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1 General description

Due to its simplicity and great application, it is known that percolation is one of the phenomena
widely studied by statistical physics that addresses the theory of phase transitions and critical
phenomena. In 2009 [1] the authors proposed a percolation variant introducing a competitive
process between sites (or bonds), which prevents large clusters from joining each other, as a
possible means of delaying the phase transition of a densely connected network, leading to
explosive transitions or atypical and abnormal behaviors. This new type of percolation brought
great interest, leading to a series of studies, among which the analysis of the order of the
transition (continuous or discontinuous), the creation of others models with explosive behaviors,
scale analysis, among others.

In this work we will study site percolation. As an algorithm to delay the transition and cause
explosive percolation, we propose a variant of the sum rule proposed in [1] which we call global
sum rule. In order to characterize the phase transition we will make use of numerical analysis.
We explore the behavior of the transition for different order parameters, in the same way we
evaluate the changes that the transition can undergo with different sizes and dimensions of the
network, as well as for different number of tries in the global sum rule.

In order to facilitate the interpretation of results, this work is organized as follow: a chapter
has been devoted to a brief review of basic concepts and that we consider most important. Then
we present the results of our study, right here the graphs and results obtained are presented and
analyzed, in order to give in another section the conclusions. Finally a list with the references
given in the development of the text for those who want to go deeper into these topics.
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2 Introduction.

To frame the reader in the foundations of our research, we will take this chapter to succinctly
address just enough about the topic of classic percolation and explosive percolation, we refer
the reader to [2, 3, 4, 5, 6, 7] for a more detailed study of these topics.

Since its introduction, percolation theory has been of great interest due to its simplicity and
applicability [8]. Many studies are within the statistical mechanics framework and fundamentally
on issues related to phase transitions and critical phenomena. From the classical percolation
models the idea was that network connectivity that extends throughout the system occurs in a
fluid and continuous manner. However, today it is known that there diverse types of percolation
transitions [9]. A study that attracted a lot of attention was presented in reference [1] where
researchers are found that in special cases, connectivity could emerge as an explosion, through
a phenomenon they named ”explosive percolation”.

The connectivity formation can be understood as a phase transition. Phase transitions
are omnipresent in nature, in general they are classified according to how the order parame-
ter changes at the transition point [10], with a discrete jump (first order phase transition) or
continuously (second order phase transition).

Phase transitions also provide a practical description of how individual sites or bonds in
a random network gradually come together, one by one, through short-range connections over
time. When the number of connections reaches a critical threshold, a phase change causes the
largest cluster of sites to grow rapidly, resulting in super-connectivity.

In classical percolation, sites and pairs of sites are chosen at random to form connections,
the probability that two clusters merge is proportional to their size, once a large cluster has
formed, it dominates the system, absorbing any cluster smaller that could merge and grow.
In explosive percolation, the network grows, but the growth of the large cluster is hindered,
resulting in many large but disconnected clusters growing until the system reaches the critical
threshold where adding only one additional bond or site induces an instantaneous change to the
super-connectivity, all the large clusters combine at once in a single violent fusion.

In addition to the theoretical interest that this type of transitions has to understand the
interaction between structure and dynamics, its practical consequences can also be very relevant.
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2.1 Percolation.

The study of percolation is closely related to fundamental concepts such as phase transitions,
critical phenomena, fractals, scaling, universality and renormalization [3, 4]. Percolation is
a phenomenon of daily life, when studying percolation what you want is to see if a certain
magnitude can flow through a system (what flows can be a fluid in a porous medium, the
information through our connected devices to the Internet, infections or epidemics through a
population, etc.), in general, it answers the questions that arise when considering the geometric
connectivity of practically any type of object, so it constitutes an excellent model to apply in
fields such as statistical physics, epidemiology, population dispersion, etc [11].

2.2 General percolation model.

A practical way of studying the phenomenon of percolation is from graphs. A graph is considered
an idealized random medium in two or more dimensions, so the simplest model that we can
imagine in percolation that presents interesting behavior is a two dimensional lattice (although
the model can be extended to other networks), where it is considered that a stimulus carried out
at one end of the network must be reproduced in its entirety at the other end. If this connectivity
is carried out by the edges it is called bond percolation, while if it is determined by the nodes it
is known as site percolation (see figure 1 (a) and (b)). Usually, the path followed by which the
stimulus flows through bonds (or sites) is called percolating trajectory. These trajectories have
different lengths and are determined by the number of occupied sites or bonds.

In site percolation, a set of N points forming a lattice is considered, each site can be oc-
cupied or empty, a site is connected to its neighbors if they are also occupied. In the case of
bond percolation, all sites are present, but there are only bonds between them with a certain
probability r, if r = 1 all nodes are linked by bonds, on the other hand, if r = 0 all nodes are
isolated, for intermediate values of r there will be some sites connected by bonds, while others
will be isolated.

If we describe the evolution of fraction of sites (or bonds) belonging to the largest cluster m
as a function of the occupied sites (or bonds) fraction r, we would obtain something similar to
figure 2, in this way, for very small r, m(r) = 0, and for very high r, m(r) = 1. Consequently,
it is observed that there is a critical value of r, defined as percolation threshold rc, such that if
r > rc there is at least one path of interconnected nodes that spans the entire network, on the
contrary, if r < rc there are groups of nodes interconnected, but that do not extend throughout
the network. This change in the geometric characteristics of the lattice is an example of a
continuous phase transition.

