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1 INTRODUCTION 2

Everything we do, every thought we've ever had, is produced by the human brain. But

exactly how it operates remains one of the biggest unsolved mysteries, and it seems the

more we probe its secrets, the more surprises we �nd. - Neil deGrasse Tyson.

1. Introduction

With around 1011 neurons in the nervous system transmitting information amongst

them, the study of these cells is of crucial importance to gain an understanding of the

brain, which is considered by many to be one of the most complex systems in nature. Each

neuron has about 10000 connections with others, through which they transmit electrical

pulses, passing on information, thus controlling the behaviour of our system.

To have a good understanding of neurons, it is interesting to investigate how they

connect, �rstly in neuronal circuits formed of few neurons, which is the main focus of

this work. Neurons then establish networks, the study of which should lead up to gain an

insight into the workings of brain as a whole, and, �nally, of our system. On the other

hand, studies can go from the neuronal level down to cell biophysics and molecular biology

as well [1].

Neurons achieve information transmission through electrical pulses. These pulses are a

response to chemical or electrical inputs from other neurons, called synapses, which cause

ion concentrarion within the neuron to vary with respect to the extracellular medium due

to the opening of ion channels. This variation generates a spike in the membrane potential

of the cell, which is then transmitted along the neuron, and afterwards to other neurons.

The electrical pulses represent di�erent information according to the various temporal

patterns in which they �re. Synapses may be either chemical or electrical:

Chemical: the electrical activity in the presynaptic neuron activates the release of

neurotransimitters, chemical substances that are released into the synaptic cleft, and

are then received by postsynaptic neuron. The neurotransmitters bind to receptors

in the postsynaptic neuron, which induce the ion channels to open. Depending

on the type of the neurotransmitter that is released, the postsynaptic neuron will

su�er a depolarization or hyperpolarization of the membrane potential, respectively

exciting or inhibiting the cell membrane. The principal excitatory neurotransmitter

is glutamate, with two di�erent types of receptors: AMPA are responsible for rapid

transference of currents, whereas NMDA activates and deactivates the postsynaptic

membrane channels more slowly. For inhibitory synapses, the main neurotransmitter

is GABA, which also has two types of receptors: GABAA for fast transmission and

GABAB for slow. [2].

Electrical: neurons are directly connected through gap junctions, special channels

which allow electrical currents to move directly between neurons.
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Throughout this work, chemical synapses will be used.

As explained, synapses produce a membrane potential in the postynaptic neuron. The

neuron will generate a spike - or not. Neurons may be classi�ed in accordance to the

mechanisms through which an action potential is created:

Integrators: as Izhikevich states in [1], these neurons sum postsynaptic potentials

and compare them to a threshold voltage value; if the sum is below the threshold,

then the neuron is at rest, and it �res a spike when the membrane potential is above

the threshold, returning to rest afterwards.

Resonators: in contrast, these neurons do not �re an all-or-none spike, but rather,

they show subthreshold oscillations [1].

In 1952, Hodgkin and Huxley studied the ionic currents across the membrane of the

squid giant axon, and the propagation of action potentials in it, introducing a set of

variables that characterize the state of the system, and a set of equations that describe

the temporal evolution of said variables [3]. This description is that of a dynamical system,

so it can be concluded that neurons are in fact dynamical systems. When treating neurons

as dynamical systems, the state variables can be classi�ed, as Izhikevich writes [1], into

four classes:

i Membrane potential.

ii Excitation variables, which facilitate the generation of a spike.

iii Recovery variables. Once the neuron has spiked, these variables help it go back to

rest.

iv Adaptation variables, which in�uence spiking in the long term.

The �rst model that introduced dynamical equations for the state variables of the

neuron was that of Hodgkin and Huxley (1952) [3]. In a series of papers, they studied

the membrane of the squid giant axon, and concluded that it could be represented by an

electrical circuit, that can be seen in Figure 1a, where the membrane was characterized

as a capacitor, and the ionic channels were represented by a resistor and a voltage source,

which represents the equilibrium potential for each channel. All these elements were set in

a parallel con�guration, thus describing the voltage di�erence between the interior of the

membrane and the exterior. They then go onto proposing a model which would describe

the membrane potential, V , and the ionic channels activation and inactivation rates. The

activation rate for the sodium ionic channels is m, whereas h is the inactivation rate

for Na+ channels. Potassium ionic channels are modelled by activation rate n. The ion

channels are illustrated in Figure 1b, where the activation and inactivation gates can be

seen. Hodgkin and Huxley analysed the ionic conductances in the squid giant axon, and

attained a system of equations for the model known as the Hodgking-Huxley model.
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(a) (b)

Figure 1: (a) Hodgkin and Huxley described the membrane as an electrical circuit. (b) Ion channels.

