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Resumen 

Los modelos de precios hedónicos constituyen uno 

de los métodos más extendidos a la hora de realizar 

ejercicios de valoración ambiental. Sin embargo, 

investigación previa ha identificado algunas 

limitaciones importantes en su aplicación: falta de 

flexibilidad en la definición de su forma funcional y 

falta de robustez en cuanto a su interpretación 

causal. Este trabajo propone la aplicación de 

algoritmos de Aprendizaje Automático (Machine 

Learning) para superar estas limitaciones y así 

proveer de estimadores más robustos referentes a la 

disposición marginal a pagar (MWTP por sus siglas 

en inglés) de los individuos por bienes ambientales 

de interés. 

Abstract 

Hedonic pricing models are one of the most 

widespread methods for conducting environmental 

valuation exercises. However, previous research has 

identified some important limitations in its 

application: lack of flexibility in the definition of its 

functional form and lack of robustness in terms of its 

causal interpretation. This work proposes the 

application of Machine Learning algorithms to 

overcome these limitations and, thus, to provide 

more robust estimators regarding the marginal 

willingness to pay (MWTP) of individuals for 

environmental goods of interest.  

 

Key words: Hedonic models, environmental 

valuation, Machine Learning, MWTP, flexibility, 

causal inference, heterogeneity, non-linearity. 

1. Introduction 

1.1. Environmental Valuation 

The environment provides well-being to society 

through the provision of essential goods and services 

for the proper functioning of the economy and, in 

general, to sustain life. While some of these goods 

and services, like natural resources such as wood, 

have an economic value recognized by society (are 

exchangeable in markets and, therefore, have a 

price), many others, that also generate social welfare, 

have an unknown value. Examples of the latter are 

natural areas that provide recreational services to 

society, such as beaches or natural parks. This 

peculiarity is due to their nature as public goods, that 

is, their consumption is non-exclusive and non-

rival.  

In this context, knowing the social 

preferences for public environmental amenities is 

essential to achieve proper environmental 

management. 

Facing this problem, the field of environmental 

economics has developed a series of techniques 

known as Environmental Valuation Methods aimed 

to quantify, monetarily, the economic value of goods 

and services provided by ecosystems. These 

valuations are obtained through the analysis of 

individual and collective preferences for changes in 

ecosystems. That is to say, the economic valuation 

of environment studies how the welfare of society 

will be modified in the face of a change in the 

provision of environmental goods and services, and 

translates this shift in welfare into monetary units to, 

in a next stage known as project assessment, 

calculate the economic profitability of 



 

 

environmental policies. Therefore, the final goal of 

the entire environmental valuation/assessment 

process is to achieve an optimal allocation of 

resources considering the preferences that society 

reveals for these non-market goods. 

 

1.2. Hedonic Method: theory and 

limitations 

One of the most extended models in the field of 

environmental valuation is the Hedonic Pricing 

Method, whose theoretical foundations are simple: 

in a specific housing market, buyers will choose 

which property to purchase depending on the 

attributes related to house structure (e.g., size, 

number of rooms) and to location (e.g., distance to 

green areas, views from the property, characteristics 

of the neighborhood) [1]. If the market works 

correctly each of these amenities will be capitalized 

within the price of the house. Once individuals 

observe the set of prices and characteristics 

associated with each property, buyers’ purchases 

reveal what is their willingness-to-pay for marginal 

changes (MWTP) in property characteristics. For 

instance, through the application of this method, we 

can infer buyer’s MWTP for each additional square 

meter, for each additional room or for each kilometer 

that the property approaches an environmental area 

(such as a beach or a green area).  

In recent years, an important part of the 

specialized literature in this field has identified some 

limitations related to the assumption of linearity in 

the estimation of the Hedonic Pricing Valuation 

methods. Some examples are found in Kuminoff et 

al. [2], where it is noted that "Our 

results suggest that large gains in accuracy can be 

realized by moving from the standard linear 

specifications for the price function to a more 

flexible framework", or in Bishop  et al. 

[3]: "Theoretical and simulation 

evidence suggest that the hedonic price function 

should be assumed to be nonlinear 

(...) Semiparametric and nonparametric methods 

can provide additional flexibility in estimating 

hedonic price functions".  

Increasing model flexibility would benefit 

environmental valuation allowing heterogeneity on 

MWTP. This heterogeneity could come from 

differences in MWTP for a specific attribute 

depending on the actual provision level of these 

attribute or depending on the provision level of 

another characteristic of the property.  We exemplify 

these considerations through the case of the effect of 

beach distance on house prices: evidence suggests 

that distance does not have a linear effect on price 

since moving away in the first few kilometers 

(moving from the first coastal line to an interior area) 

should have a much greater effect on property’s price 

than doing the same movement starting from a much 

more distant point. Even, reached a certain 

threshold, going further from the beach may not 

have any significant effect on housing prices [4]. 

Similarly, the effect of moving away from the beach 

may be different for properties with different 

characteristics, for example, the effect may be less in 

houses with a swimming pool than in those without. 

Finally, the need to define methods that facilitate 

causal inference, as well as the mitigation of biases 

due to omitted variables, are also identified as 

opportunities to advance in the hedonic method 

literature. The implementation of quasi-

experimental methods, closely related to the field of 

Program Evaluation Econometrics (e.g., Difference 

in Difference method or Propensity Score 

Matching), that study variations in the amenity of 

interest as a "treatment", are widely discussed in 

specialized literature [5].  