Percolation is not studied only considering sites or bonds, there is also the case of their
combination [12], as well as the study in more complex systems such as networks (see figure
1 (c)), a typical example is in random graphs [13], where starting from a graph of N isolated
nodes, connections are added between them, when rN connections have been added, two cases
can occur: if r < 1/2, the largest cluster C1 remains small and scales as log N . If r > 1/2, there
is a component of linear size in N , that is, C1 ≈ (4r− 2)N . So at the critical point r = 1/2 the
fraction of nodes in the largest cluster undergoes a second order phase transition (see figure 2).
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Figure 1: Example of bond percolation (a), site percolation (b) in a square lattice, and perco-
lation in network (random graph) (c). Adapted from https://mathworld.wolfram.com

Figure 2: Changes in network connectivity m as a function of sites (or bonds) density r. The
percolation threshold rc determines two phases. In the first phase r < rc (non-percolating or
subcritical phase) the network is manifested by occupied sites (or bonds) that form isolated
clusters. The second phase r > rc (percolation or supercritical phase), increases monotonically
with r, the clusters connect when more bonds (or sites) have been added to the network,
until a giant component appears. Adapted from: http://www.ams.org/publicoutreach/feature-
column/fcarc-percolation, https://faculty.math.illinois.edu/kkirkpat/percolation.html and
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119979.
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2.2.1 Theoretical approach.

Appropriate to the percolation problem, finite-size scaling theory together with the simulation
algorithms that we will see later, is one of the most important tools in the study of critical
phenomena and phase transitions. The criticality of a percolation system is associated with an
order parameter, the way in which this parameter behaves in the vicinity of the critical point is
represented by a function that depends on a critical exponent that characterizes universality.

As described in [14], depending on the type of transition finite-size scaling will not work.
That is, when the transition is discontinuous (first order), this theory does not work. On
the contrary, when the transition is continuous (second order) this theory states that near the
percolation threshold rc the order parameter m of a network composed of N site or bonds,
exhibits critical behavior in the limit N →∞ and obeys the relation:

m = N−β/νF [(r − rc)N1/ν ], (1)

where F is a universal scaling function. β, and ν are the critical exponents and as we have
already seen r is the fraction of sites (or bonds) occupied.

Similar laws may be written for others observables, the most common and the one we will
use in our work is the susceptibility which quantifies the amplitude of the fluctuations of the
percolation strength, defined as χ = N

√
〈m2〉 − 〈m〉2 , where 〈m〉 is the first moment or average,

and 〈m2〉 is the second moment. χ obeys the relation:

χ = Nγ/νG[(r − rc)N1/ν ], (2)

with G a universal scaling function and γ another critical exponent.
As the order parameter m is directly related to susceptibility χ, it is possible to relate the

scaling behavior of m and χ near rc and derive that β + γ = ν [14].

If we consider that at percolation threshold mc ≡ m(rc) ∼ N−β/ν and χc ≡ χ(rc) ∼ Nγ/ν we
can predict these critical exponents by doing a simple linear regression of ln(χc) versus ln(N)
and ln(mc) versus ln(N).

2.2.2 Percolation algorithm.

The lack of analytical solutions in numerous percolation systems motivated the implementation
of different numerical methods for their understanding, algorithms that allow studying ideal
systems, where the number of components tends to infinity and multiple configurations can be
analyzed under the same conditions to obtain statistics results. The best known are the Leath-
Alexandrowicz algorithm [15, 16], the Hoshen-Kopelman algorithm [17] and the Newman-Ziff
algorithm [18, 19].

In particular, the Newman-Ziff algorithm [18, 19] based on union-find is widely used for the
efficient calculation of percolation or clustering in different configurations based on the number
of occupied positions. This algorithm allows to measure the size of the largest cluster based on
the number of occupied sites, average size, extension and envelope of the cluster, measurement
of the position of the percolation transition, among other useful quantities for the analysis.
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This algorithm is based on the idea that if clusters are analyzed in a configuration with N
positions occupied, analyzing a configuration with N + 1 occupied positions can done by simply
adding a new occupied position to the previous configuration and study only the next neighbors
of this new position.

Instead of creating a completely new state of the lattice for each different value of N that we
want to investigate and constructing the groups for that state, the authors propose an algorithm
to create a complete set of correct percolation states by adding sites or bonds one by one to the
network, starting with an empty network.

The general algorithm is the following:

1. An empty network is initialized.

2. The order in which the sites or bonds will be used is randomly chosen.

3. They start to occupy in that order.

4. Depending on the type of percolation we will have:

4.1 For bond percolation two situations are distinguished: 1) If the sites connected by
the bond belong to different clusters, the clusters are joined into a single one (see bond a
of figure 3). 2) If the sites connected by the bond belong to the same cluster, nothing is
done (see bond b of figure 3).

4.2 For site percolation three situations are distinguished: let be j the site to be
occupied: 1) If j has two or more occupied neighbors which belong to different clusters
these clusters are joined into a single one which also includes the site j. 2) If all the
occupied neighbors of j belong to the same cluster, j becomes part of that cluster. 3) If j
has no occupied neighbors a new cluster of size 1 is created.

5. Steps 2) and 3) are repeated until all positions have been filled.

Figure 3: Example of bonds (dotted lines) being added to bond-percolation configurations.
Taken from [18].

Clusters are best tracked using a tree-type structure (see Figure 4). Each cluster has a root
position that is the root of the corresponding tree. All other elements in the cluster are assigned
a pointer that points to the root or to another position in the cluster, so that following successive
pointers, the root of the cluster is reached. Pointers are assigned a positive value and roots a
negative value, the modulus of which indicates the size of the cluster.
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Figure 4: Tree structures example. When adding a link (dotted line in the center) linking sites
that belong to different clusters, whose pointers (arrows) lead to different root sites (shaded
sites), the two clusters are joined by making one (left) a sub-tree of the other (right). This is
accomplished by adding a new pointer from the root of one tree to the root of the other. Taken
from [18].

