model has been found
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to exhibit a good robustness against noise. In fact, noise may even be an instrument to
turn our spin network into an operational reservoir (when it is set in the MBL regime),
turning its disruptive power into an asset. A way to make a more exhaustive analysis of
the constructive effect of noise would be to obtain another heatmap showing the system’s
different dynamical regimes under the presence of relatively high noise intensities. It would
be very expensive computationally to perform this study through coherence, as we have done
throughout this work, but a good alternative would be to analyse the scaling of entanglement
entropy with system size. Since in the MBL and ergodic phases this property scales according
to area and volume, respectively [26, 27, 28, 37], this would allow us to detect a possible
displacement of this frontier with respect to the noiseless case. The issue of restoring the
system’s nonlinear processing capacity, which is undermined by decoherence, is a subject for
future research as well. However, the methodologies of space and time multiplexing ([18] and
[16, 29] respectively) present promising approaches to this problem. Overall, our analysis
reinforces the transverse-field Ising model’s position as a promising candidate for QRC.

Ultimately, our results contribute to the hopeful perspectives QRC has to offer. A similar
study to the one presented here considering quantum input instead of a classical one could pave
the way towards quantum RC processors which would be truly useful for real experiments. For
example, a very appealing task for these auxiliary quantum processors would be the simulation
of other quantum systems that are highly expensive or complex to realise experimentally inside
a larger, easily controllable reservoir. Moreover, thanks to the structure of RC it would suffice
to have a single such reservoir and a collection of trained readouts for each of the systems one
wishes to simulate, a solution that saves up space, resources and the time it would take to
build different setups. Combining this line of thought with what has already been achieved in
[6], we could even obtain several magnitudes of the simulated system at once, including those
we cannot access experimentally but which carry essential information, such as entropies.
This possibility alone already alters notably the aspect of a quantum laboratory as well as
the scope of the knowledge it can uncover, boosting a faster development of new science and
technologies.
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Appendix A

Definition of the echo state and
fading memory properties

The echo state property

Let u be a fixed, but otherwise arbitrary left infinite input sequence up to a time t, u[− inf :
t] = (..., ut−2, ut−1, ut), with t ∈ Z. Let xt be the state of the dynamical system at time t,
which may be described as

xt = H(xt−1, ut) (A.1)

The dynamical system implementing the transformation H is said to have the echo state
property if, for any two trajectories x[−∞ : t], x′[−∞ : t] that were initially close to each
other we have xt = x′t. In that case, there exists an input echo function E such that the
current state of the system may be written as

xt = E(..., ut−2, ut−1, ut) (A.2)

The fading memory property

Consider an input string u and its corresponding output state x according to the dynamical
map

xt = R(u)(t) (A.3)

For every ε > 0 and input u we may define the ball centred on u of radius ε on input space,
which is mapped into a ball centred around x of radius δ(u, ε) by virtue of (A.3). Such
dynamical map is said to have the fading memory property if, for two ε-close inputs u, v on
the interval t ∈ [t0 − T, t0] (|u(t)− v(t)| < ε), we have that

|R(u)(t0)−R(v)(t0)| < δ (A.4)
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Appendix B

Numerical aspects of IPC

We hereby explain the parameters that must be adjusted for the obtention of the IPC, as
well as the ones we have deemed suitable for the presented simulations.

We first comment that, in order to get reasonable approximations to the full capacity, we
have always used training and testing strings of L = 105 elements. Once that parameter is
fixed, the most important bound to determine is the threshold to consider a contribution to
the IPC valid, since there is a noisy background resulting from numerical precision. In order
to identify it, one must first run a simulation attempting to pick up as many contributions as
possible, which will result in a picture similar to Fig. B.1.
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Figure B.1: Example of all the registered contributions to the IPC for a typical system in
the ergodic region. The different colours refer to different degrees of the target function. The
noisy contributions are visible in the inset of the figure with a suitable threshold.

In our case, the optimal thresholds found vary between 5 · 10−5 and 5 · 10−4 depending
on the simulated process. The noise depends on the number of observables measured (N)
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and the length of the input string (L = 105), such that it is of the order of O(N/L) [22].
Moreover, one must take into account that longer simulations such as the ones of Section 3.2
produce a higher accumulated error, which slightly increases this threshold. In any case, it has
been observed that being sufficiently close to the optimal threshold suffices in order to have
a realistic picture of the IPC. For example, the full normalised capacity may appear as 0.97
instead of 0.997, as it would with the optimal threshold. However, the deviation introduced
by the different realisations of the system is still more significant in this case.

We must also have an idea of the maximum delay of the input string we want to consider
for each degree, at least in the cases where we have no clue of how far back it may reach, in
order to perform the threshold analysis. A good strategy is to look just at the linear capacity
for delays that go really far back, and the maximum delay to provide a contribution in higher
degrees will always be lower. The meaning of “really far back” depends entirely on the system
at hand: it may be 100 or 1000 just as easily, but either way such maximum delays are not a
big computational hindrance for the linear capacity.

Following the order in the recollection of contributions described in the Supplementary
Material of [22] and taking into account the bounds we have just described, we are guaranteed
to obtain the best approximation to the system’s IPC allowed by our numerical precision.
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Appendix C

Decoherence channels

We hereby give an illustration of the action of the bit flip and phase flip channels, since
their effect on the Bloch sphere is useful for the interpretation of some of the results in Section
3.2. For this, we present the effect of this channels on a single qubit described by a density
matrix %:

% =

(
a00 a01

a10 a11

)
The phase flip channel

According to Eq. (3.1), the phase flip channel induces a transformation that results in an
exponential decrease of the coherence. It can be easily checked that a single application of
the dephasing operation to % results in

E [%] =

(
a00 (1− 2p)a01

(1− 2p)a10 a11

)
EN [%] =

(
a00 (1− 2p)Na01

(1− 2p)Na10 a11

)
(C.1)

where p is the error probability. As a consequence, if we were to measure the coherence
according to definition (1.11), we would find that

Cl1(E [%]) = |1− 2p|NCl1(%) (C.2)

Thus, this noise tends to project the spin towards the z axis, turning an initial Bloch sphere
of pure states into an ellipsoid with its longer axis located along coordinate z.

The bit flip channel

The mapping for this channel, defined in Eq. (3.2), yields the following result on %:

E [%] =

(
(1− p)a00 + pa11 (1− p)a01 + pa10

pa01 + (1− p)a10 pa00 + (1− p)a11

)
(C.3)

E2[%] =

(
... (1− p)2a01 + 2p(1− p)a10 + p2a01

(1− p)2a10 + 2p(1− p)a01 + p2a10 ...

)
(C.4)

One soon realises that the new off-diagonal elements are almost like Newton’s binomial, but
with a01 and a10 alternating between the coefficients. The individual coherences are thus hard
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Figure C.1: Phase flip transformation on the Bloch sphere. Figure taken from [34].

to describe analytically, but the associated coherence of % takes a much simpler form:

Cl1(E [%]) = Cl1(E2[%]) = Cl1(EN [%]) = Cl1(%) (C.5)

We thus see that this type of noise does not harm the individual qubit’s coherence at all.
This observation and the physical interpretation of the way we have extended the action of
this noise to the case of a multipartite system (namely, as a Markov process where each qubit
may be affected by decoherence independently) leads us to expect the phase flip noise to be
more disruptive for the coherence than bit flip in the situations where the density matrix is
closer to that of factorised qubit states, i.e., when the flow of information through the system
is weak.
On a final note, the visual picture of the bit flip operation is presented below:

Figure C.2: Bit flip transformation on the Bloch sphere. Figure taken from [34].
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