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Abstract

The mainmotivation behind the quantitative study of phylogenetic tree shapes is the
belief that they reflect properties of the evolutionary processes that have derived

them. The contribution of our research is the addition, to the existing set of quantitative
techniques in this field, of two new balance indices, as well as the proof of some results
concerning two old ones.

The minimum value of the Colless index, as well as the trees attaining it, have been
unknown ever since the introduction of this index in 1982. We solve this problem by
providing a full characterization of these trees and closed formulæ for the minimum
value of the Colless index. We also introduce a new balance index for bifurcating trees,
theQuadratic Colless index, defined as the sum of the squares, not the absolute values,
of the difference in the number of leaves of the subtrees rooted at each internal node of
a given tree. This new measure happens to be easier to manipulate, and we have proved
that the maximally balanced tree and the caterpillar are exactly the trees attaining its
minimum and maximum values, respectively. We also show that it has better statistical
properties than those of the original Colless index, and we have been able to compute
its expected value and variance under both the Yule and Uniform models.

In his 1972 paper on tree balance, Sackin proposed the use of the variation of the
leaves’ depths as a measure of the balance of a tree. Although somewhat popular in the
decades of 1970 and 1980, this measure was never thoroughly studied and is now almost
completely forgotten. We study some of its properties, characterizing the trees attaining
its maximum value as being the caterpillars, and providing a quasi-linear algorithm to
compute the bifurcating trees attaining its minimum value. Nevertheless, we also show
that these are almost never maximally balanced. We also provide closed formulæ for its
expected value under the Uniform and Yule models, as well as for the variance of the
Sackin and Cophenetic indices and the Total Area under the Uniform model.

In the last of the central chapters of this memoir we introduce a new balance index
for multifurcating trees: theQuartet index. We find the multifurcating and bifurcating
trees attaining its extreme values: exactly the stars and caterpillars in the multifurcating
case, and the maximally balanced trees and the caterpillars in the bifurcating case. We
also give a recurrence to compute its maximum value for bifurcating trees. Thus, we
prove that its range of values is the largest among the balance indices existing in the
literature. Furthermore, we give its expected value and variance under both the β

and α-γ probabilistic models for phylogenetic trees. To our knowledge, this is the
first shape index for phylogenetic trees whose first moments under the α-γ-model are
known. We end this chapter by pointing out that this index can be easily generalized
to other families of directed graphs and still preserve its good statistical properties.
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Resumen

La principal motivación tras el estudio cuantitativo de las formas subyacentes a los
árboles filogenéticos es la creencia de que reflejan propiedades de los procesos evo-

lutivos que los han derivado. La contribución de nuestra investigación es la adición,
al conjunto de técnicas cuantitativas existentes, de dos nuevos índices de equilibrio,
además de probar algunos resultados sobre dos antiguos índices de equilibrio.

El valor mínimo del índice de Colless, junto con los árboles que lo alcanzan, han
sido desconocidos desde la introducción de éste en 1982. Nosotros resolvemos este prob-
lema, presentando una caracterización completa de dichos árboles, así como fórmulas
cerradas para calcular su valor mínimo. Además, presentamos un nuevo índice de equi-
librio para árboles binarios, el índice de Colless Cuadrático, definido como la suma de
los cuadrados, y no de los valores absolutos, de la diferencia entre los números de hojas
de los subárboles enraizados en cada nodo interno de un árbol dado. Esta nueva medida
resulta sermás fácil demanipular, y hemos demostrado que el árbol máxime equilibrado
y el árbol oruga son exactamente los árboles que alcanzan sus valores mínimo y máx-
imo, respectivamente. También probamos que tiene mejores propiedades estadísticas,
y calculamos su esperanza y varianza bajo los modelos de Yule y Uniforme.

En su artículo fundacional de 1972, Sackin propuso el uso de la variación de la pro-
fundidad de las hojas como medida del equilibrio de un árbol. Aunque esta medida fue
más o menos popular en las décadas de 1970 y 1980, nunca se estudió en profundidad
y ha sido casi completamente olvidada. Estudiamos algunas de sus propiedades, carac-
terizando los árboles alcanzando su valor máximo como los árboles oruga, y presen-
tando un algoritmo casi-lineal para construir aquellos que alcanzan su valor mínimo.
Sin embargo, también demostramos que estos últimos casi nunca son máxime equi-
librados. Acabamos el capítulo proporcionando fórmulas cerradas para su esperanza
bajo los modelos de Yule y Uniforme, además de la varianza de los índices de Sackin y
Cofenético y el Área Total bajo el modelo Uniforme.

En el último de los capítulos centrales de esta memoria introducimos un nuevo
índice de equilibrio para árboles multifurcados: el índice de Cuartetos. Encontramos
los árboles multifurcados y binarios que alcanzan sus valores extremos: los árboles
estrella y oruga en el primer caso, y los máxime equilibrados y oruga en el segundo.
También damos una recurrencia para calcular su valor máximo para árboles binarios.
Así, probamos que su rango de valores es el mayor de entre los índices de equilibrio
existentes en la literatura. Además, calculamos su esperanza y varianza bajo los modelos
probabilísticos de árboles filogenéticos β y α-γ. Por lo que sabemos, es el primer índice
topológico de árboles filogenéticos del que se conocen sus primeros momentos bajo el
modelo α-γ. Finalmente, señalamos que este índice puede ser fácilmente generalizado
a otras familias de grafos dirigidos preservando sus buenas propiedades estadísticas.
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Resum

La principal motivació rere l’estudi quantiatiu de les formes subjacents als arbres
filogenètics és la creença que aquestes reflecteixen propietats dels procesos evolutius

de què es deriven. La contribució de la nostra recerca és l’adició, al conjunt de tècniques
quantitatives existents, de dos nous índexos d’equilibri, a més de provar alguns resultats
sobre dos d’antics.

El valor mínim de l’índex de Colless, així com els arbres que l’assoleixen, han sigut
desconeguts des de la introducció d’aquest en 1982. Nosaltres resolem aquest problema
tot presentant una caracterització completa d’aquests arbres, així com fórmules tan-
cades per a calcular el seu índex de Colless. A més, presentam un nou índex d’equilibri,
l’índex de Colless Quadràtic, definit com la suma dels quadrats, i no dels valors ab-
soluts, de les diferències entre els nombres de fulles dels subarbres arrelats a cada node
interior d’un arbre donat. Aquesta nova mesura resulta ser més fàcil de manipular i hem
sigut capaços de demostrar que l’arbre màximament equilibrat i l’arbre eruga són exac-
tament els arbres que assoleixen els seus valors mínim i màxim, respectivament. També
provam que té millors propietats estadístiques, i en calculam l’esperança i variància sota
els models de Yule i Uniforme.

Al seu article fundacional de 1972, Sackin va proposar l’ús de la variació de la pro-
funditat de les fulles com a mesura de l’equilibri d’un arbre. Encara que aquesta mesura
va ser més o menys popular als decenis de 1970 i 1980, mai se va estudiar en detall i
ha sigut quasi completament oblidada. N’estudiam alguna de les propietats, caracter-
itzant els arbres binaris que en prenen el valor màxim com les erugues, i donant-ne un
algorisme quasi-lineal per a construir aquells arbres que prenen el seu valor mínim. No
obstant, també demostram que aquests darrers gairebé mai no són màximament equili-
brats. Acabam el capítol proporcionant fórmules tancades per a la seva esperança sota
els models de Yule i Uniforme, a més de la variància dels índexos de Sackin i Cofenètic
i el Àrea Total sota el model Uniforme.

En el darrer dels capítols centrals d’aquesta memòria, introduïm un nou índex
d’equilibri per a arbres multifurcats: l’índex de Quartets. Trobam els arbres multi-
furcats i binaris que assoleixen els seus valors extrems: els arbres estrella i eruga en el
primer cas, i els arbres màximament equilibrats i eruga en el segon. També donam
una recurrència per a calcular el seu valor màxim per a arbres binaris. Així, provam
que el seu rang de valors és el més gran d’entre els índexos de equilibri existents a la
literatura. A més, calculam la seva esperança i variància sota els models probabilístics
d’arbres filogenètics β i α-γ. Pel que sabem, aquest és el primer índex topològic d’arbres
filogenètics del qual es coneixen els primers moments sota el model α-γ. Finalment,
indicam que aquest índex pot ser fàcilment generalitzat a altres famílies de grafs dirigits
tot preservant les seves propietats estadístiques.
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Introduction

Chaque siècle, chaque nation,
chaque pays a ses préventions, ses

maladies, ses modes, ses penchants,
qui les caractérisent, et qui passent
et se succedent les uns aux autres

[...]

Dom Augustin Calmet, Traité sur
les Apparitions des Esprits et sur les

Vampires, 1751

Phylogenetic analysis is a practice used in historical sciences such as evolutive bi-
ology and historical linguistics, and the phylogenetic, or evolutive, tree is its main

device, used to describe a temporal succession of contingent events [9]. Although
Lamarck’s branching diagram of animals in his Philosophie Zoologique (1809) and Dar-
win’s early tree sketch (1837) are oftenly cited as beginning such a tradition, the truth
is that the use of trees to represent evolution can be traced back to Justus Georg Schot-
tel’s branching table of Germanic languages (1663) (Figure 1) [74, 105].1 Moreover, if
we do not take into account evolutive but taxonomic intentions, the metaphor of the
tree already appears in Conrad Gesner’s Historiæ Animalium (1555), in which a tree is
drawn and used to determine and classify species [42].

The study of historical linguistics has traditionally used the phylogenetic analysis
of trees as a tool, while other areas such as comparative mythology or archæology have
only recently begun doing so. For instance, phylogenetic tools have been recently used
to support hypothesis as capital as the Indo-European Steppe Hypothesis [17], accord-
ing to which the Indo-European peoples were primarily located in the Pontic-Caspian
steppe, north of the Black Sea2, to assess the validity of other linguistic models such
as the Indo-Hittite [124] and Indo-Aryan Inner-Outer [15] hypotheses, or to try to re-

1It should come as no surprise the fact that the first evolutive depiction of a tree comes from linguistics
and not from biology. Indeed, linguists have accepted the notion of evolution at least since Saint Isidore of
Seville in the 6th century AD, and historical linguistics as a discipline already existed by the time Darwin
was conceived. Another Mediæval source concerning the knowledge of the evolution of languages can be
found in the recit of the voyage of William of Rubrouck [101, chap. XXI], in which he explicitly wrote
that the language of the Ruthenians, the Poles, the Bohemians and the Sclavons was “the same” as that of
the Vandals — he appears to be the first Western author to remark so [101]. Furthermore, he (correctly)
stated that Turkish and Cuman had “its source and origin” in Uighur [101, chap. XXVI].

2A note is necessary here, since phylogenetic tools and methods had already been used to support the
rival hypothesis that Indo-European peoples emerged from Anatolia [52]. The authors of [17] introduce
a series of sensible constraints that put the results of [52] into question.
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Introduction

Figure 1: Justus Georg Schottel’s branching table of Germanic languages at the end of
Ausführliche Arbeit Von der Teutschen HaubtSprache, 1663 [105].

construct the Proto-Indo-European language [122]. The analysis of phylogenetic trees
has also been fundamental to reconstruct the expansion of linguistic families such as
the Austronesian [53, 54] or the Indo-European [17, 52]. Phylogenetic trees can, even,
be used to represent the evolution of copies of Mediæval manuscripts according to lin-
guistic characteristics and other criteria [101, Introduction].

In the realm of comparative mythology, the phylogenetic approach is often referred
to as phylomemetics [96], a noun that draws an analogy between genes andmemes, under-
stood as the minimum unit of cultural information. Ever since the early observation by
Carl von Sydow’s —father of the knight that would famously play chess against Death
in 1957’s celebrated Bergman movie— that myths and stories “adapt themselves to their
environment and follow the laws of natural selection” [96], biological metaphors have
directed part of the comparative mythology community to the use of statistical and
phylogenetic methods. For instance, methodological concept studies can be found in
[118, 119], as well as the use of such methods to study the birth, spread and evolution
of myths such as the recit of Polyphemus [32] or the Cosmic Hunt [118], two of the
few myths appearing on both sides of the Bering strait —thus suggesting a Paleolith-
ical origin. Phylomemetic tools have also been used to reconstruct original recits of
myths, also called ur-forms [96], such as the ones of Pygmalion, Polyphemus and the
Cosmic Hunt [96]. Notice here the analogy between, on the one hand, the reconstruc-
tion of Prehistorical languages cited in the previous paragraph and, on the other, the
reconstruction of the primitive form of the narration of a myth.

However, it is in the field of evolutive biology that phylogenetic analysis is most
commonly used. Nowadays, biologists extract relevant information out of phyloge-
netic trees in order to try to understand the underlying forces that drive speciation and
extinction processes, as well as their effect on macroevolution [47]. The fundamental
tenet of phylogenetics is that all species derive from the same source though diverg-
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ing chains of speciations, thus forming the so-called Tree of Life. In reality, though,
it would not be a tree, since hybridizations, horizontal gene transfers and other types
of genome recombinations introduce reticulations that cannot be described through a
branching structure, thus rather requiring a phylogenetic network [34]. But, phyloge-
netic trees still are the correct models of the evolution of many sets of species, and even
the universal Tree of Life has been claimed to be useful as a model and as a metaphor
[80]. The idealistic goal of the phylogenetic community is, thus, to reconstruct such
a universal tree [30, 66]. Meanwhile, more modest studies have been pursued, such as
the ones concerning the relationship between the phylogenies of hosts and parasites
[58, 67, 91] or the study of historical processes responsible for today’s geographic dis-
tribution of species, also known as phylogeography [29, 128]. Practical applications
of the study of phylogenies vary, but we want to emphasize the ones concerning the
phylodynamics of epidemics of infectious diseases [56, 73, 123], sadly à la mode due to
the 2020 global pandemic [44, 121].

Since phylogenetic trees are the standard representation of the joint evolutionary
history of groups of species, there is an understandable interest in the development of
techniques allowing to measure the imprint these forces exert on them [72, 88, 114].
There are two aspects of a phylogenetic tree on which such traces can be found: its
branches’ lengths, determined by the timing of speciation events, and its shape, or topol-
ogy, determined by the differences in the diversification rates among different subtrees,
or clades [38]. However, reconstructing branch lengths associating a robust timeline
to a phylogenetic tree in an accurate manner is not easy [35], whereas different phylo-
genetic reconstruction methods on the same sets of empirical data usually agree on the
shape of the reconstructed phylogenetic tree [11, 62, 97]. Therefore, the topology of
phylogenetic trees has become the focus of most studies in this regard, whether through
the construction of indices quantifying topological features —cf. [46, 88, 107] and all
the references on balance indices below— or the distribution of frequencies of small
rooted subtrees [78, 104, 109, 126]. On a side note, the shape of phylogenetic trees
and networks has also been studied in order to assess biodiversity [26, 33, 45], and we
have also made a small contribution in this area [26], but it has been omitted from this
memoir due to not being related to its unifying topic, the balance of phylogenetic trees,
which we explain anon.

In order to perform the analysis of phylogenetic data, systematists traditionally had
to rely on their own expertise. This became more and more difficult as, in the decade
of 1960, large amounts of molecular data were beginning to be compiled: the promise
was that these data would ultimately help evolutionists to readily reconstruct phyloge-
nies [115]. Nevertheless, methodological concerns rapidly arose around the practice of
phylogenetic reconstruction and analysis [110, 115] that led to a certain “methodolog-
ical anxiety”, in the words of Suárez-Díaz and Anaya-Muñoz [115], that seems to be
intrinsecal to the assumptions necessary to “reconstruct the past” [110]. Such concerns
revolve around the uneasy position of phylogenetic analysis between experimental and
historical sciences, at home at neither [9], and its quest for objectivity or, at least, the
avoidance of subjectivity [115]. Furthermore, statistical reconstruction methods such
as parsimony and maximum likelihood assume underlying hypothesis on the structure
of evolution that are contested to this day [110, 115].

One of the solutions proposed in order to get rid of subjectivity bias in the phy-
logenetic analysis is the quantification and automation of the process leading to the
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Introduction

reconstruction or the analysis of phylogenetic trees, all in all leading to a statistical
approach to the subject. However, it should be noted that this aproach is not without
critique, usually centered around the fact that “the [statistical] tools at hand prevail over
methodological commitments” and that “for most practitioners the software packages
are literally black boxes, and the automation of procedures obscures themethodological
decisions implied in those packages” [115].

Indices asigning a number to a phylogenetic tree are among the first quantitative
devices appearing in the literature. For instance, the coherence (CI) and retention (RI)
indices [96] of a phylogenetic tree, the first of which computes the percentage of char-
acters in taxons that do not derive from a common ancestor, while the second measures
the proportion of characters appearing during evolution that are shared by one or more
taxons. These two examples of indices take into account the information associated to
the tree during its process of reconstruction, but there are indices that only care about
the resulting, underlying branching structure of the phylogenetic tree. These are called
shape indices, and among them we will be concerned by balance indices.

Ever since Yule’s early observation [127], in 1922, that taxonomic trees tend to be
asymmetric, with most clades being small and only a few of them large at every taxo-
nomic level, the idea of balance, understood as a propensity of the direct descendants of
any given node to have the same number of descendant leaves, has become one of the
most important topological notions in phylogenetics. Consider the trees with 7 leaves
depicted in Figure 2: the left-hand side one is known as the maximally balanced (bifur-
cating) tree, and the other as the caterpillar. Intuitively, the first one is more balanced
than the second one is, even if no formal, definitive definition of this concept is given.

Figure 2: The maximally balanced tree and the caterpillar with 7 leaves, respectively.

Balance indices aim to give a numerical value to trees that is sensitive to this con-
cept, in the sense that it sorts them according to it; i.e., the focus is not on the values the
index itself takes upon being applied to different elements of the set of trees, but on the
order it induces among them [89]. Hence, the aim is to reflect in such an ordering the
propensity that diversification events may present to occur preferentially along some
lineages and not others [90, 107]. Several such indices have been proposed in the litera-
ture in order to quantify the balance (or, rather often, the imbalance) of a phylogenetic
tree: see, for example, [19, 41, 46, 69, 78, 85, 86, 102, 107] and the section “Measures of
overall asymmetry” in [38] (pp. 562–563). These measures have been thoroughly used
to test evolutionary models [3, 7, 36, 69, 88, 94, 120], compare tree shapes [5, 49, 68],
assess biases in the distribution of shapes obtained through different phylogenetic tree
reconstructionmethods [20, 37, 63, 111, 113], as a tool to discriminate between input pa-
rameters in phylogenetic tree simulations [93, 103] or, simply, to describe phylogenies
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existing in the literature [16, 28, 79, 95].
The oldest, and one of the best-known, balance index is the Sackin index (1972)

[102, 107]. It is defined as the sum of the depths of all the leaves of a given tree, i.e.
given a tree T ∈ Tree, its Sackin index S(T ) is

S(T ) =
∑

x∈L(T )

δ(x),

where L(T ) is the leaf set of T and δ(x) is the depth of a given leaf, x ∈ L(T ). Later
on in this memoir we shall see that what Sackin actually proposed was a measure of
the variation of these depths, not its sum [24]; the measure that is nowadays called
the Sackin index was actually introduced by Shao and Sokal in [107]. This index has
been the subject of much research. On the one hand, its extreme values have been
characterized [107, 39] to be attained by the caterpillar and all trees depth-equivalent to
a maximally balanced tree, and so deemed to be “sound” by taking into account what
they “ought to be” according to our natural understanding of what balance means. On
the other hand, its statistical properties have been thoroughly studied [85, 13, 24, 69].
In this memoir we shall add to these studies the computation of its variance under the
Uniform model (on bifurcating phylogenetic trees) [106].

The second oldest, and probably the best-known, balance index existing in the lit-
erature is, to the extend of our knowledge, the Colless index [19]. It captures intuitively
what balance means by being a rather straightforward measure of the equilibrium of
each internal node: given a bifurcating tree, it is the sum, over all its internal nodes,
of the absolute value of the difference between the numbers of leaves of the two sub-
trees rooted at them; c’est à dire, given a tree T , if u1, u2 denote the two children of an
internal node u and κ(u1), κ(u2) the number of leaves of the subtrees rooted at them,

C (T ) =
∑

u∈V̊ (T )

|κ(u1) − κ(u2)|, (1)

where V̊ (T ) is the set of all internal nodes of T . This index, too, has been thoroughly
researched, although it remains somewhat more mysterious than the Sackin index does.
For one thing, both its expected value and its variance under theUniformmodel remain
unknown. Its maximum value is reached at the caterpillar [85], as was the case with
the Sackin index, but the characterization of its minimum value is much more involved
and it was unknown until our work, collected in Chapter 2. Notice that in both this
index and Sackin’s, the answer is easier found in the case of the least balanced tree than
it is in the case of the most balanced one. As it is usually the case, it is the lack of a
property rather than its presence that results easier to describe, thus the fact thatmost of
the balance indices present in the literature are, rather, “imbalance” indices, since they
measure what Nelson and Holmes [90] called “the propensity of evolutionary events
to occur along specific lineages”, underlying its absolute dependence of the shape of the
tree.

In this report we will work on several such indices. The main problems we attempt
to solve are: the full characterization of the trees that attain theminimumColless index;
the study of the original proposal given by Sackin in [102], that has somehow faded into
oblivion; and the introduction and study of two new balance indices enjoying several
useful features.
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Introduction

To begin with, the Preliminaries are dedicated to results necessary to the under-
standing of this memoir. Most of them are not new, but we want to remark that the
techniques presented in Section 1.4.1 are, as they did not previously exist in the litera-
ture (as far as we know) and were developped in the course of this investigation. These
allow us to solve a family of recurrences (Theorem 1.35) that appear in a natural way
in the computation of moments of balance indices under the Uniform model for bifur-
cating phylogenetic trees, and that we apply later in the computation of the expected
value and variance of the Quadratic Colless index (Chapter 3), the expected value of
the Variance of depths (Chapter 4), and the variance of the Sackin, the Cophenetic [85]
and the Total Area [81] indices (Chapter 4), all of them under the said model. In order
to ease the task of the reader, we have opted to present them in the Preliminaries.

As we have already pointed out, in Chapter 2wewill characterize which trees attain
theminimumColless index for any given number of trees n and provide different closed
formulæ for this minimum value. This minimum is not reached by a single tree in
general, and the characterization of these trees is a bit convoluted. However, in Chapter
3 we shall introduce a new index, which we shall call Quadratic Colless, defined as
in Equation (1), only changing the absolute value to a square. This index has better
properties than the original Colless index has on every aspect that we have been able to
think of: its maxima and minima are attained exactly at the caterpillars and maximally
balanced trees, respectively, and the proof of this fact is quite straightforward; and we
are even able to compute both its expected value and its variance under the Yule [106]
and Uniform models. Furthermore, it has much more discriminative power than both
the Sackin and Colless indices have.

Then, in Chapter 4we shall study the aforementioned original proposal of a balance
index given by Sackin in [102]: the variance of the leaves’ depths (see Chapter 4). As
we shall see, although its maximum value is always reached by the caterpillars, it is ill-
suited to be a balance index, since for numbers of leaves larger than 184 its minimum
value over bifurcating trees is almost never attained at the maximally balanced trees;
we will present two algorithms that compute the trees that attain this value in time
O(n log2 n).

Finally, we end this memoir by introducing a new balance index that, we believe,
has inmanyways better properties than those reviewed thus far and those of the Cophe-
netic index [85]. TheQuartet index (Chapter 5) “correctly” classifies as being most and
least balanced exactly the maximally balanced trees and the caterpillars, respectively,
just as the Quadratic Colless and the Cophenetic indices do, but its discriminatory
power has been (empirically) seen to be greater—probably due to the fact that its range
of values is an order of magnitude higher than that of the aforementioned indices. But
most importantly, we have been able to compute its expected value and its variance
not just under the Yule and Uniform models for bifurcating phylogenetic trees, but
under Aldous’ β-model for bifurcating phylogenetic trees [2] and Chen-Ford-Winkel’s
α-γ-model for multifurcating phylogenetic trees [18], both generalizing the Yule and
the Uniform models. To our knowledge, this is the first shape index for phylogenetic
trees whose first moments under the α-γ-model are known. Furthermore, it is not
only defined over multifurcating trees, but it has some natural extensions to wider sets
of graphs (such as multilabelled trees or phylogenetic networks), whose properties are
yet to be studied in detail.
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1
Preliminaries

For if there is any ignorance or
indeed any dispute as to what are

the facts from which the work
opens, it is impossible that what

follows should meet with
acceptance or credence; but once

we produce in our readers a general
agreement on this point they will

give ear to all the subsequent
narrative.

Polybius, Histories I, 5, 2nd century
BC

Proper stories must start with the beginning. In the preface to the second edition
of Newton’s Principia Mathematica (1713), Roger Cotes wrote that “[t]hose who

assume hypothesis as first principles to their speculations [...] may indeed form an
ingenious romance, but a romance it will still be.” In this chapter we aim to give the
basic results and definitions necessary to the understanding of this work, so that “once
we produce in our readers a general agreement on this point they will give ear to all the
subsequent narrative.”

Most results contained in this chapter have already appeared in the literature. Some
of them, though, are new (or, at least, we have not been able to find explicit proofs in the
literature), and we have opted to include them here for thematic coherence and in order
not to burden too much the following chapters. Such results are Lemma 1.13, Theorem
1.19 (which is inspired by [39]), all the results in Section 1.3.1, Lemma 1.24 (again, we
have not been able to find a suitable comprehensive reference in the literature), all the
computations of probabilities of the α and β models as well as the correction to some
of Ford’s [43] results, the discussion on binary recursive shape indices given in Section
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Chapter 1

1.3.4, and most importantly the solution of the family of recursive equations given in
Theorem 1.35.

Such a chapter must be, almost by definition, fractionary: indeed, for this work
will spring out of many sources, coming from the definition of (rooted) trees and its
basic properties to the use of hypergeometric series, with a brief intrusion into group
theory. We have thus presented these topics in four more or less independent sections.
The first one deals with the concept of tree, giving as examples some families that will
be later used in this work as well as presenting the concept of labellings of a tree and so
of phylogenetic trees; the Newick representation of a tree is also presented. Then, the
second section will revolve around the concept of balance indices, and we shall present
those that were well known before this investigation began as well as a giving an abstract
definition in which they all fit. The third section will be that of the probabilistic models
for trees and phylogenetic trees, where we shall present some properties they might
present as well as some specific models that will be used thoughout this report, and
we will also be concerned with their interplay with balance indices. Finally, we shall
spend the last section dealing with hypergeometric series, and we will solve a family of
recursive equations that were not (to the best of our knowledge) previously solved, and
will be of great use in some of the subsequent chapters.

1.1 On trees

This report deals in its integrity with the concept of tree, which we shall define anon.
However, in order to do so we first need to recall some other concepts, of which that of
directed graph is the most important and general. A directed (finite) graph is an ordered
pairG = (V , E), whereV is a non-empty finite set and E ⊆ V 2. We will usually denote
V and E by V (G) and E(G), respectively, in order to make reference to the graph G.
We callV (G) the set of nodes ofG, and E(G) the set of edges ofG. For any pair of nodes
u, v ∈ V (G) and a positive natural numberm ∈ N≥1, a path of length m from u to v is a
collection of m edges (ui, vi) ∈ E(G), i ∈ {1, . . . ,m}, such that u1 = u, vm = v and for
all i ∈ {1, . . . ,m − 1}, vi = ui+1. In particular, an edge (u, v) ∈ E(G) is a path of length
1 from u to v . By convention, we will understand that, for every node u ∈ V (G), there
exists a path of length 0 connecting u and itself without leaving it. A cycle is a path of
length m ≥ 1 such that u0 = vm .

For any node u ∈ V (G), we define its in-degree and its out-degree to be

degin(u) := |{(u1, u2) ∈ E(G) : u2 = u}|
degout(u) := |{(u1, u2) ∈ E(G) : u1 = u}|

respectively; that is, the in-degree of a node is the number of edges that end in that
node, whereas its out-degree is the number of edges that depart from it.

A morphism of directed graphs is an arrow ϕ : G → H consisting in a pair of maps
ϕV : V (G) → V (H ) and ϕE : E(G) → E(H ) such that the diagram

E(G) E(H )

V (G)2 V (H )2

ϕE

ϕ2V

2



1.1. On trees

commutes, in the sense that if (u, v) ∈ E(G), then (ϕV (u), ϕV (v)) ∈ E(H ) and ϕE (u, v)
= (ϕV (u), ϕV (v)). An isomorphism of directed graphs is a morphism such that both ϕV
and ϕE are bijective. If two graphs G and H are isomorphic (that is, if there exists an
isomorphism of directed graphs ϕ : G → H ), we shall treat them as if they were equal.
Idem est, we shall always make the abuse of language of calling two directed graphs equal
when they are only isomorphic, and hence of speaking of directed graphs, when in fact
we mean isomorphism classes of directed graphs —indeed, for otherwise we could not
properly speak, for instance, of the set of all directed graphs. An automorphism of a
graph G is an isomorphism G → G. We shall denote by Aut(G) the set of automor-
phisms of G.

We are now in a position to enonce the main definition of this work. By a tree, or
(tree) shape1, we understand a rooted tree without elementary nodes, i.e., a directed graph
T = (V (T ), E(T )) satisfying the following three properties: V (T ) contains exactly one
node ρT ∈ V (T )with degin(ρT ) = 0, which we shall always call the root ofT ; for every
node u ∈ V (T ), there exists a unique path from ρT to u; and, for all nodes u ∈ V (T ),
degout(u) is either 0 or greater than 1. We shall usually drop the subindex T from ρT if
no ambiguity arises. It is straightforward, from the very definition of tree, to see that
a tree does not contain any cycle.

Let T be a tree. We call the nodes of T with out-degree 0 the leaves of the tree, by
analogy to the leaves of a (vegetal) tree, and we denote the set formed by all of them by
L(T ). This defines, per negationem, the set of internal nodes ofT , V̊ (T ) = V (T )\L(T ).
We also classify the edges of T into pendant and internal, depending on whether they
end in a leaf or in an internal node, respectively. We shall always make the abuse of
language of identifying a tree ({ρ}, ∅) with the node ρ, which is simultaneously the
root and the only leaf of the tree.

For any u, v ∈ V (T ), if there exists a path from u to v , we shall say that u is an
ancestor of v and that v is a descendant of u. Notice that in particular we understand
every node to be simultaneously an ancestor and a descendant of itself through the
corresponding path of length 0. In the case of edges, if (u, v) ∈ E(T ), we shall call u
the parent of v and v a child of u; we shall denote the set of all children of u ∈ V (T ) by
child(u) and we shall say that two children of the same node are siblings. The length of
the path from ρT to u ∈ V (T ) is called the depth of u and denoted by δT (u), and the
maximum of these depths is called the depth of the tree, denoted by δ(T ): so, δ(T ) =
max{δT (u) : u ∈ V (T )}.

The subtree of T rooted at a node u, Tu , is the subtree induced by the set of all the
descendants of u; i.e., the subtree ofT “below” u. So,V (Tu) is the set of all descendants
of u, including u itself, and E(Tu) = {(u ′, v ′) ∈ E(T ) : u ′, v ′ ∈ V (Tu)}. We call the
subtrees of T rooted at the children of its root its maximal pending subtrees; cf. Figure
1.1.

We denote the set of all (isomorphism classes of) trees by Tree. The next three
lemmata are well known and easy to prove, and provide useful properties concerning
trees.

Lemma 1.1. Let T ∈ Tree be such that |V (T )| ≥ 2. If u ∈ V (T ) is such that u , ρT ,
then degin(u) = 1.

1We shall usually use the term “shape” when dealing with phylogenetic trees, to mark the difference
between a phylogenetic tree and the tree underlying it.
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Lemma 1.2. Let T ∈ Tree be a tree and n its number of leaves. Then, n ≥ 1, and
|V (T )| ≤ 2n − 1.

If u ∈ V̊ (T ) is such that child(u) ⊆ L(T ), we shall call the subtreeTu a k-fan, where
k = |child(u)|, a notation reminiscient of Lady Windermere’s alibi. We shall always
refer to a 2-fan as a cherry. The depth of a cherry (or of a k-fan) will always be the depth
of its leaves.

Lemma 1.3. Let T ∈ Tree be such that |V (T )| ≥ 2. Then, it contains some k-fan, for some
k ≥ 2.

For any tree T ∈ Tree we define ∆(T ) to be the multiset of the leaves’ depths;
that is, ∆(T ) = {δT (u) : u ∈ L(T )}; notice that the condition of it being a multiset
is necessary, since for any number of leaves n ≥ 2, T has, by Lemma 1.3, at least one
k-fan for some k ≥ 2. If two trees T1 and T2 are such that ∆(T1) = ∆(T2), they are said
to be depth-equivalent.

Given a subset of leaves X ⊆ L(T ), the lowest common ancestor of X , lca(X ), is
the node u ∈ V (T ) of maximum depth such that X ⊆ L(Tu); i.e., their “most recent
ancestor” in the sense that every common ancestor of all leaves in X is also an ancestor
of lca(X ).

There is another way to define subtrees of a given tree T . For every X ⊆ L(T ), the
subtree of T that induces X is the tree obtained from Tlca(X ) by keeping only the nodes,
and edges, in paths from lca(X ) to the leaves in X , and then recursively suppressing all
elementary nodes, that is, all nodes with out-degree 1, as follows: if u is such a node and
v,w ∈ V (T ) are such that (v, u), (u,w) ∈ E(Tlca(X )), then we replace the node u, along
with those two edges, by a single edge (v,w) (note that, by the definition of lca(X ), the
root of Tlca(X ) cannot be elementary). We call such a tree T (X ).

Notice that in the statement of Lemma 1.2 it is said that the maximum number of
nodes that a tree with n leaves can have is 2n − 1. If we had imposed that degout(u) ∈
{0, 2} for all u ∈ V (T ), then it is an easy induction exercise to see that |V (T )| = 2n−1.
This kind of tree is called bifurcating, or binary, and they are of the utmost importance
in the whole of this work. Therefore, we emphasize the following result.

Corollary 1.4. Let T be a bifurcating tree with n leaves. Then, |V (T )| = 2n − 1.

We will denote by Treen the set of (isomorphism classes of) trees with n leaves,
and by BinTreen ⊆ Treen the set of those of them that are bifurcating (notice that
BinTreen = Treen if, and only if, n ∈ {1, 2}).

Let T1, . . . ,Tk be k trees, for some k ≥ 2, such that |L(Ti)| = ni for every i ∈
{1, . . . , k}. We define

T1 ∗ · · · ∗Tk ∈ Treen1+· · ·+nk
as the only (up to isomorphism) tree such that the trees T1, . . . ,Tk are its maximal
pending subtrees: see Figure 1.1. In other words, T1 ∗ · · · ∗ Tk is obtained by taking
(disjoint isomorphic copies of) the trees T1, . . . ,Tk , a new node ρ, and connecting ρ to
the roots ρTi of these trees through new edges (ρ, ρTi ). We shall call this operation the
root join of the trees T1, . . . ,Tk . Notice that ∗ is not associative, but it is commutative.

We end with two useful lemmata concerning isomorphisms of trees.

Lemma 1.5. Let ϕ : T1 → T2 be an isomorphism of trees. Then, ϕ(ρT1) = ρT2 .
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1.1. On trees

T1 T2 ... Tk

Figure 1.1: The tree T1 ∗ · · · ∗Tk , with maximal pending subtrees T1, . . . ,Tk .

Proof. Let ρT1 be the root of T1. If ϕ(ρT1) , ρT2 , then degin(ϕ(ρT1)) , 0 and in par-
ticular there would exist an edge (u, ϕ(ρT1)) ∈ E(T2). But then, if u ′ ∈ V (T1) is the
preimage of u under ϕ, then, since ϕE : E(T1) → E(T2) is bijective, there should exist
an edge (u ′, ρT1), which would contradict the assumption that degin(ρT1) = 0. �

Lemma 1.6. Let T ∈ Treen and ϕ1, ϕ2 ∈ Aut(T ) such that ϕ1 |L(T ) = ϕ2 |L(T ). Then,
ϕ1 = ϕ2.

Proof. We proceed by induction on the number of leaves, n. The result obviously holds
for n = 1, and so our base case is proved. We shall now suppose it to be true up to n
leaves, n ≥ 2.

Let T ∈ Treen+1, and ϕ1, ϕ2 ∈ Aut(T ) be such that ϕ1(x) = ϕ2(x) for all x ∈ L(T ).
Then, since ϕi is an isomorphism for i ∈ {1, 2}, we can deduce that ϕ1(u) = ϕ2(u) for
all u ∈ V̊ (T ) such that u has a leaf child.

Let us now consider the treeT ′ ∈ Treem for somem ∈ N defined as the tree derived
from T by erasing one of its k-fans, for some k ∈ N≥2, thus making the root of the fan,
say v , a leaf in T ′. Now consider the automorphisms ϕ1 |T ′, ϕ2 |T ′ ∈ Aut(T ′), and call
them ϕ′1 and ϕ

′
2, respectively. As we have already discussed, ϕ′1(v) = ϕ

′
2(v) and, since

with the exception of the considered k-fan in T , the leaf sets remain the same for T and
T ′, we have that ϕ′1 |L(T ′) = ϕ

′
2 |L(T ′). But then, by the induction hypothesis, that entails

that ϕ′1 = ϕ
′
2.

We have almost finished, since we have shown that ϕ1(u) = ϕ2(u) for all u ∈
V (T ′) ( V (T ). But, as V (T ) \V (T ′) ⊆ L(T ), we conclude that ϕ1 = ϕ2 by means of
the hypothesis in the statement of this proposition. �

1.1.1 Three families of trees

For every n ∈ N≥4, there are three different trees in Treen that deserve close attention.
These are the star, the maximally balanced (bifurcating) tree and the caterpillar.

Stars

In Treen, with n ≥ 2, the star T star
n is the tree consisting of n + 1 nodes: its root and

n leaves pending from it. Equivalently, the star with n leaves is the only tree with n
leaves such that |V̊ (T )| = 1. By convention, we shall always consider the unique tree
in Tree1 to be a star.

Stars have the interesting property that they are the most symmetric family of trees,
in the sense that they have the maximum number of automorphisms for any given
number of leaves n, as the following result establishes.
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Figure 1.2: The star with seven leaves, T star
7 .

Theorem 1.7. Let T ∈ Treen a tree with n leaves. Then,

Aut(T ) ≤ n!

and the equality is reached if, and only if, T = T star
n .

Proof. This result is a direct consequence of Lemma 1.13 and Theorem 1.14 below. �

Maximally balanced (bifurcating) trees

When we restrict ourselves to bifurcating trees, the question on which are the most
symmetric trees is not as easy as it was in Tree, since the star is not a bifurcating tree
for n ≥ 3 leaves. In any case, the number of automorphisms as a shape index presents
the problem of not having a great discriminatory power: fixed n ∈ N, the number
of autormorphisms of a bifurcating tree T ∈ BinTreen can take at most n − 1 values
—indeed, by Lemma 1.13 and Theorem 1.14 below, this number only depends on the
number of symmetry nodes of T , those internal nodes such that both subtrees rooted at
their children are isomorphic.

To circumvent this drawback, the alternative concept of “balance” of a tree is in-
troduced and expressed in some measures, but this shall be discussed soon enough. In
this section, it suffices to say that the family of trees now presented were considered by
Shao and Sokal [107] to be “the most balanced trees”, and they are effectively classified
as “most balanced” by most balance indices. In this regard, it totally agrees with our
natural intuition. In fact, as we shall discuss, it is a common practice to determine the
“validity” of a balance index based on whether it classifies the maximally balanced trees
as most balanced and the caterpillars —which we shall define anon— as least balanced.

To define a maximally balanced tree we need first to define the balance of an internal
node in a bifurcating tree. For all n ∈ N and u ∈ V (T ) in any T ∈ BinTreen, let κT (u)
be its number of descendant leaves; i.e., κT (u) = |L(Tu)|. Then, we define the balance
of an internal node u ∈ V̊ (T ) as

balT (u) = |κT (u1) − κT (u2)|,

where u1, u2 ∈ V (T ) are the children of u. We shall drop the subindex T from κT
and balT whenever doing so adds no ambiguity to our arguments. Then, we shall
call an internal node u ∈ V̊ (T ) balanced when bal(u) ∈ {0, 1}. In other words, an
internal node u of a bifurcating tree is balanced when its two children have dκ(u)/2e
and bκ(u)/2c descendant leaves, respectively.

A maximally balanced tree is then a bifurcating tree all of whose internal nodes
are balanced. By convention, we shall say that the only tree in BinTree1 is maximally
balanced. There is an interesting recursive construction, given by the following result,
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1.1. On trees

which entails that for every given number n of leaves there exists one, and only one,
maximally balanced tree in BinTreen.

Theorem 1.8. Let n ∈ N≥2. For every T ∈ BinTreen , T is maximally balanced if, and
only if, its maximal pending subtrees are maximally balanced with dn/2e and bn/2c leaves,
respectively.

Proof. LetT ∈ BinTreen and let u1, u2 be the children of its root ρ, with κ(u1) ≥ κ(u2).
Assume first that T is maximally balanced. Then, since ρ is balanced, κT (u1) =

dn/2e and κT (u2) = bn/2c. Let now v be an internal node of some rooted subtree Tui ,
i ∈ {1, 2}. Since balTui

(v) = balT (v) and v is balanced in T , it is also balanced in the
subtree Tui . Therefore, Tu1 and Tu2 are maximally balanced. This proves the “only if”
implication.

Conversely, assume that κT (u1) = dn/2e and κT (u2) = bn/2c and that both Tu1 and
Tu2 are maximally balanced. Then, ρ is balanced. Let now v be an internal node of T
other than the root. Since V̊ (T ) = V̊ (Tu1) ∪ V̊ (Tu2) ∪ {ρ}, the node v will belong to
some V̊ (Tui ) and then balT (v) = balTui

(v) ∈ {0, 1}. This implies that all internal nodes
of T that are not the root are also balanced. Therefore, T is maximally balanced. �

Corollary 1.9. For every n ∈ N≥1, there is one, and only one, maximally balanced tree in
BinTreen .

Proof. We proceed by induction on the number of leaves, n. If n ∈ {1, 2, 3} the result
holds trivially, because the cardinality of BinTreen is 1 and the only tree in it is max-
imally balanced. Hence, assume now that n ≥ 4, and suppose that the result holds
up to n − 1 leaves. Let us denote by T bal

bn/2c and T bal
dn/2e the maximally balanced trees

with bn/2c and dn/2e leaves, which exist and are unique by the induction hypothesis.
Then, by the previous result, on the one hand T bal

dn/2e ∗T
bal
bn/2c ∈ BinTreen is maximally

balanced, and, on the other hand, if T ∈ BinTreen is maximally balanced and if u1, u2
are the children of its root, with κT (u1) ≥ κT (u2), then Tu1 = T bal

dn/2e and Tu2 = T bal
bn/2c

and hence T = T bal
dn/2e ∗T

bal
bn/2c , which proves the uniqueness of the maximally balanced

tree in BinTreen. �

We shall denote henceforth by T bal
n the maximally balanced tree with n leaves.

When n is a power of 2, Theorem 1.8 implies that the subtrees rooted at each pair
of children of an internal node of T bal

n are isomorphic, and in this case we also call T bal
n

the fully symmetric bifurcating tree with n leaves.
In Corollary 1.16, we shall see that the number of automorphisms of a bifurcating

tree is always grows exponentially with its number of symmetry nodes. Now, it would
be natural, and indeed beautiful, if the maximally balanced trees represented the upper
bound of the number of automorphisms for bifurcating trees with a fixed number of
leaves. It is not so, as the counterexample depicted in Figure 1.4 illustrates.

Let T bal
24 ∈ BinTree24 be the maximally balanced tree with 24 leaves, depicted in

Figure 1.4. It is clear, then, that s(T bal
24 ) = 15. Now, let T gfb

24 be the tree depicted in the
next figure. We can now count that s(T gfb

24 ) = 22, and thus that the educated guess that,
for everyT ∈ BinTreen, s(T bal

n ) > s(T ) is false—and so, the number of automorphisms
of a maximally balanced tree is not always bigger than that of other bifurcating trees.

7
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Figure 1.3: The maximally balanced tree with 7 leaves, T bal
7 .

Figure 1.4: Two bifurcating trees with 24 leaves, T bal
24 and T gfb

24 , respectively.

Caterpillars

In contrast to the maximally balanced trees, caterpillars have been considered, already
in the early paper by Sackin [102], to be the most imbalanced of all trees, and they
are indeed the least symmetrical: they have, as we will show below, only two auto-
morphisms no matter their number of leaves (provided it is, of course, greater than 1).
But this is indeed of great importance since, as happened with the maximally balanced
trees, a “good” balance index ought to classify these trees as being the least balanced of
all trees.

A caterpillar of n leaves is a bifurcating tree such that every internal node in it has a
leaf for child; we shall consider the only tree in Tree1 to be a caterpillar. Equivalently,
for n ≥ 2, a caterpillar of n leaves is a bifurcating tree with only one cherry. The
equivalence between both descriptions is clear: if a bifurcating tree T has two cherries,
the lowest common ancestor of their roots cannot have a leaf child, and conversely, if
the two children of u ∈ V̊ (T ) are internal nodes, both subtrees rooted at them will
contain at least one cherry, which gives at least two different cherries.

The definition of caterpillars as those bifurcating trees all whose internal nodes have
a leaf child allows for their following recursive construction: a caterpillar with n leaves
is the root join of a leaf and a caterpillar of n − 1 leaves. And then this construction
implies, through an argument à la Corollary 1.9, that, for every n ∈ N≥1, there is only
one caterpillar in Treen, which we shall denote by T cat

n .

Theorem 1.10. Let T ∈ Treen a tree with n leaves. Then, Aut(T ) ≥ 2 and the equality is
reached if, and only if, T = T cat

n .

8



1.1. On trees

Proof. This is a direct consequence of Lemma 1.13, Theorem 1.14, and the fact that the
caterpillars are the only trees with just one cherry and no other k-fan, and hence the
only trees with only one symmetry node that is moreover of out-degree 2. �

Remark 1.11. Notice that, although the caterpillar is considered to be the least sym-
metrical of all trees with n leaves, it is actually bifurcating—thus, in particular, it is also
the least symmetrical of all bifurcating trees with n leaves.

Figure 1.5: The caterpillar with seven leaves, T cat
7 .

1.1.2 Labels

In order to model evolutionary processes, trees usually have their leaves labelled with
what we call, in general, Operational Phylogenetic Units (OPUs). These usually repre-
sent species in the biological sense, as the use of phylogenetic representations is mainly
spread among the Evolutionary Biology community; but they can also represent genes
[55, 64], languages or language characteristics [15, 17, 52, 53, 54, 124], cultural aspects
[31], myth versions [118, 119] and even Internet memes [61].

Mathematically, let T = (V (T ), E(T )) be a tree, and L(T ) be its set of leaves. Then,
for some set Λ, a Λ-labelling of T is just a function λ : L(T ) → Λ. A pair (T , λ) will be
called generically amulti-labelled tree on the setΛ, and a phylogenetic tree onΛwhenever
λ is bijective, in which case |Λ| = |L(T )|. We will say that a multi-labelled tree (T , λ)
is bifurcating when T is so. In a phylogenetic tree, we shall usually make the abuse of
language of identifying a leaf and its label.

Remark 1.12. We will always consider the elements of the set of labels Λ to have a
“canonical” representation as strings, since they are labels. Thus, if Λ ⊆ N, we shall
consider the element 3 ∈ Λ to be also 3 ∈ String.

We shall distinguish two types of isomorphisms for multi-labelled trees. We be-
gin with the “strict sense” isomorphisms. Given two multi-labelled trees (T1, λ1) and
(T2, λ2) on a set Λ, an isomorphism between them is an isomorphism of trees ϕ : T1 →

T2 such that the following diagram commutes:

L(T1) L(T2)

Λ Λ

λ1

ϕV |L

λ2

idΛ

9



Chapter 1

In other words, an isomorphism of multi-labelled trees is an isomorphism of trees that
preserves and respects the trees’ labelling. When (T1, λ1) and (T2, λ2) are phylogenetic
trees, this gives rise to the usual notion of isomorphism of phylogenetic trees. We shall
make the abuse of language of saying that two multi-labelled, or phylogenetic, trees are
equal when they are actually only isomorphic in this sense.

We will denote the sets of (isomorphism classes of ) phylogenetic and multi-labelled
trees on a set of labels Λ by PhyloTree(Λ) and MulTree(Λ), respectively, and we will
denote by BinPhyloTree(Λ) and BinMulTree(Λ) the corresponding subsets of bifur-
cating such trees. More often than not, whenever we are working with a fixed number
of leaves n, we just consider Λ to be [n] = {1, . . . , n}, and then we shall just write
PhyloTreen, BinTreen, MulTreen and BinMulTreen to denote the respective sets of
phylogenetic trees, bifurcating phylogenetic trees, multi-labelled trees, and bifurcating
multi-labelled trees. The cardinality of BinPhyloTreen is well known by a theorem of
Schröder (1870),

|BinPhyloTreen | = (2n − 3)!! = (2n − 3) · (2n − 5) · · · 3 · 1 =
(2n − 2)!
(n − 1)!2n−1

.

Wehave a projection π1 : MulTreen → Treen defined by π1(T , λ) = T . We shall say
that (T , λ) ∈ MulTreen is a star, a maximally balanced tree, or a caterpillar whenever
T is so.

Now, the second notion of isomorphism of multi-labelled trees that we shall use
in this report is that of a shape-isomorphism, or relabelling. In this case, it is between
multi-labelled trees on possibly different sets of labels Λ1 and Λ2: let (T1, λ1), (T2, λ2)

be two multilabelled trees, a pair (ϕ, ϕΛ) : (T1, λ1) → (T2, λ2) such that ϕ : T1 → T2 is
an isomorphism of trees and ϕΛ : Λ1 → Λ2 is an injective map such that the diagram

L(T1) L(T2)

Λ1 Λ2

λ1

ϕV |L

λ2

ϕΛ

commutes. In other words, a relabelling of multilabelled trees is an isomorphism of
trees such that a pair of leaves in T1 have the same label if, and only if, their images
in T2 have the same label, but it need not preserve the actual labels. Notice that when
|Λ1 | = |Λ2 |, the map ϕΛ of a shape-isomorphism will have to be a bijection. When
(T1, λ1) and (T2, λ2) are phylogenetic trees, a relabelling between them is simply an
isomorphism of their underlying shapes (Lemma 1.13).

We shall call a shape-isomorphism class of multilabelled trees a multilabelled tree
shape, and we shall always say that two shape-isomorphic multilabelled trees have the
same multilabelled shape, and denote by MulShTreen and BinMulShTreen the sets of
multilabelled tree shapes and of bifurcating multilabelled tree shapes on [n], respec-
tively.

Notice that we have a projection π1 : MulShTreen → Treen defined by π1(T , λ) =
T ,2 that returns the underlying shape of a multilabelled tree shape, and the map π∗ :

2In rigor, we should have written π1([(T , λ)]) = T , but we will, here and henceforth, just identify
the class with its representant. We may, in the following, also commit the abuse of language of writing T
when we mean a specific phylogenetic tree (T , λ) but we do not care about the specific λ being chosen.

10



1.1. On trees

MulTreen → MulShTreen that sends each multilabelled tree to its multilabelled tree
shape:

MulTreen
π∗

→ MulShTreen
π1
→ Treen

(T , λ) 7→ [(T , λ)] 7→ T

Example:
Consider the three multilabelled trees in Figure 1.6, of which T1 is phylogenetic.

321
T1

221
T2

112
T3

Figure 1.6: Three multilabelled trees with three leaves.

None of these trees are isomorphic in the strict sense, whereas T2 and T3 are
shape-isomorphic. All three multilabelled trees have the same shape, but only T2
and T3 have the same multilabelled shape.

The concept of the root join of multilabelled trees, and indeed phylogenetic trees,
generalizes easily, bearing in mind that if two phylogenetic trees share their label set,
their root join may not be a phylogenetic tree. The shape of the root join of several
multilabelled trees is the root join of their shapes. However, the root join of multil-
abelled tree shapes is not well defined, but we shall still use it as an abbreviation: that is,
given a multilabelled tree shape T ∈ MulShTreen, we shall write it as T = T1 ∗ · · · ∗Tm
to mean that T1, . . . ,Tm are the multilabelled tree shapes rooted at the children of its
root.

On relabellings of phylogenetic trees

We are now interested in the problem of counting how many different relabellings
does a phylogenetic tree have. Suppose given a phylogenetic tree (T , λ) ∈ PhyloTreen;
our goal is to determine how many phylogenetic trees are there in PhyloTreen such
that they are different from (T , λ) but share its shape. Notice that this is not as easy
as simply changing λ, since there is a number of different labellings that give rise to
the same phylogenetic tree. Think, for instance, about interchanging the labels 1 and
2 in tree T1, as depicted by Figure 1.6. In order to count this magnitude, we shall be
concerned about the problem of counting howmany bijectivemapsσ : [n] → [n] leave
(T , λ) “unchanged” —that is, send it to an isomorphic (under the strict interpretation)
phylogenetic tree. Since the maps σ are bijective, we can consider them to be members
of the symmetric groupSn. Consider now the action of groups

Sn → Aut(PhyloTreen)

σ 7→
σ · : PhyloTreen → PhyloTreen

(T , λ) 7→ (T , σ ◦ λ)

11
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where by Aut(PhyloTreen) we mean, here, the set of bijections from PhyloTreen to
itself. The problem of finding how many different phylogenetic trees share the same
shape can be re-stated as computing the cardinality of orb(T , λ) under this action of
groups. It is straightforward to check that, given a shape T ∈ Treen, this cardinality
does not depend on the labelling map λ, since changing of λ (which, we recall, is bi-
jective by definition of phylogenetic tree) induces a bijection between these orbits. We
shall call henceforth this cardinality the number of relabellings of the shape T ∈ Treen,
and denote it by φ(T ):

φ(T ) = |orb(T , λ)|,

for some labelling λ. Now, by the Burnside Lemma, we know that

|orb(T , λ)| =
|Sn |

|stab(T , λ)|
=

n!
|stab(T , λ)|

,

where the elements of stab(T , λ) are themapsσ such that (T , λ) is isomorphic to (T , σ◦
λ).

Lemma 1.13. Let (T , λ) ∈ PhyloTree(Λ). Then, there exists an isomorphism of groups
ι : Aut(T ) → stab(T , λ).

Proof. We shall provide such an isomorphism by the rule ι : Aut(T ) → stab(T , λ) de-
fined by ϕ 7→ λ ◦ ϕ |L(T ) ◦ λ

−1. Notice that, as ϕ is an isomorphism, ϕ |L(T ) is bijective
and, since λ is also bijective, λ◦ϕ |L(T )◦λ−1 is, too. Now, (λ◦ϕ |L(T )◦λ−1)◦λ = λ◦ϕ |L(T )
and therefore ϕ : (T , ι(ϕ) ◦ λ) → (T , λ) is an isomorphism of phylogenetic trees and,
hence, ι(ϕ) ∈ stab(T , λ). The fact of ι being a morphism of groups is straightforward,
as well as its injectivity, because λ is bijective and, by Lemma 1.6, an automorphism is
uniquely determined by its behaviour on the leaves of the tree. It remains the surjectiv-
ity to be checked. Letσ ∈ stab(T , λ), and let ϕ : (T , σ◦λ) → (T , λ) be an isomorphism
of phylogenetic trees —that exists, since σ ∈ stab(T , λ). Then, ϕ : T → T is an auto-
morphism such that σ ◦ λ = λ ◦ ϕ |L(T ), and in particular σ = λ ◦ ϕ |L(T ) ◦ λ−1 = ι(ϕ).
Therefore, ι is an isomorphism. �

Next theorem, which is Proposition 2.4.2 in [106], computes the cardinality of
stab(T , λ) (and so, of Aut(T )).

Theorem 1.14. Let (T , λ) ∈ PhyloTreen be a phylogenetic tree with n leaves. For each
internal node u ∈ V̊ (T ), let D(u) denote the collection of the phylogenetic subtrees rooted
at the children of u. Consider the equivalence relation on D(u) in which (T1, λ1), (T2, λ2) ∈

D(u) are related if, and only if, they have the same shape. Let n1(u), n2(u), . . . denote the
cardinalities of the resulting equivalence classes. Then,

|Aut(T )| = |stab(T , λ)| =
∏

u∈V̊ (T )

∏
i
ni(u)!

Therefore,

φ(T ) =
n!∏

u∈V̊ (T )
∏

i ni(u)!
.

12
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Remark 1.15. Notice that the equivalence relation used in the statement of the last
theorem is the kernel of the map π1 |D(u) : D(u) → Tree sending the phylogenetic trees
in D(u) to their shapes.

In the bifurcating case, for every u ∈ V̊ (T ), the product
∏

i ni(u)! is 2 if u is a
symmetry node, that is, if the subtrees rooted at its children have the same shape, and 1
otherwise. This implies the following corollary.

Corollary 1.16. Let T ∈ BinTreen be a bifurcating tree and let s(T ) be its number of
symmetry nodes. Then,

|Aut(T )| = 2s(T ), φ(T ) =
n!

2s(T )
.

Notice now that, by Lemma 1.13, in order to compute the cardinality of stab(T , λ),
for any given phylogenetic tree (T , λ), it suffices to compute that of Aut(T ), and vice
versa; but now, due to Theorem 1.14, that amounts to counting the number of shape
isomorphism classes of the maximal pending subtrees rooted at each internal node in
T .

Example:
Consider the star with n leaves, T star

n ∈ Treen. It has only one internal node, ρ, and
n maximal pending subtrees, all of them isomorphic to a leaf. Thus, n1(ρ) = n, and
therefore

Aut(T star
n ) = n! and φ(T ) = 1.

For any other treeT ∈ Treen, its number of automorphismsmust be strictly less than
n!. Indeed, for |Aut(T )| = |stab(T , λ)| ≤ |Sn | = n!. Now, the fact that the bound
is strict derives from the fact that, for any collection of positive natural numbers
k1, . . . , km such that

∑m
i=1 = n, n! ≥

∏m
i=1 ki !, with equality if, and only if, m = 1

and k1 = n.
Now consider the caterpillar with n leaves. It has the characteristic property of

having only one symmetry node: the root of the cherry at its bottom. Thus, its
number of automorphisms is 2! = 2. Notice that any other tree has either more
symmetry nodes —hence, a bigger number of automorphisms— or a single k-fan
with k ≥ 3, and therefore, again, a bigger number of automorphisms.

1.1.3 Newick

In order to represent a tree in a practical manner, or at least in one that can be easily
manipulated by an easy algorithm, we will use the Newick format for a tree [14]. We
define it recursively as follows:

newick : Tree → String
` 7→ ·

T1 ∗ · · · ∗Tk 7→ (newick(T1), . . . ,newick(Tk))

Remark 1.17. The usual Newick format ends the description of a tree by a semicolon,
and our programs expect these strings to do so, but in this memoir we shall avoid this
convention in order not to confuse this semicolon with a punctuation mark.
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Example:
Let T = T bal

7 ∈ BinTree7 be the maximally balanced tree depicted in Figure 1.3. It
can be written as T = T1 ∗T2, where

T1 T2

Proceeding in this fashion we would get to the leaves, whose Newick representation
is just ·. Therefore, we would construct newick(T1) = ((·, ·), (·, ·)) and newick(T2) =

((·, ·), ·). Finally,

newick(T ) = newick(T1 ∗T2) = (newick(T1),newick(T2)) = (((·, ·), (·, ·)), ((·, ·), ·)).

The Newick format can be extended to a function MulTree→ String in an easy way,
that has the perquisite of being easy to particularize to multilabelled shapes. It can be
defined as follows:

newick : MulTree → String
({`}, λ) 7→ λ(`)

(T1, λ1) ∗ · · · ∗ (Tk, λk) 7→ (newick (T1, λ1), . . . ,newick (Tk, λk))

Finally, we shall also use Newick strings to describe the elements of MulShTree, by
simply taking the Newick representation of a multilabelled tree shape as the Newick
representation of any multilabelled tree representing it.

Example:
Recall the three trees depicted in Figure 1.6:

321
T1

221
T2

112
T3

Then,

• newick(π1(T1)) = newick(π1(T2)) = newick(π1(T3)) = ((·, ·), ·).

• newick(T1) = ((1, 2), 3), newick(T2) = ((1, 2), 2), and newick(T3) = ((1, 2), 1).

• newick(π∗(T1)) = ((1, 2), 3) and newick(π∗(T2)) = newick(π∗(T3)) = ((1, 2), 2).

Notice that, since the root join is an operation—and, in particular, gives rise to a unique
tree—, we can easily show that the Newick representation of a tree also allows us to
recover a single tree from it. Nevertheless, bear in mind that a tree, as well as a multil-
abelled tree and even more a multilabelled tree shape, may have more than one repre-
sentation in Newick format, due to the commutativity of the root join. For instance,
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for the tree T1 used in the last example, we also have that newick(π1(T1)) = (·, (·, ·)) and
newick(T1)may as well be ((2, 1), 3), (3, (1, 2)) or (3, (2, 1)), while newick(π∗(T1)) can be
any string of the form either ((i, j), k) or (i, ( j, k)) with {i, j, k} = {1, 2, 3}.

1.2 Measures of balance

A balance index is an instance of what J. Mosterín calls a metric concept [89], as it
assigns a tree a magnitude that might not have any sense in and by itself, but allows us
to compare trees in a determinate manner. They focus on a topological feature —the
“balance” of a tree— for which an intuitive idea is readily available in everyone’s mind.
This balance is a measure of the propensity of a tree of having nodes such that, for every
children, their rooted subtrees have the same number of leaves.

A balance index is, in general, a function I : Tree → R or I : BinTree → R. If
well defined, the relation ≤R should capture some aspect of the “balance” of the trees in
Tree, although this concept is difficult to put into words and we usually end up thinking
about it in the fashion of Wittgenstein’s “gut ist, was Gott befiehlt”: “balance is what
is measured by the I index”.

But what does it mean that a balance index is well, or ill, defined? This question
is too big to be answered in this work, but there are certain intuitive, pre-theoretical
properties that a balance index ought to satisfy. First of all, it should correlate with
other balance indices, which is a way to ensure that they are somehow measuring the
same underlying property, even if it cannot be unveiled; but, of course, this correlation
must not be perfect, for otherwise the new index would be redundant. Secondly, it
should place those trees that are conventionally considered to be “most balanced” and
those considered to be “least balanced” as opposite extremes in the range of values that
it can attain. Here we also find that those considered to be “least balanced” are (almost)
always easier to capture than those “most balanced”, and indeed all balance indices for
trees considered in this work correctly classify the former even though some of them
fail in classifying the latter, or at least its unicity. Thirdly, it should be easily computed,
as most balance indices used in the literature are computed in linear time. Finally, a
good balance index should have a reasonably big range of possible values, given the
stupendously largeness the number of trees with a fixed number of leaves can get. This
last reason is behind the fact that the number of automorphisms is not used to compute
the balance of bifurcating trees, since Lemma 1.13 and Theorem 1.14 imply that, in the
bifurcating case, it amounts to counting symmetry nodes of a tree, whose size is linear
on the number of leaves.

Given a balance index I , it can be unreasonable to expect it to allow us to compare
the balance of two trees with a different number of leaves. A possible way to circumvent
this difficulty is to normalize it as follows

I : Tree → [0, 1]
T 7→

I (T )−min{I (T ′):T ′∈Tree|L(T )| }
max{I (T ′):T ′∈Tree|L(T )| }−min{I (T ′):T ′∈Tree|L(T )| }

.

Notice that this formula has the desirable property of attaining the extreme values
of the interval [0, 1]. But, to do this, we need to know the maximum and minimum
values of I on each Treen. Another possible way to do it, given a probabilistic model
(Pn)n of phylogenetic trees (see Section 1.3) and the random variable In that takes a
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treeT ∈ PhyloTreen generated with probability Pn(T ) and computes the balance index
I (T ), would be to standardize I by means of the usual transformation:

Î (T ) =
I (T ) − EP (In)

σP (In)
,

where EP (In) and σP (In) denote the expected value and the variance of In. But, again,
to do so we need to know these statistics.

In this document we will work with several balance indices, mainly the Colless
index, theQuartet Index3, the Sackin index and the Variance of depths. Up to a degree,
we shall also be concerned with the Cophenetic index. Now, we introduce those of
them that were already known before this research began.

1.2.1 The Colless index

The Colless index [19] is one of the most widely used measures of tree balance, partly
due to its intuitiveness, as well as being the second oldest balance index found in the
literature. It is defined only for bifurcating trees as follows [19, 22]:

C : BinTree → N

T 7→
∑

u∈V̊ (T ) bal(u).

Although there exists a sound extension of the Colless index for multifurcating trees
[86], in this report we shall only be concerned with the original (binary) definition.
Notice that, by dividing by the number of internal nodes of the tree, this gives the
mean share of “imbalance” for each node, thus providing an intuitive justification for
this measure.

Themaximum value of the Colless index of a bifurcating tree with n leaves is always
reached at the caterpillars, and uniquely so [85]. This value is

C (T cat
n ) =

(n − 1)(n − 2)
2

.

This result agrees with the intuition that the caterpillars are the “least balanced” of all
trees [102].

We devote the integrity of Chapter 2 to the minimum value of the Colless index.
Apart from the obvious result that the minimum Colless index among all bifurcating
trees with 2m leaves, where m ∈ N, is achieved exactly at the fully symmetric trees
[60, 69, 88], whose Colless index is 0, neither this minimum nor the trees attaining
it had been characterized when trees with any number of leaves were considered. We
provide a full characterization of the trees that attain the minimum Colless index, as
well as its value. We shall also show that, given n ∈ N≥1, the width of the range of
values of the Colless index on BinTreen is inO(n2).

1.2.2 The Sackin index

The Sackin index [107] is usually given credit to be the oldest balance index existing in
the literature, even though, as we mentioned in the introduction, in its seminal paper

3Née Rooted Quartet index in [25].
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[102] Sackin actually proposed another index (namely, the Variance of depths) to be
used. In any case, what we currently call Sackin index is the one that got popular and
widespread —and not without a fair amount of reasons—, and is defined to be the sum
of the leaves’ depths of a given tree [107]; that is,

S : Tree → N

T 7→
∑

u∈L(T ) δ(u)

i.e., the sum of the multiset ∆(T ) of the leaves’ depths of T if considered a vector of
numbers. It can be proved [8, 99] that this index has the following equivalent reformu-
lation:

S : Tree → N

T 7→
∑

u∈V̊ (T ) κ(u).

If we take into account the number of leaves of the tree T , n, we can define

S(T ) =
1
n
S(T )

to be the mean depth of the leaves of T . This gives an intuitive justification for this
index. Notice, however, that by construction the Sackin index is very prone to repeat
values, since any two trees T1,T2 ∈ Treen with the same number of leaves such that
∆(T1) = ∆(T2) will have the same Sackin index; it does not, thus, distinguish the shapes
between them.

By Theorem 2 in [39] and the obvious fact that, for every non-binary tree there
always exist a binary tree with largest Sackin index (obtained by resolving all multi-
furcations in it), we know that the maximum value of the Sackin index on Treen is
reached exactly at the caterpillars, which, again, agrees with the observation that these
trees ought to be classified as being the least balanced of all trees [102]. This maximum
value is

S(T cat
n ) =

(n − 1)(n + 2)
2

,

for any number of leaves n. As to the minimum value for multifurcating trees, it is
clearly reached exactly at the star T star

n and it is

S(T star
n ) = n.

Nevertheless, stars are never bifurcating as soon as the number of leaves exceeds 2
(which happens quite a lot), and so the question for the minimum value of the Sackin
index applied to bifurcating trees is sound. This question was recently answered by
M. Fischer with the next result, which is basically a restatement of Algorithm 1 and
Corollary 2 in [39].

Theorem 1.18. Let T ∈ BinTreen and let m =
⌈
log2(n)

⌉
. Then, S(T ) is minimum on

BinTreen if, and only if, it is obtained from the fully symmetric tree with 2m leaves T bal
2m

by removing from it any 2m − n cherries and replacing them by their roots, which become
leaves of depth m − 1. All trees obtained in this way have 2m − n leaves of depth m − 1 and
2n − 2m leaves of depth m, and therefore the minimum value of S on BinTreen is

n(
⌈
log2(n)

⌉
+ 1) − 2dlog2(n)e .
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Thus, the minimum and maximum values of Sackin index on BinTreen grow in
O(n log(n)) andO(n2), respectively, and hence the range of values of the Sackin index
on BinTreen is inO(n2), as it was the case for the Colless index. The range of its values
on Treen grows also in quadratic order, but it is wider because the minimum value is
smaller.

Now, we provide the following result that we will use in Chapter 4.

Theorem 1.19. Let T ∈ BinTreen . The following conditions are equivalent:

(i) T has minimum Sackin index.

(ii) There exists a d0 ∈ N such that δ(x) ∈ {d0, d0 + 1} for every x ∈ L(T ).

(iii) |δ(x) − S(T )| < 1 for every x ∈ L(T ).

(iv) T is depth-equivalent to T bal
n .

Proof. Let m =
⌈
log2(n)

⌉
. By applying Theorem 1.18, we see that the bifurcating trees

that attain theminimum Sackin index have all their leaves of depthm (those that remain
from T bal

2m ) or m − 1 (the roots of the removed cherries). Therefore, (i) implies (ii).
We proceed now to show the equivalence between (ii) and (iii). Since, by definition,

S(T ) is the mean value of the leaves’ depths, (ii) implies (iii). On the other hand, as
δ(x) ∈ N for all x ∈ L(T ), for it to be such that |δ(x) − S(T )| < 1 it must happen that
δ(x) ∈ {bS(T )c, dS(T )e}; therefore, (iii) implies (ii).

In order to prove that (ii) implies (i), we proceed by induction on the number of
leaves n. The base case n = 1 is obvious, since there only exists a tree with one leaf.
Therefore, we suppose this implication to be true up to n − 1 leaves, n ≥ 2. Let
T ∈ BinTreen be a tree satisfying condition (ii), and x0 ∈ L(T ) a leaf of maximum
depth, which we shall assume to be d0+1 (that is, if all the leaves were to have the same
depth, it is d0 + 1). Then, x0 must be part of a cherry: consider the tree T ′ obtained by
removing that cherry and placing a leaf y0 of depth d0 instead. The resulting tree has
n − 1 leaves and it still satisfies condition (ii), and therefore it lies under our induction
hypothesis: it has, hence, minimum Sackin index, and so it has the form described in
Theorem 1.18: n − 1− 2m′−1 cherries at depthm ′ and 2m′ − n + 1 leaves at depthm ′− 1,
wherem ′ =

⌈
log2(n − 1)

⌉
. Note thatm ′ = m−1 if n = 2m−1+1 andm ′ = m otherwise.

Since, then, T is obtained fromT ′ by pending a cherry from a leaf in it at depthm ′−1,
it is straightforward to check that T is also of the form described in Theorem 1.18.

Thus concludes the proof that conditions (i), (ii) and (iii) are equivalent.
Let us prove now that if a bifurcating tree T satisfies (iv) then it satisfies (ii) with

d0 = blog2(n)c, by induction on the depth of the tree. This implication is trivially true
when δ(T ) = 0, because the only tree of depth 0 has a single leaf. Assume now that
the implication is true for every tree of depth at most δ and let T ∈ BinTreen be a
bifurcating tree of depth δ + 1 that is depth-equivalent to T bal

n . Since (ii) is an assertion
on the depths of the leaves of T , and ∆(T ) = ∆(T bal

n ), in order to prove that T satisfies
(ii) we can assume without any loss of generality that T = T bal

n . Let k = n−2d0 , where,
we recall, d0 = blog2(n)c.

Let T1 and T2 be the maximal pending subtrees of T and n1 and n2 their respective
numbers of leaves, with n1 ≥ n2 and n = n1 + n2. Since T is maximally balanced,
T1 and T2 are also maximally balanced and n1 = dn/2e and n2 = bn/2c. Then, since
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δ(T1), δ(T2) ≤ δ = δ(T ) − 1, by the induction hypothesis we deduce that if, for every
i ∈ {1, 2}, we set di = blog2(ni)c, then δTi (x) ∈ {di, di + 1} for every x ∈ L(Ti). Now:

• If k < 2d0 − 1, then d1 = d2 = d0 − 1.
• If k = 2d0 − 1, then n1 = 2d0 , and thus d1 = d0, and n2 = 2d0 − 1, and thus d2 = d0 − 1;
but then, T2 is fully symmetric, because it is maximally balanced with 2d0 leaves, which
implies in particular that all its leaves have depth d0.

Then, in both cases, δTi (x) ∈ {d0 − 1, d0} for every x ∈ L(Ti) and i ∈ {1, 2}. Since
δT (x) = δTi (x) + 1 if x ∈ L(Ti), we conclude that δT (x) ∈ {d0, d0 + 1} for every
x ∈ L(T ). This finishes the proof that (iv) implies (ii).

Finally, we prove that (i) implies (iv). Let T ∈ BinTreen be of the form described in
Theorem 1.18. Since we have already proved that (iv) implies (ii) and (ii) implies (i), we
know that T bal

n is also of the form described in Theorem 1.18. But, then, T and T bal
n are

depth-equivalent because all trees of the form described in Theorem 1.18 have 2m − n
leaves of depth m − 1 and 2n − 2m leaves of depth m. �

In particular, T bal
n achieves the minimum Sackin index on BinTreen, but it can be

proved that there are other trees in BinTreen with minimum Sackin index if, and only
if, n is not of the form 2m − 1, 2m , or 2m + 1 for some m ∈ N [39, Cor. 3].

