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Abstract
We investigate the electronic confinement in bilayer graphene by topological loops of different
shapes. These loops are created by lateral gates acting via gap inversion on the two graphene sheets.
For large-area loops the spectrum is well described by a quantization rule depending only on the
loop perimeter. For small sizes, the spectrum depends on the loop shape. We find that zero-energy
states exhibit a characteristic pattern that strongly depends on the spatial symmetry. We show this
by considering loops of higher to lower symmetry (circle, square, rectangle and irregular polygon).
Interestingly, magnetic field causes valley splittings of the states, an asymmetry between energy
reversal states, flux periodicities and the emergence of persistent currents.

1. Introduction

One of the most fundamental predictions of Quantum Mechanics is the existence of confined or bound
states which are eigenstates of the Hamiltonian describing a particular system [1]. It is well known that the
Schrödinger equation with a spatially dependent potential yields in many cases bound eigenstates located
around the absolute potential minima. This potential binding mechanism around minima is crucial in
many natural physical systems like, e.g. electrons in atoms and molecules [2]; and it is also behind the
formation of artificial bound states by potential gating with microelectrodes, as in semiconductor quantum
dots [3]. In bilayer graphene (BLG) with Bernal stacking, the material we consider in this work, a similar
potential confinement mechanism exists but it is related to the potential difference Va applied to split dual
gates on the two graphene sheets; electrons are bound to the regions where Va is lowest. These regions of
lowest Va can take different shapes, such as circular dots and rings for instance, and they have been
intensively studied both theoretically and experimentally [4–17]. The technological interest of BLG
nanostructures is twofold. First, they could serve as scalable spin qubits with long decoherence times due to
the weak spin–orbit interaction in graphene [18–20]. Second, in combination with magnetic fields they
could be utilized for valleytronic operations thanks to the manipulation of the valley degree of freedom
[21–23].

The possibility of an even more robust type of confinement in BLG was suggested in reference [24]. This
is a qualitatively different confinement, of a topological character, emerging near the domain wall that
separates two regions where Va changes sign. The confined states are intrinsically 1D-like, with a
characteristic transverse decay length, and they propagate along the domain wall with locked relative
orientations of momentum and valley pseudospin. In the absence of valley mixing potentials states for the K
and K′ valleys propagate along the wall, without backscattering, showing opposite chiralities. This property
is similar to the helical states within the quantum spin Hall effect [25–27] if we replace spin with the valley
pseudospin of graphene.

Now, let us suppose that the external gates are arranged in such a way that the domain wall closes into
itself. A schematic representation is shown in figure 1(a). Then, a loop forms supporting electronic bound
states [28] and the following question naturally arises. What is the effect of different loop shapes onto the
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Figure 1. (a) Scheme of a topological loop showing the BLG sheets (gray) and lateral gates with the applied gate potentials ±Va

(orange and blue, respectively). Two identical lower gates, hidden behind the lower graphene sheet, have the opposite potentials
of the corresponding top gates. The white 1D region between orange and blue gates hosts the topological loop state on the
graphene sheets, with counterpropagation for the two valleys. A red arrow is indicating the circulation for only one of the two
valleys. (b)–(e) Loop shapes considered in this work, from highest to lowest symmetry: circle, square, rectangle and irregular
polygon.

energy spectrum of these bound states? Being 1D-like, topologically confined sates in BLG are expected to
essentially depend on the loop perimeter unlike the trivial potential confinement, which depends both on
the surface and the shape of the confining region. Nevertheless, it is important to notice that the
domain-wall states depicted with a red line in figure 1(a) are in reality quasi-1D with a finite spatial width.
Therefore, the discrete energy spectrum will be in general a function of the system’s geometrical
symmetries, the region aspect ratio, etc. Below, we present a detailed investigation for topological loops of
different shapes and symmetries. First, we show with the aid of an exactly solvable model that the energy
spectrum is uniquely determined by the loop perimeter provided that the system size is large. Yet, for
smaller loops finite size effects become important and the spectrum depends on the particular geometrical
structure. This dependence is better seen in the sequence of zero energy crossing and anticrossings as the
perimeter increases.