At each step the occupation of an additional site or bond, step 4, implies that clusters may
have to be joined. The best known performance algorithm to do so is the ”weighted union-find
with path compression”, as described in [18, 19]. It is based on 2 fundamentals: 1. Weighting:
two trees are always joined so that the smaller one is a sub-tree of the larger one. 2. Path
compression: The pointers of all nodes along the path traversed to reach the root node are
changed to point directly to the root.

The complete algorithm for bond percolation taken from [18] is the next:

1. Initially all sites are clusters in their own right. Each is its own root site, and contains a
record of its own size, which is 1.

2. Bonds are occupied in random order on the lattice.

3. Each bond added joins together two sites. We follow pointers from each of these sites
separately until we reach the root sites of the clusters to which they belong. Root sites are
identified by the fact that they have a negative value associated to the size of the cluster
they span. Once the root site of the cluster is reached, the pointer of all the nodes we have
traversed is changed so that they point directly to the root. This is the path-compression
procedure.

4. If the two root sites are equal then the two sites joined by the bond belong to the same
cluster and we do not have to do anything else.

5. If the two root sites are different, we examine their respective size, and change the pointer
of the root of the smaller cluster to point to the root of the larger, thereby making the
smaller tree a subtree of the larger one. If the two are the same size, we may choose
whichever tree we like to be the subtree of the other. We also update the size of the larger
cluster by adding the size of the smaller one to it.

6. These steps are repeated until all bonds on the lattice have been occupied.
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2.3 Overview and main results in classic percolation.

In the following we proceed to summarize the key results of the classical percolation theory:

1. The higher is r, the larger are the clusters.

2. For a wide range of r values the lattice is populated with numerous tiny clusters, as r
approaches a rc these clusters grow and merge, resulting in a large cluster in rc.

3. Beyond rc, there is a finite probability that a node belongs to the largest component.

4. The value of rc depends on the type of lattice, so it is not universal.

5. The value of rc changes with the dimension of the lattice.

6. The critical exponents do not depend on the type of lattice or the precise value of rc, but
only on the dimension of the lattice. These exponents are universal.

7. The most used technique in numerical analysis to characterize phase transitions is finite-
size scaling theory, since for continuous phase transitions every variable near the critical
point scales independent due to the infinite correlation length of the systems at rc.

2.4 Explosive percolation.

It is known that if the original model is subjected to pre-established conditions, a new percolation
model is obtained. This was first considered in reference [1], where researchers explored how
a network changes (specifically they compare with the classic Erdos-Rényi model [13] and the
bounded-size Bohman and Frieze model [20]) if an element of choice is injected into its formation.
To this end they slightly modify the classic bond percolating model in each step several random
tries, trials or attempts, and selecting only according to a predetermined rule. The selection
rule is based on multiplying the size of the cluster at one end of the bond by the size of the
cluster at the other end and choosing the bond that yields the lowest product or sum.

Specifically, to quantify the contribution of a bond to the growth of the largest component,
reference [1] uses the sizes of the connecting components. Let e12 and e34 be two bonds that join
nodes 1 with 2 and 3 with 4 respectively (the numbering is arbitrary), and n1, n2, n3 and n4 are
the sizes of the components to which the four nodes belong. The process, known as Achlioptas
process or Achlioptas algorithm (see Figure 5) consists in choosing the node that minimizes the
product of the sizes of the components, if n1n2 < n3n4, we add e12 and discard e34 (e34 may be
re-elected in the future). Instead of using this so-called product rule, the sum can also be used,
in this case if n1 + n2 < n3 + n4, we add e12 and discard e34 (see figure 5).

This forced choice (product or sum rule) introduces a bias in the network, an intervention
that alters its typical behavior. What happens is that the fluctuations in the average size of the
components decrease progressively, homogenizing the size of all of them, but as the bonds are
added as a fraction of the total number of nodes, there is a critical value for which a group of
connected components are simultaneously connected that percolate into the network massively
(instead of adding little by little around the largest component hindered by the rule).
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The authors of [1] not only found that this process delays the transition, that is, the begin-
ning of super connectivity, but that by hindering the growth in this way, a kind of pressure is
generated, a very violent transition occurs, reaching a critical moment in which the probability
that two points are connected jumps from essentially zero to more than 50 percent instantly.
Rather than emerging with a slow and steady march toward ever-increasing connectivity like the
well-known classical percolation, the connections emerge globally once and for all throughout the
system in an abrupt way (see figure 6), in a kind of explosion, resulting in the term ”explosive
percolation” is already classified as a first-order (discontinuous) transition.

Figure 5: Selection rule example: Because a random system would normally favor the nodes
with the most pre-existing connections, instead of letting two random nodes connect or not,
two pairs of random nodes e1 and e2 are considered and the one generating the smaller cluster
is selected. (This method favors the connection between small components or with inversely
proportional sizes, preventing large components from joining each other). In this example we
have e1 with 2 × 7 = 14 and 2 + 7 = 9, and e2 with 4 × 4 = 16 and 4 + 4 = 8, following the
product rule, we would choose e1 and discard e2, while if we consider the sum rule we would
choose e2 and discard e1. Taken from [1].

Figure 6: Typical evolution of fraction of nodes belonging to the largest cluster C/N as a
function of the occupied nodes fraction r, for Erdos-Renyi (ER) model, Bohman-Frieze (BF)
bounded size rule and the Product Rule (PR) process, for n=512.000. Take from [1].

.
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Additionally, the authors note that this rule, either the product rule or the sum rule, can be
used to accelerate percolating, by selecting the edge that maximizes the product or the sum of
the size of the components, but the percolation transition then remains continuous.

