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Resumen

Los modelos de precidseeddnicosconstituyenuno

de los métodos més extendidos a la hora de realizar
ejercicios de valoracion ambiental. Sin embargo,
investigacion previa ha identificado algunas
limitaciones importante en su aplicacionfalta de
flexibilidad en la definicién deuforma funcional y
falta de robustez en cuanto a su interpretacion
causal. Este trabajo propone la aplicacion de
algoritmos de Aprendizaje Automatico (Machine
Learning) para superar estas limitaciones y asi
proveer de estimadores mas robustos referentes a la
disposicion maginal a pagar (MWTP por sus siglas
en inglés) de los individuos por bienes ambientales
de interés.

Abstract

Hedonic pricing models are one of the most
widespread methods for conducting environmental
valuation exercises. However, previous research has
idenified some important limitations in its
application: lack of flexibility in the definition of its
functional form and lack of robustness in terms of its
causal interpretation. This work proposes the
application of Machine Learning algorithms to
overcome thse limitations andthus, to provide
more robust estimators regarding the marginal
willingness to pay (MWTP) of individuals for
environmental goods of interest.

Key words: Hedonic models environmental
valuation, Machine Learning, MWTHexibility,
causal inference, heterogeneity, Horearity.

1. Introduction

1.1. Environmental Valuation

The environment provides wdlking to society
through the provision of essential goods and services
for the proper functioning of the economy and, in
general to sustain lifeWhile some of these goods
and serviceslike natural resources such as wood,
have an economic value recognized by sodjatg
exchangeabldn markets and, therefordhave a
price), many others, that also generate social welfare
havean unknown valueExamples of the latter are
natural areas that provide recreational services to
society, such as beaches or natural pailss
peculiarity is due to their nature as public goods, that
is, their consumptionis nonexclusiveandnon
rival.

In this context, knowing the social
preference$or public environmental amenitiess
essential to achieve proper environmental
management.

Facing this problem, the field of environmental
economics has developed a series of techniques
known as Environmentafaluation Methods aimed
to quantify, monetarily, the economic value of goods
and services provided by ecosystems. These
valuations are obtained through #ealysis of
individual and collective preferences for changes in
ecosystemsThat is to say, the eaomic valuation
of environment studies how the welfare of society
will be modifiedin the face ofh change in the
provision ofenvironmentaboods and serviceand
translates this shift in welfare into monetary units to,
in a next stage known as projeassessment,
calculate the economic  profitability  of



environmental policiesTherefore, the final goal of
the entire environmental valuation/assessment
process is to achieve an optimal allocation of
resources considering the preferences that society
revealsfor thesenonmarketgoods.

1.2. Hedonic Method: theory and
limitations

One of the most extended models in the field of
environmental valuation is the Hedonic Pricing
Method, whose theoretical foundations siraple:
in a specific housing market, buyersdll choose
which property to purchase depending on the
attributes related to house structure (e.g., size,
number of rooms) antb location (e.g., distande
green areas, views from the property, characteristics
of the neighborhood)[1].If the market woks
correctly each of these amenities will be capitalized
within the price of the hous@nce individuals
observe the set of prices and characteristics
associated with weach
reveal what is their willingnes®-pay for marginal
changes (MWTP) in property characteristi€sr
instance, through the application of this method, we
can i nfer Hanegaehraddgiondsnfiiare
meter, for each additional room or for each kilometer
that the property approaches an environmental area
(suwch as a beach or a green area

In recent years, an important part of the
specialized literaturin this fieldhas identified some
limitations related to the assumption of lineariity
the estimationof the Hedonic Pricing Valuation
methods. Some examplase found inKuminoff et
al. [2], where it is noted that Our
resultssuggesthat large gains in accuracy can be
realized by moving from the standard linear
specifications for the price function to a more
flexible framework;'or in Bishop et al
[3]: "Theoreticaland simulation
evidencesuggesthat the hedonic price function
should be assumed to be nonlinear
(...) Semiparametric and nonparametricethods
can provide additional flexibility in estimating
hedonic price functions".

Increasing model flexitity would benefit
environmental valation allowing heterogeneity on
MWTP. This heterogeneity could come from
differences in MWTP fora specific attribute
depending on the actual provision level of these
attribute or depending on the provision level of
anaher characteristic of the propertWe exemplify
these considerations through tteseof the effect of
beach distance on house prices: evidence suggests
that distance does not have a linear effect on price
since moving away in the first few kilometers
(moving from the first coastal line to an interior area)

should have a much greater effect
than doing the sammaovemenstarting from a much
more distant pointEven, reached a certain
threshold, going further from the beatiaynot
have any significant effect orhowsing prices [4].
Similarly, the effect of moving away from the beach
may be different for properties with different
characteristic§or example, the effect may be less in
houses with a swimming pool than in theg¢hout.

Finally, the need to define methods that facilitate
causal inferenceas well aghe mitigation of biases
due to omitted variablesare also identified as
opportunities to advance in the hedonic method
literature.The  implementation of quasi
expeimental methods, closely related to the field of
Program Evaluation Econometrics (e.g., Difference
in Difference  method or PropensiBcore
Matching) that study variations in the amenity of
interest as a "treatmentare widely discusseth
specialized terature[5].

P r op3x Mathine lPeHrmitid td overBome c has es

these limitations

Simultaneouslyjn recent yeardjterature on the
application ofMachine LearningML) algorithmsin
economic research has grown exponentigby
7]. Following this line, and collecting the
abovementioned limitations, we propose the
application of ML techniques to provide greater
flexibility to the pricing function as well as to
improve the robustness of causal inference in the
application of hedonic price modeling for
environmental valuation.Specifically, we propose
the training of severaltreebased ML models
(Random Forestind Gradient Boostig) and the
analysis of their results using interpretability
techniques (Partial Dependencies Plots) to determine
whether MWTPs are linear for specifi
environmental  amenities (section  4)This
application can be included within the framework of
on non-parametrichedonicmodelling([8].