Remark 1.20. As a corollary, we also draw the conclusion that anymaximally balanced
tree with n = 2m−1 + k leaves has, exactly, k cherries at depth m and 2m−1 − k leaves at
depth m − 1. Notice, though, that this could have also been proved by induction using
Theorem 1.8.

1.2.3 The Cophenetic index

A balance index of which we will be but marginally concerned in this report will be
the Total Cophenetix index [85], which we shall call here Cophenetic index, Φ. It is
defined on a given tree T as the sum over each pair of different leaves of the depth of
their lowest common ancestor; i.e., for any T ∈ Treen,

Φ(T ) =
1
2

∑
x,y∈L(T )

x,y

δ(lca(x, y)).

As it can be shown (Lemma 2 in [85]), the above expression is equivalent to

Φ(T ) =
∑

u∈V̊ (T )\{ρ }

(
κ(u)
2

)
.

Notice that this balance index is defined for multifurcating trees.
The maximum value of the Cophenetic index on Treen is again uniquely reached

at the caterpillars [85, Prop. 10], as was the case with the Sackin and the Colless indices
(the latter, in the bifurcating case). Notice that, since the caterpillars are bifurcating
trees, the maximum value when we restrict the index only to bifurcating trees remains
the same. This value is

Φ(T cat
n ) =

(
n
3

)
.
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Its minimum value on Treen is obviously attained exactly at the stars, since

Φ(T star
n ) = 0,

while the bifurcating trees that achieve the minimum Cophenetic index are exactly the
maximally balanced trees [85, Thm. 13]. Notice that in this sense, the Cophenetic
index performs “better” than the Colless and Sackin ones do, since it uniquely classifies
the maximally balanced trees, i.e. “the most balanced” bifurcating trees according to
Shao and Sokal [107], as being the only ones achieving theminimumCophenetic index.
Unfortunately, no closed expression is known so far that computes this value, although
a recurrent one can be given [85]: Φ(T bal

1 ) = 0 and, for n ≥ 2,

Φ(T bal
n ) = Φ(T bal

dn/2e) + Φ(T
bal
bn/2c) +

(⌈n
2
⌉

2

)
+

(⌊ n
2
⌋

2

)
.

The sequence Φ(T bal
n ) grows in O(n2), and it can be found as sequence A011371 in

Sloane’s Encyclopedia of Integer Sequences [108]. So, the range of values ofΦ on Treen
and onBinTreen grows inO(n3) and so it was, until the the introduction of ourQuartet
index [25], the balance index with the widest range in the literature.

1.2.4 Binary recursive shape indices

The Colless, the Sackin and the Cophenetic indices have a useful feature that deserves
an adjective: they are recursive.

A recursive shape index [76] is a map I : Tree→ R for which there exists a symmet-
ric function fI :

⋃
k≥2N

k → R such that, for every trees T1 ∈ Treen1 ,. . . , Tk ∈ Treenk ,

I (T1 ∗ · · · ∗Tk) =

k∑
i=1

I (Ti) + fI (n1, . . . , nk),

where fI being symmetric means that for every k ≥ 2, for every (x1, . . . , xk) ∈ Nk and
for every σ ∈ Sk ,

fI (x1, . . . , xk) = fI (xσ(1), . . . , xσ(k)). (1.1)

When a recursive shape index is only defined on BinTree, we say that it is a binary
recursive shape index. The theory of recursive shape indices was introduced in [76] and
then used, among others, by Cardona et al. [13].

We have that:

• The Colless index is a binary recursive shape index with fC (n1, n2) = |n1 − n2 |

[22, 98].

• The Sackin index is a recursive shape index with fS (n1, . . . , nk) =
∑k

i=1 ni [99].

• The Cophenetic index is a recursive shape index with fΦ(n1, . . . , nk) =
∑k

i=1
(ni
2
)

[85].

Given a shape index I : Tree→ R or I : BinTree→ R, we extend it to PhyloTree,
or BinPhyloTree, by associating to each phylogenetic treee the value of I on its shape:
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I (T , λ) = I (T ). We shall say that a map I : PhyloTree→ R, or I : BinPhyloTree→ R,
is a recursive shape index for phylogenetic trees when it is the extension to phylogenetic
trees of a recursive shape index for trees. In particular, a recursive shape index for
phylogenetic trees is invariant under isomorphisms of trees and relabellings.

1.3 Probabilistic models

A probabilistic model of phylogenetic trees (Pn)n is a family of maps Pn : PhyloTreen →
[0, 1], n ≥ 1, such that, for every n ≥ 1,

∑
(T ,λ)∈PhyloTreen Pn(T , λ) = 1. A probabilistic

model of trees (P ∗n)n is a family of maps P ∗n : Treen → [0, 1], n ≥ 1, such that, for every
n ≥ 1,

∑
T ∈Treen P

∗
n(T ) = 1. A probabilistic model of bifurcating trees, or of phylogenetic

trees, is a probabilistic model of trees, or phylogenetic trees, such that the probability
of a tree is 0 whenever it is not bifurcating.

Each probabilistic model of phylogenetic trees (Pn)n induces a probabilistic model
of trees (P ∗n)n by means of the relation

P ∗n(T ) =
∑

(T ,λ)∈PhyloTreen

Pn(T , λ).

We say that a probabilistic model of phylogenetic trees (Pn)n is shape invariant
[43] (or exchangeable [2]) if, for every (T1, λ1), (T2, λ2) ∈ PhyloTreen, Pn(T1, λ1) =

Pn(T2, λ2) whenever T1 = T2. In this case, the probabilistic model of trees induced by
(Pn)n satisfies that

P ∗n(T ) =
��{(T0, λ0) ∈ PhyloTreen : T0 = T }

�� · Pn(T , λ) = φ(T ) · Pn(T , λ),

with the notations in Theorem 1.14, for any (T , λ) ∈ PhyloTreen.
Each probabilistic model of trees (P ∗n)n induces a probabilistic model of phyloge-

netic trees (Pn)n by splitting equally the probability of each tree among all phylogenetic
trees of this shape

Pn(T , λ) =
1��{(T0, λ0) ∈ PhyloTreen : T0 = T }

��P ∗n(T ) = 1
φ(T )

P ∗n(T ).

It is clear that the probabilistic model of phylogenetic trees induced in this way by a
probabilistic model of trees is shape invariant.

1.3.1 Sampling consistency

Aprobabilistic model of phylogenetic trees (Pn)n is said to be sampling consistent [2] (or
deletion stable [43]) when, given a phylogenetic tree (T0, λ0) ∈ PhyloTreen−1, the prob-
ability of obtaining it through the procedure of choosing a phylogenetic tree (T , λ) ∈
PhyloTreen with probability Pn(T , λ) and removing the leaf labelled n (as well as any
elementary node created in this way) is Pn−1(T0, λ0); i.e., formally, when for every
n ≥ 2 and for every (T0, λ0) ∈ PhyloTreen−1,

Pn−1(T0, λ0) =
∑

(T ,λ)∈PhyloTreen
(T ,λ)([n−1])=(T0,λ0)

Pn(T , λ).

21



Chapter 1

It is an easy induction exercise to prove that, for every m ∈ {1, . . . , n − 1}, a sampling
consistent model (Pn)n satisfies that, for any (T0, λ0) ∈ PhyloTreem ,

Pm(T0, λ0) =
∑

(T ,λ)∈PhyloTreen
(T ,λ)([m])=(T0,λ0)

Pn(T , λ). (1.2)

If (Pn)n is sampling consistent and shape invariant, then the probabilities of the trees
are not affected by the specific labels we consider, and thus for any non-empty subset
X ⊆ [n], and for any (T0, λ0) ∈ PhyloTree(X ), we would have

PX (T0, λ0) =
∑

(T ,λ)∈PhyloTreen
(T ,λ)(X )=(T0,λ0)

Pn(T , λ),

where PX : PhyloTree(X ) → [0, 1] is induced by Pm (where |X | = m ) through any
bijection X ↔ [m].

We can naturally extend this concept to tree shapes. A probabilistic model of trees
(P ∗n)n is sampling consistent if, for every n ≥ 2, having chosen a tree T with probability
P ∗n(T ) and a leaf x ∈ L(T ) equiprobably, then the resulting tree from having x removed
is produced with probability given by P ∗n−1; i.e., when for any n ≥ 2 and any T0 ∈

Treen−1,

P ∗n−1(T0) =
∑

T ∈Treen

|{x ∈ L(T ) : T (L(T ) \ {x}) = T0}|

n
P ∗n(T ).

In Lemma 1.21 below we extend this relation to any subset X ⊆ L(T ), thus providing
a generalization of Equation (1.2) for shapes. In its statement, and henceforth, Part(X )
is the set of parts, or subsets, of any set X and

Partm(X ) = {S ∈ Part(X ) : |S | = m}.

We will then provide several lemmata on probabilistic models that will be used in this
work, not having been able to find suitable references in the literature.

Lemma 1.21. A probabilistic model of trees (P ∗n)n is sampling consistent if, and only if, for
every n ≥ 2, for every 1 ≤ m ≤ n, and for every T0 ∈ Treem ,

P ∗m(T0) =
∑

T ∈Treen

|{X ∈ Partm(L(T )) : T (X ) = T0}|( n
m
) P ∗n(T ).

Proof. The “if” implication is obvious, since it amounts to considering m = n − 1.
Now, for the “only if” implication, we will proceed by induction on the number n−m
of leaves we remove. The base case n − m = 1 is already known, by the definition of
sampling consistency. Now suppose it is true up to n −m − 1 removed leaves, m ≥ 1;
we want to show that

P ∗m(T0) =
∑

T ∈Treen

|{X ∈ Partm(L(T )) : T (X ) = T0}|( n
m
) P ∗n(T ).
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Now, we know that

P ∗m(T0) =
∑

Tm+1∈Treem+1

|{x ∈ L(Tm+1) : T (L(Tm+1) \ {x}) = T0}|

m + 1
P ∗m+1(Tm+1)

(by sampling consistency)

=
∑

Tm+1∈Treem+1

(
|{x ∈ L(Tm+1) : T (L(Tm+1) \ {x}) = T0}|

m + 1

·
∑

T ∈Treen

|{X ∈ Partm+1(L(T )) : T (X ) = Tm+1}|( n
m+1

) P ∗n(T )

)
(by the induction hypothesis)

=
∑

Tm+1∈Treem+1

∑
T ∈Treen

|{x ∈ L(Tm+1) : T (L(Tm+1) \ {x}) = T0}|

m + 1

·
|{X ∈ Partm+1(L(T )) : T (X ) = Tm+1}|( n

m+1
) P ∗n(T )

=
∑

T ∈Treen

|{(x,X ) ∈ L(T ) × Partm+1(L(T )) : x ∈ X , (T (X ))(X \ {x}) = T0}|

(m + 1)
( n
m+1

) P ∗n(T )

=
∑

T ∈Treen

|{(x,X ) ∈ L(T ) × Partm+1(L(T )) : x ∈ X , T (X \ {x}) = T0}|

(m + 1)
( n
m+1

) P ∗n(T )

=
∑

T ∈Treen

(n −m)|{Y ∈ Partm(L(T )) : T (Y ) = T0}|

(m + 1)
( n
m+1

) P ∗n(T )

=
∑

T ∈Treen

|{X ∈ Partm(L(T )) : T (X ) = T0}|( n
m
) P ∗n(T ),

which proves the inductive step. �

The next lemma will be useful in the proof of the last result of this section, which
relates the sampling consistency of a probabilistic model of phylogenetic trees to the
sampling consistency of a probabilistic model of trees.

Lemma 1.22. Let (Pn)n be a shape invariant probabilistic model of phylogenetic trees. For
every (T , λ), (T ′, λ ′) ∈ PhyloTreen−1, if T = T

′, then∑
(Tn ,λn )∈PhyloTreen
(Tn ,λn )([n−1])=(T ,λ)

Pn(Tn, λn) =
∑

(T ′n ,λ
′
n )∈PhyloTreen

(T ′n ,λ
′
n )([n−1])=(T ′,λ′)

Pn(T ′n, λ ′n).

Proof. Let ϕ : T → T ′ be an isomorphism of trees. For every (T ′′, λ ′′) ∈ PhyloTreen−1,
let

En(T ′′, λ ′′) = {(Tn, λn) ∈ PhyloTreen : (Tn, λn)([n − 1]) = (T ′′, λ ′′)}.

Each (Tn, λn) ∈ En(T ′′, λ ′′) is obtained by adding a leaf labelled with n to T ′′ as a new
child to either an internal node, or to a new node obtained by the splitting in two of
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an edge, or to a new bifurcating root (whose other child would, then, be the old root).
This implies the existence of a shape preserving bijection

f : En(T , λ) → En(T ′, λ ′)

that sends each phylogenetic tree (Tn, λn) ∈ En(T , λ) to the tree in En(T ′, λ ′) obtained
by adding the leaf labelled with n to the place in T ′ that corresponds to it under the
isomorphism of trees ϕ. Then, since (Pn)n is shape invariant,∑

(Tn,λn)∈En(T ,λ)

Pn(Tn, λn) =
∑

(Tn,λn)∈En(T ,λ)

Pn( f (Tn, λn))

=
∑

(T ′n,λ′n)∈En(T ′,λ′)

Pn(T ′n, λ ′n)

as we wanted to show. �

The next result is an intuitive, albeit important, lemma that generalizes Corollary
40 in [43].

Lemma 1.23. Let (Pn)n be a shape invariant probabilistic model of phylogenetic trees and
let (P ∗n)n be the corresponding probabilistic model of tree shapes. Then, (Pn)n is sampling
consistent if, and only if, (P ∗n)n is.

Proof. We begin by proving the “only if” implication; therefore, suppose that (Pn)n is
sampling consistent. Then, for everyT ∈ Treen−1 and for every (T , λ) ∈ PhyloTreen−1,

P ∗n−1(T ) = φ(T )Pn−1(T , λ)
(by the shape invariance of (Pn)n )

= φ(T )
∑

(Tn ,λn )∈PhyloTreen
(Tn ,λn )([n−1])=(T ,λ)

Pn(Tn, λn)

(by the sampling consistency of (Pn)n )

=
∑

(T ,λ)∈PhyloTreen−1

∑
(Tn ,λn )∈PhyloTreen
(Tn ,λn )([n−1])=(T ,λ)

Pn(Tn, λn)

(by Lemma 1.22)

=
∑

(Tn ,λn )∈PhyloTreen
π1(Tn ,λn )([n−1])=T

Pn(Tn, λn) =
∑

(Tn ,λn )∈PhyloTreen
π1(Tn ,λn )([n]\{i})=T

Pn(Tn, λn) for any i ∈ [n]

(by the shape invariance of (Pn)n )
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=
1
n

n∑
i=1

∑
(Tn ,λn )∈PhyloTreen
π1(Tn ,λn )([n]\{i})=T

Pn(Tn, λn)

=
∑

(Tn,λn)∈PhyloTreen

|{i ∈ [n] : π1(Tn, λn)([n] \ {i}) = T }|
n

Pn(Tn, λn)

=
∑

Tn ∈Treen

(
|{x ∈ L(Tn) : Tn(L(T ) \ {x}) = T }|

n

∑
(T ,λ)∈PhyloTreen

π1(T ,λ)=Tn

Pn(T , λ)

)

=
∑

Tn ∈Treen

|{x ∈ L(Tn) : Tn(L(T ) \ {x}) = T }|
n

P ∗n(Tn)

as we claimed.
The proof of the other implication consists in carefully reversing the argument,

running backwards the sequence of equalities in the proof above. Assume that (P ∗n)n is
sampling consistent and let T ∈ Treen−1. Then,

P ∗n−1(T ) =
∑

Tn ∈Treen

|{x ∈ L(Tn) : Tn(L(Tn) \ {x}) = T }|
n

P ∗n(Tn)

(by the sampling consistency of (Pn)n )

=
1
n

∑
Tn ∈Treen

©«|{x ∈ L(Tn) : Tn(L(Tn) \ {x}) = T }|
∑

(Tn,λn)∈PhyloTreen

Pn(Tn, λn)
ª®¬

=
1
n

∑
Tn ∈Treen

∑
(Tn,λn)∈PhyloTreen

|{i ∈ [n] : Tn([n] \ {i}) = T }|Pn(Tn, λn)

=
1
n

∑
(Tn,λn)∈PhyloTreen

|{i ∈ [n] : Tn([n] \ {i}) = T }|Pn(Tn, λn)

=
1
n

n∑
i=1

∑
(Tn ,λn )∈PhyloTreen
π1(Tn ,λn )([n]\{i})=T

Pn(Tn, λn) =
∑

(Tn ,λn )∈PhyloTreen
π1(Tn ,λn )([n−1])=T

Pn(Tn, λn)

(by the shape invariance of (Pn)n )

=
∑

(T ,λ)∈π−11 (T )

∑
(Tn ,λn )∈PhyloTreen
(Tn ,λn )([n−1])=(T ,λ)

Pn(Tn, λn)

= φ(T )
∑

(Tn ,λn )∈PhyloTreen
(Tn ,λn )([n−1])=(T ,λ)

Pn(Tn, λn)

by Lemma 1.22, and then, using the shape invariance of Pn and dividing both sides of
the equality by φ(T ), we get

Pn(Tn, λn) =
1

φ(T )
P ∗n−1(T ) =

∑
(Tn ,λn )∈PhyloTreen
(Tn ,λn )([n−1])=(T ,λ)

Pn(Tn, λn)

as we wanted to prove. �
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1.3.2 Markovianity

Let (Pn)n be a probabilistic model of phylogenetic trees. It is natural to ask ourselves
whether the probability of obtaining a phylogenetic tree with n leaves is related to the
probability of its maximal pending subtrees in somemeaningful way. We say that (Pn)n
is Markovian self-similar [43] (or simply Markovian) if there exists a symmetric (in the
sense of Equation (1.1)) map

q :
⋃
k≥2

Nk → R≥0

such that, for every (T1 ∗ . . . ∗Tk, λ) ∈ PhyloTreen, with each |L(Ti)| = ni ,

Pn(T1 ∗ . . . ∗Tk, λ) = q(n1, . . . , nk)Pn1(T1, λ |T1) · · · Pnk (Tk, λ |Tk ).

It can be shown that if (Pn)n is a Markovian probabilistic model of phylogenetic trees,
then the map q is unique (Proposition 25 in [43]), and then it is called the split distri-
bution of (Pn)n.

Now suppose that a given Markovian probabilistic model is also shape invariant;
then, the Markovianity of the model ought to be reflected when we forget the labelling
of our trees. And this is indeed the case, as is presented by the next result for bifurcating
trees (for simplicity and because this is the only case where we shall use it).

Lemma 1.24. Let (Pn)n a Markovian shape invariant probabilistic model of bifurcating
phylogenetic trees, and let (P ∗n)n be the induced probabilistic model of bifurcating trees.
Then, if T = Tk ∗ Tn−k ∈ BinTreen where Tk ∈ BinTreek and Tn−k ∈ BinTreen−k
for 1 ≤ k ≤ n − 1,

(i) If Tk , Tn−k ,

P ∗n(Tk ∗Tn−k) =

(
n
k

)
q(k, n − k)P ∗k (Tk) · P ∗n−k(Tn−k).

(ii) If Tk = Tn−k ,

P ∗n(Tk ∗Tn−k) =
1
2

(
n
k

)
q(k, n − k)P ∗k (Tk) · P ∗n−k(Tn−k).

Proof. By the shape invariance of the model, we know that P ∗m(T ) = φ(T )Pm(T , λ) for
all m ∈ N≥1 and (T , λ) ∈ BinPhyloTreem . Now, by the Markovianity of the model,

P ∗n(Tk ∗Tn−k) = φ(Tk ∗Tn−k)Pn(Tk ∗Tn−k, λ)

= φ(Tk ∗Tn−k)q(k, n − k)Pk(Tk, λk)Pn−k(Tn−k, λn−k)

=
φ(Tk ∗Tn−k)

φ(Tk)φ(Tn−k)
q(k, n − k)P ∗k (Tk)P ∗n−k(Tn−k),

where λk, λn−k are the restrictions of λ to the sets of leaves ofTk andTn−k , respectively.
Therefore, it is now a matter of deducing the value of the ratio

φ(Tk ∗Tn−k)

φ(Tk)φ(Tn−k)
.

Now, by Corollary 1.16, we distinguish two cases:
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• If Tk , Tn−k the root is not a symmetry node, and then s(Tk ∗Tn−k) = s(Tk)+ s(Tn−k);
thus,

φ(Tk ∗Tn−k)

φ(Tk)φ(Tn−k)
=

n!
2s(Tk ∗Tn−k )

k!(n−k)!
2s(Tk )+s(Tn−k )

=

(
n
k

)
2s(Tk∗Tn−k )

2s(Tk∗Tn−k )
=

(
n
k

)
.

• On the other hand, if Tk = Tn−k , then the root is a symmetry node, therefore s(Tk ∗

Tn−k) = s(Tk) + s(Tn−k) + 1. Hence,

φ(Tk ∗Tn−k)

φ(Tk)φ(Tn−k)
=

n!
2s(Tk ∗Tn−k )

k!(n−k)!
2s(Tk )+s(Tn−k )

=

(
n
k

)
2s(Tk∗Tn−k )−1

2s(Tk∗Tn−k )
=

1
2

(
n
k

)
.

�

This result will be quite useful in Chapters 3 and 4, where we shall exploit the fact
that the Yule and the Uniform models for bifurcating phylogenetic trees (which we
describe in the next section) are both Markovian and shape invariant.

Remark 1.25. Notice that this last Lemma entails in particular that if (Pn)n is Marko-
vian and shape invariant, then (P ∗n)n is, in general, not Markovian. Indeed, let Tn,T ′n ∈
BinTreen be two different tree shapes with the same number of leaves and non-zero
probability. Then

P ∗2n(Tn ∗T ′n) =
(
2n
n

)
q(n, n)P ∗n(Tn) · P ∗n(T ′n)

P ∗2n(Tn ∗Tn) =
1
2

(
2n
n

)
q(n, n)P ∗n(Tn) · P ∗n(Tn)

and therefore there does no exist a single real number q∗(n, n) such that, for every
T1,T2 ∈ BinTreen,

P ∗2n(T1 ∗T2) = q∗(n, n)P ∗n(T1) · P ∗n(T2).

1.3.3 Some probabilistic models

In this section we will introduce several probabilistic models of phylogenetic trees that
will be used in this work.

Chen-Ford-Winkel’s α-γ-model

This probabilistic model of phylogenetic trees was introduced in [18], and it will turn
out that the next three probabilistic models for bifurcating phylogenetic trees that we
shall describe are instances of it altough they historically preceded it. As it is inferred
by its name, this model depends on two parameters (α, γ) ∈ [0, 1]2 such that α ≥ γ,
and it is born as a generalization of Ford’s α-model for bifurcating phylogenetic trees
(which we shall describe anon) that allows the generation of random multifurcating
trees. Its definition is purely algorithmic and we recall it in Algorithm 1 (for n ≥ 2:
for n = 1, the only tree in PhyloTree1 has, of course, probability 1). We provide an
example of application of this algorithm in Lemma 1.26.

27



Chapter 1

Algorithm 1: α-γ-model
Input : n ∈ N≥2
Output: Tn ∈ PhyloTreen and its probability Pα,γ,n(Tn)

1 m = 2;
2 start with a single cherry T2 labelled on [2] and Pα,γ,2(T2) = 1;
3 while m < n do
4 from Tm , choose:
5 – either a pendant edge e , each one with probability 1−α

m−α ,
6 – or an internal edge e , each one with probability γ

m−α ,
7 – or an internal node u, each one with probability (degout(u)−1)α−γm−α ,
8 – or to add a new root, with probability γ

m−α ;
9 if we have chosen an edge e then
10 split e to create a new node;
11 add a new leaf adjacent to this node, with label m + 1;
12 end
13 if we have chosen a node u then
14 add a new leaf adjacent to u, with label m + 1;
15 end
16 if we have chosen to add a new root then
17 add a new root ρTm+1 whose children are a leaf labelled m + 1 and the

former root of Tm ;
18 end
19 let Tm+1 ∈ PhyloTreem+1 be the resulting tree;
20 set Pα,γ,m+1(Tm+1) equal to Pα,γ,m(Tm) multiplied by the probability of the

choice in line 4;
21 m = m + 1;
22 end
23 return Tn and Pα,γ,n(Tn);

Q0 Q1 Q2 Q3 Q4

Figure 1.7: The five tree shapes in Tree4.

Now, it turns out that the α-γ-model is not shape invariant in general, but the
probabilistic model for trees (P ∗α,γ,n)n it induces is sampling consistent (Theorem 2 in
[18]).

In Chapter 5 we shall need to know the probabilities under P ∗α,γ,4 of the five differ-
ent trees in Tree4, described in Figure 1.7 together with the notations that we shall use
in that chapter; notice that Q0 = T cat

4 , the caterpillar with four leaves, Q3 = T bal
4 , the

maximally balanced tree with 4 leaves, and Q4 = T star
4 , the star with 4 leaves. We com-

pute these probabilities in the following lemma, thus providing an example of explicit
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1.3. Probabilistic models

computation of probabilities for this model.

Lemma 1.26. With the notations of Figure 1.7:

P ∗α,γ,4(Q0) =
2(1 − α + γ)(2(1 − α) + γ)

(3 − α)(2 − α)

P ∗α,γ,4(Q1) =
(5(1 − α) + γ)(α − γ)
(3 − α)(2 − α)

P ∗α,γ,4(Q2) =
2(1 − α + γ)(α − γ)
(3 − α)(2 − α)

P ∗α,γ,4(Q3) =
(1 − α)(2(1 − α) + γ)
(3 − α)(2 − α)

P ∗α,γ,4(Q4) =
(2α − γ)(α − γ)
(3 − α)(2 − α)

Proof. We begin by considering the cherry in PhyloTree2

1 2

ρ

e1 e2

T bal
2

Since PhyloTree2 contains only this tree, Pα,γ,2(T bal
2 ) = 1. We add now to it a leaf

labelled with 3. We have several ways to do it:

• The probability of choosing the root, and then pending from it the leaf 3, is α−γ
2−α , and

therefore the tree

1 32

ρ

e1 e3e2

T star
3

has probability Pα,γ,3(T star
3 ) =

α−γ
2−α .

• The probabilities of choosing either e1 or e2 are 1−α
2−α , since both edges are adjacent to a

leaf. Choosing one or the other adding to it the leaf 3 we obtain the following trees:

1 3

2
u

ρ

e1 e4

e3 e2

T cat,1
3

2 3

1
u

ρ

e2 e4

e3 e1

T cat,2
3

Their probability is, then

Pα,γ,3(T cat,1
3 ) = Pα,γ,3(T cat,2

3 ) =
1 − α
2 − α

.
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• The probability of choosing to add a new root ρ ′ is γ
2−α . The resulting tree is

1 2

3
ρ

ρ ′

e1 e2

e3 e4

T cat,3
3

Its probability is
Pα,γ,3(T cat,3

3 ) =
γ

2 − α
.

From these probabilities, and considering only the tree shapes, we deduce that

P ∗α,γ,3(T
star
3 ) = Pα,γ,3(T star

3 ) =
α − γ

2 − α
P ∗α,γ,3(T

cat
3 ) = Pα,γ,3(T cat,1

3 ) + Pα,γ,3(T cat,2
3 ) + Pα,γ,3(T cat,3

3 )

= 2 ·
1 − α
2 − α

+
γ

2 − α
=

2 + γ − 2α
2 − α

.

Repeating the same process with each tree, we shall derive all phylogenetic trees in
PhyloTree4.

• The star (1, 2, 3, 4) is obtained by adding the leaf 4 to the root of the star T star
3 . Its

probability is, then,

2α − γ
3 − α

· Pα,γ,3(T star
3 ) =

(2α − γ)(α − γ)
(3 − α)(2 − α)

and since it is the only tree of shape Q4, we conclude that

P ∗α,γ,4(Q4) =
(2α − γ)(α − γ)
(3 − α)(2 − α)

.

• The different phylogenetic trees of shape Q0, that is, the caterpillars, can be obtained
as follows:

– (((1, 2), 3), 4) is obtained from T cat,3
3 = ((1, 2), 3) by adding to it a new root and then the

leaf 4 pending from it. Its probability is, then,

γ

3 − α
· Pα,γ,4(T cat,3

3 ) =
γ2

(2 − α)(3 − α)
.

– (((1, 3), 2), 4) and ((2, 3), 1), 4) are obtained from T cat,1
3 = ((1, 3), 2) and T cat,2

3 = ((2, 3), 1),
respectively, by adding to them a new root and then the leaf 4 pending from it. Their
probabilities are, then,

γ

3 − α
· Pα,γ,4(T cat,i

3 ) =
γ(1 − α)

(2 − α)(3 − α)
, i ∈ {1, 2}.
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– (((1, 2), 4), 3) is obtained from T cat,3
3 by adding the leaf 4 to its internal edge e3. Its

probability is, then,

γ

3 − α
· Pα,γ,4(T cat,3

3 ) =
γ2

(2 − α)(3 − α)
.

– (((1, 3), 4), 2) and ((2, 3), 4), 1) are obtained fromT cat,1
3 andT cat,2

3 , respectively, by adding
the leaf 4 to their internal edge e3. Their probabilities are

γ

3 − α
· Pα,γ,4(T cat,i

3 ) =
γ(1 − α)

(2 − α)(3 − α)
, i ∈ {1, 2}.

– (((1, 4), 2), 3) and ((2, 4), 1), 3) are obtained fromT cat,3
3 by adding the leaf 4 to its pendant

edges e1 or e2, respectively. Their probabilities are then

(1 − α)
(3 − α)

· Pα,γ,4(T cat,3
3 ) =

(1 − α)γ
(2 − α)(3 − α)

.

– (((1, 4), 3), 2) and ((3, 4), 1), 2) are obtained fromT cat,1
3 by adding the leaf 4 to its pendant

edges e1 or e4, respectively, and (((2, 4), 3), 1) and ((3, 4), 2), 1) are obtained from T cat,2
3

by adding the leaf 4 to to its pendant edges e2 or e4, respectively. Therefore, their
probabilities are

(1 − α)
(3 − α)

· Pα,γ,4(T cat,i
3 ) =

(1 − α)2

(2 − α)(3 − α)
, i ∈ {1, 2}.

By adding up all these probabilities, we obtain

P ∗α,γ,4(Q0) =
2(1 − α + γ)(2(1 − α) + γ)

(3 − α)(2 − α)
.

• The six phylogenetic trees of shape Q1 are obtained as follows:

– The trees ((1, 4), 2, 3), ((2, 4), 1, 3) and ((3, 4), 1, 2) are obtained by adding the leaf 4 to one
of the three edges in the tree T star

3 , all of them pendant. Their probabilities are then

(1 − α)
(3 − α)

· Pα,γ,4(T star
3 ) =

(1 − α)(α − γ)
(3 − α)(2 − α)

.

– The tree ((1, 2), 3, 4) is obtained by adding the leaf 4 to the root of the tree T cat,3
3 . Its

probability is then

(α − γ)

(3 − α)
· Pα,γ,4(T cat,3

3 ) =
(α − γ)γ

(3 − α)(2 − α)
.

– The trees ((1, 3), 2, 4) and ((2, 3), 1, 4) are obtained by adding the leaf 4 to the root of the
trees T cat,1

3 and T cat,2
3 , respectively. Their probabilities are then

(α − γ)

(3 − α)
· Pα,γ,4(T cat,i

3 ) =
(α − γ)(1 − α)
(3 − α)(2 − α)

, i ∈ {1, 2}.
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By adding up all these probabilities, we obtain

P ∗α,γ,4(Q1) =
(5(1 − α) + γ)(α − γ)
(3 − α)(2 − α)

.

• The four phylogenetic trees of shape Q2 are obtained as follows:

– The tree ((1, 2, 3), 4) is obtained by adding a new root to T star
3 and the leaf 4 pending

from it. Its probability is, then,

γ

3 − α
· Pα,γ,3(T star

3 ) =
γ(α − γ)

(3 − α)(2 − α)
.

– The tree ((1, 2, 4), 3) is obtained by adding the leaf 4 to the root of the cherry in T cat,3
3 .

Its probability is, then,

α − γ

3 − α
· Pα,γ,3(T cat,3

3 ) =
γ(α − γ)

(3 − α)(2 − α)
.

– The trees ((1, 3, 4), 2) and ((2, 3, 4), 1) are obtained by adding the leaf 4 to the root of the
cherry in T cat,1

3 and T cat,2
3 , respectively. Their probability is, then,

α − γ

3 − α
· Pα,γ,3(T cat,i

3 ) =
(α − γ)(1 − α)
(3 − α)(2 − α)

, i ∈ {2, 3}.

By adding up all these probabilities, we obtain

P ∗α,γ,4(Q2) =
2(1 − α + γ)(α − γ)
(3 − α)(2 − α)

.

• Finally, the three phylogenetic trees of shape Q3 are obtained as follows:

– The tree ((1, 2), (3, 4)) is obtained from T cat,3
3 by adding the leaf 4 to the pendant edge

e4. Its probability is, then,

1 − α
3 − α

· Pα,γ,3(T cat,3
3 ) =

(1 − α)γ
(3 − α)(2 − α)

.

– The trees ((1, 3), (2, 4)) and ((2, 3), (1, 4)) are obtained by adding the leaf 4 to the pendant
edges e2 and e1 in T cat,1

3 and T cat,2
3 , respectively. Their probability is, then,

1 − α
3 − α

· Pα,γ,3(T cat,i
3 ) =

(1 − α)2

(3 − α)(2 − α)
, i ∈ {2, 3}.

By adding up these probabilities, we obtain

P ∗α,γ,4(Q3) =
(1 − α)(2(1 − α) + γ)
(3 − α)(2 − α)

.

�

Notice in particular the different probabilities of the caterpillars T cat,i
3 imply that

the α-γ-model is not shape invariant unless γ = 1 − α.
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Ford’s α-model

Algorithm 1 presents a way to produce multifurcating trees randomly. However, if we
want to define a probabilistic model that only generates bifurcating trees, it suffices to
set α = γ, and so the probability of adding a new leaf as a child of an internal node at
step 4 becomes 0, because in this case the probability of adding a new leaf child to a
node of out-degree 2 is 0, and we start with a cherry. If we, moreover, after producing
a tree with n leaves, relabel the tree equiprobably and we take as the probability of a
phylogenetic tree the probability of producing it in this way, we obtain Ford’s α-model
[43], which we shall denote by (Pα,n)n. But it should be mentioned that, historically,
Ford’s α-model is older than the α-γ-model is, and the latter was born actually as a
multifurcating generalization of the former. Indeed, for tree shapes, P ∗α,α,n = P ∗α,n.
For the sake of completeness, we provide a full algorithmic description of this model in
Algorithm 2. Figure 1.8 gives the probability of the pair of bifurcating trees inBinTree4
under P ∗α,4 obtained from Lemma 1.26 (taking α = γ ). In the next example we compute
these probabilities directly with Algorithm 2, as an example of its application, and we
shall also deduce them later from Lemma 1.27 below.

Algorithm 2: α-model
Input : n ∈ N≥2
Output: Tn ∈ BinPhyloTreen and its probability Pα,n(Tn)

1 m = 2;
2 start with a single cherry T2 labelled on [2] and P ′α,2(T2) = 1;
3 while m < n do
4 from Tm , choose:
5 – either a pendant edge e , each one with probability 1−α

m−α ,
6 – or an internal edge e , each one with probability α

m−α ,
7 – or to add a new root, with probability α

m−α ;
8 if we have chosen an edge e then
9 split e to create a new node;
10 add a new leaf labelled with m + 1 adjacent to this node;
11 end
12 if we have chosen to add a new root then
13 add a new root ρTm+1 whose children are a leaf labelled with m + 1 and

the former root of Tm ;
14 end
15 let Tm+1 ∈ PhyloTreem+1 be the resulting tree;
16 set P ′α,m+1(Tm+1) equal to P ′α,γ,m(Tm) multiplied by the probability of the

choice in line 4;
17 m = m + 1;
18 end
19 set P ∗α,n(π1(Tn)) =

∑
T ′n ∈π−11 (π1(Tn))

P ′α,n(T ′n);

20 set Pα,n(Tn) =
2s(Tn )
n! P ∗α,n(π1(Tn));

21 return Tn and Pα,n(Tn);
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P ∗
α,4(T

cat
4 ) =

2
3 − α

P ∗
α,4(T

bal
4 ) =

1 − α
3 − α

Figure 1.8: The two tree shapes in BinTree4 and their probabilities under P ∗α,4.

Example:
Let us determine completely P ∗α,4. Since BinPhyloTree4 = {T

cat
4 ,T bal

4 }, it is enough
to compute P ∗α,4(T

bal
4 ), and to do that, with the notations used in Algorithm 2, we

need to compute the P ′α,4 value of the three maximally balanced phylogenetic trees
with 4 leaves.

We begin with the cherryT2 = (1, 2) ∈ BinPhyloTree2, with probability 1. From
it we obtain the phylogenetic trees T cat,1

3 = ((1, 3), 2) and T cat,2
3 = ((2, 3), 1) by adding

the leaf 3 to one of its edges, so that

P ′α,3(T
cat,1
3 ) = P ′α,3(T

cat,2
3 ) =

1 − α
2 − α

,

and we obtain T cat,3
3 = ((1, 2), 3) by adding to T2 the leaf 3 as the child of a new root,

and hence
P ′α,3(T

cat,3
3 ) =

α

2 − α
.

Let’s add now the leaf 4. On the one hand, ((1, 2), (3, 4)) is obtained from T cat,3
3

by adding the leaf 4 to the pendant arc ending in the leaf 3, and therefore

P ′α,4
(
((1, 2), (3, 4))

)
=

1 − α
3 − α

P ′α,3(T
cat,3
3 ) =

α(1 − α)
(2 − α)(3 − α)

.

On the other hand, ((1, 3), (2, 4)) is obtained from T cat,1
3 by adding the leaf 4 to the

pendant arc ending in the leaf 2, and therefore

P ′α,4
(
((1, 3), (2, 4))

)
=

1 − α
3 − α

P ′α,3(T
cat,1
3 ) =

(1 − α)2

(2 − α)(3 − α)

and a similar argument shows that

P ′α,4
(
((2, 3), (1, 4))

)
=

1 − α
3 − α

P ′α,3(T
cat,2
3 ) =

(1 − α)2

(2 − α)(3 − α)
.

Therefore,

P ∗α,4(T
bal
4 ) = P ′α,4

(
((1, 2), (3, 4))

)
+ P ′α,4

(
((1, 3), (2, 4))

)
+ P ′α,4

(
((2, 3), (1, 4))

)
=

α(1 − α)
(2 − α)(3 − α)

+ 2
(1 − α)2

(2 − α)(3 − α)
=

1 − α
3 − α

(1.3)
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as shown in Figure 1.8. Then,

P ∗α,4(T
cat
4 ) = 1 − P ∗α,4(T

bal
4 ) =

2
3 − α

.

Finally, the actual probability of each one of the 3 fully symmetric phylogenetic trees
in BinPhyloTree4 under the α-model is one third the probability of their shape,

Pα,4
(
((1, 2), (3, 4))

)
= Pα,4

(
((1, 3), (2, 4))

)
= Pα,4

(
((2, 3), (1, 4))

)
=

1 − α
3(3 − α)

,

and the actual probability of each one of the twelve caterpillars in BinPhyloTree4 is

1
12

P ∗α,4(T
cat
4 ) =

1
6(3 − α)

.

Ford’s α-model for phylogenetic trees is both shape invariant (by line 20 in Algo-
rithm 2) and sampling consistent (Proposition 42 in [43]). Moreover, it is Markovian,
but Ford’s proof of this fact is wrong, and we provided a correct proof in [23], which
is included below.

Set qα : N2
≥1 → R to be [43, Lemma 27]

qα(a, b) =
Γα(a)Γα(b)
Γα(a + b)

· ϕα(a, b), (1.4)

where

ϕα(a, b) =
α

2

(
a + b
a

)
+ (1 − 2α)

(
a + b − 2
a − 1

)
and Γα : N≥1 → R is the mapping defined by Γα(1) = 1 and, for every n ≥ 2, Γα(n) =
(n−1−α) ·Γα(n−1). In other words, Γα(n) = (1−α)n−1 where (a)m is the Pochhammer
symbol defined as

(a)m =

{
1 if k = 0
a(a + 1) · · · (a +m − 1) if m ∈ N≥1

(1.5)

For every internal node v in an bifurcating tree T , we call its numerical split the
ordered pair NST (v) = (κT (v1), κT (v2)), where child(v) = {v1, v2} with κT (v1) ≥
κT (v2). The multiset of numerical splits of T is NS(T ) = {NST (v) : v ∈ V̊ (T )}. For
instance (cf. Figure 1.3)

NS(T bal
7 ) = {(1, 1), (1, 1), (1, 1), (2, 2), (2, 1), (4, 3)}.

The following lemma provides an explicit formula for Pα,n(T , λ), for every n ≥ 1
and (T , λ) ∈ BinPhyloTreen.

Lemma 1.27. For every (T , λ) ∈ BinPhyloTreen , its probability under the α-model is

Pα,n(T , λ) =
2n−1

n! · Γα(n)

∏
(a,b)∈NS(T )

ϕα(a, b).
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Proof. To prove this result, we shall need to make a detour on the set of bifurcating
ordered trees, which shall only be used in this proof. An ordered tree is a pair (T ,≺T )
with T ∈ Tree and ≺T= (≺v )v ∈V̊ (T ) where, for every v ∈ V̊ (T ), ≺v is an ordering
on child(v). Let BinOrdTreen, n ≥ 1, be the set of bifurcating ordered trees with n
leaves. The root join of ordered trees is defined as usual, but with the addition that
the ordering ≺ρ on the set of the roots of the maximal pending subtrees of the result is
given by the order in which the trees are joined.

We can extend a probabilistic model of bifurcating trees, and in particular the α-
model, to a probabilistic model of ordered trees P o

α,n : BinOrdTreen → [0, 1] by simply
equally splitting the probability of a tree T among all ordered trees (T ,≺T ) on this
shape. There are 2n−1−s(T ) such ordered trees (from the 2n−1 possible ways to define the
vector of orderings (≺v )v ∈V̊ (T ), those differing only on the orderings on the children of
the s(T ) symmetry nodes are actually the same ordered tree), and therefore

P o
α,n(T ,≺T ) =

1
2n−1−s(T )

P ∗α,n(T ). (1.6)

Ford proves (correctly) that (P o
α,n)n is Markovian, and more specifically that, for every

0 < k < n and for every (Tk,≺Tk ) ∈ BinOrdTreek and (Tn−k,≺Tn−k ) ∈ BinOrdTreen−k ,

P o
α,n((Tk,≺Tk ) ∗ (Tn−k,≺Tn−k )) = qα(k, n − k)P o

α,k(Tk,≺Tk )P
o
α,n−k(Tn−k,≺Tn−k )

with qα defined as in (1.4), fromwhere he deduces that, for every (Tn,≺Tn ) ∈ BinOrdTreen,

P o
α,n(Tn,≺Tn ) =

∏
(a,b)∈NS(T )

qα(a, b). (1.7)

For the proofs of these two facts, see Lemma 27 and Proposition 28 in [43], respectively.
Now, given (T , λ) ∈ BinPhyloTreen, consider an ordered tree (T ,≺T ) obtained by

forgetting about the labels in T and adding an ordering on each child(v), v ∈ V̊ (T ).
Then, by the shape invariance and Equations (1.6) and (1.7),

Pα,n(T , λ) =
2s(T )

n!
· P ∗α,n(T ) =

2s(T )

n!
· 2n−s(T )−1 · P o

α,n(T ,≺T ) =
2n−1

n!

∏
(a,b)∈NS(T )

qα(a, b).

It remains to simplify this product. If, for every v ∈ V̊ (T ), we denote its children by
v1 and v2, then∏

(a,b)∈NS(T )

qα(a, b) =
∏

v ∈V̊ (T )

Γα(κT (v1))Γα(κT (v2))
Γα(κT (v))

ϕα(NS(v)).

For every v ∈ V̊ (T ) \ {ρT }, the term Γα(κT (v)) appears twice in this product: in
the denominator of the factor corresponding to v itself and in the numerator of the
factor corresponding to its parent. Therefore, all terms Γα(κT (v)) in this product vanish
except Γα(κT (ρT )) = Γα(n) (that appears in the denominator of its factor) and every
Γα(κT (v)) = Γα(1) = 1 with v ∈ L(T ). Thus,

Pα,n(T ) =
2n−1

n!
·

1
Γα(n)

·
∏

v ∈V̊ (T )

ϕα(NS(v))

as we claimed. �
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Example:
Since NS(T bal

4 ) =
{
(1, 1), (1, 1), (2, 2)

}
and NS(T cat

4 ) =
{
(1, 1), (2, 1), (3, 1)

}
,

P ∗α,4(T
bal
4 ) = 3 ·

23

4!
·
ϕα(1, 1)2ϕα(2, 2)

Γα(4)
=

(1 − α)2(2 − α)
(3 − α)(2 − α)(1 − α)

=
1 − α
3 − α

P ∗α,4(T
cat
4 ) = 12 ·

23

4!
·
ϕα(1, 1)ϕα(2, 1)ϕα(3, 1)

Γα(4)
= 4 ·

(1 − α)(1 − 1
2α) · 1

(3 − α)(2 − α)(1 − α)
=

2
3 − α

in agreement with Figure 1.8.

1 2 3 4 5 6 7 8

Figure 1.9: The phylogenetic tree T̃ used in Remark 1.28.

Remark 1.28. Ford states (see [43, Prop. 32 and page 30]) that if (T , λ) ∈ BinPhyloTreen,
then

Pα,n(T , λ) =
2s (T )
n!

∏
(a,b)∈NS(T )

q̃α(a, b)

where
q̃α(a, b) =

{
2qα(a, b) if a , b
qα(a, b) if a = b

If we simplify
∏
(a,b)∈NS(T ) q̃α(a, b) as in the proof of Lemma 1.27, this formula for

Pα,n(T , λ) becomes

Pα,n(T , λ) =
2s(T )+m

n! · Γα(n)
·

∏
(a,b)∈NS(T )

ϕα(a, b) (1.8)

where m is the number of internal nodes whose children have different numbers of
descendant leaves. This formula does not agree with the one given in Lemma 1.27
above, because

s(T ) +m = n − 1 −
��{v ∈ V̊ (T ) : child(v) = {v1, v2} and κT (v1) = κT (v2)

but π1(Tv1) , π1(Tv2)}
��

and, hence, it may happen that s(T ) +m < n − 1. The first example of a phylogenetic
tree with this property (and the only one, up to relabelings, with at most eight leaves)
is the tree T̃ ∈ BinPhyloTree8 depicted in Fig. 1.9. For it, our formula gives

Pα,8(T̃ ) =
(1 − α)2(2 − α)

126(7 − α)(6 − α)(5 − α)(3 − α)
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while (1.8) assigns to T̃ a probability of half this value:

(1 − α)2(2 − α)
252(7 − α)(6 − α)(5 − α)(3 − α)

. (1.9)

This last figure cannot be right. For one reason, as we shall see anon, when α = 1
2 ,

Ford’s model is equivalent to the Uniform model, where every phylogenetic tree in
BinPhyloTreen has the same probability

1
|BinPhyloTreen |

=
1

(2n − 3)!!
.

In particular, P 1
2 ,8
(T̃ ) should be equal to 1/135135. This figure is consistent with our

formula, while expression (1.9) yields half this value.

And now we can prove the Markovianity of the α-model of phylogenetic trees.

Theorem 1.29. Let n ≥ 2, 1 ≤ k ≤ n − 1, Tk ∈ BinTreek , Tn−k ∈ BinTreen−k , and
(Tk ∗Tn−k, λ) ∈ BinPhyloTreen . Then,

Pα,n(Tk ∗Tn−k, λ) = 2
qα(k, n − k)(n

k
) Pα,k(Tk, λ |Tk )Pα,n−k(Tn−k, λ |Tn−k ).

Proof. If Tk ∈ BinTreek and Tn−k ∈ BinTreen−k and we set λk = λ |Tk and λn−k =
λ |Tn−k , then

Pα,k(Tk, λk) =
2k−1

k!Γα(k)

∏
(a,b)∈NS(Tk )

ϕα(a, b)

Pα,n−k(Tn−k, λn−k) =
2n−k−1

(n − k)!Γα(n − k)

∏
(a,b)∈NS(Tn−k )

ϕα(a, b)

and

Pα,n(Tk ∗Tn−k, λ) =
2n−1

n!Γα(n)

∏
(a,b)∈NS(Tk∗Tn−k )

ϕα(a, b)

=
2n−1

n!Γα(n)
ϕα(k, n − k)

( ∏
(a,b)∈NS(Tk )

ϕα(a, b)
) ( ∏
(a,b)∈NS(Tn−k )

ϕα(a, b)
)

=
2n−1

n!Γα(n)
ϕα(k, n − k)

k!Γα(k)
2k−1

Pα,k(Tk, λk)

·
(n − k)!Γα(n − k)

2n−k−1
Pα,n−k(Tn−k, λn−k)

=
2qα(k, n − k)(n

k
) Pα,k(Tk, λk)Pα,n−k(Tn−k, λn−k)

as we claimed. �
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The Yule model

The Yule model (also called Yule-Harding model or Equal Rates Markov (ERM) model)
is probably the oldest probabilistic model of phylogenetic trees found in the literature,
and it dates back to the original Yule paper in 1922 [127]. It can be considered to be
an instance of Ford’s α-model by setting α = 0, which makes all new leaves to be
added at pendant edges (because in the α-model the probability of chosing an internal
edge of an intermediate tree Tm is α/(m − α)). This model has a variety of interesting
properties, and has beenwidely studied [2, 12, 57, 109]. Intuitively, in biological terms it
expresses that in a certain phase of the evolutionary process, when either an speciation
or an extinction occurs, it is equally likely to occur to any of the species extant at that
moment [2].

Being a special case of the α-model, the Yule model is both shape invariant and
sampling consistent (Prop. 42 in [43]). By Lemma 1.27 with α = 0,

PYule,n(T , λ) =
2n−1

n! · Γ0(n)

∏
(a,b)∈NS(T )

ϕ0(a, b) =
2n−1

n!(n − 1)!

∏
(a,b)∈NS(T )

(
a + b − 2
a − 1

)
=

2n−1

n!(n − 1)!

∏
v ∈V̊ (T )

(κT (v) − 2)!
(κT (v1) − 1)!(κT (v2) − 1)!

=
2n−1

n!(n − 1)!

∏
v ∈V̊ (T )

(κT (v) − 1)!
(κT (v) − 1)(κT (v1) − 1)!(κT (v2) − 1)!

(where, for every v ∈ V̊ (T ), child(v) = {v1, v2})

=
2n−1

n!(n − 1)!
· (n − 1)!

∏
v ∈V̊ (T )

1
κT (v) − 1

=
2n−1

n!

∏
v ∈V̊ (T )

1
κT (v) − 1

(1.10)

(where the second last equality is obtained by reasoning as in the last paragraph of the
proof of Lemma 1.27). And then, by the shape invariance,

P ∗Yule,n(T ) =
n!

2s(T )
· PYule,n(T , λ) =

n!
2s(T )

·
2n−1

n!

∏
v ∈V̊ (T )

1
κT (v) − 1

= 2n−1−s(T )
∏

v ∈V̊ (T )

1
κT (v) − 1

. (1.11)

Finally, since

q0(a, b) =
Γ0(a)Γ0(b)
Γ0(a + b)

· ϕ0(a, b) =
(a − 1)!(b − 1)!
(a + b − 1)!

·

(
a + b − 2
a − 1

)
=

1
a + b − 1

,

Theorem 1.29 says, in the Yule model, that, for every n ≥ 2, 1 ≤ k ≤ n − 1, Tk ∈

BinTreek , Tn−k ∈ BinTreen−k , and (Tk ∗Tn−k, λ) ∈ BinPhyloTreen,

PYule,n(Tk ∗Tn−k, λ) =
2

(n − 1)
(n
k
) PYule,k(Tk, λ |Tk )PYule,n−k(Tn−k, λ |Tn−k ). (1.12)
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The Uniform model

TheUniformmodel (also called Proportional-to-DistinguishableArrangements (PDA)model
in biological studies) is easier to define: in this model, each phylogenetic tree (T , λ) ∈
PhyloTreen is considered to be equiprobable. In the bifurcating case, which is the one
that concerns us here, this says that every (T , λ) ∈ BinPhyloTreen has probability

Punif,n(T , λ) =
1

(2n − 3)!!
.

It turns out that this is the probability of a phylogenetic tree under the α-model when
α = 1

2 [43, §3.2]. Indeed,

ϕ 1
2
(a, b) =

1
4

(
a + b
a

)
and

Γ1/2(n) =
(
n − 1 −

1
2

) (
n − 2 −

1
2

)
· · ·

1
2
=
(2n − 3)!!

2n−1

and hence, by Lemma 1.27,

P 1
2 ,n
(T , λ) =

2n−1

n! · Γ1/2(n)

∏
(a,b)∈NS(T )

ϕ 1
2
(a, b) =

=
2n−1 · 2n−1

n! · (2n − 3)!!

∏
(a,b)∈NS(T )

1
4

(
a + b
a

)
=

1
n! · (2n − 3)!!

·
∏

v ∈V̊ (T )

κT (v)!
κT (v1)!κT (v2)!

(where, for every v ∈ V̊ (T ), child(v) = {v1, v2})

=
1

n! · (2n − 3)!!
· n! =

1
(2n − 3)!!

.

Notice that if in Algorithm 2 we take α = 1
2 , all possible places to add the new leaf in

each repetition of the while loop have the same probability. Therefore, while in the
Yule model at each step a pendant edge is chosen equiprobably as the place to add the
new leaf, we can understand the Uniformmodel as an algorithmic model where at each
step some edge on any type (or a new root) is chosen equiprobably as the place to add
the new leaf.

With respect to the Markovianity of the Uniform model, since

q 1
2
(a, b) =

Γ1/2(a)Γ1/2(b)
Γ1/2(a + b)

· ϕ 1
2
(a, b) =

(2a − 3)!!(2b − 3)!!2a+b−1

(2(a + b) − 3)!!2a−12b−1
·
1
4

(
a + b
a

)
=
(2a − 3)!!(2b − 3)!!
2 · (2(a + b) − 3)!!

·

(
a + b
a

)
,

Theorem 1.29 says, when α = 1
2 , that, for every n ≥ 2, 1 ≤ k ≤ n − 1, Tk ∈ BinTreek ,

Tn−k ∈ BinTreen−k , and (Tk ∗Tn−k, λ) ∈ BinPhyloTreen,

Punif,n(Tk ∗Tn−k, λ) =
(2k − 3)!!(2(n − k) − 3)!!

(2n − 3)!!
Punif,k(Tk, λ |Tk )Punif,n−k(Tn−k, λ |Tn−k ),

(1.13)
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which, of course, is also consequence of the uniform probabilities

Punif,n(Tk ∗Tn−k, λ) =
1

(2n − 3)!!
,

Punif,k(Tk, λ |Tk ) =
1

(2k − 3)!!
,

Punif,n−k(Tn−k, λn−k) =
1

(2(n − k) − 3)!!
.

Aldous’ β-model

The β-splitting model (or β-model, for short) (P A
β,n)n [2, 3] is a probabilistic model of

bifurcating phylogenetic trees due to D. Aldous that depends on one parameter β ∈
(−2,∞), and although we present it last, it preceded the α-model for ten years. Let us
recall its definition. For every m ≥ 2 and a = 1, . . . ,m − 1, let

qm, β(a) =
1

am(β)
·
Γ(β + a + 1)Γ(β +m − a + 1)

Γ(a + 1)Γ(m − a + 1)
,

where Γ stands for the usual Gamma function defined on R>0,

Γ(x) =
∫ ∞

0
t x−1e−t dt,

and am(β) is a suitable normalizing constant so that
m−1∑
a=1

qm, β(a) = 1. Recall that Γ

satisfies that Γ(x + 1) = xΓ(x) and that, for every n ∈ N≥1, Γ(n + 1) = n!.
For every m ≥ 2 and a ∈ {1, . . . , bm/2c}, let

q̂m, β(a) =
{
qm, β(a) + qm, β(m − a) = 2qm, β(a) if a , m/2
qm, β(a) if a = m/2

With these notations, the probabilities under this model are computed by means of
Algorithm 3.

The last step in the definition of P A
β,n makes it shape invariant by construction, and

in [2] it is proved that it is sampling consistent. Hence, the β-model of trees P A,∗
β,n is

also sampling consistent. Moreover, (P A
β,n)n is also Markovian, with split distribution

q̂n, β [2, 77]. This β-model includes as specific cases the Yule model (when β = 0) and
the Uniform model (when β = −3/2), and these are the only values of β for which the
β-model is equal to some α-model [43, Thm. 43].

In Chapter 5 we shall need to know the probability under this model of the max-
imally balanced tree with four leaves, P A,∗

β,4 (T
bal
4 ). We compute this probability in the

following lemma, and in this way we provide a detailed example of how this model
associates probabilities to trees through their construction.

Lemma 1.30. For every β ∈ (−2,∞),

P A,∗
β,4 (T

bal
4 ) =

3β + 6
7β + 18

.
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Algorithm 3: β-model
Input : n ∈ N≥1
Output: Tn ∈ BinPhyloTreen and its probability P A

β,n(Tn)

1 j = 1;
2 start with T ′1 a single node labelled with n and P ′β,1(T

′
1 ) = 1;

3 while j < n do
4 from T ′j , choose equiprobably a leaf with a label m > 1;
5 choose a number a ∈ {1, . . . , bm/2c} with probability distribution q̂m, β(a);
6 split the leaf into a cherry with the leaves labelled a and m − a;
7 let T j+1 ∈ BinPhyloTree j+1 be the resulting tree and set

P ′
β, j+1(T

′
j+1) =

q̂m, β (a)
| {leaves in T ′j labeled > 1} | · P

′
β, j (T

′
j );

8 j = j + 1;
9 end
10 set P A,∗

β,n (π1(Tn)) =
∑

T ′n ∈π−11 (π1(Tn))
P ′β,n(T

′
n);

11 set P A
β,n(Tn) =

2s(Tn )
n! P A,∗

β,n (π1(Tn));
12 return Tn and P A

β,n(Tn);

Proof. We start with a single node labeled 4. In order to obtain a maximally balanced
tree ((1, 1), (1, 1)) using Algorithm 3, in the first iteration we must split this node into a
cherry with both leaves labeled 2. The probability of choosing this split is

q̂4, β(2) = q4, β(2) =
1

a4(β)
·
Γ(β + 3)Γ(β + 3)

Γ(3)Γ(3)
.

Let us compute the normalizing constant a4(β): since

q4, β(1) = q4, β(3) =
1

a4(β)
·
Γ(β + 2)Γ(β + 4)

Γ(2)Γ(4)

q4, β(2) =
1

a4(β)
·
Γ(β + 3)Γ(β + 3)

Γ(3)Γ(3)

imposing that q4, β(1) + q4, β(2) + q4, β(3) = 1 we obtain

a4(β) =
2Γ(β + 2)Γ(β + 4)

6
+
Γ(β + 3)2

4
=

4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2

12
.

Therefore,

P ′β,2((2, 2)) = q4, β(2) =
3Γ(β + 3)2

4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2

In the second iteration, we choose one of the leaves with probability 1/2 and we
split it into a cherry (1, 1). Since there is only one way of splitting a leaf labeled 2,
q2, β(1) = 1. So, the probability of the tree obtained in this step is

P ′β,2(((1, 1), 2)) =
1
2
P ′β,2((2, 2)) =

3Γ(β + 3)2

2(4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2)
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Then, in the third step, we are forced to choose the other leaf labeled 2 and to split it
into a cherry (1, 1). We obtain a maximally balanced tree with all its leaves labeled 1
and its probability is still

P ′β,2(((1, 1), (1, 1))) = P ′β,2(((1, 1), 2)) =
3Γ(β + 3)2

2(4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2)

Now, there are two ways of obtaining the tree ((1, 1), (1, 1)) with this construction,
depending on which leaf of the cherry (2, 2)we choose to split first. So, the probability
of the tree T bal

4 is

P A,∗
β,4 (T

bal
4 ) = 2P ′β,2(((1, 1), (1, 1))) =

3Γ(β + 3)2

4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2

Finally, using that Γ(x + 1) = xΓ(x), we have that

3Γ(β + 3)2

4Γ(β + 2)Γ(β + 4) + 3Γ(β + 3)2

=
3(β + 2)2Γ(β + 2)2

4(β + 3)(β + 2)Γ(β + 2)2 + 3(β + 2)2Γ(β + 2)2
=

3β + 6
7β + 18

as we claimed. �

1.3.4 Binary recursive shape indices, revisited

Consider the random variables Cn, Sn and Φn that take a binary phylogenetic tree
T ∈ BinPhyloTreen and compute S(T ), C (T ) and Φ(T ), respectively. Previously to
the contributions of our Thesis, the following facts on their expected values under the
Yule model (denoted by EYule) and the Uniform model (denoted by Eunif), as well as
on their variance under these models (denoted by σ2

Yule and σ
2
unif, respectively) were

known:

• For the Colless index:

EYule(Cn) = n(H bn/2c − 1) + dn/2e − bn/2c [60]

Eunif(Cn) ∼
√
πn3/2 [8]

σ2
Yule(Cn) = (5n2 + 7n)/2 + (6n + 1)bn/2c − 4bn/2c2 + 8b(n + 2)/4c2

+ (2bn/2c − n(n − 3))H bn/2c − 8(n + 1)b(n + 2)/4c − 6nHn [13]

σ2
unif(Cn) ∼

(10 − 3π
3

)
n3 [8]

where Hn =

n∑
i=1

1/i, the n-th harmonic number.
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• For the Sackin index:

EYule(Sn) = 2n(Hn − 1) [69]

Eunif(Sn) = n
(
(2n − 2)!!
(2n − 3)!!

− 1
)

[85]

σ2
Yule(Sn) = 7n2 − n − 2nHn − 4n2H (2)n [13]

σ2
unif(Sn) ∼

(10 − 3π
3

)
n3 [8]

where H (2)n =

n∑
i=1

1/i2, the second order n-th harmonic number.

• For the cophenetic index

EYule(Φn) = n(n + 1) − 2nHn [85]

Eunif(Φn) =
1
2

(
n
2

) (
(2n − 2)!!
(2n − 3)!!

− 2
)

[85]

σ2
Yule(Φn) =

n4 − 10n3 + 131n2 − 2n
12

− 6nHn − 4n2H (2)n [13]

As a byproduct of our computations, we shall be able to find closed formulæ for
σ2
unif(Sn) and σ

2
unif(Φn) (see Chaper 4).

One of the key ingredients in the derivation of these, and other, formulæ will be
the fact that the combination of a shape invariant Markovian probabilistic model of
bifurcating phylogenetic trees (Pn)n and a binary recursive shape index I allows the
obtention of recurrences for several moments of the latter under the former through
the following lemma.

Lemma 1.31. Let I , J : BinPhyloTree→ R be binary recursive shape indices and (Pn)n a
shape invariant Markovian probabilistic model of phylogenetic trees, with conditional split
distribution qP : N≥1 × N≥1 → R. Set

QP (k, n − k) =
1
2

(
n
k

)
qP (k, n − k).

For every n ≥ 1, let In and Jn be the randomvariables that choose a treeT ∈ BinPhyloTreen
with probability Pn(T ) and compute I (T ) and J (T ), respectively. Then, for every n ≥ 2,
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the expected values of In , In Jn , and I 2n under (Pn)n satisfy, respectively:

EP (In) =
n−1∑
k=1

QP (k, n − k)
(
2EP (Ik) + fI (k, n − k)

)
(1.14)

EP (In Jn) =
n−1∑
k=1

QP (k, n − k)
(
2EP (Ik Jk) + 2EP (Ik)EP (Jn−k)

+ 2 fI (k, n − k)EP (Jk) + 2 f J (k, n − k)EP (Ik)

+ fI (k, n − k) f J (k, n − k)
)

(1.15)

EP (I 2n ) =
n−1∑
k=1

QP (k, n − k)
(
2EP (I 2k ) + 2EP (Ik)EP (In−k)

+4 fI (k, n − k)EP (Ik) + fI (k, n − k)2
)
. (1.16)

Proof. We shall prove the first two equations, because the third one is a particular case
of the second, taking I = J . The key idea in these recurrences is the fact that every
T ∈ BinPhyloTreen can be obtained by choosing a number k of leaves between 1 and
n − 1, a subset Λk ∈ Partk([n]), a phylogenetic tree Tk ∈ BinPhyloTree(Λk) and a
phylogenetic tree Tn−k ∈ BinPhyloTree(Λc

k), where Λc
k = [n] \ Λk , and then taking

their root join Tk ∗T ′n−k . Actually, every T ∈ BinPhyloTreen is obtained twice in this
way, depending on whether the result of our first choice of set of labels turns out to be
Λk or Λc

k .

So, to prove (1.14), we develop EP (In), for n ≥ 2, as follows:

EP (In) =
∑

T ∈BinPhyloTreen

I (T ) · Pn(T )

=
1
2

n−1∑
k=1

∑
Λk ∈Partk ([n])

∑
Tk ∈BinPhyloTree(Λk )

∑
Tn−k ∈BinPhyloTree(Λc

k )

I (Tk ∗Tn−k) · Pn(Tk ∗Tn−k)

=
1
2

n−1∑
k=1

(
n
k

) ∑
Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

I (Tk ∗Tn−k) · Pn(Tk ∗Tn−k)

(by the shape invariance of I and (Pn)n )

=
1
2

n−1∑
k=1

(
n
k

) ∑
Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

(
I (Tk) + I (Tn−k)

+ fI (k, n − k)
)
qp(k, n − k)Pk(Tk)Pn−k(Tn−k)
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=

n−1∑
k=1

QP (k, n − k)
( ∑
Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

I (Tk)Pk(Tk)Pn−k(Tn−k)

+
∑

Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

I (Tn−k)Pk(Tk)Pn−k(Tn−k)

+
∑

Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

fI (k, n − k)Pk(Tk)Pn−k(Tn−k)
)

=

n−1∑
k=1

QP (k, n − k)

[( ∑
Tk ∈BinPhyloTreek

I (Tk)Pk(Tk)
) ( ∑

Tn−k ∈BinPhyloTreen−k

Pn−k(Tn−k)
)

+
( ∑
Tk ∈BinPhyloTreek

Pk(Tk)
) ( ∑

Tn−k ∈BinPhyloTreen−k

I (Tn−k)Pn−k(Tn−k)
)

+ fI (k, n − k)
( ∑
Tk ∈BinPhyloTreek

Pk(Tk)
) ( ∑

Tn−k ∈BinPhyloTreen−k

Pn−k(Tn−k)
)]

=

n−1∑
k=1

QP (k, n − k)
(
EP (Ik) + EP (In−k) + fI (k, n − k)

)
=

n−1∑
k=1

QP (k, n − k)
(
2EP (Ik) + fI (k, n − k)

)
,

where in the last step we have used the symmetry of QP .
The proof of (1.15) is similar:

EP (In Jn) =
∑

T ∈BinPhyloTreen

I (T )J (T ) · Pn(T )

=
1
2

n−1∑
k=1

∑
Λk ∈Partk ([n])

∑
Tk ∈BinPhyloTree(Λk )

∑
Tn−k ∈BinPhyloTree(Λc

k )

I (Tk ∗Tn−k)J (Tk ∗Tn−k)Pn(Tk ∗Tn−k)

=
1
2

n−1∑
k=1

(
n
k

) ∑
Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

(
I (Tk) + I (Tn−k) + fI (k, n − k)

)
·
(
J (Tk) + J (Tn−k) + f J (k, n − k)

)
qP (k, n − k)Pk(Tk)Pn−k(Tn−k)

=

n−1∑
k=1

QP (k, n − k)
∑

Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

(
I (Tk) + I (Tn−k) + fI (k, n − k)

)
·
(
J (Tk) + J (Tn−k) + f J (k, n − k)

)
Pk(Tk)Pn−k(Tn−k)

=

n−1∑
k=1

QP (k, n − k)
∑

Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

(
I (Tk)J (Tk) + I (Tn−k)J (Tn−k)

+ I (Tk)J (Tn−k) + I (Tn−k)J (Tk) + f J (k, n − k)I (Tk)
+ f J (k, n − k)I (Tn−k) + fI (k, n − k)J (Tk) + fI (k, n − k)J (Tn−k)

+ fI (k, n − k) f J (k, n − k)
)
Pk(Tk)Pn−k(Tn−k)
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=

n−1∑
k=1

QP (k, n − k)

( ∑
Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

(
I (Tk)J (Tk)Pk(Tk)Pn−k(Tn−k)

+ I (Tn−k)J (Tn−k)Pk(Tk)Pn−k(Tn−k) + I (Tk)J (Tn−k)Pk(Tk)Pn−k(Tn−k)

+ I (Tn−k)J (Tk)Pk(Tk)Pn−k(Tn−k) + f J (k, n − k)I (Tk)Pk(Tk)Pn−k(Tn−k)

+ f J (k, n − k)I (Tn−k)Pk(Tk)Pn−k(Tn−k) + fI (k, n − k)J (Tk)Pk(Tk)Pn−k(Tn−k)

+ fI (k, n − k)J (Tn−k)Pk(Tk)Pn−k(Tn−k) + fI (k, n − k) f J (k, n − k)Pk(Tk)Pn−k(Tn−k)
))

=

n−1∑
k=1

QP (k, n − k)
(
EP (Ik Jk) + EP (In−k Jn−k) + EP (Ik)EP (Jn−k)

+ EP (In−k)EP (Jk) + f J (k, n − k)EP (Ik) + f J (k, n − k)EP (In−k)

+ fI (k, n − k)EP (Jk) + fI (k, n − k)EP (Jn−k) + fI (k, n − k) f J (k, n − k)
)

=

n−1∑
k=1

QP (k, n − k)
(
2EP (Ik Jk) + 2EP (Ik)EP (Jn−k)

+ 2 f J (k, n − k)EP (Ik) + 2 fI (k, n − k)EP (Jk) + fI (k, n − k) f J (k, n − k)
)

using the symmetry of QP (k, n − k), fI (k, n − k), and f J (k, n − k). �

Under the Yule model, by Equation (1.12)

QYule(k, n − k) =
1

n − 1
(1.17)

and under the Uniform model, by Equation (1.13)

Qunif(k, n − k) =
1
2

(
n
k

)
(2k − 3)!!(2(n − k) − 3)!!

(2n − 3)!!
. (1.18)

To simplify the notations, we shall denote henceforth Qunif(k, n − k) by Ck,n−k : so,

Ck,n−k B
1
2

(
n
k

)
(2k − 3)!!(2(n − k) − 3)!!

(2n − 3)!!
.

1.4 Hypergeometric series

A hypergeometric series is a power series of the form∑
k≥0

tkzk ∈ R[[z]]

such that t0 = 1 and there exist polynomials P ,Q ∈ R[x] such that

tk+1
tk
=

P (k)
Q(k)

.

In this case, the polynomials P ,Q are called the hypergeometric polynomials of the series.
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Example:
The following series are all hypergeometric:

•
∑

k≥0 zk . In this case, tk = 1, and

tk+1
tk
=

1
1
=

P (k)
Q(k)

with P (k) = Q(k) = 1.

•
∑

k≥0 k!zk . Here, tk = k! and thus

tk+1
tk
=
(k + 1)!

k!
=

k
1
=

P (k)
Q(k)

with P (k) = k and Q(k) = 1.

A hypergeometric function is a function represented by a hypergeometric series. The
theory of hypergeometric functions is powerful and has been thoroughly developed
ever since the first systematic study by Gauss in 1813.

Let
∑

k≥0 tkzk be a hypergeometric series and suppose that its hypergeometric poly-
nomials P ,Q ∈ R[x] are monic and with all their roots in R, and that we are given them
factorized, so that

P (k)
Q(k)

=
(k + a1) · · · (k + ap)

(k + b1) · · · (k + bq )(k + 1)

with a1, . . . , ap, b1, . . . , bq ∈ R (notice that, if need be, we can always impose a term k+1
in both the denominator and the numerator). Then, we denote this hypergeometric
series

∑
k≥0 tkzk by means of the hypergeometric function [92]

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
.

If P ,Q are not monic, and, say,

P (k)
Q(k)

=
c(k + a1) · · · (k + ap)

d(k + b1) · · · (k + bq )(k + 1)

with a1, . . . , ap, b1, . . . , bq, c, d ∈ R, then∑
k≥0

tkzk = pFq

[
a1, . . . , ap
b1, . . . , bq

;
c z
d

]
.

These functions help us establish a standard representation for the hypergeometric se-
ries. The function above is showed to be equal to [92]

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
=

∑
k≥0

(a1)k · · · (ap)k
(b1)k · · · (bq )kk!

zk,

where (a)k is the already defined Pochhammer symbol (see (1.5) in page 35). The domain
of this function is the set of values of z for which the series converges:
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1.4. Hypergeometric series

• If p < q + 1, this domain is the whole R.

• If p = q + 1, this domain lies between the open interval (−1, 1) and its closure
[−1, 1]; the cases z = 1,−1 must be treated separately.

• If p > q + 1, the series only converges when z = 0.

Therefore, in the sequel we shall always assume that p ≤ q + 1.
This procedure of standarization of hypergeometric series (combined, if necessary,

with any necessary modification to ensure that t0 = 1) is referred to as the lookup
algorithm in [92]. Broadly speaking, there are many results proved for hypergeometric
functions with small p and q , and that is the reason why it is important to identify and,
if possible, relate a given hypergeometric function to a series.

Example:
Let us consider the series∑

k≥1

(2k + 1)!
(3k − 2)!