 

1.3. Machine Learning to overcome 

these limitations 

Simultaneously, in recent years, literature on the 

application of Machine Learning (ML) algorithms in 

economic research has grown exponentially [6, 

7]. Following this line, and collecting the 

abovementioned limitations, we propose the 

application of ML techniques to provide greater 

flexibility to the pricing function as well as to 

improve the robustness of causal inference in the 

application of hedonic price modeling for 

environmental valuation.  Specifically, we propose 

the training of several tree-based ML models 

(Random Forest and Gradient Boosting) and the 

analysis of their results using interpretability 

techniques (Partial Dependencies Plots) to determine 

whether MWTPs are linear for specific 

environmental amenities (section 4). This 

application can be included within the framework of 

on non-parametric hedonic modelling [8].  

However, these methods can only solve the first of 

the exposed limitations, the non-linearity in the 

MWTP depending on the level of the amenity of 

interest itself. To increase the causal interpretation of 

the hedonic model and to assess heterogeneity in the 

MWTP of an environmental amenity depending on 

other characteristics of the property, we will apply 

causal inference ML techniques (Causal Forests, 

section 5). This method allows us to model a 

variation in the amenity of interest as if it were a 

treatment. Once applied, we can estimate the average 

effect of this treatment (comparable with the 

estimator obtained in the traditional hedonic linear 

regression model) and analyze whether this effect is 

heterogeneous depending on other housing 



 

 

variables. This application can be included within 

the framework of quasi-experimental hedonic 

modelling [5].  

We will apply all of the above techniques to a 

Melbourne’s housing market dataset (analyzed in 

section 2). Among the variables included we find the 

sale price (dependent variable) as well as the main 

characteristics that determine house prices (surface 

area, number of rooms, age, ...). Finally, thanks to 

having the coordinates of each property included in 

the dataset, we have calculated the distance from 

each of these properties to each urban beach and to 

each green space in the city. These are our two 

amenities of interest and on which we will analyze 

the reported valuation (MWTP) for each model. 

Additionally, we will apply a hedonic linear 

regression model (section 3) whose estimators will 

serve as a baseline to evaluate the results obtained by 

ML models. 

 

2. Data 

The dataset used for this research is composed of 

9.870 observations that came from the housing 

market of the Australian city of Melbourne in 2018 
1. Each of these observations corresponds to a real 

state property for sale in the city. 

  

2.1. Exploratory Analysis 

Although the original data set contains 21 

variables, some of them have been discarded due to 

their irrelevance in hedonic price modelling (e.g., 

property seller or property IDs). 

We can divide the considered variables into three 

main groups depending on their nature 2: 

¶ Dependent variable: price (in Australian $) 

of the property sold. 

¶ Physical characteristics of the house: nº of 

rooms, bedrooms, bathrooms and car spots, 

type of real state (house, townhouse or 

unit), land size (in m2), building area (in 

m2), year of construction 

¶ Location: property’s neighborhood 

(suburb), region, postal code, council area, 

latitude and longitude. 

 

In Figure 1, we analyze the distribution of housing 

prices. As we can see, although it is true that the 

distribution is asymmetric and positive skewed (it 

presents a skewness coefficient greater than 2), we 

 
1 The dataset is available on the Kaggle website: 
https://www.kaggle.com/anthonypino/melbourn

e- housing - market  
2 Section 3 delves into each of these groups 

will not normalize the data to avoid losing 

interpretability in estimators 3. 

To avoid problems related to multicollinearity 

(literature indicates that there may be strong 

correlations between house-related attributes), we 

have analyzed the correlation matrix between 

potential explanatory variables (Appendix B). The 

use of the variable “number of bedrooms” has been 

ruled out due to its strong correlation with other 

variables 4. 

 
Figure 1: Price histogram. 

 

Regarding the variables related to the property’s 

location, it has been decided to work exclusively 

with “region” dummies. The following section 

discusses the role of geographic coordinates in the 

definition of new variables. 

 

2.2. Geographical Analysis and 

Environmental amenities 

Using the Python GeoPandas (v 0.80) library 5, 

each one of the properties included in the dataset has 

been projected from its coordinates. In figure 2, the 

geographical distribution of analyzed houses is 

mapped, differentiating by regions. 

 
Figure 2: Geographic distribution of properties. 

3 Appendix A presents the main descriptive statistics of variables 
finally included in models. 
4 Correlation coefficient with “number of rooms” equal to 0.96  
5 https://geopandas.org 



 

 

 

To ensure that we work with a unified and 

delimited market, we will include only those 

observations from the following regions: Northern, 

Western, Southern and Eastern Metropolitan 6. 

Appendix C analyzes the existence of geographic 

patterns in the distribution of house prices in 

Melbourne. 

Finally, it is important to comment on how the 

environmental variables of interest have been 

included. First, all urban beaches and urban green 

areas in the city of Melbourne have been 

geographically located. Once located, using the 

Python Shapely (v. 1.7.1) library 7, the distance (in 

km) from each house to each beach and urban green 

area has been calculated.  

A large-size distance matrix between each 

property and each beach and green area has been 

obtained. From this matrix, we have extracted the 

distance from each house to the closest beach and 

green area. The distance to these locations is imputed 

as "Nearest beach" and "Nearest Green Area" 

variables. The distribution of these variables is 

presented in Appendix D. 

Finally, it is important to note that all observations 

with missing values in any of the included variables 

have been discarded. Once this data cleaning process 

is finished, the final data set contains 8.360 

observations. 

3. Linear Hedonic Method 

As a starting point, we are going to apply a 

traditional linear hedonic model estimated through 

OLS that will serve as a baseline to evaluate both the 

impact of Machine Learning models when 

identifying non-linearity in MWTPs, as well as to 

evaluate if the results obtained using ML methods 

are consistent with estimators obtained from 

traditional specifications. The latter will allow us to 

approximate the robustness of the flexible functional 

forms proposed in this research. 