2.4.1 Explosive percolation transition.

The idea of introducing a selection rule to the already known classical percolation caused many
important additional effects, having greater interest the characterization of its phase transi-
tion. Soon after the publication of [1], some studies appear that reveal results similar to those
presented by them, however, other investigations showed conclusive evidence that the model
introduced there presents a continuous phase transition but with a different kind of universality.

All this debate about the type of phase transition of explosive percolation (see [5, 6, 7] for
an explanation of all the studies and results obtained, and [5] for a chronological table of all the
results of the literature for the values of rc and critical exponents is presented) brought with
it a series of studies proposing variants of the Achlioptas processes, a combination of different
scale relationships at the critical point, extension to other networks, etc. Thus, revealing that
there are models of explosive percolation with alternative mechanisms that present discontinuous
phase transitions (it is recommended to consult table 2 of [5]), as well as models of explosive
percolation that are continuous at the thermodynamic limit but exhibit substantial jumps in
the order parameter for any finite system, models that exhibit a single genuine jump in the
order parameter long before the end of the process or at the end of the process, as well as
non-convergent models that exhibit a ladder with discontinuous steps (see section II D in [6] for
more detail in explosive percolation classes).

2.4.2 Directions on the topic of explosive percolation.

The large amount of work that has been done in the area since 2009 has left many novel advances,
both for the theory of phase transitions and for modeling a wide range of new phenomena in
networks. As it provides a means of manipulating the initiation of long-range connectivity
through small-scale interactions, it is believed that it can help to create effective intervention
strategies to control the behavior of networks. Connectivity is sometimes wanted to be as
large as possible, as for example in operating systems such as the Internet, air networks or the
stock market, where they are required to be strongly connected to avoid fragmentation of the
network due to damage or attacks. The opposite case occurs, for example, in epidemics, where
the objective is to inhibit the spread, reduce the scope of connectivity and make the critical
probability as high as possible to avoid contact between different populations.

Explosive percolation has motivated several studies [6] such as explosive Ising model and
explosive synchronization, explosive percolation in real world systems (for understanding the
evolution of modular network and community structure including evolution processes on the hu-
man protein homology network, modeling properties of material and disordered media, non-self-
averaging and the emergence of molecular life, explosive immunization, information spreading,
etc).
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3 Our study.

We want to study explosive site percolation with periodic boundary conditions in a regular
network. For that we propose a variant of the sum rule of the Achlioptas algorithm. For its
optimization we rely on the weighted union-find with path compression described above.

It is known that phase transitions can be classified based on the behavior of the order
parameter, therefore, we consider different order parameters proposed in the consulted literature,
together with the basic tools known from finite-size scaling theory for this type of study.

It is important to note that there are few works in the literature where site percolation is
studied using the sum rule, most of them just mention it and only [21] studies it in detail. The
authors studied site percolation on a L x L square lattice with periodic boundary conditions.

The algorithm for sum rule Achlioptas process taken from [21] is the following:

1. Start from an empty lattice and randomly occupy one single site.

2. Next, randomly select a trial unoccupied site, say A.

3. Calculate the size CA of the resulting cluster to which A belongs.

4. Remove the trial unoccupied site A and randomly select a trial unoccupied site B, different
from A.

5. Calculate the size CB of the resulting cluster to which B belongs.

6. In case CA < CB, site A is permanently occupied and site B is discarded. In case CB < CA,
site B is permanently occupied and site A is discarded. In case CA = CB, we randomly
select and permanently occupy either A or B discarding the other. Each time, the number
of occupied sites is incremented by one.

7. Repeat steps (2)–(6) until the entire lattice is covered. For each “time step” t , we monitor
the size of the largest cluster C1.

14



Figure 7: Example of the Achlioptas process according to the sum ruler for site percolation.
Unoccupied sites are represented with white cells, colored ones correspond to occupied sites.
Color groups (red, green, gray, and blue) indicate different clusters.(a) Randomly select two
tries unoccupied sites (A and B, in yellow) one at a time. Evaluate the size of the clusters that
are formed and contain sites A and B, CA and CB, respectively. (b) According to the rule, site
A that leads to the smallest group is kept and B is discarded. Taken from [21].

We follow the same algorithm described with a variant in the rule, we call it global sum rule.
The principle is: choose the trial site such that the size of the global largest cluster present in
the system is the smallest possible (not necessarily containing the added site). In case there are
several that would lead to a largest cluster with the same minimal size, then we select the first
one. Note that since the selection of the nodes is random, selecting the first try among those
that lead to the minimum largest cluster does not introduces any bias (see figure 8 as example).

Figure 8: To compare with the ordinary sum rule, consider a case in which there is a cluster of
10 nodes another of 7 and another of 3. (a) Assume there are three tries: A: Adding a node
which joins the two smaller clusters which would generate a cluster of 7+3+1=11 nodes. B:
Adding a node next to cluster 3, which would generate a cluster of size 4. C: Adding a node
which has no occupied neighbors, thus the result would be generating a new cluster of size 1.
Try A generates a maximum cluster of 11 nodes which is larger than the result of tries B or
C thus this try is disregarded both by the ordinary sum rule and by the global sum rule. (b)
Applying ordinary sum rule, try C has to be selected.(c) Applying the global sum rule, since
the outcome of try B and try C is that the largest cluster has the same size 10, both tries can
be chosen. We choose B because was the first to try among all those that fulfill the condition of
generating the minimum largest cluster.
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3.1 General system behavior.