=
∑
k≥1

(2k + 1)!
(3k − 2)!

· 1k

To understand it as a hypergeometric series, we must shift the summation index so
that it starts with k = 0 and then to extract t0 as a common factor if it is different
from 1: ∑

k≥1

(2k + 1)!
(3k − 2)!

=
∑
k≥0

(2k + 3)!
(3k + 1)!

= 6
∑
k≥0

(2k + 3)!
6 · (3k + 1)!

We focus now on the series ∑
k≥0

(2k + 3)!
6 · (3k + 1)!

with tk =
(2k+3)!
6·(3k+1)! . It satisfies that t0 = 1 and

tk+1
tk
=

(2k+5)!
6·(3k+4)!
(2k+3)!
6·(3k+1)!

=
(2k + 5)!(3k + 1)!
(3k + 4)!(2k + 3)!

=
(2k + 5)(2k + 4)

(3k + 4)(3k + 3)(3k + 2)

=
4(k + 5

2 )(k + 2)
27(k + 4

3 )(k +
2
3 )(k + 1)

Therefore ∑
k≥0

(2k + 3)!
6 · (3k + 1)!

= 2F2
[
5/2, 2
4/3, 2/3

;
4
27
· 1

]
and finally ∑

k≥1

(2k + 1)!
(3k − 2)!

= 6 · 2F2
[
5/2, 2
4/3, 2/3

;
4
27

]
.

What is the interest of finding an identity like this? Unfortunately, in this case none
whatsoever; but had we been lucky, we could have applied one of the more than
31,000 formulæ on 2F2 known to theWolframFunction Site (https://functions.
wolfram.com) to compute the value on the right-hand side.
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Remark 1.32. The inclusion of k + 1 as a concrete factor is of no further mathematical
relevance but, as it is often the case, is due to themores of the mathematical community.
In regard to this aspect, notice that in the second expression for the function pFq , the
k! term in the denominator is just (1)k .

Example:
Many well-known functions of classical analysis have a hypergeometric expansion.
Take, for instance, the exponential function par excellence: e x . We know that its
series expansion is

e x =
∑
k≥0

xk

k!
.

Thus, tk = 1
k! , and therefore tk+1

tk
= 1

k+1 ; thence

e x = 0F0
[
−

−
; x

]
.

Imagine that we wish to compute (−m)k for some m ∈ N≥1; in this case

(−m)k = (−m)(−m + 1) · · · (−m + k − 1) =

{
(−1)km!
(m−k)! if k ≤ m
0 if k > m

and so there cannot be any hypergeometric function whose parameters b1, . . . , bq con-
tain a negative integer, while any hypergeometric functionwith some parameter a1, . . . , ap
negative is the sum of a finite number of terms.

1.4.1 Using hypergeometric series to solve a specific family of recurrences

In this segment we are going to present and prove a rather long theorem —that is the
reasonwhywe considered its proof to be presented in this aparte. It will be instrumental
in some proofs presented in Chapters 3 and 4. As far as we know, its proof is new in
the literature, and we have opted to introduce it in the Preliminaries in order not to
weighten the aforementioned chapters.

Before proceeding to it, wewould like to point out to the reader that, for anym ∈ N,

(2m)!! = (2m) · (2m − 2) · · · 4 · 2 = 2m ·m!

(2m + 1)!! = (2m + 1) · (2m − 1) · · · 3 · 1 =
(2m + 2)!
(2m + 2)!!

=
(2m + 2)!

2m+1 · (m + 1)!
,

a fact that will be used without further notice in the following proofs. Recall also from
page 47 that, for every n ∈ N≥2 and for every k ∈ {1, . . . , n − 1},

Ck,n−k =
1
2

(
n
k

)
(2k − 3)!!(2(n − k) − 3)!!

(2n − 3)!!
.

Lemma 1.33. Let n ∈ N≥2. Then,

(i)
n−1∑
k=1

Ck,n−k = 1.
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1.4. Hypergeometric series

(ii) For every m ≥ 1,
n−1∑
k=1

Ck,n−k

(
k
m

)
=

1
2

(
n
m

) (
1 −

m − 1
n − 1

·
(2m − 3)!!
(2m − 2)!!

·
(2n − 2)!!
(2n − 3)!!

)
.

Proof. We shall begin by proving (ii):
n−1∑
k=1

Ck,n−k

(
k
m

)
=

n−1∑
k=m

Ck,n−k

(
k
m

)
=

n−1∑
k=m

n!(2k − 3)!!(2n − 2k − 3)!!k!
2 · k!(n − k)!(2n − 3)!!m!(k −m)!

=
n!

2 ·m!(2n − 3)!!

n−1∑
k=m

(2k − 2)!(2n − 2k − 2)!
2k−1(k − 1)!2n−k−1(n − k − 1)!(n − k)!(k −m)!

=
n!

2n−1m!(2n − 3)!!

n−1∑
k=m

(2k − 2)!(2n − 2k − 2)!
(k − 1)!(n − k − 1)!(n − k)!(k −m)!

=
n!

2n−1m!(2n − 3)!!

n−m−1∑
k=0

(2k + 2m − 2)!(2n − 2k − 2m − 2)!
(k +m − 1)!(n − k −m − 1)!(n − k −m)!k!

,

by setting k 7→ k +m. This last sum is, in fact, part of a hypergeometric series. Indeed,
let

t j =
(2 j + 2m − 2)!(2n − 2 j − 2m − 2)!

( j +m − 1)!(n − j −m − 1)!(n − j −m)! j !
;

then,

t0 =
(2m − 2)!(2n − 2m − 2)!

(m − 1)!(n −m − 1)!(n −m)!
,

t j+1
t j
=

(
j +m − 1

2
)
( j +m − n)(

j +m + 3
2 − n

)
( j + 1)

.

Now, we would be naturally inclined to deduce that
n−m−1∑
k=0

(2k + 2m − 2)!(2n − 2k − 2m − 2)!
(k +m − 1)!(n − k −m − 1)!(n − k −m)!k!

=
(2m − 2)!(2n − 2m − 2)!

(m − 1)!(n −m − 1)!(n −m)! 2
F1

[
m − 1

2, m − n
m + 3

2 − n
; 1

]
,

but that is not quite correct. Indeed, since (m − n)k = 0 for k > n −m, but

(m − n)n−m = (m − n)(m − n + 1) · · · (−1) = (−1)n−m(n −m)! , 0

and, hence,

2F1

[
m − 1

2, m − n
m + 3

2 − n
; 1

]
=

n−m∑
k=0

(
m − 1

2
)
k (m − n)k(

m + 3
2 − n

)
k k!

,

while we are only interested in the sum up to n −m − 1. Therefore, what we actually
have is that
n−m−1∑
k=0

(2k + 2m − 2)!(2n − 2k − 2m − 2)!
(k +m − 1)!(n − k −m − 1)!(n − k −m)!k!

=
(2m − 2)!(2n − 2m − 2)!

(m − 1)!(n −m − 1)!(n −m)!

(
2F1

[
m − 1

2, m − n
m + 3

2 − n
; 1

]
−

(
m − 1

2
)
n−m (m − n)n−m(

m + 3
2 − n

)
n−m (n −m)!

)
.
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Let us now compute the substrahend in this expression. In order to do that, we shall
use the identities:(

m −
1
2

)
n−m
=

(
m −

1
2

) (
m +

1
2

)
· · ·

(
n −

3
2

)
=

(2n − 3)!!
2n−m(2m − 3)!!

,(
m +

3
2
− n

)
n−m
=

(
m +

3
2
− n

) (
m +

5
2
− n

)
· · ·

(
−
1
2

)
1
2

=
(−1)n−m−1(2n − 2m − 3)!!

2n−m
,

as well as the already stated (m − n)n−m = (−1)n−m(n −m)!. Then,(
m − 1

2
)
n−m (m − n)n−m(

m + 3
2 − n

)
n−m (n −m)!

=
(2n − 3)!!(−1)n−m(n −m)!2n−m

2n−m(2m − 3)!!(−1)n−m−1(2n − 2m − 3)!!(n −m)!

= −
(2n − 3)!!

(2m − 3)!!(2n − 2m − 3)!!
.

It remains to compute the value of the hypergeometric function above. Sincem ≤ n, we
can apply the identityhttps://functions.wolfram.com/07.23.03.0003.
01 and thus obtain

2F1

[
m − 1

2, m − n
m + 3

2 − n
; 1

]
=

(2 − n)n−m(
m + 3

2 − n
)
n−m

.

Now, the numerator of this expression is

(2 − n)n−m = (2 − n)(3 − n) · · · (1 −m) =

{
0 if m = 1
(−1)n−m (n−2)!

(m−2)! if m > 1

= (−1)n−m(m − 1)
(n − 2)!
(m − 1)!

;

as far as the denominator goes, as we have already seen,
(
m + 3

2 − n
)
n−m = (−1)

n−m−12m−n(2n−
2m − 3)!! (as we have already seen). So

2F1

[
m − 1

2, m − n
m + 3

2 − n
; 1

]
= −

2n−m(m − 1)(n − 2)!
(m − 1)!(2n − 2m − 3)!!

.

Therefore, combining all we know,

n−1∑
k=1

Ck,n−k

(
k
m

)
=

n!(2m − 2)!(2n − 2m − 2)!
2n−1m!(2n − 3)!!(m − 1)!(n −m − 1)!(n −m)!

·

(
(2n − 3)!!

(2m − 3)!!(2n − 2m − 3)!!
−

2n−m(m − 1)(n − 2)!
(m − 1)!(2n − 2m − 3)!!

)
=

1
2

(
n
m

) (
1 −

m − 1
n − 1

(2m − 3)!!
(2m − 2)!!

(2n − 2)!!
(2n − 3)!!

)
.
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This proves (ii) when 1 ≤ m ≤ n − 1. Now, if m = n ≥ 2,

n−1∑
k=1

Ck,n−k

(
k
n

)
= 0 =

1
2

(
n
n

) (
1 −

n − 1
n − 1

(2n − 3)!!
(2n − 2)!!

(2n − 2)!!
(2n − 3)!!

)
,

and when m > n
n−1∑
k=1

Ck,n−k

(
k
m

)
= 0 =

(
n
m

)
.

Thus (ii) holds. Finally, let us prove (i). By the symmetry of Ck,n−k ,

n−1∑
k=1

Ck,n−kk =
n−1∑
k=1

Ck,n−k(n − k),

and therefore
n−1∑
k=1

Ck,n−k =
2
n

n−1∑
k=1

Ck,n−kk =
2
n
n
2
= 1,

where the second equality is due to the formula of (ii) when m = 1. �

Lemma 1.34. Let n ∈ N≥2. Then,

(i)
n−1∑
k=1

Ck,n−k
(2k − 2)!!
(2k − 3)!!

=
1
2
(2n − 2)!!
(2n − 3)!!

+
1
4
(2H2n−2 − Hn−1 − 2).

(ii) For every m ≥ 1,

n−1∑
k=1

Ck,n−k

(
k
m

)
(2k − 2)!!
(2k − 3)!!

=
1
2

(
n
m

) (
(2n − 2)!!
(2n − 3)!!

−
(2m − 2)!!
(2m − 3)!!

)
.

Proof. As we did before, we begin by first showing (ii). Let us develop the sum:

n−1∑
k=1

Ck,n−k

(
k
m

)
(2k − 2)!!
(2k − 3)!!

=

n−1∑
k=m

Ck,n−k

(
k
m

)
(2k − 2)!!
(2k − 3)!!

=

n−1∑
k=m

n!(2k − 3)!!(2n − 2k − 3)!!k!(2k − 2)!!
2 · k!(n − k)!(2n − 3)!!(k −m)!m!(2k − 3)!!

=
n!

2 ·m!(2n − 3)!!

n−1∑
k=m

(2n − 2k − 3)!!(2k − 2)!!
(n − k)!(k −m)!

=
n!

2 ·m!(2n − 3)!!

n−1∑
k=m

(2n − 2k − 2)!2k−1(k − 1)!
2n−k−1(n − k − 1)!(n − k)!(k −m)!

=
n!

2n+1m!(2n − 3)!!

n−1∑
k=m

(2n − 2k − 2)!(k − 1)!22k

(n − k − 1)!(n − k)!(k −m)!

=
n!

2n−2m+1m!(2n − 3)!!

n−m−1∑
k=0

(2n − 2k − 2m − 2)!(k +m − 1)!22k

(n − k −m − 1)!(n − k −m)!k!
,
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by, again, setting k 7→ k +m. This is also part of a hypergeometric series: indeed, take

t j =
(2n − 2 j − 2m − 2)!( j +m − 1)!22 j

(n − j −m − 1)!(n − j −m)! j !

so that
t0 =
(2n − 2m − 2)!(m − 1)!
(n −m − 1)!(n −m)!

,
t j+1
t j
=
( j +m)( j +m − n)(
j +m − n + 3

2
)
( j + 1)

.

Again, by an analogous argument as that in the proof of Lemma 1.33, we get

n−m−1∑
k=0

(2n − 2k − 2m − 2)!(k +m − 1)!22k

(n − k −m − 1)!(n − k −m)!k!

=
(2n − 2m − 2)!(m − 1)!
(n −m − 1)!(n −m)!

(
2F1

[
m, m − n
m + 3

2 − n
; 1

]
−

(m)n−m(m − n)n−m(
m + 3

2 − n
)
n−m (n −m)!

)
.

By identity https://functions.wolfram.com/07.23.03.0003.01,

2F1
[
m, m − n
m + 3

2 − n
; 1

]
=

( 3
2 − n

)
n−m( 3

2 +m − n
)
n−m

.

The numerator in this expression is(
3
2
− n

)
n−m
=

(
3
2
− n

) (
5
2
− n

)
· · ·

(
3
2
−m − 1

)
=
(−1)n−m(2n − 3)!!
2n−m(2m − 3)!!

and, as we have already seen (cf. the proof of Lemma 1.33),
(
m + 3

2 − n
)
n−m = (−1)

n−m−12m−n(2n−
2m − 3)!!, and therefore

2F1
[
m, m − n
m + 3

2 − n
; 1

]
= −

(2n − 3)!!
(2m − 3)!!(2n − 2m − 3)!!

.

As for the substrahend,

(m)n−m(m − n)n−m(
m + 3

2 − n
)
n−m (n −m)!

=
(n − 1)!(−1)n−m(n −m)!2n−m

(m − 1)!(−1)n−m−1(2n − 2m − 3)!!(n −m)!

= −
(n − 1)!2n−m

(m − 1)!(2n − 2m − 3)!!
.

So, all in all, we have

n−1∑
k=1

Ck,n−k

(
k
n

)
(2k − 2)!!
(2k − 3)!!

=
n!(2n − 2m − 2)!(m − 1)!

2n−2m+1m!(2n − 3)!!(n −m − 1)!(n −m)!

·

(
(n − 1)2n−m

(2m − 3)!!(2n − 2m − 3)!!
−

(2n − 3)!!
(2m − 3)!!(2n − 2m − 3)!!

)
=

1
2

(
n
m

) (
(2n − 2)!!
(2n − 3)!!

−
(2m − 2)!!
(2m − 3)!!

)
,
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and thus finishes the proof of (ii) whenever 1 ≤ m ≤ n − 1. Now, whenever m ≥ n,

n−1∑
k=1

Ck,n−k

(
k
m

)
(2k − 2)!!
(2k − 3)!!

= 0 =
1
2

(
n
m

) (
(2n − 2)!!
(2n − 3)!!

−
(2m − 2)!!
(2m − 3)!!

)
,

since
( k
m
)
= 0 because k ≤ n−1. So, (ii) holds for everym ≥ 1. Now the only remaining

case is (i); i.e., m = 0. In this case we deal with the sum

n−1∑
k=1

Ck,n−k
(2k − 2)!!
(2k − 3)!!

=

n−1∑
k=1

n!(2k − 3)!!(2n − 2k − 3)!!(2k − 2)!!
2k!(n − k)!(2n − 3)!!(2k − 3)!!

=
n!

2(2n − 3)!!

n−1∑
k=1

(2n − 2k − 3)!!(2k − 2)!!
k!(n − k)!

=
n!

2(2n − 3)!!

n−1∑
k=1

(2n − 2k − 2)!2k−1(k − 1)!
2n−k−1(n − k − 1)!(n − k)!k!

=
n!

2n+1(2n − 3)!!

n−1∑
k=1

(2n − 2k − 2)!22k

(n − k − 1)!(n − k)!k

=
n!

2n−1(2n − 3)!!

n−2∑
k=0

(2n − 2k − 4)!22k

(n − k − 2)!(n − k − 1)!(k + 1)
,

by setting k 7→ k + 1. This is again part of a hypergeometric series, and thus we repeat
the previous procedure. By taking

t j =
(2n − 2 j − 4)!22 j

(n − j − 2)!(n − j − 1)!( j + 1)
,

we get

t0 =
(2n − 4)!

(n − 2)!(n − 1)!
,

t j+1
t j
=

( j + 1)2( j + 1 − n)
( j + 2)

(
j − n + 5

2
)
( j + 1)

.

Notice, now, that (1− n)k = 0 if k ≥ n but that (1− n)n−1 = (−1)n−1(n − 1)!, and so we
have that

n−2∑
k=0

(2n − 2k − 4)!22k

(n − k − 2)!(n − k − 1)!(k + 1)

=
(2n − 4)!

(n − 2)!(n − 1)!

(
3F2

[
1, 1, 1 − n
2, 5

2 − n
; 1

]
−

(1)2n−2(1 − n)n−1
(2)n−1

( 5
2 − n

)
n−1 (n − 1)!

)
.

Now, since

(1)n−1 = (n − 1)!
(2)n−1 = n!

(1 − n)n−1 = (−1)n−1(n − 1)!(
5
2
− n

)
n−1
= (−1)n−2

(2n − 5)!!
2n−1

,
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the substrahend in the expression above is

(1)2n−2(1 − n)n−1
(2)n−1

( 5
2 − n

)
n−1 (n − 1)!

=
(−1)n−1(n − 1)!32n−1

n!(−1)n−2(2n − 5)!!(n − 1)!
= −
(2n − 2)!!
n(2n − 5)!!

.

As for the hypergeometric function, applying transformation (3.1.2) in [48], we obtain

3F2
[
1, 1, 1 − n
2, 5

2 − n
; 1

]
=
Γ(2)Γ

( 5
2 − n

)
Γ

( 3
2
)

Γ(1)Γ
( 5
2
)
Γ

( 5
2 − n

) 3F2 [1, 3
2 − n,

3
2

5
2,

5
2 − n

; 1

]
=

2
3 3F2

[
3
2, 1,

3
2 − n

5
2,

5
2 − n

; 1

]
where, by identity http://functions.wolfram.com/07.27.03.0017.01,

3F2

[
3
2, 1,

3
2 − n

5
2,

5
2 − n

; 1

]
=

( 3
2 − n

) (
− 1

2
)
n (n − 1)!Γ

( 5
2
)
Γ(1)

1
2
(
− 1

2
)
n (1)nΓ(1)Γ

( 3
2
) n−1∑

k=0

(
− 1

2
)
k (1)k( 1

2
)
k k!

= −
9 − 6n
2n

n−1∑
k=0

1
2k − 1

= −
9 − 6n
2n

©«−1 +
2n−2∑
j=1

1
j
−
1
2

n−1∑
j=1

1
j
ª®¬

= −
9 − 6n
2n

(
H2n−2 −

1
2
Hn−1 − 1

)
.

Therefore,

3F2
[
1, 1, 1 − n
2, 5

2 − n
; 1

]
= −

2
3
9 − 6n
2n

(
H2n−2 −

1
2
Hn−1 − 1

)
=

3 − 2n
2n
(2H2n−2 − Hn−1 − 1).

Finally,

n−1∑
k=1

Ck,n−k
(2k − 2)!!
(2k − 3)!!

=
n!(2n − 4)!

2n−1(2n − 3)!!(n − 2)!(n − 1)!

·

(
(2n − 2)!!
n(2n − 5)!!

−
3 − 2n
2n
(2H2n−2 − Hn−1 − 2)

)
=

1
2
(2n − 2)!!
(2n − 3)!!

+
1
4
(2H2n−2 − Hn−1 − 2),

as we, sigh, claimed. �

Finally, we state and give proof to the main result of this section: the solution to
the following family of recurrences (given by combining the equations in Lemmata 1.33
and 1.34).
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Theorem 1.35. The solution to the recurrence

xn = 2
n−1∑
k=1

Ck,n−k xk +
r∑

l=1

al
(
n
l

)
+
(2n − 2)!!
(2n − 3)!!

s∑
l=1

bl
(
n
l

)
,

with (a1, . . . , ar , b1, . . . , bs ) ∈ Rr+s , is

xn =
s+1∑
i=1

âl
(
n
l

)
+
(2n − 2)!!
(2n − 3)!!

r∑
l=1

b̂l
(
n
l

)
,

where

â1 = x1 − a1

âl =
l · (2l − 2)!!
(2l − 3)!!

(bl
l
+

bl−1
l − 1

)
, l ∈ {2, . . . , s}

âs+1 =
(s + 1) · (2s)!!
(2s − 1)!!

·
bs
s

b̂l =
(2l − 3)!!
(2l − 2)!!

· al , l ∈ {1, . . . , r }

Proof. Consider the following sequence:

xn =
s+1∑
i=1

âl
(
n
l

)
+
(2n − 2)!!
(2n − 3)!!

r∑
l=1

b̂l
(
n
l

)
,

with (â1, . . . , âs+1, b̂1, . . . , b̂r ) ∈ Rr+s+1 not known. We are going to show that they
must be equal to the ones given in the statement of this theorem. Then,

xn − 2
n−1∑
k=1

Ck,n−k xk

=

s+1∑
l=1

âl
(
n
l

)
+
(2n − 2)!!
(2n − 3)!!

r∑
l=1

b̂l
(
n
l

)
− 2

n−1∑
k=1

Ck,n−k

( s+1∑
l=1

âl
(
k
l

)
+

r∑
l=1

(
k
l

)
b̂l
(2k − 2)!!
(2k − 3)!!

)
=

s+1∑
l=1

âl

((
n
l

)
− 2

n−1∑
k=1

Ck,n−k

(
k
l

))
+

r∑
l=1

b̂l

((
n
l

)
(2n − 2)!!
(2n − 3)!!

− 2
n−1∑
k=1

Ck,n−k

(
k
l

)
(2k − 2)!!
(2k − 3)!!

)
=

s+1∑
l=1

âl
l − 1
n − 1

(2l − 3)!!
(2l − 2)!!

(
n
l

)
(2n − 2)!!
(2n − 3)!!

+

r∑
l=1

b̂l
(
n
l

)
(2l − 2)!!
(2l − 3)!!
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by the (ii) part of Lemmata 1.33 and 1.34. Then, bywriting the equation in the statement
of this result, we will prove that

(2n − 2)!!
(2n − 3)!!

s+1∑
l=1

(l − 1)(2l − 3)!!
(2l − 2)!!

âl
(
n
l

)
1

n − 1
+

r∑
l=1

b̂l
(2l − 2)!!
(2l − 3)!!

(
n
l

)
=
(2n − 2)!!
(2n − 3)!!

s∑
l=1

bl
(
n
l

)
+

r∑
l=1

al
(
n
l

)
,

by means of satisfying the following conditions:

r∑
l=1

b̂l
(2l − 2)!!
(2l − 3)!!

(
n
l

)
=

r∑
l=1

al
(
n
l

)
(1.19)

and
s+1∑
l=1

(l − 1)(2l − 3)!!
(2l − 2)!!

âl
(
n
l

)
1

n − 1
=

s∑
l=1

bl
(
n
l

)
. (1.20)

Now, by setting

b̂l =
(2l − 3)!!
(2l − 2)!!

al , l ∈ {1, . . . , d},

we clearly solve 1.19. As for Equation 1.20, if l ≥ 1 we can easily check that(
n
l

)
1

n − 1
=

1
l

(
n

l − 1

)
−
l − 2
l

(
n

l − 1

)
1

n − 1
.

Now, we shall prove by induction on l ≥ 2 that

(
n
l

)
1

n − 1
=

l−1∑
j=1
(−1) j+1

l − j
l (l − 1)

(
n

l − j

)
. (1.21)

Indeed: suppose that l = 2; then(
n
2

)
1

n − 1
=

1
2

(
n
1

)
=

∑
j=1
(−1) j+1

(l − j)
l (l − 1)

(
n

l − j

)
.

Now suppose that this proposition holds up to l − 1, for l ≥ 3. Then,

(
n

l − 1

)
1

n − 1
=

l−2∑
j=1
(−1) j+1

l − j − 1
(l − 1)(l − 2)

(
n

l − j − 1

)
;
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we therefore have that(
n
l

)
1

n − 1
=

1
l

(
n

l − 1

)
−
l − 2
l

(
n

l − 1

)
1

n − 1

=
1
l

(
n

l − 1

)
−
l − 2
l

l−2∑
j=1
(−1) j+1

l − 1 − j
(l − 1)(l − 2)

(
n

l − 1 − j

)
(by the induction hypothesis)

=
l − 1

l (l − 1)

(
n

l − 1

)
−

l−2∑
j=1
(−1) j+1

l − 1 − j
l (l − 1)

(
n

l − 1 − j

)
=

l − 1
l (l − 1)

(
n

l − 1

)
+

l−1∑
j=2
(−1) j+1

l − j
l (l − 1)

(
n

l − j

)
(by setting l 7→ l − 1)

=

l−1∑
j=1
(−1) j+1

(l − j)
l (l − 1)

(
n

l − j

)
,

and we have then established the truth of Equation 1.21. Finally, we can proceed to the
end of the proof: Equation 1.20 is then

s∑
l=1

bl
(
n
l

)
=

s+1∑
l=1

(l − 1) · (2l − 3)!!
(2l − 2)!!

· âl
(
n
l

)
1

n − 1

=

s+1∑
l=2

(l − 1) · (2l − 3)!!
(2l − 2)!!

· âl
(
n
l

)
1

n − 1

=

s+1∑
l=2

(
(l − 1) · (2l − 3)!!
(2l − 2)!!

· âl
l−1∑
j=1
(−1) j+1

(l − j)
l (l − 1)

·

(
n

l − j

))
=

s+1∑
l=2

(
(2l − 3)!!

l · (2l − 2)!!
· âl

l−1∑
ℎ=1

(−1)l−ℎ+1ℎ
(
n
ℎ

))
(by setting l − j 7→ ℎ)

=

s∑
ℎ=1

( s+1∑
l=ℎ+1

(−1)l−ℎ+1
ℎ · (2l − 3)!!
l · (2l − 2)!!

· âl

) (
n
ℎ

)
and thus, it is satisfied if

s+1∑
l=ℎ+1

(−1)l−ℎ+1
ℎ · (2l − 3)!!
l · (2l − 2)!!

· âl = bℎ, ℎ ∈ {1, . . . , s}.

Notice that the system of linear equations in â2, . . . , âs+1 gives rise to a triangularmatrix
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of the coefficients, and thus it has only one solution. This solution must satisfy that

âs+1 =
(s + 1) · (2s)!!
s · (2s − 1)!!

· bs

âℎ =
ℎ · (2ℎ − 2)!!

(ℎ − 1) · (2ℎ − 3)!!
· bℎ−1

−

s+1∑
l=ℎ+1

(−1)l−ℎ
ℎ · (2ℎ − 2)!!(2l − 3)!!
l · (2l − 2)!!(2ℎ − 3)!!

· âl

=
ℎ · (2ℎ − 2)!!
(2ℎ − 3)!!

( bℎ−1
ℎ − 1

−

s+1∑
l=ℎ+1

(−1)l−ℎ(2l − 3)!!
l · (2l − 2)!!

· âl
)
, ℎ ∈ {2, . . . , s}

Now, let

ãl =
(2l − 3)!!

l · (2l − 2)!!
âl .

Then, the previous formulæ can be rewritten as

ãs+1 =
bs
s

ãl =
bl−1
l − 1

+

s+1∑
ℎ=l+1

(−1)ℎ−l−1 ãℎ, l ∈ {2, . . . , s}

and the solution of the last recurrence is

ãl =
bl−1
l − 1

+
bl
l
. (1.22)

Indeed:
ãs =

bs−1
s − 1

+ ãs+1 =
bs−1
s − 1

+
bs
s

and if (1.22) holds for every ℎ ∈ {l + 1, . . . , s + 1}, then

ãl =
bl−1
l − 1

+

s∑
ℎ=l+1

(−1)ℎ−l−1
( bℎ−1
ℎ − 1

+
bℎ
ℎ

)
+ (−1)s−l ·

bs
s
=

bl−1
l − 1

+
bl
l
.

Then, finally, for every l ∈ {2, . . . , s},

âl =
l · (2l − 2)!!
(2l − 3)!!

ãl =
l · (2l − 2)!!
(2l − 3)!!

( bl−1
l − 1

+
bl
l

)
as we claimed.

Finally, to obtain â1 we impose the initial condition

x1 =
s+1∑
l=1

âl
(
1
l

)
+
(2 − 2)!!
(2 − 3)!!

r∑
l=1

b̂l
(
1
l

)
= â1 + b̂1

⇒ â1 = x1 − b̂1 = x1 −
(2 − 3)!!
(2 − 2)!!

· a1 = x1 − a1.

�

We end with an example in order to portray the use of Theorem 1.35. It comes
directly from the proof of Theorem 4.29 in Chapter 4.
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Example:
Suppose we are given the following recurrent equation

xn = 2
n−1∑
k=1

Ck,n−k xk − 3n + 2n
(2n − 2)!!
(2n − 3)!!

with initial condition x1 = 0. We can readily see that, with the notations of Theorem
1.35,

a1 = −3, r = 1
b1 = 2, s = 1.

Then,

â1 = x1 − a1 = 3

â2 = âs+1 =
(s + 1)(2s)!!
(2s − 1)!!

bs
s
= 8

b̂1 =
(2 − 3)!!
(2 − 2)!!

a1 = −3.

Thus, the solution to the above equation with x1 = 0 is

xn = 3n + 8
(
n
2

)
− 3n

(2n − 2)!!
(2n − 3)!!

= 4n2 − n − 3n
(2n − 2)!!
(2n − 3)!!

.
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2
A minimum for the Colless index

Common sense notions of tree
balance lead to the recognition of

balance as indicating equal numbers
of included terminal nodes for both
branches of the various furcations
(interior nodes) of a dendogram.

K.T. Shao and R. R. Sokal, Tree
Balance [107], 1990

No balance index captures the intuitive concept of balance as well as the Colless
index does. Recall that, given a bifurcating treeT , if we define, for each u ∈ V̊ (T ),

its balance as bal(u) = |κ(u1) − κ(u2)|, where u1 and u2 are the children of u, then the
Colless index of T is

C (T ) =
∑

u∈V̊ (T )

bal(u). (2.1)

This index, defined by Colless in 1982 [19], is one of the first balance indices for
phylogenetic trees introduced in the literature, and it is very popular because it captures
in an intuitive way the notion of “global imbalance” of a tree. But despite its age and
popularity, several basic questions on it remained unanswered since its inception. The
goal of this chapter is to answer one of these questions: what is its minimum possible
value for a given number of leaves n ∈ N≥1, and what trees achieve this minimun value,
thus becoming the “most balanced” (at least, according to the Colless measure) among
all bifurcating trees with their number of leaves?

The intuition that the maximally balanced trees achieve the minimum Colless in-
dex in BinTreen has permeated the phylogenetics community and become part of its
folklore knowledge. This intuition was ever so strong due to the easy, yet powerful fact
(already spotted in [60, 69, 88]) that, for any power of 2, the only tree with minimum
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Colless index is the fully symmetric tree—indeed, since it is the only tree whose Colless
index is 0. But, in general, even the fact that minimum value of the Colless index is al-
ways reached at a maximally balanced tree had not been proved, much less found what
other trees, if any, reach this minimum. That is, until independent work carried out by
the group of M. Fischer [40] and our group [27] that eventually gave rise to our joint
paper [22], filled this gap in the literature, by characterizing the trees with minimum
Colless index (which indeed include, but almost never consist solely of, the maximally
balanced trees) and providing two alternative closed formulæ for this minimum value.

This chapter is entirely devoted to explain our contribution to this work, and it is
organized as follows. First of all, we shall prove that the minimum value of the Colless
index is attained at the maximally balanced trees, thus giving us an explicit way to com-
pute that minimum value: namely, that of the Colless index of a maximally balanced
tree. We shall present then a new recursive formula that will allow us to give a closed
formula for this value, which we call c(n). Thus reasoning, we shall explicitly state
the relationship of c(n) with the binary representation of n. To end this first section,
we shall present the relationship of this value and the so-called Takagi, or Blancmange,
fractal curve.

Secondly, we will be interested in characterizing which trees, given a fixed number
of leaves n, areminimal Colless (in the sense that they attain the aforementioned lower
bound). In order to do that, we shall first characterize the pairs (n1, n2) such that ifT =
T1 ∗ T2 ∈ BinTreen, with T1 ∈ BinTreen1 and T2 ∈ BinTreen2 and T1,T2 are minimal
Colless, then T is minimal Colless, too. We shall then re-write that characterization
in terms of the binary decomposition of n, thus allowing us to easily find the pairs
satisfying the aforementioned property. This will be the basis of an algorithm that
produces all minimal Colless trees for any given number of leaves. We shall end with a
brief discussion of some other interesting results included in [22].

2.1 The minimum Colless index

We will begin by establishing several basic results, starting with a recurrence that is a
direct consequence of Equation (2.1) (see page 21).

Lemma 2.1. If T = T1 ∗T2, with T1 ∈ BinTreen1 and T2 ∈ BinTreen2 , then

C (T ) = C (T1) +C (T2) + |n1 − n2 |.

Lemma 2.2. Let T = T1 ∗ T2 ∈ BinTreen be a bifurcating tree with n leaves, with T1 ∈

BinTreen1 and T2 ∈ BinTreen2 . If T has minimum Colless index on BinTreen , then T1
and T2 have minimum Colless indices on BinTreen1 and BinTreen2 , respectively.

Proof. We will proceed by modus tollens. Assume that C (T1) is not minimal (the ar-
gument in the case that C (T2) is not minimal is analogous), and let T ′1 ∈ BinTreen1
be a tree with n1 leaves that achieves the minimum value of the Colless index, so that
C (T ′1 ) < C (T1). Then, let T ′ = T ′1 ∗T2 ∈ BinTreen and

C (T ′) = C (T ′1 ) +C (T2) + |n1 − n2 | < C (T1) +C (T2) + |n1 − n2 | = C (T )

thus negating that C (T ) is the minimum Colless index. �
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Corollary 2.3. Let T ∈ BinTreen be a bifurcating tree with n leaves, and T ′ ∈ BinTreek
a rooted subtree of T with k leaves. If C (T ) is minimum in BinTreen , then so is C (T ′) in
BinTreek .

Proof. We proceed by induction over the depth δ of the root x of T ′ in T . If δ = 0 the
result is obviously true, since T = T ′; if δ = 1 the result holds by the previous lemma.
Now suppose that δ ≥ 2 and that the result is true for every depth up to δ − 1. Let y
be the parent of x . Since the depth of y is δ − 1, by the induction hypothesis we have
that Ty has minimum Colless index in BinTreeκT (y), and then, since x has depth 1 in
Ty , T ′ has minimum Colless index in BinTreek by the case δ = 1. �

Corollary 2.4. For every n ≥ 1 and for every T ∈ BinTreen , C (T ) = 0 if, and only if, n
is a power of 2 and T is fully symmetric.

Proof. The “if” implication is a direct consequence of the fact that, in a fully symmetric
tree, both children of each internal node v have the same number of descendant leaves
and thus bal(v) = 0. We prove now the “only if” implication by induction over n. The
base case n = 1 being obvious, let n ≥ 2 and let us assume that the assertion is true for
every number of leaves up to n − 1. Let T ∈ BinTreen be such that C (T ) = 0, and let
T1 ∈ BinTreen1 and T2 ∈ BinTreen2 be its subtrees rooted at the children of its root,
so that T = T1 ∗ T2. Then, by Lemma 2.1, C (T ) = 0 is equivalent to n1 = n2 and
C (T1) = C (T2) = 0. By the induction hypothesis, this implies that n1 = n2 is a power
of 2, and hence that n = n1 + n1 is also a power of 2, and that both T1 and T2 are fully
symmetric, and hence that T = T1 ∗T2 is fully symmetric, too. �

2.1.1 The maximally balanced trees are minimal Colless

Maximally balanced trees present the minimum value of the Colless index. The fact is
obvious when the number of leaves is a power of 2, since the Colless index of a fully
symmetric tree is equal to 0. In the remaining of this section we will prove the result
for all n ∈ N.

Let c : N → N be the function that assigns, to each n, the Colless index of a
maximally balanced tree with n leaves. By Theorem 1.8 and Lemma 2.1, it is easy to
see that c(n) can be computed recurrently as

c(n) =
{
0 if n = 1
c
(⌈n

2
⌉)
+ c

( ⌊ n
2
⌋ )
+

⌈n
2
⌉
−

⌊ n
2
⌋

if n ≥ 2 (2.2)

Notice that this recurrence says that, for every n ≥ 2,

• if n ∈ 2N, then c(n) = 2c
( n
2
)

• if n < 2N, then c(n) = c
(⌈n

2
⌉)
+ c

( ⌊ n
2
⌋ )
+ 1 = c

( n+1
2

)
+ c

( n−1
2

)
+ 1

We will proceed by proving the next lemma, which will give us a straightforward
argument for the main proposition.

Lemma 2.5. Let n ∈ N≥1 and s ∈ N. Then,

c(n + s) + c(n) + s ≥ c(2n + s).
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Proof. We will proceed by induction over n. First of all, we shall see that the thesis is
true when n = 1; that is (since C (1) = 0),

c(1 + s) + s ≥ c(2 + s) (2.3)

for every s ∈ N. In order to prove this base case, we also proceed by induction, now
over s .

Suppose s = 0; then, we want to show that c(1) + 0 = 0 ≥ c(2) = 0, which is
obviously true. Now we shall suppose that s > 0 and that c(1 + s ′) + s ′ ≥ c(2 + s ′) for
any number s ′ up to s − 1, and will prove that it entails that c(1 + s) + s ≥ c(2 + s).

Two roads diverged in a yellow wood:

• If s ∈ 2N,

c(1 + s) + s ≥ c(2 + s)

⇐⇒ c
(⌈
1 + s
2

⌉)
+ c

(⌊
1 + s
2

⌋)
+ 1 + s ≥ 2c

(
s + 2
2

)
⇐⇒ c

( s
2
+ 1

)
+ c

( s
2

)
+ 1 + 2

s
2
≥ 2c

(
1 +

s
2

)
This last inequality is true if

c
( s
2
+ 1

)
+

s
2
≥ c

( s
2
+ 1

)
, c

( s
2

)
+

s
2
+ 1 ≥ c

( s
2
+ 1

)
,

and these inequalities hold (and they are actually strict): the former trivially and the
latter by the induction hypothesis (and the fact that s ∈ 2N\{0} implies that s

2 −1 ∈ N):

c
( s
2

)
+

s
2
+ 1 = c

(
1 +

( s
2
− 1

))
+

s
2
− 1 + 2

≥ c
(
2 +

s
2
− 1

)
+ 2 = c

(
1 +

s
2

)
+ 2 > c

(
1 +

s
2

)
.

• If s < 2N,

c(1 + s) + s ≥ c(2 + s)

⇐⇒ 2c
(
1 + s
2

)
+

⌈ s
2

⌉
+

⌊ s
2

⌋
≥ c

(⌈
2 + s
2

⌉)
+ c

(⌊
2 + s
2

⌋)
+ 1

⇐⇒ 2c
(⌈ s
2

⌉)
+

⌈ s
2

⌉
+

⌊ s
2

⌋
≥ c

(
1 +

⌈ s
2

⌉)
+ c

(⌈ s
2

⌉)
+ 1.

This last inequality is true if

c
(⌈ s
2

⌉)
+

⌈ s
2

⌉
≥ c

(
1 +

⌈ s
2

⌉)
+ 1, c

(⌈ s
2

⌉)
+

⌊ s
2

⌋
≥ c

(⌈ s
2

⌉)
.

Now, the second inequality holds trivially, and the first is, again, a consequence of the
induction hypothesis (and the fact that s > 0 implies that

⌈ s
2
⌉
− 1 ∈ N):

c
(⌈ s
2

⌉)
+

⌈ s
2

⌉
= c

(
1 +

⌈ s
2

⌉
− 1

)
+

⌈ s
2

⌉
− 1 + 1

≥ c
(
2 +

⌈ s
2

⌉
− 1

)
+ 1 = c

(
1 +

⌈ s
2

⌉)
+ 1
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This completes the proof of the base case n = 1.
Now assume that n > 1 and that c(k + s)+ c(k)+ s ≥ c(2k + s) is true for any k < n

and any s ∈ N; we want to prove that

c(n + s) + c(n) + s ≥ c(2n + s) (2.4)

is true for any s ∈ N. Four possibilities exist:

• Assume that n ∈ 2N and s ∈ 2N. Then,

c(n + s) + c(n) + s ≥ c(2n + s)

⇐⇒ 2c
(n + s

2

)
+ 2c

(n
2

)
+ 2

s
2
≥ 2c

(
2n + s

2

)
⇐⇒ c

(n
2
+

s
2

)
+ c

(n
2

)
+

s
2
≥ c

(
n +

s
2

)
and this last inequality holds due to the induction hypothesis.

• Assume that n ∈ 2N and s < 2N. Then,

c(n + s) + c(n) + s ≥ c(2n + s)

⇐⇒ c
(⌈n + s

2

⌉)
+ c

( ⌊n + s
2

⌋ )
+ 1 + 2c

(n
2

)
+

⌈ s
2

⌉
+

⌊ s
2

⌋
≥ c

(⌈
2n + s

2

⌉)
+ c

(⌊
2n + s

2

⌋)
+ 1

⇐⇒ c
(n
2
+

⌈ s
2

⌉)
+ c

(n
2
+

⌊ s
2

⌋ )
+ 2c

(n
2

)
+

⌈ s
2

⌉
+

⌊ s
2

⌋
≥ c

(
n +

⌈ s
2

⌉)
+ c

(
n +

⌊ s
2

⌋ )
where in the last equivalence we have used that, since n ∈ 2N,

⌈n+s
2

⌉
= n

2 +
⌈ s
2
⌉
and⌊ n+s

2
⌋
= n

2 +
⌊ s
2
⌋
. Now, the last inequality is true because both inequalities

c
(n
2
+

⌈ s
2

⌉)
+ c

(n
2

)
+

⌈ s
2

⌉
≥ c

(
n +

⌈ s
2

⌉)
c
(n
2
+

⌊ s
2

⌋ )
+ c

(n
2

)
+

⌊ s
2

⌋
≥ c

(
n +

⌊ s
2

⌋ )
hold by the induction hypothesis.

• Assume that n < 2N and s ∈ 2N. Then

c(n + s) + c(n) + s ≥ c(2n + s)

⇐⇒ c
(⌈n + s

2

⌉)
+ c

( ⌊n + s
2

⌋ )
+ c

(⌈n
2

⌉)
+ c

( ⌊n
2

⌋ )
+ 2 + 2

s
2

≥ 2c
(
2n + s

2

)
⇐⇒ c

(⌈n
2

⌉
+

s
2

)
+ c

( ⌊n
2

⌋
+

s
2

)
+ c

(⌈n
2

⌉)
+ c

( ⌊n
2

⌋ )
+ 2 + 2

s
2

≥ 2c
(
n +

s
2

)
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where in the last equivalence we have used that, since s ∈ 2N,
⌈n+s

2
⌉
=

⌈n
2
⌉
+ s

2 and⌊ n+s
2

⌋
=

⌊ n
2
⌋
+ s

2 . Now, the last inequality is true because, on the one hand, by the
induction hypothesis,

c
(⌈n
2

⌉
+

s
2

)
+ c

( ⌊n
2

⌋ )
+

s
2
+ 1

= c
( ⌊n

2

⌋
+

s
2
+ 1

)
+ c

( ⌊n
2

⌋ )
+

s
2
+ 1

≥ c
(
2
⌊n
2

⌋
+

s
2
+ 1

)
= c

(
n − 1 +

s
2
+ 1

)
= c

(
n +

s
2

)

and, on the other hand, the following inequality also holds:

c
( ⌊n

2

⌋
+

s
2

)
+ c

(⌈n
2

⌉)
+

s
2
+ 1 ≥ c

(
n +

s
2

)
but to establish it we must distinguish two cases:

– If s = 0, this inequality says

c
( ⌊n

2

⌋ )
+ c

(⌈n
2

⌉)
+ 1 ≥ c (n)

and this inequality holds, and it is actually an equality, by Equation (2.2).

– If s ≥ 2, then

c
( ⌊n

2

⌋
+

s
2

)
+ c

(⌈n
2

⌉)
+

s
2
+ 1

= c
(⌈n
2

⌉
+

s
2
− 1

)
+ c

(⌈n
2

⌉)
+

s
2
− 1 + 2

≥ c
(
2
⌈n
2

⌉
+

s
2
− 1

)
+ 2 = c

(
n + 1 +

s
2
− 1

)
+ 2

= c
(
n +

s
2

)
+ 2 > c

(
n +

s
2

)
where the first inequality is due to the induction hypothesis.

• Assume that n < 2N and s < 2N. Then

c(n + s) + c(n) + s ≥ c(2n + s)

⇐⇒ 2c
(n + s

2

)
+ c

(⌈n
2

⌉)
+ c

( ⌊n
2

⌋ )
+ 1 +

⌈ s
2

⌉
+

⌊ s
2

⌋
≥ c

(⌈
2n + s

2

⌉)
+ c

(⌊
2n + s

2

⌋)
+ 1

⇐⇒ c
(⌈n
2

⌉
+

⌊ s
2

⌋ )
+ c

( ⌊n
2

⌋
+

⌈ s
2

⌉)
+ c

(⌈n
2

⌉)
+ c

( ⌊n
2

⌋ )
+

⌈ s
2

⌉
+

⌊ s
2

⌋
≥ c

(
n +

⌈ s
2

⌉)
+ c

(
n +

⌊ s
2

⌋ )
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The last inequality holds because, by the induction hypothesis,

c
(⌈n
2

⌉
+

⌊ s
2

⌋ )
+ c

(⌈n
2

⌉)
+

⌊ s
2

⌋
≥ c

(
2
⌈n
2

⌉
+

⌊ s
2

⌋ )
= c

(
n + 1 +

⌊ s
2

⌋ )
= c

(
n +

⌈ s
2

⌉)
c
( ⌊n

2

⌋
+

⌈ s
2

⌉)
+ c

( ⌊n
2

⌋ )
+

⌈ s
2

⌉
≥ c

(
2
⌊n
2

⌋
+

⌈ s
2

⌉)
=

(
n − 1 +

⌈ s
2

⌉)
= c

(
n +

⌊ s
2

⌋ )
.

This completes the proof of the induction step. �

Corollary 2.6. For every n < 2N and s ∈ 2N \ {0},

c(n + s) + c(n) + s > c(2n + s).

Proof. A close analysis of the proof of the last lemma shows that, on the one hand, the
inequality obtained when s ∈ 2N in the induction step of the proof of (2.3) is strict,
and thus, if s ∈ 2N \ {0}, C (1+ s)+ s > C (2+ s), and, on the other hand, the inequality
obtained in the induction step of the proof of (2.4) when n > 1 is odd and s ∈ 2N\ {0},
is strict, and hence, also in this case, C (n + s) +C (n) + s > C (2n + s). �

In particular, if T = T1 ∗ T2 ∈ BinTreen, with T1 ∈ BinTreen1 , T2 ∈ BinTreen2 ,
n1, n2 odd, and n1 > n2, then T can never have minimal Colless index. Indeed, set
n′ = n1, which is odd, and s = n1 − n2 > 0, which is even. Then

C (T ) = C (T1) +C (T2) + n1 − n2 ≥ c(n′ + s) + c(n′) + s > c(2n′ + s) = c(n).

Theorem 2.7. The minimum Colless index in BinTreen is reached at the maximally bal-
anced trees.

Proof. We proceed by induction over the number n of leaves. The base case n = 1 is
obvious; suppose it is true up to n − 1 leaves. Let T be a binary rooted tree with n
leaves, and T1,T2 the children of the root, with n′ + s and n′ leaves, respectively, for
some n′ ∈ N≥1 and s ′ ∈ N such that n = 2n′ + s . Then,

C (T ) = C (T1) +C (T2) + s ≥ C (T bal
n′+s ) +C (T

bal
n′ ) + s

= c(n′ + s) + c(n′) + s ≥ c(2n′ + s) = C (T bal
n )

where the first inequality is due to the induction hypothesis and the second, to Lemma
2.5. �

So, the minimum Colless index in BinTreen is c(n) = C (T bal
n ) and in particular it

satisfies the recurrence

c(n) = c
(⌈n
2

⌉)
+ c

( ⌊n
2

⌋ )
+

⌈n
2

⌉
−

⌊n
2

⌋
. (2.5)

Therefore, in what follows we shall refer to c(n) as the minimum Colless index in
BinTreen, and to the trees with n leaves that attain itminimal Colless treeswith n leaves.

Corollary 2.8. Let n ∈ N≥1 and p ∈ N be such that 2p divides n. Then, c(n) = 2pc
( n
2p

)
.
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Proof. We proceed by induction over p. If p = 0, then the equation is a tautology.
Otherwise, suppose it to be true up to p − 1. Let us write n as n = 2pn′. Then,

c(n) = c
(
2pn′

)
= 2c

(
2p−1n′

)
= 2pc(n′)

where the second equality is due to Equation (2.5), and the third equality is due to our
induction hypothesis. �

2.1.2 Another recursive formula for the minimum Colless index

Consider a fully symmetric tree T 0 with n0 = 2m leaves, all of whose nodes are sym-
metry nodes and hence C (T 0) = 0. Let {u0, v0} be a cherry in T 0, and x0 its parent.

ρ

u0 v0

x0

Wemay now add a sibling w0 to u0, in a way that a new internal node y0 is created,
together with an arc that (x0, y0), and Ty0 = {u0,w0} is now a cherry. We have thus
produced a tree T 1 with n1 = 2m + 1 leaves which is clearly maximally balanced.

u0

v0

w0

y0

z03 = x0

z02

z01 = ρ

v1 u1

x1

Now, how many unbalanced nodes does it have? The root is plainly unbalanced,
since it was balanced before we addedw0. Thus arguing, we can conclude that each node
in the path ρ = z01, z

0
2, . . . , z

0
m = x0 is unbalanced. Furthermore, every internal node

that is not in that path remains balanced, since they were so in T 0 and no change has
occurred to any of its children. Hence, we can conclude that c(2m + 1) = C (T 1) = m.

We can, by picking a cherry {u1, v1} in T 1 and adding a leaf w1 to it in a way
analogous to that we have used above, construct a new tree T 2. In order for T 2 to be
maximally balanced, the chosen cherry must lie below a different child of the root than
the one in which the cherry {u0,w0} dwells. Let it be so. Now, the question arises
naturally: how many unbalanced nodes does T 2 have?
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u0

v0

w0

y0

z03 = x0

z02

ρ

y1

z13 = x1

z12

v1

w1u1

The root is plainly balanced since it is even a symmetry node, both trees rooted
at its children having the exact same shape. However, the path z02, z

0
3, . . . , z

0
m = x0

is still formed by unbalanced nodes, and so is an analogous path z12, z
1
3, . . . , z

1
m = x1

in the corresponding subtree. It can be readily argued that no other internal node is
unbalanced, and hence c(2m + 2) = C (T 2) = 2(m − 1). We could have also argued
that, the root being balanced, the Colless index of T 2 is the addition of those of both
subtrees rooted at the children of the root, which are fully symmetric with 2m−1 leaves
plus an extra cherry and therefore, by the previous discussion, they both have Colless
index m − 1.

Let’s pick now a cherry {u2, v2} in T 2 and add a leaf w2 to it forming a new cherry
with u2. In order for the resulting treeT 3 to be maximally balanced, the chosen cherry
must lie below a different grandchild z23 of the root than the ancestors z03 and z13 of the
cherries {u0,w0} and {u1,w1}, respectively.

u0

v0

w0

y0

z03 = x0

z02

ρ

y1

z13 = x1

z12

v1

w1u1

z23 = x2

y2
v2

w2u2

In T 3, the root ρ becomes unbalanced again, its child z02 parenting the nodes z03
and z23 is balanced, the paths z03, . . . , z

0
m = x0 and z12, z

1
3, . . . , z

1
m = x1 are still formed

by unbalanced nodes, and a new path of unbalanced nodes is added: z23, . . . , z
2
m = x2.

Therefore, c(2m + 3) = C (T 3) = 2(m − 1) + (m − 2) = 3m − 4.
Now, in general, suppose that n = 2m + k, with k = 2r + s < 2m and 0 ≤ s < 2r ,

and consider themaximally balanced treeT k obtained through the procedure explained
above. If s were to be 0, it could be argued that every node of imbalance would have
depth at least r : indeed, each of the 2r trees rooted at nodes of depth r would have
2m−r + 1 leaves. In this case, c(2m + 2r ) = C (T 2r ) = 2r (m − r ).

Consider now the case in which s , 0. Of the 2r subtrees mentioned above, s
would now have 2k−r + 2 leaves and hence their Colless index would be 2(m − r − 1),
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whereas that of the remaining 2r − s trees would continue to be m − r . However, in
this situation some nodes of depth less than s may be unbalanced. The swiftest way of
deducing how many they can be is to picture the 2r − s subtrees of 2k−r + 1 leaves as
leaves, and those of 2k−r + 2 leaves as cherries: there are C (T k) unbalanced nodes.

These considerations lead us to the following alternative recurrence for c(n). Define
c : N → N as c(2m) = 0, for every m ∈ N, and, if n = 2m + k with m ∈ N and
0 < k < 2m ,

c(n) = (2blog2(k)c+1 − k)(m −
⌊
log2(k)

⌋
)

+ 2(k − 2blog2(k)c )(m −
⌊
log2(k)

⌋
− 1) + c(k)

= k(m −
⌊
log2(k)

⌋
) − 2(k − 2blog2(k)c ) + c(k).

To motivate this recurrence, notice that if n = 2m + k and 0 < k = 2r + s < 2m
with 0 ≤ s < 2r , so that r =

⌊
log2(k)

⌋
, then, as we have just discussed, the addend

2(k − 2blog2(k)c )(m −
⌊
log2(k)

⌋
− 1) = 2s(m − r − 1) is the contribution to c(n) of the

s subtrees rooted at nodes of depth r with 2k−r + 2 leaves, the addend (2blog2(k)c+1 −
k)(m −

⌊
log2(k)

⌋
) = 2r (m − r ) is the contribution of the remaining 2r − s subtrees

rooted at nodes of depth r , and c(k) is the contribution of the unbalanced nodes of
depth less than s .

We now prove now that this recurrence defines c(n).

Lemma 2.9. For every n ∈ N≥1, c(n) = c(n).

Proof. We shall prove that c satisfies the same recurrence (2.5) as c : for every n ≥ 2,

c(n) = c
(⌈n
2

⌉)
+ c

( ⌊n
2

⌋ )
+

⌈n
2

⌉
−

⌊n
2

⌋
. (2.6)

Since c(1) = c(20) = 0 = c(1), this will imply that c(n) = c(n) for every n. We proceed
by induction over k in the expression of n as n = 2m + k with 0 ≤ k < 2m .

The base case is k = 0, in which case n = 2m with m ≥ 1. But then
⌈n
2
⌉
=

⌊ n
2
⌋
=

2m−1 and both sides of (2.6) are 0.
Let now 0 < k < 2m , suppose that (2.6) is true for every number of the form

2m′ + k ′ with 0 ≤ k ′ < k and let us prove it for 2m + k: i.e., we want to prove that

c(2m + k) = c
(
2m−1 +

⌈
k
2

⌉)
+ c

(
2m−1 +

⌊
k
2

⌋)
+

⌈
k
2

⌉
−

⌊
k
2

⌋
. (2.7)

Now, two cases arise, depending on whether k = 2blog2(k)c+1 − 1 or not.

• If 0 < k = 2blog2(k)c+1 − 1, then
⌈
k
2

⌉
= 2blog2(k)c and

⌊
k
2

⌋
= 2blog2(k)c − 1, and therefore
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⌊
log2

⌈
k
2

⌉⌋
=

⌊
log2(k)

⌋
, and

⌊
log2

⌊
k
2

⌋⌋
=

⌊
log2(k)

⌋
− 1. Thus:

c
(
2m−1 +

⌈
k
2

⌉)
=

⌈
k
2

⌉ (
m − 1 −

⌊
log2

⌈
k
2

⌉⌋)
− 2

(⌈
k
2

⌉
− 2

⌊
log2

⌈
k
2

⌉⌋ )
+ c

(⌈
k
2

⌉)
=

⌈
k
2

⌉ (
m − 1 −

⌊
log2(k)

⌋ )
+ c

(⌈
k
2

⌉)
=

⌈
k
2

⌉ (
m −

⌊
log2(k)

⌋ )
+ c

(⌈
k
2

⌉)
− 2blog2(k)c

and

c
(
2m−1 +

⌊
k
2

⌋)
=

⌊
k
2

⌋ (
m − 1 −

⌊
log2

⌊
k
2

⌋⌋)
− 2

(⌊
k
2

⌋
− 2

⌊
log2

⌊
k
2

⌋⌋ )
+ c

(⌊
k
2

⌋)
=

⌊
k
2

⌋ (
m −

⌊
log2(k)

⌋ )
− 2

(⌊
k
2

⌋
− 2blog2(k)c−1

)
+ c

(⌊
k
2

⌋)
=

⌊
k
2

⌋ (
m −

⌊
log2(k)

⌋ )
− 2

(
2blog2(k)c−1 − 1

)
+ c

(⌊
k
2

⌋)
=

⌊
k
2

⌋ (
m −

⌊
log2(k)

⌋ )
− 2blog2(k)c + 2 + c

(⌊
k
2

⌋)
.

Therefore,

c
(
2m−1 +

⌊
k
2

⌋)
+ c

(
2m−1 +

⌊
k
2

⌋)
+

⌈
k
2

⌉
−

⌊
k
2

⌋
=

⌈
k
2

⌉ (
m −

⌊
log2(k)

⌋ )
+ c

(⌈
k
2

⌉)
− 2blog2(k)c

+

⌊
k
2

⌋ (
m −

⌊
log2(k)

⌋ )
− 2blog2(k)c + 2 + c

(⌊
k
2

⌋)
+

⌈
k
2

⌉
−

⌊
k
2

⌋
= k

(
m −

⌊
log2(k)

⌋ )
− 2blog2(k)c+1 + 2 + c

(⌈
k
2

⌉)
+ c

(⌊
k
2

⌋)
+

⌈
k
2

⌉
−

⌊
k
2

⌋
whereas,

c
(
2m + k

)
= k(m −

⌊
log2(k)

⌋
) − 2(2blog2(k)c+1 − 1 − 2blog2(k)c ) + c(k)

= k
(
m −

⌊
log2(k)

⌋ )
− 2blog2(k)c+1 + 2 + c

(
k
)

yielding the desired result by applying our induction hypothesis to k = 2m′ + k ′ with
m ′ =

⌊
log2(k)

⌋
and k ′ = 2blog2(k)c − 1 < k.
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• If 0 < k < 2blog2(k)c+1 − 1, then
⌊
log2

⌈
k
2

⌉⌋
=

⌊
log2

⌊
k
2

⌋⌋
=

⌊
log2(k)

⌋
− 1. Thus,
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(
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⌈
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⌊
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2
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⌊
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(⌈
k
2

⌉
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+ c

(⌈
k
2

⌉)
and
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(
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⌊
k
2

⌋)
=

⌊
k
2

⌋ (
m − 1 −

⌊
log2

⌊
k
2

⌋⌋)
− 2

(⌈
k
2

⌉
− 2

⌊
log2

⌊
k
2

⌋⌋ )
+ c
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k
2

⌋)
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⌊
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2

⌋ (
m −

⌊
log2(k)

⌋ )
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(⌊
k
2

⌋
− 2blog2(k)c−1

)
+ c

(⌊
k
2

⌋)
and hence,

c
(
2m−1 +

⌊
k
2
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+ c

(
2m−1 +

⌊
k
2

⌋)
+

⌈
k
2

⌉
−

⌊
k
2

⌋
=

⌈
k
2

⌉ (
m −

⌊
log2(k)

⌋ )
− 2

(⌈
k
2

⌉
− 2blog2(k)c−1

)
+ c

(⌈
k
2

⌉)
+

⌊
k
2

⌋ (
m −

⌊
log2(k)

⌋ )
− 2

(⌊
k
2

⌋
− 2blog2(k)c−1

)
+ c

(⌊
k
2

⌋)
+

⌈
k
2

⌉
−

⌊
k
2

⌋
= k

(
m −

⌊
log2(k)

⌋ )
− 2

(
k − 2blog2(k)c

)
+ c

(⌈
k
2

⌉)
+ c

(⌊
k
2

⌋)
+

⌈
k
2

⌉
−

⌊
k
2

⌋
whereas,

c
(
2m + k

)
= k

(
m −

⌊
log2(k)

⌋ )
− 2

(
k − 2blog2(k)c

)
+ c

(
k
)

yielding the desired result by applying our induction hypothesis to k = 2m′ + k ′ with
m ′ =

⌊
log2(k)

⌋
and k ′ < k.

This completes the proof of the inductive step. �

Thus, we have derived a new recursive formula for the minimum Colless index:

c(n) =
{
0 if n = 2m

k(m −
⌊
log2(k)

⌋
) − 2(k − 2blog2(k)c ) + c(k) if n = 2m + k, 0 < k < 2m

(2.8)
This recurrence will be useful anon.
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2.1.3 The value of the minimum Colless index

In this section, we will deal with the problem of computing the actual value of the
minimum Colless index by means of a closed expression. An easy, albeit rather use-
less under the computational point of view, way to find the value of the minimum
Colless index is presented in the next result, and deals with the number of symmetry
nodes of maximally balanced trees. Its main interest lies in the fact that it entails that
the sequence c(n) is the sequence A296062 in Sloane’s On-Line Encyclopedia of Integer
Sequences [108].

Theorem 2.10. Let T bal
n ∈ BinTreen be a maximally balanced tree with n leaves, and

s(T bal
n ) its number of symmetry nodes. Then, c(n) = n − 1 − s(T bal

n ).

Proof. Let u be an internal node of T bal
n . By construction, the subtrees rooted at the

children of u will be two maximally balanced trees whose number of leaves differ in at
most 1. Thus, if bal(u) = 1, u is not a symmetry node, while if bal(u) = 0, then the
subtrees rooted at the children of u will be isomorphic and hence u will be a symmetry
node. So, there are n − 1 internal nodes in T bal

n , of which the s(T bal
n ) symmetry nodes

do not contribute to its Colless index and the remaining n − 1 − s(T bal
n ) contribute 1

each. �

Finding the value of the minimum Colless index amounts to solve recurrences (2.5)
or (2.8). Recurrence (2.8) gives us the hint to a closed expression in terms of binary
decompositions. Indeed, let n =

∑`
i=0 2

mi , with m0 < m1 < · · · < m`−1 < m` , be the
binary decomposition of n. Then, by (2.8)

c
( ∑̀
i=0

2mi
)
=

( `−1∑
i=0

2mi
)
(m` −m`−1) − 2

( `−1∑
i=0

2mi − 2m`−1
)
+ c

( `−1∑
i=0

2mi )

= 2m`−1(m` −m`−1) +
( `−2∑
i=0

2mi
)
(m` −m`−1 − 2) + c

( `−1∑
i=0

2mi
)

= 2m`−1(m` −m`−1) +
( `−2∑
i=0

2mi
)
(m` −m`−1 − 2)

+
( `−2∑
i=0

2mi
)
(m`−1 −m`−2) − 2

( `−2∑
i=0

2mi − 2m`−2
)
+ c

( `−2∑
i=0

2mi
)

= 2m`−1(m` −m`−1) +
( `−2∑
i=0

2mi
)
(m` −m`−1 − 2)

+ 2m`−2(m`−1 −m`−2) +
( `−3∑
i=0

2mi
)
(m`−1 −m`−2 − 2) + c

( `−2∑
i=0

2mi
)

= 2m`−1(m` −m`−1) + 2m`−2(m` −m`−2 − 2)

+
( `−3∑
i=0

2mi
)
(m` −m`−2 − 4) + c

( `−2∑
i=0

2mi
)
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= 2m`−1(m` −m`−1) + 2m`−2(m` −m`−2 − 2)

+
( `−3∑
i=0

2mi
)
(m` −m`−2 − 4) +

( `−3∑
i=0

2mi
)
(m`−2 −m`−3)

− 2
( `−3∑
i=0

2mi − 2m`−3
)
+ c

( `−3∑
i=0

2mi
)

= 2m`−1(m` −m`−1) + 2m`−2(m` −m`−2 − 2) + 2m`−3(m` −m`−3 − 4)

+
( `−4∑
i=0

2mi
)
(m` −m`−3 − 6) + c

( `−3∑
i=0

2mi
)

and so forth.
This lead us to conjecture that

c(n) =
`−1∑
i=0

2mi (m` −mi − 2(` − i − 1)).

Next theorem shows that our conjecture was right.

Theorem 2.11. Let n ∈ N be a natural number, and n =
∑`

i=0 2
mi its binary decomposi-

tion, with mi < mi+1 for every i ∈ {0, . . . , ` − 1}. Then,

c(n) =
`−1∑
i=0

2mi (m` −mi − 2(` − i − 1)).

Proof. We will prove the thesis in the statement by induction over n. The base case
when n = 1 = 20, or, more in general, the case when n = 2m (that is, ` = 1) is obvious,
because in this case the sum in the right-hand side term in the statement’s expression is
0 = c(2m).

Let now n =
∑`

i=0 2
mi > 1 with mi < mi+1 for every i ∈ {0, . . . , ` − 1}, so that,

with the notations of Equation (2.8), m = m` and k =
∑`−1

i=0 2
mi ; since we have already

proved the case when ` = 1, we shall assume that ` ≥ 2 and hence that k > 0 and⌊
log2(k)

⌋
= m`−1, and that the equality in the statement holds for every positive integer

up to n − 1. Then, by (2.8),

c(n) =
( `−1∑
i=0

2mi
)
(m` −m`−1) − 2

( `−1∑
i=0

2mi − 2m`−1
)
+ c(k)

= 2`−1(m` −m`−1) +
( `−2∑
i=0

2mi
)
(m` −m`−1 − 2) + c(k)

= 2`−1(m` −m`−1) +
( `−2∑
i=0

2mi
)
(m` −m`−1 − 2)

+

`−2∑
i=0

2mi (m`−1 −mi − 2(` − 1 − i − 1))

(by the induction hypothesis)
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= 2m`−1(m` −m`−1) +

`−2∑
i=0

2mi (m` −mi − 2(` − i − 1))

=

`−1∑
i=0

2mi (m` −mi − 2(` − i − 1))

as we wanted to prove. �

Figure 2.1: Plot of c(n) for n ∈ {1, . . . , 128}.

2.1.4 Relationship with the Takagi curve

Figure 2.1 shows the values of the first 128 minimum Colless indices. This figure
presents a structure that seems to be fractal, and in particular strongly resembles that of
the fractal curve known as the blancmange, or Takagi, curve [116]. This curve, depicted
in Figure 2.2, is defined to be the graph of the Takagi function T : [0, 1] → R

T (x) =
∞∑
i=0

2−i · s(2i · x) (2.9)

where s(x) = minz ∈Z |x − z | is the distance from x to the nearest integer (note that
s(x) ∈ [0, 1/2]). The following result makes the relationship between c and T explicit.

Theorem 2.12. Let T (x) : [0, 1] → R be the Takagi function. Then, for every n ∈ N≥1,

c(n) = 2blog2(n)c · T
(

n
2blog2(n)c

− 1
)
.

Proof. If n = 2m for some m ∈ N, then

2blog2(n)c · T
(
2−blog2(n)cn − 1

)
= 2m · T (2−m2m − 1)

= 2m · T (0) = 0 = c(2m).
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Figure 2.2: The blancmange curve.

The case when n is not a power of 2 can be easily derived from the following reformu-
lation of T given by Tambs-Lyche [117]: if x =

∑∞
j=1 2

−l j with (l j ) j strictly increasing,
then

T (x) =
∞∑
j=1

l j − 2( j − 1)

2l j
.

Now, let n =
∑`

i=0 2
mi with m` > m`−1 > · · · > m0 and ` > 0. Then,

2blog2(n)c · T
(
2−blog2(n)cn − 1

)
= 2m` · T

(
2−m`

∑̀
i=0

2mi − 1

)
= 2m` · T

(`−1∑
i=0

2−(m`−mi )

)
= 2m` · T ©«

∑̀
j=1

2−(m`−m`− j )ª®¬
= 2m`

∑̀
j=1

m` −m`− j − 2( j − 1)
2m`−m`− j

(by Tambs-Lyche identity)

=
∑̀
j=1

2m`− j (m` −m`− j − 2( j − 1))

=

`−1∑
i=0

2mi (m` −mi − 2(` − i − 1)) = c(n),

by Theorem 2.11. �

From this, we can deduce the following result, which shall give upper bounds to
the value of c(n), as well as some explicit computations and a symmetry property.

Corollary 2.13. The sequence c(n) satisfies the following properties:
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(i) For every m ≥ 0, c(2m + 1) = m.
(ii) For every n ≥ 1, c(n) < 2 dlog2(n)e/3.
(iii) For every n ≥ 1, c(n) < n/2.
(iv) For every m ≥ 1 and for every k ∈ {1, . . . , 2m − 1}, c(2m + k) = c(2m+1 − k).

Proof. The first property, (i), was proved in the preamble of Section 2.1.2, and it can
also be derived directly from Theorem 2.11.

Property (ii) requires Theorem 3.1 in [4], according to which T (x) ≤ 2/3 for every
x ∈ [0, 1]. Using this fact, if n = 2m + k, with 1 ≤ k ≤ 2m − 1, then

⌊
log2(n)

⌋
= m and⌈

log2(n)
⌉
= m + 1, and by Theorem 2.12

c(n) = 2m · T (2−mn − 1) = 2m · T
(
2−mk

)
≤ 2m ·

2
3
=

2m+1

3
.

The aforementioned theorem also states that the real numbers x ∈ [0, 1] that reach the
upper boundT (x) = 2/3 are exactly those whose coefficients εi ∈ {0, 1} in their binary
expansion x =

∑∞
i=1

εi
2i satisfy that ε2i + ε2i−1 = 1 for all i ∈ N≥1. But this is indeed not

the case for x = k
2m , since its binary expansion is finite. Finally, the case when k = 0,

i.e. when n is a power of two, is trivial since then c(n) = 0.
We proceed now to the proof of (iii), which will be performed by induction over n.

The base case clearly holds for n = 1, since c(1) = 0 < 1/2, and hence assume that the
property holds up to n − 1 leaves. We distinguish three cases, based on the congruence
of n modulo 4:

• If n is even, say n = 2n0, then c(n) = 2c(n0) by Corollary 2.8. But then, 2c(n0) <

2n0/2 = n/2 by the induction hypothesis.

• If n = 4n0 + 1 for some n0 ∈ N, then

c(n) = c(2n0 + 1) + c(2n0) + 1 ≤ n0 + (n0 − 1) + 1 = 2n0 <
n
2

where the first inequality is due to the induction hypothesis and the fact that c(2n0) <

n0 implies that c(2n0) ≤ n0 − 1.

• If n = 4n0 + 3 for some n0 ∈ N, then

c(n) = c(2n0 + 2) + c(2n0 + 1) + 1 ≤ n0 + n0 + 1 = 2n0 + 1 <
n
2
,

where the first inequality is due again to the induction hypothesis and the fact that
c(2n0 + 2) < n0 + 1 implies that c(2n0 + 2) ≤ n0.

Thus concludes the proof of (iii).
Finally, (iv) is a direct consequence of the symmetry of T around 1/2. Indeed,

suppose that n = 2m + k, for some k ∈ {1, . . . , 2m − 1}. Then, by Theorem 2.12,

c(2m + k) = 2m · T
(
2−m(2m + k) − 1

)
= 2m · T

(
2−mk

)
c(2m+1 − k) = 2m · T

(
2−m(2m+1 − k) − 1

)
= 2m · T

(
1 − 2−mk

)
andT (x) = T (1−x) for every x ∈ [0, 1]. Here concludes the proof of the statement. �
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2.2 Minimal Colless trees

So far, we have focused on the computation of the value of the minimumColless index,
which we have obtained as a consequence of the fact that the maximally balanced trees
attain it. Now we turn to the problem of knowing which trees, apart from those max-
imally balanced, are also minimal Colless, that is, present the minimum Colless index
for their number of leaves. This question arises naturally by observing that, for n = 6,
there are exactly two trees, T bal

3 ∗T
bal
3 and T bal

2 ∗T
bal
4 , with minimum Colless index, 2.

