

Universitat de les Illes Balears

DOCTORAL THESIS

2021

RESPONSE OF NITROGEN FIXERS ASSOCIATED WITH *POSIDONIA OCEANICA* TO ENVIRONMENTAL FACTORS AND EMERGING POLLUTANTS

Víctor Fernández Juárez

Universitat de les Illes Balears

DOCTORAL THESIS 2021

DOCTORAL PROGRAM OF MARINE ECOLOGY

RESPONSE OF NITROGEN FIXERS ASSOCIATED WITH *POSIDONIA OCEANICA* TO ENVIRONMENTAL FACTORS AND EMERGING POLLUTANTS

Víctor Fernández Juárez

Supervisor: Dr. Nona Sheila Agawin Romualdo

Supervisor: Dr. Antoni Bennasar Figueras

Tutor: Dr. Nona Sheila Agawin Romualdo

Doctor by the Universitat de les Illes Balears

Dr. Nona Sheila Agawin Romualdo and Dr. Antoni Bennasar Figueras, of the University of the Balearic Islands

We DECLARE:

That the thesis entitled "Response of nitrogen fixers associated with *Posidonia oceanica* to environmental factors and emerging pollutants", presented by Víctor Fernández Juárez to obtain a doctoral degree, has been completed under our supervision.

For all intents and purposes, we hereby sign this document.

Signatures:

Norm Shalf Quan

Nona Sheila Agawin Romualdo

A.

Antoni Bennasar Figueras

Palma de Mallorca, 1st April 2021

A mi madre

THESIS BY COMPENDIUM OF PUBLICATIONS

The doctoral thesis is structured as a compilation of five original scientific research articles published in peer-reviewed international journals or in the review process, namely:

1- Fernández-Juárez V, Bennasar-Figueras A, Tovar-Sanchez A and Agawin N.S.R (2019). The role of iron in the P-acquisition mechanisms of the unicellular N₂-fixing cyanobacteria *Halothece* sp., found in association with the Mediterranean Seagrass *Posidonia oceanica*. *Front. Microbiol.* 10:1903. doi: 10.3389/fmicb.2019.01903. *Chapter 1.*

*Journal impact factor: 4.236, JCR impact 2019-2020: Q1 in Microbiology.

Republication: Alexandre Morrot, editor. Prime Archives in Microbiology. Hyderabad, India: Vide Leaf. 2020. *Chapter 1.*

2- Fernández-Juárez V, Bennasar-Figueras A, Sureda-Gomila A, Ramis-Munar G and Agawin N.S.R (2020). Differential effects of varying concentrations of phosphorus, iron and nitrogen in N₂-fixing cyanobacteria. *Front. Microbiol.* 11:541558. doi: 10.3389/fmicb.2020.541558. *Chapter 2.*

*Journal impact factor: 4.236, JCR impact 2019-2020: Q1 in Microbiology.

3- Fernández-Juárez V, Jaén-Luchoro D, Bryto-Echeverria J, Agawin N. S. R, Bennasar-Figueras A, and Echeveste P (2021). Everything is everywhere: physiological responses of the Mediterranean Sea and Eastern Pacific Ocean epiphyte *Cobetia* sp. to varying nutrient concentration. *Microb Ecol.* 1-18. *http/doi.org/10.1007/s00248-021-01766-z.* Chapter 3.

*Journal impact factor: 3.356, JCR impact 2019-2020: Q1 in Marine & Fresh Water Biology.

4- Fernández-Juárez V, Zech E.H, Pol-Pol E, and Agawin N.S.R (2021) Dependence of the effects of pH changes, temperature and elevated levels of CO₂ on the nutrient status of N₂-fixing bacteria. Submitted to *Limnology and Oceanography*. *Chapter 4*. *Journal impact factor 2019-2020: 3.778, JCR impact 2019-2020: Q1 in Limnology.

5- Fernández-Juárez V, López-Alforja X, Frank-Comas A, Echeveste P, Bennasar-Figueras A, Ramis-Munar G, Gomila R.M, and Agawin N. S. R (2021). The "good, the bad and the double-sword" effects of exposure to MPs and their organic additives on marine bacteria. *Front. Microbiol.* doi: 10.3389/fmicb.2020.581118. *Chapter 5.*

*Journal impact factor: 4.236, JCR impact 2019-2020: Q1 in Microbiology.

*Source of quality indices: InCites Journal Citation Reports published on 29 June 2020.

CONTENTS

ACKNOWLEDGMENTS 13
FUNDING 15
ACRONYMS AND ABBREVIATIONS 17
ABSTRACT/RESUMEN/RESUM19
1. GENERAL INTRODUCTION
1.1 The Mediterranean Sea
Nutrient regimes in the Mediterranean Sea25
Anthropogenic threats in the Mediterranean Sea
Ocean acidification and warming
Emerging pollutants: plastic pollution
1.2 Posidonia oceanica
1.3 N ₂ -fixation and diazotrophs
N ₂ -fixation
Role of environmental factors and emerging pollutants in N_2 -fixation
Adaptative mechanisms for marine diazotrophs \dots 38
2. OBJECTIVES
3. RESEARCH ARTICLES BY CHAPTERS 49 Section I: Effect of nutrient regimes in phototrophic and heterotrophic bacteria
 3. RESEARCH ARTICLES BY CHAPTERS
 3. RESEARCH ARTICLES BY CHAPTERS
3. RESEARCH ARTICLES BY CHAPTERS 49 Section I: Effect of nutrient regimes in phototrophic and heterotrophic bacteria 49 3.1 Chapter 1. The role of iron in the P-acquisition mechanisms of the unicellular N2-fixing Cyanobacteria Halothece sp., found in association with the Mediterranean seagrass 51 3.2 Chapter 2. Differential effects of varying concentrations of phosphorus, iron and 51
3. RESEARCH ARTICLES BY CHAPTERS 49 Section I: Effect of nutrient regimes in phototrophic and heterotrophic bacteria 49 3.1 Chapter 1. The role of iron in the P-acquisition mechanisms of the unicellular N2-fixing Cyanobacteria Halothece sp., found in association with the Mediterranean seagrass 51 3.2 Chapter 2. Differential effects of varying concentrations of phosphorus, iron and nitrogen in N2-fixing cyanobacteria 69 3.3 Chapter 3. Everything is everywhere: nutrient requirements of the Mediterranean 69

4. GENERAL DISCUSSION
4.1 <i>Objective 1</i> : Investigating the role of the environmental factors and emerging pollutants in regulating the functioning of N ₂ -fixers associated with <i>Posidonia oceanica</i> 166
Role of different phosphorus, iron and nitrogen concentration in regulating the functioning of N ₂ -fixers
Effect of microplastics and their associated organic additives 172 4.2. Objective 2: Investigation of the molecular responses with exposure to environmental factors and emerging pollutants 173 4.3 Future directions 178
5. CONCLUSIONS
6. ANNEXES
6.1 Chapter 1
6.4 Chapter 4
7. REFERENCES

ACKNOWLEGMENTS/AGRADECIMIENTOS

Una etapa acaba y otra empieza... Han sido los tres años y medio más intensos de mi vida, plenamente dedicados a lo que amo, que es la ciencia. Durante esta etapa han sido muchos los altibajos, cabreos y bajos estados de ánimo, donde los buenos momentos han superado con creces a los malos. No tengo palabra para describir mi satisfacción personal de llegar a mi objetivo que es dedicarme a la ciencia. Este periodo de mi vida, no solo me ha permitido formarme a nivel profesional, sino también a nivel personal.

La primera persona a la que quiero agradecer y dedicar esta tesis es a mi madre, la persona que me ha tenido que aguantar mi mal humor, cabreos y desánimos, y la que me ha apoyado des del primer momento en esta gran aventura. Quiero darte las gracias por todo, ya que no hubiera llegado tan lejos sin tu cariño y apoyo.

Quiero hacer mención especial a mi mentora y "jefa" durante estos años, que es la Dra. Nona Sheila Agawin Romualdo. Sé Nona que no ha sido fácil trabajar conmigo, debido al trabajo extra que ha conllevado, y verdaderamente valoro las horas que has invertido en mí. No sabes lo que te agradezco la oportunidad que me brindaste cuando hace ya casi cuatro años entre a tu despacho temeroso y sin saber muy bien que estaba haciendo. Nunca podré agradecerte lo suficiente toda la confianza que me diste y la libertad que he tenido estos años para poder desarrollar mi investigación, y sobre todo por confiar en mí y de mi potencial, cuando nadie lo había hecho hasta ese momento. Gracias a ti he podido tener una de mis etapas más felices de mi vida. De verdad y de corazón, ¡GRACIAS!

Dar las gracias a mi otro mentor, el Dr. Antoni Bennasar Figuras, la primera persona que me introdujo en la investigación, y que sino fuera por él no estaría donde estoy hoy en día. De verdad, GRACIAS, por darme la oportunidad de dar mis primeros pasitos en este mundillo.

No me puedo olvidar de mi amigo y "consultor oficial de dudas" el Dr. Daniel Jaén Luchoro, vía conexión Suecia. No puedo agradecerte lo suficiente tus enseñanzas Dani. Para mí eres mi gran mentor a nivel laboratorio, con el que aprendí las primeras buenas prácticas de laboratorio, y donde pude darme cuenta de que definitivamente la "ciencia" era mi lugar. Solo espero que en futuro sigamos colaborando tal y como lo hacemos en el presente. Como no mencionar al Dr. Pedro Echeveste. No puedo estar más agradecido y contento del networking y colaboraciones que hemos realizado durante esta etapa. GRACIAS, por darme la oportunidad de estar viajar a Chile y trabajar junto a ti en Antofagasta, uno de los dos meses más emocionantes que recuerdo, y que añoro con gran nostalgia. Tengo que agradecerte especialmente todos tus consejos tanto profesionales como personales, que me han servido para tenerte como referente científico y personal, y en especial al tiempo invertido, como si hubieras sido mi tercer director de tesis. ¡Gracias amigo, y espero que nos veamos pronto!

El Dr. Antoni Busquets Bisbal es uno de los "imprescindibles" que no puede faltar en los agradecimientos. Nunca olvidaré el día que me comentaste que necesitaban a una persona para el departamento de Ecología y que subiese a preguntar. Gracias a ti, estoy donde hoy en día me encuentro. Quiero agradecerte todo el tiempo que le has dedicado a mis interminables dudas, y que sin dudarlo dejabas lo que estuvieras haciendo para asesorarme en todo lo que podías. Has sido unas de las personas que más me ha ayudado, a sabiendas de que durante esta etapa me he encontrado falto de referentes en el laboratorio con los que poder aprender. Sin ninguna duda puedo decir que para mí eres un referente como profesional, y que nunca olvidaré todas tus enseñanzas.

Tengo que mencionar y agradecer a todos los estudiantes que han pasado por mi laboratorio y que en la medida de lo posible he intentado enseñarles todo lo que he podido. Mención especial a Xabier López-Alforja y Carlos Enrique Payá, amigos y compañeros, con los que he disfrutado cada día que he ido al laboratorio. De corazón os deseo la mejor suerte en este mundo que es la ciencia. Acordarme de la Dra. Elena Bazara Ruíz, por lo pesado que he sido con la estadística, y por asesorarme en todo lo que ha podido.

Seguro que me dejo a muchas más personas que en menor o mayor parte han contribuido durante este periodo, a todas y cada una de ellas,

MUCHAS GRACIAS

FUNDING

This thesis has been conducted within the framework of the project entitled "Controles biológicos y ambientales de la fijación de nitrógeno en praderas de *Posidonia oceanica*" (CTM2016-75457-P), led by Dr. Nona Sheila Agawin Romualdo (University of the Balearic Islands, Spain). A two month stay at the University of Antofagasta (Chile) was funded by the Santander Ibero-America scholarship 2019-2020 and Cátedra del Mar 2019, supervised by Dr. Pedro Echeveste (University of Antofagasta, Antofagasta, Chile).

ACRONYMS AND ABBREVIATIONS

ADH: alcohol dehydrogenase APA: alkaline phosphatase activity APase: alkaline phosphatase ASW: artificial seawater ARA: acetylene reduction assay AU: arbitrary units BNF: biological N₂-fixation C4-ABCS: 4-dicarboxylate ABC transporter substrate-binding protein DCFH-DA: 2',7'-dichlorofluorescein diacetate DCF: 2',7'-dichlorofluorescein DEHP: dioctyl-phthalate DIP: dissolved inorganic phosphorus DIN: dissolved inorganic nitrogen DOC: dissolved organic carbon DOP: dissolved organic phosphorus DSMZ: German Collection of Microorganisms and Cell Cultures GmbH Fe: iron FID: flame ionization detector FITC: fluorescein isothiocyanate FSC: forward scatter FUR: ferric uptake regulator HBCD: 1,2,5,6,9,10-hexabromocyclododecane HCS: Humboldt Current System IPCC: Intergovernmental Panel on Climate Change MB: marine broth MPs: microplastics MS: Mediterranean Sea MUF: 4-methylumbelliferyl MUF-P: 4-methylumbelliferyl phosphate NtcA: global nitrogen regulator OD: optical density

P: phosphorus

PC: phycocyanin

PCC: Pasteur Collection Culture

PDB: Protein Data Bank

PE: polyethylene

PE: phycoerythrin

PFM: position frequency matrix

PhoA: alkaline phosphatase type A

PhoD: alkaline phosphatase type D

PhoX: alkaline phosphatase type X

PP: polypropylene

PPM: particle per million

PPT: particle per thousand

PS: polystyrene

PVC: polyvinyl chloride

ROS: reactive oxygen species

SSC: side scatter

TBDTs: TonB-dependent transporters

TBS: transcriptional binding sites

TDP: total dissolved phosphorus

TFs: transcriptional factors

Tux4: turks island salts

ABSTRACT

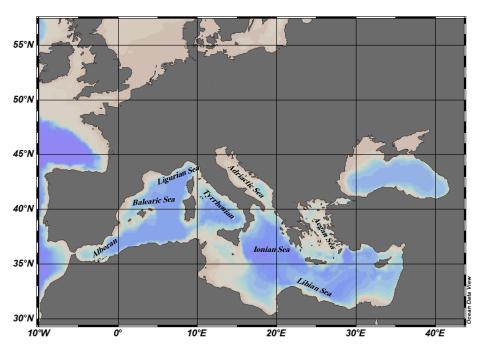
N₂-fixers bacteria or diazotrophs reduce atmospheric nitrogen (N₂) into ammonia (NH₃) and play a significant role in the ocean's N-cycles by providing new inorganic nitrogen to planktonic and benthic primary producers. The epiphytic and endophytic N₂-fixing population found in association with the endemic Mediterranean seagrass Posidonia oceanica can potentially provide the entire N-demand to this seagrass. The Mediterranean Sea is one of the most oligotrophic seas in the world and at the same time subject to global climate change factors (e.g., ocean acidification and warming) and emerging pollutants (e.g., plastic pollution). Considering the importance of N₂-fixers in the health and functioning of seagrasses, nothing is known about the effects of current environmental challenges in these microorganisms. From a physiological and molecular point of view, this thesis investigates the role of nutrient availability, climate change factors (i.e., temperature, pH and CO₂) and emerging pollutants (i.e., plastics) through pioneering multifactorial experiments. Different species of N₂-fixing phototrophic and heterotrophic bacteria found in association with P. oceanica were used as model test species. The thesis is divided into two main sections, revealing the role of (I) nutrient availability [phosphorus (P), iron (Fe) and nitrogen (N)] and (II) anthropogenic factors (CO₂ and its concomitant effect on ocean acidification and warming, and microplastics and their organic additives) in regulating the functioning of N₂-fixers associated with *P. oceanica*. The results show that the responses of the N₂-fixing bacteria to environmental factors and emerging pollutants tested are species-specific, suggesting that the N₂-fixing community structure associated with Posidonia oceanica will change in response to these factors.

RESUMEN

Las bacterias fijadoras de N2 o diazótrofos reducen el nitrógeno atmosférico (N2) en amoníaco (NH₃) y desempeñan un papel esencial en los ciclos del N del océano, al proporcionar nuevo nitrógeno inorgánico a los productores primarios planctónicos y bentónicos. La población fijadora de N2 epífita y endofítica que se encuentra en asociación a Posidonia oceanica, planta endémica del Mar Mediterráneo, puede potencialmente proporcionar de toda la demanda de N a esta fanerógama marina. El mar Mediterráneo es uno de los mares más oligotróficos del mundo y, al mismo tiempo, está sujeto a factores del cambio climático (p. ej., acidificación y calentamiento de los océanos) y contaminantes emergentes (p. ej., plásticos). Por tanto, los fijadores de N₂ deben hacer frente a la oligotrofia y los factores antropogénicos. Considerando la importancia de estas poblaciones microbianas en la salud de la planta, no se sabe nada sobre los efectos de los actuales desafíos ambientales en estas poblaciones microbianas. Desde un punto de vista fisiológico y molecular, esta tesis investiga el papel de la disponibilidad de nutrientes, los factores del cambio climático (temperatura, pH y CO₂) y los contaminantes emergentes (polución por plásticos), a través de pioneros experimentos multifactoriales. Durante esta tesis, se utilizaron como especies modelo diferentes bacterias fototróficas y heterótrofas fijadoras de N2 asociadas a P. oceanica. La tesis se divide en dos secciones principales, revelando el papel de (I) la disponibilidad de nutrientes [fósforo (P), hierro (Fe) y nitrógeno (N)] y (II) de los factores antropogénicos (CO₂ y su efecto concomitante en la acidificación del océano y calentamiento, y microplásticos y sus aditivos orgánicos asociados) en la regulación del funcionamiento de fijadores de N2 asociados a P. oceanica. Los resultados muestran que las respuestas de las bacterias fijadoras de N2 a los factores ambientales y los contaminantes emergentes analizados son específicas de la especie, lo que sugiere que la estructura de la comunidad fijadora de N₂ asociada a *P. oceanica* cambiará en respuesta a estos factores.

RESUM

Els bacteris fixadors de N2 o diazòtrofs redueixen el nitrogen atmosfèric (N2) en amoníac (NH₃) i tenen un paper important en els cicles del N en l'oceà, al proporcionar nou nitrogen inorgànic als productors primaris planctònics i bentònics. La població fixadora de N₂ epífita i endofítica que es troba en associació amb Posidonia oceanica, planta endèmica del Mar Mediterrani, pot potencialment proporcionar tota la demanda de N a aquesta planta. El mar Mediterrani és un dels mars més oligotròfics del món i, a el mateix temps, està subjecte a factors de canvi climàtic (p. ex., acidificació i escalfament dels oceans) i contaminants emergents (p. ex., plàstics). Per tant, els fixadors de N₂ han de fer front a la oligotròfia i els factors antropogènics. Atesa la importància d'aquestes poblacions microbianes en la salut de la planta, no se sap res sobre els efectes dels actuals desafiaments ambientals. Des d'un punt de vista fisiològic i molecular, aquesta tesi investiga el paper de la disponibilitat de nutrients, els factors del canvi climàtic (temperatura, pH i CO₂) i els contaminants emergents (pol·lució plàstica) a través de pioners experiments multifactorials. Durant aquesta tesis, es van utilitzar com a espècies model diferents bacteris fototròfics i heteròtrofs fixadores de N₂ associades amb P. oceanica. La tesi es divideix en dues seccions principals, revelant el paper de (I) la disponibilitat de nutrients [fòsfor (P), ferro (Fe) i nitrogen (N)] i (II) del factors antropogènics (CO₂ i el seu efecte concomitant a la acidificació de l'oceà i escalfament, microplàstics i els seus additius orgànics associats) en la regulació del funcionament de fixadors de N₂ associats amb P. oceanica. Els resultats mostren que les respostes dels bacteris fixadors de N2 als factors ambientals i els contaminants emergents analitzats són específiques de l'espècie, el que suggereix que l'estructura de la comunitat fixadora de N2 associada a P. oceanica canviarà en resposta a aquests factors.


1. GENERAL INTRODUCTION

1. General introduction

GENERAL INTRODUCTION

1.1 The Mediterranean Sea

The Mediterranean Sea is a semi-enclosed sea, with an extension of $2.96 \times 10^6 \text{ Km}^2$ (i.e., representing 0.82% of the world's oceans), surrounded by the continents of Europe, Africa and Asia and connected to the Atlantic Ocean by the Strait of Gibraltar (**Figure 1.1**). It is a hot spot of biodiversity, harboring and giving shelter to more than 17000 species (Coll et al., 2010). There is also a high number of endemic species, one of which is the seagrass *Posidonia oceanica*. This seagrass offers valuable ecological functions in the Mediterranean regions. Despite being a hotspot of biodiversity and home to endemic species, the Mediterranean Sea is oligotrophic and at the same time subject to intense anthropogenic pressure.

Figure 1.1. The Mediterranean Sea is subdivided into different littles seas, among which stand out the Alboran Sea, the Balearic Sea, the Ligurian Sea, the Tyrrhenian Sea, the Ionian Sea, the Adriatic Sea, the Aegean Sea, and the Libyan Sea. **Source**: Own production via Open Data View (ODV).

Nutrient regimes in the Mediterranean Sea

The Mediterranean Sea is considered one of the most oligotrophic seas in the world, chronically limited by phosphorus (P), with a decreasing gradient of dissolved inorganic P (DIP) concentrations from west to east basins (Tanhua et al., 2013) (Figures 1.2A and 1.2B). For the surface layers, the average concentration of DIP in the Mediterranean Sea is 0.4 μ M. For deep waters, the typical DIP concentration in the Western and Eastern

Mediterranean waters is 0.4 µM and 0.25 µM, respectively (Lazzari et al., 2016; Powley et al., 2017ab) (Figure 1.2A and 1B). Dissolved inorganic nitrogen (DIN) can also be at limiting concentrations in the water column. The (NO₃⁻) concentration average in the surface layers is 4.75 µM, while for deep waters in the Western and Eastern Mediterranean Sea is 9 μ M and 6 μ M, respectively. These DIN values are lower than in the North Atlantic Ocean and North West Pacific Ocean, where NO₃⁻ levels are found around 16 µM and 50 µM, respectively (Powley et al., 2017ab). Nitrogen (N) and P concentrations in the water column of the Mediterranean waters (20-28:1) do not follow the N:P Redfield ratio (16:1), suggesting an enrichment by N over the P (Figure 1.2B). The combination of external N inputs from N-deposition and atmospheric nitrogen (N_2) fixation may explain this high Redfield ratio (Kim et al., 2010; Ridame et al., 2011). In this region, iron (Fe) may come from the surrounding land and airborne dust from the Sahara Desert (Statham and Hart, 2005). However, Fe can be a seasonal limiting factor (i.e., minimum levels in the winter months and maximum levels in the spring and summer months), controlling phytoplankton growth (Sarthou and Jeandel, 2001; Statham and Hart, 2005). Their concentrations can vary spatially near the coasts at a range of 2.4-3.6 nM, while in the open sea, Fe is found at the range of 1 nM (Statham and Hart., 2005). The temporal and spatial fluctuations in nutrient concentrations in the Mediterranean Sea suggest that the Mediterranean macro- and microorganisms must have mechanisms to cope with these changes to maintain their growth and productivity.