Using this algorithm, we start from a regular network with N = Ld sites, where L is the lattice
size, and d is the lattice dimension. We define r as control parameter, this is, the fraction of
occupied nodes, and m = C1/N as our order parameter, which represents the fraction of nodes
belonging to the largest cluster size C1.

First we explore the behavior of the system, we evaluate it for several lattice dimensions, and
lattice sizes, several number of tries of the global sum rule and several number of realizations.

3.1.1 Lattice dimension.

We fix the lattice size and the number of tries according to the global sum rule and we present
results for different spatial dimension (see figure 10). As expected, looking at the order parameter
m, we obtain a behavior similar to what is known as explosive percolation, there is a point
(critical threshold) at which the behavior of the graph changes. For the sake of clarity we
define two zones (see figure 9 as example). We will call zone A the zone where the transition
begins, where violent fusion occurs and the order parameter starts to grow very fast, and zone B
where the order parameter takes a large value which grows almost linearly with r, where all the
trajectories converge, the stable zone. We see that as the dimension increases, the curve of the
order parameter shifts to the left, that is, the transition occurs earlier, it is also clear that zone
B becomes larger as the dimension of the network increases, which is logical since the greater
the connectivity, the faster the percolation threshold is reached.

Figure 9: For a better description of the graphic behavior, in what follows we refer to zone A
and zone B to those indicated in the figure, in the same way, we define the coordinate axes
(ra,ma) and (rb,mb).
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Figure 10: Evolution of fraction of nodes belonging to the largest cluster m as a function of the
occupied nodes fraction r for networks of size L=64, and different dimensions. The number of
tries according to the global sum rule is 2 in all cases. The black line is the average over 10
different system realizations (colors lines).

3.1.2 Effect of the number of tries in the global sum rule.

Keeping the lattice size and dimension fixed, we observe the behavior of the system when
changing the number of tries, for 1 try, of course, we obtain classic percolation, from 2 onward,
the behavior described as explosive percolation appears. We see that the greater the number of
tries, the curve shifts to the right (larger r values), indicating increasingly delayed transitions.
This is logical since as more tries are explored, choosing the one that gives the smallest maximum
cluster, makes it more difficult for the maximum cluster to grow. It is important to note that the
greater the number of tries, the curves gradually become steeper, m jumps from 0 to 1 within
a short interval of r, zone A dominates (see figure 11).
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Figure 11: Evolution of fraction of nodes belonging to the largest cluster m as a function of the
occupied nodes fraction r for a network of size L= 64, and dimension d= 2, for different values
of the number of tries according to the global sum rule. The black line in the results is the
average over 10 different system realizations (colors lines).

3.1.3 Lattice size.

To study the behavior when varying the lattice size, we fix the dimension and the number of
tries according to the global sum rule, we observe that when the lattice size increases, the curve
shifts a little to the right, showing a transition each time more abrupt. We also observe that,
similar to the previous cases, as we approach zone B from below, numerous small groups merge,
behavior that becomes less visible as the lattice size increases (see figure 12).
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Figure 12: Behaviour of fraction of nodes belonging to the largest cluster m as a function of
the occupied nodes fraction r for networks of different sizes, and dimension d=2. The number
of tries according to the global sum rule is 2 in all cases. The black line in the results is the
average over 10 different number of realizations (colors lines).

3.1.4 Number of realizations.

Finally, we evaluate the statistics over a different number of realizations, we calculate the average
and the variance, and we can see how it is expected that the behaviour is the same in all cases,
the greater the number of realizations more cleaner are the curves (more noticeable for the
variance).
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Figure 13: Average and variance of fraction of nodes belonging to the largest cluster as a function
of the occupied nodes fraction, for a network of dimension d=2 and size L=512. The number
of tries according to the global sum rule is 2 in all cases. The results are averages over different
number of realizations.

3.2 Detailed study of 2D lattices.

As we verified in the previous study, obviously, if we repeat the simulation with another set
of random numbers, we find a percolation threshold a little different, but as the lattice size
increases, the fluctuations decrease until in an infinite lattice all the trials would give exactly
the same value of rc, therefore to obtain better statistics we will work on 10.000 realizations and
evaluate lattice sizes of L= 256, 512, 1024 and 2048, numbers that we consider large enough to
be able to do an analysis.

In this section we will proceed to study in detail the simplest case, a 2D lattice. Then
focusing on the case of 2 tries according to the global sum rule.

3.2.1 Analysis based on largest cluster size.

For this analysis we continue to consider the typical case where m is the order parameter and
indicates the fraction of nodes belonging to the largest cluster C1, and r (fraction of occupied
nodes) as the control parameter. We first proceed to evaluate the basic statistical quantities:

First moment or Average 〈m〉 =
1

M

M∑
i=1

(
C1,i

N

)
(3)

Second moment 〈m2〉 =
1

M

M∑
i=1

(
C1,i

N

)2

(4)

Third moment 〈m3〉 =
1

M

M∑
i=1

(
C1,i

N

)3

(5)

Fourth moment 〈m4〉 =
1

M

M∑
i=1

(
C1,i

N

)4

(6)
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Variance σ =
√
〈m2〉 − 〈m〉2 (7)

Susceptibility χ = N
√
〈m2〉 − 〈m〉2 (8)

where M is the number of realizations, and i is the index of the realization..

As we can see in figure 14, we get several interesting things, the greater the number of tries
according to the global sum rule, the transition shifts to the right. If zones A and B are evaluated
separately, it is curious to note that for 2 tries, for larger moments, zone B predominates and
tends to bend upwards, while for 3,4 and 8 tries, zone A predominates and the growth of the
moments is practically linear with r. Besides the larger the number of tries, the more separated
the trajectories are. On the other hand, it is clear that with 2 tries the transition occurs first for
the larger lattice size, while for larger number of tries, the transition occurs first for the smaller
lattice.