In this section we provide a way of generating all bifurcating trees with minimum
Colless index among all bifurcating trees with the same number of leaves. Given n, our
characterization will be given from the root to the leaves: by first of all finding which
pairs of natural numbers (n1, n2) ∈ N

2 are such that a tree T = T1 ∗ T2 ∈ BinTreen,
with T1 ∈ BinTreen1 and T2 ∈ BinTreen2 , is minimal Colless if T1 and T2 are so,
and then repeating recursively this step with n1 and n2. We call the set of all pairs of
natural numbers (n1, n2) satisfying the aforementioned property QB(n). To simplify
the notation, throughout this section whenever we write a treeT as the root joinT1∗T2
of T1 ∈ BinTreen1 and T2 ∈ BinTreen2 , we shall always implicitly assume that n1 ≥

n2, and therefore that all pairs (n1, n2) ∈ QB(n) satisfy also this property, as well as
n1+n2 = n. This allows us to think of them as pairs of the form (m+ s,m)withm ≥ 1
and s ≥ 0. Since the assertion

T = T1 ∗ T2 ∈ BinTreem , with T1 ∈ BinTreem+s and T2 ∈ BinTreem , is
minimal Colless if T1 and T2 are so

is equivalent to

c(n) = C (T ) = C (T1) +C (T2) + (m + s) −m = c(m + s) + c(m) + s

this leads to the following working definition of the set QB(n):

QB(n) =
{
(m + s,m) ∈ N2 : m ≥ 1, 2m + s = n, c(m + s) + c(m) + s = c(2m + s)

}
.

We call the pairs in QB(n) quasi-balanced. Notice that, by Equation (2.5), QB(n) is
always non-empty, because (⌈n

2

⌉
,
⌊n
2

⌋ )
∈ QB(n).

2.2.1 Describing the pairs in QB(n)

The results in this subsection provide a characterization of the pairs (n1, n2) ∈ QB(n)
which will allow us to compute efficiently this set.

We will begin by constructing, for each s ∈ N, the succession of all ni(s) ∈ N such
that (ni(s) + s, ni(s)) is a quasi-balanced pair. When s = 0, the sequence ni(0) is the
whole N≥1, because (n, n) ∈ QB(2n). So, in the next lemmata we shall focus on the
case s > 0.

The following is a technical lemma that will be extremely useful in the remaining
of this subsection, allowing us to decompose a quasi-balanced pair (ni(s)+ s, ni(s)) into
two pairs of roughly the same magnitude.
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Lemma 2.14. For every n, s ∈ N≥1, the pair (n+ s, n) is quasi-balanced if, and only if, both
pairs

(⌈n
2
⌉
+

⌊ s
2
⌋
,
⌈n
2
⌉)

and
( ⌊ n

2
⌋
+

⌈ s
2
⌉
,
⌊ n
2
⌋ )

are quasi-balanced and, moreover, n ∈ 2N or
s < 2N.

Proof. Note that, by Corollary 2.6, we already know that (n + s, n) is never quasi-
balanced if n < 2N and s ∈ 2N \ {0}. So, three cases remain to be discussed:

• If n ∈ 2N, s ∈ 2N, so that we can write n = 2n′ and s = 2s ′, then

c(2n′ + 2s ′) + c(2n′) + 2s ′ = c(4n′ + 2s ′)
⇐⇒ 2c(n′ + s ′) + 2c(n′) + 2s ′ = 2c(2n′ + s ′)
⇐⇒ c(n′ + s ′) + c(n′) + s ′ = c(2n′ + s ′).

• If n ∈ 2N, s < 2N, so that we can write n = 2n′ and s = 2s ′ + 1, then

c(2n′ + 2s ′ + 1) + c(2n′) + 2s ′ + 1 = c(4n′ + 2s ′ + 1)
⇐⇒ c(n′ + s ′ + 1) + c(n′ + s ′) + 1 + 2c(n′) + 2s ′ + 1

= c(2n′ + s ′ + 1) + c(2n′ + s ′) + 1
⇐⇒ c(n′ + s ′ + 1) + c(n′) + s ′ + 1 = c(2n′ + s ′ + 1)

and c(n′ + s ′) + c(n′) + s ′ = c(2n′ + s ′)

since, by Lemma 2.5,

c(n′ + s ′ + 1) + c(n′) + s ′ + 1 ≥ c(2n′ + s ′ + 1)
c(n′ + s ′) + c(n′) + s ′ ≥ c(2n′ + s ′).

• If n < 2N, s < 2N, so that we can write n = 2n′ + 1 and s = 2s ′ + 1, then

c(2n′ + 2s ′ + 2) + c(2n′ + 1) + 2s ′ + 1 = c(4n′ + 2s ′ + 3)
⇐⇒ 2c(n′ + s ′ + 1) + c(n′ + 1) + c(n′) + 1 + 2s ′ + 1

= c(2n′ + s ′ + 2) + c(2n′ + s ′ + 1) + 1
⇐⇒ c(n′ + s ′ + 1) + c(n′ + 1) + s ′ = c(2n′ + s ′ + 2)

and c(n′ + s ′ + 1) + c(n′) + s ′ + 1 = c(2n′ + s ′ + 1)

since, by Lemma 2.5,

c(n′ + s ′ + 1) + c(n′ + 1) + s ′ ≥ c(2n′ + s ′ + 2)
c(n′ + s ′ + 1) + c(n′) + s ′ + 1 ≥ c(2n′ + s ′ + 1).

This completes the proof of the equivalence in the statement. �

In fact, as wewill see, the sequence ni(s)will be composed of two disjoint arithmetic
subsequences of step 2dlog2(s)e except in the case where s = 2k for some k ∈ N, in which
case the global sequence ni(s) is arithmetic. To begin with, the next lemma will allow
us to determine the step of our subsequences: indeed, it will show that, for any ni(s),
ni(s) + 2dlog2(s)e also belongs to this succession.

Lemma 2.15. Let s ∈ N≥1, and let k =
⌈
log2(s)

⌉
. If n ∈ N≥1 is such that the pair (n+ s, n)

is quasi-balanced, (n + 2k + s, n + 2k) is also quasi-balanced.
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Proof. We proceed by induction on s . When s = 1, so that k = 0, (n + 1, n) and
(n+ 2, n+ 1) are always quasi-balanced. Assume now that s ≥ 2, so that k ≥ 1, and that
the statement is true for any s ′ < s and that (n + s ′, n) is quasi-balanced. Our goal is to
prove the equality

c(n + 2k + s) + c(n + 2k) + s = c(2n + 2k+1 + s). (2.10)

Notice that, since k ≥ 1, n + 2k has the same parity as n. Thus, by Lemma 2.14, this
equality holds if, and only if, the next two equalities hold:

c
( ⌊n

2

⌋
+ 2k−1 +

⌈ s
2

⌉)
+ c

( ⌊n
2

⌋
+ 2k−1

)
+

⌈ s
2

⌉
= c

(
2
⌊n
2

⌋
+ 2k +

⌈ s
2

⌉)
(2.11)

c
(⌈n
2

⌉
+ 2k−1 +

⌊ s
2

⌋ )
+ c

(⌈n
2

⌉
+ 2k−1

)
+

⌊ s
2

⌋
= c

(
2
⌈n
2

⌉
+ 2k +

⌊ s
2

⌋ )
(2.12)

Now, by Lemma 2.14, (n + s, n) ∈ QB(2n + s) implies that

c
( ⌊n

2

⌋
+

⌈ s
2

⌉)
+ c

( ⌊n
2

⌋ )
+

⌈ s
2

⌉
= c

(
2
⌊n
2

⌋
+

⌈ s
2

⌉)
c
(⌈n
2

⌉
+

⌊ s
2

⌋ )
+ c

(⌈n
2

⌉)
+

⌊ s
2

⌋
= c

(
2
⌈n
2

⌉
+

⌊ s
2

⌋ )
Therefore, on the one hand, if s , 2k−1 + 1, equalities (2.11) and (2.12) are true by our
induction hypothesis, since

⌈
log2

⌈ s
2
⌉⌉
=

⌈
log2

⌊ s
2
⌋⌉
=

⌈
log2(s)

⌉
− 1 = k − 1 whenever

s , 2k−1 + 1. On the other hand, if s = 2k−1 + 1, the argument remains the same for
(2.11), because

⌈
log2

⌈ s
2
⌉⌉
= k − 1 still holds. As to (2.12), since in this case

⌈
log2

⌊ s
2
⌋⌉
=

k−2, by the induction assumptionwe know that
(⌈n

2
⌉
+ 2k−2 +

⌊ s
2
⌋
,
⌈n
2
⌉
+ 2k−2

)
is quasi-

balanced, which in turn implies, again by our induction assumption, that(⌈n
2

⌉
+ 2k−2 + 2k−2 +

⌊ s
2

⌋
,
⌈n
2

⌉
+ 2k−2 + 2k−2

)
=

(⌈n
2

⌉
+ 2k−1 +

⌊ s
2

⌋
,
⌈n
2

⌉
+ 2k−1

)
is also a quasi-balanced pair. �

Given s ∈ N, we understand the sequence of positive numbers ni(s) indexed in
increasing order by i ∈ N. That is, given s ∈ N, ni(s) is the (i + 1)-th number such that
(ni(s) + s, ni(s)) is quasi-balanced. So, for instance, ni(0) = i + 1 for every i ≥ 0. The
next lemma, and its corollaries, will allow us to compute the first two members of this
succession, n0(s) and n1(s).

Lemma 2.16. For every s ∈ N,

i)
⌈
n0(s)
2

⌉
≥ n0

( ⌊ s
2
⌋ )

and
⌊
n0(s)
2

⌋
≥ n0

(⌈ s
2
⌉)
.

ii) If n1(s) > n0(s) + 1, then
⌈
n1(s)
2

⌉
≥ n1

( ⌊ s
2
⌋ )

and
⌊
n1(s)
2

⌋
≥ n1

(⌈ s
2
⌉)
.

Proof. By assumption,

c(ni(s) + s) + c(ni(s)) + s = c(2ni(s) + s)
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and therefore, by Lemma 2.14,

c
(⌈
ni(s)
2

⌉
+

⌊ s
2

⌋)
+ c

(⌈
ni(s)
2

⌉)
+

⌊ s
2

⌋
= c

(
2
⌈
ni(s)
2

⌉
+

⌊ s
2

⌋)
c
(⌊
ni(s)
2

⌋
+

⌈ s
2

⌉)
+ c

(⌊
ni(s)
2

⌋)
+

⌈ s
2

⌉
= c

(
2
⌊
ni(s)
2

⌋
+

⌈ s
2

⌉)
.

This implies that
⌈
n0(s)
2

⌉
,
⌈
n1(s)
2

⌉
belong to the sequence

(
ni

( ⌊ s
2
⌋ ) )

i , and that
⌊
n0(s)
2

⌋
,⌊

n1(s)
2

⌋
belong to the sequence

(
ni

(⌈ s
2
⌉) )

i . Therefore,
⌈
n0(s)
2

⌉
is largest or equal than

n0
( ⌊ s

2
⌋ )
, the first member of

(
ni

( ⌊ s
2
⌋ ) )

i , and
⌊
n0(s)
2

⌋
is largest or equal than n0

(⌈ s
2
⌉)
,

the first member of
(
ni

(⌈ s
2
⌉) )

i . This proves (i).
As to (ii), since n0(s) < n1(s), it must happen that⌈

n0(s)
2

⌉
<

⌈
n1(s)
2

⌉
or

⌊
n0(s)
2

⌋
<

⌊
n1(s)
2

⌋
.

Moreover, if n1(s) ≥ n0(s) + 2, then both strict inequalities hold. Now, by (i), if⌈
n0(s)
2

⌉
<

⌈
n1(s)
2

⌉
, then

⌈
n1(s)
2

⌉
will be larger or equal than n1

( ⌊ s
2
⌋ )
, the second mem-

ber of
(
ni

( ⌊ s
2
⌋ ) )

i , and if
⌊
n0(s)
2

⌋
<

⌊
n1(s)
2

⌋
, then

⌊
n1(s)
2

⌋
will be larger or equal than

n1
(⌈ s

2
⌉)
, the second member of

(
ni

(⌈ s
2
⌉) )

i . This proves (ii). �

Corollary 2.17. Let s ∈ N≥1 be such that s = 2k + r , with k ∈ N and 0 ≤ r < 2k . Then,
n0(s) = 2dlog2(s)e .

Proof. We proceed by induction over s . The thesis is true when s = 1 = 20, because
c(n + 1) + c(n) + 1 = c(2n + 1) for every n ∈ N≥1 implies that n0(1) = 1 = 20 (and also
n1(1) = 2 = 21, which will be used in the Corollary 2.19).

Now let s ≥ 2 and assume the thesis in the statement to be true for any s ′ < s . Since⌈
log2

⌈ s
2
⌉⌉
= k − 1 if r = 0 and k if r > 0, by Lemma 2.16 and the induction hypothesis

we have that ⌊
n0(s)
2

⌋
≥ n0

(⌈ s
2

⌉)
=

{
2k−1 if r = 0
2k if r > 0

=⇒ n0(s) ≥

{
2k = 2dlog2(s)e if r = 0
2k+1 = 2dlog2(s)e if r > 0

Wewant to prove that this last inequality is an equality. To do that, it is enough to prove
that, if r = 0, (2k + s, 2k) = (2k+1, 2k) is quasi-balanced, and that, if r > 0, (2k+1+ s, 2k+1)
is quasi-balanced.

• If s = 2k , then c(2k+1) + c(2k) + 2k = 2k = c(2k+1 + 2k), where the last equality is a
consequence of Theorem 2.11.

• If 2k < s < 2k+1, then, by Equation (2.8):

c(2k+1 + s) + c(2k+1) + s = s(k + 1 − k) − 2(s − 2k) + c(s) + s = 2k+1 + c(s)

c(2k+2 + s) = s(k + 2 − k) − 2(s − 2k) + c(s) = 2k+1 + c(s).
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This completes the proof of the identity n0(s) = 2dlog2(s)e for every s ≥ 1. �

Lemma 2.18. If s ∈ N≥1 is not of the form 2dlog2(s)e − 1, then n1(s) > n0(s) + 1.

Proof. Let us write s as s = 2k + r , with k ∈ N and 0 ≤ r < 2k . We must prove that, if
r , 2k − 1, the pair (n0(s) + 1 + s, n0(s) + 1) is not quasi-balanced. We distinguish two
cases.

If r = 0, so that n0(s) = 2k , (n0(s) + 1 + s, n0(s) + 1) = (2k+1 + 1, 2k + 1) is not
quasi-balanced because, by Corollary 2.13.(i) and Theorem 2.11,

c(2k+1 + 1) + c(2k + 1) + 2k = 2k + 2k + 1

c(2k+1 + 2k + 2) =
{
0 if k = 1
2k + 2(k − 2) if k ≥ 2

Assume now that 1 ≤ r ≤ 2k − 2, so that n0(s) = 2k+1. If r is even, then, by
Corollary 2.6, n1(s) is even, too, and therefore n1(s) cannot be 2k+1 + 1 = n0(s) + 1.
If r is odd, write it as r =

∑l
j=0 2

m j − 1, with k > ml > · · · > m0 ≥ 1. Then, by
Theorem 2.11,

c(n0(s) + 1 + s) + c(n0(s) + 1) + s

= c
(
2k+1 + 2k +

l∑
j=0

2m j
)
+ c(2k+1 + 1) + 2k +

l∑
j=0

2m j − 1

= 2k +
l∑
j=0

2m j (k + 1 −m j − 2(l + 2 − j − 1)) + k + 1 + 2k +
l∑
j=0

2m j − 1

= 2k+1 +
l∑
j=0

2m j (k −m j − 2l + 2 j) + k

c(2n0(s) + 2 + s) = c
(
2k+2 + 2k +

l∑
j=0

2m j + 1
)

= 2k · 2 +
l∑
j=0

2m j (k + 2 −m j − 2(l + 3 − j − 2)) + (k + 2 − 2(l + 2))

= 2k+1 +
l∑
j=0

2m j (k −m j − 2l + 2 j) + k − 2 − 2l

< 2k+1 +
l∑
j=0

2m j (k −m j − 2l + 2 j) + k .

�

Corollary 2.19. Let s ∈ N≥1 be such that s = 2k + r , with k ∈ N and 0 ≤ r < 2k . Then:

• If r = 0, then n1(s) = 2k+1.

• If r > 0, then n1(s) = 2k+1 + 2k − r .
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Proof. We proceed by induction over s . The truth of n1(1) = 2 has been established in
the proof of Corollary 2.17. Now let s ≥ 2 and assume the thesis in the statement to
be true for any s ′ < s . By Lemmata 2.16 and 2.18, if s , 2k+1 − 1, then⌈

n1(s)
2

⌉
≥ n1

( ⌊ s
2

⌋ )
and

⌊
n1(s)
2

⌋
≥ n1

(⌈ s
2

⌉)
. (2.13)

We distinguish four cases.

• Assume that s = 2k . We want to prove that n1(s) = 2k+1. By (2.13) and the induction
hypothesis ⌊

n1(s)
2

⌋
≥ n1

( s
2

)
= 2k,

which implies that n1(s) ≥ 2k+1. It remains to prove that (2k+1 + 2k, 2k+1) is quasi-
balanced. But it is true, because, since n0(s) = 2k , (2k+1, 2k) is quasi-balanced and then
(2k+1 + 2k, 2k+1) is also quasi-balanced by Lemma 2.15.

• Assume that s = 2k+1−1. Wewant to prove that n1(s) = 2k+1+1, and since n0(s) = 2k+1,
this amounts to prove that (2k+1 + 1 + s, 2k+1 + 1) = (2k+2, 2k+1 + 1) is quasi-balanced:

c(2k+2) + c(2k+1 + 1) + 2k+1 − 1 = k + 1 + 2k+1 − 1 = 2k+1 + k

c(2k+2 + 2k+1 + 1) = 2k+1 + (k + 2 − 2) = 2k+1 + k .

• Assume that s = 2k + 1 < 2k+1 − 1, and in particular that k ≥ 2. We want to prove that
n1(s) = 2k+1 + 2k − 1. By (2.13) and the induction hypothesis,⌊

n1(s)
2

⌋
≥ n1

(⌈ s
2

⌉)
= n1(2k−1 + 1) = 2k + 2k−1 − 1,

which implies that n1(s) ≥ 2k+1 + 2k − 2. So, to prove that n1(s) = 2k+1 + 2k − 1, it is
enough to check that

(2k+1 + 2k − 1 + 2k + 1, 2k+1 + 2k − 1) = (2k+2, 2k+1 + 2k − 1)

is quasi-balanced and that (2k+2 − 1, 2k+1 + 2k − 2) is not quasi-balanced if k ≥ 2. Both
assertions can be checked using Corollary 2.13.( iv) and Theorem 2.11:

– (2k+2, 2k+1 + 2k − 1) is quasi-balanced:

c(2k+2) + c(2k+1 + 2k − 1) + 2k + 1

= c
(
2k+1 + 2k + 1

)
+ 2k + 1 (by Cor. 2.13.( iv))

= 2k + k − 1 + 2k + 1 = 2k+1 + k

c(2k+2 + 2k+1 + 2k − 1) = c(2k+2 + 2k + 1) (again by Cor. 2.13.( iv))

= 2k+1 + k .
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– (2k+2 − 1, 2k+1 + 2k − 2) is not quasi-balanced if k ≥ 2:

c(2k+2 − 1) + c(2k+1 + 2k − 2) + 2k + 1

= c(2k+1 + 1) + c(2k+1 + 2k + 2) + 2k + 1 (by Cor. 2.13.( iv))

= k + 1 + 2k + 2(k + 1 − 1 − 2) + 2k + 1 = 2k+1 + 3k − 2

c(2k+2 + 2k+1 + 2k − 3) = c(2k+2 + 2k + 2 + 1) (again by Cor. 2.13.( iv))

= 2k · 2 + 2(k + 2 − 1 − 2) + (k + 2 − 4) = 2k+1 + 3k − 4.

• Assume finally that s = 2k + r for 2 ≤ r < 2k − 1. We want to prove that n1(s) =
2k+1 + 2k − r . In this case,

⌈
log2

⌈ s
2
⌉⌉
=

⌈
log2

⌊ s
2
⌋⌉
= k. By (2.13) and the induction

hypothesis, the following two inequalities hold⌈
n1(s)
2

⌉
≥ n1

( ⌊ s
2

⌋ )
= n1

(
2k−1 +

⌊ r
2

⌋ )
= 2k + 2k−1 −

⌊ r
2

⌋
⌊
n1(s)
2

⌋
≥ n1

(⌈ s
2

⌉)
= n1

(
2k−1 +

⌈ r
2

⌉)
= 2k + 2k−1 −

⌈ r
2

⌉
and then

n1(s) =
⌈
n1(s)
2

⌉
+

⌊
n1(s)
2

⌋
≥ n1

( ⌊ s
2

⌋ )
+ n1

(⌈ s
2

⌉)
= 2k + 2k−1 −

⌊ r
2

⌋
+ 2k + 2k−1 −

⌈ r
2

⌉
= 2k+1 + 2k − r

and it is enough to check that

(2k+1 + 2k − r + 2k + r , 2k+1 + 2k − r ) = (2k+2, 2k+1 + 2k − r )

is quasi-balanced. Now, if r is even, this is true because

c
(
n1

( s
2

)
+

s
2

)
+ c

(
n1

( s
2

))
+

s
2
= c

(
2n1

( s
2

)
+

s
2

)
implies

c
(
2n1

( s
2

)
+ s

)
+ c

(
2n1

( s
2

))
+ s = c

(
4n1

( s
2

)
+ s

)
.

Let us check the case when r is odd, say r = 2r0 + 1. In this case, we have that

c
(
n1

( ⌊ s
2

⌋ )
+

⌊ s
2

⌋ )
+ c

(
n1

( ⌊ s
2

⌋ ))
+

⌊ s
2

⌋
= c

(
2n1

( ⌊ s
2

⌋ )
+

⌊ s
2

⌋ )
=⇒ c(2k + 2k−1 − r0 + 2k−1 + r0) + c(2k + 2k−1 − r0) + 2k−1 + r0

= c(2k+1 + 2k − 2r0 + 2k−1 + r0)

=⇒ c(2k + 2k−1 − r0) + 2k−1 + r0 = c(2k+1 + 2k + 2k−1 − r0)

c
(
n1

(⌈ s
2

⌉)
+

⌈ s
2

⌉)
+ c

(
n1

(⌈ s
2

⌉))
+

⌈ s
2

⌉
= c

(
2n1

(⌈ s
2

⌉)
+

⌈ s
2

⌉)
=⇒ c(2k + 2k−1 − r0 − 1 + 2k−1 + r0 + 1) + c(2k + 2k−1 − r0 − 1)

+ 2k−1 + r0 + 1 = c(2k+1 + 2k − 2r0 − 2 + 2k−1 + r0 + 1)

=⇒ c(2k + 2k−1 − r0 − 1) + 2k−1 + r0 + 1 = c(2k+1 + 2k + 2k−1 − r0 − 1)
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from which we deduce that

c(2k+1 + 2k − r + s) + c(2k+1 + 2k − r ) + s

= c(2k+2) + c(2k+1 + 2k − 2r0 − 1) + 2k + 2r0 + 1

= c(2k + 2k−1 − r0) + c(2k + 2k−1 − r0 − 1) + 2k + 2r0 + 2

= c(2k+1 + 2k + 2k−1 − r0) + c(2k+1 + 2k + 2k−1 − r0 − 1) + 1

= c(2k+2 + 2k+1 + 2k − 2r0 − 1) = c(2k+2 + 2k+1 − 2r + s).

This completes the proof of the induction step. �

It remains to prove that, for every s , there are only two maximal arithmetic sub-
successions in (ni(s))i whose difference of progression is 2dlog2(s)e . In order to do that,
we shall use the next two lemmata.

Lemma 2.20. Let s ∈ N≥1, and let k =
⌈
log2(s)

⌉
. If n ∈ N≥1 is such that the pair (n+ s, n)

is quasi-balanced and if n − 2k ≥ n0(s), then (n − 2k + s, n − 2k) is also quasi-balanced.

Proof. We proceed by induction over s . The case when s = 1 is clear, because every
pair (n + 1, n) is quasi-balanced. Assume now that s ≥ 2 and that the thesis is true for
every 1 ≤ s ′ < s , and let n be such that (n + s, n) is quasi-balanced and n − 2k ≥ n0(s).
Our goal is to prove that

c(n − 2k + s) + c(n − 2k) + s = c(2n − 2k+1 + s).

By Lemma 2.14, and since n + 2k has the same parity as n because s ≥ 2 and hence
k ≥ 1, it is enough to prove that

c
( ⌊n

2

⌋
− 2k−1 +

⌈ s
2

⌉)
+ c

( ⌊n
2

⌋
− 2k−1

)
+

⌈ s
2

⌉
= c

(
2
⌊n
2

⌋
− 2k +

⌈ s
2

⌉)
c
(⌈n
2

⌉
− 2k−1 +

⌊ s
2

⌋ )
+ c

(⌈n
2

⌉
− 2k−1

)
+

⌊ s
2

⌋
= c

(
2
⌈n
2

⌉
− 2k +

⌊ s
2

⌋ )
Now, these assertions are true, because if n − 2k ≥ n0(s), and using Lemma 2.16.(i) and
the fact that n0(s) is a power of 2,⌈n

2

⌉
− 2k−1 ≥

⌊n
2

⌋
− 2k−1 ≥

n0(s)
2
≥ n0

(⌈ s
2

⌉)
≥ n0

( ⌊ s
2

⌋ )
and therefore, by the induction hypothesis, both (

⌊ n
2
⌋
− 2k−1 +

⌈ s
2
⌉
,
⌊ n
2
⌋
− 2k−1) and

(
⌈n
2
⌉
− 2k−1 +

⌊ s
2
⌋
,
⌈n
2
⌉
− 2k−1) are quasi-balanced. �

Lemma 2.21. Let s ∈ N≥1, and let k =
⌈
log2(s)

⌉
. There does not exist any m ∈ N, with

n1(s) < m < n0(s) + 2k = 2k+1, such that (m + s,m) is quasi-balanced.

Proof. We proceed by induction over s . For s = 1 it is obviously true, since n1(s) = 2
and n2(s) = 3. Let now s ≥ 2, assume the thesis to be true for any 1 ≤ s ′ < s . Let
m ∈ N be such that n1(s) < m < 2k+1. We shall assume that (m+ s,m) is quasi-balanced
and we shall reach a contradiction. Notice that n1(s) < m < 2k+1 implies that⌈

n1(s)
2

⌉
≤

⌊m
2

⌋
≤

⌈m
2

⌉
≤ 2k .

We distinguish three cases:
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• If s = 2k , so that n0(s) = 2k and n1(s) = 2k+1 = n0(s) + 2k , there cannot exist such m.

• If s = 2k−1 + 1, then n1(s) = 2k + 2k−1 − 1. In this case, n1(s) < m < 2k+1 implies that

n1

( ⌊ s
2

⌋ )
= 2k−1 < 2k−1 + 2k−2 =

⌈
n1(s)
2

⌉
≤

⌊m
2

⌋
≤

⌈m
2

⌉
≤ 2k

n1

(⌈ s
2

⌉)
= 2k−1 + 2k−2 − 1 =

⌈
n1(s)
2

⌉
≤

⌊m
2

⌋
≤

⌈m
2

⌉
≤ 2k

and by Lemma 2.14, if (m + s,m) is quasi-balanced, then so are
( ⌊m

2
⌋
+

⌈ s
2
⌉
,
⌊m
2
⌋ )

and(⌈m
2
⌉
+

⌊ s
2
⌋
,
⌈m
2
⌉)
. Now, due to the impossibility of n1

( ⌊ s
2
⌋ )
=

⌈m
2
⌉
, by the induc-

tion hypothesis it must happen that
⌈m
2
⌉
= 2k , and thus m = 2k+1 − 1. But then,( ⌊m

2
⌋
+

⌈ s
2
⌉
,
⌊m
2
⌋ )

could not be quasi-balanced.

• If s = 2k−1 + r with 2 ≤ r ≤ 2k−1 − 1, then n1(s) = 2k + 2k−1 − r and n1(
⌊ s
2
⌋
) =

n1(2k−2 +
⌊ r
2
⌋
) = 2k−1 + 2k−2 −

⌊ r
2
⌋
. In this case, n1(s) < m < 2k+1 implies that

n1

(⌈ s
2

⌉)
= 2k−1 + 2k−2 −

⌈ r
2

⌉
=

⌊
2k + 2k−1 − r

2

⌋
=

⌊
n1(s)
2

⌋
≤

⌊m
2

⌋
≤

⌈m
2

⌉
≤ 2k

and by Lemma 2.14, if (m + s,m) is quasi-balanced, then
( ⌊m

2
⌋
+

⌈ s
2
⌉
,
⌊m
2
⌋ )

is quasi-
balanced, too. By the induction hypothesis, all inequalities but one in the sequence
above must be equalities. We distinguish two cases:

– If m is odd, so that
⌊m
2
⌋
<

⌈m
2
⌉
, we must have

2k−1 + 2k−2 −
⌈ r
2

⌉
=

⌊m
2

⌋
and

⌈m
2

⌉
= 2k

but this is impossible, because it implies that 2k−1 + 2k−2 −
⌈ r
2
⌉
+ 1 = 2k , which cannot

happen if r ≥ 2.

– Ifm is even, thenm < 2k+1 implies m
2 < 2k , and hence it must happen 2k−1+2k−2−

⌈ r
2
⌉
=

m
2 and thus

m = 2k + 2k−1 − 2
⌈ r
2

⌉
> n1(s) = 2k + 2k−1 − r

which is again impossible, because r ≤ 2
⌈ r
2
⌉
.

�

Theorem 2.22. Let s ∈ N≥1, and let k =
⌈
log2(s)

⌉
. Then, (n + s, n) is quasi-balanced if,

and only if, n = n0(s) + t · 2k or n = n1(s) + t · 2k for some t ∈ N.

Proof. By Lemma 2.15, all pairs of the forms (n0(s)+ t · 2k + s, n0(s)+ t · 2k) or (n1(s)+
t · 2k + s, n1(s)+ t · 2k) are quasi-balanced. Let now m0 ∈ N be such that (m0 + s,m0) is
quasi-balanced, and let t0 be the largest integer such that n0(s) ≤ m0− t0 ·2k . By Lemma
2.20, (m0− t0 ·2k+ s,m0− t0 ·2k) is also quasi-balanced, and thereforem0− t0 ·2k = ni(s)
for some i ∈ N. If m0 − t0 · 2k = n0(s), then m0 is of the first form described in the
statement. If n0(s) < m0 − t0 · 2k , then i ≥ 1 and hence m0 − t0 · 2k ≥ n1(s). But in
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this case, since m0 − t0 · 2k < n0(s) + 2k (otherwise, we could subtract another 2k to
m0), by Lemma 2.21 m0 − t0 · 2k ≤ n1(s) and hence m0 − t0 · 2k = n1(s) and m0 is of
the second form described in the statement. �

Remark 2.23. Notice that the theorem above entails that the two subsuccessions of
ni(s) described in it are maximal.

These considerations would be of little help as they are, since they focus on the
difference between the number of leaves of the two maximal subtrees hanging from
the root, and do not, by themselves, give an answer when the total number of leaves is
fixed. We now pursue this answer, by giving a series of results that will characterize the
pairs of QB(n) for a given n ∈ N≥1.

Lemma 2.24. For every n, p, n1, n2 ∈ N≥1 such that n1 ≥ n2 and n = n1 + n2, (n1, n2) ∈

QB(n) if, and only if, (2pn1, 2pn2) ∈ QB(2pn).

Proof. This result is a direct consequence of Corollary 2.8. Indeed,

c(2pn1) + c(2pn2) + 2pn1 − 2pn2 = c(2pn1 + 2pn2)

⇐⇒ 2pc(n1) + 2pc(n2) + 2p(n1 − n2) = 2pc(n1 + n2)

⇐⇒ c(n1) + c(n2) + n1 − n2 = c(n1 + n2).

�

So, let n ∈ N≥2, write it as n = 2n′ + s for some n′ ∈ N≥1 and s ∈ N. If s ∈ {0, 1},
it is clear that (n′ + s, n′) ∈ QB(n) by Equation 2.5. Assume now that s ≥ 2, let
k =

⌈
log2(s)

⌉
and write s as s = 2k − r with 0 ≤ r < 2k−1. By Theorem 2.22, n′ must

be of one of the following two forms, for some t ∈ N:

n′ = n0(s) + t · 2k = (1 + t )2k,

in which case
n′ + s = (1 + t )2k + 2k − r = (2 + t )2k − r ,

or

n′ = n1(s) + t · 2k =
{
2k+1 + t · 2k = (2 + t )2k (if r = 0)
2k + r + t · 2k = (1 + t )2k + r (if r > 0)

in which case

n′ + s =
{
(2 + t )2k + 2k = (3 + t )2k (if r = 0)
(1 + t )2k + r + 2k − r = (2 + t )2k (if r > 0)

This proves the following theorem, by setting q = t + 1:

Theorem 2.25. For every n ∈ N≥2, the pairs ofQB(n) are exactly those pairs of the follow-
ing forms:

(i) (dn/2e, bn/2c)

(ii) ((q + 1)2k − r , q · 2k) for some q ∈ N≥1, k ∈ N≥1, and 0 < r < 2k−1 such that n =
q · 2k+1 + 2k − r
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(iii) ((q + 1)2k, q · 2k + r ) for some q ∈ N≥1, k ∈ N≥1 and 0 ≤ r < 2k−1 such that n =
q · 2k+1 + 2k + r .

Corollary 2.26. Let n ∈ N≥2 and p ∈ N be such that 2p divides n, and let n0 = n/2p .
Then, (n1, n2) ∈ QB(n) if, and only if, n1 = n2 or there exists (n0

1, n
0
2) ∈ QB(n0) such that

(n1, n2) = (2pn0
1, 2

pn0
2).

Proof. By Lemma 2.24 and Equation (2.5), it is enough to prove that if (n1, n2) ∈ QB(n)
with n1 > n2, then there exists (n0

1, n
0
2) ∈ QB(n0) such that (n1, n2) = (2pn0

1, 2
pn0

2). We
prove this assertion by induction on p. The case when p = 0 is tautological.

Let us prove now the case p = 1, so that n is even: let n′ = n/2. Let (n1, n2) ∈ QB(n)
with n1 > n2. By the last theorem, this pair must be of the forms (ii) or (iii) in its
statement, and therefore there must exist some q ∈ N≥1, k ∈ N, and 0 ≤ r < 2k−1 such
that n = q ·2k+1+2k−r , and then (n1, n2) = ((q+1)2k−r , q ·2k), or n = q ·2k+1+2k+r ,
and then (n1, n2) = ((q + 1)2k, q · 2k + r ). But in both cases, since n is even, k must be
at least 1 and r must be even, say r = 2r ′. Then, in the first case, (n1, n2) = (2n′1, 2n

′
2)

with (n′1, n
′
2) = ((q+1)2

k−1− r ′, q ·2k−1) ∈ QB(n′) because n′ = q ·2k +2k−1− r ′, and in
the second case (n1, n2) = (2n′1, 2n

′
2)with (n′1, n

′
2) = ((q +1)2

k−1, q ·2k−1+ r ′) ∈ QB(n′)
because n′ = q ·2k +2k−1+ r ′. So, in summary, we have proved that if (n1, n2) ∈ QB(n)
with n1 > n2, then there exists (n′1, n

′
2) ∈ QB(n′) such that (n1, n2) = (2n′1, 2n

′
2).

Let now p ≥ 2, assume that the assertion is true for every n′ ∈ N≥2 and every
0 ≤ p ′ < p such that 2p′ divides n′, and let n ∈ N≥2 be such that 2p divides n. Let
n′ = n/2 and n0 = n/2p = n′/2p−1, and let (n1, n2) ∈ N

2
≥1 with n1 > n2. Then

(n1, n2) ∈ QB(n)
=⇒ (n1, n2) = (2n′1, 2n

′
2) for some (n′1, n

′
2) ∈ QB(n′)

=⇒ (n1, n2) = (2 · 2p−1n0
1, 2 · 2

p−1n0
1) = (2

pn0
1, 2

pn0
1) for some (n0

1, n
0
2) ∈ QB(n0)

where the first implication is due to the case p = 1 and the second, to the induction
hypothesis. �

2.2.2 Computing the elements of QB(n)

Theorem 2.25 will allow us to obtain a non-redundant description of the set QB(n)
that will yield an algorithmic approach to its computation as well as an expression for
its cardinality. We illustrate this with an easy example, before stating and proving the
aforementioned description.

Example:
Let n = 813, whose binary expression is 1100101101(2). By Theorem 2.25 (i), n can
be decomposed into 110010111(2) and 110010110(2) and give rise to a pair of QB(n).

Both (ii) and (iii) contain q ·2k for some q ∈ N≥1 in some coordinate. Let us focus
now on (ii); we want to find all decompositions of n of the form n = q ·2k+1+2k − r ,
for some k ∈ N, and 0 < r < 2k−1. We can write the pair (ii) as (q · 2k + s, q · 2k),
with s = 2k − r ≤ 2k . In terms of the binary decomposition of n = q · 2k+1 + s , it
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means that, since
⌊
log2(s)

⌋
<

⌊
log2(q · 2

k+1)
⌋
− 1, n will be of the form

n = 1 . . . 0

s︷ ︸︸ ︷
1 . . . x (2)

with x ∈ {0, 1}. Thus, in principle, n = 813 = 1100101101(2) could be decomposed
in pairs of the form (ii) in the following manners:

• s = 101101(2), and therefore q · 2k+1 = 1100000000(2). We have, thus,

q · 2k + s = 110101101(2) and q · 2k = 110000000(2)

• s = 1101(2), and therefore q · 2k+1 = 1100100000(2);

q · 2k + s = 110001101(2) and q · 2k = 110100000(2)

• s = 1(2), which corresponds to the pair (i).

Finally, let us discuss the pairs of the form (iii). These account to writing n in the
form n = q · 2k+1 + 2k + r and therefore the pair as ((q + 1)2k, q · 2k + r ), where
0 ≤ r < 2k−1. Therefore, as

⌊
log2(r )

⌋
< k − 1, we will consider n to be of the form

n = 1 . . . 1

r︷ ︸︸ ︷
0 . . . x (2)

with x ∈ {0, 1}. Therefore, n = 813 = 1100101101(2) could be decomposed in pairs
of the form (iii) in the following manners:

• r = 101101(2), and therefore 2k = 29 = 100000000(2), q = 1, and so

q · 2k + 2k = 1000000000(2) and q · 2k + r = 100101101(2)

• r = 1101(2), and therefore 2k = 25 = 100000(2), q = 24 + 23, and so

q · 2k + 2k = 110100000(2) and q · 2k + r = 110001101(2)

• r = 1(2), and therefore 2k = 22 = 100(2), q = 27 + 26 + 23 + 2, and so

q · 2k + 2k = 110000100(2) and q · 2k + r = 110101001(2)

The previous example is an instance of the following result.

Corollary 2.27. Let n ∈ N≥2, let 2p be the highest power of 2 that divides n, let n0 = n/2p ,
and let n0 =

∑`
i=0 2

mi , with 0 = m0 < · · · < m`−1 < m` , be the binary decomposition of
n0. Then,

(i) If ` = 0, i.e., if n = 2p , thenQB(n) = {(n/2, n/2)}.

(ii) If ` > 0, then
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(ii.1) QB(n) always contains the pair(
2p

( ∑̀
i=1

2mi−1 + 1
)
, 2p

( ∑̀
i=1

2mi−1
))
.

(ii.2) For every j ∈ {1, . . . , ` − 1} such that m j+1 > m j + 1,QB(n) contains the pair(
n − 2p

∑̀
i= j+1

2mi−1, 2p
∑̀
i= j+1

2mi−1
)
.

(ii.3) For every j ∈ {1, . . . , ` − 1} such that m j > m j−1 + 1,QB(n) contains the pair(
2p

( ∑̀
i= j+1

2mi−1 + 2m j
)
, n − 2p

( ∑̀
i= j+1

2mi−1 + 2m j
))
.

(ii.4) If m0 ≥ 1; i.e., if n ∈ 2N, thenQB(n) contains the pair (n/2, n/2).

AndQB(n) contains no other pair than those described in (ii.1) to (ii.4). Furthermore, they
are pairwise different.

Proof. Assertion (i) is a consequence of the fact that c(2p) = 0. Indeed, if (na, nb ) ∈

QB(2p), then 0 = c(2p) = c(na) + c(nb ) + na − nb implies that na = nb = n/2.
So, assume henceforth that ` ≥ 1. Let (n1, n2) ∈ N

2 with 1 ≤ n2 < n1. By
Corollary 2.26, (n1, n2) ∈ QB(n) if, and only if, there exists some (n0

1, n
0
2) ∈ QB(n0)

such that (n1, n2) = (2pn0
1, 2

pn0
2). Moreover, two such pairs in QB(n) are different if,

and only if, the corresponding pairs inQB(n0) are different. This leads us to find a non-
redundant description of the pairs (n0

1, n
0
2) ∈ QB(n0) with n0

2 < n0
1 and then multiply

them by 2p to obtain a non-redundant description of all pairs (n1, n2) ∈ QB(n) with
n2 < n1. If n is even, we shall only need to add the pair (n/2, n/2) to those obtained in
this way to obtain the whole QB(n).

So, in the rest of this proof we shall focus on n0, and more specifically on the pairs
(n0

1, n
0
2) ∈ QB(n0) with n0

2 < n0
1. By Theorem 2.25 there are three possibilities:

(ii.1) Since n0 is odd, n0 = 2n′0 + 1 with n′0 =
n0−1
2 =

∑`
i=1 2

mi−1. Then(⌈n0

2

⌉
,
⌊n0

2

⌋ )
= (n′0 + 1, n

′
0) =

( ∑̀
i=1

2mi−1 + 1,
∑̀
i=1

2mi−1
)
∈ QB(n0).

(ii.2) Assume n0 = q · 2k+1 + 2k − r , with q ≥ 1. Since n0 is odd, there are two possibilities:

– k = r = 0, so that n0 = 2q + 1. In this case, the pair in QB(n0) correponding to
Theorem 2.25 (ii) is (q + 1, q), the pair described in (ii.1). So, we can omit this case.

– k ≥ 1 and 0 < r < 2k−1 odd. Taking r ′ = 2k−1 − r , we can write n0 as n0 = q · 2k+1 +
2k−1 + r ′ with 0 < r ′ < 2k−1. Then, the equality

q · 2k+1 + 2k−1 + r ′ =
∑̀
i=0

2mi
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will only be satisfied if k − 1 = m j for some j ∈ {1, . . . , ` − 1} such that m j+1 ≥ k + 1 =
m j + 2, in which case

q =

∑`
i= j+1 2

mi

2k+1
=

∑`
i= j+1 2

mi

2m j+2
.

So, for each j ∈ {1, . . . , ` − 1} such that m j+1 > m j + 1, this contributes to QB(n0) the
pair (n0

1, n
0
2) with

n0
2( j) = q · 2k =

∑̀
i= j+1

2mi−1, n0
1( j) = n0 − n0

2 = n0 −
∑̀
i= j+1

2mi−1.

These pairs are pairwise different because
∑`

i= j+1 2
mi−1 is strictly decreasing on j and

hence, if j > j ′, n0
2( j) < n0

2( j
′).

(ii.3) Finally, assume n0 = q · 2k+1 + 2k + r , with q ≥ 1 and 0 ≤ r < 2k−1 odd. By equating
n0 to its binary representation, this implies that there exists j ∈ {1, . . . , ` − 1} such that
k = m j and m j > m j−1 + 1. In this case,

q =

∑`
i= j+1 2

mi

2k+1
=

∑`
i= j+1 2

mi

2m j+1
.

So, for each j ∈ {1, . . . , ` − 1} such that m j > m j−1 + 1, this contributes to QB(n0) the
pair (n0

1, n
0
2) with

n0
1 = (q + 1) · 2

k =
( ∑̀
i= j+1

2mi−m j−1 + 1
)
2m j =

∑̀
i= j+1

2mi−1 + 2m j

n0
2 = n0 − n0

1 = n0 −
∑̀
i= j+1

2mi−1 − 2m j .

These pairs are pairwise different. Indeed,∑̀
i= j

2mi−1 + 2m j−1 =
∑̀
i= j+1

2mi−1 + 2m j−1 + 2m j−1

≤
∑̀
i= j+1

2mi−1 + 2m j−1 + 2m j−1 =
∑̀
i= j+1

2mi−1 + 2m j

and the inequality is strict if m j − 1 > m j−1, which is the condition on j that adds a
pair (n0

1( j), n
0
2( j)) of this type to QB(n0). This implies that if j > j ′,

n0
1( j) =

∑̀
i= j+1

2mi−1 + 2m j >
∑̀
i= j

2mi−1 + 2m j−1 ≥
∑̀
i= j′+1

2mi−1 + 2m j′ = n0
1( j
′).

Cases (ii.1) to (ii.3) give all pairs (n0
1, n

0
2) ∈ QB(n0) with n0

1 > n0
2. Let us prove that

all these pairs in QB(n0) are pairwise different.
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• Along our construction we have already proved that all pairs of the form (ii.2) are
pairwise different, as well as all pairs of the form (ii.3).

• Pairs of the form (ii.2) are different from those of the form (ii.1) because their second
entry is strictly smaller than that of (ii.1) since, in (ii.2), j ≥ 1.

• Pairs of the form (ii.3) are different from those of the form (ii.1) because their first entry
is strictly larger than that of (ii.1):

∑̀
i=1

2mi−1 + 1 −
( ∑̀
i= j+1

2mi−1 + 2m j
)
=

j∑
i=1

2mi−1 + 1 − 2m j

=

j−1∑
i=1

2mi−1 + 1 − 2m j−1 ≤

m j−1−1∑
i=0

2i + 1 − 2m j−1 = 2m j−1 − 2m j−1 < 0

because m j−1 < m j − 1.

• Pairs of the form (ii.2) are different from those of (ii.3) because those of the form (ii.2)
have their first entry odd, while those of the form (ii.2) have first entry even.

So, we have a non-redundant description of all pairs (n0
1, n

0
2) ∈ QB(n0)with n0

1 > n0
2

and hence, multiplying them by 2p , a non-redundant description of all pairs (n1, n2) ∈

QB(n) with n1 > n2; if n ∈ 2N, we just need to add the pair (n/2, n/2) corresponding
to (ii.4) to complete QB(n). This pair is oviously different from those coming from
QB(n0) with n0

1 > n0
2. �

The previous result gives us a way to compute |QB(n)|, for any given n ∈ N≥2, in
terms of the number M0(n) of maximal sequences of zeroes in the binary representation
n(2) of n.

If n is a power of 2, then M0(n) = 1, and that is exactly the cardinality of QB(n).
Assume henceforth that n is not a power of 2. Then:

• The pair of the form (ii.1) always exists, independently of the maximal sequences
of zeroes.

• A pair of the form (ii.2) is added to QB(n) for each j ∈ {1, . . . , ` − 1} such that
m j+1 > m j + 1, that is, for each maximal sequence of zeroes surrounded by ones
(i.e., not ending in the units position) and not ending immediately before the last
1. So, (ii.2) contributes a pair for every maximal sequence of zeroes not ending
in the units position or immediately before the last 1.

• A pair of the form (ii.3) is added to QB(n) for each j ∈ {1, . . . , ` − 1} such that
m j > m j−1 + 1, that is, for each maximal sequence of zeroes surrounded by
ones and not starting immediately after the leading 1. So, (ii.3) contributes a pair
for every maximal sequence of zeroes not ending in the units position and not
starting immediately after the leading 1.

• The pair of the form (ii.4) is added to QB(n) if there is a maximal sequence of
zeroes ending in the units position.

So, to compute the cardinality |QB(n)| when n is not a power of 2:
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• We count twice the number ofmaximal sequences of zeroes in n(2) plus 1: 2M0(n)+
1.

• We subtract 1 if n(2) contains a maximal sequence of zeroes ending immediately
before the last 1.

• We subtract 1 if n(2) contains a maximal sequence of zeroes starting immediately
after the leading 1.

• We subtract 2 and we add 1 (i.e. we subtract 1) if n(2) contains a maximal sequence
of zeroes ending in the units position.

If n ≥ 2 is a power of 2, in which case |QB(n)| = 1, this procedure also works, because
M0(n) = 1 and its only maximal sequence of zeros starts immediately after the leading 1
and ends in the units position, and thenwe have to subtract it twice from 2M0(n)+1 = 3.

Let us call any maximal sequence of zeroes in the binary representation of n that
starts immediately after the leading 1 or ends immediately before the last 1 or in the
units position extremal. Then, the procedure above yields the following expression for
|QB(n)|:

|QB(n)| = 2M0(n) + 1− number of extremal maximal sequences of zeroes
in n(2) (2.14)

where each extremal maximal sequence is counted as many times as it satisfies an “ex-
tremal” property; for example, a maximal sequence of zeroes beginning immediately
after the first 1 and ending immediately before the last 1 would be counted twice.

For instance, returning to the example above, we have that 813(2) = 1100101101(2).
Then M0(813) = 3 and there is only one extremal sequence in 813(2), the one ending
in the last 1. Therefore |QB(813)| = 6, in agreement with the explicit description of
QB(813) given in that example.

As a consequence of Equation (2.14) we obtain the following lower and upper
bounds for |QB(n)|.

Corollary 2.28. For every n ≥ 2, |QB(n)| ≥ max{2M0(n) − 2, 1}.

Proof. The number of extremal maximal sequences of zeroes in n(2) is at most three:
one beginning immediately after the leading 1, one ending immediately before the last
1, and one ending in the units position. Therefore, |QB(n)| ≥ 2M0(n) − 2. And since
QB(n) , ∅, |QB(n)| ≥ 1. �

Corollary 2.29. For every n ≥ 2, |QB(n)| = 1 if, and only if, n ∈ {2m − 1, 2m, 2m + 1}
for some m ∈ N≥1.

Proof. By the previous corollary and Equation (2.14), |QB(n)| = 1 if, and only if, n(2)
contains no 0, which corresponds to the case n = 2m −1 for somem ≥ 1, or it contains
only one maximal sequence of zeroes and it is twice extremal, which corresponds to
n(2) being either of the form 10 . . . 0(2), i.e., n = 2m for some m ≥ 1, or of the form
10 . . . 01(2), i.e., n = 2m + 1 for some m ≥ 1. �

Corollary 2.30. For every n ≥ 2, |QB(n)| ≤
⌊
log2(n)

⌋
.
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Proof. If
⌊
log2(n)

⌋
∈ 2N, then by the pigeonhole principle M0(n) ≤

⌊
log2(n)

⌋
/2. But if

the binary representation of n contains no extremal sequence, then it must start and end
with 11, in which case M0(n) ≤

⌊
log2(n)

⌋
/2 − 1. In either case, |QB(n)| ≤

⌊
log2(n)

⌋
.

On the other hand, if
⌊
log2(n)

⌋
< 2N, then again by the pigeonhole principle

M0(n) ≤ (
⌊
log2(n)

⌋
+ 1)/2. However, if the equality is reached, then the binary rep-

resentation of n contains at least two extremal sequences. Indeed, if it begins or ends
with 11, we have that M0(n) ≤ (

⌊
log2(n)

⌋
− 1)/2. Therefore, in order for M0(n) to

attain that equality, it must begin with 10 and end with 01, 10 or 00, therefore having
at least two extremal sequences. In either case, |QB(n)| ≤

⌊
log2(n)

⌋
. �

2.2.3 Generating all minimal Colless trees

In this section we provide an algorithm that generates all minimal Colless trees with a
given number n of leaves. Its validity relies on the following easy, intuitive result.

Lemma 2.31. Let T = T1 ∗ T2 ∈ BinTreen , with T1 ∈ BinTreen1 and T2 ∈ BinTreen2 ,
where n1 ≥ n2 ≥ 1. The following three conditions are equivalent:

(i) T is a minimal Colless tree.
(ii) T1 and T2 are minimal Colless trees and (n1, n2) ∈ QB(n).

(iii) (κT (v1), κT (v2)) ∈ QB(κT (v)) for every v ∈ V̊ (T ) whose children are v1, v2, so that
κT (v1) ≥ κT (v2).

Proof. The implication (i) ⇒ (ii) is easy to see, since by Corollary 2.3, if T is minimal
Colless, so are T1 and T2, and by definition of QB(n), (n1, n2) ∈ QB(n).

We proceed to the implication (ii)⇒ (iii). By Corollary 2.3, every rooted subtree of
T1 and T2 will be minimal Colless. Suppose that v ∈ V̊ (T1). Then, by definition, if T1
is minimal Colless, so is the subtree rooted at v , and thus (κT (v1), κT (v2)) ∈ QB(κT (v))
for any v ∈ V̊ (T1). The case in which v ∈ V̊ (T2) is proved analogously, and so it only
remains to prove the case in which v is the root, but this is exactly (n1, n2) ∈ QB(n).

The proof of (iii) ⇒ (i) is a bit more convoluted. We shall prove that, if T satisfies
c(κT (v1))+ c(κT (v2))+ κT (v1)− κT (v2) = c(κT (v)) for every v ∈ V̊ (T )whose children
are v1, v2 so that κT (v1) ≥ κT (v2), then C (T ) = c(n). We will proceed by induction
over n, the number of leaves. The cases when n ∈ {1, 2, 3} are obvious since for these
values of n there is only one tree in BinTreen. Assume now that the implication holds
up to n−1 leaves, for n ≥ 4. LetT ∈ BinTreen be a tree such that, for every v ∈ V̊ (T ),

c(κT (v1)) + c(κT (v2)) + κT (v1) − κT (v2) = c(κT (v)).

Let x1 and x2 be the children of the root ρ, with κT (x1) ≥ κT (x2). Now, for every
v ∈ V̊ (Tx1), we have that

c(κT (v1)) + c(κT (v2)) + κT (v1) − κT (v2) = c(κT (v)),

which, by the induction hypothesis, implies that C (Tx1) = c(κT (x1)). By symmetry,
we also have that C (Tx2) = c(κT (x2)). Finally,

c(n) = c(κT (ρ)) = c(κT (x1)) + c(κT (x2)) + κT (x1) − κT (x2)
= C (Tx1) +C (Tx2) + κT (x1) − κT (x2) = C (T ),
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2.2. Minimal Colless trees

which is what we wanted to prove. �

A direct consequence of this lemma is that for almost every number n of leaves
there exist more than one minimal Colless tree with n leaves.

Corollary 2.32. For every n ∈ N≥1, there exists only oneminimal Colless tree inBinTreen
if, and only if, n ∈ {2m − 1, 2m, 2m + 1} for some m ≥ 1.

Proof. If there exists only one minimal Colless tree in BinTreen, then in particular
n = 1 or |QB(n)| = 1 and therefore, by Corollary 2.29, n ∈ {2m − 1, 2m, 2m + 1} for
some m ≥ 1. We prove the converse implication by induction on m. The base case
m = 1 corresponds to n ∈ {1, 2, 3}, in which case the assertion is obvious because there
exists only one tree in each BinTreen. Let nowm ≥ 2 and n ∈ {2m − 1, 2m, 2m + 1} and
assume that, for every m ′ < m, if n′ ∈ {2m′ − 1, 2m′, 2m′ + 1}, then there exists only
one minimal Colless tree in BinTreen′. If n = 2m , by Corollary 2.4 there is only one
minimal Colless tree in BinTreen, namely the fully symmetric tree. If n = 2m ± 1, let
T ∈ BinTreen be a minimal Colless tree with n leaves, and understand it asT = T1 ∗T2,
with T1 ∈ BinTreen1 , T2 ∈ BinTreen2 , and n1 ≥ n2. If n = 2m − 1, then, by the
previous lemma and Corollary 2.29, (n1, n2) ∈ QB(n) = {(2m−1, 2m−1 − 1)} and T1,T2
are minimal Colless. But then, by the induction hypothesis, T1 and T2 are unique
and therefore T is also unique. And if n = 2m + 1, then, by the previous lemma,
(n1, n2) ∈ QB(n) = {(2m−1 + 1, 2m−1)} and T1,T2 are minimal Colless, and then, again
by the induction hypothesis, T1 and T2 are unique and therefore T is also unique. This
completes the proof of the inductive step. �

So, for all n ∈ N≥1 other than those in
⋃

m≥1{2m − 1, 2m, 2m + 1}, there is at least
one minimal Colless tree in BinTreen that is not maximally balanced.

Lemma 2.31, together with Corollary 2.4, prove the correctness of Algorithm 4 to
produceminimal Colless trees inBinTreen. If the algorithm is run non-deterministically
for all choices of a labeled leaf in line 3 and of a pair (m1,m2) ∈ QB(m) in line 7 (using
Corollary 2.27 to find all these pairs) in all executions of thewhile loop, one obtains all
minimal Colless trees in BinTreen, possibly with repetitions that can be then removed
(see the example below). The non-deterministic choice of the leaf in line 3 can be made
deterministic by considering ordered trees (i.e., adding an orientation left-to-right to the
pair of children of each internal node, with the number of descendant leaves decreasing
from left to right) and then always choosing the left-most remaining labeled leaf, and
at the end suppressing the orientations from the resulting trees.

Example:
Let us use this AlgorithmMinColless to find all minimal Colless trees with 20 leaves;
we describe the trees by means of the usual Newick format with the unlabeled leaves
represented by a symbol · and omitting the semicolon ending mark in order not to
confuse it with a punctuation mark.

1) We start with a single node labeled 20.

2) Since QB(20) = {(10, 10), (12, 8)}, this node can split into the cherries (10, 10)
and (12, 8).

3.1) Since QB(10) = {(5, 5), (6, 4)}, the different ways of splitting the leaves of

97



Chapter 2

Algorithm 4: MinColless
Input : n ∈ N
Output: T ∈ BinTreen with minimum Colless index

1 start with a single node labeled n;
2 while the current tree contains labeled leaves do
3 choose a leaf with label m;
4 if m is a power of 2 then
5 replace this leaf by a fully symmetric tree with m unlabeled leaves;
6 else
7 find a pair of integers (m1,m2) ∈ QB(m);
8 split the leaf labeled m into a cherry with unlabeled root and its leaves

labeled m1 and m2, respectively;
9 end
10 end
11 return current tree;

the tree (10, 10) produce the trees ((5, 5), (5, 5)), ((5, 5), (6, 4)), and ((6, 4), (6, 4)).
Now, sinceQB(5) = {(3, 2)},QB(6) = {(3, 3), (4, 2)}, andQB(3) = {(2, 1)}, and
1, 2, and 4 are powers of 2, we have the following derivations from these trees
through all possible combinations of splitting the leaves in the trees:

((5, 5), (5, 5)) ⇒ (((3, 2), (3, 2)), ((3, 2), (3, 2)))
⇒ ((((2, 1), 2), ((2, 1), 2)), (((2, 1), 2), ((2, 1), 2)))
⇒ (((((·, ·), ·), (·, ·)), (((·, ·), ·), (·, ·))), ((((·, ·), ·), (·, ·)), (((·, ·), ·), (·, ·))))

((5, 5), (6, 4)) ⇒ (((3, 2), (3, 2)), ((3, 3), 4))
⇒ ((((2, 1), 2), ((2, 1), 2)), (((2, 1), (2, 1)), 4))
⇒ (((((·, ·), ·), (·, ·)), (((·, ·), ·), (·, ·))), ((((·, ·), ·), ((·, ·), ·)), ((·, ·), (·, ·)))

((5, 5), (6, 4)) ⇒ (((3, 2), (3, 2)), ((4, 2), 4))
⇒ ((((2, 1), 2), ((2, 1), 2)), ((4, 2), 4))
⇒ (((((·, ·), ·), (·, ·)), (((·, ·), ·), (·, ·))), ((((·, ·), (·, ·)), (·, ·)), ((·, ·), (·, ·))))

((6, 4), (6, 4)) ⇒ (((3, 3), 4), ((3, 3), 4))
⇒ ((((2, 1), (2, 1)), 4), (((2, 1), (2, 1)), 4))
⇒ (((((·, ·), ·), ((·, ·), ·)), ((·, ·), (·, ·))), ((((·, ·), ·), ((·, ·), ·)), ((·, ·), (·, ·))))

((6, 4), (6, 4)) ⇒ (((3, 3), 4), ((4, 2), 4))
⇒ ((((2, 1), (2, 1)), 4), ((4, 2), 4))
⇒ (((((·, ·), ·), ((·, ·), ·)), ((·, ·), (·, ·))), ((((·, ·), (·, ·)), (·, ·)), ((·, ·), (·, ·))))

((6, 4), (6, 4)) ⇒ (((4, 2), 4), ((4, 2), 4))
⇒ (((((·, ·), (·, ·)), (·, ·)), ((·, ·), (·, ·))), ((((·, ·), (·, ·)), (·, ·)), ((·, ·), (·, ·))))

3.2) Since QB(12) = {(6, 6), (8, 4)} and 8 is a power of 2, the tree (12, 8) gives rise
to the trees ((6, 6), 8) and ((8, 4), 8), and then, using QB(6) = {(3, 3), (4, 2)} and
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QB(3) = {(2, 1)},

((6, 6), 8) ⇒ (((3, 3), (3, 3)), 8) ⇒ ((((2, 1), (2, 1)), ((2, 1), (2, 1))), 8)
⇒ (((((·, ·), ·), ((·, ·), ·)), (((·, ·), ·), ((·, ·), ·))), (((·, ·), (·, ·)), ((·, ·), (·, ·))))

((6, 6), 8) ⇒ (((3, 3), (4, 2)), 8) ⇒ ((((2, 1), (2, 1)), (4, 2)), 8)
⇒ (((((·, ·), ·), ((·, ·), ·)), (((·, ·), (·, ·)), (·, ·))), (((·, ·), (·, ·)), ((·, ·), (·, ·))))

((6, 6), 8) ⇒ (((4, 2), (4, 2)), 8)
⇒ (((((·, ·), (·, ·)), (·, ·)), (((·, ·), (·, ·)), (·, ·))), (((·, ·), (·, ·)), ((·, ·), (·, ·))))

((8, 4), 8)
⇒ (((((·, ·), (·, ·)), ((·, ·), (·, ·))), ((·, ·), (·, ·))), (((·, ·), (·, ·)), ((·, ·), (·, ·))))

So, there are 10 different minimal Colless tree shapes with 20 leaves. We depict them
in Figure 2.3.

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

Figure 2.3: The ten trees in BinTree20 with minimum Colless index, 8. They are
enumerated in the same order as they have been produced in the example given in this
section.

We have implemented Algorithm MinColless, with the step in line 7 efficiently
carried out by means of Corollary 2.27, in a Python script that generates, for every n,
the Newick description of all minimal Colless trees in BinTreen. It is available at the
GitHub repository https://github.com/biocom-uib/Colless. As a proof
of concept, we have computed for every n from 1 to 128 all such minimal Colless trees
in BinTreen. Figure 2.4 shows their number c̃(n) for every n. These numbers are
in agreement with those provided by the following recurrence for the sequence c̃(n),
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which was established in Proposition 4 of our paper [22]: Starting with c̃(1) = 1,

c̃(n) =
∑

(n1,n2)∈QB(n)
c̃(n1) · c̃(n2) +

(
c̃(n/2) + 1

2

)
· χ2N(n) (2.15)

for n ≥ 2, where χ2N is the characteristic function of the set 2N.

Figure 2.4: Semi-logarithmic plot of the sequence of the number of minimal Colless
trees in BinTreen, for n ∈ {1, . . . , 128}.

The plot of this sequence c̃(n) shows a fractal structure that reminds us of the Takagi
curve. But, currently, we do not know of either any closed expression for the compu-
tation of c̃(n), or any argument supporting its apparent connection with the Takagi
curve, should this connection actually exist.

To close this section, we want to point out that in [22] we gave a family of minimal
Colless trees, called the greedy from the bottom (GFB) trees, T gfb

n ∈ BinTreen, such that
T gfb
n , T bal

n for every n such that c̃(n) > 1. Their name comes from the possibility of
recursively building them through a process of root joining trees that we shall not recall
here (see Algorithm 2 in [22]). Instead, we want to mention the following alternative
characterization of these trees, which is obtained combining Propositions 5 to 7 of [22]:
A tree T = T1 ∗ T2 ∈ BinTreen, with T1 ∈ BinTreen1 , T2 ∈ BinTreen2 , and n1 ≥ n2,
is GFB if, and only if, (n1, n2) is the pair in QB(n) attaining the maximum difference
n1 − n2 and T1,T2 are GFB trees.

It can be deduced from the explicit description of all pairs inQB(n) given in Corol-
lary 2.27 that the pair (n1, n2) inQB(n) that attains the maximum difference n1 − n2 is
the following one (see, again, [22, Prop. 7]): If n = 2m + s , with m =

⌊
log2(n)

⌋
and

0 ≤ s < 2m , then

(i) If 0 ≤ s ≤ 2m−1, then n1 = 2m−1 + s and n2 = 2m−1.

( ii) If 2m−1 ≤ s < 2m , then n1 = 2m and n2 = s .
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Notice moreover that, since GFB trees are minimal Colless, their rooted subtrees with
a power of 2 number of leaves, being also minimal Colless, must be fully symmetric.
Therefore, for every internal node in a GFB tree, one of its two children is the root
of a fully symmetric subtree. This is the basis of the following result, which says that
the GFB trees are the most symmetrical minimal Colless trees; for a proof, see [22,
Appendix A.3].

Proposition 2.33. For every n ≥ 1, let n =
∑`

i=0 2
mi , with ` ≥ 0 and m` > · · · > m0, be

its binary decomposition.

(i) The number of symmetry nodes in T gfb
n is s(T gfb

n ) = n − 1 − (m` −m0).

(ii) For every minimal Colless tree T ∈ BinTreen , if T , T
gfb
n , then s(T ) < s(T gfb

n ).

To end this section, let us recall another result from [22], namely Proposition 9

therein.

Proposition 2.34. For every n ≥ 1, if T ∈ BinTreen is a minimal Colless index, then it
has also the minimum Sackin index in BinTreen .

In other words, of all the trees with minimum Sackin index, some of them are those
that also have minimum Colless index. But indeed not all of them, as we can see in
Figure 2.5. Thus, we can consider that, in this regard, Colless index is finer than Sackin’s
is. A consequence of the last result is that, since the trees T attaining the minimum
Sackin index satisfy the property that for any two leaves (u, v) ∈ L(T )2, |δ(u)−δ(v)| ≤ 1
(Theorem 1.19), so do the minimal Colless trees.

T1 T2

Figure 2.5: Trees T1 and T2 with 12 leaves. Their Sackin indices are S(T1) = S(T2) = 44,
which can be shown to be minimal (cf. Theorem 3 in [39]). However, C (T1) = 4 =
c(12) and C (T2) = 6. Thus, T1 is minimal Colless, while T2 is not.

2.3 Discussion

In this chapter, we have focused on the study of the minimum value c(n) of the Colless
index for each number of leaves n ≥ 1, and theminimal Colless trees that attain it. This
study had not been completely pursued until the independent preprints by Herbst-
Fischer-Wicke [40] and Coronado-Rosselló [27] that gave rise to our joint paper [22].
This chapter has followed mainly our preprint [27], although some proofs are different
from those published therein.

In this chaper we have shown that, as expected, the maximally balanced bifurcating
trees aremost balanced according to the Colless index. But if n differs at least 2 from any
power of 2, then there are minimal Colless trees with n leaves that are not maximally
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balanced. In other words, the least global amount of imbalance, which is, at the end
of the day, what the Colless index measures, is almost always achieved also at trees that
do not minimize the local imbalance at each internal node. Then, we have provided
a structural characterization of the minimal Colless trees from which we have derived
an algorithm to produce all of them for any number n of leaves. It remains an open
problem to find a closed formula that, for any n, gives their number c̃(n), or the number
of minimal Colless phylogenetic trees with n leaves: a recurrence for c̃(n) was given in
[22], and we have recalled it in Equation 2.15 above.

Having proved that themaximally balanced trees attain theminimumColless index,
we have been able to find a closed formula for this minimum value c(n) on BinTreen.
Knowing this minimum value, as well as its maximum value, which is reached at the
caterpillars and is equal to

(n−1
2

)
[86], allows one to normalize the Colless index so that

its range becomes the unit interval [0, 1], by means of the usual affine transformation:

C (T ) =
C (T ) −min{C (T ′) : T ′ ∈ BinTreen}

max{C (T ′) : T ′ ∈ BinTreen} −min{C (T ′) : T ′ ∈ BinTreen}
=

C (T ) − c(n)(n−1
2

)
− c(n)

thus allowing a sound comparison of the balance of two trees with a different number
of leaves. This transformation has the good property of attaining both 0 and 1 when
the minimum and the maximum are reached, respectively.

Our formula for c(n) explains the fractal structure of the graph of this sequence re-
lated to the fractal Takagi curve (cf. Figure 2.1). We have made explicit this connection
with the Takagi function using Tambs-Lyche reformulation of the latter. It turns out
that a similar fractal structure seems to appear also in the graph of (n, c̃(n)) (cf. Figure
2.4), but it is also an open problem to find a reason for it.
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The Quadratic Colless index

Twoo multiplications doe make a
Cubike nomber. Likewaies .3.

multiplications doe giue a square of
squares.

R. Recorde, Whetstone of Witte,
1557

The Colless index, albeit being widely popular and intuitive, presents some draw-
backs. One of them, as we have seen in the previous chapter, is that its minimum

value is not reached by a single tree for almost any number of leaves n, and the char-
acterization of the set of trees that attain this value is convoluted and, once elucidated,
presents no intuitive idea of balance itself. Nevertheless, by Proposition 2.34, every tree
that attains the minimum Colless index reaches the minimum Sackin index, too. This
gives us the idea that the Colless index is, in this regard, a finer measure of imbalance
than the Sackin index is.

Following this lead, our errand in this chapter shall be to present a new balance
index that will be finer (in this sense) than the Colless index is. Incidentally, this index
shall also have a much wider range of values, and thus, a priori, a smaller proportion of
draws. This shall be by no means the first such index (see, for example, the Cophenetic
index [85] and our Quartet index presented in Chapter 5), but these sacrify, in their
definition, what is arguably one of the most interesting advantages of the Colless index:
its intuitiveness as a measure of imbalance.

Let T ∈ BinTreen be a bifurcating tree with n leaves. The Quadratic Colless index
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of T , C (2)(T ), is defined as

C (2)(T ) =
∑

u∈V̊ (T )

bal(u)2;

i.e., as the sum, over all internal nodes in T , of the squared difference of the number of
leaves of the subtrees rooted at their children. It is now straightfowrard to check that
it satisfies an analogous relation to that displayed in Lemma 2.1: for any T = T1 ∗T2 ∈

BinTreen, with T1 ∈ BinTreen1 and T2 ∈ BinTreen2 ,

C (2)(T ) = C (2)(T1) +C (2)(T2) + (n1 − n2)
2, (3.1)

and so is a binary recursive shape index in the sense introduced in the Preliminaries.
This definition is not very different from that of the Colless index —substituting the
absolute value by the square—, and hence still reflects the intuition behind the latter:
to compute a measure of the overall balance of a given tree. However, this definition
presents a much better behaviour, as we shall see in this chapter.

Example:
Consider the following two trees in BinTree9.

T1 T2

It is easy to see that

C (T1) = 7 + 2 + 1 + 3 + 2 + 1 = 16 and C (T2) = 6 + 5 + 4 + 1 + 1 = 17

while
C (2)(T1) = 72 + 22 + 12 + 32 + 22 + 12 = 68

C (2)(T2) = 62 + 52 + 42 + 12 + 12 = 68

This shows that C (2)(T1) = C (2)(T2) does not imply C (T1) = C (T2). The other
implication is not true either: C (T bal

n ) = C (T gfb
n ) for every n ≥ 1, whereas, by

Lemma 3.1 below, C (2)(T bal
n ) < C (2)(T gfb

n ) for any n <
⋃

m∈N{2m − 1, 2m, 2m + 1}.

This chapter is organized as follows: in the first section, we will find the extreme
values of this new index, as well as the trees attaining them, while drawing a comparison
between both the Colless and the Quadratic Colless index. Afterwards, in the second
section, we shall find both the expected value and the variance of C (2) under the Yule
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and Uniform probabilistic models — and recall, here, that this expected value is not
known for the Colless index under the Uniform model. The third section presents a
series of numerical results on the probability of two different trees having the same
C (2) value. We end by discussing this new measure, while pressenting and discussing
the possibility on some natural extensions to it.

3.1 Extreme values and the trees attaining them

The complexity of the characterization of the minimal Colless trees shall contrast
sharply with the readiness with which such question shall be answered in regard to
this squared version. Indeed, we shall first present the following lemma, of which that
characterization will be but a straightforward corollary.

Lemma 3.1. Let T ∈ BinTreen be a bifurcating tree with n ≥ 1 leaves. Then,

C (2)(T ) ≥ C (T )

and the equality is reached if, and only if, T is maximally balanced.

Proof. By definition,

C (2)(T ) =
∑

u∈V̊ (T )

bal(u)2 ≥
∑

u∈V̊ (T )

bal(u) = C (T )

since bal(u) ∈ N for all u ∈ V̊ (T ). The equality will be attained if, and only if, for
each u ∈ V̊ (T ), bal(u)2 = bal(u), which will happen if and only if bal(u) ∈ {0, 1}. By
definition, that only happens in the maximally balanced trees. �

Theorem 3.2. The minimum of theQuadratic Colless index is reached exactly at the max-
imally balanced trees. Furthermore, this minimum value for n ≥ 1 leaves is C (2)(T bal

n ) =

c(n).

Proof. Let n ∈ N and T ∈ BinTreen. Then, we know (by Theorem 2.7) that C (T ) ≥
C (T bal

n ), hence
C (2)(T ) ≥ C (T ) ≥ C (T bal

n ) = C (2)(T bal
n )

and therefore T bal
n presents the minimum C (2) value. Furthermore, the first inequality

is strict whenever T , T bal
n , and thus T bal

n is the only tree in BinTreen that attains the
minimum Quadratic Colless index. �

Voilà! In order to give this proof, we only needed to know the fact that the maxi-
mally balanced trees are indeed Colless minimal, which was proved in Lemma 2.5 and
Theorem 2.7 in the previous chapter. Therefore, the minimum value of the Quadratic
Colless index is reached at a unique family of trees, namely the maximally balanced
trees, and furthermore its value is exactly that of the Colless index for that family;
namely, the one computed in Theorems 2.10, 2.11, and 2.12. But, most importantly, we
have established that this minimum value is only attained at the maximally balanced
trees, a desirable property that the original Colless index lacked.

