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1 Introduction

1.1 Objectives.

The aims of this TFG are: understanding a new scenario for the very early Universe, the study
of different models for this scenario and checking how these models adjust to the current exper-
imental data. This topic deals not only with general relativity concepts, but also with particle
physics and quantum field theory ideas in order to build a theory able to explain how the universe
evolved during an inflationary epoch. Then, it will be calculated analytical expressions and val-
ues for some specific simple models, and they will be compared with experimental measurements
of this quantities.

1.2 Basic concepts of General Relativity

Cosmology is the field of physics which studies the past origin, the present and future evolution
of the universe. Considering the four known fundamental interactions of nature (Electromag-
netic, Strong, Weak and Gravitational), gravity is the one who dominates at long distances and,
therefore, is the main interaction at large scales in the universe. Thus, we will start reviewing
the principal concepts of the current gravitational theory.

The fundamental equations of Newton’s theory of gravity are:

mI~a = −mg∇Φ, (1)

∆Φ = 4πGρ, (2)

where mI and mg are the inertial and gravitational mass, respectively, G is the gravitational
constant, ∆ is the Laplace operator and Φ is the gravitational potential.

At the beginning of the last century, Einstein realized that the set of equations (1) and (2)
are incompatible with special relativity. This motivated him to research a new theory of gravity,
which he presented in 1916 as the general theory of gravity1, commonly called General Relativ-
ity (GR) theory. This theory is based on the principles of special relativity and the equivalence
principle. The equivalence principle asserts that all freely falling bodies experience the same
acceleration in a gravitational field, the main idea behind this fact is that gravity is universal, it
affects all particles in the same way. In other words, the inertial and gravitational masses must
be the same for all freely falling bodies.

Einstein2 soon understood that with these assumptions gravity could not continue being treated
as a classical force, but like a property of spacetime configuration. Thus, gravity is a conse-
quence of the geometry of spacetime and it has to be described in the language of differential
geometry. The next sections provide a brief introduction to differential geometry in order to
better comprehend GR theory.

1.2.1 Differential geometry and the Einstein equation

The basic tool to describe curved spaces is the metric tensor(gµν), which is a two times covariant
tensor which permits to generalize the idea of distance and from which all geometric properties
of spacetime can be derived. The path length of an infinitesimal squared displacement is called
the line element and it is defined as:

ds2 = gµνdx
µdxν . (3)

1If one is interested, one can look at the original paper [7].
2For more historical details, look [6].
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The next step is to generalize the concept of curvature3. Curvature can be understood through
the concept of ”connection” which defines ”parallel transport” of vectors, which is a way to
relate vectors from different tangents spaces of nearby points. This connection in GR is called
Christoffel symbol, and it is related to the metric by:

Γλµν = 1
2g

λσ(∂µgνσ + ∂νgσµ − ∂σgµν). (4)

The Christoffel symbol is not a tensor because it does not follow the transformation law of a
tensor. This connection permits to define a generalization of the partial derivative, the covariant
derivative of a vector field V ν is:

∇µV ν = ∂µV
ν + ΓνµσV σ. (5)

This mathematical formalism permits GR theory to describe the paths followed by freely falling
particles, the geodesics, which are a generalization of the concept of straight lines in a curved
geometry. The parameterized curve xν(λ) is a geodesic if it satisfies:

d2xν

dλ2 + Γνµσ
dxµ

dλ

dxσ

dλ
= 0, (6)

which is known as the geodesic equation and it is a generalization of equation (1) with a = 0 or
which is the same ∇Φ=0.

The Riemann tensor is the mathematical object that describes spacetime curvature. The Rie-
mann curvature tensor is related with the connection and the metric by

Rρσµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ. (7)

From (7) one can derive the Ricci tensor, the Ricci scalar (or curvature scalar) and the Einstein
tensor; which are given by:

Rµν = Rλµλν , (8)

R = Rµµ = gµνRµν , (9)

Gµν = Rµν −
1
2Rgµν . (10)

This set of equations describe completely the curvature of spacetime. However, describing
gravitational interaction requires a generalization of Newton’s law of gravity (2), in other words,
it is necessary to find an equation which relates the geometry of the spacetime with its matter
distribution, this matter configuration is characterized by the energy momentum tensor4 (Tµν).
This is the Einstein equation which is given by:

Gµν + gµνΛ = 8πGTµν , (11)

where the second term in the left hand side of (11) is the metric multiplied by the cosmological
constant (Λ), which is a new fundamental constant and it is supposed to have a small value
nowadays. It is chosen for simplicity to write all past and future equations in natural units
where ~ = c = 1.

Looking at equations (11) and (2) some parallelisms can be seen, for example, the right hand side
of both represent the distribution of matter. The major difference comes from substituting the
classical gravitational potential by a tensorial quantity which depends directly on the geometry
of the spacetime.

3For more details, look [1], or [2].
4More about the properties of the energy momentum tensor will be explained in next sections.
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1.3 Description of the evolution of the universe

General relativity can be used to describe the evolution and structure of the universe. On suffi-
ciently large scales the universe seems to be homogeneous and isotropic, this is the cosmological
principle. The condition of homogeneity and isotropy permits to define a line element given by:

ds2 = −dτ2 + a2(τ)
[

dr2

1− kr2 + r2(dθ2 + sin2 θdφ2)
]
. (12)

This is the Friedmann-Robertson-Walker (FRW) line element, where τ is the proper time; r,θ,φ
are polar comoving coordinates, a(t) is the scale factor, which measures the size of the universe,
and the constant k indicates the spatial curvature, with its possible values: +1 for spherical
geometry, 0 for flat geometry, and -1 for hyperboloid geometry.

It is important to note some features about this metric. Homogeneity and isotropy of the
FRW model of the universe imply that the scale factor must depend only on time. The coordi-
nate r is a dimensionless comoving coordinate with the motion of the universe, note that this is
important because the metric depends on the coordinate frame of the observer and, of course,
the universe does not look homogeneous and isotropic for all the observers; it only looks so for
a special group of observers: the comoving observers, which follow the motion of the universe5.

Proper time is the time which would mark the clock of a comoving observer, and mathematically,
for a Lorentzian metric (-,+,+,+,...,+) is given by:

τ =
∫ √
−gµνuµuνdt, (13)

where uµ = dxµ

dt represents the four-velocity.

The matter distribution of the universe is the other component necessary to solve the Ein-
stein equation. If it is supposed that the majority of the ordinary energy-mass of the universe
is concentrated in galaxies, that galaxies look like grains of dust on cosmic scales and that ve-
locities of galaxies are small so that the pressure of the dust is negligible; then can be taken
the energy momentum tensor to be of the perfect fluid to a good approximation. The general
perfect fluid form for Tµν is:

Tµν = ρuµuν + P (gµν + uµuν), (14)

where ρ is the density, P is the pressure and gµν is the inverse of the metric.
Now, if comoving coordinates are chosen, then the fluid will be at rest with respect to this
frame and Tµν = diag(ρ,−P,−P,−P ). Then substituting this expression for Tµν in the Einstein
equation, calculating the Einstein tensor from the metric and ignoring the cosmological constant
term, one obtains6:

H2 = 8π
3m2

P

ρ− k

a2 , (15)

ρ̇+ 3H(ρ+ P ) = 0. (16)

The overdot means time derivative, and H is the Hubble parameter defined as
H = ȧ(t)/a(t) and mP is the Planck mass7. These are the Friedmann and fluid continuity

5This comoving frame would be used later to make calculations easier.
6For more details in the calculations see [1], [2] or [3]
7See its definition in section 1.3.2.
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equations, respectively, and they are the basic equations describing the dynamics of the universe.
They can be combined to form the so called acceleration equation:

ä

a
= − 4π

3m2
Pl

(ρ+ 3P ). (17)

From these equations it is observed that the universe cannot be static for normal matter since
that ρ > 0 and P ≥ 0, thus equation (17) implies that ä < 0. This is the normal behaviour of
the scale factor in our current universe, however, as will be seen in next sections, this is not the
case at very early times of the universe, concretely, during inflation8 it is assumed an accelerated
expansion with ä > 0.