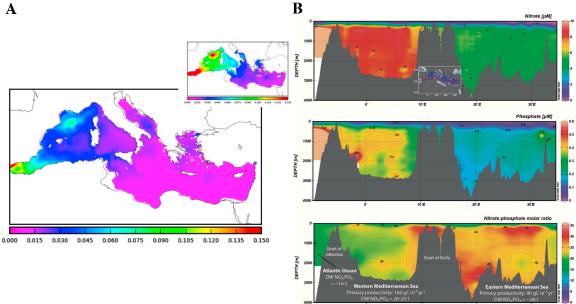
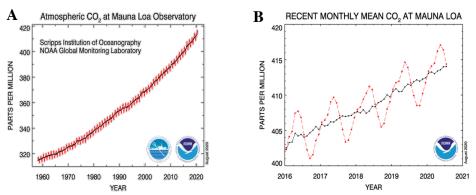


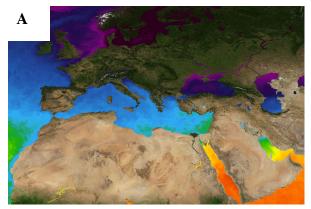
Figure 1.2. Oligotrophy of the Mediterranean Sea. A) P-oligotrophy from west to eastward basins. B) Phosphorus (P) and N concentration in the Mediterranean Sea, together with the Redfield ratio of NO_3 : PO_4^3 . Source: A) Lazzari et al. (2016) and B) Powley et al. (2017a).

Anthropogenic threats in the Mediterranean Sea


Ocean acidification and warming

Carbon dioxide (CO_2) emissions have been increasing since the start of the industrial revolution in 1750 (Etheridge et al., 1996), reaching 410 particles per million (ppm) (Figures 1.3A and 1.3B). One of the most impacted areas by human action is the Mediterranean Sea. This region is usually used as a miniature model of the world's oceans for predicting the changes derived from the increase in CO₂ emissions (Lejeusne et al., 2010). During the last decades, CO₂ storage has increased in the Mediterranean Sea since it can absorb more anthropogenic CO₂ per unit area than other marine environments (Palmiéri et al., 2015). At the end of this century, it is predicted that atmospheric CO₂ will reach 750 ppm or beyond 1000 ppm (Raupach et al., 2007). The increasing CO₂ levels have clear consequences on the chemistry of marine environments (Dutkiewicz et al., 2015). According to the Global Carbon Project (2020), approximately one-third of anthropogenic emissions are accumulated in the oceans, being one of the largest carbon sinks, aside from the soil and forests (Sabine et al., 2004). The CO₂ molecules can react chemically with seawater forming carbonic acid (H_2CO_3) and then bicarbonate (HCO_3^{-1}). whose dissociation releases carbonate (CO_3^{2-}) and protons (H^+) , resulting in seawater acidification. Increasing CO₂ emissions also causes changes in the Earth's energy heat balance, leading to an increase in air and seawater temperature. In the Mediterranean Sea, the pH is decreasing -0.0044 ± 0.00006 annually (Flecha et al., 2015), while seawater surface temperature has increased by an average of 1 °C in the past two decades (Figure **1.4**). Hence, it is expected that the waters in the Mediterranean Sea will reach a pH of 7.7 and an increase from 2 to 6 °C by 2100 (IPCC, 2014). In the special case of the Spanish Mediterranean coast, the sea surface temperature is increasing by 0.026-0.035 °C per year (López-García, 2015). Although the role of ocean acidification and warming has been investigated in planktonic communities (i.e., from prokaryotes to eukaryotes) (Brierley and Kingsford, 2009; Cavicchioli et al., 2019), little is known about the effect of global climate change factors (i.e., the increasing CO₂ levels and its concomitant effect in pH decrease and temperature increase), especially in combination with other abiotic factors (e.g., nutrient concentration), in the N₂-fixers found in association with benthic systems.

Emerging pollutants: plastics


The Mediterranean Sea is one of the most polluted seas in the world, in which 95% of the waste is made of plastic (Alessi and Di Carlo, 2018). Depending on the plastic size,

they are classified into macroplastics (> 250 mm), mesoplastics (1-25 mm), microplastics (MPs) (1-1000 µm) and nanoplastics (NPs) (< 1 µm) (Hartmann et al., 2019). Biggersized plastic debris are dangerous for marine fauna due to ingestion or entanglement, and more than 557 species of marine life have been listed to be affected by plastics (Kühn et al., 2015). The plastic degradation by abiotic (e.g., ultraviolet rays) or biotic factors (e.g., degradation by microorganisms) to smaller plastics (MPs and NPs) may end up in lower trophic chains (i.e., planktonic and benthic microorganisms). Besides MPs can enter into higher trophic chains, finally be consumed by humans, with potentially adverse effects (Rubio et al., 2020). The plastic concentrations (sometimes termed as "soup") in the Mediterranean Sea are extremely high, reaching $1.94 \times 10^6 \pm 5.64 \times 10^5$ MPs Km⁻² floating on the surface, with the Adriatic Sea the most affected area (Figure 1.5A). The most abundant polymers in the Mediterranean Sea are polyethylene (PE) followed by polypropylene (PP), both representing 68% of the total plastic waste. Other MPs like polyvinyl chloride (PVC) are also detected in the water column (Figures 1.5B and 1.5C) (Suaria et al., 2016). Due to their densities and sizes, MPs can end up and accumulate in the sediments (Reisser et al., 2015). The Mediterranean seafloor can be accumulating up to 191 pieces of MPs per 50 g of sediment (Kane et al., 2020). This suggests the susceptibility of the benthic system (e.g., P. oceanica meadows) to plastic pollution. Plastics are polymers constituted by long carbon chains that may contain other substances, e.g., associated chemical additives [e.g., fluoranthene, 1,2,5,6,9,10hexabromocyclododecane (HBCD) and dioctyl-phthalate (DEHP)]. These additives are used to improve the plastic chemical properties. However, due to their low molecular weights, additives can be liberated from plastic polymers and are extremely harmful to marine ecosystems. Moreover, MPs can be sources and vectors for organic pollutants since they may be sorbed onto them and affect marine biota (Bakir et al., 2014).

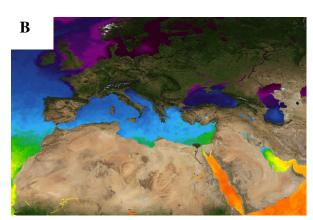
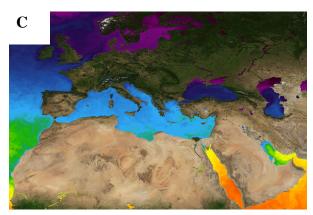
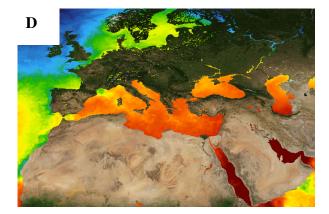
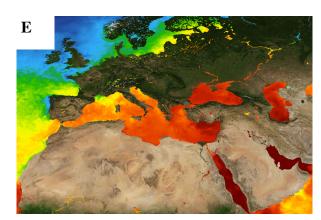
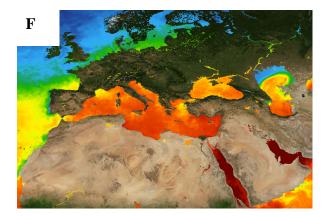


Figure 1.3. The full record of the global mean of CO₂ atmospheric concentration from **A**) 1960 and **B**) 2016 to 2020-2021. **Source:** https://www.esrl.noaa.gov/gmd/ccgg/trends/, retrieved January 2021.

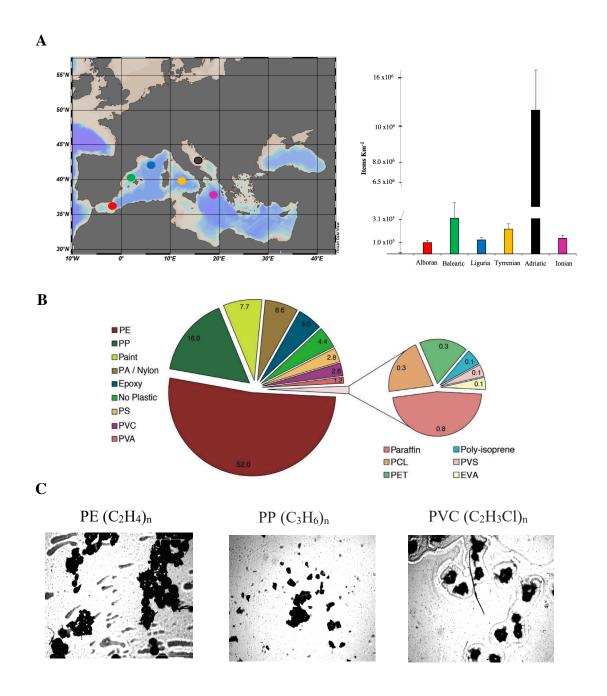

1. General introduction


Year 2003, winter


Year 2010, winter


Year 2020, winter

Year 2002, summer


Year 2010, summer

Year 2019, summer

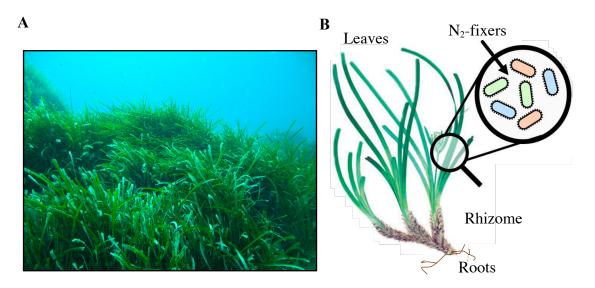

Figure 1.4. Changes in seawater temperature of the Mediterranean Sea from 2002 to 2020 in **A-C**) winter and **D-F**) summer. The data extracted show that seawater surface temperature of the Mediterranean Sea has been increased by an average of 1 °C in the past two decades. **Source**: data extracted from NASA tool, State Of the Ocean [SOTO],https://podaac-tools.jpl.nasa.gov/soto/#b=BlueMarble_ShadedRelief_Bathymetry&l=GHRSST_L4_MUR_Sea_Surface_Temperature(la=true),GHRSST_L4_MUR_Sea_Surfa ce_Temperature_Anomalies,MODIS_Aqua_CorrectedReflectance_TrueColor,MODIS_Aqua_Chlorophyll_A&ve=-224.67570589722152,-89.36205278230554,160.1850746018103,129.79478055742092&pl=false&pb=false&d=2021-02-17&ao=false&as=2021-02-08&ae=2021-02-15&asz=1/day&afr=500&thr=days, retrieved Summer 2020.

Figure 1.5. Most abundant MPs in the Mediterranean Sea. **A)** Items by Km⁻² are represented in the different seas of the Mediterranean Sea: the Alboran Sea, the Balearic Sea, the Liguria Sea, the Tyrrhenian Sea, the Adriatic Sea, and the Ionian Sea, represented by different colors. There was no data available for the Aegean Sea. Data was extracted from https://litterbase.awi.de/litter from studies published between 2010 and 2019. **B)** Distribution of MPs in the Mediterranean Sea. **C)** Chemical structure and morphology of the most common MPs found in the Mediterranean Sea. Images were taken with confocal microscopy. **Source: A)** Own production using Ocean Data View, **B)** Suaria et al. (2016), and **C)** images were taken by confocal microscopy.

1.2 Posidonia oceanica

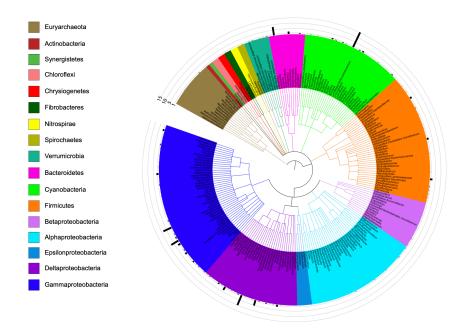

Posidonia oceanica (L.) Delile is an endemic marine phanerogam occupying 50 x10³ km² in the coastline of the Mediterranean Sea. This long-living plant, cataloged as the longest living being on the planet (can reach more than 100000 years old) (Arnaud-Haond et al., 2012), is a slow-growing plant and found between 0-50 meters (m) deep. *Posidonia oceanica* is composed of roots, rhizome, and leaves (**Figures 1.6A** and **1.6B**). It reproduces sexually since it is a flowering plant, but it can also reproduce asexually (i.e., a clone is capable of reproducing itself).

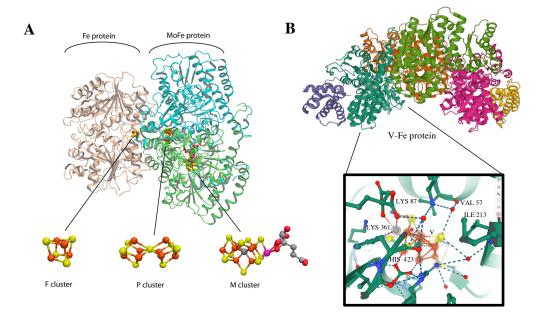
Figure 1.6. *Posidonia oceanica*. **A)** *Posidonia oceanica* meadow. **B)** *Posidonia oceanica* is constituted by leaves, roots and rhizome. **Source: A)** Photo took by Ivan Ruiz Llobera and **B)** book "Praderas y Bosques Marinos de Andalucía and modified by Xabier López-Alforja.

Posidonia oceanica meadows offer valuable ecological functions involved in the productivity, sustenance, and quality of coastal Mediterranean marine ecosystems. They maintain clear and oxygenate the seawater (e.g., producing 14 L of O_2 per day), and remove CO_2 from the water column, acting as carbon sinks and buffers for ocean acidification (Vassallo et al., 2013). Seagrasses take part in various biogeochemical processes such as nutrient recycling and mixing, sediment stabilization and shoreline protection, mitigating the impact of waves. *Posidonia oceanica* beds harbor a high diversity of macro-and microorganisms, i.e., with up to 400 flora and 1000 animal species (Gutiérrez et al., 2012; Campagne et al., 2015; Agawin et al., 2016). Microorganisms associated with *P. oceanica* are found as epiphytic or endophytic populations in the leaves, roots and rhizomes, forming what is known as the holobiont, i.e., a biological unit between the microorganisms and the plant (Ugarelli et al., 2017). The microbial

populations, from bacteria to eukaryotic microorganisms, are essential for the maintenance and survival of the plant. The associated microorganisms can provide nutrients (e.g., P, Fe and N), vitamins and secondary metabolites to the plant, and P. oceanica, in turn, can provide dissolved organic carbon (and nutrients) to the bacteria from exudates of the leaves and roots (Ugarelli et al., 2017). Yet, the role of the associated microorganisms in the maintenance and survival of the plant is still poorly understood. Among these microbial populations, N₂-fixers or diazotrophs can potentially provide the total N-demand for P. oceanica (Agawin et al., 2016 and 2017). Through the analysis of nifH gene (i.e., which codify the Fe-protein of the nitrogenase), it was revealed the high diversity of N₂-fixing microorganisms associated with P. oceanica [Cyanobacteria, (a-, β -, δ - and γ -) Proteobacteria, Firmicutes, Bacteroidetes and Archaea] (Agawin et al., 2017) (Figure 1.7). These N₂-fixers may have different growth and nutrients requirements and may have different responses to the environmental challenges, e.g., different nutrient concentrations of P, Fe and N, the increase of CO₂ levels (and its concomitant effects in seawater pH and temperature) or emergent pollutants (e.g., plastic contamination). The responses of these N₂-fixers to these environmental factors and emergent pollutants have not been studied, and nothing is known about the consequences to the plant itself.

Figure 1.7. N₂-fixing bacterial distribution in *P. oceanica* (phylogenetic tree), based on the *nifH* analysis. **Source:** Supplementary material Agawin et al. (2017).

1.3 N₂-fixation and diazotrophs


N₂-fixation

Biological N₂-fixation (BNF) carried out by microbial communities is an essential process in the marine N-cycle, providing new N to the marine systems and compensating the loss of N due to ocean denitrification and anaerobic ammonium oxidation (anammox). The BNF has direct relevance in the biological pump of organic components to deep waters (Sohm et al., 2011; Zehr and Capone, 2020), and it is an energy costly redox process in which atmospheric di-nitrogen gas (N₂) is reduced to ammonium and needs the hydrolysis of 16 ATP (eq. 1.1). This reaction is catalyzed by an enzymatic complex called nitrogenase, which is formed by NifH, NifD and NifK proteins (Hoffman et al., 2014). The nitrogenase complex is composed of a homodimeric NifH component (Fe protein) and heterotetrameric NifDK component (MoFe protein), which contains ironmolybdenum cofactor (FeMo-co), forming the Mo-nitrogenase (Figure 1.8A) (Hoffman et al., 2014). The Mo-nitrogenases are the most widespread nitrogenases, although alternative forms exist, e.g., vanadium nitrogenases (V-nitrogenases, Figure 1.8B) and iron-only nitrogenases (Fe-only nitrogenases) (Mus et al., 2018). Generally, nitrogenases are extremely sensitive to molecular oxygen (O₂), and diazotrophs must develop strategies to avoid nitrogen inhibition, explained below.

$$N_2 + 8e^- + 16ATP + 8H^+ \rightarrow 2NH_3 + H_2 + 16ADP + 16PO_4^{3-}$$
 (eq. 1.1)

N₂-fixation through the Mo-nitrogenase is a well-regulated process in which several genes participate. Besides the structural components, i.e., *nifH*, *nifD* and *nifK*, there are genes involved to assemble the FeMo-cofactor, i.e., *nifE*, *nifN* and *nifB*; involved in the synthesis and insertion of the FeMo-protein cofactor, i.e., *nifX*, *nifQ*, *nifV* and *nifY*; for the synthesis of the metallocluster, i.e., *nifU*, *nifS* and *nifZ*; for the correct folding of the nitrogenase, i.e., *nifM* and *nifW*; and a whole group of accessories genes as *iscAnif*, *orf8*, *nifZ*, *clpX* and *nifF* (Mus et al., 2018). The exact molecular mechanism behind N₂-fixation remains unknown, but the N₂-fixation can be controlled by C/N ratio, O₂ concentration, light: dark photoperiod, or metal availability (i.e., Fe, Mo or V) (Mus et al., 2018). Dissolved inorganic nitrogen (DIN, e.g., NH4⁺, NH3 and NO3⁻) is one of the main regulators of the BNF (Knapp, 2012) since nitrogenase is highly inhibited by increasing levels of DIN. Studies in cultivable N₂-fixers showed that elevated DIN concentrations from 30 μ M of NO3⁻ and 200 μ M of NH4⁺ can strongly decrease N₂-fixation rates (Knapp,

2012). When inorganic nitrogen is available, N₂-fixers prefer inorganic forms of nitrogen over fixing N₂ considering that BNF is an energy-expensive process that requires 16 ATP and 25% more energy than taking up DIN from the media (Manhart and Wong, 1980; Nelson et al., 1982; Knapp, 2012). However, nothing is known about the effect of different concentrations of DIN on diazotrophs associated with benthic systems.

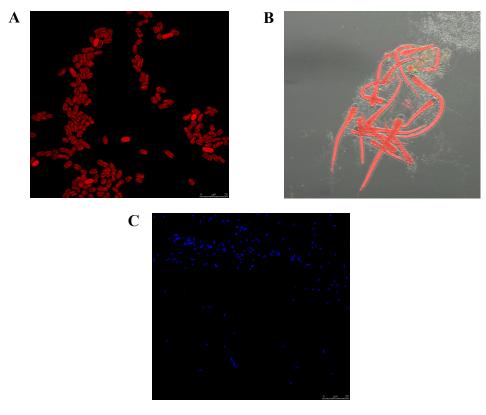


Figure 1.8. Nitrogenase complex. **A)** Mo-Fe nitrogenase structure. **B)** V-Fe nitrogenase. **Source: A)** Hoffman et al. (2014) and **B)** own production from protein data bank (PDB: 7ADY).

Marine diazotrophs

In the open sea, BNF is carried out by a small group of bacterial and archaeal species. Cyanobacteria, which are oxygenic photosynthetic bacteria are the main N₂-fixers in the marine water column, supporting 25-50% of global N₂-fixation (Sohm et al., 2011; Zehr and Capone, 2020). They can be classified as (I) unicellular (e.g., *Cyanothece, Crocosphaera* or *Cyanothece*-like organisms) (Figure 1.9A), (II) filamentous heterocyst-forming (e.g., *Richelia, Calothrix* and relatives) (Figure 1.9B) and (III) filamentous non-heterocyst-forming cyanobacteria (i.e., *Trichodesmium*) (Zehr, 2011). Although cyanobacteria can be considered obligatory autotrophs, i.e., they synthesize organic compounds from inorganic ones, most of them can take up organic carbon sources and oxidize them as mixotrophs (Rippka et al., 1979). The major groups of N₂-fixers are *Trichodesmium, Richelia/Calothrix*, UCYN-A and *Crocosphaera* (UCYN-B) (Zehr, 2011). Since the N₂-fixation is highly sensitive to redox processes (Zehr, 2011), these cyanobacterial diazotrophs must develop strategies to avoid N₂-fixation inhibition by

molecular oxygen liberated from photosynthesis. Unicellular cyanobacterial cells (e.g., UCYN-B) may separate temporarily two incompatible processes: N₂-fixation (at night) and photosynthesis (at day) in the same cells. Because of that, these two processes must be tightly controlled through well-regulated circadian clocks (Toepel et al., 2008). On the contrary, filamentous heterocyst-forming cyanobacteria have specialized cells (i.e., heterocyst) in which N₂-fixation takes place in anoxic conditions and under light photoperiod. Unlike the unicellular cyanobacteria, this does not have an add-on cost of temporally separating N₂-fixation and photosynthetic processes. In the case of filamentous non-heterocyst-forming cells (e.g., *Trichodesmium*), they can fix N₂ aerobically under the light photoperiod and are capable of combined a spatial and temporal separation between the photosynthetic process and N₂-fixation (Zehr, 2011). However, the exact mechanism of action behind this is still unknown (Zehr, 2011), and some reports suggest that *Trichodesmium* can differentiate in vegetative cells (diazocyte) in which nitrogenase can accumulate (Fredriksson and Bergman, 1997; Sandh et al., 2012).

Figure 1.9. Confocal microscopical images of N₂-fixing bacteria. **A)** Unicellular cyanobacteria, *Halothece* sp. PCC 7418. **B)** Filamentous heterocystforming, *Calothrix* sp. PCC 7103. **C)** Heterotrophic bacteria, *Marinobacterium litorale* DSM 23545, visualized with DAPI. **Source: A-C)** images taken by confocal microscopy.

Although cyanobacteria are considered the major N₂-fixing diazotrophs in the oceans, studies on the role of the heterotrophic bacteria in the BNF is recently increasing (Zehr and Capone, 2020). In the euphotic zone of the Indian Ocean, heterotrophic bacteria can be the majors N₂-fixers (Shiozaki et al., 2014), suggesting their importance in the N cycles. Heterotrophic bacteria are considered the central axis of microbial food webs, which require organic matter for growth, and they are usually smaller than phototrophic bacteria (Sarmento et al., 2010; Anderson, 2018).

Role of environmental factors and emerging pollutants in N₂-fixation

Ocean nutrient concentrations can control diazotrophic activity. Phosphorus (P) and Fe are considered the main limiting nutrients for N_2 -fixation in the world's oceans (Sañudo-Wilhelmy et al., 2001; Mills et al., 2004; Moore et al., 2009; Moore et al., 2013; Browning et al., 2017; Zehr and Capone, 2020). N2-fixers require a higher demand for P and Fe than non-diazotrophic bacteria (Falkowski, 1997; Ward et al., 2013). N₂-fixation reaction is energetically costly, requiring 16 ATPs (eq. 1.1), and this P-dependence of N₂-fixation is well illustrated for *Trichodesmium*, in which there is a linear correlation between the P cellular content of the cells and its N2-fixation rates (Sañudo-Wilhelmy et al., 2001). As a consequence of the low P concentrations in the Mediterranean Sea, P may be the main limiting factor controlling N₂-fixing activities in the region (Sohm et al., 2011). Iron (Fe) availability can control the diazotrophic activities since nitrogenase contains 38 Fe atoms per holoenzyme. Moreover, Fe can be a cofactor of the alkaline phosphatases (APases) which release DIP from dissolved organic phosphorus (DOP), fueling N₂-fixing activities (Browning et al., 2017; Hoffman et al., 2014). Since Fe availability may change seasonally in the Mediterranean Sea (Statham and Hart, 2005), Fe can also limit the N₂-fixation activities of diazotrophs in the region.