We are now concerned with the problem of characterising which trees attain the
maximum Quadratic Colless value: as intuition tells us, they should be exactly the
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caterpillars. This is, of course, the case. Indeed: notice that, for any T cat
n , by Equation

(3.1)

C (2)(T cat
n ) = C (2)(T cat

n−1) + (n − 2)
2 =

n−2∑
i=1

i2 =
(n − 2)(n − 3)(2n − 3)

6
=

(
n
3

)
+

(
n − 1
3

)
.

Now, we can prove the next theorem.

Theorem 3.3. The maximum of theQuadratic Colless index is reached exactly at the cater-
pillars. Furthermore, this maximum value for n ≥ 1 leaves is

C (2)(T cat
n ) =

(
n
3

)
+

(
n − 1
3

)
.

Proof. We proceed by induction on the number of leaves, n. For n ∈ {1, 2, 3} it is
obviously true. Suppose now that n ≥ 4, and that the property holds up to n − 1
leaves. We want to prove that if T1 ∗ T2 ∈ BinTreen \ {T cat

n }, with T1 ∈ BinTreen1 ,
T2 ∈ BinTreen2 and n1, n2 ∈ N such that n = n1 + n2, and n1 ≥ n2 ≥ 1,

C (2)(T cat
n ) > C (2)(T1) +C (2)(T2) + (n1 − n2)

2 = C (2)(T1 ∗T2).

Since, by the the induction hypothesis C (2)(T1) ≤ C (2)(T cat
n1 ) and C (2)(T2) ≤ (T cat

n2 ) and
these inequalities are strict unless T1 = T cat

n1 and T2 = T cat
n2 , it will suffice to show that

C (2)(T cat
n ) ≥ C (2)(T cat

n1 ) +C
(2)(T cat

n2 ) + (n1 − n2)
2 = C (2)(T cat

n1 ) +C
(2)(T cat

n−n1) + (2n1 − n)2

=
(n1 − 2)(n1 − 3)(2n1 − 3)

6
+
(n − n1 − 2)(n − n1 − 3)(2n − 2n1 − 3)

6
+ (2n1 − n)2

=
(6n − 2)n2

1 − (6n
2 − 2n)n1 + 2n3 − 7n2 + 27n − 36

6

and that the equality only holds when n1 = n − 1.
Consider now the function C (2)cat : R→ R, defined as

C (2)cat (x) =
(6n − 2)x2 − (6n2 − 2n)x + 2n3 − 7n2 + 27n − 36

6
.

The curve y = C (2)cat (x) is a parabola whose leading coefficient is positive, and hence it
is concave upward. Its vertex, where the minimum value of C (2)cat is attained, has first
coordinate x = n/2. Therefore, the maximum of C (2)cat in the closed interval [n/2, 1] is
reached exactly at the other end of the interval, that is, at x = n−1. Since n1 ∈ [n/2, 1],
this concludes the proof of the result. �

We have thus proven that this new balance index, C (2), has better properties than
the Colless index when it comes to its extreme values and those trees that attain them.

To close this section, let us study the range of values that the Quadratic Colless
index can attain. As we have seen, for any number of leaves n ∈ N we can establish a
tight upper bound for C (2)(T ), T ∈ BinTreen, as

C (2)(T ) ≤ C (2)(T cat
n ) =

(
n
3

)
+

(
n − 1
3

)
∼ O(n3).
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We also have a tight lower bound forC (2)(T ): exactly c(n). Nevertheless, by themselves
none of the formulæ given in the previous chapter to compute c(n) are very informative
to this regard, leaving aside the obvious fact that c(2m) = 0 for any m ∈ N. Now, by
Corollary 2.13, the lower bound is such that

c(n) < min{n/2, 2dlog2(n)e/3} ∼ O(n),

and there are values of n for which this upper bound is sharp: for instance, when
n = 11 = 23 + 3, cn = 5 = (11 − 1)/2 = b24/3c.

So, the range of C (2) grows inO(n3). In order to give some perspective, this is one
order of magnitude higher than the range of values of the Colless and Sackin indices are
[22, 39], and it shares this order of magnitude with the Cophenetic index [85], although
it is always wider than this last one: cf. Table 3.1. OurQuartet index will have an even
wider range of values.

Index Minimum Maximum
C O(n)

(n−1
2

)
S O(n log(n))

(n+1
2

)
− 1

Φ O(n2)
(n
3
)

C (2) O(n)
(n
3
)
+

(n−1
3

)
Table 3.1: Range of values of the Colless index C , the Sackin index S , the Cophenetic
index Φ and the Quadratic Colless index C (2)

3.2 The expected value and variance under the Uniform and
Yule models

The Quadratic Colless index C (2) can be extended to bifurcating phylogenetic trees in
the usual manner: for any (T , λ) ∈ BinPhyloTreen, C

(2)(T , λ) = C (2)(T ). Given some
probabilistic model Pn of bifurcating phylogenetic trees, letC (2)n be the random variable
that chooses a phylogenetic tree (T , λ) ∈ BinPhyloTreen with probability Pn(T , λ) and
computesC (2)(T ). In this section we shall compute the expected value and the variance
of C (2)n under the Uniform and Yule models. The computations are a bit convoluted,
and shall occupy the remaining of this section. To put the results of this section into
perspective, let us recall that no closed formula for the expected value or the variance
of the Colless index under the uniform model has been published yet, only their limit
behaviour being known so far, and that a closed formula for the variance of the Colless
index under the Yule models was not published until very recently [13].

3.2.1 The Uniform model

The main goal of this section is to prove the following result.

Theorem 3.4. Let n ∈ N≥1.
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(i) The expected value of C (2)n under the Uniform model is

Eunif(C
(2)
n ) =

(
n + 1
2

)
(2n − 2)!!
(2n − 3)!!

− n(2n − 1).

(ii) The variance of C (2)n under the Uniform model is

σ2
unif(C

(2)
n ) =

2
15
(2n − 1)(7n2 + 9n − 1)

(
n + 1
2

)
−
1
8
(5n2 + n + 2)

(
n + 1
2

)
(2n − 2)!!
(2n − 3)!!

−

(
n + 1
2

)2 (
(2n − 2)!!
(2n − 3)!!

)2
.

In order to do this, we shall use Lemma 1.31 which, applied to the Uniform model,
says that, for any binary recursive shape index I ,

Eunif(In) =
n−1∑
k=1

Ck,n−k
(
2Eunif(Ik) + fI (k, n − k)

)
(3.2)

Eunif(I 2n ) =
n−1∑
k=1

Ck,n−k

(
2Eunif(I 2k ) + 4 fI (k, n − k)Eunif(Ik) + 2Eunif(Ik)Eunif(In−k)

+ fI (k, n − k)2
)

(3.3)

where
Ck,n−k =

1
2

(
n
k

)
(2k − 3)!!(2(n − k) − 3)!!

(2n − 3)!!
.

Since the proof of the theorem will occupy the whole of this section, we will split it
into two lemmata, each one for each point in its statement. In their proof, we will
invoke Lemmata 1.33 and 1.34, as well as their corollary, Theorem 1.35.

Lemma 3.5. For every n ∈ N≥1,

Eunif(C
(2)
n ) =

(
n + 1
2

)
(2n − 2)!!
(2n − 3)!!

− n(2n − 1).

Proof. As we have already pointed out, sinceC (2) is a binary recursive shape index with
fC (2)(k, n − k) = (n − 2k)2, by Equation (3.2)

Eunif(C
(2)
n ) = 2

n−1∑
k=1

Ck,n−kEunif(C
(2)
k ) +

n−1∑
k=1

Ck,n−k(n − 2k)2

= 2
n−1∑
k=1

Ck,n−kEunif(C
(2)
k ) + n

2
n−1∑
k=1

Ck,n−k − 4(n − 1)
n−1∑
k=1

Ck,n−kk + 8
n−1∑
k=1

Ck,n−k

(
k
2

)
= 2

n−1∑
k=1

Ck,n−kEunif(C
(2)
k ) + n

2 − 2n(n − 1) + 4
(
n
2

) (
1 −

1
2(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
= 2

n−1∑
k=1

Ck,n−kEunif(C
(2)
k ) + 2

(
n
2

)
+ n − n ·

(2n − 2)!!
(2n − 3)!!

,
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where we have used, in the second last equality, Lemma 1.33. Thus, by Theorem 1.35,
and since Eunif(C

(2)
1 ) = 0,

Eunif(C
(2)
n ) =

((n
2

)
+ n

)
(2n − 2)!!
(2n − 3)!!

−

(
4
(
n
2

)
+ n

)
=

(
n + 1
2

)
·
(2n − 2)!!
(2n − 3)!!

− n(2n − 1),

as we claimed. �

Lemma 3.6. For every n ∈ N≥1,

σ2
unif(C

(2)
n ) =

2
15
(2n − 1)(7n2 + 9n − 1)

(
n + 1
2

)
−
1
8
(5n2 + n + 2)

(
n + 1
2

)
(2n − 2)!!
(2n − 3)!!

−

(
n + 1
2

)2 (
(2n − 2)!!
(2n − 3)!!

)2
.

Proof. In order to simplify the notations, throughout this proof by αn we shall denote
(2n − 2)!!/(2n − 3)!!. To compute the variance σ2

unif(C
(2)
n ), we will proceed by means of

the identity

σ2
unif(C

(2)
n ) = Eunif((C

(2)
n )

2) − Eunif(C
(2)
n )

2 (3.4)

where the value of Eunif(C
(2)
n ) is given in Lemma 3.5. Therefore, we just need to compute

Eunif((C
(2)
n )

2).

Now, applying Equation (3.3) to C (2), we obtain

Eunif((C
(2)
n )

2) =

n−1∑
k=1

Ck,n−k

(
2Eunif((C

(2)
k )

2) + (n − 2k)4

+4(n − 2k)2Eunif(C
(2)
k ) + 2Eunif(C

(2)
k )Eunif(C

(2)
n−k)

)
= 2

n−1∑
k=1

Ck,n−kEunif((C
(2)
k )

2)

+

n−1∑
k=1

Ck,n−k

[
(n − 2k)4 + 4(n − 2k)2

((k + 1
2

)
αk − k(2k − 1)

)
+ 2

((k + 1
2

)
αk − k(2k − 1)

)
·

((n − k + 1
2

)
αn−k − (n − k)(2(n − k) − 1)

)]
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= 2
n−1∑
k=1

Ck,n−kEunif((C
(2)
k )

2)

+

n−1∑
k=1

Ck,n−k

(
(n − 2k)4 − 4(n − 2k)2k(2k − 1)

+ 2k(2k − 1)(n − k)(2(n − k) − 1)
)

+

n−1∑
k=1

Ck,n−k

[
4(n − 2k)2

(
k + 1
2

)
αk − 2

(
n − k + 1

2

)
k(2k − 1)αn−k

−2
(
k + 1
2

)
(n − k)(2(n − k) − 1)αk

]
+ 2

n−1∑
k=1

Ck,n−k

(
k + 1
2

) (
n − k + 1

2

)
αkαn−k

= 2
n−1∑
k=1

Ck,n−kEunif((C
(2)
k )

2)

−

n−1∑
k=1

Ck,n−k

(
8k4 + 16(n − 1)k3 − 2(12n2 − 6n − 1)k2 − (2n − 8n3)k − n4

)
+

n−1∑
k=1

Ck,n−k

[
4(n − 2k)2

(
k + 1
2

)
− 4

(
k + 1
2

)
(n − k)(2(n − k) − 1)

]
αk

+ 2
n−1∑
k=1

Ck,n−k

(
k + 1
2

) (
n − k + 1

2

)
αkαn−k

= 2
n−1∑
k=1

Ck,n−kEunif((C
(2)
k )

2)

−

n−1∑
k=1

Ck,n−k

[
192

(
k
4

)
+ 96(n + 2)

(
k
3

)
− 4(12n2 − 30n − 5)

(
k
2

)
+ (8n3 − 24n2 + 26n − 6)k − n4

]
+

n−1∑
k=1

Ck,n−k

[
96

(
k
4

)
+ 156

(
k
3

)
− 4(n2 − n − 16)

(
k
2

)
− 4(n2 − n − 1)k

]
αk

+ 2
n−1∑
k=1

Ck,n−k

(
k + 1
2

) (
n − k + 1

2

)
αkαn−k . (3.5)

Let us now compute the independent term in this equation. Its first sum can be
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computed using Lemma 1.33:

n−1∑
k=1

Ck,n−k

(
192

(
k
4

)
+ 96(n + 2)

(
k
3

)
− 4(12n2 − 30n − 5)

(
k
2

)
+ (8n3 − 24n2 + 26n − 6)k − n4

)
= 96

(
n
4

) (
1 −

3
n − 1

·
5!!
6!!
· αn

)
+ 48(n + 2)

(
n
3

) (
1 −

2
n − 1

·
3!!
4!!
· αn

)
− 2(12n2 − 30n − 5)

(
n
2

) (
1 −

1
2(n − 1)

· αn

)
+
1
2
(8n3 − 24n2 + 26n − 6)n − n4

= (3n − 2)n3 −
n(15n2 − 15n + 4)

4
· αn .

The second sum in this independent term can be computed using Lemma 1.34:

n−1∑
k=1

Ck,n−k

[
96

(
k
4

)
+ 156

(
k
3

)
− 4(n2 − n − 16)

(
k
2

)
− 4(n2 − n − 1)k

]
αk

= 48
(
n
4

) (
αn −

6!!
5!!

)
+ 78

(
n
3

) (
αn −

4!!
3!!

)
− 2(n2 − n − 16)

(
n
2

)
(αn − 2) − 2(n2 − n − 1)n(αn − 1)

= n3(n + 1)αn −
2n(33n3 − 13n2 − 12n + 7)

15
.

Finally, as far as the third sum in the independent term goes, it can be computed as
follows:

2
n−1∑
k=1

Ck,n−k

(
k + 1
2

) (
n − k + 1

2

)
(2k − 2)!!
(2k − 3)!!

(2n − 2k − 2)!!
(2n − 2k − 3)!!

=

n−1∑
k=1

n!(2k − 3)!!(2(n − k) − 3)!!k(k + 1)(n − k)(n − k + 1)2k−1(k − 1)!2n−k−1(n − k − 1)!
k!(n − k)!(2n − 3)!!22(2k − 3)!!(2(n − k) − 3)!!

=
n!2n−4

(2n − 3)!!

n−1∑
k=1

(k + 1)(n − k + 1)

=
n!2n−3(n − 1)(n + 1)(n + 6)

(2n − 3)!!6
=

n + 6
8
·

(
n + 1
3

)
· αn .
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Therefore, the independent term of Equation (3.5) is

n(15n2 − 15n + 4)
4

· αn − (3n − 2)n3

+ n3(n + 1)αn −
2n(33n3 − 13n2 − 12n + 7)

15
+
n + 6
8
·

(
n + 1
3

)
· αn

=
n(49n3 + 234n2 − 181n + 42)

48
· αn −

n(111n3 − 56n2 − 24n + 14)
15

=

(
3n + 36

(
n
2

)
+ 66

(
n
3

)
+
49
2

(
n
4

))
αn − 3n − 78

(
n
2

)
− 244

(
n
3

)
−
888
5

(
n
4

)
.

Thus, Equation (3.5) becomes

Eunif((C
(2)
n )

2) = 2
n−1∑
k=1

Ck,n−kEunif((C
(2)
k )

2) − 3n − 78
(
n
2

)
− 244

(
n
3

)
−
888
5

(
n
4

)
+

(
3n + 36

(
n
2

)
+ 66

(
n
3

)
+
49
2

(
n
4

))
αn .

This equation can be solved using Theorem 1.35 in the Preliminaries, and the fact that
Eunif((C

(2)
1 )

2) = 0. Its solution is

Eunif((C
(2)
n )

2) = 3n + 84
(
n
2

)
+ 320

(
n
3

)
+ 360

(
n
4

)
+ 112

(
n
5

)
−

(
3n + 39

(
n
2

)
+
183
2

(
n
3

)
+
111
2

(
n
4

))
αn

=
n
15
(14n4 + 85n3 − 60n2 + 5n + 1) −

n
16
(37n3 + 22n2 − 13n + 2)αn .

Finally,

σ2
unif(C

(2)
n ) = Eunif((C

(2)
n )

2) − Eunif(C
(2)
n )

2 =
2
15
(2n − 1)(7n2 + 9n − 1)

(
n + 1
2

)
−
1
8
(5n2 + n + 2)

(
n + 1
2

)
(2n − 2)!!
(2n − 3)!!

−

(
n + 1
2

)2 (
(2n − 2)!!
(2n − 3)!!

)2
,

as we claimed. �

We shall now briefly discuss the asymptotic behaviour of Eunif(C
(2)
n ) andσunif(C

(2)
n ).

By using Stirling’s approximation for large factorials, we have

(2n − 2)!!
(2n − 3)!!

=
(2n−1(n − 1)!)2

(2n − 2)!
∼

(
2n−1

√
2π(n − 1)(n − 1)n−1e−(n−1)

)2√
2π(2n − 2)(2n − 2)2n−2e−(2n−2)

∼
√
πn. (3.6)

Then, Theorem 3.4 implies the following limit behaviour:

Eunif(C
(2)
n ) ∼

√
π

2
n5/2, σunif(C

(2)
n ) ∼

√
14
15

n5/2.
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So, under the Uniform model, the expected value and the standard deviation of C (2)n
grow with n in the same order. This already happenned with the Colless index, for
which it is known that (see [8] for details):

Eunif(Cn) ∼
√
πn3/2, σunif(Cn) ∼

√
10 − 3π

3
n3/2.

3.2.2 The Yule model

The main goal of this section is to prove the following result. In it, Hn =
∑n

i=1 1/i
and H (2)n =

∑n
i=1 1/i

2 are the n-th harmonic and second order harmonic numbers,
respectively.

Theorem 3.7. Let n ∈ N≥1.

(i) The expected value of C (2)n under the Yule model is

EYule(C
(2)
n ) = n(n + 1) − 2nHn .

(ii) The variance of C (2)n under the Yule model is

σ2
Yule(C

(2)
n ) =

1
3
n

(
n3 − 8n2 + 50n − 1 − 40Hn − 12nH (2)n

)
.

In its proof we shall use Lemma 1.31 which, applied to the Yule model, says that,
for any binary recursive shape index I ,

EYule(In) =
1

n − 1

n−1∑
k=1

(
2EYule(Ik) + fI (k, n − k)

)
(3.7)

EYule(I 2n ) =
1

n − 1

n−1∑
k=1

(
2EYule(I 2k ) + 4 fI (k, n − k)EYule(Ik) + 2EYule(Ik)EYule(In−k)

+ fI (k, n − k)2
)
. (3.8)

As we did in the last section, and since this proof will occupy the whole section, we
shall split it into two lemmata, one for each statement.

Lemma 3.8. For every n ∈ N≥1,

EYule(C
(2)
n ) = n(n + 1) − 2nHn .
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Proof. By Equation (3.7),

EYule(C
(2)
n ) =

2
n − 1

n−1∑
k=1

EYule(C
(2)
k ) +

1
n − 1

n−1∑
k=1

(n − 2k)2

=
2

n − 1

n−1∑
k=1

EYule(C
(2)
k ) +

1
3
n(n − 2)

=
2

n − 1
EYule(C

(2)
n−1) +

n − 2
n − 1

( 2
n − 2

n−2∑
k=1

EYule(C
(2)
k )

)
+
1
3
n(n − 2)

=
2

n − 1
EYule(C

(2)
n−1) +

n − 2
n − 1

(
EYule(C

(2)
n−1) −

1
3
(n − 1)(n − 3)

)
+
1
3
n(n − 2)

=
n

n − 1
EYule(C

(2)
n−1) + n − 2.

We can now divide this equation by n and by setting Xn = EYule(C
(2)
n )/n, we obtain

the equation

Xn = Xn−1 + 1 −
2
n

whose solution, with initial condition X1 = EYule(C
(2)
1 ) = 0, is

Xn =

n∑
k=2

(
1 −

2
k

)
= n + 1 − 2Hn .

Thus, finally,

EYule(C
(2)
n ) = nXn = n(n + 1) − 2nHn,

as we claimed. �

Lemma 3.9. For every n ∈ N≥1,

σ2
Yule(C

(2)
n ) =

1
3
n
(
n3 − 8n2 + 50n − 1 − 30Hn − 12nH (2)n

)
.

Proof. We will compute the value of σ2
Yule(C

(2)
n ) by means of the identity

σ2
Yule(C

(2)
n ) = EYule((C

(2)
n )

2) − EYule(C
(2)
n )

2, (3.9)

where EYule(C
(2)
n ) is given by the previous result, Lemma 3.8. Now, we must compute
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EYule((C
(2)
n )

2). By Equation (3.8),

EYule((C
(2)
n )

2) =
1

n − 1

n−1∑
k=1

(
2EYule((C

(2)
k )

2) + (n − 2k)4

+ 4(n − 2k)2EYule(C
(2)
k ) + 2EYule(C

(2)
k )EYule(C

(2)
n−k)

)
=

2
n − 1

n−1∑
k=1

EYule((C
(2)
k )

2) +
1

n − 1

n−1∑
k=1

(n − 2k)4

+
4

n − 1

n−1∑
k=1

(n − 2k)2k(k + 1 − 2Hk)

+
2

n − 1

n−1∑
k=1

k(n − k)(k + 1 − 2Hk)(n − k + 1 − 2Hn−k)

Set Tn as the independent term in this equation, so that it can be re-written as

EYule((C
(2)
n )

2) =
2

n − 1

n−1∑
k=1

EYule((C
(2)
k )

2) +Tn

=
2

n − 1
EYule((C

(2)
n−1)

2) +
n − 2
n − 1

·
2

n − 2

n−2∑
k=1

EYule((C
(2)
k )

2) +Tn

=
2

n − 1
EYule((C

(2)
n−1)

2) +
n − 2
n − 1

(EYule((C
(2)
n−1)

2) −Tn−1) +Tn

=
n

n − 1
EYule((C

(2)
n−1)

2) +Tn −
n − 2
n − 1

Tn−1.

We divide this equation by n and set Yn = EYule((C
(2)
n )

2)/n. We thus obtain the
relation

Yn = Yn−1 +
1
n

(
Tn −

n − 2
n − 1

Tn−1

)
. (3.10)

Our next goal is to compute the independent term of this equation as an explicit
expression in n. In order to achieve that goal, we need first to compute all three sums
that form Tn. First,

1
n − 1

n−1∑
k=1

(n − 2k)4 =
1
15

n(n − 2)(3n2 − 6n − 4). (3.11)
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As for the second sum,

4
n − 1

n−1∑
k=1

(n − 2k)2k(k + 1 − 2Hk)

=
4

n − 1

( n−1∑
k=1

(n − 2k)2k(k + 1) − 2(n − 2)2
n−1∑
k=1

kHk

+ 16(n − 3)
n−1∑
k=1

(
k
2

)
Hk − 48

n−1∑
k=1

(
k
3

)
Hk

)
=

4
n − 1

(
1
15
(n − 1)n(n + 1)(2n2 − 5n + 2) − 2(n − 2)2

(
n
2

) (
Hn −

1
2

)
+ 16(n − 3)

(
n
3

) (
Hn −

1
3

)
− 48

(
n
4

) (
Hn −

1
4

))
=

2
45

n(n − 2)(12n2 + 16n + 9) −
4
3
n2(n − 2)Hn (3.12)

using, in the second last equality above, that

n−1∑
k=1

(
k
m

)
Hk =

(
n

m + 1

) (
Hn −

1
m + 1

)
; (3.13)

see Equation (6.70) in [51].
Finally,

2
n − 1

n−1∑
k=1

k(n − k)(k + 1 − 2Hk)(n − k + 1 − 2Hn−k)

=
2

n − 1

[ n−1∑
k=1

k(n − k)(k + 1)(n − k + 1) − 2
n−1∑
k=1

k(n − k)(n − k + 1)Hk

− 2
n−1∑
k=1

k(n − k)(k + 1)Hn−k + 4
n−1∑
k=1

k(n − k)HkHn−k

]
=

2
n − 1

[ n−1∑
k=1

k(k + 1)(n − k)(n − k + 1) − 4
n−1∑
k=1

k(n − k)(n − k + 1)Hk

+ 4n
n−1∑
k=1

kHkHn−k − 4
n−1∑
k=1

k2HkHn−k

]
=

2
n − 1

[ n−1∑
k=1

k(k + 1)(n − k)(n − k + 1) − 4
n−1∑
k=1

(
6
(
k
3

)
− 4(n − 1)

(
k
2

)
+ n(n − 1)k

)
Hk

+ 4n
n−1∑
k=1

kHkHn−k − 4
n−1∑
k=1

k2HkHn−k

]
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=
2

n − 1

[
4
(
n + 3
5

)
− 24

(
n
4

) (
Hn −

1
4

)
+ 16(n − 1)

(
n
3

) (
Hn −

1
3

)
− 4n(n − 1)

(
n
2

) (
Hn −

1
2

)
+ 4n

(
n + 1
2

) (
H 2

n+1 − H (2)n+1 − 2Hn+1 + 2
)

−
4
3

(
n + 1
2

) (
(2n + 1)(H 2

n+1 − H (2)n+1) −
13n + 5

3
Hn+1 +

71n + 37
18

)]
=

1
270

n(18n3 + 303n2 + 1163n + 98) −
2
9
n(n + 1)(3n + 16)Hn

+
4
3
n(n + 1)(H 2

n+1 − H (2)n+1) (3.14)

using, in the second last equality above, Equation (3.13) and the identities
n−1∑
k=1

kHkHn−k =

(
n + 1
2

) (
H 2

n+1 − H (2)n+1 − 2Hn+1 + 2
)

n−1∑
k=1

k2HkHn−k =
n(n + 1)

6

(
(2n + 1)(H 2

n+1 − H (2)n+1) −
13n + 5

3
Hn+1 +

71n + 37
18

)
proved in [125].

Therefore,

Tn =
1
15

n(n − 2)(3n2 − 6n − 4) +
2
45

n(n − 2)(12n2 + 16n + 9) −
4
3
n2(n − 2)Hn

+
1
270

n(18n3 + 303n2 + 1163n + 98) −
2
9
n(n + 1)(3n + 16)Hn

+
4
3
n(n + 1)(H 2

n+1 − H (2)n+1)

=
1
270

n(216n3 − 9n2 + 1031n + 26) −
2
9
n(9n2 + 7n + 16)Hn

+
4
3
n(n + 1)(H 2

n+1 − H (2)n+1)

and, so, the independent term in Equation (3.10) is

1
n

(
Tn −

n − 2
n − 1

Tn−1

)
=

1
n

[
1
270

n(216n3 − 9n2 + 1031n + 26) −
2
9
n(9n2 + 7n + 16)Hn

+
4
3
n(n + 1)(H 2

n+1 − H (2)n+1)

−
n − 2
n − 1

(
1
270
(n − 1)(216(n − 1)3 − 9(n − 1)2 + 1031(n − 1) + 26)

−
2
9
(n − 1)(9(n − 1)2 + 7(n − 1) + 16)Hn−1

+
4
3
(n − 1)n(H 2

n − H (2)n )

)]
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=
1
n

[
1
270

n(216n3 − 9n2 + 1031n + 26)

−
2
9
n(9n2 + 7n + 16)Hn−1 −

2
9
(9n2 + 7n + 16)

+
4
3
n(n + 1)(H 2

n − H (2)n ) +
8
3
nHn−1 +

8
3

−
1
270
(n − 2)(216n3 − 657n2 + 1697n − 1230)

+
2
9
(n − 2)(9n2 − 11n + 18)Hn−1

−
4
3
(n − 2)n(H 2

n − H (2)n )

]
=

1
n

(1
3
(12n3 − 28n2 + 47n − 30) − 8(n2 − n + 1)Hn−1

+ 4n(H 2
n − H (2)n )

)
= 4n2 −

28
3
n +

47
3
−
10
n
− 8(n − 1)Hn−1 −

8Hn−1

n
+ 4H 2

n − 4H
(2)
n

The solution to Equation (3.10) with initial condition Y1 = EYule(C
(2)
1 ) = 0 is

Yn =

n∑
k=2

1
k

(
Tk −

k − 2
k − 1

Tk−1

)
=

n∑
k=2

(
4k2 −

28
3
k +

47
3
−
10
k
− 8(k − 1)Hk−1 −

8Hk−1
k
+ 4H 2

k − 4H
(2)
k

)
=

n−1∑
k=1

(
4(k + 1)2 −

28
3
(k + 1) +

47
3
−

10
k + 1

− 8kHk −
8Hk
k + 1

+ 4H 2
k+1 − 4H

(2)
k+1

)
(∗)
=

1
3
(4n3 − 8n2 + 35n − 31) − 10(Hn − 1) − 8

(
n
2

) (
Hn −

1
2

)
− 4(H 2

n − H (2)n )

+ 4
(
(n + 1)H 2

n − (2n + 1)Hn + 2n − 1
)
− 4

(
(n + 1)H (2)n − Hn − 1

)
=

1
3
(4n3 − 2n2 + 53n − 1) − 2(2n2 + 2n + 5)Hn + 4n(H 2

n − H (2)n )

where, in the second last identity (marked with (∗)) we have used Equation (3.13) and
the identities

n−1∑
k=1

Hk
k + 1

=
1
2
(H 2

n − H (2)n )

(cf. Equation (6.71) in [51]) and

n−1∑
k=1

H 2
k = nH 2

n − (2n + 1)Hn + 2n

n−1∑
k=1

H (2)k = nH (2)n − Hn
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(see [70, §1.2.7]).
Thus,

EYule((C
(2)
n )

2) = nYn

=
n
3
(4n3 − 2n2 + 53n − 1) − 2n(2n2 + 2n + 5)Hn + 4n2(H 2

n − H (2)n )

and

σ2
Yule(C

(2)
n ) = EYule((C

(2)
n )

2) − EYule(C
(2)
n )

2

=
1
3
n
(
n3 − 8n2 + 50n − 1 − 30Hn − 12nH (2)n

)
as we claimed. �

Let us determine the asymptotic behaviour of EYule(C
(2)
n ) and σYule(C

(2)
n ). Using

(see, for instance, [51]) that

Hn ∼ ln(n), H (2)n ∼
π2

6
,

Theorem 3.7 implies that

EYule(C
(2)
n ) ∼ n2, σYule(C

(2)
n ) ∼

1
√
3
n2.

So, again under the Yule model, the expected value and the standard deviation of C (2)n
grow with n in the same, quadratic, order. This is in contrast with the Colless index,
for which the expected value grows faster than the standard deviation (see [8, 13]):

EYule(Cn) ∼ n log(n), σYule(Cn) ∼

√
18 − 6 log(2) − π2

6
n.

3.3 Numerical results

Due to the fact that the range of values that the Quadratic Colless index can attain on
BinTreen, for a fixed number of leaves n ≥ 1, is an order of magnitude bigger than that
of the Colless index and the Sackin index, and it is also slightly bigger than that of the
Cophenetic index (see Table 3.1), the question of whether the probability of two trees
with the same number of leaves having the exact same C (2) value is smaller than this
probability under those other indices reveals itself as pertinent. Indeed, our intuition
tells us that this should be, indeed, the case. In order to simplify the language, we shall
say that whenever a balance index I takes the same value on a pair of different trees
of BinTreen (or Treen, for that matter) we have a tie. Of course, for n ≥ 12, ties are
inevitable: from that number on, the range of possible values of C (2) is much narrower
than the number of trees inBinTreen (see [38, Table 3.3] for the cardinality ofBinTreen
for small values of n), and so the pigeonhole principle implies that ties will always take
place.

In order to check this hypothesis, we have computed the probability of a balance
index I ∈ {C , S,Φ,C (2),QI} having a tie in BinTreen, whereQI stands for theQuartet
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index defined in Chapter 5. We have opted to call this probability pn(I ). Concretely,
we have defined pn(I ) as the number of unordered pairs of trees {T1,T2}, with T1,T2 ∈

BinTreen, such that T1 , T2 and I (T1) = I (T2), divided by
(
|BinTreen |

2
)
. As it can be

seen in Figure 3.1, theQuadratic Colless index has less ties than the Colless, Sackin and
Cophenetic indices, although the Quartet index (to which we devote the integrity of
Chapter 5) shows a better performance towards n = 16 and beyond, as it also should
be expected because, as we shall see, the width of its range of values is inO(n4).
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Figure 3.1: Plot of pn(I ) for I ∈ {C , S,Φ,C (2),QI} and n ∈ {1, . . . , 20}.

Another way to assess the discriminating skill of an index is to evaluate its power in
statistical tests designed to distinguish between dissimilar trees, and compare it with that
of other balance measures. In [59], Hayati, Shadgar and Chindelevitch have developed a
new resolution function based on the Laplacian matrix of the tree that seeks to evaluate
the power of tree shape statistics discriminating between dissimilar trees. They test this
resolution function together with the usual function based on the NNI metric. Thus,
they are able to rank some balance indices by their discriminative power on all possible
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n C S V I2 B1 B2 Saless C (2)
5 1 1 1 1 1 1 1 1

6 0.8157 0.8510 0.8144 0.7611 0.7546 0.8705 0.8315 0.8709
7 0.9251 0.9303 0.9023 0.8844 0.8649 0.9254 0.9297 0.9360
8 0.9255 0.9122 0.8753 0.8612 0.8326 0.9113 0.9235 0.9218
9 0.9184 0.9208 0.8826 0.8539 0.8324 0.907 0.9224 0.9302
10 0.941 0.9380 0.8985 0.8545 0.8326 0.9085 0.9426 0.9475
11 0.9531 0.9514 0.9102 0.8552 0.8375 0.9132 0.9551 0.9604
12 0.9533 0.9523 0.9086 0.8504 0.8311 0.9045 0.9556 0.9632
13 0.9541 0.9542 0.9078 0.8416 0.8247 0.8992 0.9567 0.9657
14 0.9552 0.9548 0.9070 0.8374 0.82 0.8902 0.9575 0.967
15 0.9546 0.9544 0.9049 0.8298 0.813 0.8826 0.9569 0.9674
16 0.9543 0.9541 0.9034 0.8265 0.8089 0.8743 0.9564 0.9677
17 0.9534 0.9534 0.9006 0.8199 0.8024 0.8678 0.9555 0.9679

Table 3.2: Scaled resolution scores for shape indices on the NNI distance matrix, for
different numbers n of leaves. The value of the resolution is between 0 and 1. Higher
values represent more discriminating power.

phylogenetic trees on the same number of leaves.
We have performed the exact same experiment on the exact same data (provided,

as well as the code, along with [59]; we want to thank the authors for their readiness
to help us understand their code). As it turns out, C (2) performs better than any of
the other tested indices do, including the Saless index, an ad hoc linear combination of
the Sackin and Colless indices introduced in the same paper [59]. This Saless index was
the best performing one when tested under the NNI metric, although not so under
the resolution function proposed in [59]: under this one the Colless index performed
better. Here, we present the two tables we have obtained in our experiment: Table
3.2, with the scores under the NNI distance (bigger values represent more power), and
Table 3.3 under the Hayati-Shadgar-Chindelevitch resolution function (lower values
represent more power). As we see in the first table, C (2) performs best except when
n = 8, in which it is outperformed by the Saless index. On the other hand, in the
second table C (2) performs second until n = 14 behind the Sackin (n = 7) and Colless
indices (n ∈ {8, . . . , 13}).

3.4 Discussion

Despite being one of the oldest and most popular balance indices in the phylogenetic
literature (it dates back to 1982 and its number of cites in Google Scholar doubles that
of the second most cited balance measure, the Sackin index1), the Colless index has a
number of relevant drawbacks. For instance, as we saw in the previous chapter, the
characterization of the trees that achieve its minimum value is far from intuitive, and it
clashes with the idea that only “the most balanced” trees, i.e. the maximally balanced
trees [107], should attain it. Notice that several balance indices existing in the literature

1260 vs 131 citations; data retrieved on June 20, 2020.
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n C S V I2 B1 B2 C (2)
7 0.0984 0.0937 0.1082 0.1115 0.1178 0.0989 0.0948
8 0.0808 0.0955 0.111 0.0893 0.1164 0.0965 0.0941
9 0.0507 0.0566 0.0662 0.068 0.0797 0.0653 0.0558
10 0.0327 0.0379 0.0471 0.0535 0.0629 0.0451 0.0357
11 0.0222 0.0255 0.0326 0.0458 0.0511 0.0348 0.0236
12 0.0183 0.0217 0.0282 0.0429 0.0473 0.0304 0.0194
13 0.016 0.0185 0.0238 0.0413 0.0441 0.0283 0.0163
14 0.0147 0.0170 0.0217 0.04 0.0421 0.0265 0.0147
15 0.0137 0.0157 0.0197 0.039 0.0404 0.0256 0.0134
16 0.013 0.0148 0.0184 0.038 0.0389 0.0247 0.0126
17 0.0123 0.014 0.017 0.037 0.0375 0.0238 0.0118
18 0.0117 0.0132 0.016 0.0358 0.0361 0.0229 0.0111
19 0.0112 0.0127 0.015 0.0347 0.0349 0.0222 0.0105
20 0.0107 0.012 0.0141 0.0339 0.0338 0.0217 0.01
21 0.0102 0.0114 0.0133 0.0329 0.0327 0.0209 0.01

Table 3.3: Scaled resolution scores for shape indices on the resolution function pre-
sented in [59] for different numbers n of leaves. The value of the resolution is between
0 and 1. Lower values represent more discriminating power.

do agree with this condition, such as the Cophenetic index [85] and ourQuartet index
(Chapter 5). Furthermore, closed formulæ for its expected value and variance under
the Uniform model are not yet known.

In this chapter, we have presented an alternative way to capture the intuition behind
the Colless index that turns out to avoid the aforementioned disadvantages, by squaring
the balance values of the internal nodes, instead of taking their absolute value, in the
definition of the index. In the first section, we have shown that, given a number of leaves
n ∈ N≥1, the maximum and minimum values of thisQuadratic Colless index, C (2), are
reached by a single tree each. We have computed these values —showing, in particular,
that the minimum value of C (2) is equal to that of the Colless index— and proved that
the trees attaining them are exactly the caterpillar and the maximally balanced tree. By
computing these values, we have established that the range of the Quadratic Colless
index is O(n3), which is an order of magnitude bigger than that of the Colless index
and on pair with that of the Cophenetic index (see Table 3.1).

We have then proceeded to compute both the expected value and the variance of
the random variableC (2)n under the Uniform and the Yule model in the second section.
To our knowledge, they are both still unknown in the case of the Colless index under
the Uniform model. Hence, we are confident that in this regard the Quadratic Colless
index also presents an advantage over the original Colless index.

Finally, in the third section of this chapter, we have presented the results of some
numerical experiments aimed to assess the discriminatory power of this new measure.
This has been done by, firstly, computing the probability of a tie up to 20 leaves and
seeing that C (2) fares way better than the Cophenetic, Colless or Sackin indices do,
although slightly worse than theQuartet index does for large values of n. Secondly, we
have tested under themetrics proposed in [59] the power of theQuadratic Colless index
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when it comes to discriminate between similar or dissimilar trees. Under both metrics
proposed in [59], C (2) has sistematically been one of the best performing measures,
being often superior to both the Sackin and Colless indices.

3.4.1 Colless to the 2m?

Now, Theorem 3.2 can be easily stated and proved if we considerC (2m) for somem ≥ 1.
This fact gives rise to the question of whether Theorem 3.3 can also be so converted.
Indeed, for then we could define a balance index as, for a given bifurcating tree T ∈
BinTreen, n ∈ N≥1,

C (2m)(T ) =
∑

u∈V̊ (T )

bal(u)2m .

Such an index would have an obvious recurrent representation, given, for any bifurcat-
ing tree T = T1 ∗T2, with T1 ∈ BinTreen1 and T2 ∈ BinTreen2 , by

C (2m)(T1 ∗T2) = C (2m)(T1) +C (2m)(T2) + (n1 − n2)
2m .

In this final section we shall prove that the maximum value of such an index is attained
exactly by the caterpillar. Therefore, its minimum and maximum values are c(n) and∑n−2

i=1 i2m for any number of leaves n ∈ N≥1. This means that the range of values
that such an index can attain is O(n2m+1), by the Faulhaber’s formula. However, the
computation of the moments of C (2m)n becomes more and more complex.

Theorem 3.10. The maximum of C (2m) is reached exactly at the caterpillars. Furthermore,
this maximum value for n ≥ 1 leaves is

C (2m)(T cat
n ) =

n−2∑
i=1

i2m =
(n − 2)2m+1

2m + 1
+
1
2
(n − 2)2m

Bk
k!
(2m)k−1(n − 2)2m−l+1,

where Bk is the k-th Bernoulli number and (2m)k−1 is a Pochhammer symbol.

Proof. The value of C (2m)(T cat
n ) is easily computed using the recursive formula; the

second equality is Faulhaber’s polynomial. In order to prove that this value is attained
only by the caterpillars, we shall proceed by induction. The result obviously holds
when n = 1, and so suppose it holds up to n − 1 leaves.

Let T1 ∗ T2 ∈ BinTreen be such that T1 ∈ BinTreen1 and T2 ∈ BinTreen2 . We then
have that

C (2m)(T1 ∗T2) = C (2m)(T1) +C (2m)(T2) + (n1 − n2)
2m

≤ C (2m)(T cat
n1 ) +C

(2m)(T cat
n2 ) + (n1 − n2)

2m = (∗)

and the inequality is an equality if, and only if,T1 = T cat
n1 andT2 = T cat

n2 , by the induction
hypothesis. Now, on the one hand,

C (2m)(T cat
n1 ) +C

(2m)(T cat
n2 ) =

n1−2∑
i=1

i2m +
n2−2∑
i=1

i2m

≤

n1+n2−3∑
i=1

i2m =
n−3∑
i=1

i2m = C (2m)(T cat
n−1) +C

(2m)(T cat
1 )
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and, on the other hand, (n1 − n2)
2m ≤ (n − 2)2m , for every n1, n2 ∈ N≥1 such that

n1 + n2 = n. Notice moreover that the equality in both expressions is attained if, and
only if, n1 = n − 1 and n2 = 1. Therefore

(∗) ≤ C (2m)(T cat
n−1) +C

(2m)(T cat
1 ) + (n − 2)

2m = C (2m)(T cat
n )

and the equality C (2m)(T1 ∗T2) = C (2m)(T cat
n ) holds only when T1 = T cat

n1 and T2 = T cat
n2

and n1 = n − 1, that is, when T1 ∗T2 = T cat
n . �

Finally, we end by noting that this last argument could have also proved Theorem
3.3.
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The Variance of depths

The symmetrical phenogram looks
"better" than the skew one because
(1) fewer taxonomic rank categories

need be postulated and (2) the
cluster sizes at any category level
are more constant. In terms of b
[the vector of depths], (1) states

that the highest b-value is lower for
the symmetrical than for the skew

phenogram, and (2) may
conveniently be translated into the
statement that the variation among

the b-values is lower for the
symmetrical phenogram.

M. J. Sackin, “Good” and “bad”
phenograms [102], 1972

In his 1972 paper on“Good” and “bad” phenograms, Sackin pointed out that more bal-
anced trees tend to have lower (maximum) depth and smaller variation of the leaves’

depths. In order to illustrate this observation, he compared the multisets of depths of
the fully balanced tree and the caterpillar with 8 leaves. Indeed, since the maximum
depth of T bal

8 is the least possible one for a tree with 8 leaves, 3, while that of T cat
8 is

the largest possible one for a tree with 8 leaves, 7, he backed his first point; and by ob-
serving that all the leaves’ depths in T bal

8 are equal —for all leaves have depth 3— while
all the leaves’ depths in T bal

8 , except for the compulsory pair of larger values, are dif-
ferent, he found support for the second. In fact, as we shall prove in Theorem 4.4, the
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caterpillar with n leaves is always the only tree with the largest variance of the leaves’
depths among its peers.

Nevertheless, as we have already seen in this memoir, the index that has later be-
come known as the Sackin index S is not the maximum depth of a tree nor any measure
of the variation of its leaves’ depths, but their sum. This index was actually later intro-
duced by Sokal in [112], and baptized by Shao and Sokal in [107]. Clearly, the maxi-
mum depth is a very coarse index, since the range of values it can attain for a tree with
n leaves goes from 1 to only n−1, and thus it is easy to understand why it did not crys-
talize as a balance index. However, Sackin’s second proposal, to use a measure of the
variation of the leaves’ depths, seems to be a fairly reasonable idea. It was implemented
by Kirkpatrick and Slatkin in [69] as the variance of the leaves’ depths, which we shall
henceforth call the Variance of depths, V , and empirically shown to have power similar
and sometimes even higher than that of S in some statistical tests whose alternative
hypothesis represented “this tree is not random”. Yet, although the Variance of depths
was used as a shape index in a few early studies [1, 60, 65, 69] and was even collected by
Felsenstein in the section “Measures of overall asymmetry” of his textbook [38], it has
now been neglected in favour of other indices such as Colless’ or Sackin’s, and it seems
to survive only in a few studies, for instance in [59].

Now, let us define the Variance of depths of a tree T ∈ Treen as

V (T ) =
1
n

∑
x∈L(T )

(δ(x) − S(T ))2,

where S denotes the mean depth of T (see page 17). One can easily see that

V (T ) =
1
n
S (2)(T ) − S(T )2 =

1
n
S (2)(T ) −

1
n2 S(T )

2, (4.1)

where
S (2)(T ) =

∑
x∈L(T )

δ(x)2.

The main question that is pursued in this chapter is to study the properties of the
Variance of depths as a balance index. As we have already discussed, one of the most
important properties that such a measure can present is in regard to its extreme values
and the trees that attain them. With respect to the maximum value, we have already
advanced that the least balanced tree according to it is exactly the caterpillar—just as it
is the case in any other balance index worthy of its name. As it was the case with the
Sackin index, two trees T1,T2 ∈ Treen for some n ∈ N≥1 such that ∆(T1) = ∆(T2) share
the same Variance of depths, and thence the minimum might not be unique. And this
is indeed the case: for instance, when taking into account multifurcating trees, any tree
all of whose leaves have the same depth (i.e., any taxonomic tree) has Variance of depths
0. Since the variance is always positive or zero, this is indeed its minimum value.

So far so good, but the problem arises now: when the search of the minimum value
of this index among bifurcating trees is attempted, the intuition tells us that it should be
reached at the maximally balanced trees, as well as at those depth-equivalent to them.
And Theorem 1.19 only reinforces this intuition: indeed, for the maximally balanced
trees, and those depth-equivalent to them, are the only trees whose leaves’ depths are
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at distance at most 1. We are naturally inclined to believe that this property minimizes
their variance. But, as it turns out, in general, it does not.

This educated guess holds for n up to 183, but not beyond that number. At n = 184
there is at least one tree, presented in Figure 4.1, that, having 174 leaves at depth 8, nine
at depth 7 and one leaf at depth 2, presents a Variance of depths of 0.2379 versus that
of the maximally balanced tree with that same number of leaves, 0.2382. In the first
part of this chapter, we study the characterization of the bifurcating trees that attain the
maximum Variance of depths. And while we fail to give a complete characterization,
we end up presenting quite interesting problems and regularities.

Finally, in the second part we are going to provide closed formulæ for the expected
value ofV under two models for bifurcating phylogenetic trees: the Uniform and Yule
models. Furthermore, closed expressions for the variance, under the Uniform model,
of the Sackin andCophenetic indices will be given, as well as their covariance—whereas,
so far, only recursive formulæ for them [100, §2.5–2.7] and the asymptotic behaviour of
the variance of the Sackin index [8] were known. We shall use this to find the variance
of the distance between two leaves in BinTreen under the Uniform model. Our actual
contribution is the solution of the aforementioned recursive equations obtained by L.
Rotger in her PhD Thesis [100], but, to ease the task of the reader, we also include
derivations of those recursive equations based on the tools developed in this memoir
(mainly, Lemmata 1.33, 1.34, and 4.25).

This chapter is organized as follows. In the first section, we shall study and find
the maximum Variance of depth displayed by any tree with n leaves, as well as the
(only) tree that actually achieves it. The second section will be devoted to the quest
for the minimum value: we shall, first, find a necessary condition for a tree to attain
it, and then show that, contrary to our intuition, almost no number of leaves is such
that the maximally balanced tree with that number of leaves minimizes the Variance
of depths. However, no characterisation of this minimum value is given, leaving it
as an open problem. Then, in the third section, we proceed to the computation of
the expected value of V under the Yule and Uniform model. After that, we dedicate
one section to the computation of both the variance and covariance of the Sackin and
Cophenetic indices under the Uniform model, in order to include some results proven
as a by-product of the techniques introduced in the Preliminaries. We will end with
a discussion where we shall present a number of some interesting open problems that
have eluded the best of our efforts.

4.1 The maximum Variance of depths

We begin by showing that, as it was expected, the maximum Variance of depths is
attained exactly at the caterpillars: they are the trees that present the widest range of
depths and have leaves whose depth attain each value in that range only once, except
for the cherry at the bottom.

We have already pointed out in Section 1.2.2 that the caterpillars are exactly the
trees with maximum Sackin index and that value is S(T cat

n ) =
(n−1)(n+2)

2 . We can easily
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T T bal
184

Figure 4.1: The leaves’ depths of the left-hand side tree T ∈ BinTree184 have smaller
variance than those of the right-hand side maximally balanced tree T bal

184 .
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4.1. The maximum Variance of depths

see that, for any n ∈ N≥1,

V (T cat
n ) =

1
n
S (2)(T cat

n ) −
1
n2 S(T

cat
n )

2

=
1
n

(n−1∑
i=1

i2 + (n − 1)2
)
−

1
n2

(
(n − 1)(n + 2)

2

)2
=
(n − 1)(2n2 + 5n − 6)

6n
−
(n − 1)2(n + 2)2

4n2

=
(n − 1)(n − 2)(n2 + 3n − 6)

12n2 .

In order to prove that this is indeed the maximum value the Variance of depths can
attain, and that it is reached exactly by the caterpillars, we need first to prove a series
of lemmata describing the behaviour of V (T ) when we remove a deepest leaf from T .

Given a tree T ∈ Treen, we shall henceforth denote by x1, . . . xn its leaves ordered
in non-decreasing order of depth; i.e., such that δ(x i) ≤ δ(x i+1) for i ∈ {1, . . . , n − 1};
we set di = δ(x i). Since there is always at least one k-fan at maximum depth, for some
k ∈ N≥2, it is always true that dn−1 = dn, and hence we shall always assume, without
loss of generality, that xn−1 and xn are siblings.

Lemma 4.1. Let T ∈ Treen be a tree with two leaves of maximum depth forming a cherry.
Let T ′ ∈ Treen−1 be the tree obtained by removing both leaves in this cherry, so that the
root of the cherry becomes a leaf. Then,

n ·V (T ′) = n ·V (T ) −
n

n − 1
(δ(T ) − S(T ) + 1)2 + 2.

Proof. In this proof, we shall denote δ(T ) by δ, and we shall suppose, without loss of
generality, that xn−1 and xn are not only sibling, but form the cherry at the bottom.
Let T ′ be the tree described in the statement of the lemma; we shall still call this new
leaf xn−1; cf. Fig. 4.2. Thus,

∆(T ′) = {d1, . . . , dn−2, dn−1 − 1}.

...
xn−1 xn

T

... xn−1

T ′

Figure 4.2: A treeT with a cherry at the bottom and the treeT ′ obtained by removing
this cherry.

Then,

S(T ′) =
∑n−1

i=1 di − 1
n − 1

=
nS(T ) − δ − 1

n − 1
= S(T ) −

δ − S(T ) + 1
n − 1

.
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Thus,

n ·V (T ′) =
n−2∑
i=1
(di − S(T ′))2 + (dn−1 − 1 − S(T ′))2

=

n−2∑
i=1
(di − S(T ′))2 + (dn−1 − S(T ′))2 − 2(dn−1 − S(T ′)) + 1

=

n∑
i=1
(di − S(T ′))2 − 2(dn−1 − S(T ′)) + 1 − (dn − S(T ′))2

(porque de “dame un gato” a “toma un gato” van dos gatos)

=

n∑
i=1
(di − S(T ′))2 − 2(δ − S(T ′)) + 1 − (δ − S(T ′))2

(since dn−1 = dn = δ)

=

n∑
i=1
(di − S(T ′))2 − (δ − S(T ′) + 1)2 + 2

=

n∑
i=1

(
di − S(T ) +

δ − S(T ) + 1
n − 1

)2
−

(
δ − S(T ) +

δ − S(T ) + 1
n − 1

+ 1

)2
+ 2

=

n∑
i=1
(di − S(T ))2 + 2

(
δ − S(T ) + 1

n − 1

) n∑
i=1
(di − S(T ))

+ n

(
δ − S(T ) + 1

n − 1

)2
−

(
n(δ − S(T ) + 1)

n − 1

)2
+ 2

= n ·V (T ) −
n

n − 1
(δ − S(T ) + 1)2 + 2,

because
∑n

i=1(di − S(T )) = 0. �

Lemma 4.2. Let T ∈ Treen be a tree with k leaves, k ≥ 3, forming a k-fan at the bottom.
Let T ′ ∈ Treen−1 be the tree obtained by removing one leaf from this k-fan. Then,

n ·V (T ′) = n ·V (T ) −
n

n − 1
(δ(T ) − S(T ))2.

Proof. Again, we shall denote δ(T ) by δ. Suppose that (xn−k+1, . . . , xn−1, xn) ∈ L(T )k
are the leaves forming the k-fan at the bottom; since all of them have depth δ, and since
k ≥ 3, then the removal of, say, xn, does not alter the depth of the other leaves, and
therefore

∆(T ′) = {d1, . . . , dn−2, dn−1}.

Hence,

S(T ′) =
∑n

i=1 di − dn
n − 1

=
nS(T ) − δ

n − 1
= S(T ) −

δ − S(T )
n − 1

.
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Computing n ·V (T ′) in terms of n ·V (T ), as we did in the proof of the previous lemma,
we get

n ·V (T ′) =
n−1∑
i=1
(di − S(T ′))2 =

n∑
i=1
(di − S(T ′))2 − (dn − S(T ′))2

=

n∑
i=1

(
di − S(T ) +

δ − S(T )
n − 1

)2
−

(
δ − S(T ) +

δ − S(T )
n − 1

)2
=

n∑
i=1
(di − S(T ))2 + 2

(
δ − S(T )
n − 1

) n∑
i=1
(di − S(T )) + n

(
δ − S(T )
n − 1

)2
−

(
n(δ − S(T ))

n − 1

)2
= n ·V (T ) −

n
n − 1

(δ − S(T ))2.

�

Lemma 4.3. Let T ∈ Treen be a tree with two leaves of maximum depth forming a cherry.
Then,

δ(T ) − S(T ) ≤
(n − 1)(n − 2)

2n
,

and the equality holds if, and only if, T = T cat
n .

Proof. The fact that the equality holds when T = T cat
n is already known to us, since we

have already computed S(T cat
n ) and we know δ(T cat

n ) and then it is simply a matter of
doing the computations. Now, we need to see that, for any T ∈ Treen \ {T cat

n } with
two leaves of maximum depth forming a cherry,

δ(T ) − S(T ) <
(n − 1)(n − 2)

2n
.

We proceed by induction on n. The cases when n ∈ {1, 2} are obvious, since |Tree1 | =
|Tree2 | = 1, and for n = 3 there are only two trees, the caterpillar and the star, and
δ(T star

n ) − S(T star
n ) is always 0. Let us assume now that n ≥ 4 and the result holds up to

n − 1 leaves. In order to ease the notations, we shall set

Ψ(T ) = δ(T ) − S(T ) + 1.

LetT be such a tree, and assume that leaves xn−1 and xn form a cherry of maximum
depth. LetT ′ ∈ Treen−1 be the tree obtained by removing both leaves in this cherry and
replacing them by their parent, which, again, we shall call xn−1. Then, either xn−1, xn
were the only leaves at depth δ(T ), and then δ(T ′) = δ(T ) − 1, or they were not, and
then δ(T ′) = δ(T ). On the other hand, in the proof of Lemma 4.1, we have proved
that

δ(T ) − S(T ′) + 1 = δ(T ) − S(T ) +
δ(T ) − S(T ) + 1

n − 1
+ 1 =

n
n − 1

Ψ(T ).
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Hence,

Ψ(T ) =
n − 1
n
(δ(T ) − S(T ′) + 1)

≤
n − 1
n
(δ(T ′) + 1 − S(T ′) + 1) =

n − 1
n
(Ψ(T ′) + 1),

and the equality holds only when xn−1, xn are the only leaves at depth δ(T ). Now, two
cases arise:

(a) If T ′ contains a cherry at maximum depth, we lie under the induction hypothesis, and
hence we obtain that

Ψ(T ′) = δ(T ′) − S(T ) + 1 ≤
(n − 2)(n − 3)

2(n − 1)
+ 1,

with equality if, and only if, T ′ = T cat
n−1. Then,

δ(T ) − S(T ) = Ψ(T ) − 1 ≤
n − 1
n
(Ψ(T ′) + 1) − 1

≤
n − 1
n

(
(n − 2)(n − 3)

2(n − 1)
+ 2

)
− 1 =

(n − 1)(n − 2)
2n

.

Notice that the equality is reached if, and only if, T ′ = T cat
n−1 and xn−1, xn are the only

leaves at depth δ(T ). Therefore, since T is obtained by adding a cherry to a leaf of
depth δ(T ′) in T ′, in this case we would have that T = T cat

n .

. . .
xn−k xn−3 xn−2 xn−1

y
T ′

. . . z
xn−k xn−3

xn−2 xn−1

y
T ′′

Figure 4.3: The trees T ′ and T ′′ in case (b) of the proof of Lemma 4.3.

(b) Now, assume that T ′ has no cherry at maximum depth, and hence that xn−1 is part of
a k-fan, with k ≥ 3. Let y ∈ V̊ (T ′) be the root of the k-fan. Suppose, without loss
of generality, that xn−2 is a sibling of xn−1, and let T ′′ ∈ Treen−1 be the tree obtained
by replacing the edges (y, xn−2) and (y, xn−1) by a new edge (y, z) to a new internal
node, z ∈ V̊ (T ′′), and let xn−2, xn−1 pend from z forming a cherry at maximum depth
δ(T ′′) = δ(T ′) + 1; see Fig. 4.3. Since both leaves increase their depth in one unit with
respect to T ′, and all other leaves in T ′ maintain their depths, S(T ′′) = S(T ′) + 2

n−1 .
Hence,

Ψ(T ′′) = δ(T ′′) − S(T ′′) + 1 = δ(T ′) + 1 − S(T ′) −
2

n − 1
+ 1

= Ψ(T ′) +
n − 3
n − 2

> Ψ(T ′),
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4.1. The maximum Variance of depths

as we are assuming that n ≥ 4. Then,

Ψ(T ) ≤
n − 1
n
(Ψ(T ′) + 1) <

n − 1
n
(Ψ(T ′′) + 1).

Now, notice that T ′′ has a cherry at maximum depth and n − 1 leaves, and so we can
apply to it our induction hypothesis:

δ(T ′′) − S(T ′′) ≤
(n − 2)(n − 3)

2(n − 1)
.

Hence, we can proceed as we did in the previouse case:

δ(T ) − S(T ) = Ψ(T ) − 1 <
n − 1
n
(Ψ(T ′′) + 1) − 1 ≤

n − 1
n

(
(n − 2)(n − 3)

2(n − 1)
+ 2

)
− 1

=
(n − 1)(n − 2)

2n
.

Note that in this case T can never be a caterpillar and that the inequality is strict.

Thus concludes the proof. �

Finally, thanks to these three lemmata, we are in a position to state and prove the
main theorem of this section.

Theorem 4.4. For any n ∈ N≥1, the maximum value of V on Treen is attained exactly at
the caterpillar T cat

n .

Proof. We shall prove the result for n ·V , which will trivially imply it for V . Hence,
we shall prove by induction on n, that for any T ∈ Treen, n ·V (T ) ≤ n ·V (T cat

n ), and
that the equality holds if, and only if, T = T cat

n .
The cases when n ∈ {1, 2} are obvious, since there is only one tree at each of them;

for n = 3 the result is also trivial, because there are only two trees: the caterpillar and
the star, and the latter has Variance of depths 0 while the former has not. Therefore,
suppose that n ≥ 4 and the result holds up to n − 1 leaves.

Let T ∈ Treen; we must distinguish two cases.

(a) Suppose thatT has a k-fan at the bottom, and suppose without loss of generality that it
is formed by the leaves xn−k+1, . . . , xn−1, xn, and let y be their parent. As we did in the
proof of Lemma 4.3, letT ′ ∈ Treen be the tree obtained by replacing the edges (y, xn−1)
and (y, xn) in T by a new edge (y, z) to a new internal node z ∈ V̊ (T ′), and then let
xn−1, xn be the cherry rooted at z . As we argued in the proof of the aforementioned
lemma, δ(T ′) = δ(T ) + 1 and S(T ′) = S(T ) + 2

n .
Now, considerT ′′ ∈ Treen−1 to be a tree obtained byT by removing leaf xn or, equiva-
lently, fromT ′ by removing the cherry at (xn−1, xn) and renaming z = xn−1. Therefore,
by Lemmata 4.1 and 4.2,

n ·V (T ′′) = n ·V (T ′) −
n

n − 1
(δ(T ′) − S(T ′) + 1)2 + 2

n ·V (T ′′) = n ·V (T ) −
n

n − 1
(δ(T ) − S(T ))2,
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. . .
xn−k+1 xn−2 xn−1 xn

y
T

. . . z
xn−k+1 xn−2

xn−1 xn

y
T ′

. . .
xn−k+1 xn−2 xn−1

y
T ′′

Figure 4.4: The trees T , T ′, and T ′′ in case (a) of the proof of Theorem 4.4.

and so

n ·V (T ) = n ·V (T ′) −
n

n − 1
(δ(T ′) − S(T ′) + 1)2 +

n
n − 1

(δ(T ) − S(T ))2 + 2

= n ·V (T ′) + 2 −
n

n − 1

(
δ(T ) − S(T ) −

2
n
+ 2

)2
+

n
n − 1

(δ(T ) − S(T ))2

= n ·V (T ′) + 2 − 4
(
δ(T ) − S(T ) +

n − 1
n

)
< n ·V (T ′),

where this last inequality holds because n ≥ 4 and δ(T ) ≥ S(T ). Therefore, if T
contains a k-fan at the bottom, with k ≥ 3, it does not present the maximum Variance
of depths, and thence we consider the next case.

(b) Suppose now thatT contains a cherry at the bottom and assume, without loss of gener-
ality, that it is formed by the leaves xn−1 and xn. Let T ′ ∈ Treen−1 be the tree obtained
by removing this cherry and naming its root xn−1. Then, by Lemma 4.1,

n ·V (T ) = n ·V (T ′) +
n

n − 1
(δ(T ) − S(T ) + 1)2 − 2

≤ n ·V (T ′) +
n

n − 1

(
(n − 1)(n − 2)

2n
+ 1

)2
− 2

(by Lemma 4.3; the equality holds exactly when T = T cat
n )

≤ n ·V (T cat
n−1) +

n
n − 1

(
(n − 1)(n − 2)

2n
+ 1

)2
− 2

(by the induction hypothesis; the equality holds exactly when T ′ = T cat
n−1)

= n ·V (T cat
n−1) +

n
n − 1

(
δ(T cat

n ) − S(T cat
n ) + 1

)2
− 2

= n ·V (T cat
n ),

again by Lemma 4.1. Now, both inequalities hold if, and only if, T = T cat
n ; therefore,

in any other case, T does not present the maximum Variance of depths. Which is what
we wanted to prove.

�

We end this section by reminding the reader that Theorem 4.4 is akin to our intu-
ition, since this is one of the properties that a balance measure is expected to satisfy.
Indeed, the unicity of the “least balanced tree” is satisfied by all the balance indices for
trees reviewed in this report, and provides a curious insight of the fact that, regardless
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of how the notion of “balance” is defined, we all agree in what we consider not to be
balanced.

4.2 The minimum Variance of depths

For any tree T ∈ Tree, V (T ) ≥ 0, and the equality holds if, and only if, all the leaves
in T have the exact same depth. This gives a clear and easy answer to the problem of
finding the minimum value of the Variance of depths in Treen and all the trees that
attain it: the minimum value is 0, and all trees presenting the same depth for every leaf
reach it—for example, the star. This, too, satisfies our natural understanding of balance:
stars are the trees with the most automorphisms, while caterpillars are those with the
least. However, notice that V achieves the value 0 not only at the stars: indeed, any
taxonomic tree would, too, present no variance of depths whatsoever. Thus, this index
is utterly useless in order to assess the balance of a taxonomic tree, just as its relative
the Sackin index was.

However, things get convoluted when the search for the minimum Variance of
depths in the domain of bifurcating trees is attempted. As we have already mentioned,
there were several reasons to expect this minimum to happen at the maximally bal-
anced trees. To begin with, such trees present the minimum value of the Colless [22],
the Sackin [39], the Cophenetic [85], and theQuartet (Chapter 5 in this thesis) indices.
Furthermore, themaximally balanced trees, and those depth-equivalent to them, are the
only family of trees whose leaves differ in at most one unity, thus presenting a fairly
small variation (cf. Theorem 1.19). And finally, the fact that, whenever the number of
leaves is a power of 2, the maximally balanced tree presents Variance of depths 0, also
contributed to support this idea.

In fact, this is seldom the case. This educated guess holds up to 183 leaves, but
not beyond that. For n = 184, there exists a tree, presented in Figure 4.1, with lower
Variance of depths than that of T bal

184 . In fact, in this chapter, we shall prove that, as n
tends to infinity, the fraction of values for which the minimum Variance of depths is
attained by a maximally balanced tree tends to zero.

4.2.1 A necessary condition

Now, let us define a family of trees that generalizes themaximally balanced trees. We say
that a bifurcating treeT ∈ BinTreen is of type T l

n, for some vector l = (l1, . . . , l j ) ∈ N
j
≥2,

with j ∈ N and 2 ≤ l1 < · · · < l j ≤ δ(T ) − 2, if it has exactly one leaf at depth
δ(T ) − li for every i ∈ {1, . . . , j}, and the rest of the leaves at depths δ(T ) − 1 and
δ(T ). There may be many trees of a given type T l

n, but by the next lemma all of them
have the same set of depths —thus, the same variance of depths. Thus, we will often
commit the abuse of language of writingV (T l

n) to meanV (T ) for some T of the form
T l
n. If l = ∅, i.e., j = 0, then the trees of type T ∅n are, by Theorem 1.19, T bal

n and the
trees depth-equivalent to it, that is, those trees achieving the minimum Sackin index in
BinTreen.

Given a tree T ∈ BinTreen, let us call p1(T ) and p0(T ) its number of leaves of
depths δ(T ) − 1 and δ(T ), respectively.
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Lemma 4.5. Let n = 2m + k ∈ N, with m =
⌊
log2(n)

⌋
. For every tree T ∈ BinTreen of

type T l
n , with l = (l1, . . . , l j ), we have:

(i) If k +
∑ j

i=1(2
li − 1) = 0, then p1(T ) = 0 and the tree is fully symmetric and δ(T ) = m.

(ii) If 0 < k +
∑ j

i=1(2
li − 1) ≤ 2m , then p1(T ) = 2m − k −

∑ j
i=1(2

li − 1) and δ(T ) = m + 1.

(iii) If k + 1
2
∑ j

i=1(2
li − 2) > 2m , then p1(T ) = 3 · 2m − k −

∑ j
i=1(2

li − 1) and δ(T ) = m + 2.

(iv) If k + 1
2
∑ j

i=1(2
li − 2) ≤ 2m < k +

∑ j
i=1(2

li − 1), then there does not exist any tree T of type
T l
n .

Proof. Let T ∈ BinTreen be of type T l
n, with l = (l1, . . . , l j ), and set δ = δ(T ) and

p1 = p1(T ).
Suppose that j = 0, and thence that T has only leaves of depth δ −1 and δ. If k = 0,

then n = 2m and hence the tree is fully symmetric, which proves (i). If k ≥ 1, then T is
depth-equivalent to a maximally balanced tree and hence the thesis of (ii) holds in this
case.

Suppose henceforth that j ≥ 1. Notice that, in order to “complete” T to a fully
symmetric tree with 2δ leaves, we must append a cherry to each leaf with depth δ − 1,
but also a fully symmetric tree of 2li leaves to any leaf of depth δ − li . This implies that

2δ = n + p1 +
j∑

i=1
(2li − 1), (4.2)

because we add one leaf in the first case and 2li − 1 leaves in the second. Since j ≥ 1 by
assumption, n < 2δ and so m ≤ δ − 1. On the other hand, as p1 < n < 2m+1,

2δ = n + p1 +
j∑

i=1
(2li − 1) < 2n +

δ−2∑
i=2
(2i − 1) < 2m+2 + 2δ−1, (4.3)

and hence 2δ−1 < 2m+2. All in all, this implies that δ ∈ {m + 1,m + 2}. Therefore, we
distinguish these two cases:

• Suppose that δ = m + 1. Then, by Equation (4.2),

p1 = 2m+1 − 2m − k −
j∑

i=1
(2li − 1) = 2m − k −

j∑
i=1
(2li − 1) ≥ 0.

Hence, in this case, k +
∑ j

i=1(2
l−1 − 1) ≤ 2m .

• Now suppose that δ = m + 2; in this case we have

p1 = 3 · 2m − k −
j∑

i=1
(2li − 1),

and since we know that T contains at least two leaves of depth δ and exactly j leaves of
depth smaller than δ − 1, p1 ≤ n − j − 2:

p1 = 3 · 2m − k −
j∑

i=1
(2li − 1) ≤ 2m + k − j − 2,
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or, equivalently,

2m+1 ≤ 2k +
j∑

i=1
(2li − 2) − 2,

which is to say that k + 1
2
∑ j

i=1(2
li − 2) > 2m .

This completes the proof of (ii) and (iii). Finally, since we have covered all possible
cases, k + 1

2
∑ j

i=1(2
li − 2) ≤ 2m < k +

∑ j
i=1(2

li − 1) can never be the case, which proves
(iv). �

Remark 4.6. Notice that if we allowed l j to be δ(T ) − 1, then Equation (4.3) could be

2δ = n + p1 +
j∑

i=1
(2li − 1) < 2n +

δ−1∑
i=1
(2i − 1) < 2m+2 + 2δ,

and no information would be gathered from it. In particular, notice that in this case the
caterpillar could also be considered a tree of type T l

n, but it does not satisfy the thesis
in the previous lemma since its depth is larger than m + 2 when n ≥ 6.

Lemma 4.7. If T is a tree of type T l
n , then

V (T ) =
1
n2

(
n
(
p1(T ) +

j∑
i=1

l 2i
)
−

(
p1(T ) +

j∑
i=1

li
)2)

.

Proof. Set δ = δ(T ), p0 = p0(T ), and p1 = p1(T ); since n = p0 + p1 + j ,

S(T ) =
p0δ + p1(δ − 1) +

∑ j
i=1(δ − li)

n
= δ −

p1 +
∑ j

i=1 li
n

.

Thus,

n ·V (T ) = p0(δ − S(T ))2 + p1(δ − 1 − S(T ))2 +
j∑

i=1
(δ − li − S(T ))2

= p0
©«
p1 +

∑ j
i=1 li

n
ª®¬
2

+ p1
©«
p1 +

∑ j
i=1 li

n
− 1ª®¬

2

+

j∑
i=1

©«
p1 +

∑ j
i=1 li

n
− li

ª®¬
2

= p0
©«
p1 +

∑ j
i=1 li

n
ª®¬
2

+ p1
©«
p1 +

∑ j
i=1 li

n
ª®¬
2

− 2p1
p1 +

∑ j
i=1 li

n
+ p1

+ j ©«
p1 +

∑ j
i=1 li

n
ª®¬
2

− 2
p1 +

∑ j
i=1 li

n

j∑
i=1

li +
j∑

i=1
l 2i

= n ©«
p1 +

∑ j
i=1 li

n
ª®¬
2

− 2
p1 +

∑ j
i=1 li

n
©«p1 +

j∑
i=1

li
ª®¬ + p1 +

j∑
i=1

l 2i

= p1 +
j∑

i=1
l 2i −
(p1 +

∑ j
i=1 li)

2

n
,

as we claimed. �
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Combining the last two lemmata, we obtain that, if n = 2m+k withm = blog2(n)c,
then, for every tree T of type T l

n:

• If
∑ j

i=1(2
li − 1) ≤ 2m − k

V (T ) =
2m − k −

j∑
i=1
(2li − l 2i − 1)

n
−

(
2m − k −

j∑
i=1
(2li − li − 1)

)2
n2 . (4.4)

• If
∑ j

i=1(2
li−1 − 1) > 2m − k

V (T ) =
3 · 2m − k −

j∑
i=1
(2li − l 2i − 1)

n
−

(
3 · 2m − k −

j∑
i=1
(2li − li − 1)

)2
n2 . (4.5)

In particular, when j = 0, the formula (4.4) applies and we obtain

V (T bal
n ) = V (T ∅n ) =

2m − k
n
−
(2m − k)2

n2 =
2k(2m − k)

n2 . (4.6)

This identity could have also be obtained directly from the fact that T bal
n has 2m − k

leaves of depth m and 2k leaves of depth m + 1 by Theorems 1.18 and 1.19.
Let us return to the problem of finding the trees in BinTreen with minimum Vari-

ance of depths. Since |BinTreen | = 1 for n ∈ {1, 2, 3}, it will suffice to consider n ≥ 4;
but, since in BinTree4 there are only two trees and one of them has Variance of depths 0
while the other has not, it will actually suffice to consider n ≥ 5. We begin by showing,
as a necessary condition, that any tree T ∈ BinTreen must be of some type T l

n, with
some further restrictions on l, in order for the minimum of the Variance of depths to
be reached by it. The proof is quite long, and we have opted to present it as the sum of
some partial results, which we shall now prove.