Both �gures adapted from Sterratt et al. [4]

The system of equations proposed by Hodgkin and Huxley is [3]:

Cm
dV

dt
= ḡKn

4(EK − V ) + ḡNam
3h(ENa − V ) (1a)

+ḡm(Erest − V ) + I +
∑

Isyn

dn

dt
= αn(V )(1 − n) − βn(V )n (1b)

dm

dt
= αm(V )(1 −m) − βm(V )m (1c)

dh

dt
= αh(V )(1 − n) − βh(V )h (1d)

where Cm is the membrane potential, EK , ENa and Erest represent the equilibrium

potentials for potassium, sodium and leakage currents, respecively, I is a constant current

and
∑
Isyn is the sum of the synaptic currents received by the neuron. The activation

and inactivation rates depend upon the experimetally �tted expressions [3]:

αn(V ) = 0,01
10 − V

e10−V/10 − 1
(2a)

βn(V ) = 0,125e−V/80 (2b)

αm(V ) = 0,1
25 − V

e25−V/10 − 1
(2c)

βm(V ) = 4e−V/18 (2d)

αh(V ) = 0,07e−V/20 (2e)

βh(V ) =
1

e30−V/10 + 1
(2f)

This is a four-dimensional dynamical model.
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Subsequent studies introduced new conductance-based models. A few of these models

are: the Morris-Lecar model [5] is a two-dimensional model which describes the action

potential of the membrane with an activation rate for potassium channels, and a rapid

rate for calcium channels; the integrate and �re model [6] is a one-dimensional model, in

which the membrane potential increases until it reaches the threshold, when the neuron

�res a spike and is then reset; or the Izhikevich model [7], that reduces the four-dimensional

model of Hodgkin and Huxley to a two-dimensional one, with a resetting of the membrane

potential after it spikes. Each model may describe a di�erent type of neuron in terms of

their �ring patterns. These are some among many others of the �ring patterns into which

neurons may be classi�ed [6]: tonic spiking, when it can be induced to �re a train of

spikes; phasic spiking, when there is only one spike; tonic bursting, when it �res bursts of

spikes with a given perioidicity; or phasic bursting, when the neuron �res a single burst

of spikes. These, as well as some other �ring patterns, are illustrated in Figure 2.

Since these dynamical systems of equations generally do not have an analytical solution,

one must evaluate the implementation cost as well as the biological plausibility of the

model. In his work [6], Izhikevich explains that the neuronal model which should be used

depends upon the problem that is trying to be solved. For example, the Hodgkin-Huxley

model is biologically plausible, but very expensive to implement, whereas the integrate

and �re model is very e�cient, but lacks biological plausibility. It is important to know

that not all models can exhibit the same �ring patterns, therefore one must have a deep

understanding of the problem trying to solve, in order to wisely choose the most appropiate

model.

In this work, the connections between two and three neurons will be analysed. Because

the number of neurons that will be represented is low, the Hodgkin-Huxley model can

and will be used, as it is more biologically plausible than other models, and it is able to

be implemented without problems.

Figure 2: Examples of neuronal �ring patterns. Electronic version of the �gure and reproduction

permissions are freely available at www.izhikevich.com
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As well as classi�able in accordance to spike generation or temporal patterns, neurons

can be classi�ed by the response the membrane has to inputs. Neurons have three types

of excitabilities [8]:

i Type i excitability: the membrane can be induced to oscillate at an arbitrarily low

frequency.

ii Type ii excitability: there can only be oscillations above a non-zero frequency.

iii Type iii excitability: the neuron does not exhibit oscillations unless perturbed at high

frequencies, and even so may fail to show repeated oscillations, and only exhibit one.