However, these methods can only solve the first of
the exposedlimitations, the nodinearity in the
MWTP depending on the level of the amenity of
interest itself. To increase the causal interpretation of
the hedonic model artd assess heterogeneity in the
MWTP of anenvironmentabmenity depending on
other characteristics of the propertye will apply
causal inference ML techniques (Causal Forests,
section 5). This method allows us to modela
variationin the amenity of interest as if it were a
treatment. Once applied, we canmestte theaverage
effect of this treatment (comparable with the
estimator obtained in the traditional hedonic linear
regression model) and analyze whether this effect is
heterogeneous depending on other housing

property’s

p



variables. This application can be includedhin
the framework of quasiexperimentahedonic
moddling [5].

We will apply all of the above techniques to a
Me | b o uhousiag msarkedataset(analyzed in
section 2) Among the variables included we find the
sale price (dependent variable) as weltlas main
characteristics that determine house prices (surface
area, number of rooms, age). Finally, thanks to
having the coordinates of each property included in
the dataset, we have calculated the distance from
each of these properties to each urbaach and to
each green space in the citjhese are our two
amenities of interest and on which we will analyze
the reported valuation (MWTP) for each model.
Additionally, we will apply a hedonic linear
regression model (section 3) whose estimators will
serve as a baseline éwaluatehe results obtained by
ML models.

2. Data

The dataset used for
9870

mar ket of t he

L. Each of thes®bservations corresponds to a real
state property for sale in the city.

2.1. Exploratory Analysis

Al though the ocomtiaians da tBovirgngnental amenities
Chein e Baadea s it mo gy B Bnodbbafidad b ddfiban . ©
¢irmelemadoai c pri(ecge moeda&o e 'of'th properties included in the dataset has

properbopr ol y
We can divideatrhabtreess i
maigm odppending on their
1 Dependent variableprice (inAustralian$)
of the property sold
1 Physical characteristics of the house: n° of
rooms, bedroom&athrooms and car spots,
type of real statghouse, townhouse or
unit), land size(in m?), building area(in
m?), year of construction
f Location:
(suburb), region, poatcode, council area
latitude and longitude.

In Figure 1, we analyze the distributiorhmiusing
prices As we can see, although it is true that the
distribution is asymmetriand positiveskewed(it
presents a&kewnesgoefficient greater than 2yve

The dataset is avai:lable on
https://www.kaggle.com/anthonypino/melbourn

e- housing - market
2Section 3 each of

del ves into

paighbpreood y ' s

will not normalize the data to avoid
interpretabilityin estimators.

To avoid problems related to multicollinearity
(literature indicates that therenay be strong
correlations betweeiouserelated attributes)we
have analyzed the correlation matrix between
potential explanatoryvariables (AppendixB). The
use of the variablénumber ofbedroom3 has been
ruled out due to its strong correlation with other
variables'.

losing

Prica

Figurel: Price histogram.

discusses the role of geographic coordinatethe
definition of new variables

2.2. Geographical Analysis and

Jaeenpro' ctedfrom its coordinates. In figure, he

dﬁ‘ferentiating by regions.
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rﬁ?or rgg ical distribution ofanalyzed houses is
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Figure2: Geographié d'istribution of properties.

t h éAppeadx @ presents ¢hb raaintdescriptive statistics of variables
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To ensure that we work with a unified and
delimited market, we will include only those
observations from théllowing regions: Northern,
Western, Southern nd Eastern Metropolitarf.
Appendix C analyzes the existence of geographic
patterns in the distribution of house prices in
Melbourne.

Finally, it is important to comment on how the
environmental variables of interest have been
included First, all urban baches and urban green
areas in the city of Melbourne have been
geographicallylocated Once located, using the
PythonShapely(v. 1.7.1)library 7, the distance (in
km) from each house to each beach and urban green
area has been calculated.

A largesize distance matrix between each
property and each beach and green du@Es been
obtained From this matrix, we have extractetie
distance from each house to ttlesest beacland
green arearl he distance to theszcationsis imputed
as "Nearest beach"” and "Nearest Green Area"
variables The distribution of these variables is
presented in AppendiR.

Finally, it is important to note that all observations
with missing values in any of thecludedvariables
have been discarded. Once this data ¢hepprocess
is finished, the final data setontains 8.360
observations.

3. Linear Hedonic Method

As a starting point, we are going to apply a
traditional linear hedonic modeistimated through
OLSthat will serve as a baseline to evaluate both the
impact ofMachine  Learningnodels  when
identifying nonlinearity in MWTPs, as well as to
evaluate if the results obtained using Niethods
are consistent with estimators obtained from
traditional specifiations. The latter will allow us to
approximate the robustness of the flexible functional
forms proposed in this research.

3.1. Methodology

As mentioned in the introductory sectiothe
theoretical framework underlying hedonic price
modeling is based on theeidtification of the values
of the underlying characteristics of differentiated
products through the observation of the market
equilibrium priceln other words, if we examine the
differences in the prices t#f/o goods that differ in
only one characteristi¢e.g., two identical houses
that only differ in the number of rooms), we can

6 The importance of the correct delimitation of the market being
worked on is widely debated by Taylor, L.O. in chapter 10 of [1]

(indirectly) identify the tradeoff@in terms of income
willing to sacrifice for improvements in that
characteristicjhat individuals are willing to make
regarding changes indhattribute.

In the specific case of environmental valuation,
hedonic methods arenainly applied in housing
markets. Starting from the observation of different
prices and characteristics in sold houses, it is
possibleestimatethe value that individuals btain
from these attribute$:ollowing this premise, the
choice of housing locatiois observable and directly
related to environmental amenities of interésive
put together all the previous points, we can conclude
that the choice to purchase a propédand the price
associated with itymplies a choice between
different levels of environmental goods and services.