Cosmological redshift data confirm that the universe is currently expanding (ȧ > 0). This
phenomenon is based on the fact that the light which travels from other galaxies to our own,
suffers a stretching of its wavelength because the scale factor, which measures the physical dis-
tance between galaxies, is increasing with time. This longer wavelength produces a spectrum
with its spectral lines shifted toward the red.

In the FRW model of the universe, there are special cases for the dynamics of the universe
depending on the matter content of it. They are the radiation-dominated, matter dominated
and vacuum-dominated models. For each one of these, there is a different equation of state
according to their single properties, which are summarized in Table 1.

Cosmological models Equation of state Energy conservation Scale factor
Matter-dominated PM = 0 ρM × a3 = constant a(t) ∼ t2/3

Radiation-dominated PR = ρR
3 ρR × a4 = constant a(t) ∼ t1/2

Vacuum-dominated PΛ = −ρΛ ρΛ = constant a(t) ∼ eHt

Table 1 – Different filled universe models.

These different models for the cosmological fluid can be applied to describe different stages of
the universe. At very early times of the universe radiation was the dominant form of matter-
energy; however, since the recombination era until now, matter has become the dominant
material of the Universe. Furthermore, it is expected that in the future the universe will be
vacuum-dominated due to the fact that the universe is expanding and creating more and more
spacetime; thus, there is more and more vacuum.

One usually introduces the critical density, as the density which the universe would have if
it was exactly flat (k=0); from (15) we have:

ρc(t) = 3m2
PH

2

8π . (18)

It is also useful to define the dimensionless density parameter Ω as:

Ω = ρ

ρc
. (19)

An analysis of the dynamical equations leads to the conclusion that the universe must have been
expanding faster in the past than it is nowadays. If the expansion rate would have always been
the same, then at the time T = ȧ/a = H−1 the scale factor would have been zero. However, if

8More details on inflation will be explained later. Now it is important to clarify that the scale factor could not
have had always the same behaviour during the evolution of the universe.
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the expansion was faster, the time at which a(t) was zero would be even closer to the present
time. Assuming homogeneity and isotropy, GR predicts that at some time in the past the uni-
verse was in a singular state at which a=0. This event is referred to as the Big bang.

The big bang could be interpreted as an extremely dense and hot state of the universe, and
it is no sense in asking physically what happened before the Big bang. GR theory predicts the
beginning of the universe at the Big bang. Some key events after Big bang can be summarized
as follow9:

• 10−12s − 3min . Particle era10: this epoch begins once the electroweak interaction has
been decoupled, the universe contains leptons and quarks, which condense into baryons.

• 3 − 20min. Nucleosynthesis: universe is cool enough so that nuclei can be formed. At
that point, basically the most light elements nuclei of the present universe are formed.

• 104 years. Matter density overcomes radiation density and becomes the energy density
dominating the universe.

• 105 years. Recombination/Decoupling era: the electrons combine with protons. Re-
combination is important because when photons interact with free electrons, they increase
vastly their mean free path and the universe becomes effectively transparent for photons.
These photons form the Cosmic Microwave Background Radiation (CMBR), which is re-
leased during this epoch.

• 1010 years. The present.

1.3.1 Particle horizons

The main idea behind the concept of particle horizons is that the light emitted from some point
of the spacetime cannot reach all the points of the spacetime, because the light can only travel a
finite distance since it was emitted. Physically, this idea can be understood in Figure 1, where a
spacetime diagram is shown. The particle horizon distance is the distance that a photon, which
follows null geodesics (ds2 = 0), could have reached in a time τ0 since it was emitted.

Fig. 1 – Spacetime diagram. Dashed lines inclined ± 45º represent the light cone surface which separates events
causally disconnected from the observer O. In this figure, rph represents the particle horizon radius. This picture

is taken from http : //ned.ipac.caltech.edu/level5/Sept03/Trodden/Trodden2 5.html.

From Figure 1 one can see that not all comoving observers are visible for the observer O.
9These references of time can change according to different authors, which follow determined criteria put the

names of the distinct epochs. Here we have follow the criteria of [13].
10This name refers to a period of the universe which contains the hadron and lepton epoch together.
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Mathematically particle horizons can be calculated using (12) and the fact that photons travel
along null paths (ds2 = 0), for light emitted at a time t0 which arrives at a point at time t, as:

RH(t) = a(t)
∫ t

t0

dt′

a(t′) . (20)

The particle horizon radius RH can be also computed for photons, using (12), assuming a radial
trajectory and flat space(k=0), one obtains:

RH(t) = a(t)
∫ r

r0
(1− kr2)−1/2dr = a(t)r. (21)

This distance represents the horizon distance and defines a boundary between causally con-
nected regions of space, points separated a distance greater than the given by (21) are causally
disconnected.

Now, we can compute the particle horizon assuming a(t) ∝ tn with n < 1, using equation
(20) and we obtain:

RH(t) ∝ tn
∫ t

0

dt′

(t′)n = n

1− nH
−1 ∼ H−1, (22)

where the symbol ”∼” indicates that irrelevant numerical factors has been ignored.

1.3.2 Limitations of the Big bang model

It can be thought that the big bang is a consequence of assuming homogeneity and isotropy,
however, it can be proved that singularities are general characteristics of cosmological models11.
Nevertheless, GR theory cannot be assumed valid at close time of the Big bang singularity, when
quantum gravity effects are supposed to be relevant. The scale at which quantum gravity effects
are important is defined by the Planck scale, which can be estimated from a combination of
Planck constant, Newton constant and the speed of light. These are: the Planck mass (mP ),
the Planck length (lP ), the Planck time (tP ) and the Planck energy (EP ).

mP =
(~c
G

)1/2
= 2.18× 10−8kg, (23)

lP =
(~G
c3

)1/2
= 1.62× 10−36m, (24)

tP =
(~G
c5

)1/2
= 5.39× 10−44s, (25)

EP =
(
~c5

G

)1/2

= 1.9544× 109J, (26)

In natural units, all four quantities have the relation mP = l−1
P = t−1

P = EP = 1.22× 1019GeV .
In conclusion, quantum gravity is expected to become important when particles have a mass
greater than mP , or when dealing with times shorter than tP , lengths smaller than lP or energies
higher than EP .

11For detailed explanation see Chapter 9 of [1].
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1.4 Successes and Problems of the Big bang model

1.4.1 Successes of Big bang model

The main idea of the Big bang model is the prediction that in the past all matter in the universe
was in an extremely hot and dense state, afterwards the Universe began to expand and cool
down. This model has succeeded making predictions like:

1. The expansion of the Universe.

2. The existence of the Cosmic Microwave Background (CMB).

3. The synthesis of light elements (Nucleosynthesis). The big bang model accounts properly
for the relative abundances of light elements in the universe.

4. The age of the Universe, which is compatible with experimental evidences.

These are the most important successes of the big bang model. However, there are some questions
or problems which that model cannot answer by its own.

1.4.2 Problems of the Big bang model

Flatness Problem

This problem pertains to one type of problems of the Big Bang model known as fine-tuning
problems. It is a problem related to the necessity of adjusting at high precision the density
parameter (Ω) at early times in order to have a value for Ω according to the present value.
Experimental data are consistent with a nearly flat universe12, and with Ω ' 1. Equation (15)
can be rewritten in terms of Ω in order to calculate its time evolution:

| Ω(t)− 1 |= | k |
a2H2 . (27)

From (27) it is important to note that during the expansion a2H2 decreases if one assumes a
decelerating expansion (ä < 0), therefore Ω increasingly deviates from one. Furthermore, we
can take results for a(t) from Table 1 for the matter- and radiation-dominated universe, the
definition of H and equation (27) to compute Ω. The results of these calculations are shown in
Table 2.

| Ω(t)− 1 |
Matter-dominated ∼ t2/3

Radiation-dominated ∼ t

Table 2 – Density parameter at different stages of the universe.