As neurons are dynamical systems, it can be of interest to represent one dynamical

variable against another in a phase portrait, in order to see their trajectories and study

the dynamics of the system. Within this representation, one can �nd limit cycles, which

are closed trajectories in the phase space [1]. Limit cycles represent periodic solutions to

the dynamical system, that is, they are descriptions for self-sustained oscillators in the

phase space, and these cycles are stable to small perturbations. When the limit cycle is

perturbed, the oscillator will return to its original state, although it will do so with a

phase change [11]. An example of a limit cycle for the Morris-Lecar model can be seen in

Figure 3, shown in red; the black lines represent small perturbations that return to the

limit cycle.

Figure 3: A stable limit cycle for the Morris-Lecar model. Perturbations on the limit cycle return rapidly

to it. This is also seen in the voltage time series shown in the two corners. Figure extracted from Smeal

et al. [11].
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2. Phase response curve

Neurons, when described as dynamical systems in the conductance based models

explained earlier in this work, present self-sustained oscillatory patterns. Hence, when

a neuron receives a synaptic input, the original oscillation of said neuron is perturbed. In

this section, the synchronization of two di�erent neuronal circuit con�gurations will be

studied. In particular, the changes in the oscillation of the postsynaptic neuron will be

analysed.

When neurons interact with each other, their self-sustained periodic oscillations can

adjust due to the interaction, that is, they can reach a synchronized state [9]. As Smeal

et al. summarise in [11], various studies have shown that synchronization in the brain is

important for a normal physiological functions, but also leads to neural diseases, such as

Parkinson's disease, schizophrenia, autism or epilepsy. Achieving a better understanding

of neuron sychnronization, and what factors contribute to it, might lead to controlling it.

One of the most important tools to analyse the response of an oscillator when it is

subject to a perturbation is the phase response curve (PRC). A PRC is useful to measure

the e�ect that a precisely timed perturbation has on the cycle of an oscillator [10]. The

timing of the perturbation will have a huge impact on the variation of the cycle period.

This can be seen in Figure 4. In this example, Smeal et al. apply a perturbation to the

oscillator depicted in Figure 4a, and they do so at di�erent times in the cycle, as indicated

by the arrows. In this example, it can be seen in Figures 4b, 4c and 4d that the period

is shortened. Some other examples show, however, that the period of the oscillator can

also be lengthened. Therefore, the period T of a free running periodically spiking neuron

varies when the limit cycle is perturbed. The phase response curve represents this change,

measured as a function of the time of the perturbation t. Although PRC represents the

shifts in the phase of oscillation, these can be converted to time delays or advances. The

timing at which the oscillator is applied is measured relative to an event that occurs at

the same time in the cycle of the free running neuron [11]; this point is arbirtrary, and in

this work the timing is measured with respect to the peak of the membrane potential.

(a) (b) (c) (d)

Figure 4: Example of the change of a limit cycle when it is perturbed. Figure extracted from Smeal et

al. [11].
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The PRC is de�ned as follows [9]:

PRC(t) = tfreespike − tdisturbedspike (3)

where tfreespike is the time when the free neuron spikes, and tdisturbedspike is the time when the

disturbed neuron does so. If the disturbed neuron �res after it would if it were running free,

then the PRC(t) < 0, and so, the next spike is delayed. On the contrary, if PRC(t) > 0,

then the next spike is advanced, which means that the disturbed neuron �res before it

would without a perturbation. Some neurons will show time delays and advances in their

PRCs, whereas some others only show advances. This allows the following classi�cation

for phase response curves [10]:

i Type i, the phase only shows advances when the postsynaptic neuron is depolarized.

ii Type ii, the phase can either be advanced of delayed, depending on the timing of the

perturbation.

In Figure 5, the de�nition and types of PRCs are illustrated.

The shape of the PRC depends upon the shape of the stimulus, as well as on the

dynamics of the oscillator being perturbed. Ermentrout shows in his work [12] that the

types of PRC can be related to the di�erent classes of excitable membranes. This is the

case because of the mechanism by which the neuron spikes periodically. Type i excitable

membranes are associated with type i PRC, whereas neurons with type ii excitability

show type ii PRCs.

One of the biggest advantages of studying phase response curves is that it can be

assessed experimentally, which means that the theoretical predictions can be tested.