Diazotrophic activities of phototrophic and heterotrophic bacteria can also be controlled by CO₂ concentrations in the oceans. Increasing CO₂ levels can decrease the activity of the carbon concentration mechanisms (CCMs) in carboxysomes, saving energy which can be used to catalyze the N₂-fixation process, and thus, increasing the N₂-fixing rates (and diazotrophic growth) (Eichner et al., 2014a). Several heterotrophic bacteria can fix and assimilate CO₂ through different carboxylation reactions via phosphoenolpyruvate (PEP) carboxylase and pyruvate carboxylase, producing oxaloacetate that is incorporated into the Krebs cycle (Santruckova et al., 2005). This process can contribute 2-8% of the cellular carbon abundance (Spona-Friedl et al., 2020). Presumably, the increase of CO₂ levels could raise the ATP synthesis, in both in cyanobacteria and heterotrophic bacteria, which can be used for the N₂-fixation process. The effect of increased CO₂ levels in marine N₂-fixers is described in several reports, although they focus on few model test species, e.g., on the filamentous cyanobacterium Trichodesmium (Barcelos e Ramos et al., 2007; Breitbarth et al., 2007; Fu et al., 2007, 2008; Hutchins et al., 2007; Levitan et al., 2007; Czerny et al., 2009; Garcia et al., 2011, 2013ab; Shi et al., 2012; Eichner et al., 2014ab; Boatman et al., 2017). Even though they show inconsistent and contradictory results, increasing CO₂ concentrations can increase growth and N₂-fixation rates. However, nothing is known on the effect of CO₂ in heterotrophic N2-fixing bacteria. Increasing CO2 concentrations have concomitant effects of decreasing pH and increasing temperature levels, which can also affect N₂-fixers. However, there are no reports about the effect of lowering pH in marine diazotrophs. In vivo studies in soil samples suggest that nitrogenase is active in a range of pH 4.7-7, reaching its maximum activity at pH 6-7 (Schubert et al., 1990). Some reports indicate that increasing temperature levels of the water column will increase N₂-fixation rates by up to 22-27% by the end of this century (Boyd and Doney, 2002; Fu et al., 2014; Jiang et al., 2018), while others predict a decrease in the N₂-fixation rates when the interaction with other environmental factors (e.g., pH, nutrients regimes and competition between cells) are considered (Wrightson and Tagliabue, 2020). Only a few studies consider the interactive effect of CO₂ with other environmental variables, particularly nutrient availabilities (e.g., P and Fe) in marine bacteria, suggesting that the effect of global climate factors (i.e., CO₂, pH and temperature) may be controlled by the nutrient status of the microorganisms.

The effects of other anthropogenic factors, e.g., plastic pollution, are poorly understood in N₂-fixers. Marine plastics debris are associated with a high diversity of bacteria, forming a community known as the plastisphere (Zettler et al., 2013). These systems may be a hot-spot for N₂-fixers since *nifH*, *nifD*, and *nifK* genes have been detected on the plastic surfaces (Bryant et al., 2016). Although several reports have studied the effect of plastics and/or MPs in the bacterial populations, these reports are focused on plastic degradation and biofilm formation (Harrison, 2011; Bryant et al., 2016; Romera-Castillo et al., 2018; Tetu et al., 2019; Machado et al., 2020; Piccardo et al., 2020; Sarker et al., 2020; Seeley et al., 2020), and very little is known about the physiological responses of marine bacteria with exposure to plastics (e.g., MPs) and their organic additives. There is no information on the effects of plastics in the N₂-fixation

process, and further studies on the effects of plastics and their organic additives on diazotrophs associated with seagrasses should be evaluated (Maity and Pramanick, 2020), considering the susceptibility of benthic systems to plastic accumulation. The size and chemical composition of plastics are characteristics that must be taken into account when evaluating plastic contamination in diazotrophs (Paul-Pont et al., 2018).

Adaptative mechanisms for marine diazotrophs

Phosphorus (P), especially DIP, is extremely limited in the Mediterranean marine waters (Lazzari et al., 2016). The DIP is necessary for adenosine triphosphate (ATP) and nucleic acids (DNA/RNA) synthesis. In most bacteria, it is a key structural component of cell membranes (Santos-Beneit, 2015). ATP-dependent reactions, e.g., N₂-fixation, have a strong P-dependence (Sañudo-Wilhelmy et al., 2001), and diazotrophs usually have to cope with changes in P-concentration, developing strategies to obtain it. P-limitation triggers the activation of the APases, which are capable of hydrolyzing dissolved organic P (DOP) from the water column (Figure 1.10). The activity of these enzymes is controlled by metal cofactors, e.g., Ca, Mg, Fe and/or Zn. According to this, APases can be classified into three families: PhoA (with two Zn^{2+} and one magnesium Mg²⁺ ions), PhoD (e.g., PhoD from *Bacillus subtilis* model has an active site formed with one Fe³⁺ and two Ca²⁺ ions) and PhoX (with three Ca²⁺ and one/two Fe³⁺ ions) (Rodriguez et al., 2014; Yong et al., 2014). PhoX is the family most distributed in marine environments (Sebastian and Ammerman, 2009). Hence, it is hypothesized that metals (e.g., Fe), which regulate N₂fixation rates, may provide the necessary DIP for fueling the BNF, controlling the alkaline phosphatase activity (APA).

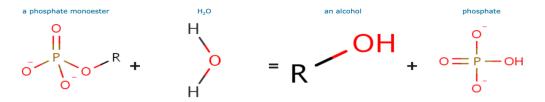
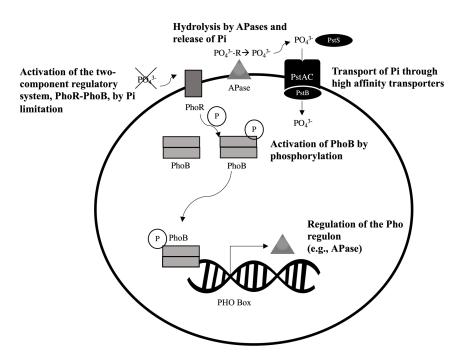



Figure 1.10. Mechanism of action of APases. Source: UniProt.

Alkaline phosphatases (APases) are part of what is known as the Pho regulon, a group of genes involved in the adaptation and survival under P-limiting conditions (Santos-Beneit, 2015). Aside from APases, which are usually found in the periplasm (i.e., in the gram-negative bacteria), the "classical" Pho regulon also contains high-affinity (e.g., PstS, PstC, PstA and PstB) and low-affinity phosphate transporters, and proteins involved in the P reservoir (e.g., PpK, PpX and PpA). Other elements with unknown functions, as PhoU, can play a key role in regulating the PhoR and Pst system activity (Figure 1.11). The expression of these genes is mainly controlled by a two-component system, PhoR-PhoB. Phosphorus limitation causes the autophosphorylation of the PhoR, which phosphorylates and activates PhoB (Figure 1.11). PhoR is an inner-membrane histidine kinase, while PhoB is a transcriptional factor (TF) that recognizes and binds to a consensus DNA sequence (i.e., PHO box) through its DNA-binding motif. In cyanobacteria, the PHO box is formed by three tandem repeats of 8 bp separated by 3 bp, unlike the PHO Box from *Escherichia coli* which is formed by two direct repeats of 7 bp separated by 5 bp (Yuan et al., 2006; Su et al., 2007; Tiwari et al., 2015). Investigating what genes form part of the Pho regulon (e.g., using bioinformatic tools) can shed light on the adaptation and survival of marine diazotrophs living in continuous changes of nutrient concentrations.

Iron (Fe) is a micronutrient that requires tight regulation and homeostasis, found as Fe (II) and Fe (III) in the water column. To fulfill the Fe requirements of the nitrogenase, N₂-fixers need from 5 to 100-fold more Fe than non-N₂-fixers (Kustka et al., 2004). The dominant Fe species under aerobic and low pH conditions is Fe (II), which can diffuse across the outer membrane of the gram-negative bacteria into the periplasm. From the periplasm, the Fe (II) is transported to the cytoplasm by specific transporters (e.g., FutABC and FeoAB) (Lau et al., 2016). The dominant form in the oxygenated water column is Fe (III), which is insoluble and must be chelated with organic molecules, i.e., siderophores. Siderophores are transported into the cells by specific transporters, e.g., TonB-dependent transporters (TBDTs) (Noinaj et al., 2010). Seasonal patterns, which control windborne desert dust (i.e., rich in Fe), and environmental factors, e.g., increasing CO₂ levels and its concomitant effect in pH and temperature, can limit Fe in the oceans. Thereby, ocean acidification and warming might trigger changes in the Fechemistry which makes Fe (III) less available to organic chelators (e.g., siderophores), while Fe (II) can be oxidized into non-bioassimilable forms. This can reduce Fe-uptake, limiting the diazotrophic activities (Shi et al., 2010; Samperio-Ramos et al., 2016). Therefore, N₂-fixers must adapt to varying Fe levels by triggering molecular responses through the Fur regulator, which controls the Fur regulon, i.e., genes involved in the Femetabolism (Fillat, 2014).

Figure 1.11. Pho regulon regulation. Under Pi limitation, the two-component system PhoR-PhoB is activated, through the autophosphorylation of PhoR, which phosphorylates PhoB. PhoB (phosphorylated), which binds to the PHO box (a transcriptional binding site), is a transcriptional factor that modulates and controls the expression of genes related to P limitation, which is known as the Pho regulon, e.g., APases. Hence, cells can respond to P-limitation, e.g., releasing Pi from organic sources that can be transported across high-affinity transporters. **Source**: own production.

Elevated Fe-intracellular concentrations might enhance oxidative stress via Fenton and Haber-Weiss reactions, generating reactive oxygen species (ROS) (Kranzler et al., 2013) (eq. 1.2 and 1.3). The ROS, e.g., superoxide oxygen (O_2^{--}), hydrogen peroxide (H_2O_2) or the hydroxyl radical (OH·), are highly reactive molecules that are extremely toxic at DNA, protein and lipid levels, ultimately causing cell death (Cabiscol et al., 2000). In cyanobacteria, another target of ROS can be the phycobilisomes, downregulating the photosynthetic activities (Latifi et al., 2009). Due to aerobic metabolisms, cells must develop strategies to maintain ROS levels to avoid a ROS imbalance that leads to oxidative stress. Moreover, marine bacteria are exposed to environmental and anthropogenic factors that may enhance ROS production (Lesser, 2006). Like other microorganisms or higher organisms, marine bacteria have different strategies to avoid oxidative stress via the so-called antioxidants, i.e., non-enzymatic or enzymatic defenses. Non-enzymatic defenses are composed of small organic molecules that can reduce ROS, e.g., glutathione or carotenoids (found in cyanobacteria). Antioxidant enzymes, essential for detoxifying ROS, are metal-dependent enzymes (e.g., Mn, Cu or Fe) which include the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). These parameters can be used as cell biomarkers for evaluating cell health (Ferrat et al., 2003; Benedetti et al., 2015). For N₂-fixers, high ROS levels are correlated with the inhibition of the nitrogenase activity since N₂-fixation is very sensitive to the redox processes (Alquéres et al., 2010). Only a few studies consider the role of oxidative stress in diazotrophs, and more studies should evaluate the role of environmental factors (e.g., nutrient concentration or anthropogenic factors) and emerging pollutants in the oxidative processes in N₂-fixers.

Fe + H₂O₂
$$\longrightarrow$$
 Fe (III) + HO⁻ + HO⁻ (Fenton reaction) (eq. 1.2)
H₂O₂ + O₂⁻⁻ \longrightarrow HO⁻ + HO⁻ (Haber-Weiss net reaction) (eq. 1.3)

In summary, considering the valuable ecological functions that the Mediterranean P. *oceanica* seagrass offers and the importance of N₂-fixers in the maintenance of this plant, this work seeks the investigation of the role of abiotic factors in the diazotrophs from a physiological and molecular point of view. For this general purpose, different species (i.e., phototrophic and heterotrophic N₂-fixing bacteria) found in association with P. *oceanica* were used as model test species. This thesis is divided into two main sections describing, (1) the effect of nutrient availabilities (P, Fe and N) and (2) the effect of anthropogenic factors [i.e., global climate change factors (CO₂, pH and temperature), and emerging pollutants (i.e., MPs and their most common associated additives)] in diazotrophs (**Figure 2.1**).

1. General introduction

2. OBJECTIVES

2. Objectives of the thesis

OBJECTIVES

2.1 General hypothesis

Marine coastal environments such as seagrass meadows (e.g., the endemic Mediterranean *Posidonia oceanica*) experience fluctuations of environmental factors (e.g., changes in nutrient concentration) due to natural biogeochemical processes. *Posidonia oceanica* meadows are also subject to anthropogenic action, e.g., increasing CO_2 levels and emerging pollutants (e.g., plastic pollution) (**Figure 2.1**). Nothing is known about the effects of environmental factors and emerging pollutants in N₂-fixers found in association with *P. oceanica*, and how N₂-fixing bacteria respond to the changing environment at the physiological and molecular level. *Posidonia oceanica* harbors a high diversity of N₂-fixing phototrophic and heterotrophic bacteria and these N₂-fixers may have different growth requirements and sensitivity to the environmental factors and emerging pollutants, and their responses may be species-specific. Considering the importance of N₂-fixers in supplying inorganic N to the plant, studies on these populations must be conducted to predict future changes in the health of the plant.

The general hypothesis of this work is that diazotrophs found in association with seagrass meadows will be controlled by relevant environmental factors and emergent pollutants, affecting and limiting physiological and biochemical parameters, and N₂-fixation rates, according to the bacterial nature (i.e., phototrophs or heterotrophs).

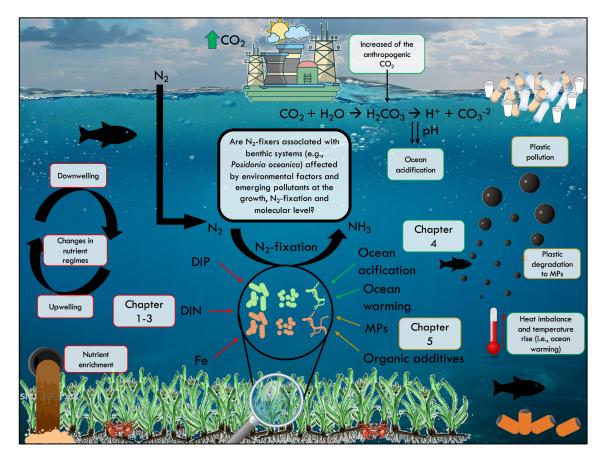
2.2 General objectives

- 1. To investigate how relevant abiotic factors (i.e., environmental factors and emerging pollutants) affect the growth and N₂-fixation activities of N₂-fixing microorganisms through pioneering multi-factorial laboratory experiments.
- 2. To investigate the molecular mechanisms behind the responses to environmental factors and emerging pollutants to understand how these N₂-fixers can adapt and survive in a changing environment. These analyses aim to investigate molecular biomarkers [e.g., alkaline phosphatase activity (APA) or reactive oxygen species (ROS)], which can be used as a diagnostic tool to assess the health status of the N₂-fixers.

2.3 Specific objectives

1. General *objective 1* is achieved following these specific activities:

The investigation of the responses of N₂-fixers (i.e., phototrophs and heterotrophs) in terms of growth and N₂-fixation activities by flow cytometry and acetylene reduction assay (ARA), respectively, in multi-factorial *in-vitro* controlled laboratory experiments at:


- (I) Different nutrient concentrations [phosphorus (P), iron (Fe) and nitrogen (N)] (Chapters 1-3).
- (II) Different CO₂ concentrations (i.e., environmental, 410 ppm and expected CO₂ at the end of the century, 1000 ppm), pH and temperature levels (**Chapter 4**).
- (III) Different concentrations and types of emerging pollutants [microplastics (MPs) and their associated additives] (Chapter 5).

2. The general *objective 2* is achieved following the specific activities:

The investigation of the molecular responses of N_2 -fixers to environmental factors and emerging pollutants to seek biomarkers which can be used as a diagnostic tool to assess the health status of the N_2 -fixers, through:

- (I) Laboratory experiments:
 - **a.** Investigating the P-acquisition mechanisms, e.g., the alkaline phosphatase activity (APA) and P-uptake through fluorometric and spectrometric assays, respectively, and studying the role of Fe in these mechanisms.
 - **b.** Investigating the production of reactive oxygen species (ROS) as a cell stress biomarker, using fluorometric methods.
 - **c.** Revealing changes in cell morphology and apoptotic processes, using microscopical analyses.
 - d. Investigating protein overexpression, using MALDI-TOF analyses.
- (II) In-silico analyses:
 - **a.** Investigating the genomic features through the isolation, sequencing and identification of potential N₂-fixers through genomic comparative analyses.
 - **b.** Describing the Pho, Fur and NtcA regulon through the design of position frequency matrix (PFM) and algorithms, and predicting the elements behind the P, Fe and N-limitation.

c. Predicting the tridimensional structure of proteins directly related to the adaptation to the global stressors (e.g., PhoD) on phototrophic and heterotrophic bacteria.

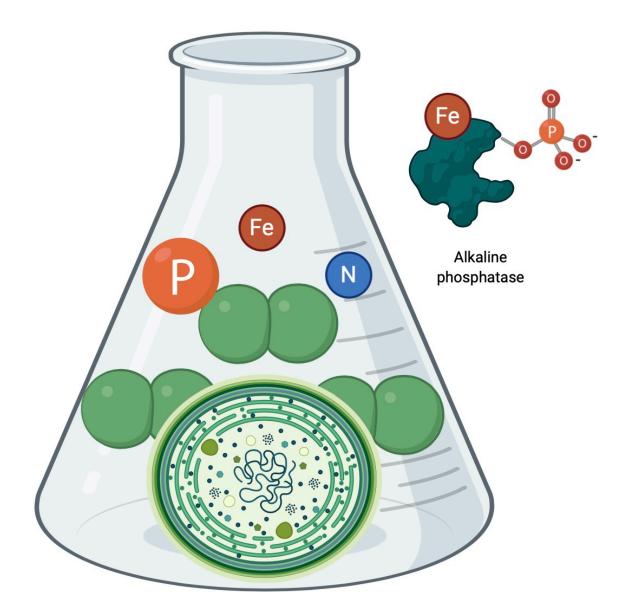


Figure 2.1. Environmental factors and emerging pollutants threaten *Posidonia oceanica*. Summary of all the abiotic factors (i.e., different nutrient regimes in red, anthropogenic CO_2 and its concomitant effect in ocean acidification and warming in green, and plastic pollution and their organic additives associated in yellow) that might affect the diazotrophic population found in association with benthic systems, e.g., *P. oceanica* meadows. The main aim of this thesis was to evaluate the role of the global stressors at the physiological and molecular level, showing if N₂-fixing communities are affected according to their nature (e.g., phototrophic and heterotrophic). **Source:** own production.

2. Objectives of the thesis

3. RESEARCH ARTICLES BY CHAPTERS

SECTION I: EFFECT OF NUTRIENT REGIMES IN PHOTOTROPHIC AND HETEROTROPHIC BACTERIA

3.1 Chapter 1

The Role of Iron in the P-Acquisition Mechanisms of the Unicellular N₂-Fixing Cyanobacteria *Halothece* sp., Found in Association With the Mediterranean Seagrass *Posidonia oceanica*

Víctor Fernández-Juárez^{1*}, Antoni Bennasar-Figueras², Antonio Tovar-Sanchez³ and Nona Sheila R. Agawin¹

¹Marine Ecology and Systematics (MarEs), Department of Biology, Universitat de les Illes Balears (UIB), Palma, Spain, ²Grup de Recerca en Microbiologia, Departament de Biologia, Universitat de les Illes Balears (UIB), Palma, Spain, ³Department of Ecology and Coastal Management, Andalusian Institute for Marine Sciences, ICMAN (CSIC), Cádiz, Spain

OPEN ACCESS

Edited by:

Pia H. Moisander, University of Massachusetts Dartmouth, United States

Reviewed by:

Frédéric Partensky, Centre National de la Recherche Scientifique (CNRS), France Thomas Browning, GEOMAR Helmholtz Center for Ocean Research Kiel, Germany

> *Correspondence: Víctor Fernández-Juárez victor.fernandez@uib.es

Specialty section:

This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology

Received: 20 May 2019 Accepted: 02 August 2019 Published: 22 August 2019

Citation:

Fernández-Juárez V, Bennasar-Figueras A, Tovar-Sanchez A and Agawin NSR (2019) The Role of Iron in the P-Acquisition Mechanisms of the Unicellular N₂-Fixing Cyanobacteria Halothece sp., Found in Association With the Mediterranean Seagrass Posidonia oceanica. Front. Microbiol. 10:1903. doi: 10.3389/fmicb.2019.01903 Posidonia oceanica, an endemic seagrass of the Mediterranean Sea harbors a high diversity of N₂-fixing prokaryotes. One of these is Halothece sp., a unicellular N₂-fixing cyanobacteria detected through nifH analysis from the epiphytes of P. oceanica. The most related strain in culture is Halothece sp. PCC 7418 and this was used as the test organism in this study. In the Mediterranean Sea, phosphorus (P) and iron (Fe) can be the major limiting nutrients for N₂ fixation. However, information about the mechanisms of P-acquisition and the role of metals (i.e., Fe) in these processes for N₂-fixing bacteria is scarce. From our genomic analyses of the test organism and other phylogenetically related N₂-fixing strains, Halothece sp. PCC 7418 is one of the strains with the greatest number of gene copies (eight copies) of alkaline phosphatases (APases). Our structural analysis of PhoD (alkaline phosphatase type D) and PhoU (phosphate acquisition regulator) of Halothece sp. PCC 7418 showed the connection among metals (Ca²⁺ and Fe³⁺), and the P-acquisition mechanisms. Here, we measured the rates of alkaline phosphatase activity (APA) through MUF-P hydrolysis under different combinations of concentrations of inorganic P (PO_4^{3-}) and Fe in experiments under N₂-fixing (low NO₃⁻ availability) and non-N₂ fixing (high NO3 availability) conditions. Our results showed that APA rates were enhanced by the increase in Fe availability under low levels of PO_4^{3-} , especially under N₂-fixing conditions. Moreover, the increased PO₄³⁻-uptake was reflected in the increased of the P-cellular content of the cells under N₂ fixation conditions. We also found a positive significant relationship between cellular P and cellular Fe content of the cells ($r^2 = 0.71$, p < 0.05). Our results also indicated that Fe-uptake in Halothece sp. PCC 7418 was P and Fe-dependent. This study gives first insights of P-acquisition mechanisms in the N₂-fixing cyanobacteria (Halothece sp.) found in P. oceanica and highlights the role of Fe in these processes.