 

3.1. Methodology 

As mentioned in the introductory section, the 

theoretical framework underlying hedonic price 

modeling is based on the identification of the values 

of the underlying characteristics of differentiated 

products through the observation of the market 

equilibrium price. In other words, if we examine the 

differences in the prices of two goods that differ in 

only one characteristic (e.g., two identical houses 

that only differ in the number of rooms), we can 

 
6 The importance of the correct delimitation of the market being 

worked on is widely debated by Taylor, L.O. in chapter 10 of [1] 

(indirectly) identify the tradeoffs (in terms of income 

willing to sacrifice for improvements in that 

characteristic) that individuals are willing to make 

regarding changes in that attribute. 

In the specific case of environmental valuation, 

hedonic methods are mainly applied in housing 

markets. Starting from the observation of different 

prices and characteristics in sold houses, it is 

possible estimate the value that individuals obtain 

from these attributes. Following this premise, the 

choice of housing location is observable and directly 

related to environmental amenities of interest. If we 

put together all the previous points, we can conclude 

that the choice to purchase a property (and the price 

associated with it) implies a choice between 

different levels of environmental goods and services. 

Partially deriving the hedonic price function on 

each property attribute, we can obtain the marginal 

price of each characteristic. Under certain conditions 

(that we will not consider due to the spatial 

delimitation of this research, for more information 

[1, 3]), these marginal prices are equal to the 

marginal willingness to pay (MWTP) for each house 

attribute.  Finally, it is necessary to define the 

functional form that the Hedonic Price Function 

takes. While we want to use this section to establish 

the base line on which to compare the results 

obtained using innovative and flexible models, we 

will take as a reference the traditional linear function 

specification: 

 

ὖ ‌ В ‍Ὄ В ‍ὔ В ‍ὒ ‐ȟ (1) 

 

Where P is the (sale) price of a property; H 

represents physical characteristics of the house 

(number of rooms, land size…); N represents 

neighborhood characteristics; L represents location 

characteristics, such as proximity measures to areas 

of interest. It is in component L where the variables 

of distance to environmental amenities appear. 

Under this functional form, the implicit prices of any 

characteristic included in the function, ᾀ, is equal to 

the econometric parameter estimated for that 

attribute: 

 

‍ , (2) 

  

If we consider that the criteria by which we can 

match implicit prices with MWTPs are met, the 

estimators obtained from the econometric model 

represent MWTPs for each attribute. Estimators will 

be obtained through Ordinary Least Squares (OLS) 

method. 

 

7 https://pypi.org/project/Shapely/ 



 

 

3.2. Results 

As noted in section 2, we will apply equation (1) 

with the following variables: 

¶ P: price (in $) of the property sold 

¶ H: number of rooms, number of bathrooms, 

building area, land size, type of property 

(house, unit or townhouse), year the house 

was built and number of car spots 

¶ N: regional (4 categories) dummies 

¶ L: distance (in km) to the nearest beach and 

to the nearest urban green area 

 

    These last two represent environmental amenities 

of interest. An important point to note is that we will 

use regional dummy variables that will serve as 

proxies for neighborhood characteristics. The reason 

that leads us to not consider suburb level, is that, 

although the suburb level should provide more 

precise information on the characteristics of the 

property's location, suburban level may have a 

greater correlation with environmental amenities [2, 

9], leading to incorrect inference in estimators due to 

multicollinearity and spatial autocorrelation. 

Obtained results are presented in Table 1 8.  

Presented results fit those reported in previous 

literature:  positive MWTPs for increases in the 

number of rooms, bathrooms, car spots, land size and 

building area are observed [10, 11, 12].  

Focusing on environmental amenities, regressor 

estimators are negative for beach distance. In other 

words, for every kilometer that we move away from 

the beach, buyers’ willingness to pay falls (or, if we 

put it the other way around, individuals show a 

positive willingness to pay to approach beaches). 

This means that beaches are environmental areas 

with a positive and significant impact in social 

welfare. MWTP for approaching one kilometer to 

the beach is $ 27,818 meaning that the price that 

individuals are willing to pay for a property 

decreases by more than $27,000 for each kilometer 

that the house is away from beach.  In other words, 

for example, the price that the average buyer in this 

market will be willing to pay for a property located 

1 kilometer away from the beach will be $ 27,818 

lower than the price he/she would pay for an 

identical house on the beach shoreline. These results 

conform to those obtained in previous research [14, 

15]. 

In the case of the Urban Green Areas, obtained 

results are very similar to those of beaches, however 

the effect is more moderate ($ 12,522 per kilometer). 

 
8 The estimators of the regional dummies (not included in the 

table) agree with the preliminary findings presented in Appendix 
C. 

 

These findings are consistent with previous literature 

since MWTP is negative and significant [10, 13]. All 

coefficients are significantly different from 0 with a 

99% confidence level.  

Finally, it is important to comment that a Ὑ  close 

to 64% has been obtained, meaning that the model is 

capable of explaining about two thirds of the 

variance of the dependent variable 9. 

 
 

Table 1: Linear Regression Estimators 

 

4. Flexibilization of the price 

function through ML 

As mentioned above, there exists empirical 

evidence that hedonic price functions in housing 

9 In Appendix E, results for regression models with squared and 

cubical environmental amenities variables are presented and 
discussed. These models provide a greater degree of flexibility, 

but at the same time present a series of drawbacks 

 



 

 

markets do not fit correctly to linear specifications 

[2, 3]. The solution to this problem lies in increasing 

model flexibility . Traditionally, this increase in 

flexibility has come through the application of non-

parametric econometric approaches [8, 16, 17]. 

However, here we propose the use of non-parametric 

Machine Learning models that do not take any 

functional form or any relationship between 

variables beforehand. 