The dynamics of the neuronal components of the network are theoretically linked to

(a)

(b)

Figure 5: Phase response curve de�nition and properties. (a) De�nition of the PRC. (b) Neurons can

exhibit two types of phase response curves. Figure extracted from Canavier [10].
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the characteristics of the network's synchronization through the phase response curve,

so, via the PRC, the dynamics of the network can be related to neuron biophysics in a

manner that can be experimentally measurable. Smeal et al., in their review over PRCs

and synchronized networks [11] give an example of the experimental assessability of the

phase response curve. They explain the theoretical work carried out by Best and later

experimentaly veri�ed by Guttman et al., in which the PRC theory predicted that when

the squid giant action was periodically oscillating, a small perturbation in the form of a

current injection could extinguish the ongoing spiking oscillations.

2.1. Neuron motifs

In this work, the synchronization between two and three neurons were analysed, through

the numerical calculation of their PRCs. They were studied in two motifs: master-slave,

where two neurons are unidirectionally coupled, and master-slave-interneuron, where a

third neuron is added, acting as an inhibitory loop, found to play a role in the anticipated

response of some neuronal circuits in the brain [9]. These are further explained later.

The model chosen for the study of these networks is the Hodgkin-Huxley model, which

was presented in the introduction. This model consists of four di�erential equations as

written in the set of equations (1), which describe the membrane potential and the gating

variables for the ionic channels. This model presents a type ii phase response curve, since

it has a type ii excitable membrane.

2.1.1. Neuron model and synaptic coupling

The model that Hodgkin and Huxley proposed is characterized by equations (1a), (1b),

(1c) and (1d). In these equations, the membrane is described as an electrical circuit, in

which the membrane is characterized as a capacitor, and the ion channels as resistors in

series with a voltage source, which represents the equilibrium potential of each channel;

an implemented current I is also shown in the equations. For the numerical calculations

carried out here, the parameters for the set of equations (1) can be found in Table 1 [9].

Cm (µF) 9π ḡNa (mS) 1080π

I (pA) 280 ENa (mV) 115

ḡK (mS) 324π ḡm (mS) 2,7π

EK (mV) −12 Erest (mV) 10.6

Table 1: Parameters employed in the Hodgkin-Huxley model for numerical calculations.
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In the model, the neurons are coupled through chemical synapses, and it can be

excitatory or inhibitory. Depending on whether the synapse is excitatory or inhibitory, the

type of receptors in the postsynaptic neuron will be AMPA and GABA respectively. The

fraction of synaptic receptors, ri (i = A,G) for AMPA and GABA, in the postsynaptic

neuron is described by the equation [9]:

dri

dt
= [T ]αi(1 − ri) − βir

i (4)

where αi and βi are rate constants and [T ] is the concentration of neurotransmitters

in the synaptic cleft, which is a function of the presynaptic potential:

[T ](Vpre) =
Tmax

1 + e−(Vpre−Vp)/Kp
(5)

where Tmax = 1mM−1 is the maximum value of neurotransmitter concentration, Kp =

5mV gives the steepness of the sigmoid and Vp = 62mV sets the value at which the

function is half-activated. The concentration of neurotransmitters is not time dependent,

from which it is assumed to be an instantaneous function.

The synaptic current is given by:

I i = gir
i(Ei − V ) (6)

where V is the postynaptic potential, gi is the maximal conductance and Ei the

reversal potential. It should be noticed that the synaptic current is a function of both

the postsynaptic current, directly in the de�nition, and the presynaptic current, through

the fraction of bound neurotranmitters in the synaptic cleft. The synaptic current, thus,

couples both master and slave neurons together.

Throughout the numerical calculations carried out here, the synaptic coupling parameters

that were used are detailed in Table 2 [9], unless stated otherwise, as will be done in

the case of the master-slave motif. In that scenario, the maximal conductance for the

excitatory synapse will be varied to analyse the e�ect this has on the phase response

curve.

αA (mM−1ms−1) 1,1 EA (mV) 60

βA (ms−1) 0,19 EG (mV) −20

αG (mM−1ms−1) 5,0 gA (nS) 1

βG (ms−1) 0,30 gG (nS) 2

Table 2: Parameters used for the synaptic coupling
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(a) Master-Slave con�guration. (b) Master-Slave-Interneuron con�guration.