These relations show that the value of Ω must be highly fine-tuned at early epochs to reproduce
the flatness of the current observed universe. The big bang model does not offer a natural
mechanism to explain why the Universe appears to be so flat.

Horizon Problem

The CMBR over all the sky seems to have the same spectrum as a black body with temperature
variations13 of 10−5. These small variations indicate that the CMBR is nearly in a state of ther-
mal equilibrium. However, it is not possible for the microwave photons from opposite directions

12For more details look at [8].
13For more details on the CMBR look at Chapter 6 from [3].
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of the sky to be in causal contact with each other because light has not had enough time since
the big bang to travel to such far regions.
One natural explanation would be that the different regions of the sky have interacted in order
to get this thermal equilibrium. However, the big bang model discards this interpretation, in
order to understand why; it is necessary to remember the horizon distance given by equation
(20). In the case of CMBR, the distance before the releasing of microwave radiation is much
smaller than the present horizon distance, this means:∫ tdec

t∗

dt

a(t) �
∫ tdec

t0

dt

a(t) , (28)

where t0, t∗, tdec are the present time, a time close to the big bang and the time of the beginning
of the decoupling era, respectively.
In addition, the horizon size at the decoupling era corresponds nowadays to a distance in the
sky of no more than 2°, so that they were causally disconnected at the time of decoupling14.
Hence, the fact that the big bang model cannot explain the high degree of homogeneity of the
universe is one of the main drawbacks of the model.

Monopole Problem

Generally speaking, the effect of a phase transition depends on the termodynamic properties of
the system considered. In the cosmological context, phase transitions are typically modelled by
a scalar field φ, which in quantum field theory represents spin-0 bosons; and its potential V (φ),
which determines the temporal dependence of φ. These phase transitions can be associated with
the cooling of the universe and lead to different configurations of the scalar field, depending on
the symmetry being broken, called topological defects.
Grand Unified Theories (GUT’s) predict the creation of topological defects arising from the
symmetry breaking at early times in the Universe. Some of these relics are:

1. Domain Walls
The symmetry consists in only discrete states. This defect contains two connected regions
of distinct phases separated by walls with certain energy.

2. Strings
These are linear defects, where the ”phase” of φ changes by multiples of 2π around the
string. They are described by some energy per unit length. They could explain the large-
scale structure of the universe; however, they are disfavoured by the lack of experimental
observations.

3. Monopoles
These are point defects with a characteristic mass, where the scalar field points radially
away from the defect. They can have a magnetic configuration and, hence, they can be
analogous to the magnetic monopoles.

All these topological defects are supposed to be created at very early times of the universe and
diluted by the cosmological expansion. The big bang model permits the creation of magnetic
monopoles in some symmetry breakdowns, such as the electroweak breakdown, this production
of monopoles would become them the dominant material of the Universe15.

However, magnetic monopoles have never been observed. Thus, this leads to a contradiction
between theory and observations. It is thought that if the concentration of defects was relevant
it would have had direct effects in, for example, the curvature of spacetime, the galaxy formation
or the value of the Hubble parameter.

14For more details on the angular distance of the CMBR look at [8].
15For more details on topological defects look Chapter 10 from [4]
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2 Introduction to Inflation

In the last section, some crucial problems of the big bang model have been outlined. In order
to solve them, Guth and others introduced at the beginning of the 80’s the idea of inflation16.
The main idea behind inflation is that at very early times of the universe, there was a moment
when the universe suffered a large accelerated expansion. This period of a great accelerated
expansion is expected to last from 10−35 seconds to 10−33 or 10−32 seconds approximately17,
after the big bang. Inflation has to be seen not like a concrete model18, but like a scenario
with the possibility of choosing different models to explain the inflationary period. As it will be
discussed in sections 2.1, 2.2 and 2.3, this accelerated expansion can solve in a natural way the
cosmological problems exposed before.

2.1 Inflation as a solution to the Big bang problems

Inflation can be defined as a period of accelerated expansion, where ä > 0. From equations
(15) and (16) it is easy to check, assuming k=0, that the previous condition implies p < −ρ/3.
Another consequence of the first condition is that:

d

dt

( 1
aH

)
= − ä

(ȧ)2 < 0. (29)

Equation (29) affirms that the characteristic length of the universe, measured in comoving
coordinates, decreases during inflation. This could seem a contradiction, however, what is
happening is that although the universe expands very fast, its characteristic length or scale
with respect to the expansion is becoming smaller. Therefore, inflation has to begin at very
early times of the universe, last a short period of time and then come to an end followed by
a conventional behaviour of the Universe. This new scenario does not contradict the big bang
model, it just complements it, to solve some of its deficiencies.

2.1.1 Solution to the Flatness Problem

Historically, inflation arose from trying to solve this problem. Recalling equation (27), a decel-
erating expansion was a central problem in the big bang model since aH always decreases, and,
therefore, Ω is shifted away from 1. Nevertheless, inflation ensures the opposite situation, this
is to say that, during inflation the right hand side of equation(27) will decrease and therefore,
Ω is driven to 1. This can be seen using equation (27) and calculating:

d

dt

( 1
(aH)2

)
= d

dt

(
ȧ−2

)
= −2 ä

(ȧ)3 < 0, (30)

where the conditions ȧ > 0 and ä > 0 have been used.
Hence, inflation implies that the curvature term becomes very small and, thus, guarantees that
the universe becomes effectively flat.

2.1.2 Solution to the Horizon Problem

Inflation provides two arguments in order to solve this problem. The first argument is more
qualitative but conceptually very important. Combining equations (20) and (21) the particle
horizon for a flat radiation-dominated universe can be written as:

H−1 = RH = a(t)r. (31)
16Some key articles of the beginning of inflation can be found in [5].
17This temporal references are not exact, there is no way to known exactly when happened, although it is

known that it has to be after the Planck time and last a short period of time.
18For more reasons supporting the idea of inflation look at [11].
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Isolating the comoving radius r from equation (31) and using equation (29), one obtains:
d

dt
(r(t)) < 0. (32)

This condition means that during inflation the comoving radius is decreasing. In the comoving
frame, which is at rest with respect to the expansion, one observes that the particle horizon is
shrinking. This fact is often visualized with the example of an expanding balloon like in the
Figure 2 and Figure 3.

Fig. 2 – This figure shows the expansion in
comoving coordinates. In this coordinates one

observer do not realize that universe is expanding,
although for him the particle horizon is seen to

contract. Both figures have been taken from [11].

Fig. 3 – This figure shows that after inflation
regions that have reached thermal equilibrium can
be expanded outside the horizon. After inflation

regions do not expand faster than the horizon and
thus the horizon can ”catch up” with them.

A comoving frame has the advantage that the horizon distance and the Hubble length remains
approximately constant; and by definition the particle horizon must move at the speed of light.
Besides, if the previous conditions imply that spacetime has to be larger than the particle hori-
zon, then the spacetime background has to expand faster than the speed of light, consequently
the expansion has to take place at super-luminal velocities. Once inflation ends, the spacetime
returns to a subluminal rate of expansion so that the particle horizon can reach it. This fact
does not contradict any statement of special relativity because what is expanding is spacetime,
thus, no information is transmitted.

Quantitatively, the horizon problem would be solved if:

a(tdec)
∫ tdec

tinfl

dt

a(t) � a(t0)
∫ t0

tdec

dt

a(t) , (33)

where tinfl indicates the beginning of inflation, tdec is the time of decoupling and t0 is the present
time.