In presence of a magnetic field B, the dispersion is affected by the flux piercing the topological loop. This
creates an energy splitting for the two valleys and an asymmetry with respect to energy inversion (E →−E)
in the spectra as a function of perimeter. The B-dependence of the spectra with a fixed perimeter and shape
is characterized by magnetic periodicities of Aharonov–Bohm type. Therefore, the loops host persistent
currents at finite fields that, similarly to the B = 0 spectra, exhibit geometry dependent features in the small
size limit, showing that currents would serve as an excellent tool to probe topologically confined states in
BLG nanostructures.

2. Theory

2.1. A quantum perimeter model (QPM)
An analytic model of topological loops in BLG can be devised utilizing the results of reference [24] for a
straight domain wall with an abrupt transition +Va to −Va (a kink). The analytic relations between linear
momentum p along the kink and energy E of the two topological branches, corresponding to the two valleys
(K, K′), were given in reference [24] as p = f1,2(E), with

f1,2(E) =
−E ± Va√

2(
∓E + Va

√
2
)1/2

√
t

vF
, (1)

where the Fermi velocity �vF = 660 meV nm and the interlayer coupling t = 380 meV are BLG intrinsic
parameters.

In a closed loop of perimeter P we can assume that the tangent momentum p is quantized, such that an
integer number of wavelengths must fit into P ,

p → pn ≡ �
2πn

P , n = ±1,±2, . . . , (2)
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where negative n’s represent negative momenta (i.e. opposite propagation) and the perimeter quantization
in terms of wavelength λ reads P = |n|λ. Since the Berry phase in BLG is 2π [29], its effect is already
contained in the integer n’s of equation (2) (see appendix A for an explicit check). We can also add a
magnetic field, represented by a vector potential �A, and write the circulation integral∫

P
dl

(
pn + eAt

)
= f1,2(E)

∫
P

dl, (3)

where At is the component of the vector potential tangent to the kink. Noticing that
∫
Pdl = P and∫

P At dl = SB ≡ Φ (S, B and Φ being the loop surface, the perpendicular magnetic field and the magnetic
flux, respectively) we find an implicit condition from which one can derive the bound state energy E for a
given loop perimeter, magnetic flux and principal quantum number n:

f1,2(E) =
2π�

P

(
Φ

Φ0
+ n

)
, (4)

where Φ0 = h/e is the flux quantum.
Equation (4) is our QPM for bound states in BLG topological loops. As anticipated, when Φ = 0 the

relation depends only on the perimeter and is totally independent of the loop geometry. At finite fields,
however, the bound-state energies depend on the loop surface through the Aharonov–Bohm flux ratio
Φ/Φ0. We expect the QPM to be reliable for large enough loops, when different parts of the loop do not
interfere. In small loops, the traversal extension of the topological states becomes comparable to the
distances inside the loop and the QPM breaks down. Below, we investigate deviations from the QPM using
an exact approach for BLG within the continuum limit.

2.2. A quantum 2D model (Q2DM)
The low-energy Hamiltonian describing the states that are formed in two-dimensional (2D) BLG
nanostructures for energies near the Dirac points reads [30, 31]

H = vF

(
px − �

y

2l2z

)
τzσx + vF

(
py + �

x

2l2z

)
σy +

t

2

(
λxσx + λyσy

)
+ Va(x, y)λz , (5)

where σx,y,z, τ x,y,z and λx,y,z are Pauli matrices for the sublattice, valley and layer pseudo spins, respectively. A
topological loop forms from a space dependent function Va(x, y) that, as sketched in figure 1(a), takes the
constant values +Va (−Va) outside (inside) the loop. In our numerical simulations, we consider a smooth
spatial transition with a diffusivity [32] s = 12.5 nm to mimic a realistic experiment [33, 34]. Details of how
we model the closed loops of different shapes are given in appendix A. Finally, the perpendicular field
strength B is included in the magnetic length lz =

√
�/eB.

We numerically look for the eigenstates of the Hamiltonian given by equation (5) using finite difference
discretization of the xy plane in a square grid [35]. The spurious solutions due to Fermion doubling
[36–38] have been filtered out as in reference [32] by coarse graining the wave functions. Our method can
handle any symmetry of the loop, in contrast to radial grids which are of smaller dimension and more
efficient computationally, but can only describe radially symmetric structures by construction [7]. In all the
cases treated below we have checked that good convergence with the grid size is reached.