4.1. Methodology 

We will model housing price as a function of 

physical characteristics of the house (H), 

neighborhood dummies (N) and location 

characteristics (L). Specifically, the included 

location characteristics are, as mentioned above, 

distance to nearest beach and distance to nearest 

green urban area 10: 

 

ὖ ὪὌȟὔȟ ὒ ‐,  (3) 
 

Within the wide variety of ML algorithms that can 

be used to solve regression problems, we will focus 

on tree-based methods. The main difference between 

these models and linear regression is that the former 

do not make assumptions about the functional form 

that is estimated. Furthermore, unlike linear methods 

that model the entire data set as a single function, 

tree-based models create a large number of learning 

subspaces that allow finding non-linear and monotic 

relationships and functions.  

Tree-based ML methods’ estimation strategy is 

based on the partitioning of the data in such a way as 

to minimize the sum of the squared errors (SSE): 

 

ὛὛὉ В ώ ώ  , (4) 

 

Where, in this study, N is the number of 

observations (properties), ώ is the true price of 
house i and ώ is the predicted house price. To 

increase accuracy, instead of training a single tree 

model, two popular ensemble methods have been 

used, Random Forest and Gradient Boosting 

(Appendix F). To avoid overfitting, the data set has 

been divided into a training set (75% of the 

observations) and a test set (the remaining 25%). In 

addition, a cross-validation process with 5 folds has 

been applied to find the combination of 

hyperparameters that maximizes predictive accuracy 

(Appendix G). Optimal hyperparameters and the 

metrics obtained by each model are presented in 

section 4.2. 

 
10 Some examples of literature that models housing prices from a 

Machine Learning can be found in Oladunni et al. [18], Park et 

al. [19] or Valier A. [20]. 

Although it is true that ML algorithms have a great 

predictive capacity, they do not stand out for their 

interpretability. This means that, on many occasions, 

these models can be seen as "black boxes" where the 

effect of the included predictors (features, in ML 

terminology) on outcomes cannot be observed. 

However, thanks to advances in the field of 

interpretable machine learning, this is starting to 

change [21, 22]. One of these techniques is known 

as Partial Dependence Plot (PDP) which is based on 

the graphical representation of the Partial 

Dependency Function (PDF) of each variable [23]. 

Thanks to this technique, we can see how the value 

of the predicted variable changes from marginal 

changes in the independent variable (predictor) of 

interest.  

This technique has previously been used in 

environmental valuation studies based on hedonic 

models in Nafilyan et al. [24]. 

Mathematically, we can express it as follows: let 

ὼ  ὼȟȣȟὼ  represent the independent variables 

(predictors) in a ML model whose prediction 

function is Ὢὼ. If we select one of these predictors, 

ᾀ, and its compliment ᾀ ὼʌ ᾀ, we can define the 

PDF of the response on ᾀ as: 

 

Ὢᾀ Ὁ Ὢᾀȟᾀ Ὢ᷿ᾀȟᾀ ὴ ᾀ Ὠ  , (5) 

 

Where ὴ ᾀ  is the marginal density function of 

ᾀ,  
 

Ὢᾀ Ὢ᷿ᾀȟᾀ ὴ᷿ὼὨ Ὠ  , (6) 

 

Equation (5) can be estimated from training set by 

 

Ὢᾀ В Ὢᾀȟᾀȟ  , (7) 

 

Where Úȟ are the actual values of ᾀ in training set.  

 

From an algorithmic point of view, we can 

summarize the construction of the partial 

dependency plot as 

 

1.  For Ὦɴ ρȟςȟȣȟὯ 

(a) Copy the training data set and 

replace the original values of ᾀ 

with the constant Úȟ 

(b) Compute the vector of predicted 

values from the modified copy of 

the training set 

(c) Compute the average prediction to 

obtain Ὢᾀȟ  from equation 7 

 

 



 

 

 

2. Plot the pairs ᾀȟȟὪᾀȟ  for Ὦɴ

ρȟςȟȣȟὯ 

 

Due to the special focus that this work has on the 

effect of certain environmental variables on the price 

of housing, once the partial dependence plots for 

these variables have been drawn, we will calculate 

the MWTP for each ᾀȟ (where j represent each enter 

kilometer) taking the slope of the PDP at each point 

ᾀȟ  with respect to ᾀȟ   as represented in equation 

(8) 

 

 

ὓὡὝὖ
ȟ

ȟ ȟ

ȟ  ȟ
 , (8) 

 

     In this way we will obtain a different MWTP for 

each level of the variables of interest. Specifically, 

we will calculate a flexible MWTP for each 

kilometer of distance with the environmental 

amenities of interest. Additionally, a linear 

regression model has been trained (following the 

same criteria for dataset division and cross-

validation) that will help us to compare the 

prediction capacity of the ML models. 

 

 

4.2. Results 

ML models have been trained with the same set of 

variables that in section 3. After dividing the data set 

into a training and a test set, and applying a grid 

search with 5-fold cross validation (the 

hyperparameters selected for each model are 

presented in Appendix G), the following accuracy 

metrics have been obtained: 

 

 

 RMSE R2 
 Training  

(CV) 
Test 

Training  

(CV) 
Test 

Reg 424.373 366.867 0.643 0.632 

RF 300.648 264.361 0.823 0.804 
GBM 286.133 260.071 0.837 0.815 

Table 2: ML Models Metrics 

 

As we can see, ML non-parametric models 

achieve a greater predictive capacity (a RMSE 

reduction of 33%) and an increase in the explained 

 
11 Appendix H includes accuracy plots 
12 This result may be due to the fact that once the cross-validation 

has been carried out, the model is retrained with the selected 

hyperparameters as well as with the entire training set, therefore 

the number of observations with which the model is trained 
increases. 

 

 

variance (18 percentage points of improvement in 

R2) with respect linear regression11. In addition, it 

should be mentioned that no type of overfitting is 

seen in ML models since RMSE obtained for the test 

set is even smaller than in the training set (with cross 

validation)12 . Regarding the importance of each 

variable (presented in Appendix I), we can see how 

the two environmental amenities included are 

important enough to be considered as relevant in the 

prediction and, therefore, in the hedonic price 

function. 