Keywords: Halothece sp. PCC 7418, Posidonia oceanica, alkaline phosphatase, N_2 fixation, PO_4^3 -Fe uptake, iron, PhoD, PhoU

Frontiers in Microbiology | www.frontiersin.org

August 2019 | Volume 10 | Article 1903

INTRODUCTION

Posidonia oceanica is an endemic seagrass in the Mediterranean Sea, forming extensive meadows with valuable established key ecological services: high primary productivity, as a carbon sink, as a habitat and nursery for a variety of micro- and macroorganisms, as sediment stabilizers, as buffers for ocean acidification, and as an important site for biogeochemical processes (e.g., nitrogen cycles) (Gutiérrez et al., 2012; Campagne et al., 2015; Agawin et al., 2016). Atmospheric nitrogen (N2) fixation associated with P. oceanica meadows are similar in rates or even higher than tropical seagrasses and may play a key role in maintaining the high productivity of the P. oceanica in oligotrophic waters (Agawin et al., 2016, 2017). N2 fixation in P. oceanica is carried out by microorganisms called diazotrophs that can be found on the surface of the leaves, roots, and rhizomes (epiphytic population) or even on the inside of the roots (endophytic population) (Sohm et al., 2011; Agawin et al., 2019). Among the diazotrophic prokaryotes, a huge variety of diazotrophic cyanobacteria have been detected based on the sequence analysis of nifH gene (gene coding for the nitrogenase enzyme responsible for the N2 fixation) on the leaves of P. oceanica (Agawin et al., 2016, 2017).

In general, cyanobacteria are key components in the marine food web, contributing significantly to primary production in oligotrophic oceans (Agawin et al., 2000; Herrero and Flores, 2008). Compared with other phytoplankton taxa, cyanobacteria have elevated ratio of nitrogen (N):phosphorus (P) (a molar ratio above 25 compared with the general Redfield ratio of 16 in marine phytoplankton) and can be a consequence of having two light-harvesting complexes (Redfield, 1934; Geider and La Roche, 2002; Quigg et al., 2011). Changes affecting the N:P ratios in their environment by limiting concentration of N or P, could change their N:P tissue composition and may have consequences in their adaptation and survival and possibly the N2 fixation activities of diazotrophic cyanobacteria (Sañudo-Wilhelmy et al., 2001; Sohm et al., 2011). Nonetheless, these versatile microorganisms may have several adaptive mechanisms to changes in their dynamic marine environment (e.g., nutrient availability) (Tandeau de Marsac and Houmard, 1993; Schwarz and Forchhammer, 2005; Herrero and Flores, 2008).

Phosphorus, (i.e., inorganic phosphorus, PO_4^{3-}), together with iron (Fe) are hypothesized to be the major limiting nutrients for N₂ fixation (Mills et al., 2004; Moore et al., 2009, 2013). Phosphorus is vital for the storage and retrieval system of genetic information (DNA/RNA), for the energy metabolism through ATP dependence (Kornberg, 1995; Santos-Beneit, 2015; Tiwari et al., 2015), and in most bacteria, it is important for the structure of the cell membrane. During P-starvation, microorganisms produce enzymes that are hydrolyze P-esters contained in dissolved organic phosphorus (DOP) releasing dissolved inorganic phosphorus (DIP), that the cells can utilize. These enzymes are called alkaline phosphatases (APases) and in marine bacteria they are included in three main families: PhoA, PhoX, and PhoD. APases are metalloenzymes that require metal co-factors. PhoA forms a coordinate with two zinc (Zn²⁺) P-Acquisition in Halothece sp. PCC 7418

and one magnesium (Mg^{2+}) ions; PhoX forms a coordinate with three calcium (Ca^{2+}) and one/two Fe³⁺ ions (Yong et al., 2014); and PhoD coordinates with an unknown number of Ca²⁺ ions. In *Bacillus subtilis* model, PhoD has an active site formed with one Fe³⁺ and two Ca²⁺ ions (Rodriguez et al., 2014). This information suggests the possible interaction between metals (e.g., Fe³⁺, Ca²⁺, Mg²⁺, and Zn²⁺) in the mechanisms of P-acquisition involving APases. In *Halothece* sp. PCC 7418, two types of APases have been reported: PhoA (two copies) and PhoD (one copy). Calcium dependence was proven in PhoD in *Halothece* sp. PCC 7418 (Kageyama et al., 2011). However, Fe dependence of PhoD and the relative importance between these two types of APases (PhoA and PhoD) have not been demonstrated in *Halothece* sp. PCC 7418.

APases are included in what is known as the Pho regulon. It is a huge regulatory group of genes that control P-acquisition. Pho regulon is composed of elements related with (1) highaffinity phosphate transport (PstS, PstC, PstA, and PstB) and low-affinity phosphate transport, (2) extracellular enzymes capable of obtaining PO_4^{3-} from organic phosphates (APases), and (3) polyphosphate metabolism (PpK, PpX, and PpA) as P reservoir or elements with unknown functions (PhoU) (Blanco et al., 2002; Yuan et al., 2006; Santos-Beneit, 2015). PhoU coordinates with metal cluster (Zn²⁺ or Fe³⁺), and may have a role in the control of autokinase activity of the PhoR and Pst systems (Gardner et al., 2014). The Pho regulon is mainly controlled by PhoR-PhoB, a two-component regulatory system (Santos-Beneit, 2015). PhoR is an inner-membrane histidine kinase, while PhoB is a transcriptional factor that recognizes and binds to consensus sequence named PHO box. In cyanobacteria, PHO box is formed by three tandem repeats of 8 bp separated by 5 bp, unlike PHO Box from Escherichia coli, formed by two direct repeats of 7 bp separated by 5 bp (Yuan et al., 2006; Su et al., 2007; Tiwari et al., 2015).

The P-acquisition mechanisms in bacteria are well studied in the Atlantic ocean, where Fe is shown to enhance the P-acquisition mechanisms in N2-fixing cyanobacterial species, Trichodesmium spp. and Crocosphaera watsonii (Fu et al., 2005; Dyhrman and Haley, 2006; Browning et al., 2017). However, there is scarcely any information about the relation between metals (e.g., Fe) and P-acquisition mechanisms in N2-fixing cyanobacteria found in association with the Mediterranean seagrass, P. oceanica, taking into account the multiple ecological benefits of this seagrass in the region. The Mediterranean Sea is oligotrophic, characterized by low water column PO₄³⁻ concentrations and a decreasing gradient of PO_4^{3-} concentrations from west to east basins (Tanhua et al., 2013). Knowledge on the P-acquisition mechanisms of N2-fixing organisms in an environment with limiting levels of PO_4^{3-} is particularly important. Moreover, the Mediterranean Sea is subject to Saharan atmospheric dust deposition containing Fe (Statham and Hart, 2005), which can play a role in the P-acquisition mechanisms of the organisms.

To study, for the first time, the P-acquisition mechanisms in N₂-fixing cyanobacteria associated with the dominant coastal ecosystem in the region (*P. oceanica* seagrass beds), we selected a diazotrophic unicellular cyanobacteria, *Halothece* sp. found on the leaves of *P. oceanica* (Agawin et al., 2017) as our test species.

Frontiers in Microbiology | www.frontiersin.org

August 2019 | Volume 10 | Article 1903

The most related culturable strain is Halothece sp. PCC 7418, and this was used as the test organism in this study. The halotolerant Halothece sp. PCC 7418 (originally called Synechococcus PCC 7418), also known as Aphanothece halophytica, was originally isolated from Solar Lake on the eastern shore of the Sinai Peninsula in 1972 (UniProt source). First, we made a genomic analyses of the Pho regulon to check the regulatory group of genes that control the P-acquisition mechanisms and then a structural analysis of PhoD (alkaline phosphatase type D) and PhoU (phosphate acquisition regulator) of Halothece sp. PCC 7418 to investigate the connection among metals (e.g., Ca²⁺ and Fe³⁺) and the P-acquisition mechanisms of this species. Second, we experimentally investigated how the availability of Fe affects the alkaline phosphatase activity (APA), their PO_4^{3-} -uptake rates, and the magnitude of the effect under different levels of PO₄³⁻ and NO₃⁻ availability, and how the availability of PO_4^{3-} and Fe affect Fe-uptake rates of the cells.

MATERIALS AND METHODS

Genome Analysis

With the goal of comparing *Halothece* sp. PCC 7418 Pho regulon with its closest genomes (Luo et al., 2009), the distribution of the number of copies of Pho regulon components in selected strains was analyzed. The genome from *Halothece* sp. PCC 7418 (GenBank: NC_019779.1) and genomes from other closely related microorganisms were compared using the dedicated bacterial information system Pathosystems Resource Integration Center (PATRIC). This database, and the analysis tools included, offers an easy interface in which annotated genes that are included in different subsystems can be searched (Wattam et al., 2017).

Three-Dimensional Predicted Structures

Sequences of PhoD and PhoU in FASTA format were sent to the I-Tasser server for protein 3D-structure prediction (Zhang, 2008), with their domains previously checked in Pfam 32.0 (Finn et al., 2016). The predicted structures for PhoD and PhoU of Halothece sp. PCC 7418 were sent to POSA (Li et al., 2014) for a structural alignment against PhoD of B. subtilis (PDB: 2YEQ) and PhoU of Pseudomonas aeruginosa (PDB: 4Q25), respectively; the two more evolutionarily related homologous proteins available to date in databases (i.e., that have both similar sequences and 3D models). To describe the Fe coordination positions of these proteins, residues from both (i.e., PhoD and PhoU of Halothece sp. PCC 7418 against 2YEQ and 4Q25, respectively) were mapped through alignment with Uniprot Clustal Omega (The UniProt Consortium, 2014). The predicted structures and the corresponding structural alignments were visualized with Pymol (DeLano, 2002).

Strain and Culture Conditions

Halothece sp. PCC 7418, was obtained from the Pasteur Culture Collection of Cyanobacteria (PCC) and maintained in 250 ml acid-cleaned Quartz Erlenmeyer flasks containing 150 ml of ASNIII + Tu4X medium (initial pH 7.5) (Stanier et al., 1979).

P-Acquisition in *Halothece* sp. PCC 7418

The medium was supplemented with 0.1-0.3% (w/v) of glucose and grown in a rotary shaker (120 r.p.m.) with a photoperiod of 12 h light:12 h dark under low intensity fluorescent light (30 μ E m⁻² s⁻¹) at 25°C. Three conditions were established for inorganic phosphorus (PO_4^{3-}) concentrations: [Low PO_4^{3-}] (0.1 μ M), [Medium PO₄³⁻] (1 μ M), and [High PO₄³⁻] (45 μ M). Furthermore, three conditions for Fe were established: [Low Fe] (2 nM), [Medium Fe] (20 nM), and [High Fe] (7.5 µM). These PO₄³⁻ and Fe concentration were combined in nine conditions ([Low $PO_4^{3^-}$ -Low Fe], [Low $PO_4^{3^-}$ -Medium Fe], [Low $PO_4^{3^-}$ -High Fe], [Medium $PO_4^{3^-}$ -Low Fe], [Medium $PO_4^{3^-}$ -Medium Fe], [Medium $PO_4^{3^-}$ -High Fe], [High $\mathrm{PO}_4^{\hat{3}_-}\mbox{-Low Fe]},$ [High $\mathrm{PO}_4^{3-}\mbox{-Medium Fe]},$ and [High PO_4^{3-} -High Fe]), and these treatments were tested in two sets of experiments: growth under 4.4 mM of NO3 (optimal concentration) and 0.15 mM of NO3 (low concentration, and referred from now on as [Low NO₃]) (Table 1). The solutions of PO₄³⁻, Fe, and NO₃⁻ were prepared from K₂HPO₄, ferric citrate, and NaNO3, respectively. The batch cultures were maintained for over 10 days for each experiment and the initial inoculum of cells was added at exponential phase $(O.D_{750 \text{ nm}} \cong 0.2)$ from their original ASNIII + Tu4X medium.

Selected treatments ([Low PO_4^{3-} -Low Fe], [Low PO_4^{3-} -High Fe], [High PO_4^{3-} -Low Fe], and [High PO_4^{3-} -High Fe]), were also used to compare the results under NO_3^- starvation (6.66 nM) and optimal NO_3^- conditions. Cultures were maintained at the same conditions as described above for over 12 days. During the last day, PO_4^{3-} , Fe, and/or NO_3^- were added to the different treatments to achieve optimal concentrations of PO_4^{3-} (45 μ M), Fe (7.5 μ M), and NO_3^- (4.4 mM) to evaluate the changes in the APA rates, and the new conditions were maintained for over 4 days. The different conditions of the experiments are shown in **Table 1**.

The importance of PhoD in *Halothece* sp. PCC 7418 was investigated by changing the availability of the metal co-factors for PhoA (Zn^{2+} and Mg^{2+}). The method used was as described above in the initial main experiments except that the medium was depleted with Mg and Zn and the condition of PO_4^{3-} and Fe was: [Medium PO_4^{3-} -High Fe] under optimal NO_3^{-} .

All cultures were performed in duplicate, and the study parameters (APA, N₂ fixation, uptake rates of PO_4^{3-} and Fe, TDP and/or P/Fe/Mn cellular content) were evaluated during the different phases of the culture (O.D_{750 nm} \cong 0.01–0.2). A subsample of the cells (1.5 ml) was taken from the culture flasks during the experiment and were counted through flow cytometric analysis (as described below) to normalize the results per cell. All samples were manipulated in a class-100 clean hood, to avoid Fe contamination.

Flow Cytometry Analysis

Cells were fixed with glutaraldehyde 25% (v/v) in H₂O (Sigma-Aldrich) [final concentration 0.05% (v/v)] and were counted with a Becton Dickinson FACS-Verse cytometer (Beckton & Dickinson, Franklin Lakes, New Jersey, USA). Fluorescent beads, BD FACSuiteTM CS&T research beads (Beckton & Dickinson and Company BD Biosciences, San Jose, USA), were used as internal standard to calibrate the instrument. The cytometer

Frontiers in Microbiology | www.frontiersin.org

P-Acquisition in Halothece sp. PCC 7418

TABLE 1 | List of all experimental treatments conducted in this study.

		Experiments	
Condition (optimal and low NO_3^-)			Description
[Low PO ₄ ^{3–} –Low Fe]	[Medium PO ₄ ³⁻ -Low Fe]	[High PO ₄ ³⁻ -Low Fe]	First experiment – optimal NO_3^- (4.4 mM)
[Low PO ₄ ^{3–} –Medium Fe]	[Medium PO ₄ ³⁻ -Medium Fe]	[High PO4 ⁻ -Medium Fe]	Second experiment – low NO_3^- (0.15 mM)
[Low PO4 ⁻ -High Fe]	[Medium PO ₄ ³⁻ -High Fe]	[High PO ₄ ³⁻ -High Fe]	Third experiment – NO_3^- starvation (6 nM), comparing with optimal NO_3^- in selected treatments
		Recovery experiments	
Initial treatment	Condition of NO ₃	Nutrient added (at day 12)	Resulting treatment (maintained for 4 days)
[Low PO ₄ ³⁻ –Low Fe]	Optimal NO_3^- (4.4 mM)	PO_4^{3-} and Fe	[High PO_4^{3-} –High Fe] in optimal NO_3^- treatment.
[Low PO ₄ ³⁻ –Low Fe]	NO_3^- starvation (6.66 nM)	PO_4^{3-} , Fe, and NO_3^-	[High PO_4^{3-} –High Fe] in optimal NO_3^- treatment.

In the recovery experiments, PO₄³⁻, Fe, and/or NO₃⁻ were added to the different initial treatments to achieve optimal conditions to evaluate the changes in APA rates.

shows fluorescence patterns for FITC, PE, PerCP-CyTM5.5 and APC. To count the *Halothece* sp. PCC 7418 cells, we selected FITC (488 nm excitation, 530/30 nm emission) and PE (488 nm excitation, 576/26 nm emission) combination fluorescence signals which show clearly the population of the cells. A total of 10,000 cells were counted in each sample and the counted cells were expressed as cells μ l⁻¹.

Alkaline Phosphatase Activity

Alkaline phosphatase activity (APA) was evaluated through a fluorometric assay, in which the hydrolysis of the fluorogenic substrate (S) 4-methylumbelliferyl phosphate (MUF-P, Sigma-Aldrich) to 4-methylumbelliferyl (MUF) was measured. Generally, an end point enzymatic assay was conducted with a concentration of 2 μ M MUF-P during the exponential phase of the culture (O.D_{750 nm} \cong 0.1). After 1 h incubation in darkness at room temperature, APA was measured in a microtiter plate that contained borate buffer at pH 10 (3:1 of sample:buffer). The MUF production (fmole MUF cell⁻¹ h⁻¹) was measured with a Cary Eclipse spectrofluorometer (FL0902M009, Agilent Technologies) at 359 nm (excitation) and 449 nm (emission) and using a calibration standard curve with commercial MUF (Sigma-Aldrich).

Saturation curves of velocity (V, fmole MUF cell⁻¹ h⁻¹) vs. substrate (S, μ M) were made under [Low NO₃⁻] condition during the final exponential phase of the culture (O.D_{750 nm} \cong 0.2), using different concentrations of MUF-P: 0, 0.05, 0.1, 0.5, 2, and 5 μ M. The maximum velocity (Vmax) at saturating substrate concentrations was obtained from each plot of V vs. S. The Michaelis–Menten constant, Km (μ M), which represents the substrate concentration at half Vmax was calculated using de Hill plot equation (Ascenzi and Amiconi, 1987). The evolution of MUF-P hydrolysis rates (fmole MUF cell⁻¹) with time (h) was recorded over 1 h in the treatments under [Low PO₄^{3–} –Low Fe], [Low PO₄^{3–} –High Fe], and [High PO₄^{3–} –High Fe] at the last day of the experiment

with 5 μM of MUF-P under NO3 starvation and NO3 optimal conditions and the APA rate (fmole MUF cell^1 h^1) was calculated as the slope of the fitted line.

PO₄³⁻ Uptake Rates, Nutrient Concentrations in the Culture Medium and in the Cells

Samples for the determination of PO_4^{3-} and total dissolved P (TDP) were centrifuged for 15 min at 16,000 ×g under 4°C. The supernatant was collected from the centrifuged tubes and used for PO_4^{3-} determinations following standard spectrophotometric methods (Hansen and Koroleff, 2007). TDP concentrations were also analyzed using the latter method after persulfate digestion. Samples for Fe analyses of culture media were filtered through sterile 0.2 µm filters (MFV5-025, FilterLab) at different times (initial and final) during the experiments. The metal (Fe) concentrations of culture medium were measured by inductively coupled plasma mass spectrometry (ICP-MS; iCap, Thermo Scientific), following the trace-metal clean techniques described in Tovar-Sanchez et al. (2006) and Tovar-Sanchez and Sañudo-Wilhelmy (2011).

The PO_4^{3-} concentrations in the culture medium were determined at different times: 0, 1, 4, and 10 days in the experimental treatment of [High PO_4^{3-}]: [Low Fe], [Medium Fe], and [High Fe]), and under [Low NO_3^-] and optimal NO_3^- conditions. Specific PO_4^{3-} uptake rates (pmole PO_4^{3-} cell⁻¹ day⁻¹) were calculated as described in (Ghaffar et al., 2017). Briefly, specific PO_4^{3-} uptake rates were calculated as the mass balance of PO_4^{3-} over the multiple days by taking the differences of PO_4^{3-} concentrations at two different times (T_0 – T_1 , T_0 – T_4 , and T_0 – T_{10}) and normalized by the number of cells counted at different time points (0, 1, 4, and 10) through the following equation:

Frontiers in Microbiology | www.frontiersin.org

August 2019 | Volume 10 | Article 1903

P-Acquisition in Halothece sp. PCC 7418

$$\mathrm{PO}_4^{3-} - \mathrm{uptake}\left(\mathrm{pmole}\,\mathrm{PO}_4^{3-}\,\mathrm{cell}^{-1}\,\mathrm{day}^{-1}\right) = \frac{A-B}{Ti-Tf} \qquad (1)$$

A is μ mole PO₄³⁻ cell⁻¹ at the initial time (*Ti*) and *B* is the μ mole PO₄³⁻ cell⁻¹ at the final time (*Tf*).

TDP concentrations were also measured at different times: 0, 4, 8, and 12 days in the experiments under NO₃⁻ starvation at [Low PO₄³⁻] and [High PO₄³⁻] conditions. Fe-uptake rates were measured under N₂-fixing conditions (i.e., [Low NO₃⁻] conditions). Initial and final Fe concentrations of the culture media were measured, and the difference between time = 0 and time = 10 (T₀-T₁₀) was used to determine the Fe-uptake during the 10 days of the experiment. Specific Fe-uptake (fmole Fe cell⁻¹ day⁻¹) was calculated the same way as the specific PO₄³⁻⁻-uptake rates described above.

Cellular contents of phosphorus (P), Fe, and other metals (i.e., Mn, V, Co, Ni, or Zn) were also determined by collecting the cells under [Low NO_3^-] treatment conditions through filtration of a known volume of culture (20 ml) with 0.2-µm acid-cleaned polycarbonate filters (Merck-Millipore). Elemental concentrations of P and Fe in the cyanobacterial samples were determined by inductively coupled plasma mass spectrometry (ICP-MS; iCap, Thermo Scientific), after microwave acid digestion (CEM, Mars 5) using nitric acid (high purity Suprapur®, Merck) (Tovar-Sanchez et al., 2006; Tovar-Sanchez and Sañudo-Wilhelmy, 2011).

Acetylene Reduction Assay

N2-fixing activities were measured with the acetylene reduction assay (ARA) method under known N2-fixing conditions for unicellular cyanobacteria (i.e., low NO₃⁻ concentrations, anaerobic environment, dark phase of the photoperiod, Reddy et al., 1993), and under low-medium levels of Fe and in low-medium-high levels of PO_4^{3-} . A volume of 50 ml from treatments with [Low NO33 condition at day 8 of the experiment was transferred to anaerobic tubes for cultivation for 2 days, and after which, ARA measurements were done following the method described in Agawin et al. (2014). Duplicate 10 ml samples of culture from each experimental tube, were filtered through 0.45 µm GF/F filters (MFV5-025, FilterLab). The filters were deposited in hermetic vials containing 1 ml of the corresponding culture medium. Acetylene (C2H2) was added at 20% (v/v) final concentration in each vial using gas-tight Hamilton syringes. The filters were incubated in the vials for 3 h at room temperature in the dark. After 3 h incubation time, 10 ml of headspace gas were removed with a gas-tight Hamilton syringe from the incubation vials or tubes, transferred and stored in Hungate tubes and sealed with hot melt adhesive glue (SALKI, ref. 0430308) to minimize gas losses (Agawin et al., 2014). Ethylene and acetylene were determined using a GC (model HP-5890, Agilent Technologies) equipped with a flame ionization detector (FID). The column was a Varian wide-bore column (ref. CP7584) packed with CP-PoraPLOT U (27.5 m length, 0.53 mm inside diameter, 0.70 mm outside diameter, and 20 µm film thickness). Helium was used as carrier gas at a flow rate of 30 ml min⁻¹. Hydrogen and airflow rates were set at 30 and 365 ml min-1, respectively. The split flow

was used so that the carrier gas flow through the column was 4 ml min⁻¹ at a pressure of 5 psi. Oven, injection, and detector temperatures were set at 52, 120, and 170°C, respectively. Ethylene produced was calculated using the equations in Stal (1988). The acetylene reduction rates were converted to N₂ fixation rates (pmole N₂ ml⁻¹ h⁻¹) using a factor of 4:1 (Jensen and Cox, 1983).

Statistical Analyses

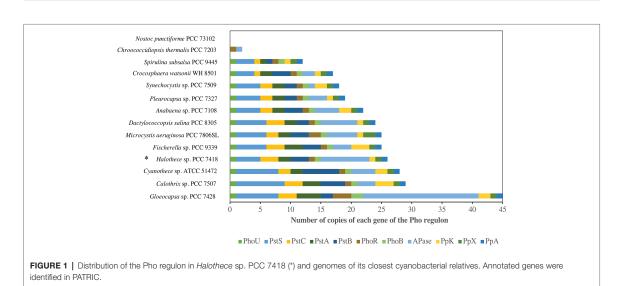
Univariate Analysis of variance (ANOVA) factor analyses and *post-hoc* (Bonferroni) was used to study the effect of the nutrient treatment conditions to APA rates, P-cellular content and specific PO_4^{3-} , and Fe uptake rates. In other cases, where we want to highlight a specific point, we use individual *t* tests. Regression analyses were used to determine the relationships between P-cellular content vs. N₂ rates fixation, P-cellular content vs. Fe-cellular content and P/Fe-cellular content vs. other metals (i.e., Mn). The statistical analyses were performed using the SPSS program version 21 (IBM Corp year 2012).