Lemma 4.8. Let n ≥ 5. If T ∈ BinTreen has a leaf of depth 1, thenV (T ) is not minimum
in BinTreen .

Proof. Let T ∈ BinTreen be a tree with a leaf of depth 1, so that T is the root join
of a tree T0 ∈ BinTreen−1 and a leaf x1. Consider the sequence of depths of T to be
d1 = 1, d2, . . . , dn−1, dn in non-decreasing order, so that the sequence of depths of T0 in
non-decreasing order is d2−1, . . . , dn−1−1, dn−1. LetT ′ ∈ BinTreen be a tree obtained
from T0 by replacing a leaf of the smallest depth, d2 − 1, in T0 by a cherry of depth d2,
so that the sequence of depths of T ′ is d2, d2, d3 − 1, . . . , dn−1 − 1, dn − 1. Then,

S(T ′) =
∑n

i=2 di + d2 − (n − 2)
n

=

(
1 +

∑n
i=2 di

)
+ d2 − n + 1

n

=
nS(T ) + d2 − n + 1

n
= S(T ) − 1 +

d2 + 1
n

,

138



4.2. The minimum Variance of depths

and hence

n ·V (T ′) = 2(d2 − S(T ′))2 +
n∑
i=3
(di − 1 − S(T ′))2

= 2
(
d2 − S(T ) + 1 −

d2 + 1
n

)2
+

n∑
i=3

(
di − S(T ) −

d2 + 1
n

)2
= 2(d2 − S(T ))2 + 4(d2 − S(T ))

(
1 −

d2 + 1
n

)
+ 2

(
1 −

d2 + 1
n

)2
+

n∑
i=3
(di − S(T ))2 − 2

(
d2 + 1
n

) n∑
i=3
(di − S(T )) + (n − 2)

(
d2 + 1
n

)2
= n ·V (T ) − (1 − S(T ))2 + (d2 − S(T ))2 + 4(d2 − S(T ))

− 2(d2 − S(T ))
(
d2 + 1
n

)
− 2

(
d2 + 1
n

) n∑
i=2
(di − S(T ))

+ 2
(
1 −

d2 + 1
n

)2
+ (n − 2)

(
d2 + 1
n

)2
(since n ·V (T ) = (1 − S(T ))2 +

n∑
i=2
(di − S(T ))2)

= n ·V (T ) + (d2 − S(T ) + 2)2 − 4 − (1 − S(T ))2

− 2(d2 − S(T ))
(
d2 + 1
n

)
+ 2

(
d2 + 1
n

)
(1 − S(T ))

+ 2 − 4
(
d2 + 1
n

)
+ n

(
d2 + 1
n

)2
(as 1 +

n∑
i=2

di = nS(T ))

= n ·V (T ) + (d2 − S(T ) + 2)2 − (1 − S(T ))2 − 2 −
(d2 + 1)2

n

= n ·V (T ) + (d2 + 1)
(
d2 + 3 − 2S(T ) −

d2 + 1
n

)
− 2.

Therefore, if

(d2 + 1)
(
d2 + 3 − 2S(T ) −

d2 + 1
n

)
− 2 < 0

then n · V (T ′) < n · V (T ), and so it cannot be minimum in BinTreen. Let us prove
that this is indeed the case whenever n ≥ 5. Let us rephrase it in terms of T0:

S(T ) =
1 +

∑n
i=2 di
n

=
n +

∑n
i=2(di − 1)
n

= 1 +
(n − 1)S(T0)

n
.
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Therefore,

(d2 + 1)
(
d2 + 3 − 2S(T ) −

d2 + 1
n

)
− 2

= (d2 + 1)

(
d2 + 1 −

2(n − 1)S(T0)

n
−
d2 + 1
n

)
− 2

=
n − 1
n
(d2 + 1)(d2 + 1 − 2S(T0)) − 2.

Now, notice that S(T0) ≥ d2−1, since d2−1 is the smallest depth of a leaf in T0; now, if
S(T0) ≥ 2, then the whole expression would be negative, thus proving the result. But,
since n ≥ 5, we know that all the leaves of T0 but at most two of them have depth
greater or equal than 3; and if it contains two leaves of depth smaller than 3, they have
depths 1 and 2 or depths 2 and 2. Thus,

S(T0) ≥
1 + 2 + 3(n − 3)

n − 1
=

3n − 6
n − 1

> 2 if n ≥ 5.

Therefore, the result holds. �

Lemma 4.9. Let T ∈ BinTreen be a bifurcating tree containing a leaf of depth d < δ(T ),
and Td ∈ BinTreen be the tree obtained by removing a cherry of depth δ(T ) and replacing
a leaf of depth d by a cherry of depth d + 1. Then,

n ·V (Td ) = n ·V (T ) −
(
δ(T ) − d − 1

n

)
(n(δ(T ) + d + 3 − 2S(T )) + δ(T ) − d − 1).

Proof. LetT ∈ BinTreen be such a tree. With the usual notations, given before Lemma
4.1 (page 129), consider that d = d j for some j ≤ n − 2, and without loss of generality
that the pair of leaves removed are xn−1 and xn. Then, the possibly unordered set of
depths of Td is

∆(Td ) = {d1, . . . , d j−1, d j + 1, d j + 1, d j+1, . . . , dn−2, dn−1};

we can thence compute the mean depth of Td as follows:

S(Td ) =

n−2∑
i=1

di + d j + 2 + dn−1 − 1

n
=

n∑
i=1

di + d + 1 − dn

n
= S(T ) −

δ − d − 1
n

(4.7)
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and therefore

n ·V (Td ) =
∑

i∈{1,...,n−2}\{ j }
(di − S(Td ))

2 + 2(d + 1 − S(Td ))
2 + (dn−1 − 1 − S(Td ))

2

=

n∑
i=1
(di − S(Td ))

2 + (d + 1 − S(Td ))
2 − (dn − S(Td ))

2

+ 2(d − S(Td )) + 1 − 2(dn−1 − S(Td )) + 1

=

n∑
i=1
(di − S(Td ))

2 + (d + 2 − S(Td ))
2 − (δ + 1 − S(Td ))

2

(since dn−1 = dn = δ)

=

n∑
i=1
(di − S(Td ))

2 − (δ + d + 3 − 2S(Td ))(δ − d − 1)

=

n∑
i=1

(
di − S(T ) +

δ − d − 1
n

)2
−

(
δ + d + 3 − 2S(T ) + 2

δ − d − 1
n

)
(δ − d − 1)

=

n∑
i=1
(di − S(T ))2 + 2

δ − d − 1
n

n∑
i=1
(di − S(T )) + n

(
δ − d − 1

n

)2
− (δ + d + 3 − 2S(T ))(δ − d − 1) − 2

(δ − d − 1)2

n

= n ·V (T ) −
(δ − d − 1)2

n
− (δ − d − 1)(δ + d + 3 − 2S(T ))

= n ·V (T ) −
δ − d − 1

n
(n(δ + d + 3 − 2S(T )) + δ − d − 1),

as we claimed. �

Corollary 4.10. If T ∈ BinTreen has the minimum value of V and it contains some leaf
of depth δ(T ) − l , where l > 1, then

l ≥ 3 + 2
n(δ(T ) − S(T )) + 1

n − 1
.

In particular, T does not contain leaves of depths δ(T ) − 2 or δ(T ) − 3.

Proof. If T ∈ BinTreen is such that V (T ) is minimum on BinTreen and it contains
some leaf of depth d = δ(T ) − l < δ(T ) − 1, then, by the last lemma,

(δ(T ) − d − 1)
(
n(δ(T ) + d + 3 − 2S(T )) + δ(T ) − d − 1

)
≤ 0.

Since δ(T ) − d − 1 = l − 1 > 0, this is equivalent to

n(δ(T ) + d + 3 − 2S(T )) + δ(T ) − d − 1 ≤ 0.
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Therefore, by replacing d by δ(T ) − l , and then solving for l ,

l ≥
2n(δ(T ) − S(T )) + 3n − 1

n − 1
= 3 + 2

n(δ(T ) − S(T )) + 1
n − 1

> 3,

as we claimed. �

Corollary 4.11. Let T ∈ BinTreen be a bifurcating tree that has a cherry of depth d <

δ(T ), and T ∗d ∈ BinTreen the tree obtained by removing such a cherry, leaving in its place
its root as a leaf of depth d − 1, and then replacing a leaf of depth δ(T ) by a cherry of depth
δ(T ) + 1. Then,

n ·V (T ∗d ) = n ·V (T ) +
δ(T ) − d + 1

n
(n(δ(T ) + d + 3 − 2S(T )) − (δ(T ) − d + 1)).

Proof. Using the same notations as in Lemma 4.9, we have thatT = (T ∗d )d−1. Therefore,
by Equation (4.7),

S(T ) = S((T ∗d )d−1) = S(T ∗d ) −
δ(T ∗d ) − (d − 1) − 1

n
= S(T ∗d ) −

δ(T ) + 1 − d
n

,

and, again by Lemma 4.9,

n ·V (T ) = n ·V ((T ∗d )d−1)

= n ·V (T ∗d ) −
δ(T ∗d ) − (d − 1) − 1

n

(
n(δ(T ∗d ) + (d − 1) + 3 − 2S(T

∗

d ))

+ δ(T ∗d ) − (d − 1) − 1

)
= n ·V (T ∗d ) −

δ(T ) + 1 − d
n

(
n
(
δ(T ) + 1 + d + 2

− 2S(T ) − 2
δ(T ) + 1 − d

n

)
+ δ(T ) + 1 − d

)
= n ·V (T ∗d ) −

δ(T ) − d + 1
n

(
n(δ(T ) + d + 3 − 2S(T )) − (δ(T ) − d + 1)

)
,

and hence the result holds. �

The previous lemmata have an interesting corollary that will now be proved. It
says, roughly, that any tree T ∈ BinTreen that attains the minimum Variance of depths
must be such that it has at most one leaf at each depth d ∈ {2, . . . , δ(T )−4}—and, as we
shall see anon, even δ(T ) − 4 is not an allowed depth. The rest of the leaves must have
depths δ(T ) − 1 or δ(T ): this is, indeed, a necessary condition that all trees reaching
the minimum of the Variance of depths must comply.

Corollary 4.12. If T ∈ BinTreen contains two leaves of the same depth d ≤ δ(T ) − 2,
then V (T ) is not minimum in BinTreen .
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Proof. Let T ∈ BinTreen and assume it has two leaves y0, y1 ∈ L(T ) at the same depth,
d < δ(T ) − 1. We distinguish two cases.

• If δ(T ) + d + 3 − 2S(T ) ≥ 0 then, with the notations of Lemma 4.9,

n ·V (Td ) = n ·V (T ) − (δ(T ) − d − 1)
(
δ(T ) + d + 3 − 2S(T ) +

δ(T ) − d − 1
n

)
< n ·V (T ),

and therefore we have found a tree with n leaves and strictly less variance of the leaves’
depths.

• Assume now that δ(T )+ d + 3− 2S(T ) < 0. If both leaves y0 and y1 belong to a cherry,
then, by Corollary 4.11:

n ·V (T ∗d ) = n ·V (T ) + (δ(T ) − d + 1)
(
δ(T ) + d + 3 − 2S(T ) −

δ(T ) − d + 1
n

)
< n ·V (T ),

and thus V (T ) cannot be minimal.
Finally, suppose that y0 and y1 belong not to any cherry, and let v0, v1 ∈ V̊ (T ) be their
respective parents and z0, z1 ∈ V̊ (T ) their respective siblings, which we suppose not to
be leaves (for otherwise, if z0 ∈ L(T ) we could consider y1 = z0); see Figure 4.5. Let T ′
be the tree obtained by interchanging z0 with y1; i.e., the tree obtained by removing the
edges (v0, z0) and (v1, y1) and replacing them by edges (v0, y1) and (v1, z0). Therefore,
∆(T ) = ∆(T ′), and so their respective Variances of depths are the same. Now, T ′ has
a cherry at depth d and thus, as we have just seen, V (T ) = V (T ′) cannot be minimal,
either.

�

T
ρ

v0 v1
y0 z0 y1z1

T0 T1

depth d

T ′
ρ

v0 v1
y0 y1 z0z1

T0T1

depth d

Figure 4.5: The depth-equivalent trees T and T ′ appearing in the last paragraph of the
proof of Corollary 4.12.

In summary, thus far we have proved that if T achieves the minimum Variance of
depths in BinTreen, then it must be of some type T l

n with 4 ≤ l1 < · · · < l j . Finally,
we state another result that will allow us to completely draw the necessary condition
that the trees attaining the minimum Variance of depths must satisfy.
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Lemma 4.13. Let T ∈ BinTreen such that V (T ) is minimum for that number of leaves.
Then, it has no leaf at depth δ(T ) − 4.

Proof. Let T ∈ BinTreen be a tree such that V (T ) is minimum in BinTreen. Set δ =
δ(T ), p0 = p0(T ), p1 = p1(T ), and n = 2m + k, for somem, k ∈ N such that k < 2m . As
we have just mentioned, by the previous lemmata, we already know that T is of some
type T l

n, for some l = (l1, . . . , l j ) ∈ N j with j ≥ 0 and 4 ≤ l1 < · · · < l j ≤ δ − 2. We
want to prove that it has no leaf at depth δ(T ) − 4, that is, that l1 ≥ 5.

By definition,

S(T ) = δ −
p1 +

∑ j
i=1 li

n
.

Therefore, if p0 ≤ n
2 , by Corollary 4.10,

l1 ≥ 3 + 2
n(δ − S(T )) + 1

n − 1
= 3 + 2

p1 +
∑ j

i=1 li + 1
n − 1

> 3 + 2
p1 + j
n − 1

= 3 + 2
n − p0
n − 1

≥ 3 +
n

n − 1
> 4,

and hence l1 ≥ 5.
Suppose now that p0 > n

2 . In this case, we can also assume that n ≥ 32. Indeed,
for if n < 32 then, by Lemma 4.5, δ ≤ 6, and since 4 ≤ l1 ≤ δ − 2 ≤ 4, it must
happen precisely that δ = 6, m = 4, l1 = 4 and j = 1. As n = 24 + k with k ≤ 15 and
since δ = 4 + 2, we are under the assumption (iii) in the aforementioned lemma. Thus,
p1 = 3 · 24 − k − (24 − 1) = 33 − k. Therefore,

p0 = n − p1 − 1 = 24 + k − 33 + k − 1 = −18 + 2k ≤ 8 +
k
2
=

n
2
,

because k ≤ 15, which contradicts the assumption that p0 > n
2 .

Therefore, n ≥ 32, and hence T contains at least 16 leaves of depth δ. Assume now
that l1 = 4, that is, that T has a leaf x ∈ L(T ) of depth δ − 4. We shall prove that in this
case,V (T ) is not minimal, either. Let y ∈ V̊ (T ) be the sibling of x (which cannot be a
leaf by Corollary 4.12) and z ∈ V̊ (T ) their common parent. Since T does not contain
leaves of depths δ − 3 nor δ − 2, all the leaves that descend from y must be of depth
δ − 1 or δ. By pruning and regrafting cherries at maximum depth, in a similar way as
we did in the proof of Corollary 4.12, we can ensure that Ty = T bal

16 .
Then, by, first, removing both arcs (z, x) and (z, y) and rooting Ty at z and, then,

placing x as sibling of a leaf in Tz (as shown in Figure 4.6), we define a tree T ′.
Now, it is easy to see that T ′ = T l′

n , with l′ = (l2, . . . , l j ): δ(T ′) = δ; it has two
leaves of depth δ (the new cherry in T ′z ); fifteen leaves of depth δ − 1 in T ′z plus the
remaining p1 leaves of depth δ − 1 that survive from T ; and then one leaf of each depth
δ − l2, . . . , δ − l j . A simple computation shows that that T ′ has lesser variance than T
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T

y
z

xdepth δ−4

depth δ

T ′
z

depth δ−1
depth δ

Figure 4.6: The trees T and T ′ appearing in the last part of the proof of Lemma 4.13.

has. Indeed, by Lemma 4.7 (and recall that we are assuming that l1 = 4),

n2V (T ) = n ©«p1 + 16 +
j∑

i=2
l 2i

ª®¬ − ©«p1 + 4 +
j∑

i=2
li
ª®¬
2

n2V (T ′) = n ©«p1 + 15 +
j∑

i=2
l 2i

ª®¬ − ©«p1 + 15 +
j∑

i=2
li
ª®¬
2

,

and thenV (T ′) < V (T ). So, when p0 > n
2 we also conclude that ifT has the minimum

value of V in BinTreen, then l1 ≥ 5. �

Thus ends the proof of the necessary condition we have found every tree achieving
the minimum Variance of depths must satisfy.

Theorem 4.14. If T ∈ BinTreen has the minimum value of V , then T is of type T l
n with

5 ≤ l1 < · · · < l j ≤ δ(T ) − 2.

This result allows us to give Algorithm 5 below that, given n ∈ N≥2, finds in time
O(n log(n)) all types of treesT l

n withminimumVariance of depths, by simply searching
for them in the space of all trees satisfying this necessary condition, combined with
Lemma 4.5 (iv) to discard vectors l, and computing efficiently their Variances of depths
using Equations 4.4 or 4.5.

This algorithm runs in time O(n log2(n)). Indeed, for it parcours for each j ∈
{0, . . . ,m − 4} the set {

(l1, . . . , l j ) ∈ N j : 5 ≤ l1 < · · · < l j ≤ m
}
.

This set has cardinality
(m−4

j
)
, where m =

⌊
log2(n)

⌋
, and on each vector (l1, . . . , l j ) it

performs O( j) operations to check the conditions in line 7 and to compute the corre-
sponding Variance of depths in line 8, and hence the total number of operations is of
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Algorithm 5: MinVarDepths
Input : n ∈ N≥1
Output: V (n) minimum value of V in BinTreen, and L the set of vectors l of

depths such that V (T l
n) = V (n).

1 compute m =
⌊
log2(n)

⌋
and k = n − 2m ;

2 if k = 0 then
3 V (n) = 0 and L = {∅};
4 else
5 V (n) = 2k(2m−k)

n2 and L = {∅};
6 for l0 ∈ N j with 1 ≤ j ≤ m and 5 ≤ l1 < · · · < l j ≤ m do
7 if

(∑ j
i=1(2

li − 1) ≤ 2m − k
)
or

(∑ j
i=1(2

li−1 − 1) > 2m − k
)
then

8 compute v0 = V (T l0
n ) using Equations (4.4) or (4.5);

9 if v0 < V (n) then
10 V (n) = v0 and L = {l0};
11 else
12 if v0 = V (n) then
13 L = L ∪ l0;
14 end
15 end
16 end
17 end
18 end
19 return (V (n),L);

the order of

O ©«
m−4∑
j=1

(
m − 4

j

)
jª®¬ = O ©«(m − 4)

m−4∑
j=1

(
m − 5
j − 1

)ª®¬
= O ©«(m − 4)

m−5∑
j=0

(
m − 5

j

)ª®¬ = O(2m−5m) = O(n log2(n)).

Another naïveO(n log2(n)) algorithm can be given in order to find, given n ∈ N≥2,
the multisets of depths of all bifurcating trees with n leaves and minimum Variance of
depths. It also relies on Theorem 4.14 and, instead of using Lemma 4.5 to compute the
values of p0(T l

n) and p1(T l
n), it obtains them through a more direct approach applying

Lemma 4.15 below, which is basically due to A.Mir-Fuentes [87, Thm. 1]. The best that
can be said about this algorithm is that it is not asymptotically worse than Algorithm
5 is.

Given a tree T of depth δ, for any i ∈ N we define pi(T ) to be the number of leaves
of depth δ− i, and we shall now drop theT to ease the notations. We can then consider
the vector pT = (p0, p1, . . . , pδ−1) ∈ Nδ . We say that a given vector v ∈ Nd represents a
tree when there exists some tree T of depth δ such that v = pT .
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4.2. The minimum Variance of depths

Lemma 4.15. A sequence p = (p0, p1, . . . , pδ−1) ∈ Nδ represents a bifurcating tree of depth
δ if, and only if, it satisfies the following conditions:

i) p0 , 0.

ii)
δ−1∑
i=0

pi2i = 2δ .

iii)
∑ j

i=0 pi2
i

2 j
∈ 2N for all j ∈ {0, . . . , δ − 1}.

Proof. We prove it by induction on δ. When δ = 1, the only vector represented by a
bifurcating tree of depth δ is (2), and the conditions (i)–(iii) in the statement say exactly
that p = (2). So, assume that δ ≥ 2 and that the equivalence is true for vectors of length
smaller or equal than δ − 1. We apply induction to both implications separately.

Consider first the “only if” implication. Given a bifurcating tree T with n leaves
and depth δ, p0 ∈ 2N≥1 because it is the number of leaves of depth δ, and these appear
in pairs forming cherries. This proves (i) as well as the case j = 0 of (iii). Now, we can
build a bifurcating tree T ′ of depth δ − 1 by pruning all the leaves of maximum depth.
In this tree,

pT ′ = (p ′0, . . . , p
′
δ−2)

with
p ′0 = p1 +

p0
2

and p ′i = pi+1 for any i ∈ {1, . . . , δ − 2}. By the induction hypothesis, T ′ satisfies (ii),
that is,

2δ−1 =
δ−2∑
i=0

p ′i2
i =

p0
2
+ p1 +

δ−1∑
j=2

pi2i−1,

which implies (ii) for T ,

2δ = p0 + 2p1 + 2
δ−1∑
j=2

pi2i−1 =
δ−1∑
i=0

pi2i,

and T ′ satisfies (iii), that is∑ j
i=0 p

′
i2

i

2 j
=

1
2 j

( p0
2
+ p1 +

j+1∑
j=2

pi2i−1
)
=

∑ j+1
i=0 pi2

i

2 j+1
∈ 2N

for all j ∈ {0, . . . , δ − 2}, which is equivalent to (iii) for T and j ∈ {1, . . . , δ − 1}.
Now let us pursue the other direction, and let us be given a vector p = (p0, . . . , pδ−1)

that satisfies (i)–(iii). Let us consider briefly the case when δ = 2: equation (ii) is now
p0 + 2p1 = 4. Now, since p0 , 0 by (i) and is even by (iii), it can be either 2 or 4.
If p0 = 2, then p1 = 1 and we have the only bifurcating tree with three leaves; when
p0 = 4, p1 = 0 and we have the fully symmetric tree of four leaves. These are the only
possible bifurcating trees of depth 2.
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Now suppose that δ ≥ 3. As in the case δ = 2, (i) and (iii) imply that p0 is non-zero
and even. We consider the vector

p′ = (p ′0, p
′
1, . . . , p

′
δ−2) =

(
p1 +

p0
2
, p2 . . . , pδ−1

)
∈ Nδ−1.

It is clear that p ′0 ∈ N≥1, because p0 ∈ 2N≥1. We will now show that it satisfies the
other two conditions:∑ j

i=0 p
′
i2

i

2 j
=

∑ j+1
i=1 pi2

i−1 +
p0
2

2 j
=

∑ j+1
i=1 pi2

i + p0
2 j+1

=

∑ j+1
i=0 pi2

i

2 j+1
∈ 2N

up to j = δ − 2, and

δ−1∑
i=0

pi2i = 2δ =⇒ 2δ−1 =
δ−1∑
i=0

pi2i−1 =
p0
2
+ p1 +

δ−2∑
i=1

pi+12i =
δ−2∑
i=0

p ′i2
i .

Now, by the induction hypothesis, we know that p′ represents a bifurcating tree
T ′. Therefore, p represents a bifurcating tree T constructed by choosing p0

2 leaves with
depth δ − 1 in T ′ and replacing them by cherries, which yields p0 leaves at depth δ,
the remaining p1 leaves at depth δ − 1 and pi(T ) = p ′i−1(T

′) = p ′i = pi for every i ≥ 2
because the depth ofT is one edge larger than that ofT ′. This concludes the proof. �

Thanks to this lemma, we can solve our problem using some basic linear-algebraic

techniques. First of all, note that, for any j ∈ {0, . . . , δ − 1}, condition
∑ j

i=0 pi2
i

2 j ∈ 2N

can be re-written as
∑ j

i=0 2
ipi = 2 j+1k j , with k j ∈ N and kδ−1 = 1 since

∑δ−1
i=0 pi2i = 2δ .

Since p0 ∈ 2N is implied by p0 + 2p1 ∈ 22N and we can fix the number n of leaves with
the identity

∑δ−1
i=0 pi = n, this leads to the following equation:

©«

1 1 1 . . . 1 1
1 2 0 . . . 0 0
1 2 22 . . . 0 0
...

...
...

. . .
...

...

1 2 22 . . . 2δ−2 0
1 2 22 . . . 2δ−2 2δ−1

ª®®®®®®®®¬

©«

p0
p1
p2
...

pδ−2
pδ−1

ª®®®®®®®®¬
=

©«

n
22k1
23k2
...

2δ−1kδ−2
2δ

ª®®®®®®®®¬
.

Now, this is equivalent to the following equation

©«

1 1 1 . . . 1 1
0 1 −1 . . . −1 −1
0 0 22 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 2δ−2 0
0 0 0 . . . 0 2δ−1

ª®®®®®®®®¬

©«

p0
p1
p2
...

pδ−2
pδ−1

ª®®®®®®®®¬
=

©«

n
22k1 − n

23k2 − 22k1
...

2δ−1kδ−2 − 2δ−2kδ−3
2δ − 2δ−1kδ−2

ª®®®®®®®®¬
which ensures the compatibility of the system and the uniqueness of its solution. Thus,
for j ∈ {2, . . . , δ−1}, we have that 2 jp j = 2 j+1k j−2 jk j−1, or equivalently, p j = 2k j−k j−1.
But since we know that any tree of minimum variance must be such that p j ∈ {0, 1},
we know that k j−1 ∈ {2k j − 1, 2k j }.
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4.2. The minimum Variance of depths

This gives rise to O(2δ) systems, but since we also know that δ = O(log(n)), we
have in fact a linear number of systems. We will argue that all of these can be solved in
O(log(n)).

Once all the k j are settled (and, with them, p2, . . . , pδ−1 in timeO(δ) = O(log(n))),
only p0 and p1 remain to be computed. But these are

p1 = 4k1 +
∑δ−1

j=2 p j − n and p0 = n −
∑δ−1

j=1 p j

which requireO(δ) = O(log(n)) computations each one. Notice that, by construction,
the solutionswith p0 ≥ 1 of these systems represent bifurcating trees of depth δ. Finally,
having thus constructed the vector of frequency of leaves’ depths, we can easily compute
its variance in timeO(δ) = O(log(n)). This gives a total time complexity ofO(n log n).

4.2.2 Almost no maximally balanced tree has minimum Variance of
depths

We are now in a position to give the main result of this chapter, namely that the fraction
of natural numbers n ≥ 1 smaller than a given N ∈ N such that the maximally balanced
trees with n leaves happen to achieve the minimum Variance of depths in BinTreen
tends to zero as N tends to∞. The proof is quite long, and it will take the integrity of
this section. It relies on several claims that we will present as separate lemmata in the
remaining of the section.

Consider n ∈ N≥1 written as n = 2m + k, wherem =
⌊
log2(n)

⌋
and 0 ≤ k < 2m . In

this section, we shall only consider sequences l of the form 5 ≤ l1 < · · · < l j ≤ m − 1
with j ≥ 1 and k ≤ 2m −

∑ j
i=1(2

li − 1), so that V (T l
n) satisfies Equation (4.4). Given

any such sequence l ∈ N j , set A(l) and B(l) to be

A(l) =
∑ j

i=1(2
li − l 2i − 1) and B(l) =

∑ j
i=1(2

li − li − 1).

With these notations, Equation (4.4) says that

V (T l
n) =

1
n2

(
(2m + k)(2m − k − A(l)) − (2m − k − B(l))2

)
,

and we want to know whether the next expression is, or is not, greater than zero:

n2(V (T bal
n ) −V (T l

n))

= 2k(2m − k) − (2m + k)(2m − k − A(l)) + (2m − k − B(l))2

= k(A(l) + 2B(l)) + 2m(A(l) − 2B(l)) + B(l)2.

Now, since li ≥ 5 for all i ∈ {1, . . . , j}, A(l)+2B(l) =
∑ j

i=1(3 · 2
li − l 2i −2li −3) is always

strictly positive. Thus, V (T bal
n ) > V (T l

n) if, and only if,

k >
2m(2B(l) − A(l)) − B(l)2

A(l) + 2B(l)
. (4.8)

On the other hand, recall that we are assuming k ≤ 2m −
∑ j

i=1(2
li − 1).
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We are now going to consider first the particular case of tree typesT l
n such that j = 1;

i.e., such that l has only one entry. Set x = l1 ∈ {5, . . . ,m−1}, so that A(l) = 2x − x2−1
and B(l) = 2x − x − 1. Then, whenever k belongs to the set

m−1⋃
x=5

(2m(2x + x2 − 2x − 1) − (2x − x − 1)2

3 · 2x − x2 − 2x − 3
, 2m − 2x + 1

]
we deduce that V (T bal

n ) is not minimal on BinTreen, since V (T bal
n ) > V (T (x)n ). To

simplify the notations, we shall set

F1(x) =
2m(2x + x2 − 2x − 1) − (2x − x − 1)2

3 · 2x − x2 − 2x − 3
, G1(x) = 2m − 2x + 1,

so that the union of intervals is rewritten as
⋃m−1

x=5 (F1(x),G1(x)]. We shall prove that
there exists an m0 ∈ N such that, for any m ≥ m0,

m−1⋃
x=5
(F1(x),G1(x)] = (F1(m − 1),G1(5)].

Lemma 4.16. For every m ∈ N≥7 and every x ∈ {5, . . . ,m − 2}, F1(x + 1) < F1(x) and
G1(x + 1) < G1(x).

Proof. That G1 strictly decreases is clear; let us see that F1 also does: F1(x) > F1(x + 1)
if, and only if,(
2m(2x + x2 − 2x − 1) − (2x − x − 1)2

) (
3 · 2x+1 − (x + 1)2 − 2(x + 1) − 3

)
>

(
2m(2x+1 + (x + 1)2 − 2(x + 1) − 1) − (2x+1 − (x + 1) − 1)2

) (
3 · 2x − x2 − 2x − 3

)
which is equivalent to

2x
(
6 · 22x + 2m+2x2 − 3 · 2x x2 − 3 · 2m+2x − 4 · 2x x − 18 · 2x

+ 2x3 + 3x2 + 8x + 18
)
+ 2m+2(x2 + 3x) − 4x − 6 > 0.

Now, since x ≤ m − 2,

2x
(
6 · 22x + 2m+2x2 − 3 · 2x x2 − 3 · 2m+2x − 4 · 2x x − 18 · 2x

+ 2x3 + 3x2 + 8x + 18
)
+ 2m+2(x2 + 3x) − 4x − 6

≥ 2x
(
6 · 22x + 2m+2x2 − 3 · 2m−2x2 − 3 · 2m+2x − 4 · 2m−2x − 18 · 2m−2

+ 2x3 + 3x2 + 8x + 18
)
+ 2m+2(x2 + 3x) − 4x − 6

= 2m−2(13 · 2x x2 − 52 · 2x x − 18 · 2x + 16x2 + 48x)
+ (2x (6 · 22x + 2x3 + 3x2 + 8x + 18) − 4x − 6).

Finally, if x ≥ 5, then both addends in this last expression are positive. �

Lemma 4.17. For every m ∈ N≥9 and for every x ∈ {5, . . . ,m − 2}, G1(x + 1) > F1(x).
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4.2. The minimum Variance of depths

Proof. We have that

G1(x + 1) > F1(x)
⇐⇒ (2m − 2x+1 + 1)(3 · 2x − x2 − 2x − 3) > 2m(2x + x2 − 2x − 1) − (2x − x − 1)2

⇐⇒ 2m+1(2x − x2 − 1) − 2x (5 · 2x − 2x2 − 2x − 7) − 2 > 0

⇐⇒ 2m−2(3 · 2x − 8x2 − 8) + 2x (5 · 2m−2 − 5 · 2x + 2x2 + 2x + 7) − 2 > 0.

This last inequality holds whenever m ≥ 9 and 5 ≤ x ≤ m − 2. Indeed, suppose that
m ≥ 9; we distinguish two cases. On the one hand, if 8 ≤ x ≤ m − 2 (and, hence,
m ≥ 10), then 3 · 2x − 8x2 − 8 > 0, and

2x (5 · 2m−2 − 5 · 2x + 2x2 + 2x + 7) ≥ 2x (2x2 + 2x + 7) ≥ 38656.

On the other hand, if x ∈ {5, 6, 7},

2m−2(3 · 25 − 8 · 52 − 8) + 25(5 · 2m−2 − 5 · 25 + 2 · 52 + 2 · 5 + 7) − 2 = 12 · 2m − 2978

2m−2(3 · 26 − 8 · 62 − 8) + 26(5 · 2m−2 − 5 · 26 + 2 · 62 + 2 · 6 + 7) − 2 = 6(9 · 2m − 2443)

2m−2(3 · 27 − 8 · 72 − 8) + 27(5 · 2m−2 − 5 · 27 + 2 · 72 + 2 · 7 + 7) − 2 = 78(2 · 2m − 855)

and therefore they are all positive whenever m ≥ 9. �

Thus, ifm ≥ 9, Lemma 4.16 implies that both the left-hand side and the right-hand
side of the intervals in the union decrease with x , and Lemma 4.17, that the intersection
of two consecutive intervals is not empty. Thus, if m ≥ 9, we can write the union of
intervals as

m−1⋃
x=5
(F1(x),G1(x)] = (F1(m − 1),G1(5)].

In summary, thus far we have proved that:

If n = 2m + k with m ≥ 9 and k ∈
(
F1(m − 1),G1(5)

]
, then the minimum

of V on BinTreen is not attained at T bal
n .

Let us now consider another family of trees of types T l
n: namely, those such that

j = m − 5 and l = (5, . . . , x − 1, x + 1, . . . ,m − 1), for some x ∈ {6, . . . ,m − 2}. In this
case,

A(l) =
m−1∑
i=5
(2i − i2 − 1) − 2x + x2 + 1 = 2m − 2x + x2 −

2m3 − 3m2 + 7m − 24
6

B(l) =
m−1∑
i=5
(2i − i − 1) − 2x + x + 1 = 2m − 2x + x −

m2 +m + 32
2

.

Therefore, if we set

F2(x) =
2m(2B(l) − A(l)) − B(l)2

A(l) + 2B(l)

G2(x) = 2m −
j∑

i=1
(2li − 1)

151



Chapter 4

where, if we do the computations,

2m(2B(l) − A(l)) − B(l)2 =
1
12

(
2m+1(6 · 2x + 2m3 − 3m2 + 7m − 6x2 − 24)

− 3(2x+1 − 2x +m2 +m + 32)2
)

A(l) + 2B(l) =
1
6

(
9 · 2m+1 − 9 · 2x+1 − 2m3 − 3m2 − 13m + 6x2 + 12x − 168

)
and

2m −
j∑

i=1
(2li − 1) = 2m − ©«

m−1∑
j=5
(2 j − 1) − (2x − 1)ª®¬ = 2x +m + 26,

then, by Inequation (4.8), whenever k belongs to

m−2⋃
x=6
(F2(x),G2(x)],

V (T bal
n ) will be not minimal on BinTreen. We shall now prove a result similar in spirit

to the one proven above: namely, that there exists an m1 ∈ N such that, if m ≥ m1,
then

m−2⋃
x=d3 log2(m)e

(F2(x),G2(x)] =
(
F2

(⌈
3 log2(m)

⌉)
,G2(m − 2)

]
. (4.9)

The fact thatG2 is obviously increasing on x leads us to prove only that function F2 is.

Lemma 4.18. There exists anm2 ∈ N such that, for anym ≥ m2 and every x ∈ {6, . . . ,m−
3}, F2(x + 1) > F2(x).

Proof. Notice, to begin the proof, that, by grouping the terms with x , the denominator
of F2(x) can be written as

2
(
9 · 2m+1 − 9 · 2x+1 − 2m3 − 3m2 − 13m + 6x2 + 12x − 168

)
= 2

(
9 · 2m+1 − 2m3 − 3m2 − 13m − 168 − 6(3 · 2x − x2 − 2x)

)
.

and this expression is decreasing for x ∈ [6,m − 2] because the function x 7→ 3 · 2x −
x2 − 2x is increasing on [6,∞). Consider now the numerator; its derivative, up to a
factor of 12, is

2x ln(2)(2m − 2x+1 −m2 −m + 2x − 32) + 2x+1 − 2m+1x +m2 +m − 2x + 32.
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Assume now that x ≤ m − 2. Then,

2x ln(2)(2m − 2x+1 −m2 −m + 2x − 32)
+ 2x+1 − 2m+1x +m2 +m − 2x + 32

≥ 2x ln(2)(2m − 2m−1 −m2 −m + 2x − 32)
+ 2x+1 − 2m+1x +m2 +m − 2x + 32

= 2x ln(2)(2m−1 −m2 −m + 2x − 32)
+ 2x+1 − 2m+1x +m2 +m − 2x + 32

= 2x ln(2)(2m−3 −m2 −m + 2x − 32)
+ 2m−3(3 · 2x ln(2) − 16x) +m2 +m + 2x+1 − 2x + 32.

Now, if x ≥ 6, then 3 · 2x ln(2) − 16x > 0 and 2x+1 − 2x > 0 and, for m large enough,
2m−3 −m2 −m + 2x − 32 > 0 too. Thus, if m is large enough, the derivative is positive
and so the numerator increases, while the denominator decreases: F2 is increasing for
x ≥ 6 and any m large enough. �

Now, as we did with F1 and G1, we need an analogous relation between F2 and G2
in order to prove (4.9).

Lemma 4.19. There exists anm3 ∈ N such that for everym ≥ m3 and for every 3 log2(m) ≤
x ≤ m − 3, F2(x + 1) < G2(x).

Proof. The inequality F2(x + 1) < G2(x) can be rephrased as

F 2
2 (x + 1)G2(x) > F 1

2 (x + 1),

where F 1
2 is the numerator of F2 and F 2

2 is its denominator. Thus, this is equivalent to

2
(
9(2m+1 − 2x+2) − 2m3 − 3m2 − 13m + 6(x + 1)2 + 12(x + 1) − 168

)
(2x +m + 26)

− 2m+1(6 · 2x+1 + 2m3 − 3m2 + 7m − 6(x + 1)2 − 24)
+ 3(2x+2 − 2(x + 1) +m2 +m + 32)2 > 0.
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The left-hand side of this inequality is

2
(
9(2m+1 − 2x+2) − 2m3 − 3m2 − 13m + 6(x + 1)2 + 12(x + 1) − 168

)
(2x +m + 26)

− 2m+1(6 · 2x+1 + 2m3 − 3m2 + 7m − 6(x + 1)2 − 24)
+ 3(2x+2 − 2(x + 1) +m2 +m + 32)2

= 2x+1(3 · 2m+1 − 3 · 2x+2 − 2m3 + 9m2 − 37m + 6x2 − 726)
+ 2m+1(−2m3 + 3m2 + 11m + 6x2 + 12x + 498)
−m4 − 104m3 −m2 (12x − 1) +m(36x − 796)
+ 12mx2 + 324x2 + 888x − 5100
≥ 2x+1(3 · 2m+1 − 3 · 2m−1 − 2m3 + 9m2 − 37m + 6x2 − 726)
+ 2m+1(−2m3 + 3m2 + 11m + 6x2 + 12x + 498)
−m4 − 104m3 −m2 (12x − 1) +m(36x − 796)
+ 12mx2 + 324x2 + 888x − 5100

(because x ≤ m − 3)
= 2x+1(9 · 2m−1 − 2m3 + 9m2 − 37m + 6x2 − 726)
+ 2m+1(−2m3 + 3m2 + 11m + 6x2 + 12x + 498)
−m4 − 104m3 −m2(12x − 1) +m(36x − 796)
+ 12mx2 + 324x2 + 888x − 5100
= 2x+1(5 · 2m−1 − 2m3 + 9m2 − 37m + 6x2 − 726)
+ 2m+1(2x+1 − 2m3 + 3m2 + 11m + 6x2 + 12x + 498)
−m4 − 104m3 −m2(12x − 1) +m(36x − 796)
+ 12mx2 + 324x2 + 888x − 5100. (4.10)

Now, on the one hand,

5 · 2m−1 − 2m3 + 9m2 − 37m + 6x2 − 726 ≥ 5 · 2m−1 − 2m3 + 9m2 − 37m − 726

and, if m is large enough, the expression on the right-hand side of this inequality is
positive. On the other hand, if 3 log2(m) ≤ x ≤ m − 3, then

2m+1(2x+1 − 2m3 + 3m2 + 11m + 6x2 + 12x + 498)
−m4 − 104m3 −m2(12x − 1) +m(36x − 796)
+ 12mx2 + 324x2 + 888x − 5100
≥ 2m+1(2m3 − 2m3 + 3m2 + 11m + 54 log2(m)

2 + 36 log2(m) + 498)
−m4 − 104m3 −m2(12(m − 3) − 1) +m(108 log2(m) − 796)
+ 108m log2(m)

2 + 2664 log2(m) − 5100
= 2m+1(3m2 + 11m + 54 log2(m)

2 + 36 log2(m) + 498)
− (m4 + 116m3 − 37m2 + 796m + 5100)
+ 108m log2(m)(log2(m) + 1) + 2664 log2(m)
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and, again, if m is large enough, this expression (dominated by 3 · 2m+1m2) will also
be positive. Therefore, if m is large enough the right-hand side expression in (4.10) is
positive, and the inequality in the statement of this lemma holds. �

Lemmata 4.18 and 4.19 jointly imply, following an argument analogous to that used
above, that, for any m ≥ m1 = max{m2,m3},

m−2⋃
x=d3 log2(m)e

(F2(x),G2(x)] =
(
F2

(⌈
3 log2(m)

⌉)
,G2(m − 2)

]
.

Therefore, as a consequence of Equation 4.8, we obtain the following result

There exists m1 ∈ N such that whenever n = 2m + k with m ≥ m1 and
k ∈

(
F2

(
d3 log2(m)e

)
,G2(m − 2)

]
, the minimum of V on BinTreen is not

attained at T bal
n .

Finally, it turns out that, there exists an m4 ∈ N such that, if m ≥ m4, the intervals(
F1(m − 1),G1(5)

]
,

(
F2

(⌈
3 log2(m)

⌉)
,G2(m − 2)

]
overlap; more specifically, we have that, if m is large enough,

F2
(⌈
3 log2(m)

⌉)
< F1(m − 1) < G2(m − 2) < 2m+1 − 31 = G1(5).

Indeed:

• F2
(⌈
3 log2(m)

⌉)
< F1(m − 1) holds for m large enough because the right-hand

side of this inequality is inO(2m) while the left-hand side is inO(m3).

• As for
F1(m − 1) < G2(m − 2)

it is equivalent to

4m−1 + 2m(m − 1)(m − 2) −m2 < (2m−2 +m + 26)(3 · 2m−1 −m2 − 2)

that is, to

22m − 10 · 2mm2 + 36 · 2mm + 292 · 2m − 8m3 − 200m2 − 16m − 416 > 0,

which holds for m large enough, since the leading term in the left-hand side ex-
pression is 22m .

• Finally,G2(m −1) < 2m+1−31, that is 2m−2+m +26 < 2m −31, holds form ≥ 7.

Therefore, taking m0 = max{9,m1,m4}, thus far we have shown the following
result:

Proposition 4.20. There exists an m0 ∈ N such that, whenever m ≥ m0, if

n ∈
(
2m + F2

(⌈
3 log2(m)

⌉)
, 2m+1 − 31

]
,

then V (T bal
n ) is not minimal on BinTreen .
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Remark 4.21. Concerning the right-hand side end of the interval in the last propo-
sition, we shall prove in Theorem 4.36 that, in fact, if m ≥ 8 and n = 2m+1 − 30,
then T bal

n is not minimal in BinTreen, but not beyond that bound. That is: that, for
n ∈ {2m+1−29, . . . , 2m+1} the minimumVariance of depths it achieved at themaximally
balanced trees and the trees depth-equivalent to them.

Now, we have already remarked that F2
(⌈
3 log2(m)

⌉)
is in O(m3). Therefore, the

cardinality of the set of numbers n ∈ [2m, 2m+1) such that T bal
n is minimal is inO(m3),

because it is contained in[
2m, 2m + F2(

⌈
3 log2(m)

⌉
)
]
∪ [2m+1 − 30, 2m+1

]
.

Thus, for every m ≥ m0, with m0 the lower bound obtained in Theorem 4.20, the
fraction of values n ∈ [2, 2m+1) such that V (T bal

n ) is minimal on BinTreen is bounded
from above by

O
(2M+1 +∑m

p=M+1 p
3

2m+1
)
= O

( m4

2m+1
)

which tends to 0 as m →∞. This proves the theorem that was the goal of this section:

Theorem 4.22. As N grows to∞, the fraction of values n ∈
[
2, 2N

]
such that V (T bal

n ) is
minimal on BinTreen tends to 0.

4.3 Expected value of the Variance of depths

Let Vn be the random variable that chooses a tree T ∈ BinPhyloTreen and then com-
putes V (T ). In this section we are going to give closed expressions for the expected
value of Vn under the Yule and the Uniform models. More in general, given a proba-
bilistic model of phylogenetic trees (Pn)n, let us denote, as in Section 1.3.4, by EP the
expected value of some random variable under this model. By Equation (4.1) and the
linearity of the expectation of a random variable, we have that

EP (Vn) =
1
n
EP (S (2)n ) −

1
n2 EP (S2n).

In this expression, Sn and S (2)n are the randomvariables that choose a treeT ∈ BinPhyloTreen
and compute its Sackin index S(T ) and the sum of the squares of its depths S (2)(T ), re-
spectively. In Lemma 1.31 we have given a recurrence that can be applied to compute
EP (S2n) when (Pn)n is shape invariant and Markovian, which is the case of the Yule
and the Uniform models. We are interested in a similar recurrence for EP (S (2)n ), but
we cannot apply to S (2)n the aforementioned lemma, because it is not a recursive shape
index. Fortunately, it is close enough to being so, as the next lemma shows, to allow us
to find such a recurrence.

Lemma 4.23. Let T ∈ Treen . Then, if T = T1 ∗ . . . ∗Tk , with k ≥ 2,

S (2)(T ) =
k∑
i=1

S (2)(Ti) + 2
k∑
i=1

S(Ti) + n.
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Proof. It is simply a matter of expanding the definition:

S (2)(T ) =
∑

x∈L(T )

δT (x)2 =
k∑
i=1

∑
x∈L(Ti )

(δTi (x) + 1)
2

=

k∑
i=1

(
δTi (x)

2 + 2δTi (x) + 1
)

=

k∑
i=1

∑
x∈L(Ti )

δTi (x)
2 + 2

k∑
i=1

∑
x∈L(Ti )

δTi (x) +
k∑
i=1

∑
x∈L(Ti )

1

=

k∑
i=1

S (2)(Ti) + 2
k∑
i=1

S(Ti) + n.

�

Now we have the following extension of Lemma 1.31 to S (2)n :

Lemma 4.24. Let (Pn)n be a shape invariant Markovian probabilistic model of phyloge-
netic trees, with conditional split distribution qP : N≥1 × N≥1 → R, and set

QP (k, n − k) =
1
2

(
n
k

)
qP (k, n − k).

Then, for any n ≥ 2,

EP (S (2)n ) =
n−1∑
k=1

QP (k, n − k)
(
2EP (S (2)k ) + 4EP (Sk) + n

)
.

Proof. We develop EP (S (2)n ) following the spirit of the proof of Lemma 1.31 (i), using
Lemma 4.23:

EP (S (2)n ) =
∑

T ∈BinPhyloTreen

S (2)(T ) · Pn(T )

=
1
2

n−1∑
k=1

∑
Λk ∈Partk ([n])

∑
Tk ∈BinPhyloTree(Λk )

∑
Tn−k ∈BinPhyloTree(Λc

k )

S (2)(Tk ∗Tn−k) · Pn(Tk ∗Tn−k)

=
1
2

n−1∑
k=1

∑
Λk ∈Partk ([n])

∑
Tk ∈BinPhyloTree(Λk )

∑
Tn−k ∈BinPhyloTree(Λc

k )

(
S (2)(Tk) + S (2)(Tn−k)

+ 2S(Tk) + 2S(T ′n−k) + n
)
qP (k, n − k)Pk(Tk) · Pn−k(Tn−k)
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=
1
2

n−1∑
k=1

(
n
k

) ∑
Tk ∈BinPhyloTreek

∑
Tn−k ∈BinPhyloTreen−k

(
S (2)(Tk) + S (2)(Tn−k)

+ 2S(Tk) + 2S(T ′n−k) + n
)
qP (k, n − k)Pk(Tk) · Pn−k(Tn−k)

(by the shape invariance of S and S (2))

=

n−1∑
k=1

QP (k, n − k)
∑
Tk

∑
Tn−k

(
S (2)(Tk) + S (2)(Tn−k) + 2S(Tk) + 2S(T ′n−k) + n

)
· Pk(Tk) · Pn−k(Tn−k)

=

n−1∑
k=1

QP (k, n − k)
(∑

Tk

∑
Tn−k

S (2)(Tk)Pk(Tk)Pn−k(Tn−k)

+
∑
Tk

∑
Tn−k

S (2)(Tn−k)Pk(Tk)Pn−k(Tn−k) + 2
∑
Tk

∑
Tn−k

S(Tk)Pk(Tk)Pn−k(Tn−k)

+ 2
∑
Tk

∑
Tn−k

S(Tn−k)Pk(Tk)Pn−k(Tn−k) +
∑
Tk

∑
Tn−k

nPk(Tk)Pn−k(Tn−k)
)

=

n−1∑
k=1

QP (k, n − k)

[(∑
Tk

S (2)(Tk)Pk(Tk)
) ( ∑

Tn−k

Pn−k(Tn−k)
)

+
(∑

Tk

Pk(Tk)
) ( ∑

Tn−k

S (2)(Tn−k)Pn−k(Tn−k)
)

+ 2
(∑

Tk

S(Tk)Pk(Tk)
) ( ∑

Tn−k

Pn−k(Tn−k)
)

+ 2
(∑

Tk

Pk(Tk)
) ( ∑

Tn−k

S(Tn−k)Pn−k(Tn−k)
)

+ n
(∑

Tk

Pk(Tk)
) ( ∑

Tn−k

Pn−k(Tn−k)
)]

=

n−1∑
k=1

QP (k, n − k)
(∑

Tk

S (2)(Tk)Pk(Tk) +
∑
Tn−k

S (2)(Tn−k)Pn−k(Tn−k)

+ 2
∑
Tk

S(Tk)Pk(Tk) + 2
∑
Tn−k

S(Tn−k)Pn−k(Tn−k) + n
)

=

n−1∑
k=1

QP (k, n − k)
(
EP (S (2)k ) + EP (S (2)n−k) + 2EP (Sk) + 2EP (Sn−k) + n

)
= 2

n−1∑
k=1

QP (k, n − k)EP (S (2)k ) + 4
n−1∑
k=1

QP (k, n − k)EP (Sk) + n
n−1∑
k=1

QP (k, n − k)

by the symmetry of QP (k, n − k). �

In our computations under the uniform model we shall also make use of the fol-
lowing lemma:
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4.3. Expected value of the Variance of depths

Lemma 4.25. For every n ∈ N≥2 and for every s, t ∈ {1, 2, . . . , n − 1},

n−1∑
k=1

Ck,n−k

(
k
s

) (
n − k
t

)
(2k − 2)!!
(2k − 3)!!

(2(n − k) − 2)!!
(2(n − k) − 3)!!

=
2n−3 · n!
(2n − 3)!!s t

n−1∑
k=1

(
k − 1
s − 1

) (
n − k − 1
t − 1

)
Proof. It is enough to carefully develop the sum:

n−1∑
k=1

Ck,n−k

(
k
s

) (
n − k
t

)
(2k − 2)!!
(2k − 3)!!

(2(n − k) − 2)!!
(2(n − k) − 3)!!

=

n−1∑
k=1

(2k − 3)!!(2(n − k) − 3)!!n!k!(n − k)!(2k − 2)!!(2(n − k) − 2)!!
2(2n − 3)!!k!(n − k)!s !(k − s)!t !(n − k − t )!(2k − 3)!!(2(n − k) − 3)!!

=
n!

2(2n − 3)!!

n−1∑
k=1

2k−1(k − 1)!2n−k−1(n − k − 1)!
s !(k − s)!t !(n − k − t )!

=
2n−3n!

(2n − 3)!!s t

n−1∑
k=1

(k − 1)!(n − k − 1)!
(s − 1)!(k − s)!(t − 1)!(n − k − t )!

=
2n−3n!

(2n − 3)!!s t

n−1∑
k=1

(
k − 1
s − 1

) (
n − k − 1
t − 1

)
.

�

Note that
(k−1
s−1

) (n−k−1
t−1

)
is a polynomial of degree s + t − 2 in k and therefore

n−1∑
k=1

(
k − 1
s − 1

) (
n − k − 1
t − 1

)
is a polynomial of degree s + t − 1 in n.

4.3.1 Expected value under the Yule model

We are interested in the computation of

EYule(Vn) =
1
n
EYule(S

(2)
n ) −

1
n2 EYule(S2n).

In this expression, the expected value of S2n was already computed in Theorem 2 in [13]:

EYule(S2n) = 4n2(H 2
n − H (2)n − 2Hn) − 2nHn + 11n2 − n, (4.11)

where, as it is usual, Hn =
∑n

i=1
1
i and H (2)n =

∑n
i=1

1
i2 .

With respect to EYule(S
(2)
n ), we have to the following proposition.

Proposition 4.26. For every n ∈ N≥1,

EYule(S
(2)
n ) = 2n(2H 2

n − 3Hn − 2H (2)n + 3).
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Proof. Lemma 4.24 gives us, in the Yule case, for which QYule(k, n − k) = 1
n−1 , the

recurrence

EYule(S
(2)
n ) =

2
n − 1

n−1∑
k=1

EYule(S
(2)
k ) +

4
n − 1

n−1∑
k=1

EYule(Sk) + n (4.12)

which allows us to write

EYule(S
(2)
n ) =

2
n − 1

EYule(S
(2)
n−1) +

2
n − 1

n−2∑
k=1

EYule(S
(2)
k ) +

4
n − 1

EYule(Sn−1)

+
4

n − 1

n−2∑
k=1

EYule(Sk) + n

=
2

n − 1
EYule(S

(2)
n−1) +

n − 2
n − 1

2
n − 2

n−2∑
k=1

EYule(S
(2)
k ) +

4
n − 1

EYule(Sn−1)

+
n − 2
n − 1

4
n − 2

n−2∑
k=1

EYule(Sk) +
n − 2
n − 1

(n − 1) + 2

=
2

n − 1
EYule(S

(2)
n−1) +

4
n − 1

EYule(Sn−1) + 2

+
n − 2
n − 1

( 2
n − 2

n−2∑
k=1

EYule(S
(2)
k ) +

4
n − 2

n−2∑
k=1

EYule(Sk) + n − 1
)

=
2

n − 1
EYule(S

(2)
n−1) +

4
n − 1

EYule(Sn−1) + 2 +
n − 2
n − 1

EYule(S
(2)
n−1)

(by (4.12) for EYule(S
(2)
n−1))

=
n

n − 1
EYule(S

(2)
n−1) +

4
n − 1

EYule(Sn−1) + 2

=
n

n − 1
EYule(S

(2)
n−1) +

4
n − 1

2(n − 1)(Hn−1 − 1) + 2

=
n

n − 1
EYule(S

(2)
n−1) + 8Hn−1 − 6

(we recalled the value of EYule(Sn) in page 44).
Now, if we set xn = 1

n EYule(S
(2)
n ), then the last expression is equivalent to

xn = xn−1 +
8
n
Hn−1 −

6
n
.

And, as x1 = 0 and, by Equation (6.71) in [50],
n−1∑
k=1

Hk
k + 1

=
1
2
(H 2

n − H (2)n ),

we have that

xn =
n∑

k=2

8Hk−1
k
−

n∑
k=2

6
k
= 8

n−1∑
k=1

Hk
k + 1

− 6(Hn − 1)

= 4(H 2
n − H (2)n ) − 6Hn + 6.
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Finally,
EYule(S

(2)
n ) = nxn = 2n(2H 2

n − 2H
(2)
n − 3Hn + 3)

as we claimed. �

This leads to the main result in this subsection.

Theorem 4.27. Let n ∈ N≥1. Then,

EYule(Vn) = 2
(n + 1

n

)
Hn +

1
n
− 5.

Proof. As we have already mentioned, we have

EYule(Vn) =
1
n
EYule(S

(2)
n ) −

1
n2 EYule(S2n)

= 4H 2
n − 4H

(2)
n − 6Hn + 6 − 4H 2

n + 4H
(2)
n + 8Hn +

2
n
Hn − 11 +

1
n

=

(
2 +

2
n

)
Hn +

1
n
− 5.

�

Finally, notice that, as Hn ∼ ln n + O(1) (cf. p. 264 in [51]) and EYule(Sn) =
2n(Hn − 1), then

EYule(Sn) = 2Hn − 2 ∼ 2 ln n

EYule(Vn) = 2Hn +
2
n
Hn +

1
n
− 5 ∼ 2 ln n,

and therefore both the expected value of the mean and the variance of the leaves’ depths
of a bifurcating phylogenetic tree generated under the Yule model grow asymptotically
as 2 ln n.

4.3.2 Expected value under the Uniform model

We proceed now to the computation of the expected value of the Variance of depths
under the Uniform model for binary phylogenetic trees. The line of reasoning is the
same as in the Yule case. First, we have that

Eunif(Vn) =
1
n
Eunif(S

(2)
n ) −

1
n2 Eunif(S2n).

Now, Lemma 4.24 gives us a recursive expression for Eunif(S
(2)
n ) and Lemma 1.31 a re-

cursive expression for Eunif(S2n) —recursive expressions that we shall then solve with
the aid of the results established in Section 1.4.1. The recursive expression for Eunif(S2n)
was already given in L. Rotger’s PhD Thesis (see Prop. 2.36 in [100]).

Recall that, with the notations of Lemmata 1.31 and 4.24, in the Uniform model we
have

Qunif(k, n − k) = Ck,n−k =
1
2

(
n
k

)
(2k − 3)!!(2(n − k) − 3)!!

(2n − 3)!!
.
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Lemma 4.28. Let n ∈ N≥2. Then,

(i) Eunif(S
(2)
n ) = 2

n−1∑
k=1

Ck,n−kEunif(S
(2)
k ) + 2n

(2n − 2)!!
(2n − 3)!!

− 3n.

(ii) Eunif(S2n) = 2
n−1∑
k=1

Ck,n−kEunif(S2k) +
5n2

2
(2n − 2)!!
(2n − 3)!!

− n(5n − 2).

Proof. We shall begin by the proof of (i). By Lemma 4.24,

Eunif(S
(2)
n ) = 2

n−1∑
k=1

Ck,n−kEunif(S
(2)
k ) + 4

n−1∑
k=1

Ck,n−kEunif(Sk) + n
n−1∑
k=1

Ck,n−k

= 2
n−1∑
k=1

Ck,n−kEunif(S
(2)
k ) + 4

n−1∑
k=1

Ck,n−k · k ·
(2k − 2)!!
(2k − 3)!!

− 4
n−1∑
k=1

Ck,n−kk + n
n−1∑
k=1

Ck,n−k

(by using the value of Eunif(Sn) recalled in page 44)

= 2
n−1∑
k=1

Ck,n−kEunif(S
(2)
k ) + 2n

(
(2n − 2)!!
(2n − 3)!!

− 1
)
− 2n + n

(by Lemmata 1.33 and 1.34)

= 2
n−1∑
k=1

Ck,n−kEunif(S
(2)
k ) + 2n ·

(2n − 2)!!
(2n − 3)!!

− 3n

as we claimed.
Let us now proceed to the proof of (ii). In order to do that, we shall use Lemma

1.31, which tells us (recall that fS (k, n − k) = n; cf Section 1.2.4) that

Eunif(S2n) =
n−1∑
k=1

Ck,n−k
(
2Eunif(S2k) + 2Eunif(Sk)Eunif(Sn−k) + n2 + 4nEunif(Sk)

)
=

n−1∑
k=1

Ck,n−k

(
2Eunif(S2k) + 2k(n − k)

(
(2k − 2)!!
(2k − 3)!!

− 1
) (
(2(n − k) − 2)!!
(2(n − k) − 3)!!

− 1
)

+ n2 + 4nk
(
(2k − 2)!!
(2k − 3)!!

− 1
) )

(by using again the value of Eunif(Sn))

=

n−1∑
k=1

Ck,n−k

(
2Eunif(S2k) + n

2 + 4nk
(2k − 2)!!
(2k − 3)!!

− 4nk

+ 2k(n − k)
(2k − 2)!!
(2k − 3)!!

(2(n − k) − 2)!!
(2(n − k) − 3)!!

+ 2k(n − k)

− 2k(n − k)
(2k − 2)!!
(2k − 3)!!

− 2k(n − k)
(2(n − k) − 2)!!
(2(n − k) − 3)!!

)
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=

n−1∑
k=1

Ck,n−k

(
2Eunif(S2k) + 4nk

(2k − 2)!!
(2k − 3)!!

− 2k2

+ 2k(n − k)
(2k − 2)!!
(2k − 3)!!

(2(n − k) − 2)!!
(2(n − k) − 3)!!

− 4k(n − k)
(2k − 2)!!
(2k − 3)!!

)
= (∗),

since Ck,n−k is symmetric and so

n−1∑
k=1

Ck,n−kk(n − k)
(2k − 2)!!
(2k − 3)!!

=

n−1∑
k=1

Ck,n−kk(n − k)
(2(n − k) − 2)!!
(2(n − k) − 3)!!

and

n−1∑
k=1

Ck,n−k(n2 − 4nk + 2k(n − k)) =
n−1∑
k=1

Ck,n−k((n − k)2 − 3k2)

= −2
n−1∑
k=1

Ck,n−kk2.

Simplifying one step further the sum (∗), we finally obtain

(∗) = 2
n−1∑
k=1

Ck,n−kEunif(S2k) − 2
n−1∑
k=1

Ck,n−kk2 + 4
n−1∑
k=1

Ck,n−kk2
(2k − 2)!!
(2k − 3)!!

+ 2
n−1∑
k=1

Ck,n−kk(n − k)
(2k − 2)!!
(2k − 3)!!

(2(n − k) − 2)!!
(2(n − k) − 3)!!

.

Now, as for the first two sums appearing in the independent term of this recurrence
—namely, the first two sums without terms Eunif(S2k)—, their value can be computed
using Lemmata 1.33 and 1.34:

n−1∑
k=1

Ck,n−kk2 = 2
n−1∑
k=1

Ck,n−k

(
k
2

)
+

n−1∑
k=1

Ck,n−k

(
k
1

)
=

n
2

(
1 −

1
2(n − 1)

(2n − 2)!!
(2n − 3)!!

)
+
n
2
=

n2

2
−
n
4
(2n − 2)!!
(2n − 3)!!

n−1∑
k=1

Ck,n−kk2
(2n − 2)!!
(2n − 3)!!

= 2
n−1∑
k=1

Ck,n−k

(
k
2

)
(2n − 2)!!
(2n − 3)!!

+

n−1∑
k=1

Ck,n−k

(
k
1

)
(2n − 2)!!
(2n − 3)!!

=

(
n
2

) (
(2n − 2)!!
(2n − 3)!!

− 2
)
+
n
2

(
(2n − 2)!!
(2n − 3)!!

− 1
)

=
n2

2
(2n − 2)!!
(2n − 3)!!

−
n(2n − 1)

2
.
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As to the third sum in this independent term, its value can be computed using Lemma
4.25 with s = t = 1:

n−1∑
k=1

Ck,n−kk(n − k)
(2k − 2)!!
(2k − 3)!!

(2(n − k) − 2)!!
(2(n − k) − 3)!!

=
2n−3 · n!
(2n − 3)!!

n−1∑
k=1

1

=
2n−3 · n!(n − 1)
(2n − 3)!!

=
n(n − 1)

4
(2n − 2)!!
(2n − 3)!!

.

Hence, the independent term is

4
n−1∑
k=1

Ck,n−kk2
(2k − 2)!!
(2k − 3)!!

− 2
n−1∑
k=1

Ck,n−kk2

+ 2
n−1∑
k=1

Ck,n−kk(n − k)
(2k − 2)!!
(2k − 3)!!

(2(n − k) − 2)!!
(2(n − k) − 3)!!

= 4
(
n2

2
(2n − 2)!!
(2n − 3)!!

−
n(2n − 1)

n

)
− 2

(
n2

2
−
n
4
(2n − 2)!!
(2n − 3)!!

)
+
n(n − 1)

2
(2n − 2)!!
(2n − 3)!!

= 5
n2

2
(2n − 2)!!
(2n − 3)!!

− n(5n − 2).

Thus concludes the proof. �

In the next theorem we give solutions to the recurrences presented in the previous
lemma, and in so doing we will be able to finally give a value for Eunif(Vn). In order to
do that, we shall use Theorem 1.35.

Theorem 4.29. Let n ∈ N≥1. Then,

Eunif(S
(2)
n ) = (4n − 1)n − 3n

(2n − 2)!!
(2n − 3)!!

Eunif(S2n) =
n(10n2 − 1)

3
−
n(5n + 1)

2
(2n − 2)!!
(2n − 3)!!

.

Proof. We know, by Theorem 4.28, that Eunif(S
(2)
n ) is the solution of the recurrent equa-

tion

xn = 2
n−1∑
k=1

Ck,n−k xk − 3n + 2n
(2n − 2)!!
(2n − 3)!!

with initial condition x1 = Eunif(S
(2)
1 ) = 0. Now, by Theorem 1.35, this solution is

Eunif(S
(2)
n ) = 3n + 8

(
n
2

)
− 3n

(2n − 2)!!
(2n − 3)!!

= 4n2 − n − 3n
(2n − 2)!!
(2n − 3)!!

.

Finally, by Theorem 4.28, Eunif(S2n) is the solution of

yn = 2
n−1∑
k=1

Ck,n−kyk − 10
(
n
2

)
− 3n +

(
5
(
n
2

)
+
5
2
n
)
(2n − 2)!!
(2n − 3)!!
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such that y1 = Eunif(S21) = 0. Thus, by Theorem 1.35, this solution is

Eunif(S2n) = 20
(
n
3

)
+ 20

(
n
2

)
+ 3n −

(
5
(
n
2

)
+ 3n

)
(2n − 2)!!
(2n − 3)!!

=
10n3 − n

3
−
5n2 + n

2
(2n − 2)!!
(2n − 3)!!

.

�

Finally, then, to end this section, the immediate corollary of Theorem 4.29 is the
main result of this subsection.

Theorem 4.30. Let n ∈ N≥1. Then,

Eunif(Vn) =
(2n − 1)(n − 1)

3n
−
n − 1
2n
(2n − 2)!!
(2n − 3)!!

.

We shall now briefly discuss the asymptotic behaviour of Eunif(Sn) and Eunif(Vn).
As we have already mentioned, Theorem 22 in [85] implies that

Eunif(Sn) = n
(
(2n − 2)!!
(2n − 3)!!

− 1
)
.

Now let us fix our attention to that ubiquitous fraction, (2n−2)!!
(2n−3)!! . By using Stirling’s

approximation for large factorials, we have

(2n − 2)!!
(2n − 3)!!

=
(2n−1(n − 1)!)2

(2n − 2)!

∼

(
2n−1

√
2π(n − 1)(n − 1)n−1e−(n−1)

)2√
2π(2n − 2)(2n − 2)2n−2e−(2n−2)

∼
√
πn.

Thus, we now have that

Eunif(Sn) =
(2n − 2)!!
(2n − 3)!!

− 1 ∼
√
πn

Eunif(Vn) =
(2n − 1)(n − 1)

3n
−
n − 1
2n
(2n − 2)!!
(2n − 3)!!

∼
2
3
n,

contrary to what happened under the Yule model, in which both the expected value of
Sn and Vn had the same asymptotic behaviour.

4.4 Some new results for the Sackin and Cophenetic indices
under the Uniform model

In this section we shall present three theorems that were initially obtained as a by-
product of the techniques used above and are, to the extent of our knowledge, new.
Let Sn and Φn be, respectively, the random variable that take a tree T ∈ BinTreen
and compute its Sackin index S(T ) and its Cophenetic index Φ(T ). Recall that the
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Cophenetic index, as we defined it in the Preliminaries, is the sum, over all pairs of
leaves of a given tree, of the depth of their least common ancestor.

We shall begin by computing the variance of Sn under the Uniform model — the
variance under the Yule model being already computed in [13].

Theorem 4.31. Let n ∈ N≥1. The variance of Sn under the Uniform model is

σ2
unif(Sn) =

n(10n2 − 3n − 1)
3

−

(
n + 1
2

)
·
(2n − 2)!!
(2n − 3)!!

− n2
(
(2n − 2)!!
(2n − 3)!!

)2
.

Proof. The variance of Sn under the Uniform model is

σ2
unif(Sn) = Eunif(S

(2)
n ) − Eunif(Sn)2,

and in order to compute it we can use the expression for Eunif(S
(2)
n ) obtained in Theorem

4.29. Indeed, we then compute

σ2
unif(Sn) = Eunif(S

(2)
n ) − Eunif(Sn)2

=
10
3
n3 −

1
3
n −

n(5n + 1)
2

(2n − 2)!!
(2n − 3)!!

− n2
(
(2n − 2)!!
(2n − 3)!!

)2
=

10
3
n3 −

1
3
n − n2 − n2

(
(2n − 2)!!
(2n − 3)!!

−
n(n + 1)

2
(2n − 2)!!
(2n − 3)!!

)
=

n(10n2 − 3n − 1)
3

−

(
n + 1
2

)
·
(2n − 2)!!
(2n − 3)!!

− n2
(
(2n − 2)!!
(2n − 3)!!

)2
,

as we wanted to prove. �

Remark 4.32. Notice the difference between the magnitude computed above and the
expected value of the Variance of depths under the Uniform model. The former is

σ2
unif(Sn) = Eunif(S

(2)
n ) − Eunif(Sn)2

whereas the latter is

Eunif(Vn) =
1
n
Eunif(S

(2)
n ) −

1
n2 Eunif(Sn)2.

The previous formula agrees with the already established asymptotic behaviour
of σ2

unif(Sn), stated in the Preliminaries. Indeed, since we have already argued that
(2n−2)!!
(2n−3)!! ∼

√
πn, we have

σ2
unif(Sn) ∼

n(10n2 − 3n − 1
3

−

(
n + 1
2

)
√
πn − n2πn ∼

10 − 3π
3

n3. (4.13)

The following two proofs are much more long, but they rely again on the results estab-
lished in Section 1.4.1 and Lemma 4.25.

Theorem 4.33. Let n ∈ N≥1. The variance of Φn under the Uniform model is

σ2
unif(Φn) =

(
n
2

)
(2n − 1)(7n2 − 3n − 2)

30
−

(
n
2

)
5n2 − n − 2

32
·
(2n − 2)!!
(2n − 3)!!

−
1
4

(
n
2

)2 (
(2n − 2)!!
(2n − 3)!!

)2
.
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Proof. If we apply Equation 1.16 in Lemma 1.31, by taking I as the Cophenetic index
Φ, for which we recall from the Preliminaries that

fΦ(k, n − k) =
(
k
2

)
+

(
n − k
2

)
, Eunif(Φk) =

1
2

(
k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
)

we obtain the following recurrence for Eunif(Φ
2
n):

Eunif(Φ
2
n) =

n−1∑
k=1

Ck,n−k

(
2Eunif(Φ

2
k) +

((
k
2

)
+

(
n − k
2

))2
+ 2

((
k
2

)
+

(
n − k
2

)) (
k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
)

+
1
2

(
k
2

) (
n − k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
) (
(2(n − k) − 2)!!
(2(n − k) − 3)!!

− 2
) )
.

We shall now simplify this recurrence. The final form we obtain was already given
by L. Rotger in Lemma 2.30 of her PhD Thesis [100]. We begin by simplifying the
following expression

((
k
2

)
+

(
n − k
2

))2
+ 2

((
k
2

)
+

(
n − k
2

)) (
k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
)

+
1
2

(
k
2

) (
n − k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
) (
(2(n − k) − 2)!!
(2(n − k) − 3)!!

− 2
)

=

(
k
2

)2
+

(
n − k
2

)2
+ 2

(
k
2

) (
n − k
2

)
+ 2

(
k
2

)2
(2k − 2)!!
(2k − 3)!!

+ 2
(
k
2

) (
n − k
2

)
(2k − 2)!!
(2k − 3)!!

− 4
(
k
2

)2
− 4

(
k
2

) (
n − k
2

)
+
1
2

(
k
2

) (
n − k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

+ 2
(
k
2

) (
n − k
2

)
−

(
k
2

) (
n − k
2

)
(2k − 2)!!
(2k − 3)!!

−

(
k
2

) (
n − k
2

)
(2(n − k) − 2)!!
(2(n − k) − 3)!!

=

(
n − k
2

)2
− 3

(
k
2

)2
+ 2

(
k
2

)2
(2k − 2)!!
(2k − 3)!!