When studying the variance we see that for 2 tries the curves shift to the left as the lattice
increases in size. The opposite to what happens for a higher number of tries, where the curves
shift to the right as the size of the network increases. We also see that the larger the lattice
the narrower the curve (this is characteristic of a continuous transition). It is evident from the
figures that the susceptibility presents the same behaviour.

It is interesting to note that for 2 tries there are two zones where the curves corresponding
to different lattice sizes intersect each other, one within zone A and the other at the separation
between zones A and B, as exemplified in the figure 9. We will call these 2 crossing points ra,ma

and rb,mb respectively. For higher tries (3, 4 and 8) only the second crossing point rb,mb is
observed. For more detail see figure 15 and table 1, where it is clearly observed the crossing
points for the case of 2 tries. For the case of 3 tries only one crossing point remains (the lower)
and for 4 and 8 tries there are no crossing point.

L1/L2L1/L2L1/L2 256 512 1024 2048

256 0.7072, 0.6702 0.6963, 0.6577 0.6912, 0.6469

512 0.6243, 0.0467 0.6883, 0.6484 0.6829, 0.6376

1024 0.6189, 0.0329 0.6149, 0.0201 0.6751, 0.6286

2048 0.6141, 0.0253 0.6113, 0.0154 0.6085, 0.0099

Table 1: Crossing points ra,ma (lower diagonal) and rb,mb (upper diagonal) for 2 tries and
several lattice sizes.
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Figure 14: Moments, variance and susceptibility of the fraction of nodes belonging to the largest
cluster as a function of the fraction of occupied nodes, for lattices of dimension d=2, and several
sizes and for several values of the number of tries according to the global sum rule. The results
are averages over 10.000 different system realizations. The black line corresponds to L = 256,
red to L = 512, blue to L = 1024 and green to L = 2048.
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Figure 15: 〈m〉 vs. r (top panel). Zoom of the first crossover zone (middle panel). Zoom of the
second crossover zone (bottom panel).

Then, to estimate the value of rc when N →∞ we proceed to evaluate the maximum of the
susceptibility and plot this as a function of ln(N) (see figure 16 and table 2). As we see in figure
14 rc increases with the number of tries.
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Figure 16: Maximum of the susceptibility χ of the order parameter m as function of ln(N).

Susceptibility maximumSusceptibility maximumSusceptibility maximum

ntriesntriesntries rmaxrmaxrmax
2 0.636

3 0.803

4 0.933

8 0.985

Table 2: Values of rc when N → ∞ estimated from the maximum of the susceptibility for
different number of tries.

We now focus on the value of the suceptibility at the maximum for 2 tries. According to
the finite-size scaling theory and equation (2), we perform a study of criticality. Using linear
regression we calculate the value of the critical exponents γ/ν (see figure 17). Due to the behavior
of the order parameter m (it has 2 critical thresholds) it is difficult to apply the scaling relation
1, but following the relation β/ν+γ/ν = 1 and the results obtained for γ/ν = 0.939± 0.043, we
can deduce that β/ν ' 0.061± 0.043, practically trivial values γ/ν = 1, β/ν = 0 so it is difficult
to characterize the transition.
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Figure 17: Logarithm of the maximum of the susceptibility ln(χmax) of the order parameter m
vs. ln(N) (blue line). The black line corresponds to a linear regression y = (0.939± 0.043)x−
(2.86± 0.57). We have considered the global sum rule with 2 tries.

To continue in the same line of analysis we calculate the Binder cumulant [22] :

U4 = 1− 〈m4〉
3〈m2〉2

. (9)

and we evaluate their behavior as a function of r for different values of the system size. It’s
known that when N → ∞, rc is the unique point where the different curves cross, as in the
critical region U4(r, L) = U4[(r − rc)L1/ν ].

As we can see in the figure 18 the behavior in general is very peculiar, it is striking that for
all the number of tries considered we find two crossing points, which we proceed to evaluate in
detail (see figure tables 3 and 4). The values shown in the tables are not precise, since despite
having smoothed the curves, they are very dirty and we cannot accurately identify the value
of these points for 3,4 and 8 tries. Also we can see that the values of rb are what more or less
resemble those obtained when evaluating the maximums of the susceptibility. With this and the
previous results we can say that in this case the usual form of the finite-size scaling theory does
not apply.
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Figure 18: Binder cumulant (top panel) for network of dimension d=2 and sizes L= 256 (black),
512 (red), 1.024 (blue) and 2.048 (green) for different values of the number of tries according
to the global sum rule. Zoom of the first crossover zone ra (middle panel). Zoom of the second
crossover zone rb (bottom panel).
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Binder cumulantBinder cumulantBinder cumulant

ntriesntriesntries rarara rbrbrb
2 0.601 ± 0.007 0.629 ± 0.009

3 0.61 ± 0.01 —

4 0.62 ± 0.02 0.834 ± 0.05

8 0.67 ± 0.04 0.957 ± 0.02

Table 3: Estimated values for ra and rb from the Binder cumulant, corresponding to several
number of tries according to the global sum rule. Dashes indicate that it was impossible give
an estimation for the point.

L1/L2L1/L2L1/L2 256 512 1024 2048

256 0.6363, -0.098 0.6308, -0.080 0.6275, 0.067

512 0.6043, 0.5336 0.6297, -0.207 0.6268, -0.019

1024 0.6043, 0.5316 0.5977, 0.5749 0.6231, -0.274

2048 0.6014, 0,5403 0.5977, 0.5749 0.5749, 0.5749

Table 4: Crossing points ra, U4a (lower diagonal) and rb, U4b (upper diagonal) for lattices of
several sizes.