Partially deriving the hedonic price function on
each property attribute, we can obtain the marginal
price of each characteristidnder cetain conditions
(that we will not consider due to the spatial
delimitation of this research, for more information
[1, J), these marginal prices are equal to the
marginal willingness to pay (MWTP) for each house
attribute. Finally, it is necessary to def the
functional form that the Hedonic Price Function
takes While we want to use this section to establish
the base line on which to compare the results
obtained using innovative and flexible models, we
will take as a referendfetraditionallinear furction
specification:
0 | B 10 B 16 B 10 -h)
Where P is the (sale) price of a property; H
represents physical characteristics of the house
(number of rooms, landsize..); N represents
neighborhood characteristics; L represents location
characteristics, such as proximity measures to areas
of interest.t is in component L where the variables
of distance to environmental amenities appear
Under this functional form, the implicit prices of any
characteristic included in the functidah, is equal to
the econometric parameter estimated for that
attribute

If we consider that the criteria by which we can
match implicit prices with MWTPs are met, the
estimators obtained from the econometric model
represent MWTPs for each attribute. Estimators will
be obtained through Ordinary &gt Squares (OLS)
method.

7 https://pypi.org/project/Shapely/



These findings areonsistent with previous litenae
sinceMWTP is negative and significarit(, 13]. Al
coefficients are significantly different from O with a
99% confidence level

3.2. Results

As noted in section 2, we will apply equation (1)
with the following variables:

1 P: price (in $) of the property sold

1 H: number of rooms, number of bathrooms,
building area, land size, type of property
(house, unit otownhouse), year the house
was built and number of capots

N: regional (4 categorieslummies

L: distance (in km) to the nearest beach and
to the nearest urban green area

= =

These last two represent environmental amenities
of interest. An important point to note is that we will
use regional dummy variables that will serve as
proxies for neighborhood characteristics. The reason
that leads us tmot considersuburb levelis tha,
although the suburb level should provide more
precise information on the characteristics of the
property's location, suburban level may have a
greater correlation with environmental ameniti2s [
9], leadng to incorrect inferencen estimators due to
multicollinearity and spatial autocorrelation

Finally, it is important to comment that¥a close
to 64% has been obtainedeaning thathe model is
capable of explaing about two thirds of the
variance of the dependent variable

Dependent variable:

Price

N® Rooms

Type: Townhouse

Type: unit

N® Bathrooms

N° Car Spots

116,810.900%**
(7.668.298)

—155,233.300***
(18,561.350)

—339,251.600***
(16.022.500)

206,645.200***
(8,808.560)

41,899.510***
(5,289.803)

Obtainedresultsare presented in Tablef1 Land Size 25(}_,;5(::53)
Presentedesultsfit those reportedin previous a

literature: positive MWTP for increases in the Building Area 1,733.519**

number of rooms, bathroonearspots land size and (67.787)

building areaareobserved 10, 11, 12

Focusing on environmental amenities, regressor
estimators are negative for beach distance. In other
words, for every kilometer that we moaeray from
the beach, buyers’ will.i
put it the other way around, individuals show a
positive willingness to pay to approach beaches).
This means that beaches amvironmentalareas
with a positive and significant impadh sccial
welfare. MWTP for approaching one kilometer to
the beachs $ 27,818meaning that the price that

Construction Year

Distance to heach

r

Distance to Green Area

Constant

—3,794.469%**
(150.488)

—27,818.590"**
(1,027.435)

—12,522.260***
(1,635.863)

8,076.,952.000***
(287,372.300)

individuals are willing to pay for a property Observations 8,360
. 2 "y

decreases by more than $27,000 for each kilometer R , 0.637
Adjusted R? 0.637

that the house is away from beadh other words,
for example,the price that the average buyer in this
market will be willing to pay for a property located
1 kilometer away from the beach will be $ 27,818
lower than the pricehe/shewould pay for an
identical house othebeach shorelind hese results
conformto those obtained in previous research [14,
15].

In the case of the Urban Green Areabtained
resultsare very similar tahose ofboeaches, however
the effect is more moderatg 12,522 per kilometer).

8 The estimators of the regional dummies (not includeitién
table) agree with the preliminary findings presented in Appendix

Note:

Table 1 Linear Regression Estimators

“p<0.1; "p<0.05; " p<0.01

4. Flexibilization of the price
function through ML

As mentioned above, therexists empirical
evidence that hedonic price functions housing

° In Appendix E results for regression models with squaaed

r

cubicalenvironmental amenities variables are presented and

discussed. These models provide a greater degfexitility,

but at the same time present a series of drawbacks



marketsdo not fit correctly to linear specifications
[2, 3. The solution to this problem lies in increasing
model flexibility. Traditionally, this increase in
flexibility has come througlthe application ohon
parametric econometri@pproaches[8, 16, 1T.
However, here we propose the use of-panametric
Machine Learning modelshat do not take any
functional form or any relationship between
variables beforehand.

4.1. Methodology

We will modd housing price as a function of

physical characteristics of the house (H),
neighborhood dummies (N) and location
characteristics (L). Specifically, the included

location characteristics are, as mentioned above,
distance to nearest beach adidtanceto nearest
green urban aré&
o6 QO -, (3)

Within the wide variety of Mlalgorithmsthat can
be used to solve regression problems, we will focus
on treebased rethods The main difference between
thesemodelsand linear regression is thae former
do not make assumptions about the functional form
that is estimated. Furthermore, unlike linear methods
that model the entire data set as a single function,
treebased models create a large number of learning
subspaces that allow finding néinear and monat
relationships and functions.

