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Abstract: Stochastic computing (SC) is a probabilistic-based processing methodology that has
emerged as an energy-efficient solution for implementing image processing and deep learning
in hardware. The core of these systems relies on the selection of appropriate Random Number
Generators (RNGs) to guarantee an acceptable accuracy. In this work, we demonstrate that classical
Linear Feedback Shift Registers (LFSR) can be efficiently used for correlation-sensitive circuits if
an appropriate seed selection is followed. For this purpose, we implement some basic SC opera-
tions along with a real image processing application, an edge detection circuit. Compared with the
literature, the results show that the use of a single LFSR architecture with an appropriate seeding
has the best accuracy. Compared to the second best method (Sobol) for 8-bit precision, our work
performs 7.3 times better for the quadratic function; a 1.5 improvement factor is observed for the
scaled addition; a 1.1 improvement for the multiplication; and a 1.3 factor for edge detection. Finally,
we supply the polynomials and seeds that must be employed for different use cases, allowing the SC
circuit designer to have a solid base for generating reliable bit-streams.

Keywords: stochastic computing; LFSR; seeding; correlation

1. Introduction

Stochastic computing (SC) has emerged as a possible solution for Neural Network
hardware implementation [1,2] and also as a way to accelerate the computation in different
applications such as image processing [3] or Deep Learning (DL) for inference [4,5] and
training [6,7]. It presents several advantages compared to traditional computing, such as
noise resiliency [8], low signal transmission delay [9], low power consumption, and a small
footprint area [10].

Two main SC-based codifications exist for representing variables: unipolar and bipolar
coding. In unipolar coding, the bit-stream (BS) value x is seen as the probability of obtaining
a 1 at a random position in x. This corresponds to counting the number of 1’s N1 and the
number of 0’s N0 along the BS and computing x = P(x = 1) = N1/(N1 + N0). This value
lies in the interval [0,1]. On the other hand, bipolar coding represents the BS values in the
interval [−1,1]. To accomplish this, zeroes are weighted as −1, while ones are weighted
with a +1, so that x∗ = (N1 − N0)/(N1 + N0), where the upper index ∗ denotes bipolar
coding. Operating over single BSs allows cost operations such as multiplication, to be
implemented with single logic gates. For instance, Figure 1a shows how two unipolar BSs
x = 4/8 and y = 6/8 are multiplied using a single AND gate.

In order to operate in the SC domain, a Stochastic Number Generator (SNG) circuit
must be employed. The most commonly used circuit in the literature is based on a RNG
circuit and a single comparator [11,12], as shown in Figure 1b. Whenever the digital input
value X is greater than the RNG value R, the stochastic output x is set to ‘1’, otherwise it is
set to ‘0’. If the RNG sequence is uniformly distributed in the interval of all possible values
of X, the probability P(x) is proportional to the number X.
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Figure 1. (a) Stochastic multiplication using an AND gate. (b) Stochastic number generator for an
8 BS length.

The overall SC system performance is highly dependent on the RNG quality. The
reasons are twofold. Firstly, the area employed for this part of the system is much higher
than that of the computational part, occupying around 80% or even 90% of the total
footprint of the system [13]. This is especially critical for applications requiring a high
fan-in. However, secondly, the randomness quality can significantly affect the precision of
those operations requiring non-correlated signals, as in the case of stochastic multiplication,
for instance. For these reasons, finding the best RNG in terms of area and low correlation is
a major concern to address when designing real SC applications.

Different approaches have been proposed to tackle these issues. Low-discrepancy
sequences such as Halton [14] or Sobol sequences [15] deal with the low-correlation matter.
This sort of sequences produce pulse signals with ones and zeroes uniformly spaced; this
mitigates the random fluctuations in the BSs generated. The problem they face is the
area employed for generating such sequences. Normally, different base-counters [14] or
least significant zero detectors plus storage arrays [16,17] are utilized, thus increasing
the hardware overhead. On the other hand, area saving mainly comes in one mode: the
Linear-Feedback-Shift-Register (LFSR) circuit.

An LFSR is a circuit based on a shift register and a linear function of its previous
state connected to its input. Normally, the linear function is produced by connecting
exclusive OR gates to different points (known as taps) in the state registers. The way
of connecting these taps in the circuit is known as primitive polynomials, which can be
expressed using two different notations: polynomial or binary notation. In polynomial
notation, the tap connections are expressed as 1 + ∑i∈[T] xi, where T are the register taps

selected. In binary notation, the taps connected are expressed as ∑i∈[T] 2i−1. Figure 2 shows
an LFSR circuit where the inputs of the XOR gate are connected to registers 8, 6, 5, and 4;
its polynomial is thereby expressed as x8 + x6 + x5 + x4 + 1 or 184 in binary notation.
Different polynomials allow different deterministic streams with different lengths to be
produced. There exists a finite number of polynomial configurations (depending on the
LFSR resolution) that produce a maximal length sequence of N = 2b − 1 cycles, where b
is the number of registers used in the circuit (bit-resolution). For instance, a 10-bit LFSR
has at least 60 different polynomials that produce maximal length sequences [18]. Those
polynomials which generate a maximal stream length are known as primitive polynomials.
The reason the LFSR sequence has one cycle missed is because there is a prohibitive state,
where the LFSR is locked-up in case it enters (when all bit registers are zeros in case the
XOR gate is used).

The starting value of the LFSR is named as the seed. Figure 2 shows an LFSR sequence
with a seed set to 255. After N clock cycles, the sequence will roll over again from the
starting seed point. This is one of the reasons LFSRs are not truly RNGs; they are, rather,
pseudorandom numbers, since we can predict the next state of the sequence if we know
the current state (something uncertain in a true RNG).
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Figure 2. 8-bit LFSR circuit with a primitive polynomial configuration equal to x8 + x6 + x5 + x4 + 1
(184 in binary notation). Every N = 255 cycles, the sequence is repeated periodically, starting from
the seed value (blue color).