Once the analysis of ML predictive capacity was 

carried out, we can proceed to analyze the effect of 

environmental variables on the property’s price13 

 

 
 

Figure 3: Distance to beach PDP 

 

 

 
 

Figure 4: Distance to green area PDP 

 
 

On the vertical axis we find the predicted property 

price. On the horizontal axis we plot the distance (in 
km) to the environmental amenity of interest. As we 

can see, in all cases, a strong non-linearity is 

observed. If we focus on the case of beaches, we can 

13 Due to the spatial limitations of this work, we only captured the 

PDPs for the Random Forest model. The PDPs obtained through 

Boosting are presented in appendix J. The reason for presenting 

the results of the RF model is due to the fact that it obtains 

predictive capacity metrics that are very similar to the GBM but 
PDP presents a smoother distribution.  

 



 

 

see how both models find a very similar partial 

dependence function. 

Partial Dependence Plot (Figure 3) seem to 

indicate that moving from the first coastline to the 

second one has a very large impact on the house 

price. After that, the effect moderates, with a range 

from 3 to 12 km where the slope of the function 

decreases. This slope becomes steeper again 

between kilometers 12 and 15, to moderate again 

between kilometers 15 and 25.  Finally, we observe 

that from a threshold close to 25 kilometers distance, 

from which each additional kilometer has practically 

no effect on the price. 

In the case of green areas (Figure 4), the effect 

does seem to be much more linear than in the beach 

case. The most remarkable output is that, 

approximately at a distance of 10 km, the price 

remains more or less constant. From these results we 

can infer that the effect of moving away from the 

beach is more persistent (it becomes null after 25 

kilometers) and non-linear than in the case of green 

areas (whose effect disappears after 10 km).  

Finally, following equation (8), we have 

calculated the MWTP for all levels (kilometers) of 

the environmental variables. The results are shown 

graphically in Figures 5 and 6. 

 

 
Figure 5: Distance to beach MWTP 

 

 
Figure 6: Distance to green area MWTP  

 

The horizontal dashed line represents the MWTP 

obtained by the linear regression model in section 3, 

while the solid line graphs the result obtained by the 

Random Forest model. The results obtained are 

directly parallel to those presented in PDPs (Fig. 3 

& 4).  

In the case of beaches, we can see how going from 

the shoreline to 1 km away from beach implies a 

price drop of about A$ 150.000 (much higher than 

the A$ 27.818 estimated in the traditional regressive 

hedonic model). However, for the rest of the 

distances, the MWTP is close to 0. Nevertheless, a 

significant drop peak is detected at a distance of 12 

km, with a MWTP of A$ 75.000. In the case of urban 

green areas, the observed dynamics are similar.  

Therefore, the main conclusions of this section 

could be summarized as:  

¶ ML models seem to achieve a better 

estimate of the real functional hedonic form 

since they achieve a lower prediction error 

than the linear regression model.  

¶ A strong non-linearity is observed in the 

effect of the distance from the house to the 

environmental areas. Therefore, non-

linearity is observed in MWTP.  

¶ Large falls in the price of housing are 

observed when we move the first kilometer 

from the natural area of interest, but this 

effect disappears until it becomes close to 

zero at higher distances.  

 

5. Improvement of causal 

inference and heterogeneity 

detection through ML 

As pointed in Parameter & Pope (2013) [5], we 

can observe an increase in the number of papers that 

applies quasi-experimental designs in the field of 

hedonic valuation. This is the result of an increasing 

concern among researchers about the existence of 

biases due to omitted variables in the formulation of 

traditional hedonic models. Therefore, the causal 

interpretation of the results obtained may be 

questionable [3]. 

So far, the application of these quasi-experimental 

designs has been limited to estimating average 

treatment effects (ATE) equating them to the mean 

MWTP for specific attributes using, mainly, 

Difference-in-difference (DiD) [25, 26] and 

Regression Discontinuity (RD) [27] designs.  

However, these models require either panel data 

(observations of the value of the same property 

before and after treatment) and the existence of an 

exogenous shock (e.g., the unforeseen construction 

of a highway that crosses a city) to estimate these 

MWTP. In order to avoid these specific data 

requirements, in this study we propose the 

application of a ML algorithm specially designed for 



 

 

the extraction of causal inference known as Causal 

Forest.  

In addition, this method allows us to face another 

of the existing limitations in hedonic models: the 

existence of heterogeneity in the MWTP of a specific 

attribute depending on its relationship with other 

attributes. In other words, this method allows us to 

study whether the MWTP of a specific attribute 

varies depending on the level of another attribute. 

This could be interpreted as the existence of 

Heterogenous Treatment Effects.  

 

5.1. Methodology 

Recently, there has been an increase in the 

development of Machine Learning models capable 

of obtaining causal interpretations from the 

implementation of quasi-experimental designs. 

Some of these first developments are found in works 

such as Athley & Imbens (2016) [28], where a 

method known as Causal tree is proposed. In this 

method, a partition of the dataset is made, with one 

of the parts used to build the regression tree while 

the other one is used to estimate the mean treatment 

effect within leaves.  

As in tree-based ML methods, a consistent 

evolution that should improve model's accuracy (in 

this case, the predictability of treatment) is the use of 

ensemble methods. Thus, Athey et al. (2019) [29] 

presents the Causal forest method, which, as its 

name suggests, is based on Random Forest algorithm 
14.  