Figure 6: Two neuronal motifs employed in this work.

2.1.2. Two and three neuron motifs

For the purposes of the present work, two neuronal motifs will be studied:

i Master-slave: in this con�guration, two neurons are coupled unidirectionally. The

neuron motif can be seen in Figure 6a; here, the slave neuron is perturbed by the

master, which remains unperturbed.

ii Master-slave-interneuron: in this scheme, a third neuron is added to the previous

motif, which is shown in Figure 6b. Just like before, the master is unidirectionally

coupled to the slave, which is in turn coupled to an interneuron, now in a bidirectional

con�guration. The slave receives an inhibitory input from the inteneuron, and the

latter is perturbed by an excitatory synapse from the slave.

2.1.3. Master-Slave

In this work, the synchronization of the neurons is analysed throught the PRCs, in

order to predict the behaviour for square current (theoretical) inputs, and biologically

plausible synapses.

For this motif, di�erent numerical calculations were carried out. Firstly, the synapse

between the master neuron and the slave was substituted by a rectangular function of

height H and length L. A type ii phase response curve is expected, since the Hodgkin-

Huxley model has a type ii excitability [11]. Rectangular current pulses of di�erent

heights and lengths were used to perturb the limit cycle, and their PRCs obtained.

Since this cannot happen naturally in two coupled neurons, these results are a theoretical

prediction to study the behaviour of the slave neuron when pertubed. This calculation

was previously carried out by Matias in her thesis [9], and the PRCs compare exactly to

her work. Secondly, the phase response curve of a master-slave con�guration was found for

a biologially plausible synapse, as described in Section 2.1.1. The PRC was generated for

excitatory synapses and three di�erent maximal synaptic current conductances. In order

to obtain the PRC, the perturbations are applied at di�erent times of the limit cycle in

all cases.
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(a) (b)

Figure 7: (a) Rectangular pulses of di�erent heights perturb the slave neuron at various times. Top

�gure shows the membrane potential for the intensities applied in the middle �gure at those particular

times, in a colour coordinated manner. The black line in the top �gure represents free running neuron.

Bottom �gure zooms into the peak of membrane potential after the current is applied. (b) PRC for �xed

L = 2ms and varying height.

Rectangular current inputs with same length and di�erent heights

The �rst case studied was the phase response curve when rectangular input currents

with the same length, L = 2ms, but di�erent heights were applied to the limit cycle. In

Figure 7a, examples of the various currents with speci�c heights are illustrated: in the

middle �gure, the di�erent height input currents are shown perturbing the neuron at a

particular time, which results in the membrane potential of the slave neuron being either

advanced or delayed, depending on the timing of the perturbation. The phase shifts are

portrayed in the top �gure of 7a, that shows the membrane potential of the ditrubed

neurons, seen in colour, with respect to the black free running neuron. This delay or

advance can be more closely seen in the bottom �gure, as it shows a zoom of the peak of

action potential.

The phase response curve was computed for the various currents of same length and

distinct heights, the result of which is illustrated in Figure 7b. It is evident from this �gure

that the higher the amplitude of the current for the same length, the more delayed or

advanced the distrubed neuron will be with respect to the free running neuron. It is also

noteworthy that the disturbed neuron changes the synchronization regime for the same

perturbation time, progressing from delayed to advanced at precisely the same time.

As was expected, the phase response curve is a type ii PRC, since the model used for the

numerical implementation was the Hodgkin-Huxley model, which has type ii excitability.
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(a) (b)

Figure 8: (a) Rectangular pulses of di�erent lengths perturb the slave neuron at various times. Top �gure

shows the membrane potential for the intensities applied in the middle �gure at those particular times, in

a colour coordinated manner. Black line in the top �gure represents free running neuron. Bottom �gure

zooms into the peak of membrane potential after the current is applied. (b) PRC for �xed H = 30 pA

and varying length.