Treebased ML estimatibnstcitegyis
based onhe partitioningof the data in such a way as
to minimize the sum of the squared errors (SSE):

YYOB @ & (4

Whe,r ein t hiNs i st udye, numv\k}er, of . -
observipriomesrits eshe true Belrelu,;caée th%a'ctual values @f in training set.
houisend i s prhedihotusdke price. To o _ )
i ncrease accuracy, insted@m & agoythmicy,poigt of yiewg i"V‘ﬁ%gne
model, two popul ar ens e miMBarnzghe,constaictiq, of o the, paryal
useRandom Bodestdi enstt ibn gdependency plotas
(AppendiT FR)voi d over fitt.i nlg, tthe_data set has
been divided into a trainkin@@sRRBIY 750 of t he
observations) and a test set (@nGOPY theaining daa seb angy)
additiowal adatioss process with 5'epfage theorigipagl values af
been applied t o find t he c o nvih the ganstagty o f
hyepr parameters that maximi zes ph) &ampeta theyvectos ef pradicled y
(AppendOpxt i Giafpear amahdr g he values from the modified copy of
metrics obtainade bypr esarht endo died the training set
secti.on 4. 2 (c) Compute the average prediction to

12 Some examples of literature that models housing pricesdrom
Machine Learning can be found@ladunniet al. [18], Park et
al. [19] or Valier A. [20].

Although it is true that Mlalgorithmshave a great
predictive capacity, they do not stand out fogith
interpretabiliy. This means that, on many occasions,
these models can be seen as "black boxbstethe
effect of the includedpredictors(features, in ML
terminology) on outcomes cannobe observel.
However, thanks to advances in the field of
interpretable machine learng) this is starting to
change [21, 22]. One of these techniques is known
asPartial Dependence Plot (PDMyhich isbasel on
the graphical representation of théartial
Dependencyunction (PDF) of each variable [23]
Thanks to thigechniquewe can see how the value
of the predicted variable changes from marginal
changes in the independent varialpeedictor) of
interest.

This technique has previously been used in
environmentalvaluation studies based on hedonic
models in Nafilyaret al. [24].

Mathematically we can express it as follows: let
® w8 represent the independent variables
(predictors) in a ML model whose prediction
function is'Qw . If we select one of these predictors,
&, and its compliment " &, we can define the
PDF of the response ol as
g 0 ey Qafr f o QL)
Wherer) & is the marginal density function of

a .,

Qo Qef R e QL@

Equation (5) can be estimated from training set by
o

-B Q&R L (7)

obtain"Qay from equatiorv

tree



2. Plot the pairs aRQapy for O
plthB hQ

Due to the special
ef fect eonfvicreontneint al var.i
of h o
t hese \Varnvieadespgmwe wi | |
t he MWTPAG4f(owh eeraec hj
kil omeatkeirn)g t he sl ope
Gp wi th re@paes:trepnresented
(8)

—r " @

0 0Y0 -
h h
In this way we will obtain a different MWTP for

each level of the variables of interest. Specifically,
we will calculate a flexible MWTP for each

kilometer of distance with the environmental
amenities of interest. Additionally, a linear
regression model Babeen trained (following the

same criteria for dataset division and cross
validation) that will help us to compare the
prediction capacity of the ML models.

4.2. Results

ML models have been trained with the same set of
variableghatin section 3. After dividing the data set
into a training anda test set, and applying a grid
search with Hold cross validation (the
hyperparameters selected for each model
presented in Apendix G), the following accuracy
metricshave been obtained:

are

RMSE R2
Training Training
(cv) Test (CV) Test
Reg 424.373 366.867 0.643 0.632
RF 300648 264361 0.823 0.804
GBM 286133 260071 0.837 0.815

Table 2 ML Models Metrics

As we can seeML nonparametric models
achieve a greater predictive capacity RMSE
reduction of 33%) and an increase in the explained

11 Appendix H includes accuracy plots

12 This result may be due to the fact that once the eralkidation

has been carried out, the model is retrained with the selected
hyperparameters as well as with the entire training set, therefore
the number of observans with which the model is trained
increases.

variance (18 percentage points of improvement in
R2) with respect linear regresstanin addition, it
should be mentized that no type of overfitting is
seen irML models sincRMSE obtained for the test

afidatieny” . Regandingethepimporgagcef each

unscien gt, heo parti afl orde pasiaplg Pieserted 'ﬂnp‘%ﬂf"@) we can see how
c thg twg |enviorgnenth amenities included are

repr e s #Mpartangenaugh tode qonsigeredalsvant in the

?rq:p@tlorp e tgefeforg alt the Fgu%;:itpnwtpnce

unction
n
Oncethe analysis oﬂ\/IL predictive capacity was
carried outwe can proceed to analyze the effect of

envionmenth variables on®the prop
Distance to Beach
Figure3: Distance to beach PDP
Distance to Green Area
Figure4: Distance to green area PDP
On the vertical axis we fini
pri @m®t he hormez ginht@aldiasxtiasnce |
km) temmvtireoament aly of interes
can see, Jan satlrlolnigraerseasn t vy [
observed. | f we foamwescam the

3 Due to the spatial limitations of this work, we only captured the
PDPs for the Random Forest model. The PDPs obtained through
Boosting are presented in appendix J. The reason for presenting
the results ofthe RF model is due to the fact that it obtains
predictive capacity metrics that are very similar to the GBM but
PDP presents a smoother distribution

f o c u sSetis gvanssmalles thag in (PtraiRing gea (with 6ress t h e



see how both model s
dependence function.
Partial Dependece Plot (Figure 3) seem to

indicate thatmoving from the firstcoastlineto the
secondone has a very large impact on t®use
price. After that, the effect moderates, with a range
from 3 to 12 km where the slope of the function
decreases.This slope bemsmes steeper again
between kilometers 12 and 15, to moderate again
between kilometers 15 and 2Finally, we observe
that from a threshold close to 25 kilometers distance,
from which each additional kilometer has practically
no effect on the price.