In our work, we will apply two Causal Forest 

models. In the first one, we will use the distance to 

the nearest beach as a "treatment" while, in the 

second one, the distance to the nearest green zone 

will substitute the former as “treatment”. Once the 

models have been trained, we can obtain the 

"Average Treatment Effect" (ATE) [30], comparable 

(at a theoretical level) to the MWTP estimator 

obtained by the traditional linear hedonic model. In 

this way, we will be able to evaluate whether the 

estimators obtained by the traditional hedonic model 

of section 3 are consistent with those obtained by a 

quasi-experimental design. 

The dependent variable in both models continues 

to be the property price. Included explanatory 

variables (predictors) are the same than those 

included in sections 3 and 4. In addition, a grid 

search has been applied to find the optimal 

hyperparameter tuning. 

One of the advantages of applying these models is 

that we can obtain "Heterogenous Treatment 

Effects" (HTE). The effect of the treatment can be 

 
14 It is worth mentioning that other similar methods such as 

Causal Boosting and Causal MARS have been developed, 

extracted depending on the level of any other 

explanatory variable included in the model. In this 

way, we solve another of the limitations identified in 

the literature regarding hedonic modeling.  

In the first place, we will evaluate which are the 

variables that present the greatest importance in the 

model training process, and then, by means of 

graphical plotting, evaluate the MWTP of the 

environmental variable of interest with respect to the 

level taken by other relevant explanatory variables 

(features or predictors).   

 

 

5.2. Results 

In this section we will analyze both the mean 

MWTP (as ATE) estimated by the quasi-

experimental method (for the two environmental 

variables of interest), and the existence of 

heterogeneous effects in MWTPs.  

 

5.2.1. Distance to nearest beach 

Applying the causal forest model with the variable 

"distance to nearest beach" as treatment, we obtain 

an ATE (MWTP) of A$-31.127,339 (standard 

deviation equal to 1.395,679). As we can see, this 

estimate is slightly higher than the obtained by the 

traditional hedonic model (A$-27.818). Due to the 

reasonable similarity between the two, it seems that 

we are facing consistent results.  

To study the existence of heterogeneous treatment 

effects, that is, the existence of differences in the 

MWTP for the distance to the beach depending on 

other characteristics of the house, we must analyze 

which are the variables with greater importance in 

the model. Results (for the 5 most important 

variable) are presented in Table 3.  

 

 

Variable Importance 

Building Area 0.595 

Nearest Green Area 0.114 

Nº of Rooms 0.087 

Nº of Bathrooms 0.063 

Year of construction 0.033 

 

Table 3: “Distance to beach” Causal Forest’s 

variable importance   

 

Figure 7 plots the MWTP of the "distance to 

nearest beach" depending on the building area of the 

property. 

however due to brevity they will not be studied nor applied in 

this work.  

 



 

 

 

 
 

Figure 7: Distance to beach – Building Area HTE 

 

Being the black continuous line the ATE (or 

MWTP in our case) and the dashed lines the 95% 

confidence interval, we can observe how the effect 

of moving one kilometer further from the beach 

increases (becomes more negative) as the size of the 

property increases. Although this result seems 

obvious, let us remember that the model already 

controls for the size of the built surface on the 

property. In other words, from these results we can 

extract that the distance to the beach has a greater 

effect on the price of large properties than in small 

ones.  

This MWTP would range from approximately,       

$-20.000 for each kilometer of distance to beach in 

properties with a built area of 50 m2, to $-40.000 in 

the case of built areas close to 300m2.  

Regarding the relationship between the MWTP of 

the distance to the beach with the other 

environmental amenity analyzed in this work, the 

results are presented in Figure 8.  

 

 
 

  Figure 8: Distance to beach – Distance to Green 

Area HTE 

 

In this case, heterogeneity in treatment is also 

observed. As we can see, the MWTP has an inverted 

U shape: moving away from the beach has more 

negative effects on the price that buyers are willing 

to pay when this property is either very close to or 

far from a urban green area.  

In this case, the MWTP ranges from $-50.000 at 

the most extreme points to $-30.000 at intermediate 

distances (4 to 9 km) to green areas.  

It is important to note that, in both cases (Figures 

7 and 8), the results are significantly different from 

0 for all levels. But this does not have to be the 

general rule in all cases. For example, Figure 9 

shows the MWTP of the distance to the beach 

depending on the year the house was built. 

 

 
 

Figure 9: Distance to beach – Year of 

construction HTE 

 

In this example, we can see that for older homes 

the distance to the nearest beach does not have any 

significant effect on the property’s price.  

 

5.2.2. Distance to nearest green 

area 

If we use the variable "distance to nearest green 

area" as a treatment, we obtain an ATE equal to          

$-16.808,09 (standard error equal to 2.628,35). As 

we can see, as in the case of beach distance, this 

estimate is slightly higher than that obtained by the 

traditional linear hedonic model ($-15.522). 

Therefore, these results seem consistent with those 

obtained by traditional methods.  

As in the previous section, the variables that 

present the greatest importance in the model are 

analyzed below.  

 

Variable Importance 

Southern-Metropolitan 0.448 

Building Area 0.220 

Nearest Beach 0.141 

Land Size 0.069 

Nº of Bathrooms 0.042 

 

Table 4: “Distance to green area” Causal Forest’s 

variable importance   

 

As we can see, some of the variables do coincide 

with the previous case. Due to the dummy nature of 

the regional identification variable, we will not 



 

 

analyze whether there is heterogeneity in the MWTP 

depending on it.  

Figure 10 plots the relation between the MWTP of 

the variable "distance to nearest green area" and the 

size of the building area of the property. 

 

 
 

Figure 10: Distance to green area – Building 

Area HTE 

 

However, unlike the case of distance to the beach, 

there does not appear to be significance in the 

MWTP of this environmental attribute at any level 

of the Building Area. A similar result is obtained if 

we analyze the relationship between the distance to 

the beach and the MWTP for green areas (Figure 11). 