LFSR is the easiest and smallest circuit to produce a pseudo-RNG (from now referred
as RNG; we explicitly use the adjective True when meaning True random), albeit presenting
a high correlation behavior [19]. Different works have been proposed in the literature for
exploiting the advantages of LFSR while mitigating its shortcomings. Basically, most of the
works presented focus on sharing the same LFSR between different SNGs but alleviating
the correlation effects that this method raises. The work carried out by Z. Li et al. [20] is
a good example of this; their approach is based on a DFF insertion technique (adding a
DFF to the line to uncorrelate the BS with itself), where the DFF circuit aims to uncorrelate
one of the BS from the other. This technique performs successfully when employing a
True Random Number Generator (TRNG), but for stand-alone LFSRs this is not the case.
The LFSR shows a high level of autocorrelation only if isolated with a single DFF, as
demonstrated in [19]; therefore, this approach is not efficient. Hideyuki Ichihara et al. [21]
suggested a technique for sharing as many LFSRs as possible by employing a circular
shift at the LFSR output. This method allows generation of two non-correlated signals
with no hardware overhead; therefore, it reduces the area employed and deals with the
error at the same time. Along the same line, another relevant study was proposed by
H. Joe and Y. Kim [22]. They dug deeper into the different ways of connecting the same
LFSR to produce the smallest correlation impact between signals using a wire exchanging
technique. Their results showed better performance in comparison with other LFSR sharing
methods. Another approach, introduced by F. Neugebauer et al. [19], tried to increase
the randomness of the LFSR outcome by adding a nonlinear boolean circuit. This method
decreased the correlation impact at the cost of hardware overhead. J. Anderson et al. [23]
explored an interesting approach based on the effect of the seeds on the accuracy in SC
systems when employing LFSRs. They demonstrated that an efficient selection of seeds in
the circuit improved the accuracy. For this, the authors explored the whole space to find
the best seeding set. This is affordable as long as the exploration space is bounded (small
bit-precision). However, for more complex analysis cases (as more complex systems or
higher bit-precision), a higher-level procedure must be employed (such as metaheuristic
techniques [24,25]). Nevertheless, as previously introduced, SC advantages are displayed
when small bit-precision is used (≤8 bits, for the case of multiplication). Therefore, the
whole exploration process is reasonable and there is need for a higher-level heuristic.

Despite the fact that some solutions have been produced, none of them guarantees
good accuracy and a small footprint area at the same time for correlation-sensitive circuits
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such as the SC quadratic function, the scaled addition, and the multiplication. These
circuits are the driving force in the SC realm, and high demand applications such as image
processing or DL employ them.

In this work, we explore in more detail how the LFSR circuit could be better exploited
as a RNG source in SC by making a careful selection of the seeds employed, with the
purpose of finding the best BS generator technique for different application requirements.
Our contribution is four-fold:

1. We show the LFSR seeding impact over different correlation-sensitive circuits. We
demonstrate that, if seeded properly, the LFSR circuit is the most accurate RNG
compared to other methods in the literature, as long as it is computed for a complete
sequence period. This, in fact, comes with the advantage of using the cheapest RNG
found since the early beginnings of SC [11].

2. We demonstrate that the LFSR may achieve low autocorrelation behavior when
isolated properly, something that has been totally overlooked in the literature up to
now. This fact has an impact on the design of commonly used operations such as the
stochastic square function x2.

3. We prove our claims in real hardware implementations. Using an FPGA device,
we perform a real case application for image processing, implementing an edge
detection circuit.

4. We provide the seeds that must be employed when using LFSRs for different use
cases, offering SC designers a direct RNG setting.

2. Seeding Impact on Correlation

LFSRs are valuable in different applications such as fast digital counters [26], whiten-
ing sequences [27], cryptography [28], circuit testing [29], and, indeed, SC circuits. Despite
its advantages, the use of LFSR sequences for SNG raises some difficulties. Unlike in
the case of TRNGs, in that of LFSRs, the premise that all bits in the stochastic stream
are independent of each other does not apply anymore. Consecutive values of the LFSR
sequence are highly dependent, as they are a shifted version of past states. Each bit in
the sequence, if taken separately, possesses good randomness characteristics, but when
it is seen as a whole binary number (as it is normally used in SC), the ideal randomness
quality disappears. This is a real issue for commonly used stochastic functions such as
the quadratic function x2, which is carried out with a single AND gate (unipolar coding)
and a single D-FF register. The purpose of the D-FF is to uncorrelate the stochastic signal
from itself by adding a delay cycle. This is true for stochastic signals generated by TRNGs,
but it is not fulfilled for the LFSR case. Moreover, when operating multiple BS, different
seed combinations produce different results, and since the sequence is periodic, the same
error is observed in each cycle. This contrasts with the TRNG, in which the error fluctuates,
converging to zero as the integration time increases. For these reasons, finding optimum
seed combinations is a major issue when employing LFSRs as the random number source
of the circuit.

Despite the fact that LFSR has been the preferred RNG in SC real implementations,
previous works do not provide a careful analysis of the LFSR seeding; still less do they
offer a method to efficiently choose the best seeds to operate. The work that comes
closest to doing so was that carried out by J.Anderson et al. [23]. They explored whether
there existed a suitable set of seeds to improve the accuracy of stochastic computing
systems. They demonstrated that a good selection of seeds increased the accuracy of SC
circuits for the same bit precision, and that shorter streams with optimum seeding had
the same or better accuracy than longer bit streams with random seeding. Nevertheless,
although they present empirical evidence for their results, the authors do not provide
what those seed combinations are and how to select them a priori, i.e., without iterating
the whole seed sweeping computation (Monte-Carlo way) for the application. One of the
problems with their method is that we need to perform a trial and error procedure: a quick
task if small circuits are evaluated but a heavy task for a large implementation. In this
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section, an analysis of the seeds of the LFSR is presented, the aim being to overcome the
aforementioned shortcomings.