The Hamiltonian equation (5) fulfills a chiral symmetry given by operator C = σxτxλy relating
eigenstates of opposite energies C−1HC = −H with C2 = 1 and C−1 = C. In absence of magnetic field it also
fulfills time reversal symmetry Θ = iτyK, with K representing complex conjugation, giving Θ−1HΘ = H
with Θ2 = −1 and Θ−1 = −Θ. Notice that the presence of valley pseudospin yields Θ2 = −1, which is
similar to the result for time reversal inversion of a spin 1/2 system. Differently to C-symmetry, the result
Θ−1HΘ = H implies a relation between states of the same energy. That is, if |a〉 is an energy eigenstate, then
Θ|a〉 and C|a〉 are energy eigenstates of the same and opposite energies, respectively. We stress that both C
and Θ are valley flip symmetry transformations due to the τ x,y Pauli matrices.

3. Results

Figure 2 compares the bound state energies in the analytical (QPM) and numerical (Q2DM) approaches as
a function of the loop perimeter when the structure is a circle. Qualitatively, both approaches nicely agree.
At zero energy and zero field, equation (4) from the QPM predicts a sequence of uniformly spaced branch
crossings, with spacing given by the zero-energy wavelength

λ0 = 23/4 2π�vF√
Vat

, (6)
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Figure 2. QPM (a) and Q2DM (b) energy spectrum for a circle as a function of its perimeter at zero magnetic field. Parameters:
wall potential Va = 10 meV and smoothness s = 12.5 nm.

Figure 3. Q2DM energy spectra as a function of perimeter for circle (a), square (b), rectangle with aspect ratio Ly = Lx/2
(c) and irregular polygon (d). Parameters as in figure 2.

which for Va = 10 meV yields λ0 	 113 nm. We then find a qualitatively good correspondence with the
zero energy crossings obtained numerically in the Q2DM. Physically, in a ring each branch corresponds to
an angular momentum Lz ≡ xpy − ypx and, therefore, can produce crossings with additional branches of
different angular momenta. For energies departing from zero, the main difference between panels (a) and
(b) of figure 2 is that the energy branches are more densely spaced in Q2DM than QPM. This difference can
be attributed to the small diffusivity s = 12.5 nm used in the QD2M. A smoother 1D kink is known to
reduce the spacing of energy branches [32, 39].

In figure 3 we show the Q2DM energy spectra for different loop shapes as a function of their perimeters.
Remarkably, the spectrum for noncircular loops show anticrossings of the branches. The square (b) shows
an alternation of zero energy crossings and anticrossings as the perimeter increases. Both the rectangle (c)
and the irregular polygon (d) show zero energy anticrossings in all cases, although the size of the
anticrossing gap is not uniform. There is a general tendency for all shapes to decrease the anticrossing gaps
for large perimeter, making the spectra shape independent in this limit.

The fact that, in addition to the circle, only the square shows crossings for some branches can be
understood as a symmetry consequence. Inspired by the QPM, the branch crossing is possible in a square
when, simultaneously, two conditions are fulfilled{P = n1λ0,

eik0Lx = ±i ⇒ P = (2n2 + 1)λ0,
n1, n2 ∈ N, (7)

where k0 = 2π/λ0 is the mode wavenumber. Only with n1 odd the crossing is then possible, as indeed
obtained in figure 3(b). The second condition in equation (7) corresponds to the requirement that a
translation along the perimeter by the length of a side changes the state in a ±i phase, which occurs when
the total number of wavelengths to distribute in the four square sides is odd n1 = 2n2 + 1. In a rectangle
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Figure 4. Same as figure 2 with a finite magnetic field. Parameters: wall potential Va = 10 meV, smoothness s = 12.5 nm and
magnetic field B = 0.5 T.

Figure 5. Same as figure 3 with a finite magnetic field B = 0.5 T. Parameters as in figure 4.