In the case of green aredBigure 4) the effect
does seem to be much more linear than in the beach
case. The most remarkabl®utput is that,
approximately at a distance of 10 km, the price
remains more or less constant. From these results we
can inferthat he effect of moving away from the
beach is more persistent (it becomes null after 25
kilometers)and norlinearthan in the case afreen
areas (whose effect disappears after 10 km).

Finally, following equation (8), we have
calculated the MWTP for albvels (kilometers)of
the environmental variables. The results are shown
graphically in Figures and6.

Marginal WTP

Distance to Beach

Figure5: Distance to beach MWTP

Marginal WTP

Distance to Green Area

Figure6: Distance to green area MWTP

The horizontal dashed line represents the MWTP
obtained by the lineaegression model in section 3,
while the solid line graphs the result obtained by the
Random Forest modelThe results obtained are

f i n ddireetly parallel yo thase prdsdntedRDPp(Rig. 3 i a |

& 4).

In the case of beaches, we can see how going from
the shoreline to 1 knmaway from beach implies a
price drop of abouf$ 150000 (much higher than
the A$ 27.818 estimated in thieaditionalregressive
hedonic mode). However, for the rest of the
distances, the MWTP is close to Neverthelessa
significant dop peak is detected at a distance of 12
km, with a MWTP ofA$ 75000.In the case of urban
green areas, the observed dynamics are similar.

Therefore, the main conclusions of this section
could be summarized as:

1 ML models seem to achieve a better
estimae of the real functional hedonic form
since they achieve a lower prediction error
than the linear regression model.

1 A strong nordlinearity is observed in the
effect of the distance from the house to the
environmental areas. Therefore, non
linearity is oberved in MWTP.

1 Large falls in the price of housing are
observed whemwe move the first kilometer
from the natural area of interest, but this
effect disappears until it becomes close to
zeroat higher distances

5. Improvement of causal
inference and heterogeneity
detection through ML

As pointed in Parameter & Pope (2013) [5], we
can observe an increase in the number of papers that
applies quasexperimental designs in the field of
hedonic valuation. This is the resultasfincreasing
concern among researchers about the existence of
biasegdue to omitted variables in the formulation of
traditional hedonic models. Therefore, the causal
interpretation of the results obtained may be
guestionable [3].

So far, the application ¢fiese quaséxperimental
designshas been limited tcestimating average
treatment effects (ATEgquating them tohe mean
MWTP for specific attributesusing mainly,
Differencein-difference (DiD) [25, 26] and
Regressiormiscontinuity(RD) [27] designs.

However, these models require either panel data
(observations of the value of the sampmperty
before and after treatmerdhdthe existence of an
exogenous shock ., the unforeseen construction
of a highway that crosses a city) ¢stimatethese
MWTP. In order to avoid these specifidata
requirements, in thisstudy we propose the
application of a ML algorithm specially designed for



the extraction of causal inference known as Causal
Forest.

In addition, thismethodallows us to face another
of the exising limitations in hedonic models: the
existence of heterogeneity in the MWTP of a specific
attribute depending on its relationship with other
attributes.In other wordsthis methodallows us to
study whether the MWTP of a specific attribute
varies depeding on the level of another attribute.
This could be interpreted as the existence of
Heterogenou3reatment Effects.

5.1. Methodology

Recently there has been an increase the
developmenbf MachineLearning models capable
of obtaining causal interpretations from the
implementation of quasxperimental designs.
Some of these first developments are found in works
such as Athley & Imbens (2016) [28], where a
method known afausal treeis proposed. Irthis
method, a partition of the dataset is made, with one
of the parts used to build the regression tree while
the other oris used to estimate the mean treatment
effect within leaves.

As in treebased ML methods, a consistent
evolution that should imprve model's accurgdin
this case, the predictability of treatment) is the use of
ensemble methods. Thus, Athey et al. (2019) [29]
presents theCausal forestmethod, which, as its
name suggests, is based on Random Falgstithm
14

In our work, we will apply two Causal Forest
models. In the first one, we will use the distance to
the nearest beach as a "treatment" while, in the
second one, the distance to the nearest green zone
will substitute the formeas“treatment. Once the
models have beerrrained, we can obtain the
"Average Treatment Effect" (ATHE3}0], comparable
(at a theoretical level) to th&AWTP estimator
obtained by the traditiondihear hedonic modelln
this way, we will be able to evaluate whether the
estimators obtained by thadtlitional hedonic model
of section 3 are consistent with those obtained by a
guastexperimental design.

The dependent variable in both models continues
to be the property pricelncluded explanatory
variables (predictors) are the same than those
included h sections 3 and 4n addition, a grid
search has been applied to find the optimal
hyperparameter tuning.

One of the advantages of applying these models is
that we can obtain Heterogenous Treatment
Effects" (HTE). The effect of the treatment can be

141t is worth mentioning that other similar methods such as
Causal Boosting and Causal MARS have been developed,

extracted depending on the level @y other
explanatory variable included in the model. In this
way, we solve another of the limitations identified in
the literature regarding hedonic modeling.

In the first place, we will evaluate which are the
variables thapresent the greatest importance in the
model training process, and then, by means of
graphcal plotting evaluate the MWTP of the
environmental variable of interest with respect to the
level taken byother relevanexplanatory variables
(features or prddtors)

5.2. Results

In this section we will analyze both the mean
MWTP (as ATE) estimated by the quasi
experimental method (for the two environmental
variables of interest), and the existence of
heterogeneous effects in MWTPs.