Rectangular current inputs with same height and di�erent lengths

As with the rectangular current with di�erent height for the same length, the phase

response curve was determined for a current of speci�c height, H = 30 pA, and di�erent

lengths. In Figure 8a, the di�erent current inputs are illustrated. In an equivalent manner,

the middle �gure represents the intensities of various heights, perturbing the slave neuron

at distinctive times, the membrane potential of which is depicted in the top �gure, being

delayed or advanced as the intensity disturbs the limit cycle. Shown in black is the free

running neuron. Like before, the bottom image portrays the peak of membrane potential

for the disturbed neurons.

Represented in Figure 8b is the phase response curve calculated for the currents of

varying durations. Analogously to the di�erent heights for the same length, the longer

the pulse the bigger the delay or advance in the disturbed neuron. However, in this

scenario, some dissimilarities appear with respect to the aforementioned situation. In

contrast with the previous case, the system changes dynamics at a di�erent time for each

of the lengths used to compute the PRC, which is also seen as the curve starts its delay

as the perturbation is further apart from the previous spike for the shorter pulses. Even

though it is noticeable that the longer current has a bigger phase response curve, the

shape remains the same for all lengths.

Just like before, the phase response curve can be identi�ed as a type ii PRC.
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(a) (b)

Figure 9: (a) Rectangular pulses equivalent to excitatory and inhibitory synapses. Top �gure shows

the membrane potential for the intensities applied in the middle �gure at those particular times. Bottom

�gure zooms into the peak of membrane potential after the current is applied. (b) PRC for excitatory

and inhibitory equivalent synapses.

Rectangular current inputs for positive and negative pulses

In this study, the excitatory and inhibotry synapses are substituted by a positive

and negative rectangular current, respectively. These pulses are of the same height and

length, with the exception of the sign. The length of the pulse is L = 2ms, and its height

is H = ±30 pA.

Shown in the top of Figure 10a are the membrane potentials of the neurons: seen

in colour are the disturbed neurons, and in black is the free neuron. To illustrate the

di�erences between the excitatory and inhibitory cases, in the example in the middle

�gure the plotted times of the perturbations are the same, to show that if the excitatory

input advances the spike, the inhibitory will delay it. From this representation it could be

predicted that the phase response curve for the inhibitory synapse would be of opposite

sign. The bottom �gure of Figure 10a ampli�es the area of the peak membrane potential.

As was done in the previous scenarios, the phase response curve was calculated. The

result for the PRC is represented in Figure 10b. It can be seen that, as expected, the phase

response curve is of opposite sign for the inhibitory pulse as the excitatory. However, it

is very clear that the inhibitory current is not a mere re�ection of the excitatory one, as

the maximum values of the curves are not identical. It is also noticeable that the shape of

the PRC is similar, but not an exact opposite. The inhibitory pulse creates a bigger delay

than the excitatory one, and this disparity in phase shifts is also obvious in the advanced

spikes, as the excitatory current advances the spikes to a greater di�erence with respect

to the free running neuron.
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(a) (b)

Figure 10: (a) Biologically plausible synaptic current, for gA = 1nS. Illustrated in the top picture, the

membrane potential for a free running neuron is shown in black; coloured lines show the membrane

potential for disturbed neurons, perturbed by synaptic currents represented in the middle �gure,

determined using equation (6). Bottom picture represents the fraction of bound neurotransmitters. (b)

Phase response curve for biologically plausible excitatory synapse.

Biologically plausible synaptic current inputs

After the study of the phase response curve for simple theoretical rectangular pulses,

a more biologically plausible synapses is computed, using equations (4) through to (6).

For this section, only an excitatory synapse was used. The synaptic current is de�ned by

equation (6), and here three di�erent maximal synaptic conductances will be employed.

To begin with, an excitatory synaptic current with the parameters introduced in Table

2 is used to perturb a slave neuron at di�erent times. An example of this is portrayed in

Figure 10a. Synaptic current is represented in the middle �gure, which shows two di�erent

currents for di�erent times. It is obvious from this image that the currents do not remain

the same, as they are a funciton of the postynaptic current (top of �gure), as well as the

fraction of bound neurotransmitters (shown at the bottom of the �gure), which causes it

to vary for each instance.