Making some reasonable assumptions inequality (33) can be estimated numerically: first, the
time differences between the integral limits are so big that the lower limits can be set to zero.
Moreover, in the first integral, during inflation, as we will see in section 2.5, the scale factor can
be approximated by a(t) ∼ eHt. In the second integral, the scale factor can be assumed to be
the matter-dominated of the Table 1, a(t) ∼ t2/3 . If one puts tdec = ∆t , then one can write:

eH∆t
∫ ∆t

0

dt

eH∆t � t
2/3
0

∫ t0

0

dt

t2/3
. (34)

Calculating the integrals we obtain:

H−1
(
eH∆t − 1

)
� 3t0 = 2H−1. (35)

Inequality (35) holds if ∆t has a determined value, in other words, if inflation lasts a ∆t which
satisfies the inequality. Therefore, with these two arguments inflation solves the horizon problem.
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2.1.3 Solution to the Monopole Problem

Considering the solution to the flatness problem, the monopole problem can be solved by the
same mechanism. The problem with monopoles were that the big bang conditions could led to
the production of unwanted relics, which, however, have not been observed experimentally. This
problem is solved because the production of monopoles is diluted by the accelerated expansion
explained before19.

Note that the previous explication holds provided that, at the end of the inflationary period,
the energy density is not high enough so that thermal effects can recreate these relics. At the
end of inflation the energy density dedicated to expand the Universe has to be transformed in
conventional matter-energy density, this process of conversion of energy is known as reheating20,
and, as its name indicates, it supposes an increment of the temperature of the Universe after
inflation.

2.2 Description of the Dynamics of Inflation

As seen in section 2.1, inflation requires an exotic equation of state (P < −ρ/3). The stan-
dard model known with an equation of state with negative pressure, looking at Table 1, is the
vacuum-dominated universe model and it implies and exponential increment of the scale factor.
Thus, vacuum or non conventional matter have to be present during the inflationary epoch.

During inflation, the energy density of the universe is assumed to be contained in a scalar
field and in its potential. At the end of inflation, this scalar field releases its energy in order to
reheat the universe and permit particle creation.

2.2.1 Scalar fields and field theory

In standard models, inflation is governed by a scalar field (φ) and its potential (V (φ)).

Scalar fields are used to describe the spontaneous symmetry breaking of vacuum states in some
systems and are supposed to represent spin-0 bosons, which are invariant under a change of co-
ordinates. Therefore, during inflation the scalar field represents vacuum energy of the universe,
and; at the end of it, is the source of latent heat for the reheating epoch. As in the case of the
scale factor, the scalar field in an isotropic and homogeneous universe is a function only of time.

In field theory, the fundamental quantity is the Langragian density (L), which is a general-
ization of the classical Langragian (L). The relation between Lagrangian and the L is:

L =
∫
d4xL. (36)

In the case of a scalar field the Lagrangian density is given by21

L = 1
2g

µν∂µφ∂νφ− V (φ), (37)

where φ is the scalar field, commonly called inflaton, V (φ) its potential22. The first term of the
L represents the kinetic contribution of the scalar field, its kinetic energy; and the second one

19The explanation of the dilution of the concentration of unwanted relics is a little more complicated than the
solution of the flatness problem. For more details look at [4] and [11].

20A complete understanding of reheating requires the introduction of scalar fields, which would be made in
section 2.2. Furthermore, reheating could be a topic for a TFG in itself, that is why in this work, reheating is
only going to be commented briefly. For more details on the reheating look at [14].

21For a complete explanation of this expression look at [3] or [4].
22Note that in (37) partial derivatives appear instead of covariant derivatives, but in this case is the same

because φ is a scalar quantity
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represents the potential energy of the scalar field.

This Lagrangian density appears in the action(S) as:

S =
∫
d4x
√
−gL =

∫
d4x
√
−g

[1
2g

µν∂µφ∂µφ− V (φ)
]
, (38)

where g is the determinant of the metric. Applying the principle of least action to equation (38),
one obtains the Euler-Lagrange equations23 for the Lagrangian density as:

∂(√−gL)
∂φ

− d

dxµ

(
∂(√−gL)
∂ (∂µφ)

)
= 0. (39)

Substituting L from equation (37) in equation (39) and after some calculations one obtains:

1√
−g

∂

∂xµ

(
gµν
√
−g ∂φ

∂xν

)
+ dV (φ)

dφ
= 0. (40)

This is the dynamical equation of the scalar field during inflation.

Using the field theory formalism, the Einstein equation can also be deduced, making a vari-
ation of the Einstein-Hilbert action24:

SH =
∫ √
−gRdnx, (41)

where R is the Ricci scalar and g is the determinant of the metric.
In the Einstein equation, the matter dependence of the gravitational interaction is represented
by the energy momentum tensor. It can be proved that the Tµν is a conserved quantity in a
matter field theory. Energy momentum tensor conservation is mathematically expressed as

∇µTµν = 0, (42)

in this equation ∇µ means covariant derivative.
Using the fact that Tµν is a conserved quantity and considering the Lagrangian density of
equation (37); one can derive an expression for the energy momentum tensor (Tµν) given by25

Tµν = ∂µφ∂νφ− gµνL. (43)

2.3 Dynamical equations of the inflaton

Before deriving the equations of motion for the scalar field, it is important to note that the
homogeneity condition during inflation holds because the physical and comoving gradients are
related by:

∇physical = 1
a(t)∇comoving, (44)

thus, all gradients can be neglected, as during inflation the scale factor undergoes an extreme
growth in its value.

Using the FRW metric given by (12), and restricting it to the flat space case, the metric is:
gµν = diag(−1, a−2, a−2, a−2). With this metric, the factor √−g is

√
−(−a6) = a3, and then

equation (40) can be written as:

φ̈+ 3Hφ̇− ∇
2φ

a2 + dV (φ)
dφ

= 0. (45)

23For a more complete deduction look [3].
24See [3] for a more detailed explanation.
25The deduction of this expression for Tµν is based on Noether’s theorem. For more details look [3].
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Using the fact that φ is only a function of time, the equation of motion for the inflaton is:

φ̈+ 3Hφ̇+ V ′(φ) = 0, (46)

where the overdot represents time derivatives and the prime (′) derivatives with respect to φ.

The Tµν of a perfect fluid is given by equation (14), this equation can be written in comov-
ing coordinates as: Tµν = (ρ, P, P, P ). Then, one can compare the Tµν of a perfect fluid in
comoving coordinates with the result of computing (43) for the different components. For the
00-component one obtains:

ρ = T 00 = ∂0φ∂0φ− g00
(1

2g
µν∂µφ∂νφ− V (φ)

)
. (47)

After substituting the metric and evaluating the derivatives, the final result is:

T 00 = ρ = 1
2(φ̇)2 + (∇φ)2

2a2 + V (φ). (48)

The same procedure can be followed to calculate an expression for the pressure considering that
in this case P satisfies the relation:

P = a4

3
(
T 11 + T 22 + T 33

)
, (49)

computing the components of the tensor using equation (43) one obtains:

P = 1
2(φ̇)2 − (∇φ)2

6a2 − V (φ). (50)

If the gradients of equations (48) and (50) are neglected, then one obtains,

ρ = 1
2(φ̇)2 + V (φ), (51)

P = 1
2(φ̇)2 − V (φ). (52)

Now substituting equations (51) and (52) in the Friedmann, in the fluid continuity and in the
acceleration equations (equations (15), (16) and (17) respectively) one obtains,

φ̈+ 3Hφ̇+ V ′(φ) = 0, (53)

H2 = 8π
3m2

P

[
V (φ) + 1

2(φ̇)2
]
, (54)

Ḣ +H2 = 8π
3m2

P

[
(φ̇)2 − V (φ)

]
. (55)

Equation (53) is the same expression as the equation (46), we have obtained them by two dif-
ferent ways. On the other hand, in obtaining equation (54) has been neglected the curvature
term from (15) because during inflation it becomes rapidly negligible. Equations (53) and (54)
are the basic equations of motion for the scalar field.
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2.4 Slow-Roll Approximation

From the pressure and density equations (51) and (52), it can be seen that:

if φ̇2 � V (φ) ⇒ P ' −ρ, (56)

hence, one has the equation of state of a vacuum-dominated universe, and inflation can take
place. The assumption that φ̇2 � V (φ) significantly simplifies the equations of motion of the
scalar field and is known as Slow-Roll Approximation (SRA). Thus, during the SRA period of
inflation, the variations with respect to the time of the inflaton are negligible, as can be seen in
Figure 4.