+

(
k
2

) (
n − k
2

)
(2k − 2)!!
(2k − 3)!!

−

(
k
2

) (
n − k
2

)
(2(n − k) − 2)!!
(2(n − k) − 3)!!

+
1
2

(
k
2

) (
n − k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!
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and then, by the symmetry of Ck,n−k , we have

n−1∑
k=1

Ck,n−k

( ((
k
2

)
+

(
n − k
2

))2
+ 2

((
k
2

)
+

(
n − k
2

)) (
k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
)

+
1
2

(
k
2

) (
n − k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
) (
(2(n − k) − 2)!!
(2(n − k) − 3)!!

− 2
) )

=

n−1∑
k=1

Ck,n−k

((
n − k
2

)2
− 3

(
k
2

)2
+ 2

(
k
2

)2
(2k − 2)!!
(2k − 3)!!

+

(
k
2

) (
n − k
2

)
(2k − 2)!!
(2k − 3)!!

−

(
k
2

) (
n − k
2

)
(2(n − k) − 2)!!
(2(n − k) − 3)!!

+
1
2

(
k
2

) (
n − k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

)
=

n−1∑
k=1

Ck,n−k

(
− 2

(
k
2

)2
+ 2

(
k
2

)2
(2k − 2)!!
(2k − 3)!!

+
1
2

(
k
2

) (
n − k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

)
so that the recursion becomes

Eunif(Φ
2
n) = 2

n−1∑
k=1

Ck,n−kEunif(Φ
2
k) + 2

n−1∑
k=1

Ck,n−k

(
k
2

)2
(2k − 2)!!
(2k − 3)!!

− 2
n−1∑
k=1

Ck,n−k

(
k
2

)2
+
1
2

n−1∑
k=1

Ck,n−k

(
k
2

) (
n − k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

. (4.14)

Now, by Lemmata 1.33, 1.34, and 4.25

n−1∑
k=1

Ck,n−k

(
k
2

)2
=

n−1∑
k=1

Ck,n−k

(
6
(
k
4

)
+ 6

(
k
3

)
+

(
k
2

))
= 3

(
n
4

) (
1 −

15
16(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
+ 3

(
n
3

) (
1 −

3
4(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
+
1
2

(
n
2

) (
1 −

1
2(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
=

1
2

(
n
2

)2
−
n(15n2 − 27n + 10)

27
·
(2n − 2)!!
(2n − 3)!!

n−1∑
k=1

Ck,n−k

(
k
2

)2
(2k − 2)!!
(2k − 3)!!

=

n−1∑
k=1

Ck,n−k

(
6
(
k
4

)
+ 6

(
k
3

)
+

(
k
2

))
(2k − 2)!!
(2k − 3)!!

= 3
(
n
4

) (
(2n − 2)!!
(2n − 3)!!

−
16
5

)
+ 3

(
n
3

) (
(2n − 2)!!
(2n − 3)!!

−
8
3

)
+
1
2

(
n
2

) (
(2n − 2)!!
(2n − 3)!!

− 2
)
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=
1
2

(
n
2

)2
(2n − 2)!!
(2n − 3)!!

−

(
n
2

)
12n2 − 20n + 7

15
n−1∑
k=1

Ck,n−k

(
k
2

) (
n − k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

=
2n−5 · n!
(2n − 3)!!

n−1∑
k=1

(k − 1)(n − k − 1)

=
2n−5 · n!
(2n − 3)!!

(
(n − 1)

n−1∑
k=1

(k − 1) − 2
n−2∑
k=2

(
k
2

))
=

2n−5 · n!
(2n − 3)!!

(
(n − 1)

(
n − 2
2

)
− 2

(
n − 1
3

))
=

1
4

(
n
4

)
(2n − 2)!!
(2n − 3)!!

,

since
n−2∑
k=2

(
k
2

)
=

(
n − 1
3

)
,

which can be shown by induction using that
(n−1

3
)
−

(n−2
2

)
=

(n−2
3

)
. Now, the indepen-

dent term of Equation (4.14) will be

2
n−1∑
k=1

Ck,n−k

(
k
2

)2
(2k − 2)!!
(2k − 3)!!

− 2
n−1∑
k=1

Ck,n−k

(
k
2

)2
+
1
2

n−1∑
k=1

Ck,n−k

(
k
2

) (
n − k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

= 2

(
1
2

(
n
2

)2
(2n − 2)!!
(2n − 3)!!

−

(
n
2

)
12n2 − 20n + 7

15

)
− 2

(
1
2

(
n
2

)2
−
n(15n2 − 27n + 10)

27
·
(2n − 2)!!
(2n − 3)!!

)
+
1
8

(
n
4

)
(2n − 2)!!
(2n − 3)!!

=
n(49n3 − 57n2 − 22n + 24)

192
·
(2n − 2)!!
(2n − 3)!!

−
n(n − 1)(63n2 − 95n + 28)

60
.

Therefore, the sequence Eunif(Φ
2
n) is the solution of the recurrence

xn = 2
n−1∑
k=1

Ck,n−k xk −
63n4 − 158n3 + 123n2 − 28n

60

+
49n4 − 57n3 − 22n2 + 24n

192
·
(2n − 2)!!
(2n − 3)!!

= 2
n−1∑
k=1

Ck,n−k xk −
126
5

(
n
4

)
− 22

(
n
3

)
− 3

(
n
2

)
+

(
49
8

(
n
4

)
+
237
32

(
n
3

)
+
25
16

(
n
2

)
−

1
32

n
)
(2n − 2)!!
(2n − 3)!!

,
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whose initial condition is x1 = Eunif(Φ
2
1) = 0. By Theorem 1.35, the solution is

Eunif(Φ
2
n) = 28

(
n
5

)
+
256
5

(
n
4

)
+ 26

(
n
3

)
+ 3

(
n
2

)
−

(
63
8

(
n
4

)
+
33
4

(
n
3

)
+
3
2

(
n
2

))
·
(2n − 2)!!
(2n − 3)!!

=

(
n
2

) (
7n3 + n2 − 8n + 1

15
−
21n2 − 17n − 2

32
·
(2n − 2)!!
(2n − 3)!!

)
.

Thus,

σunif(Φn)
2 = Eunif(Φ

2
n) − Eunif(Φn)

2

=

(
n
2

) (
7n3 + n2 − 8n + 1

15
−
21n2 − 17n − 2

32
·
(2n − 2)!!
(2n − 3)!!

)
−
1
4

(
n
2

)2 (
(2n − 2)!!
(2n − 3)!!

− 2
)2

=

(
n
2

)
(2n − 1)(7n2 − 3n − 2)

30
−

(
n
2

)
5n2 − n − 2

32
·
(2n − 2)!!
(2n − 3)!!

−
1
4

(
n
2

)2 (
(2n − 2)!!
(2n − 3)!!

)2
.

This completes the proof. �

Finally, we end by stating and proving the following result, which presents a closed
formula to compute the covariance of the Sackin and Cophenetic indices under the
Uniform model. Before that, we shall remind the reader that for two random variables
X ,Y , their covariance can be computed as

cov(X ,Y ) = E(XY ) − E(X )E(Y ).

Thus, already knowing the values of Eunif(Sn) and Eunif(Φn), all that remains is to com-
pute Eunif(ΦnSn), and in order to do so we shall use Lemma 1.31.

Theorem 4.34. Let n ∈ N≥2. The covariance of Sn and Φn under the Uniform model is

covunif(Φn, Sn) =
(
n
2

)
26n2 − 5n − 4

15
−
3n + 2

8

(
n
2

)
(2n − 2)!!
(2n − 3)!!

−
n
2

(
n
2

) (
(2n − 2)!!
(2n − 3)!!

)2
.

Proof. As in the previous result, we shall begin by obtaining a recurrence for covunif(Φn, Sn)
that was already obtained by L. Rotger in her PhD Thesis [100] (see Proposition 2.41
therein). We give the derivation using our lemmata to ease the task of the reader, and
then we solve this recurrence.

If we apply Equation (1.15) in Lemma 1.31 setting I and J to be the Cophenetic
index Φ and the Sackin index S , for which

fΦ(k, n − k) =
(
k
2

)
+

(
n − k
2

)
, Eunif(Φk) =

1
2

(
k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
)
,

fS (k, n − k) = n, Eunif(Sk) = k
(
(2k − 2)!!
(2k − 3)!!

− 1
)
,
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we obtain

Eunif(ΦnSn) =
n−1∑
k=1

Ck,n−k

(
2Eunif(ΦkSk) + n

(
k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
)

+

(
k
2

) (
(2k − 2)!!
(2k − 3)!!

− 2
)
(n − k)

(
(2(n − k) − 2)!!
(2(n − k) − 3)!!

− 1
)

+ 2
((
k
2

)
+

(
n − k
2

))
k

(
(2k − 2)!!
(2k − 3)!!

− 1
)
+ n

((
k
2

)
+

(
n − k
2

)) )
=

n−1∑
k=1

Ck,n−k

(
2Eunif(ΦkSk) + n

(
k
2

)
+ n

(
n − k
2

)
− 4k

(
k
2

)
− 2k

(
n − k
2

)
+ (n − k)

(
k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

− 2(n − k)
(
k
2

)
(2(n − k) − 2)!!
(2(n − k) − 3)!!

+ 3k
(
k
2

)
(2k − 2)!!
(2k − 3)!!

+ 2k
(
n − k
2

)
(2k − 2)!!
(2k − 3)!!

)
= (∗).

Now, by the symmetry of Ck,n−k ,

n−1∑
k=1

Ck,n−k

(
n
(
k
2

)
+ n

(
n − k
2

)
− 4k

(
k
2

)
− 2k

(
n − k
2

))
=

n−1∑
k=1

Ck,n−k

(
n
(
k
2

)
+ n

(
k
2

)
− 4k

(
k
2

)
− 2(n − k)

(
k
2

))
= −2

n−1∑
k=1

Ck,n−k

(
k
2

)
k

and
n−1∑
k=1

Ck,n−k(n − k)
(
k
2

)
(2(n − k) − 2)!!
(2(n − k) − 3)!!

=

n−1∑
k=1

Ck,n−kk
(
n − k
2

)
(2k − 2)!!
(2k − 3)!!

.

Thus, we are able to further simplify (∗), obtaining

(∗) = 2
n−1∑
k=1

Ck,n−kEunif(ΦkSk) +
n−1∑
k=1

Ck,n−k

(
3k

(
k
2

)
(2k − 2)!!
(2k − 3)!!

− 2k
(
k
2

)
+ (n − k)

(
k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

)
.

Now, let us compute the independent term in the above recurrence applying Lemmata
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1.33, 1.34 and 4.25:

n−1∑
k=1

Ck,n−kk
(
k
2

)
= 3

n−1∑
k=1

Ck,n−k

(
k
3

)
+ 2

n−1∑
k=1

Ck,n−k

(
k
2

)
=

3
2

(
n
3

) (
1 −

3
4(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
+

(
n
2

) (
1 −

1
2(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
=

n
2

(
n
2

)
−
n(3n − 2)

16
·
(2n − 2)!!
(2n − 3)!!

n−1∑
k=1

Ck,n−kk
(
k
2

)
(2k − 2)!!
(2k − 3)!!

= 3
n−1∑
k=1

Ck,n−k

(
k
3

)
(2k − 2)!!
(2k − 3)!!

+ 2
n−1∑
k=1

Ck,n−k

(
k
2

)
(2k − 2)!!
(2k − 3)!!

=
3
2

(
n
3

) (
(2n − 2)!!
(2n − 3)!!

−
8
3

)
+

(
n
2

) (
(2n − 2)!!
(2n − 3)!!

− 2
)

=
n
2

(
n
2

)
(2n − 2)!!
(2n − 3)!!

−
2(2n − 1)

3

(
n
2

)
n−1∑
k=1

Ck,n−k(n − k)
(
k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

=
2n−4n!
(2n − 3)!!

n−1∑
k=1

(k − 1) =
n − 2
8

(
n
2

)
(2n − 2)!!
(2n − 3)!!

.

Therefore, the independent term of the equation for Eunif(ΦnSn) turns out to be

3
n−1∑
k=1

Ck,n−kk
(
k
2

)
(2k − 2)!!
(2k − 3)!!

− 2
n−1∑
k=1

Ck,n−k

(
k
2

)
k

+

n−1∑
k=1

Ck,n−k(n − k)
(
k
2

)
(2k − 2)!!(2(n − k) − 2)!!
(2k − 3)!!(2(n − k) − 3)!!

= 3
(
n
2

(
n
2

)
(2n − 2)!!
(2n − 3)!!

−
2(2n − 1)

3

(
n
2

))
− 2

(
n
2

(
n
2

)
−
n(3n − 2)

16
·
(2n − 2)!!
(2n − 3)!!

)
+
n − 2
8

(
n
2

)
(2n − 2)!!
(2n − 3)!!

=
n(13n2 − 9n − 2)

16
·
(2n − 2)!!
(2n − 3)!!

−

(
n
2

)
(5n − 2).
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Thus far, we have proved that Eunif(ΦnSn) is the solution of the recurrence

xn = 2
n−1∑
k=1

Ck,n−k xk − (5n − 2)
(
n
2

)
+
n(13n2 − 9n − 2)

16
·
(2n − 2)!!
(2n − 3)!!

= 2
n−1∑
k=1

Ck,n−k xk − 15
(
n
3

)
− 8

(
n
2

)
+

(
39
8

(
n
3

)
+
15
4

(
n
2

)
+
1
8
· n

)
(2n − 2)!!
(2n − 3)!!

,

whose initial condition is x1 = Eunif(Φ1S1) = 0. Now, by Theorem 1.35 this solution is

Eunif(ΦnSn) =
104
5

(
n
4

)
+ 28

(
n
3

)
+ 8

(
n
2

)
−

(
45
8

(
n
3

)
+ 4

(
n
2

))
(2n − 2)!!
(2n − 3)!!

=

(
n
2

) (
26n2 + 10n − 4

15
−
15n + 2

8
·
(2n − 2)!!
(2n − 3)!!

)
.

Finally,

covunif(Φn, Sn) = Eunif(ΦnSn) − Eunif(Φn)Eunif(Sn)

=

(
n
2

) (
26n2 + 10n − 4

15
−
15n + 2

8
·
(2n − 2)!!
(2n − 3)!!

)
−
1
2

(
n
2

) (
(2n − 2)!!
(2n − 3)!!

− 2
)
n

(
(2n − 2)!!
(2n − 3)!!

− 1
)

=

(
n
2

) (
26n2 − 5n − 4

15
−
3n + 2

8
·
(2n − 2)!!
(2n − 3)!!

−
n
2

(
(2n − 2)!!
(2n − 3)!!

)2 )
,

and thus the claim is proved. �

As for the asymptotic behaviour of both σ2
unif(Φn) and covunif(Φn, Sn), using that

(2n−2)!!
(2n−3)!! ∼

√
πn and the above results we obtain that

σ2
unif(Φn) ∼

56 − 15π
240

n5, covunif(Φn, Sn) ∼
52 − 15π

60
n4.

Moreover, having at our disposal closed formulæ forσ2
unif(Sn),σ

2
unif(Φn), and covunif(Φn, Sn),

we can obtain a closed formula for Pearson’s correlation coefficient of Sn and Φn

ρunif(Φn, Sn) =
covunif(Φn, Sn)

σunif(Φn)σunif(Sn)
.

We shall omit the specific expression because of its length, but its asymptotic behaviour
can be obtained from that of its components:

ρunif(Φn, Sn) ∼
52−15π

60√
10−3π

3 · 56−15π240

≈ 0.965,
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Notice that under the Yule model this correlation had already been computed [13], and
its limit turns out to be around 0.89.

To close this section, we shall reveal an interesting consequence of this last section.
For every T ∈ BinTreen and for every x, y ∈ L(T ), the nodal distance between x and
y is the length dT (x, y) of the shortest (non directed) path connecting them. The total
tree area of T [81] is then defined as the sum of the nodal distances between all pairs of
different leaves in it:

D(T ) =
1
2

∑
(x,y)∈L(T )2

x,y

dT (x, y).

Let Dn be the random variable that chooses a tree T ∈ BinPhyloTreen and then
computes D(T ). A lot of information about the behaviour of Dn under the Uniform
model is already known: its expected value [85], its mode [83], a limit formula for its
median [82], and its limit distribution [84]. But its variance σ2

unif(Dn) under this model
was not known so far. We mend this hole in the literature with the following corollary
of the results established in the last section.

Corollary 4.35. Let n ∈ N≥1. The variance of Dn under the Uniform model is

σ2
unif(Dn) = 2

(
n
2

)
12n3 − 16n2 + 7n − 1

15
−

(
n
2

)
n2 + 3n − 2

8
(2n − 2)!!
(2n − 3)!!

−

(
n
2

)2 (
(2n − 2)!!
(2n − 3)!!

)2
.

Proof. By Lemma 6 in [85], for everyT ∈ BinPhyloTreen, D(T ) = (n−1)S(T )−2Φ(T )
and hence

Dn = (n − 1)Sn − 2Φn .

Therefore,

σ2
unif(Dn) = (n − 1)2σ2

unif(Sn) + 4σ
2
unif(Φn) − 4(n − 1)covunif(Sn,Φn). (4.15)

Replacing σ2
unif(Sn), σ

2
unif(Φn), and covunif(Sn,Φn) in the right-hand side expression

of this equality by their values obtained in the previous section,

σ2
unif(Sn) =

n(10n2 − 3n − 1)
3

−

(
n + 1
2

)
·
(2n − 2)!!
(2n − 3)!!

− n2
(
(2n − 2)!!
(2n − 3)!!

)2
σ2
unif(Φn) =

(
n
2

)
(2n − 1)(7n2 − 3n − 2)

30
−

(
n
2

)
5n2 − n − 2

32
·
(2n − 2)!!
(2n − 3)!!

−
1
4

(
n
2

)2 (
(2n − 2)!!
(2n − 3)!!

)2
covunif(Φn, Sn) =

(
n
2

)
26n2 − 5n − 4

15
−
3n + 2

8

(
n
2

)
(2n − 2)!!
(2n − 3)!!

−
n
2

(
n
2

) (
(2n − 2)!!
(2n − 3)!!

)2
.

we obtain the formula in the statement. �
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Now, recall that (2n−2)!!
(2n−3)!! ∼

√
πn; then, when n tends to∞, the leading coefficient of

the variance of Dn under the Uniform model tends to

12
15
−
π

4
=

48 − 15π
60

≈ 0.876.

4.5 Discussion

In his seminal paper on the shape of phylogenetic trees [102], Sackin introduced two
measures that, he thought, captured the idea of imbalance of a rooted bifurcating tree:
the maximum depth and the variation of the leaves’ depths. Despite appearing in some
initial studies as the Variance of the leaves’ depths, denoted here by V , [60, 65, 69, 1],
the secondmeasure rapidly faded from use, and is now foundmarginally in some papers
like [59], which extend the experiments performed in [69]. Contrary to what happens
with the first Sackin’s proposal, that of the maximum depth —which, having only a
linear range, has a very poor discriminatory power—, there was no clear reason to
explain the ostracism this measure has suffered.

Now we know that the phylogenetic community has been wise in prefering other
balance indices to the Variance of the leaves’ depths. Up to 183 leaves, V “correctly”
classifies the extremal trees, if we are to judge by our intuition of what “balance” means.
This property, however, does not hold beyond that number: indeed, for almost all
natural numbers n ∈ N, the minimum of the Variance of depths on BinTreen is not
held at T bal

n nor at any depth-equivalent tree. Nevertheless, the maximum value is
always reached at the caterpillars, which is akin to our intuition. Dios aprieta pero no
ahoga.

We have provided two quasi-linear algorithms in this chapter that, given n ∈ N,
compute the multisets of depths of the trees T ∈ BinTreen having minimum Variance
of depths. They are basically search algorithms that reduce the scope of the search to
a space of multisets of depths of cardinality linear in n, and then search the minimum
there. Once the vector of depths is provided, then it is easy to retrieve trees that are
represented by that vector of lengths by just considering a fully symmetric tree with
2dlog2(n)e leaves and prunning the appropriate subtrees. Thismethod, alongwith others,
can be found in our GitHub repository https://github.com/biocom-uib/
biotrees.

In this chapter we have also presented closed formulæ for the expected value and
variances of several balance indices under the Yule and the Uniform models. We have
begun by computing the expected value of the Variance of depths under the Yule model.
From there, we have proceeded to the computation of the expected value of V under
the Uniform model —an errand which, as it is seen above, is way more convoluted.
Nevertheless, the techniques that aid us to give a solution to that problem are, in our
opinion, interesting in their own right (Theorem 1.35 and Lemmata 1.33, 1.34, and
4.25) and have allowed us to compute some expressions that were unknown thus far:
the variance of the Sackin and Cophenetic indices under the Uniform model, and their
covariance. The aforementioned values were already known under the Yule model
[85, 13].

These formulæ allow the proper standarization of the above indices relative to the
aforementioned probabilistic model. Recall that the standarization of a shape index, say
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I , relative to a given probabilistic model (Pn)n, is performed bymeans of the expression

In − EP (In)
σP (In)

i.e., by substracting to the index its expected value under the considered model, and
then by dividing the result by its standard deviation (under the considered model).
Because of the lack of these formulæ, for instance, the current version of the R package
apTreeshape standardizes the Sackin index under the Uniform model by dividing by
the square root of the asymptotic approximation of σunif(Sn), computed in Equation
4.13 [10].

4.5.1 Open problems

What went we out into this
wilderness to find?

Robert Eggers, The Witch: a New
England folktale

There are questions that, when pursued, unleash more darkness than light. This
is true in the History of Science in general, as one could think that all the knowl-
edge acquired during the last thousands of years has served not only to better under-
stand the world, but, per negationem, to vividly draw the contours of that which re-
mains unknown. An image comes across as appropriate: in the late 18th century, even
though the oceans of the world had been thoroughly explored by the likes of Magal-
hães, Bougainville and Captain Hook, the heart of Africa lay down blank, inmaculated,
and not even the wisest man or woman alive at that time in the Western world could
say what wonders dwelt there. Endless cabilations and discussions took place, but in
the end all that could be said can be reduced to the old Latin sentence: hic sunt dracones.

The Dictionary of Obscure Sorrows [71] gives definitions to specific feelings Hu-
man beings sometimes have. In it, one finds the following entry:

la cuna

n. a twinge of sadness that there’s no frontier left, that as the last explorer
trudged with his armies toward a blank spot on themap, he didn’t suddenly
remember his daughter’s upcoming piano recital and turn for home, leav-
ing a new continent unexplored so we could set its mists and mountains
aside as a strategic reserve of mystery, if only to answer more of our chil-
dren’s questions with “Nobody knows! Out there, anything is possible.”

The question that occupies this chapter is prolific in raising new uncertainties, and
as it fails to satisfy our intuition, it, too, questions our knowledge of the subject. Indeed,
the computations carried out present intriguing regularities that seem to whisper some
hidden structure that has escaped our repeated attempts to unveil it. Take, for instance,
Figure 4.7. In it, some kind of fractal structure for the minimum value V (n) of V on
BinTreen is suggested, as well as a clear tendency to decrease with n. We have not been
able to find any reason for either one or the other.
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We have experimentally found the minima of V on BinTreen for n between 1 and
216 using our algorithms, and other such regularities have been observed—of which, to
this day we have only been able to prove one. We leave the verification of the rest as
open problems.

Figure 4.7: Scatter plot of the values of V (n) for n ∈ [27, 215]. The values of n for
which this minimum is achieved at the maximally balanced trees are depicted in red.

“Unicity” of the minima

For all tested n ∈ {1, 2, 3, . . . , 216}, the minimum value of V on BinTreen has been
found to occur at just one type of tree, modulo depth-equivalence; i.e., it has only been
achieved at only one type of trees T l

n for some sequence l. We have not been able to
prove or disprove this property, although we conjecture it to hold for every n ∈ N.

Characterization of the intervals where the maximally balanced trees are minimal

Above, we have already proved that, for anym large enough, theminima of theVariance
of depths on BinTreen are never achieved at the maximally balanced trees for n in an
interval [2m + O(m3), 2m+1 − 31]. The right-hand side of this bound can be slightly
improved to 2m+1 − 30, and its tightness can be proven. This strikes us as capricious,
but we now present the result and its proof in order to convince the reader of such
property.

Theorem 4.36. Let n = 2m + k for n ∈ N and m =
⌊
log2(n)

⌋
≥ 5. Then,

(i) If k ≥ 2m − 29, the minimum value of V on BinTreen is attained exactly at the trees
depth-equivalent to T bal

n .

(ii) If k = 2m − 30, the minimum value of V on BinTreen is attained exactly at the trees
depth-equivalent to T bal

n if m ∈ {5, 6, 7}, but at the trees of type T (6)n if m ≥ 8.
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Proof. Rewrite n as n = 2m+1 − x , so that k = 2m − x , and suppose henceforth that
x ≤ 30. Then, if j ≥ 1, by Lemma 4.5 two possibilities exist: either

k +
j∑

i=1
(2li − 1) ≤ 2m

or

k +
1
2

j∑
i=1
(2li − 2) > 2m .

The first possibility cannot hold; indeed, for

k +
j∑

i=1
(2li − 1) ≥ 2m − x + 25 − 1 > 2m .

Therefore, if the minimum Variance of depths is achieved at a tree of type T l
n with

l ∈ N j and j ≥ 1, then it must happen that

p1 = 3 · 2m − k −
j∑

i=1
(2li − 1) = 2m+1 + x −

j∑
i=1
(2li − 1),

and it must have depth m + 2. Recall, from that same lemma, that not every such tree
exists: indeed, it must also satisfy that k + 1

2
∑ j

i=1(2
li − 2) ≤ 2m .

Recall the notations introduced in the proof of Theorem 4.22:

A(l) =
∑ j

i=1(2
li − l 2i − 1), B(l) =

∑ j
i=1(2

li − li − 1).

Then, we have that, by Lemma 4.7,

n ·V (T l
n) = p1 +

j∑
i=1

l 2i −
(p1 +

∑ j
i=1 li)

2

n

= 2m+1 + x − A(l) −
(2m+1 + x − B(l))2

2m+1 − x

=
1

2m+1 − x

(
(2m+1 − x)(2m+1 + x − A(l)) − (2m+1 + x − B(l))2

)
=

1
2m+1 − x

(
2m+1(2B(l) − A(l)) − B(l)2 − 2x(2m+1 + x) + x(2B(l) + A(l))

)
.

Therefore,

n ·V (T l
n) ≤ n ·V (T bal

n ) =
2k(2m − k)
2m + k

=
2x(2m − x)
2m+1 − x

is equivalent to

2m+1(2B(l) − A(l)) − B(l)2 − 2x(2m+1 + x) + x(2B(l) + A(l)) ≤ 2x(2m − x),

which happens if, and only if,

(2m+1 − B(l))(B(l) − 3x) + (2m+1 − x)(B(l) − A(l)) ≤ 0. (4.16)
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Now, since j ≥ 1 and l1 ≥ 5, B(l) > A(l) and, since B(l) ≤
∑m

i=5 2
i < 2m+1 whereas

x ≤ 30, then Inequality (4.16) would imply that

(2m+1 − B(l))(B(l) − 90) + (2m+1 − 30)(B(l) − A(l)) ≤ 0. (4.17)

Let us now consider the left-hand side of this inequality. Sincem ≥ 5, (2m+1−30)(B(l)−
A(l)) > 0. Furthermore, since 25 − 5 − 1 = 26, 26 − 6 − 1 = 57 and 27 − 7 − 1 = 120, it
turns out that if some li is larger than 6, then B(l) − 90 ≥ 0. Since B(l) < 2m+1, then
Inequality (4.17) can only hold when either j = 1 and l1 ∈ {5, 6} or j = 2 and l = (5, 6);
in any other case, V (T bal

n ) < V (T l
n). Let us now check these three cases.

• Suppose that l = (5). In this case, the necessary condition for the existence of T (5)n is
x <

∑ j
i=1(2

li−1−1) = 24−1 = 15. But then, since A((5)) = 6 and B((5)) = 26, Inequality
(4.16) says

(2m+1 − 26)(26 − 3x) + 20(2m+1 − x)
≥ (26 − 26)(26 − 3x) + 20(26 − x) = 2268 − 134x > 0

whenever x < 15. Therefore, for this range of values, V (T bal
n ) < V (T (5)n ).

• Suppose now that l = (6). In this case, the necessary condition for the existence of T (6)n
is x < 25 − 1 = 31, which is always satisfied since by hypothesis we imposed x to be
smaller or equal than 30. And so, Inequality (4.16) becomes

(2m+1 − 57)(57 − 3x) + 30(2m+1 − x) ≤ 0,

but it can be checked that if m ∈ {5, 6, 7} and x ≤ 30 this inequality does not hold,
whereas if m ≥ 8 and x ≤ 29,

(2m+1 − 57)(57 − 3x) + 30(2m+1 − x) ≥ (29 − 57)(57 − 87) + 30(29 − 29) > 0.

When x = 30,

(2m+1 − 57)(57 − 90) + 30(2m+1 − 30) = 981 − 3 · 2m+1 < 0,

and thus in this case V (T (6)n ) < V (T bal
n ).

• Suppose, finally, that l = (5, 6). In this case, the necessary condition on x for the
existence of T (5,6)n is x < 24 − 1 + 25 − 1 = 46, and so is always satisfied. However,
A((5, 6)) = 33 and B((5, 6)) = 83, and thus, whenever m ≥ 5, the left-hand side of
Inequality (4.17) is

(2m+1 − 83)(83 − 3x) + 50(2m+1 − x)
≥ (26 − 83)(83 − 3x) + 50(26 − x) = 7x + 1623 > 0,

and so the inequality itself is never satisfied. Hence, V (T bal
n ) < V (T (5,6)n ).

Thus concludes the proof of the theorem. �

However, an exact expression for the lower bound is still unknown to us. That is:
we have not been able to find a closed formula that, given m, ouputs the first km ≥ 0
such that V (T bal

2m+km
) is not minimum in BinTree2m+km . For the range of tested values,

we may approximate this value as km ∼ 0.1015m3.11, but in any case it is shown in the
proof of Theorem 4.22 that km is at most inO(m3). So, given the results presented by
our tests, we conjecture it to be Θ(m3).
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“Persistence” of the minima

For all tested n = 2m + k ≥ 28, m =
⌊
log2(n)

⌋
, some sort of “persistence” has been

found, in the following sense: that, if the minimum of V is achieved at the trees of the
type T l

n for l ∈ N j with j ≥ 1 and k < 2m −
∑ j

i=1(2
li − 1), then the minimum Variance

of depths on BinTreen+1 is also achieved at the trees of the type T l
n+1, with the same l.

Notice that the fact that j ≥ 1 is necessary for this property to hold. Indeed, for if
j = 0, it may very well happen that for some n the minimum ofV is achieved at T ∅n on
BinTreen whereas on BinTreen+1 is not achieved atT ∅n+1. For example, the case already
mentioned in the passage from BinTree183 to BinTree184.

We have not been able to prove this property either, but we conjecture it to hold
for every n ≥ 28.

The Whisperer in Darkness

In relation to this last point, for all tested n ∈ [2m, 2m+1), this “persistence” presents
intriguing regularities each time a series of T l

n changes; i.e., the sequence formed by
the lengths of the segments of consecutive numbers n of leaves such that the minimum
is achieved at a tree of type T l

n for the same l hints at some hidden structure which
remains veiled.

Here, we present the sequences corresponding to m ∈ {12, 13}. Take the first one,
presented in Table 4.1 in reversed order—so that the pattern is more easily spotted. The
interpretation of the numbers presented is that, when n descends from 213 − 1 to 212,
for the first 29 values the trees T l

n achieving the minimum V value on BinTreen have
the same l vector (as we have already mentioned (Theorem 4.36), it is l = ∅); then, the
same happens with the next two values of n; afterwards, the same goes for the next 25
values; and so on. As we can see, the sequence ends in 52 each two lines, in 88 each four
lines, and in 132 each eight lines.

As m increases (see, for instance, the sequence associated to m = 13 in Table 4.2),
the different sequences associated with it present the same pattern with practically the
same numbers, and only small perturbations as if the sequence for m = 12 had “lost
some information” due to its “contraction”.

We present no conjecture, no hypothesis apart from what is obvious: that the con-
science behind these figures did not present them randomly, that these patterns, their
disposition, far from being hazardous, have been conceived, measured, by an entity
whose whispers have hitherto gone unnoticed, whose will we have barely begun to
unveil.
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4.5. Discussion

Table 4.1: Sequence, in reverse order, of the numbers of consecutive values n ∈ [212, 213)
such that the trees T l

n achieving the minimum V value on BinTreen have the same l.

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 132

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 27 206

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 132

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 7 442
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Table 4.2: Sequence, in reverse order, of the numbers of consecutive values n ∈
[213, 214) such that the trees T l

n achieving the minimum V value on BinTreen have
the same l.
29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 1 130

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 28 204

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 1 130

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 13 302

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 1 130

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 28 204

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 1 130

29 2 25 12 29 2 18 28 29 2 25 12 29 2 7 52

29 2 25 12 29 2 18 28 29 2 25 12 21 88

29 2 25 12 29 2 18 28 29 2 25 12 26 598
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The Quartet index

[...] It’s impossible for a three
legged table to wobble. Tables with
four legs can, and often do. If the

four legs are uneven, or if the floor’s
not flat, the table will wobble —

resting first on one set of three legs,
then tipping to another. Put more
than four uneven legs on a table,

and it can wobble every which way,
always seeking to rest on three legs.

A. Boyd, The Power of Three, No.
2533

Thus far, we can say that we have learned quite a lot about several balance indices.
However, none of them is completely satisfying. The Sackin index is meaningless

when the depth of the leaves of the tree is fixed, its minimum value is shared among
all the trees depth-equivalent to the maximally balanced tree, but at least we know the
expected value and variance under the Yule and Uniform models. The Colless index
has a smaller number of trees attaining its minimum value, but their characterization
is much more complex and their expected value under the Uniform model is not yet
known; furthermore, and most importantly, it only has sense on bifurcating trees.
And let us not talk about the Variance of depths! We do not even know where does
its minimum fall for most numbers of leaves, but we do know that it is not attained at
the tree we would like it to. On the other hand, the Cophenetic andQuadratic Colless
indices are an improvement in so that they achieve their minimum value at a single
tree, the maximally balanced one, and we are able to compute its expected value and
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variance under both the Uniform and Yule models and Chapters and; they also have a
larger range of values, going from O(n2) in the case of the Sackin and Colless indices
to O(n3) for any number of leaves n ∈ N —although, we should bear in mind, the
Quadratic Colless index, too, is only sound when dealing with bifurcating trees.

But as good as these two indices are, we would not be completely Human if we
were contented with things as they are, would we? So, can it get any better than that?
Can we have a shape index such that, for example, its minimum and maximum values
are attained at only one tree each, its first two moments can be computed for a more
general probabilistic model of trees (yes! trees, not necessarily bifurcating trees but
arbitrary, multifurcating ones) and (why not!) it has an even larger range of values?
And can it, too, be such that it has some natural extensions to other directed graphs
such as taxonomic or multilabelled trees? To the eternal glory of the Human mind, the
answer is yes.

The first number of leaves that presents two different bifurcating tree shapes is four.
Indeed, there are five different trees with five leaves, namely those in Figure 5.1. Now,

Q0 Q1 Q2 Q3 Q4

Figure 5.1: The five tree shapes in Tree4.

the Q0, Q3 and Q4 are already known to us: indeed, they are T cat
4 , T bal

4 , and T star
4 ,

respectively; i.e., the caterpillar, the maximally balanced tree and the star with four
leaves. Of them, the maximally balanced tree and the caterpillar are the first bifurcating
trees that can be distinguished, in the sense that 4 is the first number of leaves n such
that |BinTreen | > 1.

As we shall see, the order in which these trees have been listed is not arbitrary:
they are ordered in increasing order of their number of automorphisms, c’est à dire,
their symmetry. That we already knew when it came to the extreme trees: indeed, we
have already proven that the star is the tree such that, the number of leaves being fixed,
it has more automorphisms—namely, 4! = 24—, and that the caterpillar is the tree with
the least such number —namely, 2.

As the figure hints, in this chapter, we call the trees presented in the above figure
Q0, . . . ,Q4, respectively, so that Q0 = T cat

4 , Q3 = T bal
4 and Q4 = T star

4 . Then, we have
the following result.

Lemma 5.1. Let Qi be the trees defined above. Then,

|AutQ0 | = 2, |AutQ1 | = 4, |AutQ2 | = 6, |AutQ3 | = 8, |AutQ4 | = 24.

Proof. These figures are easily deduced from Lemma 1.13 and Theorem 1.14, according
to which, for every tree T ,

|Aut T | =
∏

u∈V̊ (T )

∏
i
ni(u)!
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where, for every u ∈ V̊ (T ), n1(u), n2(u), . . . denote the cardinalities of the isomor-
phism classes among the subtrees rooted at the children of u. �

This induces an order between the trees in Tree4. Now suppose we assign to each
one of them a number qi ∈ R≥0, in such amanner that qi > q j if, and only if, |AutQi | >

|AutQ j | for any (i, j) ∈ {0, . . . , 4}2; i.e., by Lemma 5.1, qi+1 > qi for any i ∈ {0, 1, 2, 3}.
Any such assignment (Qi 7→ qi) is a mapQI : Tree4 → R≥0, withQI(Qi) = qi for any
i ∈ {0, . . . , 4}. This map induces a map QI : Tree→ R≥0 by means of

QI(T ) =
∑

Q∈Part4(L(T ))

QI(T (Q))

=

4∑
i=0

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
�� · qi,

where for every set of four leaves, or 4-tuple,Q ∈ Part4(L(T )),T (Q) denotes the subtree
of T induced by Q , as defined in page 4 in the Preliminaries. We shall call T (Q) the
quartet induced by Q .

Notice that, in fact, we can always consider q0 to be 0 without losing any informa-
tion: indeed, for

QI(T ) =
4∑
i=0

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
�� · qi

= q0
(
|L(T )|

4

)
+

4∑
i=1

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
�� · (qi − q0).

Now, the first term in this expression will remain constant whenever |L(T )| does, and
since it does not add any information, it can be circumvented by just imposing q0 = 0.
We shall do so in the rest of this chapter, and therefore, in fact, we define

QI(T ) =
4∑
i=1

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
�� · qi .

We call such a map QI : Tree→ R≥0 a Quartet index,1 and therefore the reasoning
above defines a family of Quartet indices. We will, however, use the definite article
the whenever we do not fix any values qi, i ∈ {1, . . . , 4}, and when dealing with trees
of a fixed number n of leaves, we shall usually make the abuse of language of writing
QI : Treen → R≥0 when in fact we are considering a restriction of the QI defined
above. We shall, also, usually say that a tree T has, for some i ∈ {0, . . . , 4}, a quartet of
the form Qi when T (Q) = Qi for some Q ∈ Part4(L(T )).

Example:
Consider the following tree T ∈ Tree7:

1In our paper [25], and upon request of one of the referees, we used the term rooted Quartet index,
but we still prefer the name without the adjective “rooted”, because all our trees are rooted, and therefore
we omit this adjective in this report.
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Now, it is easy to see that it has four quartets of shape Q0, eighteen quartets of
shape Q1, four of shape Q2, nine of shape Q3 and none of shape Q4. Thus,

QI(T ) = 18q1 + 4q2 + 9q3.

Oftenly, we will restrict ourselves to bifurcating trees, and since a bifurcating tree can
only have quartets of the form Q0 and Q3, and the former adds nought to the value of
QI, we define the Quartet index for bifurcating trees QIB : BinTree → N by means of
the relation

QIB(T ) =
1
q3

QI(T ) =
��{Q ∈ Part4(L(T )) : Q = Q3}

��.
By definition, the Quartet index is a shape index, in the sense that it is a function

over tree shapes, although it can easily be extended to PhyloTree by precomposition
by π1. In this chapter we will argue that it is, furthermore, a balance index in the sense
discussed in the Preliminaries. The intuition behind the use of QI as a balance index
is that a highly balanced evolutive process should give rise to symmetrical evolutive
histories of many small subsets of taxa. Then, by means of the values qi , we associate
to each 4-tuple of different leaves of the tree T a number that quantifies the symmetry
of the joint evolution of the species they represent, and then we add up these values over
all 4-tuples of different leaves ofT , expecting that, the most symmetrical a phylogenetic
tree is, the most symmetrical will be its restrictions to subsets of 4 leaves.

Remark 5.2. The choice of the actual values of QI can be done following multiple
criteria. It is natural, for example, to consider qi = i for all i ∈ {0, . . . , 4}, or qi = 2i , or
even qi = S(Q0) − S(Qi), where S is the Sackin index, or an analogously derived value
from the Cophenetic index. Notice, however, that the Colless index cannot be used to
provide such values, since it only makes sense on bifurcating trees. Colless-like indices
[86] could, however, be considered.

This chapter is organized as follows. In the first section we will prove several the-
orems on the computational aspects of QI: a recursive —on the children of the root—
formula, and a linear procedure to compute it.

Then, the problem of characterizing, when presented with a number of leaves n,
the trees that attain the extreme values of QI will be discussed. In the second section,
we shall prove that the minimum Quartet index is attained exactly at the caterpillars,
whereas the maximum exactly at the star or, if restricted to bifurcating trees, exactly
at the maximally balanced trees, as it should. This allows us to consider the QI to be a
balance index which, in opposition to the Sackin and Colless indices, increases when it
finds a tree to be more balanced.
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5.1. Computation of QI

The third sectionwill be a computation of the expected value and the variance of the
Quartet index under any probabilistic model of trees satisfying the shape invariance and
sampling consistency conditions. We will end with a discussion on possible extensions
of QI to other sets of trees.

5.1 Computation of QI

In this section we shall be concerned with the recursive computation of the Quartet
index. Let n ∈ N, and T ∈ Treen a multifurcating tree. Let trip(T ) be the number of
non-bifurcating triples of T ; that is, the number of subtrees of T induced on 3-tuples of
leaves that have shape T star

3 :

trip(T ) =
��{{x, y, z} ∈ Part3(L(T )) : T ({x, y, z}) = T star

3
}��.

Notice, therefore, that if T = T1 ∗ · · · ∗Tm , then

trip(T ) =
m∑
i=1

trip(Ti) +
∑

1≤i1<i2<i3≤n
ni1ni2ni3 .

where ni = |L(Ti)| for each i ∈ {1, . . . ,m}. For instance, for the tree T in page 185,
trip(T ) = 10.

With these notations, we have the following theorem.

Theorem 5.3. Let T = T1 ∗ · · · ∗Tm ∈ Treen , with Ti ∈ Treeni for every i ∈ {1, . . . ,m}.
Then,

QI(T ) =
m∑
i=1

QI(Ti) + q4
∑

1≤i1<i2<i3<i4≤m
ni1ni2ni3ni4

+ q3
∑

1≤i1<i2≤m

(
ni1
2

) (
ni2
2

)
+ q2

∑
1≤i1<i2≤n

(
ni1trip(Ti2) + ni2trip(Ti1)

)
+ q1

∑
1≤i1<i2<i3≤m

(
ni2ni3

(
ni1
2

)
+ ni1ni3

(
ni2
2

)
+ ni1ni2

(
ni3
2

))
.

Proof. For every Q ∈ Part4(L(T )) we have the following possibilities:

1. If Q ∈ Part4(L(Ti)) for some i ∈ {1, . . . ,m}, then T (Q) = Ti(Q), and therefore its
contribution to QI(T ) will be counted in QI(Ti).

2. If all four leaves of Q belong to different maximal pending subtrees Ti , then T (Q) =
T star
4 and it adds q4 to the totalQI of T . There are exactly

∑
1≤i1<i2<i3<i4≤m ni1ni2ni3ni4

such quartets.

3. If two leaves ofQ belong to amaximal pending subtreeTi1 and the other two to another,
say Ti2 , then T (Q) = T bal

4 and it adds q3 to the total QI(T ). For each (i1, i2) ∈ [m]2
with i1 < i2 there are

(ni1
2

) (ni2
2

)
quartets of this type, and hence the third term in the

sum is justified.

4. If three leaves, say x , y, and z , in Q belong to a maximal pending subtree Ti and the
fourth to another, then two cases arise:
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• If T ({x, y, z}) = Ti({x, y, z}) = T star
3 , then T (Q) = Q2 and it adds q2 to QI(T ). There

are
∑

1≤i1<i2≤m
(
ni1trip(Ti2) + ni2trip(Ti1)

)
such quartets.

• If T ({x, y, z}) = Ti({x, y, z}) = T cat
3 , then T (Q) = T cat

4 , and it adds nought to the
global QI.

5. Finally, if two leaves of Q belong to a maximal pending subtree Ti1 , and the other two
to two different subtrees, say Ti2 and Ti3 , then T (Q) = Q1, and it contributes q1 to the
total addition. There are

∑
1≤i1<i2<i3≤m

(
ni2ni3

(ni1
2

)
+ ni1ni3

(ni2
2

)
+ ni1ni2

(ni3
2

) )
quartets

of this type.

Thus concludes the proof. �

We deduce the following corollary.

Corollary 5.4. Let T = T1 ∗ T2 ∈ BinTreen be a bifurcating tree, with T1 ∈ BinTreen1
and T2 ∈ BinTreen2 . Then,

QIB(T ) = QIB(T1) +QIB(T2) +

(
n1

2

) (
n2

2

)
=

∑
v ∈V̊ (T )

(
κ(v1)
2

) (
κ(v2)
2

)
,

where, for every v ∈ V̊ (T ), {v1, v2} = child(v).

Proof. The first equality is just a direct consequence of Theorem 5.3. The second one
can be proved as an easy induction on the number of leaves ofT , using the first equality
in the induction step. �

Remark 5.5. Notice that Corollary 5.4 ensures thatQIB is a bifurcating recursive shape
index, in the sense introduced in the Preliminaries.

To end this section, we present a result that ensures that the Quartet index is not
computationally expensive in time: indeed, for it can be computed in linear time. But
before that, we need a previous lemma.

Lemma 5.6. Let T ∈ Treen and let f : V (T ) → R be a map such that f (v) can be
computed in constant time for any v ∈ L(T ), and in O(degout(v)) for any v ∈ V̊ (T ),
given its value on child(v). Then, the vector ( f (v))v ∈V (T ) can be computed in time O(n).

Proof. We traverse the tree in post-order; that is, we begin by computing the value of
f on the leaves of the tree, then, over the parents of the leaves, and so forth. It can
be computed in constant time over each leaf, and so the computation of f over them
takes already time O(n). Then, for each internal node v ∈ V̊ (T ), f can be computed
in time O(degout(v)) provided that f (u) is known for every u ∈ child(v). Let mk be
the number of internal nodes of out-degree k; then, the value of f on all v ∈ V (T ) can
be computed in time

O(n +
∑
k

mkk) = O(n + 2n − 2) = O(n)

because the number of edges in T is, on the one hand, equal to
∑

k mkk, and, on the
other, at most, 2n − 2 since |V (T )| ≤ 2n − 1. �
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Remark 5.7. In particular, the result above ensures us that a linear time function on
the vector ( f (v))v ∈V (T ), such as its addition, can be computed in linear time.

Thus, Lemma 5.6 ensures that the computations in Corollary 5.4 can be performed
inO(n) time. Let us see that this is indeed the case in general.

Theorem 5.8. If T ∈ Treen ,QI(T ) can be computed in time O(n).

Proof. By the lemma above, the vector (κ(v))v ∈V̊ (T ) can be computed in linear time.
Now, in order to simplify the notations, for any v ∈ V̊ (T ), let

El (v) =
∑

{v1,...,vl }⊆child(v)

κ(v1) · · · κ(vl ) for l ∈ {2, . . . , degout(v)}

F1(v) =
∑

{v1,v2,v3 }⊆child(v)

((
κ(v1)
2

)
κ(v2)κ(v3) +

(
κ(v2)
2

)
κ(v1)κ(v3) +

(
κ(v3)
2

)
κ(v1)κ(v2)

)
F2(v) =

∑
{v1,v2 }⊆child(v)

(
κ(v1) · trip(Tv2) + κ(v2) · trip(Tv1)

)
F3(v) =

∑
{v1,v2 }⊆child(v)

(
κ(v1)
2

) (
κ(v2)
2

)
in such a way that

trip(T ) =
∑

v ∈V̊ (T )

E3(v)

QI(T ) =
∑

v ∈V̊ (T )

(q1F1(v) + q2F2(v) + q3F3(v) + q4E4(v)).

We want to prove that each one of the vectors(
F1(v)

)
v ∈V̊ (T ),

(
F2(v)

)
v ∈V̊ (T ),

(
F3(v)

)
v ∈V̊ (T ),

(
E4(v)

)
v ∈V̊ (T )

can be computed in time O(n). Indeed, if we succeed in proving this, then QI will be
shown to be computed in linear time.

In order to prove this, we will use the Newton-Girard formulæ (see, for instance,
[75, §I.2]): given a multiset of numbers X = {x1, . . . , xk}, if we set

Pl (X ) =
∑k

i=1 x
l
i and El (X ) =

∑
1≤i1< · · ·<il ≤k x i1 · · · x il

then,

El (X ) =
1
l !
det

©«

P1(X ) 1 0 · · · 0 0
P2(X ) P1(X ) 2 · · · 0 0
P3(X ) P2(X ) P1(X ) · · · 0 0
...

...
...

. . .
...

...

Pl−1(X ) Pl−2(X ) Pl−3(X ) · · · P1(X ) l − 1
Pl (X ) Pl−1(X ) Pl−2(X ) · · · P2(X ) P1(X )

ª®®®®®®®®¬
.
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If we consider l as a fixed parameter, each Pl (X ) can be computed in time O(k), and
in this case the expression of El (X ) as an l × l determinant can be computed in time
O(l 4k) = O(k) using for instance Bareiss cubic algorithm to compute determinants.

Now consider, for every v ∈ V̊ (T ), the multiset Xv = {κ(u) : u ∈ child(v)}. Then,
every El (v) = El (Xv ) can be computed in timeO(degout(v)), and therefore the whole
vector (El (v))v ∈V̊ (T ) can be computed in time O(n), by Lemma 5.6. In particular,
that is the case for (E3(v))v ∈V̊ (T ) and (E4(v))v ∈V̊ (T ). And so, again by Lemma 5.6, the
recursion

trip(Tv ) =
∑

u∈child(v)

trip(Tu) + E3(v) =
∑

u∈V̊ (Tv )

E3(u)

can also be computed in linear time, and so does the vector
(
trip(Tv )

)
v ∈V̊ (T ). Therefore,

F3(v) =
∑

{v1,v2 }⊆child(v)

(κ(v1)trip(Tv2) + κ(v2)trip(Tv1))

=
©«

∑
vi ∈child(v)

κ(vi)
ª®¬

∑
v j ∈child(v)

trip(Tv j ) −
∑

vi ∈child(v)

κ(vi)trip(Tvi )

= κ(v)(trip(Tv ) − E3(v)) −
∑

vi ∈child(v)

κ(vi)trip(Tvi )

and this implies that every F3(v) is computed in timeO(degout(v)), and hence the whole
vector (F3(v))v ∈V̊ (T ) can be computed in timeO(n).

It remains to show that the vectors
(
F1(v)

)
v ∈V̊ (T ) and

(
F2(v)

)
v ∈V̊ (T ) can also be

computed in linear time. Let us focus first on the latter. By definition,

F2(v) =
∑

{v1,v2 }⊆child(v)

(
κ(v1)
2

) (
κ(v2)
2

)
=

1
4

∑
{v1,v2 }⊆child(v)

κ(v1)κ(v2) +
1
4

∑
{v1,v2 }⊆child(v)

κ(v1)2κ(v2)2

−
1
4

∑
{v1,v2 }⊆child(v)

(
κ(v1)2κ(v2) + κ(v1)κ(v2)2

)
.

Now, the two summands in the above expression can be considered to be E2(v) and
E2({κ(u)2 : u ∈ child(v)}), and therefore they are computed in time O(degout v). As
far as the substrahend goes,∑

{v1,v2 }⊆child(v)

(κ(v1)2κ(v2) + κ(v1)κ(v2)2)

=
©«

∑
vi ∈child(v)

κ(vi)2
ª®¬

∑
v j ∈child(v)

κ(v j ) −
∑

vi ∈child(v)

κ(vi)3

and hence, F2(v) can be computed in time O(degout(v)). Thus, by Lemma 5.6, the
whole vector (F2(v))v ∈V̊ (T ) can be computed in timeO(n).
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5.2. Extreme values and the trees that attain them

Finally, let us consider F1:

F1(v) =
∑

{v1,v2,v3 }⊆child(v)

((
κ(v1)
2

)
κ(v2)κ(v3) +

(
κ(v2)
2

)
κ(v1)κ(v3) +

(
κ(v3)
2

)
κ(v1)κ(v2)

)
=

1
2

∑
{v1,v2,v3 }⊆child(v)

κ(v1)κ(v2)κ(v3)
(
κ(v1) + κ(v2) + κ(v3) − 3

)
=

1
2
©«

∑
{v1,v2,v3 }⊆child(v)

κ(v1)κ(v2)κ(v3)
ª®¬

∑
vi ∈childv

κ(vi)

− 2
∑

{v1,v2,v3,v4 }⊆child(v)

κ(v1)κ(v2)κ(v3)κ(v4) −
3
2
E3(v)

=
1
2
E3(v)E1(v) − 2E4(v) −

3
2
E3(v),

and thus, it can also be computed in timeO(degout(v)), and therefore the whole vector
(F1(v))v ∈V̊ (T ) can be computed in timeO(n), as we wanted to prove. �

5.2 Extreme values and the trees that attain them

As we have already mentioned, a sine qua non condition for QI to be considered a
proper balance index is that its extreme values must be reached at the trees that are
considered to represent the extreme cases of balance: that is, it must classify the stars,
in the multifurcating case, and the maximally balanced trees, in the bifurcating case, as
most balanced, and the caterpillars as most unbalanced. This shall indeed be the case.
As it often happens, this quest for the extreme values will be more difficult when it
comes to characterizing the maximum QIB index: i.e., the most balanced (according
to the Quartet index) bifurcating tree.

Firstly, let us prove that the minimum QI is attained exactly at the caterpillars; i.e.
the least balanced trees according to the Quartet index are the caterpillars.

Theorem 5.9. Let n ∈ N≥1. The minimum Quartet index in Treen is reached exactly at
the caterpillars, and it is

QI(T cat
n ) = 0.

Proof. Since qi > 0 for any i > 0, that is, for any Qi , T cat
4 , the only way in which

QI(T ) =
4∑
i=1

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
�� · qi

can be 0 is having only quartets of the formQ0 = T cat
4 . Let us see that such a tree must

be a caterpillar itself. Indeed, let T ∈ Treen be a tree different from the caterpillar.
Then, two possibilities exist:

• either there is some v ∈ V̊ (T ) with degout(v) ≥ 3, and thus T contains at least one
quartet of the forms Q1, Q2 or Q4;

• or T is bifurcating and it contains at least two cherries, which induce a quartet of the
form Q3.
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Now, it remains to be seen thatQI(T cat
n ) = 0, but this is obvious because all the subtrees

of a caterpillar are caterpillars. �

Secondly, we shall prove that the most balanced of all trees with n leaves are, ac-
cording to QI, the stars.

Theorem 5.10. Let n ∈ N≥1. The maximumQuartet index in Treen is reached exactly at
the stars, and it is

QI(T star
n ) =

(
n
4

)
q4.

Proof. The fact that QI(T star
n ) =

(n
4
)
q4 is obvious, since the only quartets that a star

presents are stars with four leaves, and there are exactly
(n
4
)
quartets in each tree with

n leaves. Now, since q4 > q3 > q2 > q1 > q0 = 0, it is clear that the maximum value of
QI restricted to trees with n leaves must be reached at the stars.

Now let us see that no other tree in Treen can reach the same value. Let T ∈ Treen.
If T , T star

n , then, by definition, |V̊ (T )| ≥ 2. But this means that T will present
some quartet of shape Qi different from T star

4 , and hence with a lower qi , and thus
QI(T ) <

(n
4
)
q4. �

These two results should not surprise us, since they are true almost by definition:
this is why the Quartet index was defined as it was to begin with. The next subsection
will be dedicated, however, to show that, when restricted to bifurcating trees, the max-
imally balanced trees are the only trees that attain the maximum QIB, and hence the
most balanced according to it. Since the caterpillars are bifurcating trees, in particular
they will be the least balanced bifurcating trees, too.

Furthermore, these two results set the range of the Quartet index to go from 0 to(n
4
)
, an order of magnitude higher than that of theQuadratic Colless or the Cophenetic

(page 19) indices (the range of this last one, going from 0 to
(n
3
)
, was so far the balance

index for multifurcating trees with the widest range [85]).

5.2.1 The maximum QIB

In this subsection we shall characterize the maximum values of QIB and the trees that
attain them. They turn out to be, as in the case of theQuadratic Colless or the Cophe-
netic indices, exactly the maximally balanced trees, and the proof is quite similar to that
of the characterization of the minimum Cophenetic index given in [85].

We shall begin by proving a series of lemmata that will help us solve the main issue.
The first one shows that QIB is local, in the sense that if two bifurcating trees differ
only in a rooted subtree, the difference in theirQuartet indices is equal to the difference
between those of these different subtrees. QIB shares this property with many other
shape indices, like the Sackin, the Cophenetic, and the Quadratic and classical Colless
indices.

Lemma 5.11. Let T0 be a bifurcating tree, let z ∈ L(T0), and let T ,T ′ be two trees obtained
by appending to the leaf z in T0 the rooted bifurcating subtrees Tz andT ′z , respectively, with
L(Tz ) = L(T ′z ). Then,

QIB(T ′) −QIB(T ) = QIB(T ′z ) −QIB(Tz ).
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5.2. Extreme values and the trees that attain them

z
T0

Tz

T

z
T0

T ′z
T ′

Figure 5.2: The trees T and T ′ in the statement of Lemma 5.11.

Proof. Let Q = {a, b, c, d} ∈ Part4(L(T )) = Part4(L(T ′)). Then:

• If Q ∩ L(Tz ) = ∅, then T (Q) = T ′(Q) = T0(Q).

• If Q ∩ L(Tz ) = {d} —for instance—, then T (Q) = T ′(Q) = T0({a, b, c, z}).

• If Q ∩ L(Tz ) = {c, d} —for instance—, then two cases arise: either T0({a, b, z}) =
(a, (b, z)), and in this case T (Q) = T ′(Q) = (a, (b, (c, d))); or T0({a, b, z}) = ((a, b), z),
and so T (Q) = T ′(Q) = ((a, b), (c, d)).

• If Q ∩ L(Tz ) = {b, c, d} —for instance—, then T (Q) = T ′(Q) since they are both
caterpillars (Tz and T ′z are both bifurcating).

Thus, the only 4-tuples of leaves Q that may define different quartets in T and T ′ are
those contained in L(Tz ) = L(T ′z ), in which case T (Q) = Tz (Q) and T ′(Q) = T ′z (Q),
and hence

QIB(T ′) −QIB(T ) = QIB(T ′z ) −QIB(Tz )

as we claimed. �

Lemma 5.12. Let T ∈ BinTreen be the tree depicted in Figure 5.3 (a). For every i ∈
{1, 2, 3, 4}, let n1 = |L(Ti)|, and assume that n1 > n3 and n2 > n4. Then, QIB(T ) is not
maximum in BinTreen .

a b

z
T0

T1 T2 T3 T4

(a) T

a b

z
T0

T1 T4 T3 T2

(b) T ′

Figure 5.3: (a) The treeT in the statement of Lemma 5.12. (b) The treeT ′ in the proof
of Lemma 5.12.

Proof. Let T ′ be the tree depicted in Figure 5.3 (b): it is constructed by interchanging,
in T , the subtrees T2 and T4. We shall prove that QIB(T ′) > QIB(T ). By the previous
lemma,

QIB(T ′) −QIB(T ) = QIB(T ′z ) −QIB(Tz ).
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Let us now compute this difference. By applying Corollary 5.4,

QIB(Tz ) = QIB(T1) +QIB(T2) +QIB(T3) +QIB(T4)

+

(
n1 + n2

2

) (
n3 + n4

2

)
+

(
n1

2

) (
n2

2

)
+

(
n3

2

) (
n4

2

)
QIB(T ′z ) = QIB(T1) +QIB(T2) +QIB(T3) +QIB(T4)

+

(
n1 + n3

2

) (
n2 + n4

2

)
+

(
n1

2

) (
n3

2

)
+

(
n2

2

) (
n4

2

)
and therefore, their difference is

QIB(T ′z ) −QIB(Tz ) =
1
2
(n1 − n3)(n2 − n4)(n1n3 + n2n4) > 0,

since n1 > n3 and n2 > n4. �

Lemma 5.13. Let T ∈ BinTreen be a tree containing a leaf x whose sibling has at least
three descendant leaves. Then,QIB(T ) is not maximum in BinTreen .

a

x

z
T0

T1 T2

(a) T
x

a

z
T0

T1T2

(b) T ′

Figure 5.4: (a) The treeT in the statement of Lemma 5.13, where |L(T1)|+ |L(T2)| ≥ 3.
(b) The tree T ′ in the proof of Lemma 5.13.

Proof. Let T ∈ BinTreen be the tree depicted in Figure 5.4 (a), let n1 = |L(T1)| and
n2 = |L(T2)|, so that n1 + n2 ≥ 3, and suppose n1 ≥ n2, which in particular implies
that n1 ≥ 2. Let T ′ ∈ BinTreen be the tree depicted in Figure 5.4 (b), obtained from T
by interchanging the leaf x and the rooted subtree T1. We shall prove that QIB(T ′) >
QIB(T ). Now, by Lemma 5.11,

QIB(T ′) −QIB(T ) = QIB(T ′z ) −QIB(Tz )

and, again, by Theorem 5.3,

QIB(Tz ) = QIB(T1) +QIB(T2) +

(
n1

2

) (
n2

2

)
QIB(T ′z ) = QIB(T1) +QIB(T2) +

(
n1

2

) (
n2 + 1

2

)
so that

QIB(T ′z ) −QIB(Tz ) = n2

(
n1

2

)
> 0

because n1 ≥ 2. �
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5.2. Extreme values and the trees that attain them

Finally, thanks to these last two lemmata, we can prove the following theorem,
which is the main result of this section.

Theorem 5.14. Let n ∈ N≥1. The maximumQuartet index inBinTreen is reached exactly
at the maximally balanced trees.

Proof. LetT ∈ BinTreen be a tree that is not maximally balanced: we shall prove that it
cannot present the maximumQuartet index. Since T is not maximally balanced, there
exists an internal node, v ∈ V̊ (T ), such that |κ(v1) − κ(v2)| ≥ 2 for {v1, v2} = child(v).
Furthermore, suppose that v is such that all its proper descendant nodes are balanced
(which can be supposed since T is finite).

If v2 is a leaf, then by Lemma 5.13, since Tv1 must have more than three leaves by
assumption,T cannot present maximumQIB; the argument is analogous if we consider
v1 to be a leaf. Therefore, suppose that neither v1 nor v2 are leaves, and let T1,T2 be
the trees rooted at the children of v1 and T3,T4 those rooted at the children of v2, and
set ni = |L(Ti)| for i ∈ {1, 2, 3, 4}.

Assume, without loss of generality, that n1 ≥ n2, that n3 ≥ n4, and that n1 + n2 ≥

n3 + n4. Then, since by assumption v is not balanced, we have that

n1 + n2 ≥ n3 + n4 + 2.

Since v1 and v2 are balanced, n1 ∈ {n2, n2 + 1} and n3 ∈ {n4, n4 + 1}, and therefore
n1 > n3, Indeed, for suppose n1 ≤ n3: then n1 + n2 ≥ n3 + n4 + 2 would imply
n2 ≥ n4 + 2 and then n3 − n4 ≥ n1 − n2 + 2 ≥ 2, against the assumption that v2 is
balanced. Therefore, n1 ≥ n3 + 1 and hence n2 ≥ n1 − 1 ≥ n3 ≥ n4. But if n2 = n4,
then n1 − 1 = n2 = n3 = n4, contradicting the fact that v is not balanced.

So, finally, we conclude that n1 > n3 and n2 > n4, but then, by Lemma 5.12,
QIB(T ) cannot be maximum. �

For every n ∈ N, let qib(n) be the maximum value of QIB(T ) for T ∈ BinTreen.
Since T bal

n = T bal
dn/2e ∗ T

bal
bn/2c , the last theorem and Corollary 5.4 imply the following

recurrence for the sequence qib(n).

Corollary 5.15. qib(1) = 0, and, for n ≥ 2,

qib(n) = qib
(⌈n
2

⌉)
+ qib

( ⌊n
2

⌋ )
+

(⌈n
2
⌉

2

) (⌊ n
2
⌋

2

)
.

We have not been able to solve this recurrence, but we can easily deduce from it the
order of growth of qib(n).

Corollary 5.16. qib(n) is in Θ(n4).

Proof. With the convention of the statement of the Master Theorem for solving recur-
rences as given in [21, Thm. 4.1], the last corollary implies that the sequence qib(n)
satisfies a recurrence of the form

qib(n) = 2 · qib(n/2) + F (n)

with F (n) =
(
dn/2e
2

) (
bn/2c
2

)
in Ω(n4) = Ω(nlog2(2)+3) and satisfying that

2F (n/2) ≤ 2F (n).

Therefore, by case (3) in that theorem, qib(n) is in Θ(F (n)), i.e., in Θ(n4). �
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The sequence qib(n) was not contained in the On-Line Encyclopedia of Integer Se-
quences [108] until we submitted it, being currently sequence A300445 in it. Its values
for n ∈ {4, . . . , 20} are

1, 3, 9, 19, 38, 64, 106, 162, 243, 343, 479, 645, 860, 1110, 1424, 1790, 2237.

An easy induction exercise shows that

qib(2n) =
(

4
7(2n − 3)

+
3
7

) (
2n

4

)
and hence, in particular, qib(2n)/

(2n
4
)
tends to 3

7 as n →∞.
As we have already said, the comparison of tree shapes between trees with different

numbers of leaves can only be performed when the index is normalized. In this case,
being min{QI(T ) : T ∈ Treen} = min{QIB(T ) : T ∈ BinTreen} = 0 for all n, we
derive two normalized indices, one formultifurcating trees and the other for bifurcating
trees:

QI(T ) = QI(T )
q4(n4)

, and QIB(T ) = QIB(T )
qib(n)

where qib(n) is computed by means of the aforementioned recursion.

5.3 The expected value and variance under sampling
consistent probabilistic models

In this section we are going to compute the expected value and the variance ofQI under
probabilistic models for phylogenetic trees satisfying certain conditions. Notice that,
by Remark 5.5, we could also compute the expected value and variance ofQIB bymeans
of the results given in Section 1.3.4, asQIB is a recursive shape index; however, we shall
now give other proofs, and then in Section 5.3.1 we will give the proofs given via the
results given in the Preliminaries. Now, we can readily extend the definition of QI to
phylogenetic trees by simply setting QI(T , λ) = QI(T ). Let Pn : PhyloTreen → [0, 1]
be a probabilistic model for phylogenetic trees, whose induced model for tree shapes is
P ∗n : Treen → [0, 1] where

P ∗n(T ) =
∑

(T ,λ)∈PhyloTreen

Pn(T , λ).

Then, we can consider the random variables QIn : PhyloTreen → [0, 1] and QI∗n :
Treen → [0, 1], defined by choosing a tree in their respective codomains with probabil-
ity Pn or P ∗n , respectively, and then computing its QI.

Lemma 5.17. For every n ≥ 1, the distributions ofQIn andQI∗n are the same. In particular,
their expected values and variances are the same.
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5.3. The expected value and variance under sampling consistent probabilistic

models

Proof. Let fQIn and fQI∗n
be the probability density functions of QIn and QI∗n, respec-

tively. Then, for any x0 ∈ R,

fQIn (x0) =
∑

(T ,λ)∈PhyloTreen
QI(T ,λ)=x0

Pn(T , λ) =
∑

T ∈Treen
QI(T )=x0

∑
(T ,λ)∈PhyloTreen

Pn(T , λ)

=
∑

T ∈Treen
QI(T )=x0

P ∗n(T ) = fQI∗n
(x0).

Therefore, fQIn = fQI∗n
. �

Notice that, then, both the expected value and the variance of QI coincide with
those ofQI∗. Next theorem computes the expected value ofQIn under any probabilistic
model for trees that is sampling consistent.

Theorem 5.18. Let Pn : PhyloTreen → [0, 1] be a probabilistic model for phylogenetic
trees such that P ∗n is sampling consistent. Then,

EP (QIn) = EP ∗(QI∗n) =
(
n
4

) 4∑
i=1

P ∗4 (Qi)qi .

Proof. The first equality is a direct consequence of the previous lemma. The second
equality can be computed as follows:

EP ∗(QI∗) =
∑

T ∈Treen

QI(T )P ∗n(T )

=
∑

T ∈Treen

4∑
i=1

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
�� · qi · P ∗n(T )

=

(
n
4

) 4∑
i=1

∑
T ∈Treen

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
��(n

4
) P ∗n(T )qi

=

(
n
4

) 4∑
i=1

P ∗4 (Qi)qi,

by the sampling consistency of P ∗n . �

Notice that, intuitively, since P ∗n is sampling consistent, the expected number of
quartets of shape Qi in a tree T is

(n
4
)
P ∗4 (Qi), and all of them contribute qi to the

QI value of the tree. Therefore, the expression found in the theorem above is not
surprising.

If Pn is a probabilistic model of bifurcating phylogenetic trees, so that P ∗4 (Q1) =

P ∗4 (Q2) = P ∗4 (Q4) = 0, then the expression in the last theorem becomes

EP (QIn) =
(
n
4

)
P ∗4 (Q3)q3.

Taking q3 = 1, we obtain the following result.

197



Chapter 5

Corollary 5.19. Let Pn : BinPhyloTreen → [0, 1] be a probabilistic model of bifurcating
phylogenetic trees such that P ∗n is sampling consistent. Then

EP (QIBn) = EP ∗(QIB∗n) =
(
n
4

)
P ∗4 (Q3).

P ∗
α,γ,4(Q0) =

2(1 − α + γ)(2(1 − α) + γ)
(3 − α)(2 − α)

P ∗
α,γ,4(Q1) =

(5(1 − α) + γ)(α − γ)
(3 − α)(2 − α)

P ∗
α,γ,4(Q2) =

2(1 − α + γ)(α − γ)
(3 − α)(2 − α)

P ∗
α,γ,4(Q3) =

(1 − α)(2(1 − α) + γ)
(3 − α)(2 − α)

P ∗
α,γ,4(Q4) =

(2α − γ)(α − γ)
(3 − α)(2 − α)

Figure 5.5: The five tree shapes in Tree4 and their probabilities under the α-γ-model.

Recall that the α-γ-model is sampling consistent for tree shapes, and hence lies under
the hypothesis of Theorem 5.18. Using the complete knowledge description of P ∗α,γ,4
on Tree4 obtained in Lemma 1.26 and recalled in Figure 5.5, we get the following result.

Corollary 5.20. Let (Pα,γ,n)n be Chen-Winkel-Ford’s α-γ-model of phylogenetic trees, with
0 ≤ γ ≤ α ≤ 1. Then,

EPα,γ (QIn) =
(
(2α − γ)(α − γ)
(3 − α)(2 − α)

· q4 +
(1 − α)(2(1 − α) + γ)
(3 − α)(2 − α)

· q3

+
2(1 − α + γ)(α − γ)
(3 − α)(2 − α)

· q2 +
(5(1 − α) + γ)(α − γ)
(3 − α)(2 − α)

· q1
) (

n
4

)
.

For Ford’s α-model, which corresponds to α = γ, we get the following result on
the expected value of QIBn from Corollary 5.19 and the value of Pα,4(Q3) given in the
Preliminaries.

Corollary 5.21. Let (Pα,n)n be Ford’s α-model for bifurcating phylogenetic trees, with α ∈
[0, 1]. Then,

EPα (QIBn) =
1 − α
3 − α

(
n
4

)
.
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models

It is straightforward to check that EPα (QIBn) agrees with EPα,γ (QIn) (up to the
factor q3) when α = γ.

Thus, we can easily compute the expected value of QIBn under the Yule model
(α = 0) and the Uniform model (α = 1

2 ):

EYule(QIBn) =
1
3

(
n
4

)
, (5.1)

Eunif(QIBn) =
1
5

(
n
4

)
. (5.2)

Aldous’ β-model is also sampling consistent for tree shapes, and therefore, from
Corollary 5.19 and the value of P A

β,4(Q3) given in the Preliminaries, we obtain the fol-
lowing result.

Corollary 5.22. Let (P A
β,n)n be Aldous’ β-model for bifurcating phylogenetic trees, with

β ∈ (−2,∞). Then:

EP A
β
(QIBn) =

3β + 6
7β + 18

(
n
4

)
.

For this model, the Yule model corresponds to β = 0 and the Uniform model to
β = −3/2. It is straightforward to check the expected value ofQIBn for the Yule and the
Uniform model obtained from the last corollary agree with those given in Equations
(5.1) and (5.2).

Now, we are in a position to attempt the computation of the variance of QI under
the same hypothesis as in Theorem 5.18. To try to ease the notations, let us consider,
for every k ∈ {5, . . . , 8} and for every T ∈ Treek and every (i, j) ∈ {1, . . . , 4}2,

Θi, j (T ) =
��{(Q,Q ′) ∈ Part4(L(T ))2 : Q ∪Q ′ = L(T ),T (Q) = Qi,T (Q ′) = Q j }

��
=

��{(Q,Q ′) ∈ Part4(L(T ))2 : |Q ∩Q ′ | = 8 − k,T (Q) = Qi,T (Q ′) = Q j }
��.