3.2.2 Analysis based on the cluster size distribution.

As the previous results are not clear or conclusive, we proceed to consider other order parameter
proposed in [23], the second moment of the cluster size distribution:

〈m2
2〉 =

〈∑
i

s2i
Nc

〉
, (10)

where 〈· · · 〉 denotes average over realizations, the sum runs over all clusters i, si is the size of
cluster i, and Nc indicates the number of clusters.

When evaluating this new order parameter, we see that initially the curves are separated,
and as r increases, they converge. There are also 2 crossing points (see figure 19), which, as
in the previous cases, proceed to evaluate in detail (see table 5). In this case we obtain that
ra = 0.615± 0.020 and rb = 0.666± 0.010.
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Figure 19: Second moment of cluster size distribution, for network of dimension d=2 and sizes
L= 256 (black), 512 (red), 1.024 (blue) and 2.048 (green) for 2 tries according to the global sum
rule.

L1L2L1L2L1L2 256 512 1024 2048

256 0.673, 30.805 0.677, 28.282 0.668, 26.536

512 0.623, 0.839 0.667, 27.684 0.663, 25.417

1024 0.617, 0.525 0.614, 0.303 0.658, 24.010

2048 0.613, 0.365 0.610, 0.202 0.608, 0.124

Table 5: Crossing points ra, < m2
2a > (lower diagonal) and rb, < m2

2b > (upper diagonal) for
lattices of several sizes.

3.2.3 Analysis based on cluster size distribution disregarding the largest cluster.

Motivated by [14], we evaluate how the parameter 〈m2
2〉 studied above changes when the maxi-

mum cluster is not considered. For that we define a new order parameter:

〈m3〉 =

〈 ′∑
i

s2i
Nc−1

〉
, (11)

where 〈· · · 〉 denotes average over realizations, the sum runs over all clusters i except the largest
cluster, and Nc−1 indicates the number of clusters except the largest cluster.

The figure 20 shows the behavior of the system and its susceptibility. As before, we proceed
to evaluate in detail the 2 crossing points (see table 6) and the maximums of the susceptibility
in order to obtain the critical threshold. In this case for ntries=2 we find that the value of rc
when N →∞ is rmax ≈ 0.632. In the same way, we performed the finite-size scaling analysis to
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try to calculate the critical exponents (see figure 21), for what we find that γ/ν = 0.904± 0.031
and β/ν ' 0.096± 0.031, similar values found in the analysis presenting in the section 2.2.1.
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Figure 20: Average and susceptibility disregarding the largest cluster, for lattices of dimension
d= 2 and sizes L= 256 (black), 512 (red), 1.024 (blue) and 2.048 (green) using the global sum
rule with 2 tries (Top panel). Zoom of the first crossover zone ra (bottom left panel). Zoom of
the second crossover zone rb (bottom right panel).

L1L2L1L2L1L2 256 512 1024 2048

256 0.713, 2.87 0.706, 3.08 0.700, 3.45

512 0.622, 30.71 0.695, 3.05 0.690, 3.33

1024 0.617, 28.96 0.613, 27.68 0.680, 3.28

2048 0.613, 27.44 0.608, 26.28 0.609, 26.46

Table 6: Crossing points ra,m3a (lower diagonal) and rb,m3b (upper diagonal) for lattices of
several sizes.
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Figure 21: Logarithm of the maximum of the susceptibility ln(χmax) of the order parameter m3

vs. ln(N) (blue line). The black line corresponds to a linear regression y = (0.904± 0.031)x+
(1.88± 0.41). We have considered the global sum rule with 2 tries.

3.2.4 Analysis based on the size ratio of the second largest cluster to the largest
cluster.

Finally, we explore the size ratio of the second largest cluster to the largest cluster. As [24]
remarks, near the critical point, the size C2 of the second largest cluster and the size C1 of the
giant cluster, demonstrate critical behavior, which is interesting to study. We define the new
order parameter as:

〈m4〉 =

〈
C2

C1

〉
. (12)

where 〈· · · 〉 denotes average over realizations.
In this case, as we can see in 22, there is only one region with crossing points (see table 7).

For its crossing point, we get the critical threshold 0.623± 0.01.
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Figure 22: Size ratio of the second largest cluster to the largest cluster, for network of dimension
d=2 and sizes L= 256 (black), 512 (red), 1.024 (blue) and 2.048 (green) for 2 tries according to
the global sum rule.

L1/L2L1/L2L1/L2 256 512 1024 2048

256

512 0.6311, 0.9176

1024 0.6263, 0.9251 0.6232, 0.9435

2048 0.6211, 0,9364 0.6192, 0.9506 0.6168, 0.9609

Table 7: Crossing points ra,m4 for lattices of several sizes.

3.2.5 Critical threshold analysis.

In the table 8 we can see the value of the critical threshold found for each parameter that we have
considered in this study (for the case of the first order parameter studied, m we only consider
the values obtained with 2 tries of the global sum rule). For a better visualization of the data
we can see figure 23. In the case of ra we can observe that 〈m〉, 〈m3〉 and 〈m2

2〉 tend to the
same critical point. 〈m4〉 (although more distant) has a similar behavior, while as expected the
Binder cumulant moves further away. According to the results obtained, we see that the value
of ra is within a range of (0.594− 0.613) that is 0.6035± 0.0095. Similar behavior although the
curves are more distant from each other is observed for rb, in this case its value is within a range
(0.620 − 0.717) that is 0.669 ± 0.049. On the other hand, the maximums of the susceptibility
corresponding to 〈m〉 and 〈m3〉 indicate values between (0.632− 0.636), that is 0.634± 0.002.