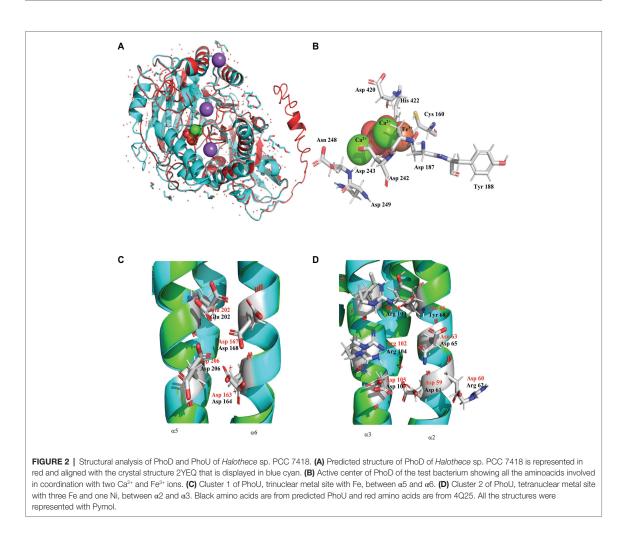
RESULTS

Pho Regulon of Halothece sp. PCC 7418

The distribution of the number of copies of Pho regulon components of Halothece sp. PCC 7418 and its closest genomes (Luo et al., 2009) are shown in Figure 1 and Supplementary Table S1. The Gloeocapsa sp. PCC 7428 genome had the highest number of copies detected (up to 45), suggesting that this species is one of the better adapted species to P-limitation. On the other hand, Nostoc punctiforme PCC 73102 and Chroococcidiopsis thermalis PCC 7203 genomes had the lowest number of copies of the Pho regulon components. Our test microorganism Halothece sp. PCC 7418 genome was the fourth cyanobacterium containing more copies of the Pho regulon (26): 1 for phoU, 4 for pstS, 3 for pstC, 2 for pstA, 3 for pstB, 1 for phoR-phoB, 8 for APases, 1 for ppK, 1 for ppX, and 1 for ppA. With eight copies of APases, it was the second cyanobacterium containing more APases (8), only surpassed by Gloeocapsa sp. PCC 7428 (19), suggesting a key role of the APases in Halothece sp. PCC 7418. Annotation in PATRIC did not annotate any specific APase, except for a PhoD. No low-affinity phosphate transporters were detected.

Structural Analysis of PhoD and PhoU of *Halothece* sp. PCC 7418


Three-Dimensional Structure of PhoD and Its Implication in Alkaline Phosphatase Activity

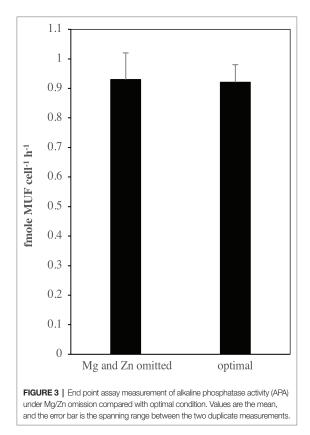

The annotated PhoD of *Halothece* sp. PCC 7418 displayed 511 amino acids (aa) with two domains i.e., PhoD-like phosphatase N-terminal domain and PhoD-like phosphatase domain. Predicted structure of PhoD (C-score = 0.00, estimated TM-score = 0.71 ± 0.11 , estimated RMSD = 7.4 ± 4.3 Å) had 10 α -helix and 21 β -chains. PhoD of *Halothece* sp. PCC 7418 was homologue to the crystal structure of PhoD of *B. subtilis* (2YEQ) of 522 aa, with an identity of 47.5% and coverage of 91.6%. Figure 2A shows the structural alignment between PhoD of *Halothece* sp. PCC 7418 and 2YEQ. The sequence

Frontiers in Microbiology | www.frontiersin.org

P-Acquisition in Halothece sp. PCC 7418

Frontiers in Microbiology | www.frontiersin.org

6


August 2019 | Volume 10 | Article 1903

alignment displayed up to 40.11% similarity and was used with the intention to describe the hypothetical catalytic center. The catalytic center for PhoD of *Halothece* sp. PCC 7418, using the catalytic center of 2YEQ (in parenthesis) as a template, consisted of Cys 160 (Cys 124), Asp 187 (Asp 151), Tyr 188 (Tyr 152), Asp 242 (Asp 209), Asp 243 (Asp 210), Asn 248 (Asn 215), Asp 249 (Asn 216), Asp 420 (Asp 380), and His 422 (His 382) (**Figure 2B**). All these amino acids are described in 2YEQ as the active site and coordinate with two Ca²⁺ and one Fe³⁺ ions (Rodriguez et al., 2014). Only one substitution was detected in Asp 249, where in 2YEQ is Asn 216.

The *in-silico* results described above of PhoD and how it coordinates with Ca^{2+} and Fe^{3+} ions in its active site in *Halothece* sp. PCC 7418 corroborates with the results of the experiment testing the relative importance of PhoD and PhoA in *Halothece* sp. PCC 7418, showing that the APA rates, with the depletion of Mg²⁺ and Zn²⁺ which are the metal co-factors of PhoA, did not differ considerably with sufficient availability of Mg²⁺ and Zn²⁺ (**Figure 3**). This suggests that PhoD (and not PhoA) is the more active APase in *Halothece* sp. PCC 7418.

Three-Dimensional Structure of PhoU

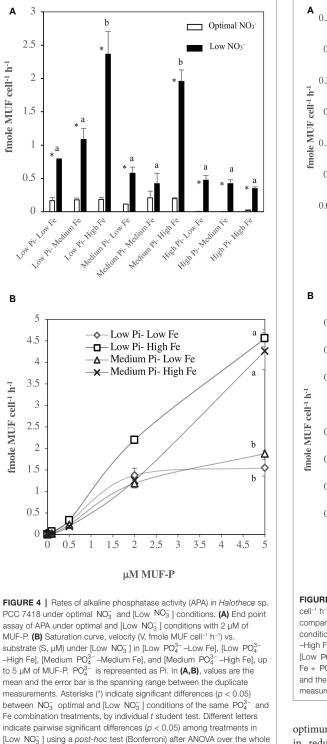
Annotated PhoU had 224 amino acids (aa) and presented two PhoU domains. The predicted structure of PhoU (C-score = 0.55, estimated TM-score = 0.79 ± 0.09 , estimated RMSD = 4.5 ± 2.9 Å)

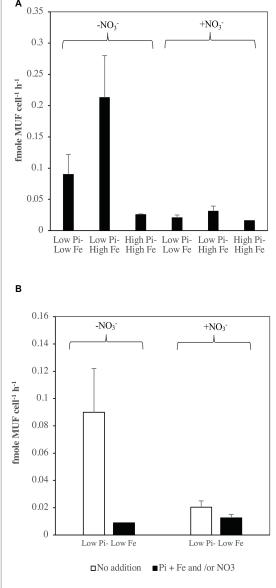
P-Acquisition in Halothece sp. PCC 7418

had seven α -helix without β -chains. The protein with more structure homology was PhoU of P. aeruginosa (4Q25) of 250 aa with an identity of 32.5% and coverage of 93.3%. Sequence alignment with 4Q25 showed 27.45% of identity and we used this alignment to describe its metal clusters (Figures 2C,D). Results showed that Halothece sp. PCC 7418 using 4Q25 as a template displayed at least one metal cluster, and possibly a second one, forming a trinuclear metal site with three Fe and tetranuclear metal site with three Fe and one nickel (Ni). The first cluster was complete and had the same aa as P. aeruginosa (in parenthesis) and was formed by Asp 164 (Asp 163), Asp 168 (Asp 167), Glu 202 (Glu 202), and Asp 206 (Asp 206), between α -helixes 5 and 6 (Figure 2C). The second cluster was incomplete and did not have all the aa that are present in P. aeruginosa. Only three aa of seven aa in P. aeruginosa (in parenthesis) coincide with Halothece sp. PCC 7418, and this cluster consisted of Asp 61 (Asp 59), Arg 62 (Asp 60), Asp 65 (Asn 63), Tyr 68 (Glu 66), Arg 100 (Ile 98), Arg 104 (Arg 102), and Asp 107 (Asp 105) between α-helix 2 and 3 (Figure 2D; Lee et al., 2014).

Alkaline Phosphatase Activity in *Halothece* sp. PCC 7418

Generally, APA rates were significantly higher (p < 0.05) in [Low NO₃] conditions compared with optimal NO₃ conditions (Figure 4A). Under [Low NO_3^-] APA rates were ≈ 7 times higher in [Low-Medium PO_4^{3-}] and \approx 77 times higher in [High PO₄³⁻] compared with their rates under optimal NO₃⁻ conditions. Moreover, under optimal NO3 conditions, APA rates did not have significant differences among the treatments (Figure 4A). Under [Low NO_3^-], treatment combinations of PO_4^{3-} and Fe levels had a significant effect on APA rates (ANOVA, p < 0.05), where the rates were significant higher (p < 0.05) at the highest Fe levels and at low to medium PO_4^{3-} levels, compared with other treatment combinations (Figure 4A). Figure 4B shows the differences in the kinetics of APA for treatments under [Low NO_3^-] at low and medium PO_4^{3-} levels and low and high Fe levels. At high Fe levels with low to medium PO_4^{3-} levels, the V vs. S curve did not reach saturation levels with the maximum S added (5 µM MUF-P). The Vmax and Km, calculated using the available data for these treatments, were: Vmax, 4.92 \pm 0.56 fmole cell^-1 h^-1; Km of 3.47 $\pm~0.94~\mu M$ at [Low $PO_4^{3-}\mbox{-High Fe]}$ and Vmax, 4.26 \pm 0.43 fmole cell⁻¹ h⁻¹; Km of 7.24 \pm 0.57 μ M at [Medium PO_4^{3-} -High Fe]. On the contrary to high Fe levels, APase kinetics reached saturation levels with the maximum S added (Figure 4B) at low Fe levels with Vmax, 1.55 \pm 0.19 fmole cell⁻¹ h⁻¹; Km of 1.53 \pm 0.31 μ M at [Low PO₄³⁻-Low Fe] and Vmax, 1.88 \pm 0.06 fmole cell^-1 h^-1; Km of 2.02 \pm 0.94 μ M at [Medium PO₄³⁻ -Low Fe].


The APA rates calculated were considerable higher (up to 6-fold) under NO_3^- starvation compared with under NO_3^- optimal conditions (**Figure 5A**). Treatments with [High Fe] in [Low PO_4^{3-}] reached the maximum rates at 0.21 ± 0.07 fmole cell⁻¹ h⁻¹ under NO_3^- starvation condition, and at 0.03 ± 0.01 fmole cell⁻¹ h⁻¹ under NO_3^- optimal condition (**Figure 5A**). Additions of PO_4^{3-} , Fe, and/or NO_3^- to obtain


Frontiers in Microbiology | www.frontiersin.org

August 2019 | Volume 10 | Article 1903

P-Acquisition in Halothece sp. PCC 7418

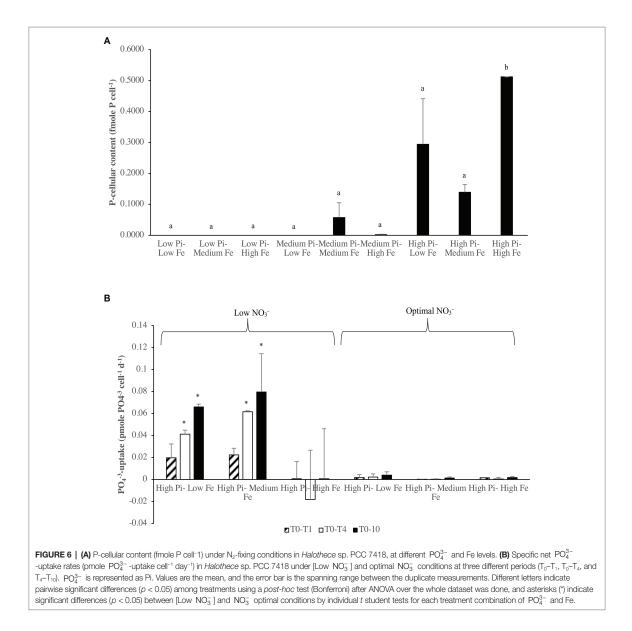
FIGURE 5 | Rates of alkaline phosphatase activity (APA, fmole MUF cell⁻¹ h⁻¹) in *Halothece* sp. PCC 7418 under NO₃⁻ starvation conditions compared with the optimal NO₃⁻ treatments under (A) treatment conditions: [Low PO₄³⁻ –Low Fe], [Low PO₄³⁻ –High Fe], and [High PO₄³⁻ –High Fe] and (B) under re-inoculum of nutrients in treatment conditions: [Low PO₄³⁻ –Low Fe, + PO₄³⁻ + Fe + NO₃⁻] and [Low PO₄³⁻ –Low Fe + PO₄³⁻ + Fe]. PO₄³⁻ is represented as Pi. Values are the mean, and the error bar is the spanning range between the duplicate measurements.

optimum concentration of PO_4^{3-} , Fe, and/or NO_3^- resulted in reduced APA rates particularly under the initial $NO_3^$ starvation conditions (**Figure 5B**).

Frontiers in Microbiology | www.frontiersin.org

dataset was done.

8


August 2019 | Volume 10 | Article 1903

Phosphorus-Uptake at Different Levels of Iron Availability and Iron-Uptake at Different Levels of PO_4^{3-} Availability

Generally, P-cellular content varied significantly (ANOVA, p < 0.05) under N₂-fixing conditions [Low NO₃⁻] among treatment combinations with significantly higher values at [High PO₄³⁻ -High Fe] treatment compared with other treatment combinations (**Figure 6A**). On the other hand, specific PO₄³⁻ -uptake rates under N₂-fixing conditions [Low NO₃⁻] and optimal NO₃⁻ conditions generally did not vary significantly (ANOVA, p > 0.05) among treatment combinations

(**Figure 6B**). However, specific *t*-tests conducted under [Low NO_3^-] conditions, showed PO_4^{3-} -uptake rates to be on average 200 times significantly higher (p < 0.05) than the rates under optimal conditions of NO_3^- in T_0 - T_4 and T_0 - T_{10} in low to medium Fe levels (**Figure 6B**). Different concentrations of Fe in [High PO_4^{3-}] did not show significant differences in PO_4^{3-} -uptake rates (p > 0.05) (**Figure 6B**).

The time course of depletion of total dissolved phosphate (TDP) in the culture media showed that under optimal NO_3^- conditions, the media were depleted with TDP while under NO_3^- starvation conditions, the cells were not capable in

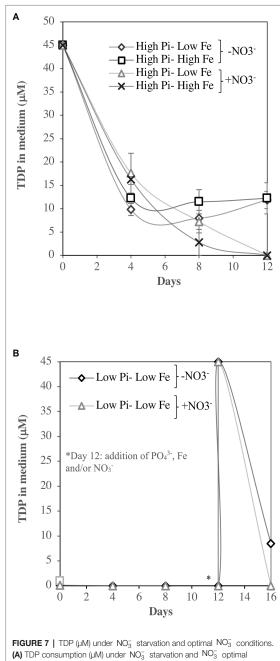
Frontiers in Microbiology | www.frontiersin.org

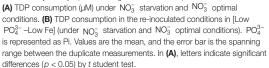
9

depleting TDP from the media (**Figure 7A**). Fe did not have a significant effect in TDP depletion (p > 0.05). The time course of depletion of TDP in the re-inoculum conditions at [Low PO₄³⁻ –Low Fe] (under NO₃⁻ starvation and NO₃⁻ optimal conditions), showed the same tendency, in which under NO₃⁻ starvation conditions, TDP was not depleted (**Figure 7B**).

Figure 8 shows the specific Fe-uptake rates at different levels of PO_4^{3-} and Fe under N₂-fixing conditions. Results showed that generally, specific Fe-uptake rates varied significantly at different treatment combinations of PO_4^{3-} and Fe (ANOVA, p < 0.05). Fe-uptake rates were significantly higher (p < 0.05) at [High PO_4^{3-}] conditions compared to [Low PO_4^{3-}] and [Medium PO_4^{3-}] conditions. There were also significant differences (p < 0.05) of increased Fe-uptake with increasing availability of Fe.

Phosphorus-Cellular Content and Its Relationship With N₂ Fixation and Iron-Cellular Content

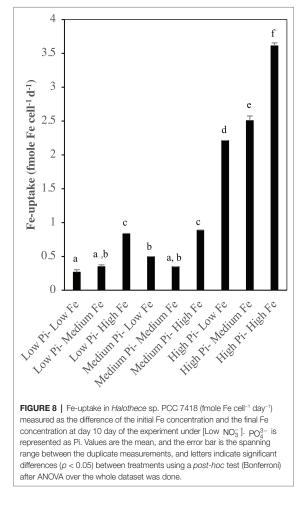

Phosphorus cellular content of *Halothece* sp. PCC 7418 showed significant positive linear correlation with N₂ fixation rates $(p < 0.05, r^2 = 0.86, n = 12)$ (**Figure 9A**). Moreover, the P-cellular content of the cells showed significant positive linear correlation with their Fe contents $(p < 0.05, r^2 = 0.71, n = 18)$ (**Figure 9B**). The P and Fe-cellular contents of the cells did not show significant correlations with other metals (i.e., Mn).


DISCUSSION

Pho Regulon and the Three-Dimensional Structure of PhoD and PhoU of *Halothece* sp. PCC 7418: Elucidating the Role of Iron as Co-factor

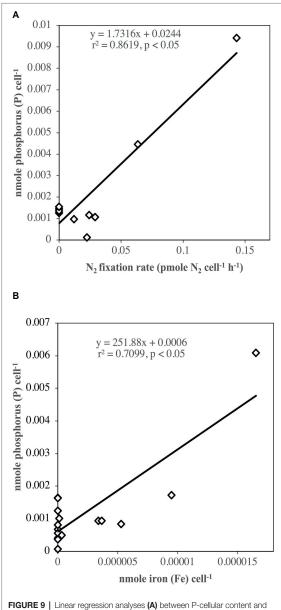
The Pho regulon of Halothece sp. PCC 7418 is composed of genes whose protein products are involved in different functions: autokinase activity of PhoR and phosphate transport (PhoU); high-affinity phosphate transport (PstS, PstC, PstA, and PstB), in a two-component regulatory system (PhoR-PhoB); extracellular enzymes capable of obtaining PO₄³⁻ from organic phosphates (Alkaline Phosphatases, APases); and polyphosphate metabolism (PpK, PpX, and PpA) (Santos-Beneit, 2015). However, no low-affinity transporters were annotated while some studies demonstrated that this strain exhibited low-affinities transporters (Tripathi et al., 2013). Halothece sp. PCC 7418 contains a Pho regulon with 11 distinct genes in single or multiple copies altogether accounting 26 distinct loci in the whole genome, suggesting that Halothece sp. PCC 7418 is well adapted to survive to P-limiting conditions. In model strains whose P-acquisition mechanisms are well studied such as Trichodesmium spp. and Crocosphaera watsonii they only have 15 copies and 19 copies respectively in their Pho regulon (Fu et al., 2005; Dyhrman and Haley, 2006).

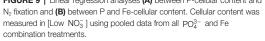
Genome analysis indicated that *Halothece* sp. PCC 7418 and *Gloeocapsa* sp. PCC 7428 were the strains with more copies of Alkaline Phosphatases (APase), 8 and 19, respectively (**Figure 1**). These two cyanobacteria are halotolerant species, and there are



studies that suggest that salt stress enhance APA in halophytic strains (Kageyama et al., 2011). In a previous study (Kageyama et al., 2011), *Halothece* sp. PCC 7418 only showed

Frontiers in Microbiology | www.frontiersin.org




P-Acquisition in Halothece sp. PCC 7418

three APases: two PhoA and one PhoD. Of the eight APases found in our study for the same species, one of them is also annotated as PhoD and the rest are not annotated to a specific type of APase. PhoD, together with PhoX, is one of the most abundant APases in marine habitats and its activity may be controlled by availability of its metal co-factor(s) (e.g., Fe³⁺, Ca²⁺, Mg²⁺, and Zn²⁺) (Luo et al., 2009; Zeng et al., 2011).

Three-dimensional analyses with PhoD of *Halothece* sp. PCC 7418 revealed its active site as a homologue to the crystal structure of PhoD of *B. subtilis* with two Ca²⁺ and one Fe³⁺ ions as co-factors (**Figure 2B**; Rodriguez et al., 2014). Previous studies on APase activity in *Halothece* sp. PCC 7418 indicated Ca²⁺ dependence of PhoD (Kageyama et al., 2011) but the Fe³⁺ dependence was not investigated. The experiment conducted here wherein the omission of Mg²⁺ and Zn²⁺ (but not Fe³⁺ in the culture medium) did not result in any significant changes in APase activity (**Figure 3**), suggesting that the APases of *Halothece* sp. PCC 7418 (i.e., PhoD) do not require these metals (Mg²⁺ and Zn²⁺) as co-factors as in the case of PhoA (Kageyama et al., 2011), and the most active APase could be PhoD.

Iron is not only important as a co-factor for the activities of APase but can be essential in other components of Pho regulon like PhoU in which the results of the 3D-dimensional analyses in this study showed PhoU of *Halothece* sp. PCC 7418 forming at least one Fe-containing metal cluster, and possible a second cluster (**Figures 2C,D**), using as a model, the PhoU of *P. aeruginosa* (4Q25). PhoU can participate in the PO_4^{3-} transport across the cell membranes of bacteria in

Frontiers in Microbiology | www.frontiersin.org

P-Acquisition in Halothece sp. PCC 7418

the regulation of the phosphate-specific transport systems (Santos-Beneit, 2015) and in controlling cellular phosphate metabolism (Lubin et al., 2015). The specific role of PhoU in *Halothece* sp. PCC 7418, however, remains to be investigated.

Alkaline Phosphatase Activity in Halothece sp. PCC 7418: Experimental Analysis of Regulation by Iron, NO₃, and Phosphorous Availabilities

Experimental measurements of APA in Halothece sp. PCC 7418 under different levels in Fe availability revealed higher activities with higher levels of Fe (Figures 4A,B and Figure 5A), confirming the regulatory role of Fe in the APase (i.e., PhoD) in this species as we predicted in our 3D-structural analyses of its PhoD (Figure 2B). However, the effect of Fe availability on the rates of APA in Halothece sp. PCC 7418 depends on the availability of inorganic sources of nitrogen (i.e., NO₃⁻) wherein at low NO₃⁻ concentrations, increasing Fe availability enhanced the APA rates (Figures 4A,B). We showed that under [Low NO₃] and at high Fe levels, APA was not saturated (Figure 4B). We hypothesized that under these conditions, the Vmax of APases from Halothece sp. PCC 7418 is so high that increasing MUF-P concentrations, up to 10 µM (in the other assays that were additionally conducted),was not high enough to saturate the enzyme because of the enhancement of APA by high levels of the Fe co-factor.