Suppose two BSs are generated from two independent LFSRs with the same polyno-
mial but having different seeds. Suppose these two BSs are multiplied. The question that
arises is: does any different couple of seeds generate the same result? If not, how does the
seeding affect the overall outcome? Take for instance the operation shown in Figure 3. The
x signal represents the value 4/15, while y represents 5/15. The same LFSR polynomial
is used to generate each signal but with different seeds. Two versions of y (y1 and y2) are
generated for comparison purposes. For the y1, we picked the next value in the sequence
of the LFSRx (see LFSRy1 with the seed highlighted in red) as the seed. For y2, we picked
the fourth value in the sequence of the LFSRx (see LFSRy2 with the seed highlighted in
green). As seen, due to the fact that the LFSRs have the same polynomial, the y1 stream
is a shifted version of y2. This makes the x signal 1’s match the y1 and y2 1’s in different
times, producing different outcomes in the final operation. In order to see the impact of
seeding, the AND operation between x and y1, y2 is presented in z1, z2, respectively. For
the case of z1 = x ∧ y1, the result is 2/15 ≈ 0.13, whereas for z2 = x ∧ y2, the result is
1/15 ≈ 0.06. As shown, z2 represents more accurately the ideal value (≈0.08), with an
absolute error of ≈0.02. This fact shows that y2 is less correlated than y1, respect to x. This
short and simple example demonstrates how seeding has an impact on the overall results
in SC correlation sensitive circuits (as is the case of multiplication), so careful selection of
seeds must be carried out to obtain the most accurate results.

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10t11t12t13t14t15

LFSRx 15 14 12 8 1 2 4 9 3 6 13 10 5 11 7

x

LFSRy1
14 12 8 1 2 4 9 3 6 13 10 5 11 7 15

y1

z1

LFSRy2
8 1 2 4 9 3 6 13 10 5 11 7 15 14 12

y2

z2

Figure 3. Impact of seeding for stochastic multiplication (x × y, where x = 4/15 and y = 5/15).
Depending on the seed used to generate the stochastic BS (y1 or y2), different results are
produced (z1 or z2).

Expanding the preceding example, Figure 4 shows the Mean Absolute Error (MAE)
for different seeds when x and y are multiplied considering all possible values. Once again,
the same polynomial is employed for the two LFSRs. Two different bit resolutions are taken
into account in the analysis: 6-bit and 8-bit. Instead of performing the analysis by taking
as reference the seed values as in the previous example, this time we took the difference
between the seed position (seed index) in the sequence ∆idx = idxSEEDy − idxSEEDx. Taking
Figure 3 as an example, x is generated with the seed index 0, y1 is generated with the seed
index 1, and y2 is generated with the seed index 3. In essence, the seed index corresponds
to the value taken by the LFSR sequence at time tindex+1. Formally, the MAE for every seed
index is calculated as:

MAE =
1
N ∑

j
|yj − ŷj| =

∑2b−1
X=0 ∑2b−1

Y=0 |x ∧ y− x̄ȳ|
22b (1)

where b is the bit-precision, x and y are the BS generated when converting X and Y to SC
domain, and x̄ , ȳ the expected value of x and y, respectively.
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Figure 4. MAE for different seed indexes measured from a 6-bit LFSR (a) and an 8-bit LFSR (b) for
the stochastic multiplication. LFSR polynomials are shown in Appendix A Table A2.

As shown in both plots, the maximum error occurs when x and y are generated with
the same seed (∆idx = 0). However, as the idxSEEDy moves away from the idxSEEDx, the
error tends to diminish (with some resonant error peaks throughout), until we move to the
further seed index ∆idx = ±(2b−1 − 1). The behaviour can be seen as a mirror if we take
the center as the point of reference. The takeaway from these figures is that the difference
between both seed indexes |∆idx| is the real issue, not the LFSR seed values.

It is worth noting that as we move away from ∆index = 0, some seed indexes present
an error resonant behaviour (high peaks in the plots); however, as we move closer to
the further index, the peaks are mitigated in an exponential way. The reason for this
phenomenon can be better understood by observing Figure 5. The blue line shows the
normalized value of the 8-bit LFSR sequence for the first 127 cycles. The orange, in turn,
shows the MAE for the first 127 seed indexes. Since both variables share the same axis
(idx = cycles), we can plot them in the same figure. As shown, the LFSR sequence presents
similar patterns periodically (see arrows in the plot). Considering that the LFSRx seed is at
idx = 0, if the LFSRy seed coincides with one of these initial-pattern values, then a resonant
error occurs, indicating that both sequences (the one starting with seed index 0 and the
one starting with the initial-pattern) have a high degree of correlation, i.e., they are similar.
Therefore, if noncorrelated operations are to take place (as is the case of the multiplication),
it is mandatory to avoid these seed values for the generation of the second BS.

Figure 6 shows the MAE histogram for an 8-bit LFSR and a 10-bit LFSR implementa-
tion. As can be appreciated from the LFSR-8 instance, selecting random seeds can lead us
to have more than twice the error than if the seeds are selected intentionally. According
to the measurements, there exists a 79% probability of choosing an inaccurate seed (seeds
with a MAE greater than 0.002 in Figure 6 for the LFSR-8 case). Moreover, 90% of the
LFSR-10 seeds produce an MAE of less than 0.002, which is the same MAE we obtain when
the seeds are efficiently chosen for the LFSR-8. We can thereby achieve similar accuracy if
the pairing seed selection is carried out deliberately for lower resolution LFSR, instead of
doing it in a random way for higher resolution LFSR, saving hardware resources, latency,
and power.
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Figure 5. Resonant seeds (marked by arrows) produced by values which are more correlated with
respect to the first seed index. There exist some correlated patterns in the LFSR sequence (blue
line), which produce high correlation between stochastic signals, thereby inducing higher MAE
(orange line).
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Figure 6. MAE histogram for the 8-bit and 10-bit LFSR examples.