Figure 6. Spectrum as a function of magnetic field for a square loop of a fixed perimeter in QPM (a) and Q2DM
(b). Parameters: wall potential Va = 10 meV, smoothness s = 12.5 nm and perimeter P = 500 nm.

one should replace Lx by Lx + Ly in this second condition, which then becomes incompatible with the first
one and no crossing is therefore allowed. For the irregular shape (d), the lack of any symmetry is
responsible for the absence of crossings in the spectrum.

We discuss next the results in presence of a magnetic field B. Figure 4 compares the analytic and
numeric results for a circular loop when B = 0.5 T. The magnetic field breaks the valley degeneracy of the
loop eigenmodes, yielding asymmetric spectra with respect to energy inversion. We remark that figure 4
shows the results for a given valley. The results for the opposite valley, shown in appendix B, are shifted in
the opposite direction restoring the symmetry of the spectrum for both energy and valley inversion
(C symmetry). There is again a good qualitative agreement between QPM and Q2DM, the most noticeable
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Figure 7. Persistent current J1 (thick line, left scale) and energy E1 (thin line, right scale) of the lowest positive state as a function
of the magnetic field for a fixed perimeter loop and the different shapes indicated in each panel. Parameters as in figure 6.

difference being the denser bunching of the energy branches within Q2DM, as in the B = 0 cases discussed
above.

In figure 5 we show the results of the 2D model at finite magnetic field for the different shapes. The
field-induced asymmetry is similar when the geometrical structure changes. Branch anticrossings are
present for nonsymmetric shapes, although they are not centered at zero energy but shifted vertically.
Similarly to B = 0 (cf figure 3), we find that with an increase of the perimeter the shape-dependent features
of the spectrum are washed out.

As a function of magnetic field, for a fixed loop dimension and shape, the loop spectrum shows a
periodic behavior that is reminiscent of the Aharonov–Bohm effect. Figure 6 shows the result for a square
in the QPM and Q2DM, both in good qualitative agreement. The energy branches come in doublets,
originating from the two kink branches f1,2 given by equation (1). The results in figure 6 are in general
asymmetric with respect to energy inversion, in the same way as for the results as a function of perimeter
(figure 5); the energy inversion symmetry being fulfilled at B = 0 only. For different shapes the results show
a similar periodicity, only that the field spacings between branch doublets must be scaled by the enclosed
flux Φ.

As with previous figures, the results of figure 6 are for a single valley; the energy branches for the
reversed valley having the exactly opposite slope, as the chiral symmetry dictates. The magnetic field slope
of the branches is clearly indicating that the loop sustains persistent currents in finite fields, as discussed
already for trivial and topological circular rings in references [28] and [40], respectively. Hence, we
investigate the shape dependence of the persistent current in topological loops as a possible probe of the
geometric effects on topologically confined states. For definiteness, we focus on the current associated to the
lowest positive-energy quasiparticle of the spectrum E1 from the derivative

J1 =
∂E1

∂B
. (8)

The persistent current J1 for the different shapes is shown in figure 7 for a fixed perimeter of 500 nm.
Due to the aforementioned valley and energy inversion symmetry, the persistent current has an odd
symmetry with respect to field inversion, implying a vanishing value at zero field. The current is

6
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characterized by a sequence of alternating plateaus of almost constant values. This is an effect of the nearly
linear dispersion of the energy levels with magnetic field. Positive and negative plateaus correspond to
persistent currents of opposite valleys, circulating with opposed chiralities. For very large perimeters the
QPM predicts a B-dependence of the persistent current only through the flux Φ. Therefore, the shape
dependence can be scaled by the loop surface. However, in smaller loops the Q2DM yields a nontrivial
shape dependence. Along the sequence from high symmetry ((a), circle) to low symmetry ((b) square,
c rectangle and d irregular shapes) the behavior looks qualitatively similar, but the plateau lengths are
reduced due to the increased number of field transitions. This is also expected since the flux Φ is reduced
for the deformed loops. Therefore, measuring the persistent current yields valuable information on the
geometrical structure of the loop.