At high or optimal NO3 concentrations, APA rates in general are lower than in NO_3^- starvation conditions (Figure 5A) and even lower than in [Low NO_3^-] treatments (Figure 4A). These results can be due to peculiar characteristics of the N2 fixation process. High concentrations of readily assimilable forms of dissolved inorganic nitrogen (DIN, i.e., NH₄, NO₃⁻) are known to inhibit N2 fixation as evidenced by DIN inhibition studies (Knapp, 2012). The N_{2} fixation process $(N_2 + 8e^- + 16ATP + 8H^+ \rightarrow 2NH_3 + H_2 + 16ADP + 16PO_4^{3-})$ is an energetically costly processes requiring 16 ATPs and 25% more energy is needed to reduce N_2 than to reduce NO_3^- to NH4. A N2-fixing cell such as Halothece sp. PCC 7418 would rather reduce first the available NO_3^- than to fix N₂. Conversely, the N2-fixing process is stimulated with low NO3 availability (Manhart and Wong, 1980; Nelson et al., 1982). Since the energy (ATP) to fuel N_2 fixation is dependent on PO_4^{3-} , the demand for PO_4^{3-} is theoretically enhanced when the cells are doing N_2 fixation (in conditions under low NO_3^- availability). Thus, APase activities are expected to be stimulated under low NO₃⁻ conditions, and consequently depend on the availability of Fe because APases such as PhoD may have Fe as co-factor. Moreover, Fe is an important structural component of the nitrogenase enzyme catalyzing the N2 fixation process. Nitrogenase contains 38 Fe atoms per holoenzyme since nitrogenase is characterized by slow reaction rates the N2-fixers need a large cellular pool of this enzyme, and thus more Fe is needed (Hoffman et al., 2014). The enhanced rates of APase under N₂-fixing conditions (low NO₃⁻ availability) and high Fe availability with low PO₄³⁻ levels is expected as APases activities are induced with low PO_4^{3-} levels in the medium (Romano et al., 2017). The control of NO_3^- and PO_4^{3-}

availabilities in APase activities for N₂-fixing cells such as *Halothece* sp. PCC 7418 is further supported here with the results of decreased APA rates when NO_3^- , PO_4^{3-} and Fe were added to cells growing previously with low PO_4^{3-} , low Fe and/or low NO_3^- levels (**Figure 5B**).

Phosphorus and Iron-Uptake and Cellular Contents in *Halothece* sp. PCC 7418

The PO₄³⁻-uptake measurements in Halothece sp. PCC 7418 were done in the experimental units with high PO₄³⁻ levels because (1) the method used for PO_4^{3-} analyses was not sensitive enough to measure very low levels of PO_4^{3-} ($\leq 0.1 \mu M$), and (2) APase activities are not induced at high PO_4^{3-} levels allowing us to evaluate if Fe is also important in PO_4^{3-} transport mechanisms and not only in APase activities. PO₄³⁻-uptake rates of Halothece sp. PCC 7418 was significantly higher under N₂-fixing conditions ([Low NO₃]) than in non-N₂ fixing conditions due to the high demand of P for the energy costly N_2 fixation (Figure 6B). The dependence of N_2 fixation on P in Halothece sp. PCC 7418 is evidenced here with the significant linear correlation between cellular P content of the cells and their rates of N₂ fixation (Figure 9A), consistent with studies carried out in Trichodesmium spp. in the Atlantic (Sañudo-Wilhelmy et al., 2001). In addition, not only N₂-fixing conditions can enhance the P-requirements of cyanobacteria. It is also reported that under nitrogen limitation, phytoplankton can accumulate carbohydrates and phospholipids, increasing their P-cellular content (Liefer et al., 2019). Different concentrations of Fe, however, did not show significant differences in PO₄³⁻ -uptake at high levels of PO_4^{3-} availability. This suggests that PO_4^{3-} -uptake mechanisms in this case are not dependent on Fe levels or the Fe present in all treatments (from low to high Fe concentrations) are sufficient for the cells (Figure 6B). The latter case may be most likely since we found significant correlations between the P-cellular and Fe-cellular content of the cells (Figure 9B). These results are also consistent with our data that the highest P-cellular content was found at high Fe levels (Figure 6A), suggesting the narrow connection between P and Fe. The relation between P and Fe cellular contents is also supported by evidences that high concentrations of elemental P are found associated (or co-localized spatially) with Fe within the cells of phytoplankton [Chlorella sp. and Chlamydomonas sp. (Diaz et al., 2009)]. The Fe-uptake measurements in Halothece sp. PCC 7418 in N₂-fixing conditions revealed that Fe-uptake was correlated with P with high Fe-uptake rates at higher PO_4^{3-} levels (Figure 8). This may be due to the P-dependence (ATP) of Fe transporters (Noinaj et al., 2010; Kranzler et al., 2013). Results also show the tendency of higher Fe-uptake rates in higher concentrations of Fe in the media, suggesting a passive transport of this metal in Halothece sp. PCC 7418. However, this needs to be further investigated.

The time course of depletion of total dissolved phosphate (TDP) in the media (**Figure 7A**), showed that under NO_3^- starvation conditions, cells did not deplete TDP, and even increased at the final stage of the experiment suggesting a liberation of cellular TDP of dying cells. Extreme NO_3^- starvation conditions

Frontiers in Microbiology | www.frontiersin.org

August 2019 | Volume 10 | Article 1903

are suggested here to be detrimental to the growth of Halothece sp. PCC 7418 and may have consequences on their P-uptake mechanisms, explaining why APA rates were lower than in [Low NO_3^- conditions. Even when the nutrients (PO_4^{3-} , Fe and/or NO3) were re-inoculated in the cultures that were previously starved with NO3, the cells did not acclimate and were not capable of depleting TDP from the media (Figure 7B). Whereas, much of the previous research has focused on the inhibition or sensitivity of N2 fixation to increased availability of dissolved inorganic nitrogen (e.g., NO_3^- , NH_4^+) (Knapp, 2012), investigations on the physiological conditions for growth of N2-fixers are few. Spiller and Shanmugam (1987), gave some evidences that a unicellular species of marine N2-fixer Synechococcus sp. strain SF1 (isolated from macroalgae, Sargassum fluitans) is dependent on the presence and type of carbon (C) source to support its growth with N₂ as the sole nitrogen source. Their results showed, for example, that without the addition of C source (e.g., HCO₃⁻), there was no growth of the species tested with N₂ as the sole source. Moreover, some studies have reported less cell yield of unicellular N2 fixers when grown with N2 as sole N source compared with addition of NO3 since N2 fixation is an energetically costly process (Spiller and Shanmugam, 1987; Agawin et al., 2007). Our result that extreme NO3 starvation condition (at nM levels close to N2 as sole source) is suggested to be detrimental to the growth of Halothece sp. PCC 7418 may be due to the type of C source (glucose and citrate) in our treatments which may not be the optimum for growth of this species with N₂ as sole N source. This hypothesis however needs more investigations.

In summary, this is the first study investigating the interaction between PO_4^{3-} , Fe, and NO_3^- availabilities in the P-acquisition mechanisms of a unicellular N₂-fixing bacteria found in association with the Mediterranean seagrass *P. oceanica*. The results suggest that APase activities under inorganic P-limited conditions are enhanced by increased Fe availabilities. The PO_4^{3-} and Fe dependence of *Halothece* sp. PCC 7418 depends whether they are grown in N₂-fixing conditions (i.e., low $NO_3^$ levels) or not. Genomic and structural analyses have also shown the tight association between P-acquisition mechanisms and Fe in *Halothece* sp. PCC 7418. Studies combining genomic and protein structural analyses and experimental approaches are important to investigate in detail the control of environmental

REFERENCES

- Agawin, N. S. R., Duarte, C. M., and Agusti, S. (2000). Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Am. Soc. Limnol. Oceanogr. 45, 591–600. doi: 10.4319/ lo.2000.45.3.0591
- Agawin, N. S. R., Rabouille, S., Veldhuis, M. J. W., Servatius, L., Hol, S., Van Overzee, M. J., et al. (2007). Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non – nitrogen-fixing phytoplankton species. *Limonol. Oceanogr.* 52, 2233–2248. doi: 10.4319/lo.2007.52.5.2233
- Agawin, N. S. R., Benavides, M., Busquets, A., Ferriol, P., Stal, L. J., and Arístegui, J. (2014). Dominance of unicellular cyanobacteria in the diazotrophic community in the Atlantic Ocean. *Limnol. Oceanogr.* 59, 623–637. doi: 10.4319/lo.2014.59.2.0623
- Agawin, N. S. R., Ferriol, P., Cryer, C., Alcon, E., Busquets, A., Sintes, E., et al. (2016). Significant nitrogen fixation activity associated with the phyllosphere of Mediterranean seagrass *Posidonia oceanica*: first report. *Mar. Ecol. Prog. Ser.* 551, 53–62. doi: 10.3354/meps11755

P-Acquisition in Halothece sp. PCC 7418

factors (e.g., availability of metals and nutrients) to the functioning of N_2 -fixing organisms found in important species of seagrasses.

DATA AVAILABILITY

The raw data supporting the conclusions of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.

AUTHOR CONTRIBUTIONS

VF-J and NA designed the experiments. VF-J conducted all experiments and led the writing of the paper. All authors contributed to the writing and review of the manuscript, and NA is the supervisor of the laboratory.

FUNDING

This work was supported by funding to NA through the Agencia Estatal de Investigación and the European Regional Development Funds project (CTM2016-75457-P).

ACKNOWLEDGMENTS

We acknowledge the support and help of Scientific Technical Service (Dr. Guillem Ramis Munar and Maria Trinidad Garcia Barceló) of the University of the Balearic Islands for cytometry and gas-chromatography analyses, respectively. We also thank Pere Ferriol Buñola and Alba Coma Ninot for the help in the acquisition of the cultures.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2019.01903/ full#supplementary-material

- Agawin, N. S. R., Ferriol, P., Sintes, E., and Moyà, G. (2017). Temporal and spatial variability of in situ nitrogen fixation activities associated with the Mediterranean seagrass *Posidonia oceanica* meadows. *Limnol. Oceanogr.* 62, 2575–2592. doi: 10.1002/lno.10591
- Agawin, N. S. R., Ferriol, P., and Sintes, E. (2019). Simultaneous measurements of nitrogen fixation activities associated with different plant tissues of the seagrass *Posidonia oceanica*. *Mar. Ecol. Prog. Ser.* 611, 111–127. doi: 10.3354/ meps12854
- Ascenzi, P., and Amiconi, G. (1987). Logarithmic plots in enzymology. Representation of the Michaelis-Menten equation. *Biochem. Educ.* 15, 83–84. doi: 10.1016/0307-4412(87)90093-8
- Blanco, A. G., Sola, M., Gomis-Rüth, F. X., and Coll, M. (2002). Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. *Structure* 10, 701–713. doi: 10.1016/S0969-2126(02)00761-X
- Browning, T. J., Achterberg, E. P., Yong, J. C., Rapp, I., Utermann, C., Engel, A., et al. (2017). Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. *Nat. Commun.* 8, 1–7. doi: 10.1038/ncomms15465

Frontiers in Microbiology | www.frontiersin.org

August 2019 | Volume 10 | Article 1903

Campagne, C. S., Salles, J. M., Boissery, P., and Deter, J. (2015). The seagrass *Posidonia oceanica*: ecosystem services identification and economic evaluation of goods and benefits. *Mar. Pollut. Bull.* 97, 391–400. doi: 10.1016/j. marpolbul.2015.05.061

- DeLano, W. (2002). The PyMOL Molecular Graphics System. Schrödinger, LLC. Available at: http://www.pymol.org
- Diaz, J., Ingall, E., Vogt, S., de Jonge, M. D., Paterson, D., Rau, C., et al. (2009). Characterization of phosphorus, calcium, iron, and other elements in organisms at sub-micron resolution using X-ray fluorescence spectromicroscopy. *Limnol. Oceanogr. Methods* 7, 42–51. doi: 10.4319/lom.2009.7.42
- Dyhrman, S. T., and Haley, S. T. (2006). Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl. Environ. Microbiol. 72, 1452–1458. doi: 10.1128/AEM.72.2.1452-1458.2006
- Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., et al. (2016). The Pfam protein families database: towards a more sustainable future. *Nucleic Acids Res.* 44, D279–D285. doi: 10.1093/nar/gkv1344
- Fu, F. X., Zhang, Y., Bell, P. R. F., and Hutchins, D. A. (2005). Phosphate uptake and growth kinetics of *Trichodesmium* (Cyanobacteria) isolates from the North Atlantic Ocean and the Great Barrier Reef, Australia. J. Phycol. 41, 62–73. doi: 10.1111/j.1529-8817.2005.04063.x
- Gardner, S. G., Johns, K. D., Tanner, R., and McCleary, W. R. (2014). The PhoU protein from *Escherichia coli* interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. *J. Bacteriol.* 196, 1741–1752. doi: 10.1128/JB.00029-14
- Geider, R. J., and La Roche, J. (2002). Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. *Eur. J. Phycol.* 37, 1–17. doi: 10.1017/S0967026201003456
- Ghaffar, S., Stevenson, R. J., and Khan, Z. (2017). Effect of phosphorus stress on *Microcystis aeruginosa* growth and phosphorus uptake. *PLoS One* 12:e0174349. doi: 10.1371/journal.pone.0174349
- Gutiérrez, J. L., Jones, C. G., Byers, J. E., Arkema, K. K., Berkenbusch, K., Commito, A., et al. (2012). Physical ecosystem engineers and the functioning of estuaries and coasts. *Treatise Estuar. Coast. Sci.* 7, 58–81. doi: 10.1016/ B978-0-12-374711-2.00705-1
- Hansen, H. P., and Koroleff, F. (2007). "Determination of nutrients" in *Method of seawater analysis*. eds. K. Grasshoff, K. Kremling, and M. Ehrhardt. doi: 10.1002/9783527613984.ch10
- Herrero, A., and Flores, E. (2008). The cyanobacteria: Molecular biology, genomics, and evolution. Wymondham, UK: Caister Academic Press.
- Hoffman, B. M., Lukoyanov, D., Yang, Z. Y., Dean, D. R., and Seefeldt, L. C. (2014). Mechanism of nitrogen fixation by nitrogenase: the next stage. *Chem. Rev.* 114, 4041–4062. doi: 10.1021/cr400641x
- Jensen, B. B., and Cox, R. P. (1983). Direct measurements of steady-state kinetics of cyanobacterial N₂ uptake by membrane-leak mass spectrometry and comparisons between nitrogen fixation and acetylene reduction. *Appl. Environ. Microbiol.* 45, 1331–1337.
- Kageyama, H., Tripathi, K., Rai, A. K., Cha-Um, S., Waditee-Sirisattha, R., and Takabe, T. (2011). An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of *Aphanothece halophytica*, a halotolerant cyanobacterium. *Appl. Environ. Microbiol.* 77, 5178–5183. doi: 10.1128/AEM.00667-11
- Knapp, A. N. (2012). The sensitivity of marine N₂ fixation to dissolved inorganic nitrogen. *Front. Microbiol.* 3, 1–14. doi: 10.3389/fmicb.2012.00374
- Kornberg, A. (1995). Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177, 491–496. doi: 10.1128/ jb.177.3.491-496.1995
- Kranzler, C., Rudolf, M., Keren, N., and Schleiff, E. (2013). Iron in cyanobacteria. Adv. Bot. Res. 65, 57-105. doi: 10.1016/B978-0-123-94313-2.00003-2
- Lee, S. J., Park, Y. S., Kim, S. J., Lee, B. J., and Suh, S. W. (2014). Crystal structure of PhoU from *Pseudomonas aeruginosa*, a negative regulator of the Pho regulon. *J. Struct. Biol.* 188, 22–29. doi: 10.1016/j.jsb.2014.08.010
- Li, Z., Natarajan, P., Ye, Y., Hrabe, T., and Godzik, A. (2014). POSA: a userdriven, interactive multiple protein structure alignment server. *Nucleic Acids Res.* 42, W240–W245. doi: 10.1093/nar/gku394
- Liefer, J. D., Garg, A., Fyfe, M. H., Irwin, A. J., Benner, I., Brown, C. M., et al. (2019). The macromolecular basis of phytoplankton C:N:P under nitrogen starvation. *Front. Microbiol.* 10, 1–16. doi: 10.3389/fmicb.2019.00763
- Lubin, E. A., Fiebig, A., Laub, M. T., Henry, J. T., and Crosson, S. (2015). Identification of the PhoB regulon and role of PhoU in the phosphate

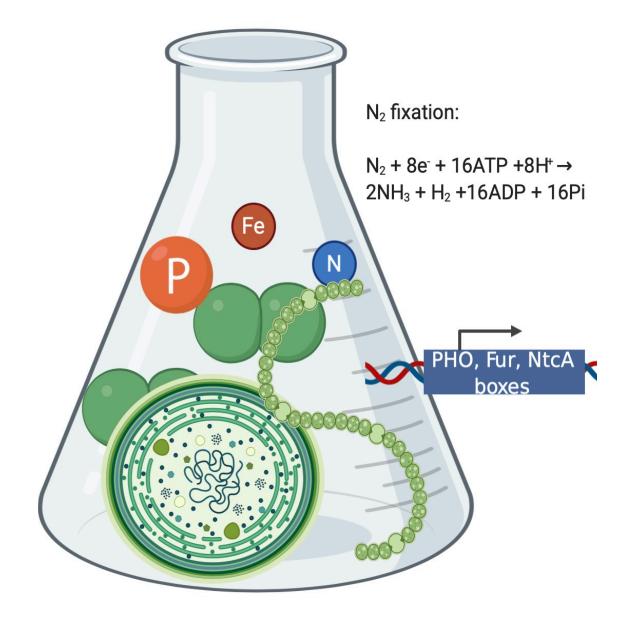
starvation response of Caulobacter crescentus. J. Bacteriol. 198, 187-200. doi: 10.1128/jb.00658-15

P-Acquisition in Halothece sp. PCC 7418

- Luo, H., Benner, R., Long, R. A., and Hu, J. (2009). Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. USA 106, 21219–21223. doi: 10.1073/pnas.0907586106
- Manhart, J. R., and Wong, P. P. (1980). Nitrate Effect on Nitrogen Fixation (Acetylene Reduction): Activities of legume root nodules induced by rhizobia with varied nitrate reductase activities. *Plant Physiol.* 65, 502–505. doi: 10.1104/pp.65.3.502
- Mills, M. M., Ridame, C., Davey, M., La Roche, J., and Geider, R. J. (2004). Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. *Nature* 429, 232–294. doi: 10.1038/nature02550
- Moore, C., Mills, M. M., Achterberg, E. P., Geider, R. J., Laroche, J., Lucas, M. I., et al. (2009). Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. *Nat. Geosci.* 2, 867–871. doi: 10.1038/ngeo667
- Moore, C., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., et al. (2013). Processes and patterns of oceanic nutrient limitation. *Nat. Geosci.* 6, 701–710. doi: 10.1038/ngeo1765
- Nelson, D. C., Waterbury, J. B., and Jannasch, H. W. (1982). Nitrogen fixation and nitrate utilization by marine and freshwater Beggiatoa. Arch. Microbiol. 133:172. doi: 10.1007/BF00414997
- Noinaj, N., Guillier, M., Barnard, T. J., and Buchanan, S. K. (2010). TonBdependent transporters: regulation, structure, and function. Annu. Rev. Microbiol. 64, 43–60. doi: 10.1146/annurev.micro.112408.134247
- Quigg, A., Irwin, A. J., and Finkel, Z. V. (2011). Evolutionary inheritance of elemental stoichiometry in phytoplankton. Proc. R. Soc. B Biol. Sci. 278, 526–534. doi: 10.1098/rspb.2010.1356
- Reddy, K. J., Haskell, J. B., Sherman, D. M., and Sherman, L. A. (1993). Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus *Cyanothece*. *J. Bacteriol.* 175, 1284–1292. doi: 10.1128/jb.175.5.1284-1292.1993
- Redfield, A. C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. James Johnstone Memorial Volume: Liverpool UK: University Press of Liverpool, 176–192.
- Rodriguez, F., Lillington, J., Johnson, S., Timmel, C. R., Lea, S. M., and Berks, B. C. (2014). Crystal structure of the *Bacillus subtilis* phosphodiesterase PhoD reveals an iron and calcium-containing active site. *J. Biol. Chem.* 289, 308893–308899. doi: 10.1074/jbc.M114.604892
- Romano, S., Bondarev, V., Kölling, M., Dittmar, T., and Schulz-Vogt, H. N. (2017). Phosphate limitation triggers the dissolution of precipitated iron by the marine bacterium *Pseudovibrio* sp. FO-BEG1. *Front. Microbiol.* 8, 1–11. doi: 10.3389/fmicb.2017.00364
- Santos-Beneit, F. (2015). The Pho regulan: a huge regulatory network in bacteria. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.00402
- Sañudo-Wilhelmy, S. A., Kustka, A. B., Gobler, C. J., Hutchins, D. A., Yang, M., Lwiza, K., et al. (2001). Phosphorus limitation of nitrogen fixation by *Trichodesmium* in the central Atlantic Ocean. *Nature* 411, 66–69. doi: 10.1038/ 35075041
- Schwarz, R., and Forchhammer, K. (2005). Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. *Microbiology* 151, 2503–2514. doi: 10.1099/mic.0.27883-0
- Sohm, J. A., Webb, E. A., and Capone, D. G. (2011). Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9, 499–508. doi: 10.1038/ nrmicro2594
- Spiller, H., and Shanmugam, K. T. (1987). Physiological conditions for nitrogen fixation in a unicellular marine cyanobacterium, *Synechococcus* sp. strain SF1. J. Bacteriol. 169, 5379–5384. doi: 10.1128/jb.169.12.5379-5384.1987
- Stal, L. J. (1988). Acetylene reduction technique for assay of nitrogenase. *Methods Enzymol.* 167, 474–484.
- Stanier, R. Y., Deruelles, J., Rippka, R., Herdman, M., and Waterbury, J. B. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. *Microbiology* 111, 1–61. doi: 10.1099/00221287-111-1-1
- Statham, P. J., and Hart, V. (2005). Dissolved iron in the Cretan Sea (eastern Mediterranean). *Limnol. Oceanogr.* 50, 1142–1148. doi: 10.4319/ lo.2005.50.4.1142
- Su, Z., Olman, V., and Xu, Y. (2007). Computational prediction of Pho regulons in cyanobacteria. BMC Genomics 8, 1–12. doi: 10.1186/1471-2164-8-156
- Tandeau de Marsac, N., and Houmard, J. (1993). Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. *FEMS Microbiol. Lett.* 104, 119–189. doi: 10.1111/j.1574-6968.1993.tb05866.x

Frontiers in Microbiology | www.frontiersin.org

August 2019 | Volume 10 | Article 1903


P-Acquisition in Halothece sp. PCC 7418

- Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and Civitarese, G. (2013). The Mediterranean Sea system: a review and an introduction to the special issue. *Ocean Sci.* 9, 789–803. doi: 10.5194/os-9-789-2013
- The UniProt Consortium (2014). UniProt: a hub for protein information. Nucleic Acids Res. 43, D204–D212. doi: 10.1093/nar/gku989
- Tiwari, B., Singh, S., Kaushik, M. S., and Mishra, A. K. (2015). Regulation of organophosphate metabolism in cyanobacteria. A review. *Microbiology* 84, 2913–2902. doi: 10.1134/S0026261715030200
- Tovar-Sanchez, A., and Sañudo-Wilhelmy, S. A. (2011). Influence of the Amazon River on dissolved and intra-cellular metal concentrations in *Trichodesmium* colonies along the western boundary of the sub-tropical North Atlantic Ocean. *Biogeosciences* 8, 217–225. doi: 10.5194/bg-8-217-2011
- Tovar-Sanchez, A., Sañudo-Wilhelmy, S. A., Kustka, A. B., Agustí, S., Dachs, J., Hutchins, D. A., et al. (2006). Effects of dust deposition and river discharges on trace metal composition of *Trichodesmium* spp. in the tropical and subtropical North Atlantic Ocean. *Limnol. Oceanogr.* 51, 1755–1761. doi: 10.4319/lo.2006.51.4.1755
- Tripathi, K., Sharma, N. K., Kageyama, H., Takabe, T., and Rai, A. K. (2013). Physiological, biochemical and molecular responses of the halophilic cyanobacterium *Aphanothece halophytica* to Pi-deficiency. *Eur. J. Phycol.* 48, 461–473. doi: 10.1080/09670262.2013.859303
- Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., et al. (2017). Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. *Nucleic Acids Res.* 45, D535–D542. doi: 10.1093/nar/gkw1017