The Absolute Errors (AE) for different seed indexes when varying x and y are pre-
sented in Figure 7. The worst case (Figure 7a) occurs when we generate the y BS with
seed index 0, producing maximum correlation between both input BSs. As seen, the maxi-
mum error is produced around the center, when the variance of the signal is maximum
(x = y = 0.5), taking maximum error values of up to 0.25. The second plot (Figure 7b),
shows the error behaviour for the first resonant peak of Figure 5 (seed index 25). On this
occasion, the maximum error is spotted when one of the signals is 0.5 and the other is at 0.25
and 0.75, raising error values of up to 0.12, almost half of the worst case. The best seed
(index = 97) is presented in Figure 7c, where the maximum error rises to no more than 0.011,
an order of magnitude less than the first resonant peak. Finally, the further seed index
(idx = 127) is shown in Figure 7d. As can be seen, its behavior is very similar to the best
seed index case (Figure 7c), presenting a maximum value of 0.016; 0.005 higher than the
best seed case. As shown, the outcome pattern varies depending on the seed employed;
the seeding effect is therefore a major concern when utilizing LFSRs as the random source
for generating stochastic BSs.
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(a) Seed index 0 (b) Seed index 25

(c) Seed index 97 (d) Seed index 127
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Figure 7. Absolute Error (AE) in the multiplication when varying x, y (from 0 to 1) using different
seeds in the 8-bit LFSR example. Seed index = 0, which is the worst case, is shown in (a). Seed
index = 25, which is one of the resonant error peaks, is shown in (b). Seed index = 97, which is
the best case, is shown in (c). Furthermore, seed index = 127, which is the further seed index is
shown in (d).

3. Seeding Impact on Autocorrelation

The study of LFSR seeding can be extended to a very important area of research in SC:
autocorrelation. A BS is said to be non-autocorrelated when there exists a low dependency
between its consequent bits. When autocorrelation occurs, an isolator circuit could be used
to uncorrelate the BS with itself, allowing operations such as the stochastic square function
(x2) to be performed. In other words, the autocorrelation measures how well an isolator
circuit is able to uncorrelate the BS with a delayed version of itself [19]. The most common
circuit employed in the literature as an isolator is the D-Flip-Flop (DFF) [11,30]. Inserting a
DFF in the BS line uncorrelates the BS with itself or with another BS generated with the same
RNG, as explained by Z. Li et al. [20]. This is something especially exploited in their work
in the quest to reduce the area overhead produced by the RNG circuits, since inserting
a single DFF in the line is much simpler than inserting a complete independent RNG.
Nevertheless, although they claim that their technique works for any BS generated with a
circuit generator structure made of any RNG (LFSR method included) and a comparator,
the truth is that for the LFSR case, this property does not apply, as will be analyzed in this
section. The LFSR circuit has a high degree of autocorrelation, as demonstrated in [19], and
a single DFF isolator insertion is insufficient to uncorrelate the BS with itself.

Let us see firstly how the LFSR behaves compared to other RNG found in the literature
using an autocorrelation metric. F. Neugebauer et al. [19] define an autocorrelation
metric based on the Box-Jenkins function [31], which is employed in the NIST Engineering
Statistics Handbook [32]. The definition they provide is as follows: Let x be a BS with a
sequence : x1, x2, . . . , xN , where N is the BS length, and let x̄ be the expected value of x.
The autocorrelation Ak of x will be:

Ak =
∑N−k

i=1 (x[i]− x̄)(x[i + k]− x̄)

∑N
i=1(x[i]− x̄)2

, (2)

where k is the number of cycles delayed (the number of DFF inserted in the line). Autocor-
relation values close to 0 indicate a good independence of the BS with its k delayed version,
whereas a high absolute value indicates a bad independence.

Figure 8 shows a comparison of the autocorrelation between the LFSR for different k
values and other RNG methods. The measure is taken for different x values using 8-bit
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precision. As seen, LFSR for k = [1, 2] presents an autocorrelation value higher than
that of the TRNG (TRandom). The average value of the LFSR A1 (LFSR k = 1, blue line)
is 0.29, showing an increase in A as x moves away from the middle point. That is why
inserting a single DFF when using an LFSR produces poor precision results when the BS
value moves away from the center point (x = 0.5). For the case of inserting 2 DFF in
the line (LFSR k = 2), the average value decreases to 0.12, but still shows high peaks of
more than 0.2, still performing poorly for most applications. The ideal case, which is the
TRandom, presents an average A value of −0.038, measured from 1000 different random
samples (in the figure, one of the samples chosen arbitrarily is plotted), having better
autocorrelation value than the LFSR for k = 1, 2. This conclusion is supported by [19] in
their work, discarding the LFSR standalone circuit for stochastic operations such as the
quadratic function, and proposing the SBoNG method as an approach to circumvent the
problem. The SBoNG method is based on connecting a nonlinear Boolean function to the
output of the LFSR. The function is performed by a combinational circuit called SBox [33].
The SBox circuit is normally implemented as a LUT (although it can be implemented
using logic gates) and is constrained to 4-bit inputs, limiting its use to 4-bit-multiple
RNGs. In their paper, the authors compare the SBoNG method with the LFSR circuit,
but only for k = 1, 2, 3; concluding that SBoNG performs better for stochastic operations
demanding low autocorrelated BSs. Nevertheless, as Figure 8 shows, the LFSR with the
precise number of delay elements (k = 5) performs much better than the TRandom and the
SBoNG implementations, with an average A value of 0.007; 5.1, and 2.2 times better than
the TRandom and the SBoNG methods, respectively. It must be said that for the case of
the SBoNG measures, our results differ from the ones presented in the original paper [19].
This is because they evaluated the SBoNG circuit by varying randomly, for every iteration
of the test, the LFSR seed and the initial state of the circuit (see details in original paper).
However, to conduct real digital circuit implementations without increasing the amount of
resources to generate random values for every iteration, we fixed the seed and initial-state
values. These values were found by running 1000 tests and selecting the best case result,
i.e., the LFSR-seed and initial-state couple, which performed the lowest autocorrelation
average value.