Calculating the time di�erences between spikes as a function of the time at which the

neuron is disturbed, the phase response curve was obtained for the synaptic current. This

result can be seen in Figure 10b. Having used an excitatory synapse for a Hodgkin-Huxley

model, a type ii phase response curve is attained, which presents delays for perturbations

that are close to the peak of the previous, undisturbed membrane potential, and shows

advances for currents that are further apart from said peak. This result can be compared

to that obtained using rectangular currents. In both cases, for excitatory synapses the

behaviour of the perturbed spike is the same, as it is delayed for perturbations near the
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(a) (b)

Figure 11: (a) Biologically plausible synaptic current, for gA = 3nS. Illustrated in the top picture, the

membrane potential for a free running neuron is shown in black; coloured lines show the membrane

potential for disturbed neurons, perturbed by synaptic currents represented in the middle �gure,

determined using equation (6). Bottom picture represents the fraction of bound neurotransmitters. (b)

Phase response curve for biologically plausible excitatory synapse.

previous spike, and advanced for the latter ones. They are also alike in the sense that the

delays of the perturbed neuron with respect to the free running one are less in magnitude

than the advances. However, for the rectangular currents, the neuron gets more delayed

than for the synaptic current. Since the synaptic current depends on the voltage, it does

not remain the same for each instance, leading to the disparity between PRCs. However,

even though the results are not exact, the overall behaviour for the phase response cuvre

of the biologically plausible current is comparable to that obtained in the more theoretical

rectangular pulse.

The previous analysis was carried out for an excitatory synapse with a maximal

conductance gA = 1nS for the synaptic current. Subsequently, it is interesting to analyse

the e�ect of a varying maximal conductance for the current. Used in this case is a

conductance of gA = 3nS; the rest of the parameters needed to obtain the synaptic current

are those in Table 2. In Figure 11a, the top �gure represents the membrane potential for

the free running neuron, shown in black, and the potentials for the disturbed neurons,

which are perturbed by the synaptic currents portrayed in the middle �gure. Like in the

previous case, the bottom �gure shows the fraction of bound neurotransmitters. In the

middle �gure it is also obvious that the synaptic current behaves di�erently at di�erent

times, due to its dependance on the postsynaptic potential.

For this case, the phase response curve is represented in green Figure 11b, along

with the previously obtained PRC for the synaptic current corresponding to maximal

conductance gA = 1nS seen in orange. In both cases, the phase response curve shows a
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Figure 12: Death by delay. The perturbed neuron stops spiking for a range of timing of perturbation

of the neuronal limit cycle, as seen for the cases of the blue and red currents in the bottom picture, with

neurotransmitter fraction of the same colours in the middle �gure, which do not result in a membrane

spike, as observed in the top of the �gure.

type ii behaviour, and the aforementioned properties are mantained. As it was expected,

the PRC for the current with a greater conductance has bigger delays and advances. This

compares well to the previously obtained results for the rectangular currents. The change

in synchornization regime occurs at the same time, equivalently to what was achieved

in the case for rectangular currents of the same lenght and di�erent heights. Thus, the

theoretical results for the rectangular pulses compare to those obtained for a biologically

plausible synapes, even as the shape of the phase response curve varies, as it preserves

the properties.

To �nalize the studies for the master-slave motif, a third maximal conductance is used,

yielding results that were not initially expected. For this case, the synaptic current was

computed for a maximal conductance of gA = 10nS. As has been done for all previous

scenarios, the neuron was perturbed with the synaptic current at di�erent times of its

limit cycle. In the present context, however, the membrane potential did not respond

in the same way as before. This result can be seen in Figure 12. In the middle image,

the neurotransmitter fraction is depicted, and it can be seen that this remains constant

throughout the cycle. The synaptic current, represented in the bottom �gure, does not

have the same behaviour. As occured throughout the master-slave analysis, the current

changes due to its dependance on the postsynaptic voltage. However, in contrast to the

two previous cases, for a range of timing of perturbation, the neuron does not exhibit a

spike in its membrane potential, as seen in the top of Figure 12. For the red and blue
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(a) (b) (c)

Figure 13: Phase response curves for the MSI motif with biologically plausible synaptic current. (a)

Excitatory and inhibitory synapse perturbing the neuron at the same time. (b) Inhibitory current arrives

at the neuron before the excitatory does. (c) Excitatory synapse disturbs the slave neuron before the

inhibitory.

intensities, the voltage potential fails to spike, showing only subthreshold oscillations. For

the earlier perturbation seen in pink, this is not the case, as it �res a delayed spike. For

later perturbations, the membrane potential shows spikes again. For a range in the middle,

however, the neuron does not spike.