Theorem 5.23. Let Pn : PhyloTreen → [0, 1] be a probabilistic model for phylogenetic
trees such that P ∗n is sampling consistent. Then,

σ2
P (QIn) = σ

2
P (QI∗n) =

(
n
4

) 4∑
i=1

q2i P
∗
4 (Qi) −

(
n
4

)2 (
4∑
i=1

qiP ∗4 (Qi)

)2
+

4∑
i=1

4∑
j=1

qiq j
©«

8∑
k=5

(
n
k

) ∑
T ∈Treek

Θi, j (T )P ∗k (T )
ª®¬ .

Proof. As a consequence of Lemma 5.17, σ2
P (QIn) = σ

2
P ∗(QI∗n). We shall compute the

latter by using the identity σ2
P ∗(QI∗n) = EP ∗((QI∗)2n) − EP ∗(QI∗n)

2; hence, we need to
compute EP ∗((QI∗)2n).

For every T ∈ Treen, every Qi ∈ Tree4 and every Q ∈ Part4(L(T )), set

δ(Q,Qi,T ) =

{
1 if T (Q) = Qi

0 otherwise.
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Then,

EP ∗((QI∗)2n) =
∑

T ∈Treen

QI(T )2P ∗n(T )

=
∑

T ∈Treen

©«
∑

Q∈Part4(L(T ))

4∑
i=1

qiδ(Q,Qi,T )
ª®¬
2

P ∗n(T )

=
∑

T ∈Treen

©«
∑

Q∈Part4(L(T ))

4∑
i=1

q2i δ(Q,Qi,T )2
ª®¬ P ∗n(T )

+
∑

T ∈Treen

©«
∑

(Q,Q′)∈Part4(L(T ))2
Q,Q′

∑
(i, j)∈[4]2

qiq jδ(Q,Qi,T )δ(Q,Q j,T )
ª®®®¬ P
∗
n(T )

but, since δ(Q,Qi,T ) ∈ {0, 1} by definition, δ(Q,Qi,T )2 = δ(Q,Qi,T ). We define

S1 =
∑

T ∈Treen

©«
∑

Q∈Part4(L(T ))

4∑
i=1

q2i δ(Q,Qi,T )
ª®¬ P ∗n(T )

=

4∑
i=1

©«q2i
∑

T ∈Treen

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
��P ∗n(T )ª®¬

=

(
n
4

) 4∑
i=1

©«q2i
∑

T ∈Treen

��{Q ∈ Part4(L(T )) : T (Q) = Qi}
��(n

4
) P ∗n(T )

ª®¬
=

(
n
4

) 4∑
i=1

q2i P
∗
4 (Qi),

this last equality being a consequence of the sampling consistency of P ∗n .
As far as the second addend in the expression of EP ∗((QI∗)2n) goes, we have

S2 =
∑

T ∈Treen

∑
(Q,Q′)∈Part4(L(T ))2

Q,Q′

©«
∑

(i, j)∈[4]2
qiq jδ(Q,Qi,T )δ(Q ′,Q j,T )

ª®¬ P ∗n(T )
=

∑
(i, j)∈[4]2

qiq j
©«

∑
T ∈Treen

©«
3∑

k=0

∑
(Q,Q′)∈Part4(L(T ))2

|Q∩Q′ |=k

δ(Q,Qi,T )δ(Q ′,Q j,T )
ª®®®¬ P
∗
n(T )

ª®®®¬
=

∑
(i, j)∈[4]2

©«
3∑

k=0

∑
T ∈Treen

��{(Q,Q ′) ∈ Part4(L(T ))2 : |Q ∩Q ′ | = k,T (Q) = Qi,T (Q ′) = Q j }
��P ∗n(T )ª®¬

Now, notice that for every k ∈ {0, 1, 2, 3}, if |Q ∩Q ′ | = k, then T (Q ∪Q ′) has 8 − k
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leaves, and therefore we can simplify the last sum by considering trees T8−k ∈ Tree8−k :∑
T ∈Treen

��{(Q,Q ′) ∈ Part4(L(T ))2 : |Q ∩Q ′ | = k,T (Q) = Qi,T (Q ′) = Q j }
��P ∗n(T )

=
∑

T ∈Treen

( ∑
T8−k ∈Tree8−k

��{X ∈ Part8−k(L(T )) : T (X ) = T8−k}
��

·
��{(Q,Q ′) ∈ Part4(L(T8−k))

2 : |Q ∩Q ′ | = k,T8−k(Q) = Qi,T8−k(Q ′) = Q j }
��)P ∗n(T )

=
∑

T8−k ∈Tree8−k

��{(Q,Q ′) ∈ Part4(L(T8−k))
2 : |Q ∩Q ′ | = k,T8−k(Q) = Qi,T8−k(Q ′) = Q j }

��
·

(
n

8 − k

) ∑
T ∈Treen

��{X ∈ Part8−k(L(T )) : T (X ) = T8−k}
��( n

8−k
) P ∗n(T )

=

(
n

8 − k

) ∑
T8−k ∈Tree8−k

��{(Q,Q ′) ∈ Part4(L(T8−k))
2 : |Q ∩Q ′ | = k,T8−k(Q) = Qi,T8−k(Q ′) = Q j }

��
· P ∗8−k(T8−k)

(by the sampling consistency of (P ∗n)n )

=

(
n

8 − k

) ∑
T8−k ∈Tree8−k

��{(Q,Q ′) ∈ Part8−k(L(T ))2 : Q ∪Q ′ = L(T8−k),T8−k(Q) = Qi,T8−k(Q ′) = Q j }
��

· P ∗8−k(T8−k)

=

(
n

8 − k

) ∑
T8−k ∈Tree8−k

Θi, j (T8−k)P ∗8−k(T8−k).

Thus,

S2 =
∑

(i, j)∈[4]2
qiq j

©«
3∑

k=0

(
n

8 − k

) ∑
T8−k ∈Tree8−k

Θi, j (T8−k)P ∗8−k(T8−k)
ª®¬

=
∑

(i, j)∈[4]2
qiq j

©«
8∑

k=5

(
n
k

) ∑
T ∈Treek

Θi, j (T )P ∗k (T )
ª®¬ .

Therefore, as σ2
P ∗(QI∗n) = S1 + S2 − EP ∗(QI∗n)

2, the proposition is proven. �

If (Pn)n is a probabilistic model for bifurcating phylogenetic trees, then the only
possible quartets are Q0 and Q3, and therefore the formula in the previous theorem
becomes (after taking q3 = 1)

σ2
P (QIBn) =

(
n
4

)
P ∗4 (Q3) −

(
n
4

)2
P ∗4 (Q3)

2 +

8∑
k=5

∑
T ∈BinTreek

Θ3,3(T )P ∗k (T ),

where the coefficients Θ3,3(T ) can be easily computed for all T ∈ BinTreek , for k ∈
{5, 6, 7, 8}.These coefficients are provided in the Table 5.1 and they yield the following
result.
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Corollary 5.24. If (Pn)n is a probabilistic model of bifurcating phylogenetic trees such that
(P ∗n)n is sampling consistent, then, with the notations given in the Table 5.1,

σ2
P (QIBn) =

(
n
4

)
P ∗4 (Q3) −

(
n
4

)2
P ∗4 (Q3)

2

+ 6
(
n
5

)
P ∗5 (B5,3) +

(
n
6

) (
18P ∗6 (B6,4) + 6P ∗6 (B6,5) + 36P ∗6 (B6,6)

)
+

(
n
7

) (
8P ∗7 (B7,8) + 24P ∗7 (B7,9) + 36P ∗7 (B7,10) + 36P ∗7 (B7,11)

)
+

(
n
8

) (
2P ∗8 (B8,13) + 6P ∗8 (B8,14) + 12P ∗8 (B8,15) + 14P ∗8 (B8,16)

+ 18P ∗8 (B8,17) + 36P ∗8 (B8,21) + 36P ∗8 (B8,22) + 38P ∗8 (B8,23)
)
.

Theorem 5.23 andCorollary 5.24 reduce the computation of the variance ofQIn and
QIBn under sampling consistent probabilistic models to the knowledge of a finite, fixed
number of probabilities P ∗k for k ∈ {4, 5, 6, 7, 8}. Therefore, we are able to find closed
formulæ for the variance of QIn under the α-γ-model and for the variance of QIBn
under Ford’s α-model and Aldous’ β-model, and hence under the Yule and Uniform
models as well. We begin with the bifurcating case.

Concerning Ford’s α-model and Aldous’ β-model, computing all the necessary
probabilities, which are given in the Tables 5.2 and 5.3, we obtain the following results.

Corollary 5.25. Under the α-model,

σ2
Pα (QIBn) =

(
n
4

)
1 − α
3 − α

−

(
n
4

)2
(1 − α)2

(3 − α)2
+ 12

(
n
5

)
1 − α
4 − α

+

(
n
6

)
6(1 − α)(112 − 89α + 15α2)

(5 − α)(4 − α)(3 − α)
+

(
n
7

)
20(1 − α)(74 − 63α + 7α2)

(6 − α)(5 − α)(3 − α)

+

(
n
8

)
10(1 − α)(506 − 539α + 112α2 − 7α3)

(7 − α)(6 − α)(5 − α)(3 − α)
.

Corollary 5.26. Under the β-model,

σ2
P β (QIBn) =

(
n
4

)
3(β + 2)
7β + 18

−

(
n
4

)2 9(β + 2)2

(7β + 18)2
+ 12

(
n
5

)
β + 2
3β + 8

+ 90
(
n
6

)
(β + 2)(41β2 + 238β + 336)
(31β2 + 194β + 300)(7β + 18)

+ 60
(
n
7

)
(β + 2)(9β2 + 53β + 74)
(β + 3)(3β + 10)(7β + 18)

+ 630
(
n
8

)
(β + 2)(127β4 + 1637β3 + 7788β2 + 16084β + 12144)
(127β3 + 1383β2 + 4958β + 5880)(7β + 18)2

.

When α = 0, or β = 0, we are presented with the Yule model. In this case, from
the previous corollaries we get

σ2
Yule(QIBn) =

(
n
4

)
5n4 + 30n3 + 118n2 + 408n + 630

33075
. (5.3)
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Name Shape Θ3,3(T )
B5,1 (·, (·, (·, (·, ·)))) 0

B5,2 (·, ((·, ·), (·, ·))) 0

B5,3 ((·, ·), (·, (·, ·))) 6

B6,1 (·, (·, (·, (·, (·, ·))))) 0

B6,2 (·, (·, ((·, ·), (·, ·)))) 0

B6,3 (·, ((·, ·), (·, (·, ·)))) 0

B6,4 ((·, ·), ((·, ·), (·, ·))) 18

B6,5 ((·, ·), (·, (·, (·, ·)))) 6

B6,6 ((·, (·, ·)), (·, (·, ·))) 36

B7,1 (·, (·, (·, (·, (·, (·, ·)))))) 0

B7,2 (·, (·, (·, ((·, ·), (·, ·))))) 0

B7,3 (·, (·, ((·, ·), (·, (·, ·))))) 0

B7,4 (·, ((·, ·), ((·, ·), (·, ·)))) 0

B7,5 (·, ((·, ·), (·, (·, (·, ·))))) 0

B7,6 (·, ((·, (·, ·)), (·, (·, ·)))) 0

B7,7 ((·, ·), (·, (·, (·, (·, ·))))) 0

B7,8 ((·, ·), (·, ((·, ·), (·, ·)))) 8

B7,9 ((·, ·), ((·, ·), (·, (·, ·)))) 24

B7,10 ((·, (·, ·)), (·, (·, (·, ·)))) 36

B7,11 ((·, (·, ·)), ((·, ·), (·, ·))) 36

B8,1 (·, (·, (·, (·, (·, (·, (·, ·))))))) 0

B8,2 (·, (·, (·, (·, ((·, ·), (·, ·)))))) 0

B8,3 (·, (·, (·, ((·, ·), (·, (·, ·)))))) 0

B8,4 (·, (·, ((·, ·), ((·, ·), (·, ·))))) 0

B8,5 (·, (·, ((·, ·), (·, (·, (·, ·)))))) 0

B8,6 (·, (·, ((·, (·, ·)), (·, (·, ·))))) 0

B8,7 (·, ((·, ·), (·, (·, (·, (·, ·)))))) 0

B8,8 (·, ((·, ·), (·, ·), (·, (·, ·))))) 0

B8,9 (·, ((·, ·), (·, ((·, ·), (·, ·))))) 0

B8,10 (·, ((·, (·, ·)), (·, (·, (·, ·))))) 0

B8,11 (·, ((·, (·, ·)), ((·, ·), (·, ·)))) 0

B8,12 ((·, ·), (·, (·, (·, (·, (·, ·)))))) 0

B8,13 ((·, ·), (·, (·, (·, ·), (·, ·)))) 2

B8,14 ((·, ·), (·, ((·, ·), (·, (·, ·))))) 6

B8,15 ((·, ·), ((·, ·), (·, (·, (·, ·)))))) 12

B8,16 ((·, ·), ((·, ·), ((·, ·), (·, ·)))) 14

B8,17 ((·, ·), ((·, (·, ·)), (·, (·, ·)))) 18

B8,18 ((·, (·, ·)), (·, (·, (·, (·, ·))))) 0

B8,19 ((·, (·, ·)), (·, ((·, ·), (·, ·))))) 0

B8,20 ((·, (·, ·)), ((·, ·), (·, (·, ·)))) 0

B8,21 ((·, (·, (·, ·))), (·, (·, (·, ·)))) 36

B8,22 ((·, (·, (·, ·))), ((·, ·), (·, ·))) 36

B8,23 (((·, ·), (·, ·)), ((·, ·), (·, ·))) 38

Table 5.1: Coefficients of the probabilities of the trees in BinTreek , for k ∈ {5, 6, 7, 8},
in the formula for the variance of QIBn.
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Tree P A,∗
α,n

Q3
1−α
3−α

B5,3
2(1−α)
4−α

B6,4
(1−α)2(8−α)
(5−α)(4−α)(3−α)

B6,5
2(1−α)(8−α)
(5−α)(4−α)(3−α)

B6,6
2(1−α)(2−α)
(5−α)(4−α)

B7,8
(1−α)2(2+α)(10+α)
(6−α)(5−α)(4−α)(3−α)

B7,9
2(1−α)2(10+α)
(6−α)(5−α)(4−α)

B7,10
10(1−α)(2−α)
(6−α)(5−α)(3−α)

B7,11
5(1−α)2(2−α)
(6−α)(5−α)(3−α)

B8,13
8(1−α)2(1+α)(2+α)(3+α)
(7−α)(6−α)(5−α)(4−α)(3−α)

B8,14
16(1−α)2(1+α)(3+α)
(7−α)(6−α)(5−α)(4−α)

B8,15
8(1−α)2(3+α)(8−α)

(7−α)(6−α)(5−α)(4−α)(3−α)

B8,16
4(1−α)3(3+α)(8−α)

(7−α)(6−α)(5−α)(4−α)(3−α)

B8,17
8(1−α)2(2−α)(3+α)
(7−α)(6−α)(5−α)(4−α)

B8,21
20(1−α)(2−α)

(7−α)(6−α)(5−α)(3−α)

B8,22
20(1−α)2(2−α)

(7−α)(6−α)(5−α)(3−α)

B8,23
5(1−α)3(2−α)

(7−α)(6−α)(5−α)(3−α)

Table 5.2: Probabilities under the α-model of the trees involved in the formula for the
variance of QIBn.

As for the Uniform model, setting α = 1
2 or β = −

3
2 , the formulæ in the last corollaries

yield

σ2
unif(QIBn) =

(
n
4

)
4(2n − 1)(2n + 1)(2n + 3)(2n + 5)

225225
(5.4)

In order to double-check our computations, we have produced independent derivations
of these two last formulæ, as well as of (5.1) and (5.2), using the approach used in Section
3.2 to compute the expected values and variances of C (2). We give these alternative
proofs in the Subsection 5.3.1.

Notice that the leading term of the variance under the α-model is

(1 − α)(2α + 1)
84(7 − α)(6 − α)(5 − α)(3 − α)2

· n8,
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Tree P B,∗
β,n

Q3
3(β+2)
7β+18

B5,3
2(β+2)
3β+8

B6,4
45(β+2)2(β+4)

(31β2+194β+300)(7β+18)

B6,5
60(β+2)(β+3)(β+4)

(31β2+194β+300)(7β+18)

B6,6
10(β+2)(β+3)

31β2+194β+300

B7,8
3(β+2)2(β+4)(β+5)

(β+3)(3β+8)(3β+10)(7β+18)

B7,9
2(β+2)2(β+5)

(β+3)(3β+8)(3β+10)

B7,10
20(β+2)(β+3)

3(3β+10)(7β+18)

B7,11
5(β+2)2

(3β+10)(7β+18)

B8,13
504(β+2)2(β+4)2(β+5)2(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)(3β+8)(7β+18)

B8,14
336(β+2)2(β+4)(β+5)2(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)(3β+8)

B8,15
1680(β+2)2(β+3)(β+4)(β+5)(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)(7β+18)

B8,16
1260(β+2)3(β+4)(β+5)(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)(7β+18)

B8,17
280(β+2)2(β+3)(β+5)(β+6)

(127β3+1383β2+4958β+5880)(31β2+194β+300)

B8,21
560(β+2)(β+3)3(β+4)

(127β3+1383β2+4958β+5880)(7β+18)2

B8,22
840(β+2)2(β+3)2(β+4)

(127β3+1383β2+4958β+5880)(7β+18)2

B8,23
315(β+2)3(β+3)(β+4)

(127β3+1383β2+4958β+5880)(7β+18)2

Table 5.3: Probabilities under the β-model of the trees involved in the formula for the
variance of QIBn.

and for the variance under the β-model is

(β + 2)(2β2 + 9β + 12)
2(127β3 + 1383β2 + 4958β + 5880)(7β + 18)2

· n8.

So, the variance of QIBn grows under both models inO(n8)

Finally, as far as the α-γ-model goes, we have written a set of Python scripts that
compute all Θi, j (T ), (i, j) ∈ {1, 2, 3, 4}2, as well as P ∗

α,γ,k(T ) for every T ∈ Treek ,
k = 5, 6, 7, 8, and combine all these data into an explicit formula for σ2

Pα,γ (QIn). These
Python scripts can be found in theGitHub pagehttps://github.com/biocom-uib/
biotrees2. It can be easily checked (using a symbolic computation program) that

2There is also an implementation in the GitHub page https://github.com/biocom-uib/
Quartet_Index, but it is not due to me but to G. Valiente [25]. In particular, the plain text
formula (which is too long and uninformative to be reproduced here) is given in the document
variance_table.txt therein.
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when α = γ it agrees with the variance under the α-model given in Corollary 5.25.

5.3.1 Alternative proofs for the Yule and the Uniform models

As we promised, in this section we prove Equations (5.1) to (5.4) through the direct
approach provided by Lemma 1.31.

The Yule case

By Lemma 1.31 and Corollary 5.4,

EYule(QIBn) =
1

n − 1

n−1∑
k=1

(
2EYule(QIBk) +

(
k
2

) (
n − k
2

))
=

2
n − 1

n−1∑
k=1

EYule(QIBk) +
1

n − 1

(
n + 1
5

)
, (5.5)

EYule(QIB2
n) =

1
n − 1

n−1∑
k=1

(
2EYule(QIB2

k) + 4
(
k
2

) (
n − k
2

)
EYule(QIBk)

+2EYule(QIBk)EYule(QIBn−k) +

(
k
2

)2 (n − k
2

)2)
. (5.6)

Then, regarding the expected value, by (5.5):

EYule(QIBn) =
1

n − 1

(
2
n−1∑
k=1

EYule(QIBk) +

(
n + 1
5

))
=

1
n − 1

(
2
n−2∑
k=1

EYule(QI Bk) +

(
n
5

)
+ 2EYule(QI Bn−1) +

(
n + 1
5

)
−

(
n
5

))
=

n − 2
n − 1

·
1

n − 2

(
2
n−2∑
k=1

EYule(QI Bk) +

(
n
5

))
+

2
n − 1

EYule(QI Bn−1) +
1

n − 1

(
n
4

)
=

n − 2
n − 1

EYule(QI Bn−1) +
2

n − 1
EYule(QI Bn−1) +

1
n − 1

(
n
4

)
=

n
n − 1

EYule(QI Bn−1) +
1
24

n(n − 2)(n − 3).

Dividing by n both sides of this expression for EYule(QIBn) and setting xn = EYule(QIBn)/n,
we obtain the recurrence

xn = xn−1 +
1
12

(
n − 2
2

)
.

Since x1 = 0, its solution is

xn =
1
12

n∑
k=2

(
k − 2
2

)
=

1
12

n−2∑
k=0

(
k
2

)
=

1
12

(
n − 1
3

)
,
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from where we finally obtain

EYule(QI Bn) = n · xn =
1
12

n
(
n − 1
3

)
=

1
3

(
n
4

)
in agreement with Equation (5.1).

As to the variance under the Yule model, by Equations (5.1) and (5.6),

EYule(QIB2
n) =

1
n − 1

n−1∑
k=1

(
2EYule(QIB2

k) +
4
3

(
k
2

) (
n − k
2

) (
k
4

)
+
2
9

(
k
4

) (
n − k
4

)
+

(
k
2

)2 (n − k
2

)2)
=

n − 2
n − 1

·
1

n − 2

n−2∑
k=1

(
2EYule(QIB2

k) +
4
3

(
k
2

) (
n − 1 − k

2

) (
k
4

)
+
2
9

(
k
4

) (
n − 1 − k

4

)
+

(
k
2

)2 (n − 1 − k
2

)2)
+

2
n − 1

EYule(QIB2
n−1)

+
1

n − 1

n−2∑
k=1

[(
4
3

(
k
2

) (
n − k
2

) (
k
4

)
+
2
9

(
k
4

) (
n − k
4

)
+

(
k
2

)2 (n − k
2

)2)
−

(
4
3

(
k
2

) (
n − 1 − k

2

) (
k
4

)
+
2
9

(
k
4

) (
n − 1 − k

4

)
+

(
k
2

)2 (n − 1 − k
2

)2)]
=

n − 2
n − 1

EYule(QIB2
n−1) +

2
n − 1

EYule(QIB2
n−1) +

4
3(n − 1)

n−2∑
k=1

(n − k − 1)
(
k
2

) (
k
4

)
+

2
9(n − 1)

n−2∑
k=1

(
n − k − 1

3

) (
k
4

)
+

1
n − 1

n−2∑
k=1

(
k
2

)2
(n − k − 1)3

=
n

n − 1
EYule(QIB2

n−1) +
n
3

(
n − 2
4

)
15n2 − 35n + 6

420

+
n
9

(
n − 2
4

)
n2 − 13n + 42

840
+ n

(
n − 2
2

)
3n4 − 18n3 + 41n2 − 42n + 36

1680

=
n

n − 1
EYule(QIB2

n−1) +
n(n − 2)(n − 3)(253n4 − 2014n3 + 6119n2 − 7430n + 3504)

181440
.

Dividing by n both sides of this expression for EYule(QIB2
n) and setting yn = EYule(QIB2

n)/n,
we obtain the recurrence

yn = yn−1 +
(n − 2)(n − 3)(253n4 − 2014n3 + 6119n2 − 7430n + 3504)

181440
.
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Since y1 = 0, its solution is

yn =
n∑

k=2

(k − 2)(k − 3)(253k4 − 2014k3 + 6119k2 − 7430k + 3504)
181440

=
(n − 3)(n − 2)(n − 1)(1265n4 − 7110n3 + 14419n2 − 4086n + 5040)

6350400

from where we obtain

EYule(QIB2
n) = nyn

=

(
n
4

)
1265n4 − 7110n3 + 14419n2 − 4086n + 5040

264600
.

Finally

σ2
Yule(QIBn) = EYule(QIB2

n) − EYule(QIBn)
2

=

(
n
4

)
1265n4 − 7110n3 + 14419n2 − 4086n + 5040

264600
−
1
9

(
n
4

)2
=

(
n
4

)
5n4 + 30n3 + 118n2 + 408n + 630

33075
,

thus proving Equation (5.3).

The Uniform case

By Lemma 1.31 and Corollary 5.4

Eunif(QIBn) =

n−1∑
k=1

Ck,n−k

(
2Eunif(QIBk) +

(
k
2

) (
n − k
2

))
(5.7)

Eunif(QIB2
n) =

n−1∑
k=1

Ck,n−k

(
2Eunif(QIB2

k) + 4
(
k
2

) (
n − k
2

)
Eunif(QIBk)

+ 2Eunif(QIBk)Eunif(QIBn−k) +

(
k
2

)2 (n − k
2

)2)
(5.8)

where

Ck,n−k =
1
2

(
n
k

)
(2k − 3)!!(2(n − k) − 3)!!

(2n − 3)!!
.

Now, as far as the expected value goes, and since(
k
2

) (
n − k
2

)
= 6

(
k
4

)
− 3(n − 3)

(
k
3

)
+

(
n − 2
2

) (
k
2

)
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models

we have, by Lemma 1.33, that

n−1∑
k=1

Ck,n−k

(
k
2

) (
n − k
2

)
= 6

n−1∑
k=1

Ck,n−k

(
k
4

)
− 3(n − 3)

n−1∑
k=1

Ck,n−k

(
k
3

)
+

(
n − 2
2

) n−1∑
k=1

Ck,n−k

(
k
2

)
= 3

(
n
4

) (
1 −

15
16(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
−
3
2
(n − 3)

(
n
3

) (
1 −

3
4(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
+
1
2

(
n − 2
2

) (
n
2

) (
1 −

1
2(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
=

3
16(n − 1)

(
n
4

)
(2n − 2)!!
(2n − 3)!!

=
1
64

(
3
(
n
3

)
− 2

(
n
2

)
+ n

)
(2n − 2)!!
(2n − 3)!!

.

Then, by Equation (5.7), Eunif(QIBn) is the solution of the equation

xn = 2
n−1∑
k=1

Ck,n−k xk +
1
64

(
3
(
n
3

)
− 2

(
n
2

)
+ n

)
(2n − 2)!!
(2n − 3)!!

with initial condition x1 = 0. By Theorem 1.35, this solution is

Eunif(QIBn) =
1
5

(
n
4

)
,

thus proving Equation (5.2).
Consider finally Equation (5.4). By Equations (5.8) and (5.2),

Eunif(QIB2
n) =

n−1∑
k=1

Ck,n−k

(
2Eunif(QIB2

k) +
4
5

(
k
2

) (
n − k
2

) (
k
4

)
+
2
25

(
k
4

) (
n − k
4

)
+

(
k
2

)2 (n − k
2

)2)
=

n−1∑
k=1

Ck,n−k

(
2Eunif(QIB2

k) +

(
n − 2
2

)2 (k
2

)
+
3
2
(n − 3)2(n2 − 10n + 22)

(
k
3

)
+

1
300
(451n4 − 15322n3 + 147149n2 − 552518n + 722640)

(
k
4

)
−

1
15
(n − 5)(451n2 − 7333n + 24072)

(
k
5

)
+
3
5
(461n2 − 6453n + 21342)

(
k
6

)
−
14
5
(481n − 3487)

(
k
7

)
+
14308
5

(
k
8

))
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= 2
n−1∑
k=1

Ck,n−kEunif(QIB2
k)

+
1
2

(
n − 2
2

)2 (n
2

) (
1 −

1
2(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
+
3
4
(n − 3)2(n2 − 10n + 22)

(
n
3

) (
1 −

3
4(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
+

1
600
(451n4 − 15322n3 + 147149n2 − 552518n + 722640)

(
n
4

) (
1 −

15
16(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
−

1
30
(n − 5)(451n2 − 7333n + 24072)

(
n
5

) (
1 −

35
32(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
+

3
10
(461n2 − 6453n + 21342)

(
n
6

) (
1 −

315
256(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
−
7
5
(481n − 3487)

(
n
7

) (
1 −

693
512(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
+
7154
5

(
n
8

) (
1 −

3003
2048(n − 1)

·
(2n − 2)!!
(2n − 3)!!

)
(by Lemma 1.33)

= 2
n−1∑
k=1

Ck,n−kEunif(QIB2
k)

+
703n7 − 7653n6 + 35545n5 − 88575n4 + 119632n3 − 78372n2 + 18000n

5898240
·
(2n − 2)!!
(2n − 3)!!

= 2
n−1∑
k=1

Ck,n−kEunif(QIB2
k) +

[
4921
8192

(
n
7

)
+
7110
8192

(
n
6

)
+
3195
8192

(
n
5

)
+

516
8192

(
n
4

)
−

3
8192

(
n
3

)
+

2
8192

(
n
2

)
−

1
8192

n

]
(2n − 2)!!
(2n − 3)!!

.

So, Eunif(QIB2
n) is the solution of the equation

xn = 2
n−1∑
k=1

Ck,n−k xk +

[
4921
8192

(
n
7

)
+
7110
8192

(
n
6

)
+
3195
8192

(
n
5

)
+

516
8192

(
n
4

)
−

3
8192

(
n
3

)
+

2
8192

(
n
2

)
−

1
8192

n

]
(2n − 2)!!
(2n − 3)!!
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with initial condition x1 = 0. By Theorem 1.35, this solution is

Eunif(QIB2
n) =

2 · 2!!
1!!

(
2

8192
2
−

1
8192
1

) (
n
2

)
+
3 · 4!!
3!!

(
−

3
8192
3
+

2
8192
2

) (
n
3

)
+
4 · 6!!
5!!

(
516
8192
4
−

3
8192
3

) (
n
4

)
+
5 · 8!!
7!!

(
3195
8192
5
+

516
8192
4

) (
n
5

)
+
6 · 10!!
9!!

(
7110
8192
6
+

3195
8192
5

) (
n
6

)
+
7 · 12!!
11!!

(
4921
8192
7
+

7110
8192
6

) (
n
7

)
+
8 · 14!!
13!!

·

(
4921
8192
7

) (
n
8

)

=
1
5

(
n
4

)
+
12
7

(
n
5

)
+
38
7

(
n
6

)
+
236
33

(
n
7

)
+
1406
429

(
n
8

)

Then, finally

σ2
unif(QIBn) = Eunif(QIB2

n) − Eunif(QIBn)
2

=

(
n
4

) (703n4 − 3194n3 + 6965n2 − 3706n − 96
360360

−
1
25

(
n
4

))
=

(
n
4

)
4(16n4 + 64n3 + 56n2 − 16n − 15)

225225

=

(
n
4

)
4(2n − 1)(2n + 1)(2n + 3)(2n + 5)

225225
.

Et voilà! Equation (5.4) pops up.

5.4 Extensions

A perquisite presented by theQuartet index is that it admits natural generalizations to
other sets of trees, such as multilabelled or taxonomic trees, or even to specific types
of rooted phylogenetic networks, by simply counting and weighting suitable types of
quartets. In this section we expose the general framework of these generalizations, and
then we provide some extra detail for the extension that we propose to multilabelled
trees. It will be the first balance index proposed in the literature for this type of tree.

5.4.1 General framework

Throughout this subsection, by a subtree we mean a subtree induced on some subset of
leaves. Let�Tree be a set of trees of some kind—for instance, phylogenetic, phylogenetic
with nested taxa, taxonomic, multilabelled. . .— that is closed under subtrees; for every
n, let �Treen be the subset of trees in �Tree with n leaves. We want to emphasize here
that although, in order to simplify the language, in this subsection we shall only speak
about trees, one can replace everywhere “tree” by “rooted directed acyclic graph” and
all assertions and results remain true provided that, for every n, the number of rooted
directed acyclic graphs with n leaves of the considered type is (up to isomorphisms)
finite.
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Let ` be a fixed number of leaves and setQ =�Tree` . LetN = |Q|−1, and enumerate
the elements of Q as Q0,Q1, . . . ,QN in such a way that |Aut(Qi)| ≤ |Aut(Qi+1)|. Let
Q̂I : Q→ R≥0 be a function such that Q̂I(Qi) > Q̂I(Q j ) if |Aut(Qi)| > |Aut(Q j )|, and
such that theminimumvalue ofQI onQ is 0. We shall denote each Q̂I(Qi) by q̂i , so that
(permuting the indices of the elements ofQ with the same number of automorphisms,
if necessary) 0 = q̂0 ≤ q̂1 ≤ · · · ≤ q̂N , with these inequalities strict when the number
of automorphisms jumps.

Then, we can define a function Q̂I : �Tree→ R by means of

Q̂I(T ) =
∑

{Q∈Q, Q is a subtree of T }

Q̂I(Q)

=

N∑
i=1

��{subtrees Q of T such that Q = Qi}
��q̂i

=

N∑
i=1

��{X ∈ Part`(L(T )) : T (X ) = Qi}
��q̂i

and then we can prove the analogous versions of Theorems 5.18 and 5.23.
Let (P̂n)n≥1, be a probability model on �Tree: that is, a family of probability map-

pings P̂n : �Treen → [0, 1], for n ≥ 1. We shall say that (P̂n)n is sampling consistent
when, for every 1 ≤ m ≤ n and for every T0 ∈�Treem ,

P̂m(T0) =
∑

T ∈�Treen
|{X ∈ Partm(L(T )) : T (X ) = T0}|( n

m
) P̂n(T ).

Let Q̂In be the random variable that chooses a tree T ∈�Treen with probability P̂n(T )
and computes QI(T ).

Theorem 5.27. Let (P̂n)n a sampling consistent probabilistic model on �Tree. Then, the
expected value of Q̂In under this model is

EP̂ (Q̂In) =
(
n
`

) N∑
i=1

P̂`(Qi) · q̂i .

Proof. We proceed as in the proof of Theorem 5.18,

EP̂ (Q̂I) =
∑

T ∈�Treen Q̂I(T )P̂n(T )

=
∑

T ∈�Treen
N∑
i=1

��{X ∈ Part`(L(T )) : T (X ) = Qi}
��q̂i P̂n(T )

=

(
n
`

) N∑
i=1

q̂i
∑

T ∈�Treen
��{X ∈ Part`(L(T )) : T (X ) = Qi}

��(n
`
) P̂n(T )

=

(
n
`

) N∑
i=1

q̂i P̂`(Qi),
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by the sampling consistency of P̂n. �

Theorem 5.28. Let (P̂n)n a sampling consistent probabilistic model on �Tree. Then, the
variance of Q̂In under this model is

σ2
P̂
(Q̂In) =

(
n
`

) N∑
i=1

q̂2i P̂`(Qi) −

(
n
`

)2 ( N∑
i=1

qi P̂`(Qi)

)2

+

N∑
i=1

N∑
j=1

q̂i q̂ j
©«

2∑̀
k=`+1

(
n
k

) ∑
T ∈�Treek Θi, j (T )P ∗k (T )

ª®®¬
where, for every k ∈ {`+1, . . . , 2`}, for everyT ∈�Treek and for every (i, j) ∈ {1, . . . ,N }2,
Θi, j (T ) =

��{(X ,X ′) ∈ Part`(L(T ))2 : X ∪ X ′ = L(T ),T (X ) = Qi,T (X ′) = Q j }
��

=
��{(X ,X ′) ∈ Part`(L(T ))2 : |X ∩ X ′ | = 2` − k,T (X ) = Qi,T (X ′) = Q j }

��.
Proof. Weproceed as in the proof of Theorem 5.23. We shall use the identityσ2

P̂
(Q̂In) =

EP̂ (Q̂I
2
n)−EP̂ (Q̂In)

2; hence, we need to compute EP̂ (Q̂I
2
n). For everyT ∈�Treen, every

Qi ∈ Q and every X ∈ Part`(L(T )), set

δ(X ,Qi,T ) =

{
1 if T (X ) = Qi

0 otherwise.

Then,

EP̂n =
∑

T ∈�Treen Q̂I(T )2P̂n(T )

=
∑

T ∈�Treen
©«

∑
X ∈Part` (L(T ))

N∑
i=1

q̂iδ(X ,Qi,T )
ª®¬
2

P̂n(T )

=
∑

T ∈�Treen
©«

∑
X ∈Part` (L(T ))

N∑
i=1

q̂2i δ(X ,Qi,T )2
ª®¬ P̂n(T )

+
∑

T ∈�Treen
©«

∑
(X ,X′)∈Part` (L(T ))2

X,X′

∑
(i, j)∈[q]2

q̂i q̂ jδ(X ,Qi,T )δ(X ,Q j,T )
ª®®®¬ P̂n(T )
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Now, let

S1 =
∑

T ∈�Treen
©«

∑
X ∈Part` (L(T ))

N∑
i=1

q̂iδ(X ,Qi,T )2
ª®¬ P̂n(T )

=
∑

T ∈�Treen
©«

∑
X ∈Part` (L(T ))

N∑
i=1

q̂iδ(X ,Qi,T )
ª®¬ P̂n(T )

=

N∑
i=1

©«q̂2i
∑

T ∈�Treen
��{X ∈ Part`(L(T )) : T (X ) = Qi}

��P̂n(T )
ª®¬

=

(
n
`

) N∑
i=1

©«q̂2i
∑

T ∈�Treen
��{X ∈ Part`(L(T )) : T (X ) = Qi}

��(n
`
) P̂n(T )

ª®¬
=

(
n
`

) N∑
i=1

q̂2i P̂`(Qi),

(by the sampling consistency of (P̂n)n ) and

S2 =
∑

T ∈�Treen
∑

(X ,X′)∈Part` (L(T ))2
X,X′

©«
∑

(i, j)∈[q]2
q̂i q̂ jδ(X ,Qi,T )δ(X ′,Q j,T )

ª®¬ P̂n(T )

=
∑

(i, j)∈[q]2
q̂i q̂ j

©«
∑

T ∈�Treen
©«
`−1∑
k=0

∑
(X ,X′)∈Part` (L(T ))2

|X∩X′ |=k

δ(X ,Qi,T )δ(X ′,Q j,T )
ª®®®¬ P̂n

ª®®®¬
=

∑
(i, j)∈[q]2

©«
`−1∑
k=0

∑
T ∈�Treen

��{(X ,X ′) ∈ Part`(L(T ))2 : |X ∩ X ′ | = k,T (X ) = Qi,T (X ′) = Q j }
��P̂n(T )

ª®¬ .
Now, notice that for every k ∈ {0, 1, . . . , ` − 1}, we are only considering leaves in a tree
T2`−k ∈

�Tree2`−k since we demand that |X ∩ X ′ | = k. Therefore,

∑
T ∈�Treen

��{(X ,X ′) ∈ Part`(L(T ))2 : |X ∩ X ′ | = k,T (X ) = Qi,T (X ′) = Q j }
��P̂n(T )

=
∑

T ∈�Treen
( ∑
T2`−k ∈

�Tree2`−k
��{X ∈ Part2`−k(L(T )) : T (X ) = T2`−k}

��
·
��{(X ,X ′) ∈ Part`(L(T2`−k))

2 : |X ∩ X ′ | = k,T2`−k(X ) = Qi,T2`−k(X ′) = Q j }
��) P̂n(T )
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=
∑

T2`−k ∈
�Tree2`−k

��{(X ,X ′) ∈ Part`(L(T2`−k))
2 : |X ∩ X ′ | = k,T2`−k(X ) = Qi,T2`−k(X ′) = Q j }

��
·

(
n

2` − k

) ∑
T ∈�Treen

��{(X ,X ′) ∈ Part`(L(T2`−k))
2 : |X ∩ X ′ | = k,T2`−k(X ) = Qi,T2`−k(X ′) = Q j }

��( n
2`−k

)
· P̂n(T )

=

(
n

2` − k

) ∑
T2`−k ∈

�Tree2`−k
��{(X ,X ′) ∈ Part`(L(T2`−k))

2 : |X ∩ X ′ | = k,T2`−k(X ) = Qi,

T2`−k(X ′) = Q j }
��P̂2`−k(T2`−k)

(by the sampling consistency of (P̂n)n )

=

(
n

2` − k

) ∑
T2`−k ∈

�Tree2`−k
��{(X ,X ′) ∈ Part2`−k(L(T ))2 : X ∪ X ′ = L(T2`−k),T2`−k(X ) = Qi,

T2`−k(X ′) = Q j }
��P̂2`−k(T2`−k)

=

(
n

2` − k

) ∑
T2`−k ∈

�Tree2`−k Θi, j (T2`−k)P̂2`−k(T2`−k).

Thus,

S2 =
∑

(i, j)∈[q]2
qiq j

©«
`−1∑
k=0

(
n

2` − k

) ∑
T2`−k ∈

�Tree2`−k Θi, j (T2`−k)P̂2`−k(T2`−k)
ª®®¬

=
∑

(i, j)∈[q]2
qiq j

©«
2∑̀

k=`+1

(
n
k

) ∑
T ∈�Treek Θi, j (T2`−k)P ∗k (T )

ª®®¬ .
Therefore, as σ2

P̂
(Q̂In) = S1 + S2 − EP̂ (Q̂In)

2, we have proven the proposition. �

5.4.2 A quartet index for multilabelled tree shapes

Remember the discussion in Section 1.1.2 about the elements of MulTree. These are
pairs (T , λ), with T ∈ Treen and λ : L(T ) → [n] for some n ∈ N. The difference
betweenMulTree and PhyloTree is that, in the former, we do not demand that λ must
be bijective. Let us recall the second definition of isomorphism between multilabelled
trees given in the aforementioned subsection. Given (T1, λ1), (T2, λ2) ∈ MulShTreen,
a shape-isomorphism between them is a pair (ϕ, ϕ[n]) such that ϕ is an isomorphism of
trees between T1 and T2, and ϕ[n] : [n] → [n] is bijective and such that the diagram

L(T1) L(T2)

[n] [n]

λ1

ϕV |L

λ2

ϕ[n]
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commutes. Notice that the restriction of this notion of isomorphism to phylogenetic
trees does not yield the usual isomorphism of phylogenetic trees, where ϕ[n] is imposed
to be the identity on [n], but rather the isomorphism of their shapes. Indeed, for a
shape-isomorphism of multilabelled trees as defined above is an isomorphism ϕ of the
underlying tree shapes such that a pair of leaves in T1 has the same label if, and only
if, the image of the leaves in T2 have the same label, and this adds no extra restriction
on ϕ if T1 and T2 are phylogenetic, because then they contain no pair of leaves with
the same label. Recall from Section 1.1.2 that we callmultilabelled tree shapes the shape-
isomorphism classes of multilabelled trees, and we denote by MulShTreen the set of
multilabelled tree shapes with n leaves and labelled in [n].

Example:
Let T ∈ MulShTree4 be the tree depicted below.

x y z t

1 1 2 2

Its shape-automorphisms are

ϕ = id
ϕ : x 7→ x

y 7→ y
z 7→ t
t 7→ z

ϕ : x 7→ y
y 7→ x
z 7→ t
t 7→ z

ϕ : x 7→ y
y 7→ x
z 7→ t
t 7→ z

ϕ : x 7→ z
y 7→ t
z 7→ x
t 7→ y

ϕ : x 7→ z
y 7→ t
z 7→ y
t 7→ x

ϕ : x 7→ t
y 7→ z
z 7→ x
t 7→ y

ϕ : x 7→ t
y 7→ z
z 7→ y
t 7→ x

There are 39 different (i.e., non-shape-isomorphic) multilabelled tree shapes with
four leaves; 18 of them are bifurcating. These trees, along with their number of shape-
automorphisms, are described in the Table 5.4. As it can be seen, between them they
only amount to six different numbers of shape-automorphisms. We must assign now
to each member of MulShTree4 a Q̂I value that increases with the number of shape-
automorphisms. We do it here with the following extra requirement: If T1 has the
same number shape-automorphisms than T2, but the (unlabelled) shape of T1 has more
automorphisms than that of T2, then Q̂I(T1) > Q̂I(T2). In this way, we can assign to
each tree in MulShTree4 a QI value qi , with i ∈ {0, . . . , 13} and 0 = q0 < · · · < q13,
which is also indicated in the Table 5.4. And then we can define, for every (T , λ) ∈
MulShTree,

Q̂I(T , λ) =
∑

{(Q,λ |Q ):Q∈Part4(L(T ))}

Q̂I(T (Q), λ |Q ).

Of course, it would be possible to make a finer association (T , λ) ∈ MulShTree4 7→
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Multifurcating Bifurcating
Shape (·, ·, ·, ·) Shape ((·, ·), (·, ·))

(1,2,3,4) 24 q13 ((1,2),(3,4)) 8 q11
(1,1,2,3) 4 q8 ((1,1),(2,3)) 4 q7
(1,1,2,2) 8 q12 ((1,2),(1,3)) 2 q5
(1,1,1,2) 6 q10 ((1,1),(2,2)) 8 q11
(1,1,1,1) 24 q13 ((1,1),(1,2)) 2 q5
Shape ((·, ·, ·), ·) ((1,2),(1,2)) 4 q7

((1,2,3),4) 6 q9 ((1,1),(1,1)) 8 q11
((1,2,3),1) 2 q4 Shape (·, (·, (·, ·)))
((1,1,2),3) 2 q4 (1,(2,(3,4))) 2 q2
((1,1,2),2) 2 q4 (1,(2,(3,3))) 2 q2
((1,1,1),2) 6 q9 (1,(2,(2,3))) 1 0
((1,1,2),1) 2 q4 (1,(2,(1,3))) 1 0
((1,1,1),1) 6 q9 (1,(1,(2,3))) 2 q2

Shape ((·, ·), ·, ·) (1,(1,(2,2))) 2 q2
((1,2),3,4) 4 q6 (1,(2,(1,2))) 1 0
((1,1),2,3) 4 q6 (1,(1,(1,2))) 1 0
((1,2),1,3) 1 q1 (1,(2,(1,1))) 2 q2
((1,2),3,3) 4 q6 (1,(2,(2,2))) 2 q2
((1,1),2,2) 4 q6 (1,(1,(1,1))) 2 q2
((1,2),1,2) 2 q3
((1,1),1,2) 2 q3
((1,2),1,1) 2 q3
((1,1),1,1) 4 q6

Table 5.4: The 39 multilabelled tree shapes in MulShTree4, their numbers of shape-
automorphisms (second column in each block) and their Q̂I value according to our
schema (third column in each block).

Q̂I((T , λ)) by taking into account more information related to the balance than simply
the number of automorphisms with and without labels.

With the schema explained above, we have the following results.

Proposition 5.29. Let n ∈ N≥4. The maximum Q̂I value on MulShTreen is reached
exactly at two multilabelled tree shapes: the star with all leaves labelled with the same label,
and the star with all leaves labelled with different labels.

Proof. The maximum possible value of Q̂I on MulShTreen is
(n
4
)
q13, and it is reached

on the trees all whose quartets are of type (1, 1, 1, 1) or (1, 2, 3, 4). The only trees in
MulShTreen satisfying this condition are the star with all leaves labelled with 1, and
the star with all leaves labelled with different labels. �

Theorem 5.30. Let n ∈ N≥4. The maximum value of the Q̂I index for the trees in
BinMulShTreen is reached exactly at the multilabelled tree shapes M whose underlying tree
shape is maximally balanced and their labels satisfy one of the following two conditions:
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(i) All the leaves of M are labelled differently.

(ii) If M = M1 ∗ M2, then all the leaves in Mi , i ∈ {1, 2}, are labelled equally.

Proof. To begin with, notice that if we take a bifurcatingmultilabelled tree shape M and
we relabel all its leaves with different labels, obtaining a phylogenetic tree MP , then its
Q̂I value does not decrease, because the quartets of types ((1, 2), (3, 4)) and (1, (2, (3, 4)))
have Q̂I value greater or equal than all other quartets with their same unlabellled shape.
Therefore, for every M ∈ BinMulShTreen,

Q̂I(M ) ≤ Q̂I(MP ) = QI(MP )q11 +
((
n
4

)
−QI(MP )

)
q2.

Since q11 > q2, the maximum value of the right-hand side expression will be reached
when MP has maximum QI value, that is, when its underlying tree shape π1(MP ) =

π1(M ) is maximally balanced. We conclude that themaximum Q̂I value onBinMulShTreen
is

qib(n) · q11 +
((
n
4

)
− qib(n)

)
q2

and it is reached, for the moment, at the maximally balanced phylogenetic trees, that
is, at the multilabelled tree shapes under case (i) in the statement.

To complete the proof of the statement, we must prove that any other bifurcating
multilabelled tree shape M with Q̂I(M ) = qib(n)·q11+

( (n
4
)
− qib(n)

)
q2 must fall under

case (ii) in the statement. Notice that such a M ∈ BinMulShTreen must satisfy that:

• π1(M ) must be maximally balanced, because otherwise

Q̂I(M ) ≤ QI(MP )q11 +
((
n
4

)
−QI(MP )

)
q2 < qib(n) · q11 +

((
n
4

)
− qib(n)

)
q2.

• All its fully symmetric quartetsmust be of types ((1, 2), (3, 4)), ((1, 1), (2, 2)) or ((1, 1), (1, 1)),
because otherwise the contribution to Q̂I(M ) of its fully symmetric quartets would be
smaller than qib(n) · q11.

We begin by proving that if M ∈ BinMulShTreen has π1(M ) = T bal
n and M =

M1 ∗M2 with each Mi such that all its leaves have the same label, then Q̂I(M ) = qib(n) ·
q11+

( (n
4
)
− qib(n)

)
q2. Indeed, for letQ be a quartet of such a bifurcating multilabelled

tree shape M . Two possibilities arise:

• If Q has fully symmetric shape, either it is all contained in Mi for i ∈ {1, 2}, or it has
a cherry in M1 and one in M2. In the first case, Q is of type ((1, 1), (1, 1)), and in the
second case it is of type ((1, 1), (1, 1)) (if the labels of the leaves in M1 and M2 are the
same) or ((1, 1), (2, 2)) (if they are different). Both possibilities have the largest possible
Q̂I value, q11.

• IfQ has the shape of a caterpillar, then, again, it can be all contained in Mi for some i ∈
{1, 2}, or it can have one leaf in M1 and three in M2, or vice versa. The first possibility is
of type (1, (1, (1, 1))), and the second either (1, (1, (1, 1))) or (2, (1, (1, 1))), depending on
whether the labels of the leaves in M1 and M2 are equal or different. Both possibilities
have Q̂I value q2.
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We prove now that if M = M1 ∗ M2 ∈ BinMulShTreen is such that π1(M ) = T bal
n

and it has some pair of leaves with the same label but there is some pair of leaves with
different label in some Mi , then Q̂I(M ) is smaller than qib(n) · q11 +

( (n
4
)
− qib(n)

)
q2.

To fix ideas, assume that there are two leaves in M1 with different labels, say 1 and 2.
Then, for every pair of different leaves x, y in M2 (and there exist at least two of them,
because the shape of M is maximally balanced and n ≥ 4), the quartet ((1, 2), (x, y))
must be of type ((1, 2), (3, 4)) in order to have Q̂I value q11. This implies that all leaves
in M2 have pairwise different labels and moreover different from 1 and 2. And since 1
and 2 stood for any pair of different leaves’ labels in M1, we conclude that all leaves in
M2 have pairwise different labels and that the sets of labels of M1 and M2 are disjoint.
Now, since M contains some pair of repeated labels, this repetition must appear in M1:
say that M1 contains two copies of the label 1. But then, M contains a quartet of type
((1, 1), (3, 4)), whose Q̂I value is q7 < q11.

This completes the proof of the statement. �

As for the minimum value of Q̂I, unfortunately we have to leave its characteriza-
tion as an open problem. Intuitively, we would conjecture it to be attained at some
caterpillar with a specific labelling. But this need not be the case even for bifurcating
trees, at least when we restrict the set of labels. To end this section, we shall show this
fact. More specifically, we shall prove that, for any values of the qi ’s in Table 5.4, the
minimum value of Q̂I on BinMulShTreen([2]), the set of bifurcating multilabelled tree
shapes with n leaves labelled on [2] (or bifurcating bilabelled tree shapes with n leaves),
is not reached at any caterpillar if n is large enough,

If we look in Table 5.4, we will see that the caterpillars in BinMulShTree4([2])
with non-zero Q̂IB value are exactly those whose cherry at the bottom is labelled with
a single label. Let trip(M ) denote the number of triples of M ∈ BinMulShTreen([2])
of the form (x, (y, z)) such that y = z .

We shall now present our candidate to minimize Q̂IB over the bilabelled cater-
pillars. Let M̂ cat

n ∈ BinMulShTreen([2]), n ≥ 2, be the bilabelled caterpillar whose
labelling is defined recurrently as follows:

M̂ cat
2 = (1, 2),

and
M̂ cat

2k = 1 ∗ M̂ cat
2k−1, M̂ cat

2k+1 = 2 ∗ M̂ cat
2k .

In other words,

M̂ cat
2k = (1, (2, (1, (2, (1, . . . , (1, 2) . . .))))) ∈ BinMulShTree2k([2]),

M̂ cat
2k+1 = (2, (1, (2, (1, (2, . . . , (1, 2) . . .))))) ∈ BinMulShTree2k+1([2]).

Recall that, since we are dealing with bilabelled tree shapes, the labels 1 and 2 can be
interchanged without changing the tree.

Lemma 5.31. If n ≥ 4, M̂ cat
n minimizes trip among the multilabelled caterpillars in

BinMulShTreen([2]).
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Proof. We proceed by induction over n. When n = 4, we have that

trip((1, (2, (1, 2)))) = trip((2, (1, (2, 1)))) = 1.

Let now (x, (y, (z, t ))) be any caterpillar inBinMulShTree4([2]). If z = t , then (x, (y, (z, t )))
contains two triples ending in the cherrywith repeated labels (z, t ) and hence trip((x, (y, (z, t ))))
≥ 2. If z , t , then y will be equal either to z or to t and hence either (x, (y, z)) or
(x, (y, t )) end in a cherry with repeated labels, and thus trip((x, (y, (z, t )))) ≥ 1. So, 1 is
the minimum possible value for trip on BinMulShTree4([2]).

Suppose now that the statement holds up to n leaves, n ≥ 4. Consider M cat
n+1 ∈

BinMulShTreen+1([2]) to be any bilabelled caterpillar. Let ` be its leaf pending from
the root; that is, M cat

n+1 = ` ∗ M cat
n for some bilabelled caterpillar with n leaves M cat

n .
After interchanging the labels 1 and 2 if necessary, we shall assume that ` = 1 if n + 1
is even and ` = 2 if n + 1 is odd. Assume that M cat

n has k leaves labelled 1 and the
remaining n − k leaves labelled 2. Then,

trip(M cat
n+1) = trip(M cat

n ) +

(
k
2

)
+

(
n − k
2

)
.

Now, f (x) =
(x
2
)
+

(n−x
2

)
is a parabola with vertex at n/2, and so M̂ cat

n would be such that
this function is minimum. By the inductive hypothesis, it also minimizes trip in the
second member of the equation above. This shows that trip(M̂ cat

n+1) is minimum. �

Notice that we are not saying that M̂ cat
n is the only bilabelled caterpillar that mini-

mizes trip, just as we will not show it to be the only bilabelled caterpillar that minimizes
Q̂IB.

Corollary 5.32. If n ≥ 4, M̂ cat
n minimizes Q̂IB among the multilabelled caterpillars in

BinMulShTreen([2]).

Proof. We proceed by induction over n. When n = 4, it is simply due to the fact that
Q̂IB((1, (2, (1, 2)))) = 0. Suppose now that the statement holds up to n leaves.

Consider M cat
n+1 ∈ BinMulShTreen+1([2]) to be a bilabelled caterpillar and write it

as ` ∗ M cat
n . As in the proof of the last lemma, we shall assume without any loss of

generality that ` = 1 if n + 1 is even and ` = 2 if n + 1 is odd.
The quartets inM cat

n+1 not involving the shallowest leaf ` that contribute to Q̂IB(M cat
n+1)

are exactly those defining Q̂IB(M cat
n ), and a quartet (`, (x, (y, z))) with the first label

corresponding to the shallowest leaf contributes to Q̂IB(M cat
n+1) if, and only if, (x, (y, z))

contributes to trip(M cat
n ). Therefore,

Q̂IB(M cat
n+1) = Q̂IB(M cat

n ) + trip(M cat
n )q2.

By Lemma 5.31 and the inductive hypothesis, M̂ cat
n+1 minimizes Q̂IB. �

So, in particular, Q̂IB((1, (2, (1, (2, (1, 2)))))) is minimal among all 6-legged billabeled
caterpillars. The next example shows that it not be the case in thewholeBinMulShTree6([2]).
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1

2

1

2

12 1 2 1 2

2

1

Figure 5.6: M̂ cat
6 and M in BinMulShTree6([2]).

Example:
Consider the two multilabelled tree shapes with six leaves depicted in Figure 5.6,
M̂ cat

6 and M . It can be checked that Q̂IB(M̂ cat
6 ) = 6q2 while Q̂IB(M ) = 4q2 + q7. So,

Q̂IB(M̂ cat
6 ) ≤ Q̂IB(M ) if, and only if, 2q2 ≤ q7. This can or cannot be the case.

So, Q̂IB(M̂ cat
6 ) may not be minimum in BinMulShTree6([2]) in general. The only

way it might be minimum is that we set q7 > 2q2, and even then we do not claim
it to be so. But, since Q̂IB(M̂ cat

6 ) is minimum among all bilabelled caterpillars in
BinMulShTree6([2]), we conclude that it need not be the minimum in the whole
BinMulShTree6([2]) given values of q2 and q7. The final theorem of this section will
show that for any given values of q2 and q7, Q̂IB(M̂ cat

n ) is notminimum inBinMulShTreen([2])
if n is large enough. In order to prove it, let us establish the following version of Lemma
5.11.

Lemma 5.33. Let M0 be a bifurcating bilabelled tree, z ∈ L(M0), and let M ,M ′ be two
trees obtained by appending to the leaf z in M0 the rooted bifurcating bilabelled subtrees
Mz,M ′z ∈ BinMulShTreen([2]), respectively. Assume that Λ(Mz ) = Λ(M ′z ) are equal as
multisets of labels 1, 2. Then,

Q̂IB(M ′) − Q̂IB(M ) = Q̂IB(M ′z ) − Q̂IB(Mz ) + (|L(M0)| − 1)
(
trip(M ′z ) − trip(Mz )

)
q2.

Proof. Let Q = {a, b, c, d} ∈ Part4(L(M )) = Part4(L(M ′)). Then:

• If Q ∩ L(Mz ) = ∅, then M (Q) = M ′(Q) = M0(Q).

• If Q ∩ L(Mz ) = {d} —for instance—, then M (Q) = M ′(Q) = M0({a, b, c, z}).

• If Q ∩ L(Mz ) = {c, d} —for instance—, then two cases arise: either M0({a, b, z}) =
(a, (b, z)), and in this caseM (Q) = M ′(Q) = (a, (b, (c, d))); orM0({a, b, z}) = ((a, b), z),
and so M (Q) = M ′(Q) = ((a, b), (c, d)).

• If Q ∩ L(Mz ) = {b, c, d} —for instance—, then it may happen that M (Q) , M ′(Q)
since, even if they will be both caterpillars, there are two possibilities:

– if b, c, d are the same label `, then M (Q) = M ′(Q) = (a, (`, (`, `))); but

– if, say, b, c are labelled 1 and d is labelled 2, then it can happen thatM (Q) = (a, (2, (1, 1)))
and M ′(Q) = (a, (1, (1, 2))): the first contributes q2 to Q̂IB(M ) and the latter 0 to
Q̂IB(M ′).
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Now, recall that the only caterpillars with four leaves in BinMulShTree4([2]) that add
q2 to the total Q̂IB are those whose cherry at the bottom has their leaves equally la-
belled. Hence, this last case adds (|L(M0)| − 1)q2 for each triplet whose cherry has its
leaves thus labelled. Therefore,

Q̂IB(M ′) − Q̂IB(M ) = Q̂IB(M ′z ) − Q̂IB(Mz ) + (|L(M0)| − 1)
(
trip(M ′z ) − trip(Mz )

)
q2.

�

Theorem 5.34. For every 0 < q2 < q7, there exists N ∈ N such that, if n ≥ N , the
bilabelled tree shape that minimizes Q̂IB over BinMulShTreen([2]) is not that of a cater-
pillar.

Proof. Consider M̂ cat
n ; we have already shown that this is the bilabelled caterpillar that

minimizes Q̂IB over the bilabelled caterpillars. Consider the bilabelled tree shape M ′

produced by replacing the subtree formed by the four bottom-most leaves of M̂ cat
n ,

(1, (2, (1, 2))) or (2, (1, (2, 1))), by the subtree M̂ bal
4 = ((1, 2), (1, 2)) (cf. Figure 5.6). By

Lemma 5.33,

Q̂IB(M̂ cat
n ) − Q̂IB(M ′) = Q̂IB(M̂ cat

4 ) − Q̂IB(M̂ bal
4 )

+ (n − 4)
(
trip(M̂ cat

4 ) − trip(M̂
bal
4 )

)
q2

= −q7 + (n − 4)q2

since trip(M̂ cat
4 ) = 1, trip(M̂ bal

4 ) = 0, Q̂IB(M̂ cat
4 ) = 0, and Q̂IB(M̂ bal

4 ) = q7. Now, the
expression above is positive whenever

n ≥ 4 +
q7
q2
.

Thus, for every pair (q2, q7) ∈ R>0 with q2 < q7, if n is large enough it will happen
that Q̂IB(M ′) < Q̂IB(M̂ cat

n ). Since Q̂IB(M̂ cat
n ) is minimum among the caterpillars in

BinMulShTreen([2]), this proves that theminimum Q̂IB value onBinMulShTreen([2])
is not reached at a caterpillar. �

A sampling consistent probabilistic model for multilabelled trees

If we knew of some sampling consistent probabilistic model for multilabelled trees,
then by Theorems 5.27 and 5.28 we would be able to compute the expected value and
the variance under it of this Quartet index Q̂I. We begin by proving the following
Lemma.

Lemma 5.35. Let (P ∗n)n be a probabilistic model for mul-shapes such that

(i) The probabilistic model of trees (PTree,∗
n )n : Tree→ [0, 1] it induces is sampling consistent.

(ii) For every n ≥ 2, for every M0 ∈ MulShTreen−1 and for every T ∈ Treen

|{x ∈ L(T ) : T (−x) = π1(M0)}| · P ∗n−1(M0 : π1(M0))

=
∑

M ∈MulShTreen
π1(M )=T

|{x ∈ L(M ) : M (−x) = M0}| · Pn(M |T ).
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Then, (P ∗n)n is sampling consistent.

Proof. With the notations in the statement of this lemma, we begin by considering

P ∗n−1(M0) = P ∗n−1(M0 |π1(M0)) · PTree,∗
n−1 (π1(M0))

= P ∗n−1(M0 |π1(M0))
∑

T ∈Treen

|{x ∈ L(T ) : T (−x) = π1(M0)}|

n
PTree,∗
n (T )

(due to the sampling consistency of (PTree,∗
n )n )

=
∑

T ∈Treen

∑
M ∈MulShTreen

π1(M )=T

|{x ∈ L(M ) : M (−x) = M0}|

n
P ∗n(M |T )PTree,∗

n (T )

(by the second condition in the statement of this lemma)

=
∑

M ∈MulShTreen

|{x ∈ L(M ) : M (−x) = M0}|

n
P ∗n(M ),

which is what we wanted to prove. �

Theorem 5.36. Let (P ∗n)n be a probabilistic model for mul-shapes such that

(i) The probabilistic model of trees (PT ,∗
n )n it induces is sampling consistent

(ii) There exists an N ∈ N such that, for every M ∈ MulShTreen with π1(M ) = T , Pn(M |T ) is
the fraction of (arbitrary) labelings λ : L(T ) → [N ] such that the mul-shape of the mul-tree
(T , λ) is M :

P ∗n(M |T ) =
|{λ : L(T ) → [N ] : π∗(T , λ) = M }|

N n

Then, (P ∗n)n is sampling consistent.

Proof. In order to prove this result we shall show that all the models satisfying both of
the relations stated in this theorem also satisfy the hypotheses of Lemma 5.35.

Let M0 ∈ MulShTreen−1 andT ∈ Treen. Then, in order to use the previous lemma,
we want to check whether

|{x ∈ L(T ) : T (−x) = π1(M0)}|
|{λn−1 : L(π1(M0)) → [N ] : T (−x) = π1(M0)}|

N n−1

=
∑

M ∈MulShTreen
π1(M )=T

|{x ∈ L(T ) : M (−x) = M0}|
|{λn : L(T ) → [N ] : π∗(T , λn) = M }|

N n ,

or, equivalently, that

|{x ∈ L(T ) : T (−x) = π1(M0)}| · |{λn−1 : L(π1(M0)) → [N ] : π∗(T , λn−1) = M0}|

=
∑

M ∈MulShTreen
π1(M )=T

|{x ∈ L(T ) : M (−x) = M0}|
|{λn : L(T ) → [N ] : π∗(T , λn) = M }|

N
.
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As for the first member of the equation,

|{x ∈ L(T ) : T (−x) = π1(M0)}| · |{λn−1 : L(π1(M0)) → [N ] : π∗(T , λn−1) = M0}|

= |{(x, λn−1) ∈ L(T ) × [N ]L(π1(M0)) : T (−x) = π1(M0), π
∗(π1(M0), λn−1) = M0}|

=
1
N
|{(x, λn) ∈ L(T ) × [N ]L(T ) : π∗(T , λn)(−x) = M0}|

=
∑

M ∈MulShTreen
π1(M )=T

|{x ∈ L(T ) : M (−x) = M0}|
|{λn : L(T ) → [N ] : π∗(T , λn) = M }|

N
,

since L(M ) = L(π1(M )) for any M ∈ MulShTree. �

As a consequence, any probabilistic model for trees that is sampling consistent,
endowedwith a completely random labelling on [N ] for someN ∈ N≥1 is also sampling
consistent.

5.5 Discussion

In this chapter we have introduced a new balance index that makes sense for bifurcating
and multifurcating trees. This is worth noting, since the two most widely used balance
indices, that is, the Colless and the Sackin indices, have some issues regarding its ex-
tension to multifurcating trees. The first one cannot by extended using the definition
as it is, since it assumes the existence of two and only two children at each internal
node—although some authors have given extensions for multifurcating trees [86]. The
second one can be readily extended, but the interpretation of its value might be diffi-
cult, since every taxonomic tree (that is, a tree such that every leaf has the exact same
depth, even if that means that some internal nodes have out-degree 1) would then have
the same Sackin index regardless of any intuition of the balance of this shape. In this
chapter, we have proven that the Quartet index has a meaningful interpretation in the
multifurcating case.

Furthermore,QI has the largest range of values in the literature for a fixed number
of leaves n ∈ N: from 0 to q4

(n
4
)
= O(n4) in themultifurcating case, and from 0 toO(n4)

in the bifurcating one. A priori, this reduces the chance of two different trees presenting
the sameQI (as it was shown in Figure 3.1). As we have shown, this probability is zero
when it comes to the extreme values of QI: both its multifurcating and its bifurcating
maxima are unique, and its minimum (which happens to be the same in both cases)
is also unique. This is not the case for the Colless index (as we saw in the previous
chapter), nor it is for the Sackin index [39]; it is, however, the case with the Cophenetic
index [85].

Nevertheless, theQuartet index strongly correlates with both theColless and Sackin
indices, as well as the Cophenetic index. Figure 5.7 shows some scatterplots of the
Spearman correlation of QI versus (a) the Sackin index, (b) the Colless index, (c) the
Cophenetic index, (d) the number of cherries of a given tree, QIB versus (e) the Sackin
index and (f) the Cophenetic index. We point out that the Spearman correlation in the
case of the number of cherries (Table 5.5) of a given tree is rather small, which might
strike us as counterintuitive, but because of the small range of values of this last index
—only about O(log n)—, it is not surprising. Notice also that the correlation between
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QI and the other indices is negative, sinceQI increases with balance, while all the other
indices decrease with it.

Finally, we want to emphasize that one of the most interesting features of this new
index is that it can be easily extended to other sets of directed graphs, thus opening the
door to consider the question of how balanced are the graphs in those sets. The case for
binary multilabelled trees is only sketched in this memoir, but this will be the direction
of future research.

Correlation Value
QIB vs S on BinTree20 −0.889
QIB vs C on BinTree20 −0.893
QIB vs Φ on BinTree20 −0.935
QI vs number of cherries on BinTree20 0.165
QI vs S on Tree15 −0.787
QI vs Φ on Tree15 −0.827

Table 5.5: Spearman’s correlations corresponding to the scatterplots in Fig. 5.7.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Scatterplot ofQI versus: (a) the Sackin index on BinTree20; (b) the Colless
index on BinTree20; (c) the total cophenetic index on BinTree20; (d) the number of
cherries on BinTree20; (e) the Sackin index on Tree15; (f) the total cophenetic index on
Tree15.
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6
Conclusions and future work

All shall be well. And all shall be
well. And all manner of things shall

be well.

Julian of Norwich, Revelations of
Divine love, 14th century

The main hypothesis motivating the quantitative study of phylogenetic tree shapes
is that the branching pattern of a given tree somehow reflects some properties of

the evolutionary processes that have given rise to it. In this memoir, and all through
the research that has produced it, we have presented some new techniques and results
concerning some of its aspects:

• In the Preliminaries Section 1.4.1, we have presented the solution to a family of
recurrences involved in the computation of moments of balance indices under
the Uniform model for bifurcating phylogenetic trees.

• In Chapter 2, we have solved the problem of the characterization of the bifur-
cating trees that attain the minimum Colless index, which was implicitly raised
by the publication of [19] in 1982, in close collaboration with Mareike Fischer,
Lina Herbst and Kristina Wicke. Therein, we have presented closed formulæ
that compute this minimum value. We believe that the characterization given
of the trees attaining it is quite beautiful, and is directly related to the binary
decomposition of the number of leaves n.

• As an alternative to the Colless index, we have introduced theQuadratic Colless
index (Chapter 3), in which the difference between the number of leaves of the
pending subtrees of each internal node is squared. This index captures all the
intuitiveness of the Colless index, but it is also better-suited for its analysis (as
sums of squares usually behave better than sums of absolute values do). We show
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that its maximum and minimum values are attained exactly at the caterpillars
and the maximally balanced trees, respectively, proving that its range of values is
O(n3) for any number of leaves n, an order of magnitude bigger than that of the
Colless index. The computation of its expected value and variance under the Yule
andUniformmodels is also performed—whereas, in the case of the Colless index,
the expected value and variance under the Uniform model are still unknown.
The chapter ends with some numerical results exposing that the discriminatory
power of this index appears to be larger than that of all the other considered
balance indices, save for the Quartet index.

• The third chapter is dedicated to the study of one of the original proposals by
Sackin [102]: to measure the balance of a tree by assessing the variation of its
leaves’ depth. This sounds like a fairly reasonable idea, but the phylogenetic com-
munity ended up prefering the sum of all the depths, as defined in [107]. In this
chapter we take into account Sackin’s own proposal, only to find out that, in fact,
the phylogenetic community has been wise prefering the sum of all leaves’ depths
over their variance. Indeed: we have shown that, although the maximum value
of this index is always attained at the caterpillars, its minimum over bifurcating
trees is almost never reached by a maximally balanced tree—in fact, given a num-
ber of leaves n we have not been able to give a characterization of the bifurcating
trees with n leaves that attain the minimum value of the Variance of depths, but
only two algorithms that run inO(n log2(n)).

• Finally, we end the central chapters of this thesis by the introduction of theQuar-
tet index. Defined over multifurcating trees, the Quartet index satisfies all the
conditions a good balance index should satisfy: it classifies as most and least bal-
anced bifurcating trees the maximally balanced trees and the caterpillars, respec-
tively, and has fairly good statistical properties. Indeed: we have been able to
compute both its expected value and its variance under Chen-Ford-Winkel’s α-
γ-model and Aldous’ β-model, of which the Yule and Uniform models are but
instances. Its range of values isO(n4), which is the largest of the balance indices
reviewed so far. Finally, we want to point out that this balance index seems well-
fitted to be extended to other sets of directed graphs such as multilabelled trees
and some kinds of phylogenetic networks, as we show that its good statistical
properties may be preserved in these contexts.

Throughout this process, new questions have been raised that we believe worthy of
further study:

• To study the seemingly fractal structure presented by the sequence c̃(n) as pre-
sented in Figure 2.4, and show whether it has some relationship with the Takagi
curve, as it seems to be the case, or not.

• To compute both the expected value and the variance of the Colless index under
the Uniform model. To do this, it will probably be necessary an extension of the
techniques introduced in Section 1.4.1 to solve recurrences like those considered
therein but with independent terms involving floor and ceiling functions.
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• To find a characterization of the trees that attain the minimumVariance of depths
over bifurcating trees with n leaves inO(log2 n) (since only the vector of depths
of the trees is needed).

• In relation to this last point, to solve all the weaker problems presented in the
Discussion of Chapter 4 concerning the structure of the families of trees attaining
the minimum Variance of depths, according to the data we have generated.

• To produce a closed expression for the solution of the recurrence presented in
Corollary 5.15, giving the value of the maximum QIB value.

• To further study the natural extensions of the Quartet index to multilabelled
trees and phylogenetic networks. In particular, to find the multilabelled tree that
minimizes the Quartet index and to study the extreme values of this index for
networks, as well as its statistical properties.
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He cannot say he has understood all of this. Possibly he’s more confused now than
ever. But all these moments he’s contemplated — something has occurred. The mo-
ments feel substantial in his mind, like stones. Kneeling, reaching down toward the
closest one, running his hand across it, he finds it smooth, and slightly cold.

He tests the stone’s weight; he finds he can lift it, and the others too. He can fit them
together to create a foundation, an embankment, a castle.

To build a castle of appropriate size, he will need a great many stones. But what he’s
got, now, feels like an acceptable start.

Jonathan Blow, Braid
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