LFSR k=1 LFSR k=2 LFSR k=5
TRandom k=1SBoNG k=1

0.6

0.4

0.2

0.0

0.2
0 0.25 0.50 0.75 1

x

A
ut

oc
or

re
la

tio
n

Figure 8. Autocorrelation comparison for the LFSR, TRNG (TRandom), and SBoNG methods when
initial input x value has different quantities.

The reason LFSR with 5 DFF performs better can be understood by analyzing the MAE
values of the first seed indexes in the 8-bit LFSR multiplier. Table 1 shows the numerical
values. A k delayed version of x is equivalent to taking the seed index k (see the example of
Figure 3). That is why the k = 5 version has a low autocorrelation value, because the seed
index 5 is the first minimum MAE, as can be observed in the table. Additionally, the first
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two seed indexes, which represent k = 1, 2 in Figure 8, have a high MAE, corresponding
to a high autocorrelation level. It is therefore expected that if we employ only one or two
isolators, the LFSR will perform poorly, since it corresponds to employing the two first
seed indexes for operating. However, if we embed the correct number of DFF, we can have
accurate results.

Table 1. MAE for the first 9 seed indexes of the 8-bit LFSR circuit. The minor value is highlighted
in bold.

Seed Index MAE

1 0.04089
2 0.02006
3 0.00972
4 0.00479
5 0.00287
6 0.00290
7 0.00503
8 0.00507
9 0.00299

4. Experimental Results

In this section, we conduct different experiments to test the LFSR seeding impact in
SC applications. We first test three important operations employed in the SC realm that are
correlation sensitive: the quadratic function, the scaled addition, and the multiplication.
Finally, we implement a real image processing application over an FPGA device: an edge
detection circuit.

Under otherwise noted, the polynomials employed for the different bit-precision LFSR
implementations are the ones described in Table A2. We have selected these primitive
polynomials arbitrarily from all possible ones, since the variation of the best seed MAE for
each of them is negligible (see the MAE std column in Table 2).

Table 2. MAE statistics for the best seeds of each polynomial sequence considering 4 to 8 bit precision.
MAE was calculated for the multiplication operation.

Bit Precision Possible Primitive Polynomials MAE Avg MAE Std (×10−3)

4 [9, 12] 0.021 2.971
5 [18, 20, 23, 27, 29, 30] 0.012 0.873
6 [33, 45, 48, 51, 54, 57] 0.007 0.238
7 [65, 68, 71, 72, 78, 83, 85, 92, 95, 96, 101, 105, 106, 114, 119, 120, 123, 126] 0.004 0.141
8 [142, 149, 150, 166, 175, 177, 178, 180, 184, 195, 198, 212, 225, 231, 243, 250] 0.002 0.057

4.1. Quadratic Function

For comparison purposes, we evaluated an important operation in SC, namely, that of
the Stochastic Quadratic Function (SQF). Its use is extended to very interesting applications
such as the implementation of the SC-Gaussian function employed by V. Canals [34] for
describing the probability density of a continuous random variable. Additionally, it has
recently been used by J. Li et al. in the normalization block circuit for a SC neural network
implementation [35]. We evaluated this function circuit, as an example, in an effort to see
the effect of correctly isolating the BS generated by the LFSR and compare it with other
RNG approaches. The SQF is built by a multiplication gate (AND gate for unipolar coding
and XNOR for bipolar coding), and an isolation block to uncorrelate the input signal with
itself, as shown in Figure 9a.

Table 3 presents the MAE for the bipolar SQF using different RNG methods proposed in
the literature. We vary the number of isolation elements for different bit widths, where the
number next to the D termination corresponds to the number of elements employed (DFFs).
The RNG methods evaluated were: the LFSR method, the Sobol sequence method [16],
the SBoNG method [19], and the TRNG method (TRandom). For a fair comparison, the
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table presents the same number of isolation circuits for the Sobol and LFSR methods;
whereas, for the SBoNG and TRandom methods, only one isolator is employed, since
their best results are obtained in this manner [19]. We measured the MAE for a complete
LFSR period (2b − 1 cycles), where b is the bit-precision. The best result of each column
is highlighted in bold. For the case of the SBoNG and TRandom methods, we followed
the same experimental setting described in Section 3 for measuring the autocorrelation.
A graphical comparison for the 8-bit precision case is shown in Figure 9b.

Table 3. MAE comparison for the bipolar SQF using different RNGs. The best result for each column
is highlighted in bold.

RNG Method
Bit Precision

4 5 6 7 8

LFSR 1D 0.111 0.134 0.149 0.158 0.162
LFSR 2D 0.084 0.067 0.068 0.074 0.079
LFSR 3D 0.089 0.047 0.036 0.036 0.038
LFSR 4D 0.089 0.054 0.030 0.022 0.019
LFSR 5D 0.124 0.080 0.083 0.030 0.012
LFSR 6D 0.116 0.068 0.112 0.085 0.012
LFSR 7D 0.122 0.053 0.067 0.118 0.016
LFSR 8D 0.122 0.064 0.046 0.061 0.019

Sobol 1D [16] 0.091 0.080 0.083 0.086 0.088
Sobol 2D [16] 0.311 0.323 0.328 0.331 0.332
Sobol 3D [16] 0.100 0.084 0.083 0.085 0.087
Sobol 4D [16] 0.222 0.256 0.265 0.269 0.270
Sobol 5D [16] 0.127 0.105 0.098 0.094 0.092
Sobol 6D [16] 0.244 0.290 0.312 0.323 0.328
Sobol 7D [16] 0.202 0.121 0.096 0.090 0.089
Sobol 8D [16] 0.202 0.318 0.373 0.401 0.415

SBoNG 1D [19] 0.162 – – – 0.079

TRandom 0.360 0.126 0.106 0.047 0.025

Observing the table and Figure 9b, the one with the lowest precision is that of the
Sobol sequence. For 8-bit precision, its MAE rose to 0.415 (Sobol 8D), which was 2.5 times
worse than the LFSR with only one DFF (LFSR 1D) and 36 times worse than the best LFSR
case (LFSR 5D). Moreover, its best case (Sobol 3D), was worse than all of the other methods,
excluding the one delay instance of the LFSR (LFSR 1D). Observing the plot, we see that
for negative input values the behaviour was rather imprecise, tying the output to 0 for
input values between −0.5 and 0 and behaving far from ideally even for the positive range.
The reason for this is that the Sobol sequence is a deterministic low-discrepancy sequence
for which every bit in the stream is highly dependent on the past bits, leading to high
autocorrelation values.