Fig. 4 – This figure illustrates a conventional behaviour of the scalar field with some potential. First, the
inflaton begins to roll down slowly to a minimum and during this period the kinetic term is negligible. However,
as long as the inflaton reach the minimum the φ̈ term of the equation of motion becomes larger and larger and
the inflaton field rolls down rapidly. When the inflaton reaches the minimum, the inflationary period ends and

the inflaton oscillates around the minimum radiating its energy and reheating the universe.

From an equivalent point of view, if inflation take place (ä > 0), then, from (17) we obtain
the condition P < −1

3ρ, and then using equations (51) and (52) one obtains that the potential
must dominate over the kinetic term:

ä > 0 ⇒ P < −1
3ρ ⇒ (φ̇)2 � V (φ). (57)

Thus, using this approximation the equations of motion of the inflaton can be rewritten as:

3Hφ̇ = −V ′(φ), (58)

H2 = 8π
3m2

P

V (φ). (59)

in equation (58) has also been neglected the φ̈ term because this has to be small in order to
ensure that φ̇ is also small. Then, provided a potential for the scalar field it can be defined the
first two slow-roll parameters26 as:

εV (φ) = m2
P

16π

(
V ′

V

)2
, (60)

ηV (φ) = m2
P

8π

(
V ′′

V

)
. (61)

26More precise is to say that these are the Potential Slow-Roll (PSR) parameters.
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This two parameters allow us to know the validity of the SRA. If SRA holds then:

εV � 1, |ηV | � 1. (62)

These definitions could seem arbitrary, however, there is a direct connection between the slow
roll conditions (62) and the definition of inflation (ä > 0), as will be shown next.
Taking equation (59) and deriving with respect to time one gets:

2HḢ = 8π
3m2

P

dφ

dt

d

dφ
(V (φ)) ⇒ Ḣ = 4πφ̇V ′(φ)

3m2
PH

. (63)

Now, derivating the Hubble parameter with respect to the time one has,

H = ȧ

a
⇒ Ḣ = ä

a
−H2. (64)

Considering the condition that inflation takes place (ä > 0) and equation (64), then one obtains:

ä

a
> 0 ⇒ Ḣ +H2 > 0 ⇒ − Ḣ

H2 < 1. (65)

Combining equations (58),(59),(63) and (65) and after some operations one obtains:

− Ḣ

H2 = m2
P

16π

(
V ′

V

)
< 1. (66)

Thus, this proved the connection between the slow roll parameters and inflation. Inflation lasts
until εV ∼ 1, and afterwards, the SRA is not valid any more. Besides, it is important to clarify
that SRA implies inflation, while the converse is not strictly true.

The two slow-roll parameters introduced until now are known as Potential Slow Roll (PSR)
parameters and have as fundamental quantity the potential of the inflaton. They have to be
small in order to neglect the kinetic term of the equation of motion, however, it can be shown27

that the smallness of the PSR parameters is a necessary consistency condition, but not a suf-
ficient condition to ensure that kinetic terms can be neglected. For this, the inflaton has to
approach the asymptotic attractor solution28:

φ̇ = −V
′

3H . (67)

In general, the assumption of an attractor solution at the end of inflation can be tested for a
wide range of initial conditions for the different inflationary potential models, so it is not a very
strong restriction29.

2.5 A measure of the amount of inflation

The amount of inflationary expansion is usually specified by the logarithm of the scale factor
at a particular moment, for instance, at the beginning of inflation divided by the scale factor
at the end of inflation, this is the number of e-foldings, N . In other words, N measures how
much the scale factor increases; concretely, one e-folding is the amount of time for a(t) to grow

27For more details look at [15].
28 The justification of why an asymptotic attractor solution is needed is explained in [15].
29In this work, it is going to work for simplicity only with the first order PSR parameters. Higher order PSR

parameters can be obtained as a series expansion based on the definitions of the first PSR parameters. For more
details see [15].
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by a factor e. SRA requires H to be nearly constant during this regime, that is why the scale
factor has an exponential dependence with the Hubble parameter.
Mathematically, it is expressed by:

N = ln

(
a(tend)
a(tintial)

)
=
∫ te

ti

H(t)dt. (68)

Using the SRA, equation (68) can be written in terms of the potential and its derivative. Dividing
equation (58) by equation (59), one obtains:

H

3φ̇
= − 8πV (φ)

3m2
PV
′(φ) , N =

∫ φe

φi

H
dt

dφ
dφ. (69)

Combining equations (69) one finds that in the SRA the number of e-foldings is:

N = − 8π
m2
P

∫ φe

φi

V

V ′
dφ. (70)

This last equation permits to calculate the amount of inflation without having to solve the equa-
tions of motion.

In the literature one can find a formula for the number of e-foldings30 of inflation in terms
of the inflationary potential and some features of the entropy generation process (reheating) at
the end of inflation:

N∗ ≈ 71.21− log
(

k∗
a0H0

)
+ 1

4 log
(

8πVhor
m4
P

)
+ 1

4 log
(
Vhor
ρend

)
+ 1− 3wint

12(1 + wint)
log

(
ρth
ρend

)
. (71)

where a0H0 is the present horizon scale, ρend is the energy density at the end of inflation, ρth
is the scale energy density at which the universe has thermalized, Vhor is the value of the in-
flationary potential when the present horizon scale left the horizon during inflation and wint
characterizes the equation of state between the end of inflation and the energy scale ρth.

Equation (71) depends on several parameters, beyond the scope of this work. However, it
is interesting to make a magnitude analysis of the terms of (71). The first two terms of (71)
are independent of the inflationary potential, and taking31 k∗ = 0.05 Mpc−1 the second term is
about 5. Moreover, if the thermalization is supposed to occur quickly, or if the reheating period
is assumed to be radiation-dominated then the magnitude of the last term is ≤ 1. For a wide
range of inflationary models, the fourth term is O(1) and the third term ∼ −10. With these
values the number of e-foldings takes the common range of 50 < N∗ < 60. Nevertheless, N∗
can vary over this range depending on the inflationary model chosen.

In addition, it can be proved32 that the number of e-foldings must be within the range of
[50-60] in order to solve the cosmological problems as the horizon, flatness and monopole prob-
lems.

3 Perturbations in the Inflationary period

3.1 Qualitative description of the perturbations

All the introduction done to the inflation paradigm, has not given an answer to the fundamen-
tal question of how the large-structure of the universe can be created. The answer is that the

30For more details look [22].
31This value is taken according to [22].
32For a more detailed explanation see [4].
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fluctuations of the scalar field and the metric, respectively, at very early times of the universe;
are responsible for the current large-structure observed in our universe.

There are two kinds of perturbations according to their nature: density perturbations (or scalar
perturbations), which are quantum fluctuations of the scalar field and are eventually the respon-
sible of the formation of matter clusters and galaxies; and gravitational perturbations (or tensor
perturbations), these are due to variations of the metric and although, they do not contribute
to the the galaxy creation; however, their effect is expected to be observed analysing accurately
the anisotropies of the CMB spectrum. The names scalar and tensor perturbations come from
the transformation law they follow.