5.2.1. Distance to nearest beach

Applying the causal forest model with the variable
"distance to nearest beach" as treatment, we obtain
an ATE (MWTP) of A$-31.127,339 (standard
deviation equal to .B95,679).As we can see, this
estimate is slightly higher thathe obtained by the
traditional hedonic modelA$-27.818). Due to the
reasonable similarity between the two, it seems that
we are facing consistent results.

To study the existence of heterogeneous treatment
effects, that is, the existence of differences in the
MWTP for the distancéo the beach depending on
other characteristics of the house, we must analyze
which are the variables with greater importance in
the model. Results (for the 5 most important
variable)are presented ihable 3

Variable Importance
Building Area 0.595
Nearest Green Area 0.114
N° of Rooms 0.087
N° of Bathrooms 0.063
Year of construction 0.033

Table3“ Di st ance to beach?”

variable importance

Figure 7 plots the MWTP of the "distance to
nearest beach" depending on lthélding areaof the

property

however due to brevity they will not be studisat applied in
this work.

Cau



In this case, the MWTP ranges fr&50.000 at
the most extreme points t630.000 at intermediate
distances (4 to 9 km) to green areas.

0
1

N N 0 for all levels.But this does not have to be the
T A e general rule in all cases. For example, Fig@re
T shows the MWTP of the distance to the beach
depending on the year the house was built.

: & "\w«\ﬁm\d\\ B It is important to note that, in both cases (Figures
§ AT e T 7 and8), the results are significantly different from
.g - ‘ 1 S

-80000 -60000 -40000

100 150 200 250

Building Area

20000
1

1

Figure7: Distance to beachBuilding AreaHTE

Being the black continuous line the ATE (or
MWTP in our case) and the dashed lines the 95%
confidence interval, we can observe how the effect
of moving one kilometer further from the beach
increases (becomes more negative) as the size of the w0 1o e 10 1em 2000
property increases Although this result seems
obvious, let us remember that the model already
controls for the size of the built surface on the
property. In other words, from these results we can
extract that the distance to the beach has a greater
effect on the price of large propiext than in small
ones.

This MWTP would rangefrom approximately
$-20.000 for each kilometer of distante beachin
properties with duilt area of 50 rf) to $-40.000 in
the case obuilt areas close to 30Gm 5.2.2. Distance to nearest green

Regarding the relationship between the MWTP of area
the distance to the beach with the other
environmentalamenity analyzed in this work, the
results are presented in Fig@#e

Distance to beach MWTP
20000 O
)
)
i

-60000

Year of construction

Figure9: Distane to beach- Year of
construction HTE

In this example we can see that for older homes
the distance to the nearest beach does not have any
significant effectonthe r oper t.y’' s pri ce

If we use the variable "distance to nearest green
area" as a treatment, we obtain an ATE equal to
$-16.80809 (standard error equal t062835). As
we can see, as in the case of beach distance, this
estimate is slightly higher than that obtairmdthe
traditional linear hedonic model %15.522).
Therefore, these results seem consistent with those
obtainedby traditional methods
Ol As in the previous section, the variables that

K present the greatest importance in the model are
analyzed below.

0
1

1

Distance to beach MWTP

-80000 -60000 -40000 -20000

Distance to Nearest Green Area Varlable Importance
SoutheraMetropolitan 0.448
Figure8: Distance to beach Distance to Green Building Area 0.220
Area HTE Nearest Beach 0.141
Land Size 0.069
In this case, hetegeneity in treatment is also N° of Bathrooms 0.042

observed. As we can see, the MWTP has an inverted
U shape: moving away from the beach has more
negative effects on the price that buyers are willing
to pay when this property is either very close to or
far from a urban greerrea.

Table4:* Di st ance to
variable importance

green area’

As we can see, some of the variables do coincide
with the previous cas®ue to the dummy nature of
the regional identification variable, we will not



analyze whether there is heterogeneity in the MWTP
depending on it.

Figure D plots the relation between tMNVTP of
the variable "distance to neargséen are¢aandthe
size d the building areaof the property

Distance to green area MWTP
-1e+05 -5e+04 Qe+00 Se+04
¢

T
50 100 150 200 250 300

Building Area

Figure D: Distance to green areaBuilding
Area HTE

However, unlike the case of distance to the beach,
there does not appear to be significance in the
MWTP of this environmental attribute at any level
of the Building Area. A similar result is obtained if
we analyze the relationship between the distance to
the beach and the MWTP for gresmeagFigure 11).

60000
1

20000
1

Distance to green area MWTP
-20000
1

-60000

Distance to beach

Figure 1: Distance to green areaDistance to
beach HTE

6. Conclusions

As discussed throughout this essay, this project
aims to provide new methodologies to solve two
relevant limitations identified in the field of hedonic
price modeling for environmental valuation.

These limitations are related to the need to provide
greate flexibility to the price function (thus allowing
the identification of heterogeneity in the willingness
to pay for environmental attributes depending on the
level of the attribute itself as well as other variables
of the price function) and to the ne&dincrease the
causal interpretability of the models.

Traditional responses to these limitations have
been the application of ngrarametric econometric
methodg(in order to increase hedorpeice function
flexibility) and the design ajuasiexperiments (to
increase the causal inferermediability).

The main contribution of this work is the
application of techniques based on Machine
Learning to continue the path of overcoming the
aforementioned limitationdn order to empirically
test whether these techniques provide satisfactory
results, a dataset of the housing market in Melbourne
has been usedThe environmental ecosystems
evaluated were the beaches and urban green areas of
this city.

In the first place, it has been verified througke
application of a traditional hedonic model (through
linear regression) how both environmental attributes
are considered as goods for the individuals that
participate in this market, in so far as willingness to
pay for properties decreases as we mavayafrom
beaches and green areas (negative MWTP).