- Yong, S. C., Roversi, P., Lillington, J., Rodriguez, F., Krehenbrink, M., Zeldin, O. B., et al. (2014). A complex iron-calcium cofactor catalyzing phosphotransfer chemistry. *Science* 345, 1170–1173. doi: 10.1126/science.1254237
- Yuan, Z. C., Zaheer, R., Morton, R., and Finan, T. M. (2006). Genome prediction of PhoB regulated promoters in *Sinorhizobium meliloti* and twelve proteobacteria. *Nucleic Acids Res.* 34, 2686–2697. doi: 10.1093/nar/gkl365
- Zeng, Y. F., Ko, T. P., Lai, H. L., Cheng, Y. S., Wu, T. H., Ma, Y., et al. (2011). Crystal structures of *Bacillus* alkaline phytase in complex with divalent metal ions and inositol hexasulfate. *J. Mol. Biol.* 409, 214–224. doi: 10.1016/j. jmb.2011.03.063
- Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi: 10.1186/1471-2105-9-40

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Fernández-Juárez, Bennasar-Figueras, Tovar-Sanchez and Agawin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

3.2 Chapter 2

ORIGINAL RESEARCH published: 25 September 2020 doi: 10.3389/fmicb.2020.541558

Differential Effects of Varying Concentrations of Phosphorus, Iron, and Nitrogen in N₂-Fixing Cyanobacteria

Víctor Fernández-Juárez^{1*}, Antoni Bennasar-Figueras², Antoni Sureda-Gomila³, Guillem Ramis-Munar^₄ and Nona S. R. Agawin^{1*}

¹ Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma, Spain, ² Grup de Microbiologia, Department of Biology, University of the Balearic Islands, Palma, Spain, ³ Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands and CIBEROBN (Fisiopatología de la Obesidad y la Nutrición), Palma, Spain, ⁴ Cellomic Unit of University Institute of Research in Health Sciences of the Balearic Islands, Palma, Spain, Spain

OPEN ACCESS

Edited by:

Mar Benavides, Institut de Recherche Pour le Développement (IRD), France

Reviewed by:

Ulisse Cardini, University of Naples Federico II, Italy Douglas G. Capone, University of Southern California, United States Francisco M. Cornejo-Castillo, University of California, Santa Cruz, United States

*Correspondence:

Víctor Fernández-Juárez victor.fernandez@uib.es Nona S. R. Agawin nona.agawin@uib.es

Specialty section:

This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology

Received: 09 March 2020 Accepted: 18 August 2020 Published: 25 September 2020

Citation:

Fernández-Juárez V, Bennasar-Figueras A, Sureda-Gomila A, Ramis-Munar G and Agawin NSR (2020) Differential Effects of Varying Concentrations of Phosphorus, Iron, and Nitrogen in N₂-Fixing Cyanobacteria. Front. Microbiol. 11:541558. doi: 10.3389/fmicb.2020.641558 Diazotrophs or N₂-fixers are one of the most ecologically significant groups in marine ecosystems (pelagic and benthic). Inorganic phosphorus (PO₄³⁻) and iron (Fe) can limit the growth and N₂-fixing capacities of cyanobacteria. However, studies investigating colimitation of these factors are lacking. Here, we added different concentrations of PO₄³⁻ and Fe in two cyanobacterial species whose relatives can be found in seagrass habitats: the unicellular Halothece sp. (PCC 7418) and the filamentous Fischerella muscicola (PCC 73103), grown under different nitrate (NO₃⁻) concentrations and under N₂ as sole N source, respectively. Their growth, pigment content, N2-fixation rates, oxidative stress responses, and morphological and cellular changes were investigated. Our results show a serial limitation of NO_3^- and PO_4^{3-} (with NO_3^- as the primary limiting nutrient) for Halothece sp. Simultaneous co-limitation of PO43- and Fe was found for both species tested, and high levels of Fe (especially when added with high PO43- levels) inhibited the growth of Halothece sp. Nutrient limitation (PO43-, Fe, and/or NO3-) enhanced oxidative stress responses, morphological changes, and apoptosis. Furthermore, an extensive bio-informatic analysis describing the predicted Pho, Fur, and NtcA regulons (involved in the survival of cells to P, Fe, and N limitation) was made using the complete genome of Halothece sp. as a model, showing the potential of this strain to adapt to different nutrient regimes (P, Fe, or N).

Keywords: Halothece sp. PCC 7418, Fischerella muscicola PCC 73103, phosphorus, iron, nitrogen, N2-fixation, reactive oxygen species production, Pho-Fur-NtcA regulon

INTRODUCTION

Diazotrophs or N₂-fixers, one of the most important ecological groups, are microorganisms capable of converting atmospheric dinitrogen gas (N₂) into a readily usable form of dissolved inorganic nitrogen, i.e., ammonia (NH₃). This process is carried out through the nitrogenase protein complex (encoded by *nifH*, *nifD*, and *nifK*) by nitrogenase-containing autotrophic and heterotrophic bacteria (Hoffman et al., 2014). Biological N₂-fixation is an essential process in the marine N-cycle, providing new N to the oceans and compensating ocean denitrification (Sohm et al., 2011). In coastal benthic communities (e.g., Mediterranean seagrass

Frontiers in Microbiology | www.frontiersin.org

1

Posidonia oceanica communities), N₂-fixers are also important sources of new N, potentially supplying the entire demand of N of the associated plants (Agawin et al., 2016, 2017). These benthic communities can harbor a high diversity of N₂-fixing cyanobacteria among which are different groups of cyanobacteria that can be classified as unicellular, filamentous heterocyst forming, and filamentous non-heterocyst forming (Zehr, 2011).

Factors affecting the growth and abundance of cyanobacteria include both abiotic [e.g., macronutrients (e.g., phosphorus, P, and nitrogen, N), micronutrients (e.g., iron, Fe), light, and temperature] and biotic factors (e.g., viral cell lysis or grazing) (Sohm et al., 2011; Zehr, 2011). The nutrients P, N, and Fe are suggested to be the most important liming nutrients for cyanobacterial growth (Mills et al., 2004; Browning et al., 2017). Phosphorus (P) has key structural (i.e., for nucleic acids and for the cell membranes of most bacteria) and functional roles in various metabolic processes and limiting concentrations of P affect photosynthesis, respiration, and activities of ATP-dependent enzymes (Tripathi et al., 2013; Santos-Beneit, 2015). Nitrogen is essential for protein synthesis, and limiting concentrations of N can reduce cellular growth rates and contribute to the phenomenon called chlorosis, which causes degradation of phycobiliproteins and can lead to posterior downregulation of photosynthesis (Richaud et al., 2001; Klotz et al., 2015). Iron (Fe) is also important for photosynthesis and growth (Sunda and Huntsman, 2015); however, cells must maintain a state of homeostasis since elevated Fe-intracellular concentrations can enhance oxidative stress via Fenton and Haber-Weiss reactions (Kranzler et al., 2013). Under Fe limitation, cyanobacteria can import Fe into the cells through various high-affinity Fe transporters (Kranzler et al., 2014) or through the liberation of low-molecular-weight Fe chelators (e.g., siderophores) (Kranzler et al., 2013). In order to survive and adapt in limiting nutrient conditions, cyanobacteria must trigger molecular mechanisms by transcription factors (TFs). The most well-studied TFs in marine bacteria are PhoB, ferric uptake (Fur), and global nitrogen (NtcA) regulators involved in the acquisition of P, Fe, and N, respectively (Baichoo and Helmann, 2002; Yuan et al., 2006; Llacer et al., 2010). The PhoB, together with PhoR, an inner-membrane histidine kinase, forms a two-component regulatory system (Santos-Beneit, 2015). These TFs are activated or repressed to adapt to a changing environment (e.g., changes in nutrient concentrations) and recognize consensus sequences called transcriptional binding sites (TBS), namely, the PHO box, Fur, and NtcA boxes (Baichoo and Helmann, 2002; Yuan et al., 2006; Llacer et al., 2010), which control the expression of specific genes. The genes controlled by these TFs (PhoB, Fur, or NtcA) are part of what is known as the Pho, Fur, and NtcA regulons, and their prediction can help us understand how cells may adapt and survive under limiting concentrations of P, Fe, and N, respectively.

The demand for P, Fe, and N for N_2 -fixing cyanobacteria may be different from that for non- N_2 -fixing bacteria. Generally, cyanobacteria have elevated ratio of nitrogen (N):phosphorus (P) (a molar ratio above 25 compared with the general Redfield ratio of 16 in marine phytoplankton) (Redfield, 1934; Geider and La Roche, 2002; Quigg et al., 2011). For cyanobacteria, Effects of Nutrients in Diazotrophs

Fe requirements are 10-fold higher than in non-photosynthetic bacteria (Kranzler et al., 2013). For cyanobacterial N2-fixers, Fe is even more important, as Fe is an important structural component of the nitrogenase complex (i.e., nifH) (Hoffman et al., 2014). N2-fixation also requires a large amount of photosynthetically derived energy, which in turn is P-dependent (Sañudo-Wilhelmy et al., 2001). While non-N2-fixing cyanobacteria are usually limited by N, N2-fixing cyanobacteria can use ubiquitous atmospheric N2, conferring them a competitive advantage over non-N2-fixing cyanobacteria in N-limited waters (Sohm et al., 2011). Usually, under limiting concentrations of inorganic N (e.g., $\rm NH_3$ and $\rm NO_3^-),~\rm N_2\mbox{-fixation}$ is stimulated, while high concentrations of inorganic N inhibit N2-fixation (Manhart and Wong, 1980; Nelson et al., 1982; Knapp, 2012). In a previous study, the P-requirements of Halothece sp. PCC 7418 increased in N-limited conditions (i.e., when N2-fixation was stimulated), consequently activating their P-acquisition mechanisms [i.e., alkaline phosphatase activity (APA) and P-uptake], which were in turn controlled by Fe availability (Fernández-Juárez et al., 2019). How the concentrations of P and Fe (and their interacting effects) affect the different groups of N2-fixing cyanobacteria grown in differing N conditions remains to be investigated.

Here, we investigated the response to different concentrations of PO43- and Fe, in a multi-factorial design, of two species of N2-fixing cyanobacteria: the unicellular Halothece sp. PCC 7418 and the filamentous heterocyst-forming Fischerella muscicola PCC 73103, grown under different nitrate (NO3⁻) concentrations and under N2 as sole N source, respectively. Relatives of these two cyanobacteria have been previously found in association with the seagrass P. oceanica (Supplementary Material, Supplementary Figure S1, Agawin et al., 2017). The responses were measured in terms of physiological and molecular parameters (growth, pigment content, N2-fixation rates, oxidative stress, morphology, and apoptosis). To understand how Halothece sp. (PCC 7418) adapts in nutrient limiting environments, an extensive in silico analysis was done, taking as a model the complete genome of Halothece sp. to predict the Pho, Fur, and NtcA boxes, and the Pho, Fur, and NtcA regulons, respectively.

MATERIALS AND METHODS

Strains and Growth Conditions

N₂-fixing bacterial strains (*Halothece* sp. PCC 7418 and *F. muscicola* sp. PCC 73103) were obtained from Pasteur Culture Collection of Cyanobacteria (PCC). Experiments were conducted in 250-ml acid-clean quartz Erlenmeyer flasks filled with 150 ml of their corresponding culture media. We used ASN-III + Turks Island salts 4× medium and BG11₀ culture medium for *Halothece* sp. and *F. muscicola*, respectively (Stanier et al., 1979). These media were supplemented with 0.1–0.3% (p/v) glucose, and cells were cultivated under aerobic condition in 12:12-h light–dark cycle at 25°C and under continuous low-intensity fluorescent light (\cong 30 µE m⁻² s⁻¹) in a rotatory shaker (120 rpm). The batch cultures were maintained for over 10–14 days for each experiment, and the initial inoculum of cells was added

Frontiers in Microbiology | www.frontiersin.org

at the exponential phase [O.D._{750 nm}/_{975 nm} \cong 0.2 (*Halothece* sp.)/1.0 (*F. muscicola*)] from their original culture medium. All samples were manipulated in a class-100 clean hood to avoid Fe contamination. The subcultures for seeding were centrifuged and washed with their corresponding medium without PO₄³⁻, Fe, and NO₃⁻.

For Halothece sp., three conditions were established for PO_4^{3-} concentrations: [Low PO_4^{3-}] (0.1 μ M), [Medium PO_4^{3-}] (1 μ M), and [High PO_4^{3-}] (45 μ M). Furthermore, three conditions for Fe were also established: [Low Fe] (2 nM), [Medium Fe] (20 nM), and [High Fe] (7.5 $\mu M).$ These PO4³⁻ and Fe concentrations were combined in nine experimental conditions ([Low PO43-Low Fe], [Low PO43-Medium Fe], [Low PO_4^{3-} -High Fe], [Medium PO_4^{3-} -Low Fe], [Medium PO_4^{3-} -Low Fe], [Medium PO_4^{3-} -Medium Fe], [Medium PO_4^{3-} -High Fe], [High PO_4^{3-} -Low Fe], [High PO_4^{3-} -Medium Fe], and [High PO_4^{3-} -High Fe]) (Supplementary Table S1). The solutions of PO43-, Fe, and NO3- were prepared from dipotassium phosphate (K₂HPO₄), ferric citrate (C₆H₅FeO₇), and sodium nitrate (NaNO₃), respectively. As reference for the nutrient concentrations for [Low PO_4^{3-}] and [Low Fe], we followed the surface water concentrations of the Mediterranean Sea (Statham and Hart, 2005; Powley et al., 2017), while for [High PO43-] and [High Fe], we followed the optimal concentrations of ASN-III + Turks Island salts 4× medium. We performed two sets of experiments following Fernández-Juárez et al. (2019): under 4.4 mM of NO3⁻ (optimal concentration) and 0.15 mM of NO3⁻ (referred to from now on as [Low NO3-] and represents the minimum amount of NO3⁻ in which Halothece sp. grew with maximal N2-fixation rates). The cells were incubated for 10 days in these experiments (Supplementary Table S1). After these experiments, we selected the experimental conditions - [Low PO_4^{3-} -Low Fe], [Low PO_4^{3-} -High Fe], [High PO_4^{3-} -Low Fe], and [High PO_4^{3-} -High Fe] – in which *Halothece* sp. cells were grown under extremely limiting NO_3^- concentrations (6.66 nM), following NO₃⁻ concentrations in the Mediterranean Sea as reference (Powley et al., 2017; Supplementary Table S1). The cultures were maintained over 12 days. To check the reversibility of the phenotypic characteristics of the cells, we re-inoculated with PO_4^{3-} , Fe, and/or NO_3^{-} in optimal concentrations (PO_4^{3-} : 45 $\mu M,$ Fe: 7.5 $\mu M,$ and $NO_3^{-} :$ 4.4 mM) at day 12. Inorganic phosphorus (PO4³⁻) was added to [Low PO4³⁻-Low Fe], and NO₃⁻ was added to [High PO₄³⁻-High Fe] in extremely limiting NO_3^- treatments; and PO_4^{3-} and Fe were added to [Low PO_4^{3-} -Low Fe] in optimal NO_3^- treatments. These cultures were maintained for over 4 days more (Supplementary Table S1).

For *F. muscicola*, PO_4^{3-} and Fe were added in nine combination treatments as previously described for *Halothece* sp. but using 180 μ M for [High PO_4^{3-}] and 30 μ M for [High Fe]. These optimal concentrations for PO_4^{3-} and Fe are recommended for BG11₀ medium (Stanier et al., 1979). These PO_4^{3-} and Fe combinations were performed without any combined N source, and cultures were maintained over 14 days.

All cultures with their respective treatment conditions were performed in duplicate, and growth, pigment content, N₂fixation rates, reactive oxygen species (ROS) production and morphological and/or cellular response (e.g., apoptosis) were measured. For *Halothece* sp., subsamples of the culture (1.5 ml) were taken from the culture flasks at the final stage of the experiment and were counted through flow cytometric analysis to normalize the results per cell and for the phenotype recovery experiments. For *F. muscicola*, results were normalized per total chlorophyll (Chl).

Growth Measurement

The growth of *Halothece* sp. and *F. muscicola* was measured by optical density (O.D.) using a quartz cuvette and read in Cary Eclipse spectrometer. Growth measurements were measured in *Halothece* sp. every 2 days at 750 nm. In *F. muscicola*, we measured O.D. at 975 nm (maximum O.D. of the cells), and this was measured every 2–4 days. Growth rate (μ , day⁻¹) and generation time (T_g , days) were calculated following the formula described in Widdel (2010) and Ng et al. (2015):

$$\mu = \frac{Ln (O.D.f) - Ln (O.D.i)}{Tf - Ti}$$
(1)

$$T_{\rm g} = \frac{Ln\left(2\right)}{\mu} \tag{2}$$

where $O.D._{\rm f}$ is the O.D. at the final time (*Tf*) and $O.D._{\rm i}$ is the O.D. at the initial time (*T*_i) of the exponential phase of the growth curve.

To evaluate the type of co-limitation of the growth response of N and P (simultaneous co-limitation, independent co-limitation, or serial limitation), we followed the log ratio effect-size criteria based on the mean treatment and control response in Harpole et al. (2011) and Hedges et al. (1999). We calculated the following log growth response ratios as follows:

Nitrogen (N) response :
$$\ln (N_1 P_0 / N_0 P_0)$$
 (3)

Phosphorus (P) response : $\ln (N_0 P_1 / N_0 P_0)$ (4)

$$N + P \text{ response}: \ln \left(N_1 P_1 / N_0 P_0 \right) \tag{5}$$

For Halothece sp., N₀P₀ represents the growth rate under extremely limiting NO_3^- conditions at [Low PO_4^{3-}], N_1P_0 is the growth rate under [Low NO_3^-] or optimal NO_3^- at [Low PO4³⁻] conditions, N₀P₁ is the growth rate under extremely limiting NO3⁻ conditions at [High PO4³⁻], and N1P1 is the growth rate under combinations of under [Low NO3-] or optimal NO₃⁻ at [High PO₄³⁻] conditions. Responses = 0 are responses identical to control values (no response), >0 are positive responses, and <0 are negative responses. The critical threshold value, representing the minimum significant treatment responses at p = 0.05 relative to N₀P₀, was calculated to graphically determine the nature of co-limitation. To choose this critical threshold value, we used the T-score criteria, in which those values that surpass the critical T-score were considered statistically significant (Supplementary Material, Harpole et al., 2011). We also evaluated the type of co-limitation growth response of PO₄³⁻ and Fe under NO₃⁻ optimal and [Low NO₃⁻]

Frontiers in Microbiology | www.frontiersin.org

September 2020 | Volume 11 | Article 541558

conditions, substituting Fe for N in the eqs. 3–5 above, with Fe₀P₀ representing the growth rate under [Low Fe] at [Low PO₄^{3–}] conditions. For *F. muscicola*, we could only evaluate the nature of P and Fe co-limitation because all the treatments were incubated with no added combined N source.

Monod kinetic models were performed with data of the initial concentrations of $PO_4{}^{3-}$, Fe, and $NO_3{}^-$ (Monod, 1949). The Monod growth curves for *Halothece* sp. were plotted against different concentrations of $NO_3{}^-$ and $PO_4{}^{3-}$ incubated at different $PO_4{}^{3-}$ ([Low $PO_4{}^{3-}$], [Medium $PO_4{}^{3-}$], and [High $PO_4{}^{3-}$]) and Fe ([Low-Medium Fe] and [High Fe]) concentrations, respectively. The Monod growth curves for *F. muscicola* incubated at different Fe concentrations ([Low-Medium Fe] and [High Fe]) were also plotted against different concentrations of $PO_4{}^{3-}$. Monod kinetic parameters were calculated from plotted hyperbolic functions of the Monod equation:

$$\mu = \frac{\mu' max \left(Q - Q m in \right)}{Q} \tag{6}$$

where Q is the concentration of NO₃⁻ or PO₄³⁻, Q_{min} is the minimal concentration of NO₃⁻ or PO₄³⁻ for growth, and μ'_{max} is the maximum specific growth rate. Half-velocity constant (K_{μ}) was calculated as the concentration at half of the μ'_{max} (Monod, 1949).

Abundance Measurement of *Halothece* sp. Using Flow Cytometry

Halothece sp. cells at the end of the different experiments were fixed with glutaraldehyde 25% (v/v) in H₂O (Sigma-Aldrich) [final concentration 0.05% (v/v)] and were counted in a Becton Dickinson FACSVerse cytometer (Becton and Dickinson, Franklin Lakes, NJ, United States). Fluorescent beads, BD FACSuiteTM CS&T research beads (Becton and Dickinson and Company BD Biosciences, San Jose, CA, United States), were used as internal standard to calibrate the instrument. To count *Halothece* sp. cells, we selected fluorescein isothiocyanate (FITC) (488-nm excitation, 570/26-nm emission) and phycoerythrin (PE) (488-nm excitation, 576/26-nm emission) combination fluorescence signals, which show clearly the population of the cells, recording for each sample a total of 10 × 10³ cells.

Pigment Measurement in Fischerella muscicola

Chlorophyll (Chla, Chlb, and total Chl) and phycobiliprotein [R-PE and R-phycocyanin (R-PC)] content for *F. muscicola* were measured and calculated following Porra et al. (1989) and Sobiechowska-Sasim et al. (2014). Briefly, for chlorophyll measurements, 5-ml samples of the cultures were filtered through MFV5-025 glass microfiber filters (MFV5-025, FilterLab), grounded, and extracted with 4 ml of acetone 80% for 2 h. After extraction, cells and filter debris were discarded by centrifugation, and the supernatant was read at 647 and 664 nm in quartz cuvette in a Cary Eclipse spectrometer. For phycobiliproteins, 5-ml samples of the culture were filtered as described above, grounded, and extracted in a buffer medium composed of 0.25 M of Trizma base, 10 mM of disodium EDTA, and 2 mg ml⁻¹ of lysozyme. After extraction, cells and filter debris were centrifuged, and supernatants were read at 564, 618, and 750 nm in quartz cuvette in a Cary Eclipse spectrometer.