As seen in section 2.1, the characteristic scale of the universe during inflation is the Hubble
length, H−1, which marks a boundary for the possible causal processes. Perturbations are
usually described as fluctuations described through a power spectrum (via Fourier analysis)
assigning a comoving wavenumber k for each mode. During inflation these fluctuations grow
exponentially as the universe expands, so that they can grow so much that they become greater
than H−1 and they extend beyond the Hubble radius. The comoving mode k∗ at which the
perturbations cross the Hubble radius for the first time is:

k∗ = a∗H∗, (72)

where a∗ and H∗ are the scale factor and Hubble parameter, respectively, at the exiting moment.

When the fluctuations are outside the Hubble radius, they become disconnected from the cause
which produces them, and their amplitude is frozen in33. Once the inflation has finished, the
Hubble length grows faster than the scale factor and all the perturbations can re-enter the hori-
zon during radiation- or matter-dominated eras. These perturbations, which have re-entered
the horizon, will later be responsible for generating the large structure of the universe.

Moreover, the exactly exponential expansion of the De Sitter spacetime has the property to
generate an scale-invariant spectrum34. During inflation, the only important physical length is
the Hubble length, which remains nearly constant during inflation. With these two reasons one
expects an approximately scale-invariant spectrum.

An accurate treatment of the cosmological perturbations produced during inflation is beyond
the scope of this work35, in the next pages will be briefly summarized the key results of the
cosmological perturbations theory.

3.2 Quantum density fluctuations

Because of the observed anisotropies on the spectrum are so small, of the order of 10−5, it is
sufficient to study the cosmological perturbations at first order, giving these linearized pertur-
bations, an accurate description of the spectrum. One can write a perturbation of the scalar
field as:

φ(~r, t) = φ(t) + δφ(~r, t). (73)

Combining equations (73) and (46), and after operating one obtains:

δφ̈+ 3Hδφ̇− ∇
2δφ

a2 + V ′′δφ = 0. (74)

33For more details on this statement look at [21].
34For a complete proof see [4].
35For more details look [9] or [21].
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Then, one has to expand the perturbation in comoving Fourier modes:

δφ(~r, t) =
∫

d3~k
(2π)3/2 e

i~k·~rδφk(t). (75)

However, these two conditions give a classical perturbation theory. That is why one has to
go further, quantize the perturbations, introduce a Gauge invariant potential36 and after some
calculations one obtains:

(aδφk)′′ +
(
k2 − z′′

z

)
(aδφk) = 0, (76)

where z = aφ̇/H and the prime means derivatives with respect to the conformal time(τ), defined
as τ =

∫
dt/a(t). This is the evolution equation for the scalar perturbations and in next sections

will be showed how it can be solved.
Key quantities to describe the characteristics of the perturbations are the comoving curvature
perturbation and the power spectrum of perturbations. They are defined as:

R = −Hδφ

φ̇
, (77)

〈0| δφ∗k1δφk2 |0〉 = δ(3)(k1 − k2)2π2

k3 Pδφ(k), (78)

where the state |0〉 represents the ground state of the system.

3.3 Metric fluctuations

In a similar way, one can study linear perturbations of the metric with the form:

gµν = gµν + hµν , (79)

where |hµν | � 1 and gµν is a FRW metric.

It can be shown37 that the tensor perturbation hµν has only 2 degrees of freedom, which are the
two polarizations states (+,×) predicted for the gravitational waves.
After applying the formalism of perturbation theory38 one gets the evolution equation:

(ah+,×
k )′′ +

(
k2 − a′′

a

)
(ah+,×

k ) = 0, (80)

where the prime denotes derivatives with respect to the conformal time. Equation (80) is very
similar to equation (76), therefore, their solutions have also to be very similar.

3.4 Description of the primordial spectrum

There are mainly three approaches for solving equations (76) and (80). One manner is solving
these set of differential equations numerically, then, one has to take into account that for a
fixed comoving wavenumber, the evolution of the perturbations has to be separated in different
stages39. Secondly, using a development of the HSR parameters and using its dependence with
the primordial perturbations40. And, thirdly, one can also use the SRA and expand the power
spectra of density and tensor perturbations in a phenomenological way as:

PR(k) = As

(
k

k∗

)ns−1+ 1
2
dns
d log k log(k/k∗)+...

, (81)

36For more details look at [12] and [21].
37For more details of the properties of the linear perturbations of the metric look [1] and [2].
38For more details look at [9].
39For more details see [22] and [23].
40 HSR parameters means Hubble Slow Roll parameters and they are very similar to the PSR parameters, but

they have the Hubble parameter as a fundamental quantity. For more details see [23].
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Pt(k) = At

(
k

k∗

)nt+ 1
2

dnt
d log k log(k/k∗)+...

; (82)

where As and At are the scalar and tensor amplitudes; ns and nt are the scalar and tensor
spectral indices; whereas, the terms with logarithms are called the running of the scalar or the
tensor index, respectively.

It can be proved41 using the SRA that the terms of the scalar and tensor power spectra are
related with the PSR parameters by:

As ≈
8V

3m4
P εV

, (83)

At ≈
128V
3m4

P

, (84)

ns − 1 ≈ 2ηV − 6εV , (85)

nt ≈ −2εV , (86)

where the εV and ηV are given by equations (60) and (61), and the symbol ≈ indicates that SRA
has been used. Besides, in the SRA the two power spectra can be related by the consistency
relation42:

r = PR(k∗)
Pt(k∗)

≈ 16εV ≈ −8nt, (87)

the quantity r is called the tensor-to-scalar ratio.

4 Inflation Models

In the last two decades, a great amount of inflation models have emerged. Some of them based
on some particle theory or GUT, although some of them have no relation with particle theories
and only are taken in a phenomenological way, without worrying about the pre-initial stages of
inflation which would determine the inflationary potential .

In this work, distinct models of inflation are going to be solved, first analytically using the
SRA and also numerically using the equation of motion including the kinetic terms, out of the
SRA. In the framework of the SRA, all the fundamental parameters of the inflation model are
going to be calculated, paying attention especially to the values of ns and r obtained for each
model, which can directly be compared with the experimental values obtained by the Planck
mission.

The most simple models are the chaotic inflation models43 . Their main features are:

1. They have a single scalar field.

2. A potential V (φ) has a minimum and in some regions satisfies the SRA conditions.

3. Initials conditions depend on the parameters of the potential V (φ).

There is a long list of inflation potential of interest, before giving the results for some of the
chaotic inflation models, which have been calculated, it is going to give a detailed example of
the calculations done for a specific model.

41For more details look at [9] and [12].
42For a detailed demonstration of the expression see [21] and [4].
43The name of chaotic models was coined by Linde because in this model the scalar field any value at different

places of the early universe. For a more extended explanation on chaotic inflation models see [10].
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4.1 Exponential Inflation

This model has a potential of the form:

V (φ) = Λ4e
−λ
√

8π
mP

φ
, (88)

where Λ and λ are constants describing the amplitude and the strength of the exponent of the
potential, respectively. Applying the SRA and substituting V (φ) in equations (58) and (59); the
equations of motion are:

3Hφ̇ = Λ4λ

√
8π
mP

e
−λ
√

8π
mP

φ
, (89)

H2 = 8π
3m2

P

Λ4e
−λ
√

8π
mP

φ
. (90)

These two equations can be solved analytically for the scalar field by integration, giving the
solution:

φ(t) = mP√
2πλ

log
[
e
λ
√

2π
mP

φi + t

√
2πλ4Λ4

3m2
P

]
, (91)

where φi is the value of the inflaton at the beginning of the inflationary period.
Now, one can also find an expression for the scale factor using the definition of the Hubble
parameter; and combining equations (90) and (91):

a(t) = ai

(
1 + t2/λ

2

√
2πλ4Λ4

3m2
P

e
λ
√

2π
mP

φi

)
, (92)

where ai is the value of the scale factor at the beginning of inflation. With equations (91) and
(92) one can describe the behaviour of the scalar field and the scale factor in the slow roll regime.
Moreover, one can also calculate the PSR parameters for this potential:

εV = λ2

2 and ηV = λ2. (93)

Another important characteristic of the model is the number of e-foldings which can be calcu-
lated from equation (70) and using the potential given by (88):

N = − 8π
m2
P

∫ φe

φi

Λ4e
−λ
√

8π
mp

φ

−Λ4λ
√

8π
mp

e
−λ
√

8π
mp

φ
dφ =

√
8π

m2
Pλ

2 (φe − φi), (94)

where φe is the value of the inflaton at the end of the inflation. The end of inflation can be
assumed to be approximately when εV = 1; applying this condition to equation (93), that at
the end of inflation (when φ = φe) λ2 = 2. A common procedure would be writing with the
condition of the end of inflation the value of φi as a function of N , nevertheless, in the case of
this model it is not useful, because in the PSR parameters do not appear φe, and because, as it
will be shown, this model has no natural way of ending its expansion.