4. Conclusions

We have investigated the confined states in topological loops built in BLG. We have devised an analytical
model, the QPM, based on the infinite straight kink, that provides the wavelength quantization along the
loop perimeter. In addition, a full Q2DM, valid at low energies, has been numerically solved in order to
ascertain the validity of the analytical model. A general good agreement between both models is found. For
large sizes, the energy spectra are almost insensitive to the loop shape, as expected from QPM. For small
sizes, we have found that Q2DM reflects shape dependence in the emergence of zero-energy crossings for
circles, alternating crossings-anticrossings for squares, and only anticrossings for other more irregular
structures. The magnetic field introduces energy-inversion asymmetries of the spectrum for a single valley
and Aharonov–Bohm periodicities. Shape-dependent anticrossings in small loops are also present with
magnetic fields. Finally, we have found that persistent currents are sensitive to shape-dependent features in
presence of magnetic fields, which makes electric currents a useful tool to look into bound states in
topological systems.

Overall, our results are helpful for tailoring potential structures, finding the optimal geometry for
possible applications in quantum computation with topological qubits or for valleytronic devices. Since
there could be deviations from the intended symmetry due to fabrication limitations, our study emphasizes
the importance of taking into account emerging spatial asymmetries for a careful characterization of the
underlying physical system.
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Appendix A. Modeling

The Q2DM low energy Hamiltonian, equation (5), requires a specific spatial dependence of the asymmetric
potential Va(x, y). This appendix contains the details of the modeling of different loop shapes with Va(x, y)
smooth profiles parameterized with a diffusivity s. The circle is described by a simple combination of
logistic functions in the radial coordinate r =

√
x2 + y2,

V (cir)
a (r) = V (in)

a F(r;R0, s) + V (out)
a (1 −F(r;R0, s)) , (A1)

where V (in,out)
a are the constant values of asymmetric potential inside/outside of the loop and the logistic

function reads

F(r;R0, s) =
1

1 + exp[(r − R0)/s]
. (A2)
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Figure 8. Energy eigenvalues of circular loops as a function of perimeter for different diffusivities and magnetic fields as
indicated in each panel. Small symbols (blue) and open circles (red) correspond, respectively, to QPM and Q2DM. Notice that
the analytic model exactly reproduces the low-energy numerical results only in the limit of sharp potentials (b) and (d).

To describe smooth square and rectangle shapes we first introduce the ranges of the Cartesian coordinates
x ∈ [xa, xb], y ∈ [ya, yb] representing the loop inner area and then use a similar smooth parametrization in
each Cartesian direction. Namely,

V (squ,rect)
a (r) = V (in)

a F2D(x, y) + V (out)
a

(
1 −F2D(x, y)

)
, (A3)

where

F2D(x, y) = (F(x; xb, s) −F(x; xa, s))
(
F(y; yb, s) −F(y; ya, s)

)
. (A4)

Finally, for the irregular shape we use the same modeling of equation (A3) but with the modification that yb

is no longer constant but the following piecewise function of x

yb(x) =

{
0, x < 0,

xyb/xb, x > 0.
(A5)

Notice that we assume centered positions of the loop, with xa,b = ∓Lx/2 and ya,b = ∓Ly/2. For
completeness, the perimeters for the different shapes are Pcir = 2πR0, Psqu = 4Lx, Prect = 2(Lx + Ly),

Pirr =
3
2 (Lx + Ly) + 1

2

√
L2

x + L2
y .

The QPM analytic model of section 2.1 is based on the energies of a sharp straight kink [24]. Therefore,
we expect an agreement between QPM and Q2DM in the limit of small values of s. Such comparison is
explicitly made in figure 8 for circles with 6 and 1 nm diffusivities. Panels b and d of figure 8 indeed show
the expected agreement for s = 1 nm and magnetic fields of 0 and 0.5 Teslas. On the other hand, the 6 nm
results (figures 8(a) and (c)) show increasing deviations toward the low perimeter and large energy
directions. We also stress here that the QPM-Q2DM precise correspondence of figures 8(b) and (d)
confirms the absence of any Berry-phase deviation from integer n’s in the quantization rule given by
equation (4).

Appendix B. Valley reversal

To better illustrate the relation between the different valleys in presence of a magnetic field, figure 9 shows
the opposite-valley results with respect to figure 4. Due to chiral symmetry C eigenstates of reversed valleys
have exactly sign-reversed energies.
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Figure 9. Same results of figure 4 but for the opposite valley.
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