For the SBoNG method, we could measure only the MAE for 4-bit and 8-bit precision,
as the method is restricted to 4-bit multiples. As regards 8-bit precision, SBoNG had a
similar performance to LFSR when two isolators were employed (LFSR 2D). This is an
interesting observation which can help designers to save a good deal of resources, as one
extra DFF (for the LFSR case), is cheaper than the whole SBoNG circuit with fixed seeds.
Observing its behaviour in Figure 9b, the output can take negative values when the input
value is near 0. This is caused by the imprecision of the BS generated by this RNG, because
the sequence, for a complete period of 2b, does not cover all the possible values of x.

Finally, the LFSR method had the best performance overall when selecting the cor-
rect number of isolation elements. It was on average more than twice as good as the
second best method for all bit-widths. As far as 8-bit precision was concerned, it performed
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7.3, 6.6, and 2.2 times better than the best Sobol, SBoNG, and TRandom
methods, respectively.

LFSR 1D LFSR 5D
TRandom 1D Sobol 3D
IDEAL

SBoNG 1D

x
(b)

(a)

D1 D2 ... Dk
x

1.0

0.8

0.6

0.4

0.2

0.0

0.2
1 0.5 0 0.5 1

Figure 9. Bipolar Stochastic Quadratic Function (SQF). The circuit implementation is shown in (a) for
different k DFF. The operation outcome comparison is shown in (b) for different RNGs: LFSR, Sobol,
SBoNG, and TRNG (TRandom).

Figure 10 shows the best outcomes of each method. As seen, the Sobol method barely
changed its MAE for different bit widths. When b > 6 TRandom became better than
Sobol, approaching LFSR performance. Therefore, if accuracy is the main requirement of
our application, the LFSR remains the best option if we analyze the data for a complete
BS period.

bit precision

M
A

E

TRandom
Sobol
SBoNG
This work

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

4 5 6 7 8

Figure 10. MAE for the best outcomes of each method employing the SQF.

4.2. Scaled Addition

The stochastic addition is essential for almost any SC application. The most commonly
used circuit is based on a MUX [11]. This circuit needs the input signals to be uncorrelated
with the selector signal to have accurate results. We analysed the performance of different
RNGs proposed in the literature to mitigate the correlation error of the scaled addition and
compared them with the LFSR seeding method put forward in this work.

We examined seven different RNG methods. The first one attempted to tackle the
correlation problem effect using LFSR with different polynomials (different taps, defined
here as DTaps). Ideally, we would expect that LFSR with different polynomials would be
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totally uncorrelated, and thus a precise outcome would be guaranteed. The second one was
based on the DFF technique insertion proposed by Z. Li et al. [20]. In order to reduce both
the computation latency and area overhead, they proposed using a single LFSR to generate
multiple BSs, but inserted DFFs in their lines, assuming that a single DFF would do the
task of uncorrelating. The third one was the circuit suggested by H. Ichihara et al. [21];
again, it was based on the LFSR sharing technique. However, in this method, the authors
suggested making a circular shift to the LFSR bit lines that were connected to one of the
converters. In their experiments, they concluded that the best shuffle choice was when a
circular shift of k = b/2 was chosen, where b was the bit precision. The next method was
an improvement of the circular shift method. H. Joe and Y. Kim [22] proposed an efficient
technique to permute the lines in the LFSR; they called it the Wire Exchanging Technique
(WET). They demonstrated that a fixed setting of permutation reduced the relative error
compared with other LFSR sharing techniques, saving area and power. The WET swaps
the bits by pairs and then exchanges the wires symmetrically as follows. Suppose the
LFSR output bit order is [bn−1, bn−2, ..., b1, b0], where bn is the bit at position n, being n the
bit-precision. The WET is defined as:

Swap(bn−1, bn−2, . . . , b1, b0) = bn−2, bn−1, . . . , b0, b1

Exchange(bn−2, bn−1, . . . , b0, b1) = b1, b0, . . . , bn−1, bn−2.

In this manner, only using one LFSR but permuting the wires, the correlation was
mitigated. The fifth method taken into account was an approach that has aroused the
interest of the SC community lately: the low-discrepancy sequence, especially the Sobol
sequence [16]. Low discrepancy (LD) sequences have been commonly used in speeding-up
Monte-Carlo simulations [17], but S. Liu and J. Han [16] employed it for the purpose of
lowering the computing latency on SC. The LD sequences distribute the highs and lows
along the BS uniformly, allowing the outcome to converge faster to the expected result, thus
lowering the latency. The Sobol sequence has been employed in different studies in the
SC realm, such as in SC edge detection circuits [36], as well as in SC convolutional neural
networks [37]. It is based on an address generator circuit formed by a Least Significant Zero
(LSZ) detector circuit and a storage array, normally implemented as a Look-Up-Table (LUT).
As a sixth method, we introduce the proposed work, which consists of the stand-alone
LFSR circuit with the best couple of seeds for addition (see Appendix A Table A1). Finally,
a groundtruth instance was added using a TRNG. Similar to the previous experiment, this
method was evaluated running 1000 different iterations.

The circuit employed for the experiment is set out in Figure 11a. All of the tests were
done varying all possible binary inputs X, Y and the MAE was calculated with respect to
the ideal outcome (similar to Equation (1) but with the scaled addition operation).