For this potential, the value of the scalar and tensor indices; and for the tensor-to-scalar ratio
are:

ns = 1 + 2λ2 − 6
(
λ2

2

)
= 1− λ2, (95)

nt = −λ2, (96)

r = 8λ2. (97)
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If now one uses the value of λ for the end of inflation, the results for the observables quantities
are: ns = −1 and r = 16, which are excluded by the Planck mission data44. These results are
obtained because this model does not stop inflating the universe at any time. For this model
inflation only ends if some external mechanism is introduced in order to stop it.

The previous analysis of the inflationary model has been performed in the framework of the
SRA. However, it is interesting to solve the equation of motion for the inflaton with the kinetic
terms. Then, one has a set of two coupled differential non-lineal equations:

φ̈+ 3Hφ̇+ V ′(φ) = 0, (98)

H2 = 8π
3m2

P

[
V (φ) + 1

2(φ̇)2
]
. (99)

These set of equations can be solved numerically. Before doing that, it is useful to introduce a
set of dimensionless variables:

Y = φ(t)
φi

, X = H(t)
Hi

, W = V (φ)
Hi

, τ = Hit. (100)

It is important not to confuse τ with the conformal time introduced before; in this equations τ is
simply a dimensionless variable for the time integration. Taking these new set of dimensionless
variables the equations of motion can be written as:

Y ′′ + 3XY ′ + dW

dY
= 0, (101)

X2 = 1
Wi

[1
2(Y ′)2 +W

]
, (102)

where the prime means derivatives with respect to τ . With these dimensionless variables, the
initials conditions for these set of equations are immediately found as:

Y (τ = 0) = 1, and Y ′(τ = 0) = − 1
3
dW

dY

∣∣∣∣
i

. (103)

Therefore, one initial condition will be the same for all the models, while the initial condition on
the derivative will depend on the inflation model chosen. Besides, the set of equations (100-103)
are completely general. Specifying the power law potential in the previous equations one has,
after some calculations45

W = Wi e
κ(Y−1), (104)

where Wi and κ are constants that can be chosen arbitrarily. They are free parameters which
will determine the strength of the potential. The equations of motion (101) and (102) will be
solved numerically using a fifth order Runge-Kutta-Fehlberg method with a fixed integration
step.

The results of the numerical integration, can be seen in Figure 5, numerical curves reproduce
SRA predicted behaviour46 for φ(t) and a(t) for all the range of integration, this is because
inflation remains in the slow roll regime for the scalar field all the integration time. From this
behaviour one can see that this is an incomplete model which needs an external mechanism in
order to end inflation. As it will be seen later, this model is rejected by the experimental data.

44For more details on the main results of the Planck mission look at [24].
45In this calculations Wi and κ are constants which simplify the notation and contain a group of constant like

φi, λ or Λ.
46To compare the numerical results and the SRA curves we have rewritten the SRA curves in terms of the

dimensionless variables.
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Fig. 5 – Numerical solution for the scalar field and the scale factor and also the analytical curves within SRA.
In these graphics have been used values for Wi = 0.005 and κ = 2.0. The behaviour of the scalar field confirms
that for this inflation model never decay into the reheating era because the inflaton does not decrease its value

by its own.

4.2 Starobinsky model

The Staborinsky model, which is one of the first models proposed for inflation, can be analysed
within an alternative theory of gravity, the f(R) theory, which consider higher order curvature
terms in the Hilbert-Einstein action47. Within the f(R) theory are defined two frameworks: the
Jordan frame and the Einstein frame. The Einstein frame is equivalent to the one in GR theory,
and uses the Hilbert-Einstein action given by (37); whereas the Jordan frame is related to the
previous one through a conformal transformation.

Starobinsky proposed a model for inflation which is based on an action equal to the Einstein-
Hilbert action with an extra curvature quadratic term:

SS =
∫ √
−gm

2
P

16π

(
R+ R2

6M2

)
d4x, (105)

where M is the mass of the scalar field and R is the Ricci Scalar.

From equation (105) one can extract the Lagrangian density. Making a conformal transfor-
mation and after some technicalities48one obtains:

L =
[

1
2R−

1
2∂µφ∂

µφ+ Λ4
(

1− e−
√

π
3

4φ
mp

)2
]
, (106)

where Λ is a constant. From this Lagrangian density one can straightforwardly identify the
potential for the scalar field:

V (φ) = Λ4
(

1− e−
√

π
3

4φ
mp

)2
. (107)

This is the Starobinsky potential in four dimensions49. Now, the same calculations done in
section 4.1, for the previous model can be applied here. Using the SRA one can solve analytically
the equations of motion and obtain a result for the scalar field and the scale factor:

φ(t) = mp

4

√
π

3 log
(
e
√

π
3

4φi
mp − 8

3

√
2π
3

Λ2t

mp

)
. (108)

47For more details of the f(R) theory see [18] , [19] and [20]
48If one is interested in the details of the transformation can read [16].
49There exists a generalization of the Starobinsky at higher dimensions, see [16] and [17].
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a(t) = ai

(
1− 8Λ2

3mp

√
2π
3 e
−
√

π
3

4φ
mp

)3/4

e

√
2π
3

2Λ2t
mp . (109)

where φi and ai are initial values for the scalar field and the scale factor.

The results for the PSR parameters are:

εV = 4

3
(
e
√

π
3

4φ
mp
−1
)2 , (110)

ηV =
4
(
e
√

π
3

4φ
mp − 2

)
3
(
e
√

π
3

4φ
mp
−1
)2 . (111)

Then, computing the number of e-foldings using equations (70) and (107) one obtains:

N = 3
4

(
e
√

π
3

4φi
mp − e

√
π
3

4φend
mp

)
+
√

3π
mp

(φend − φi) (112)

This last equation for N can then be simplified using the fact that during inflation the scalar
field decreases its value and, hence, φend � φi, moreover, if φi has a large value, then, the
exponential term containing φi will be much larger than the others. With these approximations
one obtains:

N = 3
4e
√

π
3

4φi
mp . (113)

Using equations (113), one can write the PSR parameters in terms of the N , and therefore,
one can also write the spectral index and the tensor-to-scalar ratio (equations (85) and (87),
respectively) as a function of N :

ns = 1− 2
N
, (114)

r = 12
N 2 . (115)

Taking the range of N between [50-60], one obtains the values shown in Table 3. It can be
observed that the values of ns and r calculated within the SRA, approach significantly to the
experimental data provided by Planck50.

N ns r

50 0.9600 0.0048
55 0.9636 0.0039
600 0.9667 0.0033

Table 3 – Values for the scalar index and the tensor-to-scalar ratio for the range of 50 < N < 60.

One can also compute the Starobinsky model numerically using equations (101-103). With this,
the potential for this model can be written in terms of the dimensionless variables given by (100)
as:

W = Wi

(
1− κY
1− κ

)2

, (116)

50Some key results of Planck measurements will be shown in section 5.
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where Wi and κ are dimensionless variables which completely determine the intensity of the
scalar field during inflation. Their values will be chosen here arbitrarily, considering that the
model has to accomplish at least the minimum number of e-foldings necessary to solve the
cosmological problems.