Then to better observe the behavior of the parameters at the crossing points, we proceed to
plot them as a function of ln(N) (see figure 24), we see that in general the point ra decreases
for parameters of order 〈m〉, 〈m2

2〉, 〈m3〉 while it increases for 〈m4〉, With respect to the Binder
cumulant it seems to tend to a constant. In rb the order parameters 〈m〉 and 〈m3〉 tend to a
constant, while for 〈m2

2〉 and the Binder cumulant decreases.
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ParameterParameterParameter rarara rmaxrmaxrmax rbrbrb
〈m〉〈m〉〈m〉 0.615 ± 0.01 0.690 ± 0.02

χ[m]χ[m]χ[m] 0.636

U4[m]U4[m]U4[m] 0.601 ± 0.007 0.629 ± 0.009

〈m2
2〉〈m2
2〉〈m2
2〉 0.615 ± 0.02 0.666 ± 0.01

〈m3〉〈m3〉〈m3〉 0.613 ± 0.01 0.697 ± 0.02

χ[m3]χ[m3]χ[m3] 0.632

〈m4〉〈m4〉〈m4〉 0.623 ± 0.01

Table 8: Critical threshold for the different parameters studied.
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Figure 23: ra vs lnN (top panel) and rb vs lnN (bottom panel) for the different parameters
studied.
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Figure 24: Behavior of the parameters studied as a function of ln(N) at the crossing points.
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3.3 Brief general analysis in 3D, 4D and 5D.

As the size of the networks grows, the computational calculation time increases considerably.
For this reason for the case of larger dimensions we did not carry out a detailed study like the
previous one, but we will show a brief descriptive analysis of the behavior of the system when
evaluating the moments, variance and susceptibility, considering m = C1/N as order parameter.
In this case we work with networks of dimension 3,4, and 5; and networks of size L= 8, 16, 32
and 64. For computational reasons for the case of 5D the simulation was not carried out for
L = 64 but this was not relevant for our analysis.

When evaluating the case for 3D (see figure 25), we observed 2 crossing points for all numbers
of tries, as well as a slight shift to the right of the phase transition. If we compare with the
behavior in 2 dimensions we see that the zone B is larger for all cases, even as the moments
increase, this zone dominates, adopting the form of an exponential. Another difference that is
observed is that transitions occur earlier. When analyzing the variance we see that it shifts to
the right as the number of tries increases, also that the larger the lattice size it narrows (except
for 8 tries).

In the case of 4D (see figure 26), the general behavior is the same, only more pronounced,
an aspect to highlight with respect to 2D and 3D is the fact that the variance curves begin to
separate.

In 5D (see figure 27) we can see that there is only one crossing point, also when increasing
the number of tries and moments, a very slight shift to the right is observed. For the variance
in all cases except for 8 tries, the curve is larger the smaller the lattice size.
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Figure 25: Moments, variance and susceptibility of fraction of nodes belonging to the largest
cluster as a function of the occupied nodes fraction, for lattices of dimension d=3, and several
sizes and for several values of the number of tries according to the global sum rule. The results
are averages over 1.000 different system realizations. The black line corresponds to L = 8, red
to L = 16, blue to L = 32 and green to L = 64.
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Figure 26: Moments, variance and susceptibility of fraction of nodes belonging to the largest
cluster as a function of the occupied nodes fraction, for lattices of dimension d=4, and several
sizes and for several values of the number of tries according to the global sum rule. The results
are averages over 1.000 different system realizations. The black line corresponds to L = 8, red
to L = 16, blue to L = 32 and green to L = 64.
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Figure 27: Moments, variance and susceptibility of fraction of nodes belonging to the largest
cluster as a function of the occupied nodes fraction, for lattices of dimension d=5, and several
sizes and for several values of the number of tries to the global sum rule. The results are averages
over 1.000 different system realizations. The black line corresponds to L = 8, red to L = 16 and
blue to L = 32.
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4 Conclusions

In this work we have proposed a variant to the well known Achlioptas sum algorithm to study
explosive site percolation. We have analyzed the behavior of the transition for different network
sizes and tries of the global sum rule. We have studied the critical behavior using several order
parameters, and we have obtained very similar values of rc. In the same way we have used
finite-size scaling analysis to obtain the values of the critical exponents, and we have obtained
results that agree with the majority of those reported in the bibliography (see table 1 of the
reference [5]). On the other hand, we have observed that for this system the Binder cumulant is
not a suitable order parameter, which probably explains why it has not been used in the studies
carried out so far on the subject.

Based on the results obtained, we cannot say with certainty the order of the type of tran-
sition, but there are strong indications of being discontinuous. This is also consistent with the
majority of published results where the authors define it as a discontinuous transition but with
characteristics typically associated to second-order scale behavior, a class of universality different
from those previously observed in percolation.

As a proposal for future work, it would be to extend to lattices of larger dimensions and to a
larger number of tries of the global sum rule the detailed study that was made for 2 dimensions.
In particular it will be relevant to determine the critical point rc, determine in which conditions
there are two or one or none crossing points and apply finite-size scaling when appropriate. One
could also analyze if there are significant changes in other characteristics of the transition.

In view of what has been reviewed in the bibliography, and the differences that can be
observed between site percolation and bond percolation, as well as between the sum and product
rule, it would be interesting to test the algorithm using the product instead of the sum, and also
bond percolation.

We consider that this is a subject that needs to be explored in more detail to understand
and classify the transition and to be able to address its applications. As briefly commented in
the first section of the work, mastering this type of systems is great importance and usefulness
in future applications, therefore it would be interesting and a great challenge to develop a strict
theoretical analysis.
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