Secondly, Partial Dependence Functions of
various treebased ML models have been analyzed
in order to obtain theelationship between both
environmental attributes and housing prices. From
this analysis, MVTPs has been derived for all levels
of both environmental variables, revealing a strong
nonlinearity. Therefore, these results fit with those
identified in previous literature and seem to reveal
that these techniques may represent a potential
alternativeto traditional methods.

Finally, using these environmental variables as if
they were treatments, @ausal Forestmodel has
been appliedo our datasefThanks to this model it
has been possible to identify both the mean MWTP
for each environmental attrke and the presence of
heterogeneity in the MWTP depending on the levels
of other housing attributes.

Using this technique, a simildout slightly higher
MWTP has been obtained for both environmental
attributes than in linear model In addition, the
existence of heterogeneityin MWTP for
environmental variables depending onther
p r o p ehatagterisgtichas been confirmed

Although it is true that promising results have
been obtained, there are still many limitations in the
application of these teaigues for environmental
valuation. Without the intention of being exhaustive,
some of these limitations are: need to evaluate if the
actual MWTP is obtained from the derivation of the
Partial Dependence Function (or if we could only
speak of capitalizatit) or increase the number of
controls that allow ensuring the reliability of the
guastexperimental design.
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Appendix A. Descriptive Statistics

Statistic Mean St. Dev. Min Max
Price 1,098,910.000  682,586.000 85,000 8,000,000
Rooms 3.035 0.977 1 10
Bathroom 1.623 0.715 0 9
Car 1.655 0.967 0 10
Landsize 504.301 RAT.HT8 0 37,000
BuildingArea 148.689 89.063 0.000 3,112,000
YearBuilt 1,965.090 37.215 1,196 2,019
nearest_beach 10.239 G.660 0.051 34.786
nearest_green_area 5.447 3.234 0.173 20.823
Table5: Descriptive Statistics afxplanatory
variables

The average price of properties for sale is close to
A$1.1 million. The average home dates back to 1965
and is characterized byb&drooms, between 1 and 2
bathrooms (average 1.62) and between 1 and 2 car
spots (average 1.65). The average property size is
504 nt with an average builip area of 148 fn

The average distance to the nearest beach is 10.2
kilometers. In this variable tihe is a great variation
among the different properties as the distance varies
from just over 50 meters to nearly 34 kilometers.
Similar results are obtained in the case of the
distance to the nearest green area, with an average of
5.4 kilometers. In this ase, there is less variation
between properties.

Appendix B. Correlation Matrix

Rooms .
Bathroom 0.63 0.63
BuildingArea 0.55 061 06 Corr 5
Ll
Car 0.33 0.32 041 0.41 05
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nearest_beach 0.08 0.21 0.11 0.1 025 0.26 . 1.0
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Figure12 Correlation Matrix

As we can see at a glance, there is a strong
correlation between the number of rooms and the
number of bedrooms in a hous&eseesults are not
surprising and are in line with those published in
other similar studies.

Due to the fact that the remaining variables have a
correlation of less than 0.7 (a value that is usually
taken as a reference when evaluating the potential
presenceof multicollinearity), it was decided to
eliminate only the variable "Bedroom" from our
study.

Appendix C. Geographical
Patterns of Price Distribution

lat

lon

Figure13: Geographical distributions of housing
prices in the city of Melbourne

In figure 13 we can see how there are clear
patterns that justify the inclusion leicationdummy
variables (suburb or region). Concentrations of high
prices are observed in the "Southern Metropolitan"
region.

Furthermore, it can be observed how, a priori,
there is an increase in prices in areas near the coast
as well as around green areas (which can be
identified from large gaps without observations on
the map). These preliminary observations must be
confirmed in the models that will be presentad
next £ctions

Appendix D. Environmental
Amenities Distribution

Distance to nearest beach (in km)

Figure14: Distance to beach histogram.



Distance lo nearest green area (in km)

Figurel5: Distance to green area histogram.

In both cases we find variables with a quasi
normal distribution since they have a low skewness
(skewnesgoefficientclose to or less than 1).

Appendix E. Ampliation of Linear
Regression Hedonic Model

One of the more traditional ways of adding
flexibility to hedonic pricing functions has been by
including the squarethnd higher degree) factoo$
the interest amenitiesin Table 6, we present the
resultsof the reestimated OLS regression including
the squarednd cubicaterms for the environmental
variables studied.

Following previous literaturaesultswe expect a
negative coefficient forstandard environmental
variables anda positive estimatefor the squared
terms These results imply that the negative effect of
moving away from environmental amenities reaches
a maximum pointn a certain threshold. Above this
threshold this negative effect starts to disappear.

The coefficients ofthe "Green Area" vdables
meet these expectations (colnTable6). However,
the same does not happen with the distannedocest
beach. According to the coefficients presented, the
effect of moving away from beach presents an
increasing (more negative) MWT#th distane.

The interpretation of theubic factoramodel(col.

2 in Table 6) is very tricky if we just observe
regression  coefficients. To facilitate this
understanding, we are going to graph the MWTP for
each km in figured6and17.