Fig. 6 – Numerical solution for the scalar field and the scale factor for κ = 0.0035 and Wi = 0.007, in both plots
numerical results are compared with the analytical curves from SRA.

The results for the scalar field are shown in the first plot of Figure 6. First, the scalar field has
a large value and then begins to slowly roll down, as long as it is rolling down the decay goes
faster, as it happens in a classical system, and, finally, it has a period of very small oscillations,
this is the reheating period, with these oscillations the scalar field transform its energy in ther-
mal energy. Furthermore, the SRA curve fits really well the numerical result until the Slow Roll
period finishes, then SRA is not able to reproduce the really small oscillations of the potential
which are the seed of the future anisotropies of the universe.
In Figure 6, it is shown also the behaviour of the scale factor and the SRA result. At the
beginning the SRA curve reproduces the exponential expansion of the universe, however, af-
terwards instead of stopping the increase, it decreases strongly, that is why, at the time of the
decreasing SRA is not valid because the PSR (εV and ηV ) have become greater than 1. There
is a logarithmic term in the scale factor analytical solution for a(t) within SRA, which becomes
negative when SRA finishes, that is why a great descent is observed. Besides the graphic shows
that the scale factor gives about 450 e-foldings. However, the observationally relevant part
of the inflation are the last 60 e-foldings where the regime is clearly non-exponential. This
is important to understand because observational data correspond just to the last part of the
inflationary period, where the scalar field does not present great changes in its values.

As discussed before, the oscillatory behaviour at the end of inflation has a great importance;
that is why, it is going to be tested what is the behaviour of the oscillations if the step of inte-
gration changes. The results can be seen in Figure 7, where it is observed that the oscillatory
behaviour changes a few, specially the depth of the oscillations while the spikes remain the same.
This fact is important because the energy is released when φ reaches a spike and then decrease,
hence, that solution means that the energy recovered by the scalar field will be the same in both
models. Looking at both plots in Figure 7 one can see that the main behaviour of the solution
of the non-linear system remains practically unchanged when one modifies51 the ∆τ .

51A deeper analysis of the numerical error of the solution can be done studying the convergence, consistency
and stability of the solution. However, the lack of space in this work impede us to treat such an interesting test.
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Fig. 7 – Graphic showing the numerical solution for different steps of integration: in blue ∆τ = 1 and in red
∆τ = 0.1.

One can follow the same procedure with other inflation models and obtain results for φ(t) and
a(t). However, the more relevant quantities of an inflation model are the spectral index and the
tensor-to-scalar ratio as they are observational magnitudes that can be tested by experimental
measurements. That is why we have computed for distinct models the values of ns and r for
50 < N < 60 within the SRA.
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Fig. 8 – In this Figure one can observe the results for the different models within the SRA for the values of ns
and r for the range of 50 < N < 60.

The results are shown in Figure 9, as it will be seen this configuration fits properly the experi-
mental data provided by Planck.

5 Experimental evidences of Inflation

Different experiments have been designed in order to reduce the number of models allowed for the
inflationary period. These experiments consist basically in studying accurately the anisotropies
of the CMRB. The most recent one has been the Planck mission. Planck is the name of a satel-
lite launched by the European Space Agency in 2009, whose objective was not only generating
constraints on inflation, but also providing detailed data of the CMBR52.

The Planck mission made highly accurate measurements of the temperature anisotropies on
the spectrum of the CMBR. These data can be used to constrain inflation models, particularly,
the most important results launched on 2015 for the scalar spectral index and tensor-to-scalar

52For a detailed explanation of the products and scientific results of Planck mission look at [24].
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ratio are:
ns = 0.9603± 0.0073, (117)

r < 0.11 (95%CL), (118)

where CL means Confidence Level. These results are really important because they are a strong
constraint on the possible models describing inflation.

Fig. 9 – Constraints on the inflation models provided by the Planck mission. In this graphic it is also shown the
data from the polarizations modes of radiation.

In Figure 9, the Planck results are shown with the results for different inflationary models in the
first order SRA. Moreover, in the Planck article has been used53 k∗ = 0.002Mpc−1 as a pivot
scale when the perturbations are supposed to leave the horizon. This value is chosen according
to the criteria of others articles54. However, while the tensor-to-scalar ratio depends slightly on
k∗, the spectral index is independent of the pivot scale, and these results can be taken quite
general. On the other hand, the contour plots are likelihood distributions for distinct modes of
the radiation, for example, Planck TT means a combination of different data from the temper-
ature likelihood55 at multipoles l > 30.

These results show that polynomial inflation models with n > 2 are disfavoured and out of
the CL, whereas the inflation models with low values for ns and r, like the Starobinsky model,
are compatible and strengthen by Planck results. Furthermore, it is important to note that Fig-
ure 9 is quite similar to Figure 8, confirming that SRA is a great tool to constrain the acceptable
inflation models.

53In this work we have used basically two values for the pivot scale (k∗) following the criteria of [22]. That is
why in equation (72) appears k∗ = 0.05Mpc−1 and now k∗ = 0.002Mpc−1.

54For more details look at [22] and [23].
55If one is interested in the meaning of these labels, look at [22] and [23].
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6 Conclusions

The well accepted big bang theory, which describes the beginning of the universe, has a great
number of successes, however, this theory presents a list of problems like the flatness, the horizon
or the monopole problem which require a modified scenario, inflation, which is entirely compat-
ible with the big bang theory. It is like an accessory which improves it.

Inflation is a period usually assumed to take place between 10−35 and 10−32s after the big
bang, during which the universe suffered a great expansion. This huge expansion is due to
the anomalous behaviour of the scale factor that has ä > 0. This accelerated expansion solves
directly some of the cosmological problems, which the big bang theory could not solve.

The standard model of particle physics may not hold at inflationary era and it is currently
not possible to derive from first principles an equation of state for that epoch. However, particle
physics suggests that during the process of expansion and cooling down of the universe, phase
transitions could have occurred due to symmetry breakings. All this process is modelled by
an scalar field and its potential, which releases its latent heat during the cooling down of the
universe.

The freedom of choosing the potential of the scalar field, has caused that during the last 20
years a great amount of models for inflation have emerged. Not only theoretical models have
been developed, but also a large number of experiments have been designed in order to con-
strain the possible inflation models. The most recent one has been Planck, which was a satellite
launched on 2009 and destined to make accurate measurements of the CMBR.

The results of Planck have discarded some models like the polynomial with n > 2, whereas
some others like the Starobinsky model have been reinforced. This model was developed by
Starobinsky at 1980 with the idea to include quantum corrections to the model adding extra
curvature terms to the action of GR. This was one of the first models for inflation and during
the years has not been rejected by any experimental data from the different experiments. In
general, one can conclude that every single inflation model, apart from being theoretically well
explained, it has also to provide values of ns and r according to their experimental range of
values.

On the other hand, inflation is not a perfect theory, it also presents its own shortcomings.
The question of what causes inflation remains unanswered. There is no physical theory, which
gives a well accepted answer. Besides, in most models the scalar field and its potential are
chosen arbitrarily to fit the experimental data, so that they do not have a strong physical basis,
which explains its origin.

Inflation provides a solution to the cosmological problems, however, it is not the only the-
ory proposed to solve them, for example, Steinhardt and Turok proposed in 2001 an alternative
to inflation called ekpyrosis. This alternative proposal is based on string theory and consists in
the collision of branes in higher dimension universe. Both Ekpyrosis and inflation are a topics
of intense discussion in theoretical physics. Nevertheless, the lack of experimental evidences
supporting Ekpyrosis currently makes inflation the most natural option and the most accepted
scenario for the very early universe.
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