Table 4 shows the MAE results for the different RNG evaluated with different bit-
precision. We measured the MAE for a complete LFSR period (2b − 1 cycles). The polyno-
mials employed for the second LFSR (RNG2 in Figure 11a) were [9, 18, 33, 83, and 175] for
the 4, 5, 6, 7, and 8 bit precision, respectively.

As shown, the 1-DFF insertion method [20] (LFSR 1D) had the worst performance for
bit widths greater than 6. The correlation introduced by inserting only one DFF impacted
the scaled addition to the extent of producing an approximate constant MAE value of 0.04
for all bit-widths. As the bit precision increased, the error gap in relation to other methods
grew exponentially, with a factor of 42 with respect to the best method for 8 bits. This was
expected, as only one DFF insertion is insufficient to decorrelate two BS generated with the
same LFSR, as discussed in Section 3 and verified in Section 4.1.

The TRNG (TRandom) method presented the second-worst performance. However,
as in Section 4.1, when the bit width increased, the MAE decreased exponentially.

It should be noted that the gap between the LFSR-WET and Sobol methods decreased
as the bit-precision became higher.

Finally, the best-seed LFSR method (this work) outstripped all other methods for
all bit-precision cases; a 1.5 factor was observed with respect to the second best method
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(Sobol [16]) for all the bit-widths. Contrary to intuition, using the same LFSR taps produced
better results than using different taps.

>

>

X

Y

RNG1

RNG2
0.5

z
0

1

> 0

1

(a) (b)

Figure 11. (a) Scaled addition test setting. (b) SC Roberts edge detection circuit exploiting correlation.

Table 4. MAE for the scaled addition circuit using different RNGs. The best result for each column is
highlighted in bold.

RNG Method
Bit Precision

4 5 6 7 8

LFSR 1D [20] 0.0458 0.0433 0.0424 0.0420 0.0418
TRandom 0.0964 0.0654 0.0461 0.0321 0.0226
LFSR CShift [21] 0.0250 0.0222 0.0109 0.0106 0.0053
LFSR DTaps 0.0307 0.0163 0.0102 0.0062 0.0039
LFSR WET [22] 0.0297 0.0134 0.0063 0.0031 0.0015
Sobol [16] 0.0250 0.0121 0.0060 0.0030 0.0015
This work 0.0167 0.0081 0.0040 0.0020 0.0010

4.3. Multiplication

In this experiment, we evaluated how the different RNGs performed for stochastic
multiplication using the same RNG conditions used in Section 4.2. Table 5 shows the
MAE comparison. The test circuit is displayed in Figure 12, calculating the MAE as in
Equation (1). For the proposed LFSR method, the seeds employed were the best found for
the multiplication operation (see Table A1 in Appendix A).

Similar behavior to that obtained in Section 4.2 was observed for the different methods
(being ordered similarly to Table 4). However, for the multiplication the Sobol method
outperformed LFSR-WET in all bit-precision. Moreover, it did slightly better than this work
for the 6 and 7 bit-widths. Nevertheless, it only performed better by a factor of 1.01 and
1.05, respectively; whereas ours performed better by a factor of 1.3, 1.2, and 1.1 for the 4, 5,
and 8 bit cases, respectively.

Stochastic multiplication is the core operation for measuring the correlation between
two BSs [38]. We can therefore conclude that our method produced less correlated signals
than state-of-the-art RNG when analyzing a complete integration period. This claim is
confirmed when implementing a real use case application where SC has been widely used,
as detailed in the next experiment.

>

X

Y

RNG1

RNG2

>
z

Figure 12. Multiplication test setting.



Electronics 2021, 10, 2985 15 of 19

4.4. Edge Detection

Different image processing algorithms have been proposed in the literature where
SC has been demonstrated to perform better than traditional computing with an im-
perceptible error increase [39,40]. One of them is the Roberts’ cross algorithm for edge
detection. The algorithm computes the input image in a 2 × 2 moving pixel window by
the following formula:

zi,j = 0.5(|xi,j − xi+1,j+1|+ |xi+1,j − xi,j+1|),

where xi,j represents the pixel value at location (i, j), and zi,j represents the outcome
pixel value.

Table 5. MAE for different RNG circuits evaluated for different bit-precision in the multiplication
operation. The best result of each column is highlighted in bold.

RNG Method
Bit Precision

4 5 6 7 8

LFSR 1D [20] 0.0330 0.0365 0.0388 0.0401 0.0409
TRandom 0.0762 0.0514 0.0356 0.0252 0.0174
LFSR CShift [21] 0.0284 0.0243 0.0172 0.0138 0.0095
LFSR DTaps 0.0217 0.0136 0.0102 0.0071 0.0046
LFSR WET [22] 0.0284 0.0177 0.0115 0.0066 0.0040
Sobol [16] 0.0255 0.0129 0.0071 0.0038 0.0022
This work 0.0190 0.0108 0.0072 0.0040 0.0020

Figure 11b shows the SC circuit, considering that all input BSs are correlated, and the
selector signal is uncorrelated with respect to the inputs [3]. Using this circuit, we measured
the MAE for the different RNG methods introduced in the preceding Sections 4.2 and 4.3,
except for the TRNG, since a real implementation on an FPGA was carried out. The FPGA
employed was a Cyclone V 5CSEBA6U23I7 included on the DE10-Nano board from Terasic,
running at 50 MHz. The input BSs was generated with the first RNG of each method and
the selector with the second RNG (see Figure 11b).

The MAE for each method is shown in Table 6. A noteworthy pattern displayed is that
as the bit precision became higher, the proposed work presented a higher improvement
factor than the others. For instance, for the 4-bit precision column, an improvement of
1.04, and 1.06 times was observed compared to the Sobol and LFSR-WET methods, respec-
tively, while a 1.3 times increase was observed for the 8-bit precision.