 

  

 
 

Figure 11: Distance to green area – Distance to 

beach HTE 

 

 

6. Conclusions 

As discussed throughout this essay, this project 

aims to provide new methodologies to solve two 

relevant limitations identified in the field of hedonic 

price modeling for environmental valuation.  

These limitations are related to the need to provide 

greater flexibility to the price function (thus allowing 

the identification of heterogeneity in the willingness 

to pay for environmental attributes depending on the 

level of the attribute itself as well as other variables 

of the price function) and to the need to increase the 

causal interpretability of the models. 

Traditional responses to these limitations have 

been the application of non-parametric econometric 

methods (in order to increase hedonic price function 

flexibility ) and the design of quasi-experiments (to 

increase the causal inference reliability).  

The main contribution of this work is the 

application of techniques based on Machine 

Learning to continue the path of overcoming the 

aforementioned limitations. In order to empirically 

test whether these techniques provide satisfactory 

results, a dataset of the housing market in Melbourne 

has been used. The environmental ecosystems 

evaluated were the beaches and urban green areas of 

this city. 

In the first place, it has been verified through the 

application of a traditional hedonic model (through 

linear regression) how both environmental attributes 

are considered as goods for the individuals that 

participate in this market, in so far as willingness to 

pay for properties decreases as we move away from 

beaches and green areas (negative MWTP).  

Secondly, Partial Dependence Functions of 

various tree-based ML models have been analyzed 

in order to obtain the relationship between both 

environmental attributes and housing prices. From 

this analysis, MWTPs has been derived for all levels 

of both environmental variables, revealing a strong 

non-linearity. Therefore, these results fit with those 

identified in previous literature and seem to reveal 

that these techniques may represent a potential 

alternative to traditional methods.  

Finally, using these environmental variables as if 

they were treatments, a Causal Forest model has 

been applied to our dataset. Thanks to this model it 

has been possible to identify both the mean MWTP 

for each environmental attribute and the presence of 

heterogeneity in the MWTP depending on the levels 

of other housing attributes.  

Using this technique, a similar, but slightly higher, 

MWTP has been obtained for both environmental 

attributes than in linear model. In addition, the 

existence of heterogeneity in MWTP for 

environmental variables depending on other 

property’s characteristics has been confirmed.  

Although it is true that promising results have 

been obtained, there are still many limitations in the 

application of these techniques for environmental 

valuation. Without the intention of being exhaustive, 

some of these limitations are: need to evaluate if the 

actual MWTP is obtained from the derivation of the 

Partial Dependence Function (or if we could only 

speak of capitalization) or increase the number of 

controls that allow ensuring the reliability of the 

quasi-experimental design.  
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Appendix A. Descriptive Statistics 
 

 
Table 5: Descriptive Statistics of explanatory 

variables 

 

The average price of properties for sale is close to 

A$1.1 million. The average home dates back to 1965 

and is characterized by 3 bedrooms, between 1 and 2 

bathrooms (average 1.62) and between 1 and 2 car 

spots (average 1.65). The average property size is 

504 m2 with an average built-up area of 148 m2. 

The average distance to the nearest beach is 10.2 

kilometers. In this variable there is a great variation 

among the different properties as the distance varies 

from just over 50 meters to nearly 34 kilometers. 

Similar results are obtained in the case of the 

distance to the nearest green area, with an average of 

5.4 kilometers. In this case, there is less variation 

between properties. 

 

Appendix B. Correlation Matrix 
 

 

Figure 12: Correlation Matrix 

 
As we can see at a glance, there is a strong 

correlation between the number of rooms and the 

number of bedrooms in a house. These results are not 

surprising and are in line with those published in 

other similar studies. 

Due to the fact that the remaining variables have a 

correlation of less than 0.7 (a value that is usually 

taken as a reference when evaluating the potential 

presence of multicollinearity), it was decided to 

eliminate only the variable "Bedroom" from our 

study.   

Appendix C. Geographical 

Patterns of Price Distribution 
 

 

Figure 13: Geographical distributions of housing 

prices in the city of Melbourne 

 

In figure 13 we can see how there are clear 

patterns that justify the inclusion of location dummy 

variables (suburb or region). Concentrations of high 

prices are observed in the "Southern Metropolitan" 

region. 

Furthermore, it can be observed how, a priori, 

there is an increase in prices in areas near the coast 

as well as around green areas (which can be 

identified from large gaps without observations on 

the map). These preliminary observations must be 

confirmed in the models that will be presented in 

next sections. 

 

Appendix D. Environmental 

Amenities Distribution 
 

 
Figure 14: Distance to beach histogram. 

 



 

 

 

Figure 15: Distance to green area histogram. 

 

In both cases we find variables with a quasi-

normal distribution since they have a low skewness 

(skewness coefficient close to or less than 1). 

 

 

Appendix E. Ampliation of Linear 

Regression Hedonic Model 
 

One of the more traditional ways of adding 

flexibility to hedonic pricing functions has been by 

including the squared (and higher degree) factors of 

the interest amenities. In Table 6, we present the 

results of the re-estimated OLS regression including 

the squared and cubical terms for the environmental 

variables studied. 

Following previous literature results we expect a 

negative coefficient for standard environmental 

variables and a positive estimate for the squared 

terms. These results imply that the negative effect of 

moving away from environmental amenities reaches 

a maximum point in a certain threshold. Above this 

threshold this negative effect starts to disappear. 

The coefficients of the "Green Area" variables 

meet these expectations (col. 1 in Table 6). However, 

the same does not happen with the distance to nearest 

beach. According to the coefficients presented, the 

effect of moving away from beach presents an 

increasing (more negative) MWTP with distance.  

The interpretation of the cubic factors model (col. 

2 in Table 6) is very tricky if we just observe 

regression coefficients. To facilitate this 

understanding, we are going to graph the MWTP for 

each km in figures 16 and 17. 