Strogatz summarises in [13] the work carried out by Reddy et al. [14], in which they

study the e�ects of delay on a limit cycle in the case of coupled oscillators. In their work,

they show that for a set of values for the coupling strength between the oscillators and

the delay time, the perturbed limit cycle cannot be induced to oscillate over a threshold.

Strogatz names this lack of oscillation �death by delay�. From the results seen in Figure

12, the slave neuron shows death by delay for an excitatory synaptic current with maximal

conductance gA = 10nS.

2.1.4. Master-Slave-Interneuron

For this motif, in contrast with the master-slave case, the phase response curve was

only calculated for a biologically plausible synapse. In this instance, the timing of the

excitatory and inhibitory perturbations can be distinct, which will result in a di�erent

synaptic current. Three situations were studied: �rst, when both excitatory and inhibitory

neurotransmitter receptors are activated at the same time; second, when the excitatory

receptors are activated before the inhibitory, and last, when the inhibitory receptors are

activated before the excitatory. As in the previous master-slave motif, the phase response

curve was computed for the three di�erent cases. The results are shown in Figure 13. In this

image, it can be seen that the PRC is greatly dependant on the timing of the stimulus, as

none of the cases are alike. Represented in green in Figure 13a, the neuron was perturbed

with both stimuli arriving at the same time; comparing the PRC with that obtained for

an inhibitory synapse, it can be seen that they have the same behaviour, from which can
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be deduced that the inhibitory synapse has a greater importance, due to the paramaters

used in this case, as the maximal conductance for the inhibitory synapse is greater, as

is the fraction of bound neurotransmitters, whereas the equilibrium potential contributes

to making the inhibitory synaptic current more negative, in contrast to the excitatory

synapse. Depicted in pink in Figure 13b, the inhibitory stimulus arrived at the neuron

before the excitatory did. As a result, the shape of the PRC enhances the inhibitory

behaviour. Finally, shown in orange in Figure 13c, the excitatory current perturbs the

neuron before the inhibitory does, hence completely changing the behaviour of the phase

response curve, showing a PRC of the same shape as those for an excitatory input as seen

both in the cases of rectangular pulses and the excitatory biologically plausible synapse.

3. Discussion

Throughout this work, the phase response curves for di�erent current inputs were

studied, for two neuronal circuits: the master-slave motif, and the master-slave-interneuron.

The relevance of analysing the PRCs for di�erent inputs is that it is an experimentally

assessable tool that explains the synchronization of dynamical systems.

Firstly, the master-slave neuron motif was studied. In this case, the phase response

curves for both rectangular currents, that are theoretical, and biologically plausible synaptic

currents were computed. The prediction from the theoretical rectangular currents is that,

for excitatory (positive) perturbations that occur close to the previous, unperturbed spike

of the membrane potential, the next spike will be delayed, and as the timing of the

perturbation advances, the next spike becomes advanced. This result was inverse for the

inhibitory (negative) perturbations, although it was not a re�ection of the excitatory

perturbation. For a biologically plausible current, only the excitatory case was evaluated,

showing the same behaviour as the theoretical prediction. However, for a maximal conductance

of gA = 10nS, the membrane potential showed death by delay for a range of times of

perturbation.

The master-slave-interneuron was later analysed. The phase response curves exhibit

both excitatory or inhibitory behaviours, depending on the timing of the perturbation.

The radical changes observed in the PRCs con�rm that the shape of the phase response

curve depends on the shape of the stimulus, as well as their timing.

These are, however, preliminary results that are in need of further discussion, as

understanding the dynamics of biologically plausible neuronal systems is not an easy

task. Additional studies, such as the calculation of the phase response curves for the

master-slave-interneuron circuit with rectangular current inputs would add more information

about the theoretical predicion of the behaviour of the motif.

Additionally, the same study could be carried out for a model that exhibits type i phase
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response curve, that is, it has type i membrane excitability. As the mechanisms through

which both types of excitabilities achieve spiking is quite di�erent, the perturbation of

the limit cycle in a type i neuron would show a di�erent behaviour.
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