Figure 13 shows the edge detection results for the 4-bit and 8-bit precision using the
proposed LFSR seeding method. These results demonstrate that a good seeding in the
LFSR presented the most accurate results for real image processing implementations.

Table 6. MAE for different RNG circuits evaluated for different bit-precision in the Roberts edge
detection circuit. The best result of each column is highlighted in bold.

RNG Method
Bit Precision

4 5 6 7 8

LFSR 1D [20] 0.0262 0.0152 0.0089 0.0055 0.0034
LFSR CShift [21] 0.0261 0.0174 0.0105 0.0088 0.0053
LFSR DTaps 0.0261 0.0169 0.0100 0.0063 0.0043
LFSR WET [22] 0.0259 0.0149 0.0082 0.0043 0.0020
Sobol [16] 0.0256 0.0146 0.0080 0.0042 0.0020
This work 0.0245 0.0134 0.0069 0.0035 0.0015
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(a) (b) (c)
Figure 13. Edge detection outcome using SC Roberts edge detection circuit for different bit-precision:
Input image (a); and output image for 4-bit precision (b) and 8-bit precision (c), using the proposed
LFSR seeding method.

5. Conclusions

We have presented a solid base for the LFSR as the best RNG circuit in the SC domain,
if computed for a complete sequence period. Considering different cases of study, we
demonstrated that LFSR block is an appropriate circuitry for improving accuracy in key SC
operations. Compared with other RNG methodologies applied to SC, the proposed method
showed better results for different SC operations such as the quadratic function, the scaled
addition, and the multiplication (for this last case, it presented a similar performance to
the Sobol method [16]). Furthermore, the proposed method did better than other RNG
performances in real case applications such as an edge detection circuit. We obtained these
results using both simulations and FPGA implementation. To conclude, we offer to SC
designers the guidelines for setting their LFSRs for different case applications, in this way,
saving them time, while simultaneously assuring good results.
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Appendix A. LFSR Tables

Table A1 presents the seed indexes and values that must be employed in the second
LFSR considering the first LFSR seed index is 0 for different bit-precisions. The “ADD”
column shows the best seed index for the scale addition operation. The “MUL” column
shows the best seed index for the multiplication operation.

Table A2 shows the tap configuration used in this work for the LFSR at
different bit-precisions.

Table A1. Best relative seed index for different use cases depending on the bit-precision.

Bit-Precision Best ADD Index Best MULT Index

4 3 2
5 4 3
6 5 23
7 6 52
8 7 97
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Table A2. Tap configuration used in the estimation of the best seeds.

Bit-Precision Polynomial Binary Notation

4 x4 + x3 + 1 12
5 x5 + x3 + 1 20
6 x6 + x5 + 1 48
7 x7 + x6 + 1 96
8 x8 + x6 + x5 + x4 + 1 184

Appendix B. LFSR RTL Code

Listing A1 shows the VHDL code for the LFSR implementation of this work. Different
bit-precisions can be synthesized modifying the generic parameter. The LFSR polynomials
are set according to Table A2.

Listing A1. VHDL code for the LFSR implementation of this work.

LIBRARY i e e e ;
USE i e e e . s t d _ l o g i c _ 1 1 6 4 .ALL;

ENTITY l f s r _ n b i t s IS
gener ic (
BIT_PRESICION : i n t e g e r :=8 −− Num. within [ 4 , 8 ]
) ;
PORT(
−− Inputs
clk , r s t : IN STD_LOGIC ;
i_en : IN STD_LOGIC ;
i_seed : in STD_LOGIC_VECTOR( BIT_PRESICION−1 downto 0) ;
−−Outputs
o_sequence : OUT STD_LOGIC_VECTOR( BIT_PRECISION−1 downto 0)
) ;
END l f s r _ n b i t s ;

ARCHITECTURE arch OF l f s r _ n b i t s IS
SIGNAL l f s r : STD_LOGIC_VECTOR( BIT_PRECISION downto 1) ;
BEGIN
PROCESS ( clk , r s t , i_seed , i_en )
BEGIN
IF r s t = ’1 ’ THEN
l f s r <= i_seed ;
ELSIF ( i_en = ’ 1 ’ ) THEN
IF ( clk ’EVENT AND c l k = ’1 ’ ) THEN
−− S h i f t R e g i s t e r
f o r i in 1 to BIT_PRECISION−1 loop
l f s r ( i +1) <= l f s r ( i ) ;
end loop ;
i f BIT_PRECISION = 4 THEN
l f s r ( 1 ) <= l f s r ( 4 ) XOR l f s r ( 3 ) ;
e l s i f BIT_PRECISION = 5 THEN
l f s r ( 1 ) <= l f s r ( 5 ) XOR l f s r ( 3 ) ;
e l s i f BIT_PRECISION = 6 THEN
l f s r ( 1 ) <= l f s r ( 6 ) XOR l f s r ( 5 ) ;
e l s i f BIT_PRECISION = 7 THEN
l f s r ( 1 ) <= l f s r ( 7 ) XOR l f s r ( 6 ) ;
e l s i f BIT_PRECISION = 8 THEN
l f s r ( 1 ) <= l f s r ( 8 ) XOR l f s r ( 6 ) XOR l f s r ( 5 ) XOR l f s r ( 4 ) ;
end i f ;
END IF ;
END IF ;
END PROCESS ;
o_sequence <= l f s r ;
END arch ;
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Abbreviations
The following abbreviations are used in this manuscript:

AE Absolute Error
BS Bit Stream
DFF D-type Flip Flop
DL Deep Learning
IPE Information Processing Efficiency
LD Low Discrepancy
LFSR Linear Feedback Shift Register
LSZ Least Significant Zero
LUT Luck-UP Table
MAE Mean Absolute Error
RNG Random Number Generator
SC Stochastic Computing
SNG Stochastic Number Generator
SQF Stochastic Quadratic Function
TC Traditional Computing
TRNG True Random Number Generator
WET Wire Exchange Technique
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