NY Rooms

Type: Townhouse

Type: unit

NY Bathrooms

N Car Spots

Land Size

Building Area

Construction Year

Distance to beach

Squared Distance to beach

Cubical Distance to bheach

Distance to Green Area

Squeared Distance to Green Area

Cubical Distance to Green Area

Constant

Dependent variable:

(1)

1174658007

(7,656.873)

—159.749. 7007+

(18.552.510)

—344.009.500%**

(15.985.680)

206,422,300
(8,802.398)

12.G20. 710+

(5,287.923)
28 8334
(5.615)

17321737
(67.587)

—3.700.892°*
(150.490)

—18.370.650°**
(2.506.994)

— 3863565
(88.770)

— 45,649,000
(4,717.352)

2AG0.5867
(324.193)

1
TO16.855.0007*
(287.416.200)

Price

(2)
123.715.5007
(7.610.425)

—176.527.900%**
(18.454.760)

— 354,089,600
(15.874.320)

202,714.2007*
(8,742.735)
14,432,170+
(5,245.976)
20.102+**

(5.560)

LGOS 4347

(67.078)

—3,412.704**
(151.148)

17.3099.870%
(5.353.901)

—3.824.223
{454.739)
79,495+

(10.843)

33,692,580
(11.146.480)

—8,380.402***
(1,529.904)
A80.805*

(G0.GTH)

T.2001. 1920007
{201,285.900)

Ohservations 2,360 8360
R? 0.G40 0.646
Adjusted R? 0.6G39 0.6G45
Note:

fpell: PTpa0.05: T p0u0l

Table6: LinearRegression Estimators (with
squared terms)

Marginal WTP

Distance to Beach

Figure16: Distance to beach MWTP



Marginal WTP

Distance to Green Area

Figure17: Distance to Green Area MWTP

Solid line represents MWTP for linear model
(Table 1), dashed line represents squared model
MWTP and dotted line represents MWTP for cubical
model in Figure 16 and 17

As we can see, the linear model presents a
constant MWTP (represented by the solid horizontal
line) for all distances. However, tlsguaredmodel
(dashed linepresents two differeribrms depending
on the variable analyzed: in the case of the distance
to green areas it does comply with the expected v
shaped effect, however for the distance to beaches
variable this form is not fulfilled, and we observe an
elbowshaped line with an imeasingly negative
effect. In the case of the cubic model (dotted line) we
observed the same pattern for the two variables
analyzed.

Appendix F. Random Forests and
Gradient Boosting

Treebased methods are among the most used in
the field of Machine Learning. In the case of
regression problems (where the variable to be
predicted takes continuous valuet)e algorithm
partitions a data set intoultiple subsets following a
series of rles that act recursively on a data set. Each
selection rule divides the data into smaller sets so
that the sum of squared residuals is minimized
(equation 4). Then the value that the tree predicts for
each observation in a region determined by these
rules (terminal nodes) will be the average of the
response values of the training observations that fall
in this region.

To increase the prediction accuracy of these
models, multiple ensembling techniques have been
developed. One of these is the Random Forest
algorithm. This algorithm, which can be considered
an evolution of Bagging techniques, aims to reduce

the variance generated in the predictions of ML
models.

Given a set ofn independent observations
(GM hd with variance, , the variance of the

mean of these observationd, will be — or, more
commonly noted,m—_.

Therefore, if we obtain a sample of predictions
generated from different subsets of data (generating
different trees) for each observation, we can reduce
the variance in the model predictions. To do this, a
boostraping technique is applied on the training set
data (generating B subsets of the training set) and we
obtain the prediction for each observation from the
mean of the predictions of each of thesetB.8zing
the final prediction reported by the model for
observation with the set ok explanatory variables:

0w

o o P
(0]

Where'Q wi s
wi t h

the predicted

On this basis, the Random Forest algorithm
eliminates the potential correlation between trees
(which can lead to an increase in variance) because
each tree is constructemnsidering onlya random
selection ofm predictors, choserandomlyfrom the
entire seof p predictors.

The other algorithm considered in this work is
Gradient Boosting. This algorithm works in a similar
way to those related to bagging techniques (such as
random forests) presented above, except that in this
case the trees grow sequentiatlyat is, each tree
grows taking into account the information derived
from the tree that precedes In this way, the
algorithm "stores” the information of the residues
obtained in each trained tree sequentially, thus
passing the information to the nestages of the
training process.

Appendix G. Cross-Validation,
Metrics and Hyperparameter
Tuning

Following the traditional recommendations to
avoid overfitting in the models, a cresalidation
method with 5 folds has been applied. That is, the
training set has been randomly divided into 5 subsets
and the models have been recursively trained with 4
of these subsets, leaving one as the validation set.
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As we are faced with a regression problem, the Finally, the combination of hyperparameters that
metric used to evaluate the precision of the model the RMSE has minimized in therossvalidation
has been the Root Mean Squared Error (RMSE), process for each model has been:

which is calculated as follows:
f Random Forest: 6 randomly selected

predictors for each tree
1 Gradient Boosting: interaction depgigual

. B I . to 30 2000trees and 0 shiinkage
YO YO s h

Appendix H. Prediction accuracy

Where N is the number of observatiodsjs the
true price of house i ang is the prediction house
price.

1
[
\

Finally, a GridSearch process (together with
cross validation) has been applied to obtain those
optimal hyperparameters. For each model, a search
was carried out among the following parameters:

Actual Price
1e+06 2e+06 3e+06 4e+06

1 Random Forest: n° of randomgelected
predictors for each tree (2, 5, 6, 8 or 10)

1 Gradient Boosting: interaction depth (20, e e e e
25 or 30), n° of trees (502000,3500, 5000 PR
pr 650Q and shrinkage (0.01 or 0.001). Figure20: Random Forest Accuracy

The following figures graphically show the RMSE
obtained during therossvalidation training process
for each combination of hyperparameters.
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Figure23: Gradient Boosting Variable
Importance

As we can see, in both models, the area
constructed is the most important variable, appearing
in 100% of the trees constructe8imilarly, the
following variables in level of importance are related
to the region where the dwelling is located and its
year of construction.

In the chaos of environemtal variables, the
distance to the nearest beach appears in about 30%
of the trees in both models, while the distance to the
nearest green area has a weight of sligletg than
25%.

Appendix J. Gradient Boosting
PDP

Property Price

Distance to Beach

Figure24: BoostingDistance to beach PDP

Property Price
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Figure25: Boosting Distance to green areBP
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