 

 

Table 6: Linear Regression Estimators (with 

squared terms) 

 

 

Figure 16: Distance to beach MWTP 

 



 

 

 

Figure 17: Distance to Green Area MWTP 

 

Solid line represents MWTP for linear model 

(Table 1), dashed line represents squared model 

MWTP and dotted line represents MWTP for cubical 

model in Figures 16 and 17.  

As we can see, the linear model presents a 

constant MWTP (represented by the solid horizontal 

line) for all distances. However, the squared model 

(dashed line) presents two different forms depending 

on the variable analyzed: in the case of the distance 

to green areas it does comply with the expected v-

shaped effect, however for the distance to beaches 

variable this form is not fulfilled, and we observe an 

elbow-shaped line with an increasingly negative 

effect. In the case of the cubic model (dotted line) we 

observed the same pattern for the two variables 

analyzed. 

 

Appendix F. Random Forests and 

Gradient Boosting 
 

Tree-based methods are among the most used in 

the field of Machine Learning. In the case of 
regression problems (where the variable to be 

predicted takes continuous values), the algorithm 

partitions a data set into multiple subsets following a 

series of rules that act recursively on a data set. Each 

selection rule divides the data into smaller sets so 

that the sum of squared residuals is minimized 

(equation 4). Then the value that the tree predicts for 

each observation in a region determined by these 

rules (terminal nodes) will be the average of the 

response values of the training observations that fall 

in this region. 

To increase the prediction accuracy of these 

models, multiple ensembling techniques have been 

developed. One of these is the Random Forest 

algorithm. This algorithm, which can be considered 

an evolution of Bagging techniques, aims to reduce 

the variance generated in the predictions of ML 

models. 

Given a set of n independent observations 

(ὤȟȣȟὤ  with variance „ , the variance of the 

mean of these observations, ὤӶ, will be  or, more 

commonly noted,  
Ѝ

. 

Therefore, if we obtain a sample of predictions 

generated from different subsets of data (generating 

different trees) for each observation, we can reduce 

the variance in the model predictions. To do this, a 

boostraping technique is applied on the training set 

data (generating B subsets of the training set) and we 

obtain the prediction for each observation from the 

mean of the predictions of each of these B sets. Being 

the final prediction reported by the model for 

observation i with the set of x explanatory variables: 

ώ Ὢὼ
ρ

ὄ
Ὢ ὼ 

Where Ὢ ὼ is the predicted value for observation i   

with explanatory variables x in the boostrap set b. 

On this basis, the Random Forest algorithm 

eliminates the potential correlation between trees 

(which can lead to an increase in variance) because 

each tree is constructed considering only a random 

selection of m predictors, chosen randomly from the 

entire set of p predictors.  

The other algorithm considered in this work is 

Gradient Boosting. This algorithm works in a similar 

way to those related to bagging techniques (such as 

random forests) presented above, except that in this 

case the trees grow sequentially, that is, each tree 

grows taking into account the information derived 

from the tree that precedes it. In this way, the 

algorithm "stores" the information of the residues 

obtained in each trained tree sequentially, thus 

passing the information to the next stages of the 

training process. 

 

Appendix G. Cross-Validation, 

Metrics and Hyperparameter 

Tuning 
 

Following the traditional recommendations to 

avoid overfitting in the models, a cross-validation 

method with 5 folds has been applied. That is, the 

training set has been randomly divided into 5 subsets 

and the models have been recursively trained with 4 

of these subsets, leaving one as the validation set. 



 

 

As we are faced with a regression problem, the 

metric used to evaluate the precision of the model 

has been the Root Mean Squared Error (RMSE), 

which is calculated as follows: 

 

ὙὓὛὉ 
В ώ ώ

ὔ
ȟὢ 

 

Where N is the number of observations, ώ is the 

true price of house i and ώ is the prediction house 

price. 

Finally, a Grid-Search process (together with 

cross validation) has been applied to obtain those 

optimal hyperparameters. For each model, a search 

was carried out among the following parameters: 

¶ Random Forest: nº of randomly selected 

predictors for each tree (2, 5, 6, 8 or 10) 

¶ Gradient Boosting: interaction depth (20, 

25 or 30), nº of trees (500, 2000, 3500, 5000 

pr 6500) and shrinkage (0.01 or 0.001). 

 

The following figures graphically show the RMSE 

obtained during the cross-validation training process 

for each combination of hyperparameters. 

 

 

Figure 18: Random Forest Grid-Search 

 
Figure 19: Boosting Grid-Search 

 

Finally, the combination of hyperparameters that 

the RMSE has minimized in the cross-validation 

process for each model has been: 

¶ Random Forest: 6 randomly selected 

predictors for each tree  

¶ Gradient Boosting: interaction depth equal 

to 30, 2000 trees and a 0’01 shrinkage. 

 

Appendix H. Prediction accuracy 
 

 

Figure 20: Random Forest Accuracy 

 

 

Figure 21: Random Forest Residuals 

 

 

 

Appendix I. Variable Importance 
 

 

Figure 22: Random Forest Variable Importance 



 

 

 

 

Figure 23: Gradient Boosting Variable 

Importance 

 

As we can see, in both models, the area 

constructed is the most important variable, appearing 

in 100% of the trees constructed. Similarly, the 

following variables in level of importance are related 

to the region where the dwelling is located and its 

year of construction. 

In the chaos of environmental variables, the 

distance to the nearest beach appears in about 30% 

of the trees in both models, while the distance to the 

nearest green area has a weight of slightly less than 

25%. 

Appendix J. Gradient Boosting 

PDP 
 

 

Figure 24: Boosting Distance to beach PDP 

 

 

Figure 25: Boosting Distance to green area PDP 
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