N₂-Fixation Rate Measurement by Acetylene Reduction Assay

N₂-fixation rates of Halothece sp. (pmol N₂-fixed cell⁻¹ h⁻¹) and F. muscicola (nmol N2-fixed nmol total Chl-1 h-1) were measured through acetylene reduction assay (ARA) at the end of the experiments, following the method of Agawin et al. (2014). Halothece sp. N2-fixing activities were measured under known N2-fixing conditions (i.e., anaerobic condition and during the dark photoperiod and in [Low NO3-]) (Reddy et al., 1993). For F. muscicola, measurements of N2-fixation rates were performed under aerobic conditions during both light and dark photoperiods. Samples of known volume of the cultures (10 ml) were filtered through 0.45-µm GF/F filters (MFV5-025, FilterLab), these filters were incubated with acetylene at 20% (v/v) final concentration injected in each vial using gastight Hamilton syringes, and ethylene production was measured (after 3 h of incubation) by gas chromatographic (GC) methods. Ethylene and acetylene were determined using a GC (model HP-5890, Agilent Technologies) equipped with a flame ionization detector (FID). The column was a Varian wide-bore column (ref. CP7584) packed with CP-PoraPLOT U (27.5-m length, 0.53-mm inside diameter, 0.70-mm outside diameter, 20-µm film thickness). Helium was used as carrier gas at a flow rate of 30 ml min $^{-1}.$ Hydrogen and airflow rates were set at 30 and 365 ml min^{-1} , respectively. The split flow was used so that the carrier gas flow through the column was 4 ml min⁻¹ at a pressure of 5 psi. Oven, injection, and detector temperatures were set at 52, 120, and 170°C, respectively. Before passing the samples in the GC, standard ethylene and acetylene were ran, and their retention times noted. Ethylene produced was calculated using the equations in Stal (1988). The acetylene reduction rates were converted to N₂-fixation rates (nmol ml⁻¹ h⁻¹) using a factor of 4:1 (Jensen and Cox, 1983).

Measurement of Reactive Oxygen Species Production

The ROS production was measured using the molecular probe 2',7'-dichlorofluorescein diacetate (DCFH-DA; Sigma) in culture media (ASN-III + Turks Island salts $4 \times$ or BG11₀), which was added to a 96-well microplate (Thermo Scientific) containing cyanobacterial samples (final concentration of probe at 15 µg ml⁻¹). Within the cells, H₂O₂ production oxidizes DCFH-DA to 2',7'-dichlorofluorescein (DCF) whose green fluorescence can be measured at 25°C in a FLx800 Microplate Fluorescence Reader (BioTek Instruments, Inc.) for 1 h with an excitation of 480 nm and emission of 530 nm. The measurements (the slope of the linear regression obtained) were expressed as arbitrary units (AU) per cell⁻¹. DCFH-DA was added in ASN-III + Turks Island salts $4 \times$ or BG11₀ without cells as blanks under the same conditions as above.

Frontiers in Microbiology | www.frontiersin.org

Microscopy and Morphological Studies

Autofluorescence, morphological changes, and DCF oxidized by ROS were observed with a confocal microscope (Leica TCS SPE, Leica Microsystems). Samples were placed onto a clean glass microscope slide, and $40 \times$ and $100 \times$ objective lens were used to visualize the cells. Images were processed using the software Leica application suite (Leica Microsystems). Autofluorescence was detected with an excitation of 532 nm and an emission of 555- to 619-nm wavelengths. For visualization of DCF oxidized by ROS, we used excitation of 488 nm and emission of 493to 562-nm wavelengths. Cell apoptosis for *F. muscicola* was observed with Alexa Fluor 488 annexin V/Dead Cell Apoptosis Kit (Thermo Fisher), in which apoptotic cells were detected when the exposed phosphatidylserine of these cells conjugates with annexin. Annexin was detected and visualized at excitation of 530–570 nm and emission of 488-nm wavelengths.

Bio-Informatic in silico Analysis

The TBSs (PHO box, Fur, and NtcA boxes) for SphR (i.e., PhoB), ferric uptake regulator (Fur), and global nitrogen regulator (NtcA) already described in cyanobacteria were explored and downloaded from RegPrecise (May, 2020), a web resource for collection, visualization, and analysis of transcriptional regulons reconstructed by comparative genomics (Novichkov et al., 2013). From this database, multifasta files were generated for each TBS, including several genera of cyanobacteria (Cyanothece, Gloeobacter, Microcystis, Nostoc, Prochlorococcus, Synechococcus, Synechocystis, Thermosynechococcus, and Trichodesmium). We obtained three separated multifasta files (one for each TBS type) that contained 77 sequences for PHO box, 167 sequences for Fur boxes, and 228 sequences for NtcA boxes (Supplementary Material). For the prediction of the TBS (PHO box, Fur, and NtcA boxes) for Halothece sp., we used a userfriendly web interface for prediction of prokaryote promoter elements and regulons, PePPER, using the DNA motif build and search platform¹ (de Jong et al., 2012). Position frequency matrices (PFMs; using MEME and subsequently transposed to a MOODS compatible PWM format) were made from each multifasta file (Supplementary Material). The PFMs generated were searched in the whole genome of Halothece sp. PCC 7418 (GenkBank: NC_019779.1), obtaining 804 hits for SphR (PhoB), 822 hits for Fur, and 238 hits for NtcA. The corresponding hits were manually explored with UGENE (Golosova et al., 2014). We selected the potential TBS on the basis of their relative positions to the genes (a maximum of -800 bp upstream or +40 bp downstream). DNA sequence logos were generated with WebLogo (Crooks et al., 2004) to graphically indicate the relative frequency of each amino at each position, i.e., predicting the consensus sequences for Pho, Fur, and NtcA boxes. Finally, the genes detected as associated to PHO box, Fur, and NtcA boxes were annotated and submitted to EggNOG v5.0 for further identification of orthology relationships and for functional analysis to describe the Pho, Fur, and NtcA regulons, respectively (Huerta-Cepas et al., 2018).

¹http://genome2d.molgenrug.nl/g2d_pepper_motifs.php

Statistical Analysis

Non-parametric test, Kruskal–Wallis analysis followed by an unpaired two-samples Wilcoxon test was used to study the effect of the nutrient treatment conditions to growth, pigment concentrations, N_2 -fixation rates, and ROS production. Spearman's correlation was used to determine the relationships between growth and N_2 -fixation rates. The statistical analyses were performed using the SPSS program version 21 (IBM Corp year 2012).

RESULTS

Effect of Varying Nutrient Concentrations (P, Fe, and/or N) on Halothece sp. and Fischerella muscicola Growth of Halothece sp. Under Different Concentrations of NO_3^-

The decreasing concentrations of inorganic nitrogen (i.e., NO₃⁻) negatively affected the growth of *Halothece* sp. PCC 7418 (Kruskal–Wallis, H = 24.55, 2 d.f., p = 0.045, **Table 1**). Average growth rates (μ , of all the combinations of different PO₄³⁻ and Fe concentrations) under optimal, low, and extremely limiting NO₃⁻ conditions were 0.33 \pm 0.017 day⁻¹ ($T_{\rm g}$, 2.18 days), 0.24 \pm 0.023 day⁻¹ ($T_{\rm g}$, 3.37 days), and 0.046 \pm 0.0075 day⁻¹ ($T_{\rm g}$, 16.52 days), respectively. Under extremely limiting NO₃⁻ conditions, the growth of the unicellular cyanobacteria dramatically decreased with rates eight times lower than in optimal NO₃⁻ conditions, and cells were not able to overcome the latent growth phase in the cultures (**Table 1**).

Growth of *Halothece* sp. Under Different PO_4^{3-} and Fe Concentrations

No significant differences in growth of *Halothece* sp. were observed among different combination conditions of PO_4^{3-} and Fe under optimal NO_3^- (Kruskal–Wallis, H = 7.21, 8 d.f., p = 0.51, **Table 1**; and H = 9.02, 8 d.f., p = 0.34, **Figure 1A**). On the contrary, under [Low NO_3^-] conditions, significant differences were found (Kruskal–Wallis, H = 15.83, 8 d.f., p = 0.045, **Figure 1B**). Under [Low NO_3^-], at high concentrations of PO_4^{3-} , μ was generally higher than at medium and low concentrations (**Table 1** and **Figure 1B**) except when it was combined with high Fe levels (**Table 1** and **Figure 1B**), showing that high Fe levels had a negative impact on their growth at [High PO_4^{3-}] (**Figure 1B**).

Recovery of *Halothece* sp. After Nutrient Re-inoculation

The recovery of *Halothece* sp. cells from low PO_4^{3-} and low Fe (and/or under extremely limiting NO_3^{-}) to high PO_4^{3-} and high Fe concentrations with re-inoculation of the nutrients (PO_4^{3-} , Fe, and/or NO_3^{-}) in the medium was dependent on the initial conditions of PO_4^{3-} , Fe, and NO_3^{-} concentrations in the culture medium (**Figure 1C**). In the [Low PO_4^{3-} -Low Fe] condition under extremely limiting NO_3^{-} conditions, the cells exhibited total chlorosis, and the addition of PO_4^{3-} , Fe,

Frontiers in Microbiology | www.frontiersin.org

TABLE 1 Growth rate (μ) and generation time (T_g) for Halothece sp. (at different NO₃⁻ concentrations) and Fischerella muscicola at different combinations of PO₄³⁻ and Fe concentrations.

Treatments/ parameters	Halothece sp.							Fischerella muscicola	
	Optimal NO $_3^-$ (4.4 mM)		Low NO ₃ ⁻ (0.15 mM)		Under extremely limiting NO ₃ ⁻ (6.66 nM)		$N_{\rm 2}$ as only source of N		
	$\mu \pm SR$ (d ⁻¹)	$T_{g} \pm SR$ (d)	$\mu \pm SR (d^{-1})$	$T_{g} \pm SR$ (d)	$\mu \pm$ SR (d ⁻¹)	$T_{g} \pm SR$ (d)	$\mu \pm SR$ (d ⁻¹)	$T_{g} \pm SR$ (d)	
[Low PO ₄ ^{3–} - Low Fe]	0.31 ± 0.06	2.33 ± 0.01	0.19 ± 0.01	3.74 ± 0.26	0.05 ± 0.00	12.91 ± 0.77	0.30 ± 0.03	2.32 ± 0.22	
[Low PO ₄ ^{3–} - Medium Fe]	0.31 ± 0.06	2.36 ± 0.02	0.13 ± 0.02	5.29 ± 0.65	*	*	0.26 ± 0.06	2.81 ± 0.62	
[Low PO ₄ ^{3–} - High Fe]	0.35 ± 0.08	2.08 ± 0.01	0.13 ± 0.01	5.56 ± 0.65	0.03 ± 0.00	20.87 ± 0.00	0.43 ± 0.26	2.53 ± 0.88	
[Medium PO ₄ ^{3–} - Low Fe]	0.33 ± 0.09	2.24 ± 0.03	0.25 ± 0.03	2.82 ± 0.30	*	*	0.42 ± 0.12	1.79 ± 0.52	
[Medium PO ₄ ^{3–} - Medium Fe]	0.27 ± 0.01	2.60 ± 0.05	0.29 ± 0.05	2.49 ± 0.41	*	*	0.22 ± 0.04	3.28 ± 0.58	
[Medium PO ₄ ^{3–} - High Fe]	0.42 ± 0.00	1.63 ± 0.03	0.20 ± 0.03	3.47 ± 0.53	*	*	0.25 ± 0.10	3.25 ± 1.29	
[High PO ₄ ^{3–} - Low Fe]	0.28 ± 0.05	2.56 ± 0.02	0.40 ± 0.02	1.75 ± 0.10	0.07 ± 0.02	10.84 ± 2.84	0.45 ± 0.23	2.06 ± 1.05	
[High PO ₄ ^{3–} - Medium Fe]	0.35 ± 0.04	2.04 ± 0.01	0.39 ± 0.01	1.77 ± 0.04	*	*	0.50 ± 0.09	1.44 ± 0.25	
[High PO4 ^{3–} - High Fe]	0.34 ± 0.03	2.04 ± 0.03	0.20 ± 0.03	3.54 ± 0.54	0.03 ± 0.01	21.36 ± 3.49	0.74 ± 0.00	0.94 ± 0.00	

Values are the mean with their spanning range (SR) between the duplicate measurements. Asterisks (*) are conditions in which μ and T_g were not measured.

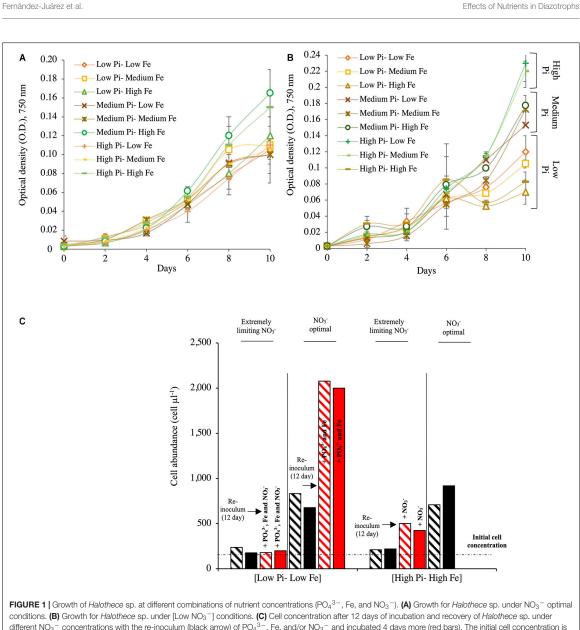
and NO₃⁻ (at final concentrations of 45 μ M, 7.5 μ M, and 4.4 mM, respectively) was not sufficient to restore their original phenotype. However, in [High PO₄³⁻–High Fe] treatments under extremely limiting NO₃⁻ conditions, re-inoculation of NO₃⁻ exhibited slight recovery (recovering their greenish color; data not shown). In addition, in [Low PO₄³⁻–Low Fe] treatment under optimal NO₃⁻, which was re-inoculated with PO₄³⁻ and Fe, the cells responded with higher growth and recovered their greenish color (**Figure 1C**).

Growth of Fischerella muscicola Under Different PO_4^{3-} and Fe Concentrations

Unlike what was observed for *Halothece* sp., decreasing concentration of NO₃⁻ did not affect the μ of *F. muscicola* PCC 73103 (data not shown). With N₂ as sole N source, *F. muscicola* reached the maximum μ of 0.74 day⁻¹ (T_g , 0.94 days) at the highest concentrations of PO₄³⁻ and Fe, and it was higher than the rest of the treatments (Kruskal-Wallis, H = 16.03, 8 d.f., p = 0.042, **Figure 2A**). The cells under [High PO₄³⁻-High Fe] conditions also showed the highest average content of Chla, Chlb, and total chlorophyll (total Chl) (**Figure 2B**) and phycobiliprotein (R-PC and R-PE) content (**Figure 2C**).

Nature of Limitation of PO_4^{3-} , Fe, and/or NO_3^{-} in *Halothece* sp. and/or *Fischerella muscicola*

The evaluation of the limitation of NO_3^- and PO_4^{3-} in *Halothece* sp. under extremely limiting NO_3^- conditions concentrations revealed that cells were serially limited, i.e., first with NO_3^-

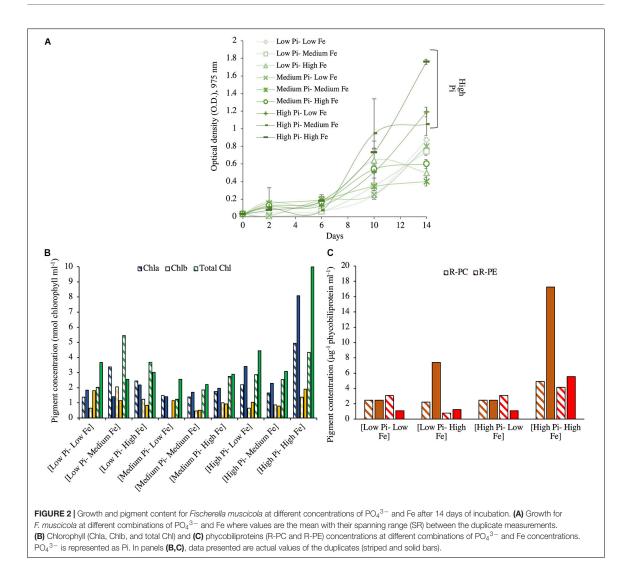

and then with PO_4^{3-} (N response > 0, P response = 0 and N + P response > 0) (Figure 3A). PO_4^{3-} did not have any effect on the growth of cells when they were extremely N limited. Evaluating the effects of the addition of PO43- and Fe with increased N supply, we showed that under optimal NO₃⁻, *Halothece* sp. did not respond significantly to any addition of PO_4^{3-} and Fe (p < 0.05, Figure 3B). Under sufficient N supply (i.e., at [Low NO3-] when maximum rates of N2fixation were measured), PO_4^{3-} was the main limiting nutrient and Fe had a negative effect on the growth of Halothece sp. at high Fe levels (Fe response < 0, P response > 0, and P + Fe response > 0) (Figure 3C). However, we also found a simultaneous co-limitation of PO43- and Fe (Fe response = 0, P response = 0, and P + Fe response > 0) when both elements were added at medium PO43- and mediumhigh Fe concentrations for Halothece sp. (Figure 3C). For *F. muscicola*, a simultaneous co-limitation of PO_4^{3-} and Fe was also observed (Fe response = 0, P response = 0, and P + Fe response > 0) when both elements were added at high PO₄³⁻ and Fe concentrations (Figure 3C).

Monod Growth Kinetics of Halothece sp. and Fischerella muscicola

The N-dependent Monod growth kinetics of Halothece sp. incubated at different $PO_4{}^{3-}$ concentrations showed P dependence (Figure 4A). Halothece sp. had higher maximum growth at high and medium $PO_4{}^{3-}$ levels $(\mu'_{max} = 0.50 \text{ day}{}^{-1})$ compared with low $PO_4{}^{3-}$ levels

September 2020 | Volume 11 | Article 541558

Frontiers in Microbiology | www.frontiersin.org


conditions. (B) Growth for Halothece sp. under [Low NO₃⁻] conditions. (C) Cell concentration after 12 days of incubation and recovery of Halothece sp. under different NO₃⁻ concentrations with the re-inoculum (black arrow) of PO₄³⁻, Fe, and/or NO₃⁻ and incubated 4 days more (red bars). The initial cell concentration is referenced with the black dashed line. PO43- is represented as Pi. In panels (A,B), values are the mean with their spanning range (SR) between the duplicate measurements. In panel (C), data presented are actual values of the duplicates (striped and solid bars).

 $(\mu'_{max} = 0.44 \text{ day}^{-1})$. However, the half-velocity constant at [High PO_4^{3-}] ($K_{\mu} = 0.217$ mM, with a $Q_{\min} = 1.55$ mM) was the lowest compared with that at [Medium PO43-] $(K_{\mu} = 0.45 \text{ mM}, \text{ with a } Q_{\min} = 1.19 \text{ mM}) \text{ and } [\text{Low PO}_4^{3-}]$ $(K_{\mu} = 0.53 \text{ mM}, \text{ with a } Q_{\min} = 1.22 \text{ mM})$ (Figure 4A). The P-dependent growth kinetics of Halothece sp. incubated at different Fe concentrations showed μ'_{max} (0.25 day⁻¹) and Q_{min} (5.37 μ M) at high Fe levels that were lower and higher, respectively, than at low to medium Fe levels $(\mu'_{max} = 0.43 \text{ day}^{-1}, Q_{min} = 3.13 \ \mu\text{M})$; but K_{μ} was lower at [High Fe] (K_{μ} = 0.01 μ M) than in [Low-Medium Fe] $(K_{\mu} = 0.35 \ \mu \text{M})$ (Figure 4B). On the other hand, F. muscicola generally had higher values of the P-dependent kinetic parameters than Halothece sp. when incubated at different Fe concentrations (Figure 4B). F. muscicola had the higher maximum growth ($\mu'_{max} = 0.83 \text{ day}^{-1}$), half-velocity constant (K_{μ} = 1.85 μ M), and higher minimal cell quota $(Q_{\min} = 12.58 \ \mu M)$ at high Fe treatments as compared with cells at low to medium levels of Fe ($\mu'_{max} = 0.62 \text{ day}^{-1}$, $K_{\mu} = 0.03 \,\mu\text{M}$, $Q_{\min} = 12.33 \ \mu M$) (Figure 4B).

Frontiers in Microbiology | www.frontiersin.org

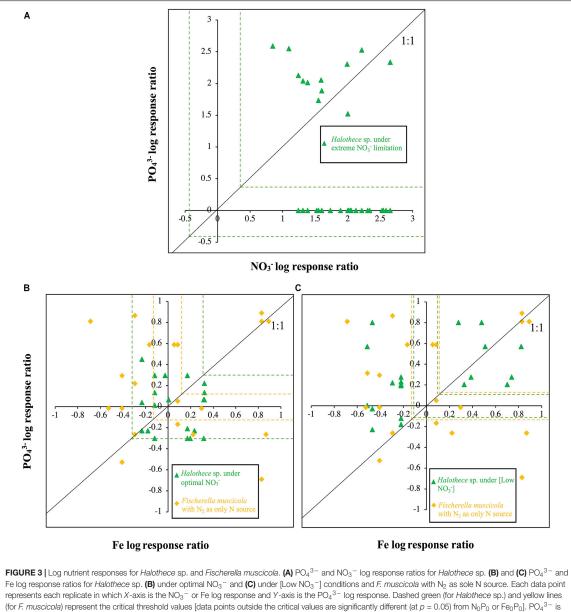
September 2020 | Volume 11 | Article 541558

Effect of Varying Concentrations of P and Fe on N_2 -Fixation Rates of Halothece sp. and Fischerella muscicola

Halothece sp.-specific N₂-fixation rates under [Low NO₃⁻] at different treatment combinations of PO₄³⁻ and Fe were significantly linearly correlated with cell concentrations (Spearman's correlation, r = 0.7, p < 0.05, n = 18). N₂-fixation rates at [Low PO₄³⁻] conditions were undetectable and generally increased at medium PO₄³⁻ and at increasing Fe concentrations (**Figure 5A**). However, at the highest PO₄³⁻ and Fe concentrations, N₂-fixation was again undetectable (**Figure 5A**). For *F. muscicola*, where specific N₂-fixation rates were measured during the light and dark photoperiods, there were no significant differences among the treatments during the light and dark phase (Kruskal–Wallis, H = 15.45, 8 d.f., p = 0.051; data not shown). Higher N₂-fixation rates under high PO₄³⁻

levels were detected, especially when combined with high Fe concentrations (Figure 5B).

Effect of Varying Concentrations of P and Fe on the Production of Reactive Oxygen Species of *Halothece* sp. and *Fischerella muscicola*


Reactive oxygen species production for *Halothece* sp. was measured under optimal NO₃⁻ and [Low NO₃⁻] conditions (**Figures 6A,B**). Under optimal NO₃⁻, there were significant differences among the treatments (Kruskal–Wallis, H = 15.67, 8 d.f., p = 0.047, **Figure 6A**). ROS production was higher at [Low PO₄³⁻–Low Fe] conditions compared with increasing concentrations of PO₄³⁻ at the same [Low Fe] conditions (**Figure 6A**). At [Low PO₄³⁻] conditions, increasing Fe concentration reduced the ROS production (**Figure 6A**). On the

Frontiers in Microbiology | www.frontiersin.org

September 2020 | Volume 11 | Article 541558

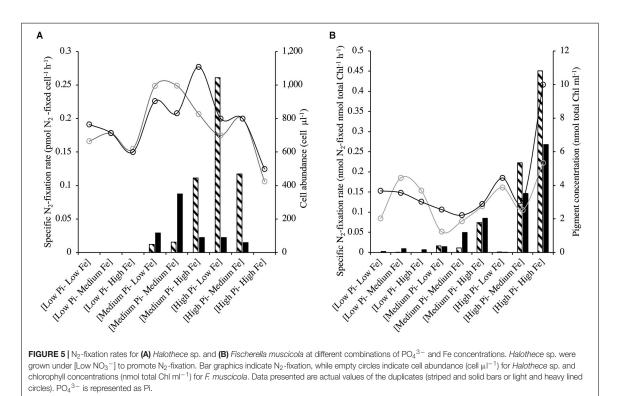
Fernández-Juárez et al.

Effects of Nutrients in Diazotrophs

(for F. muscicola) represent the or represented as Pi.

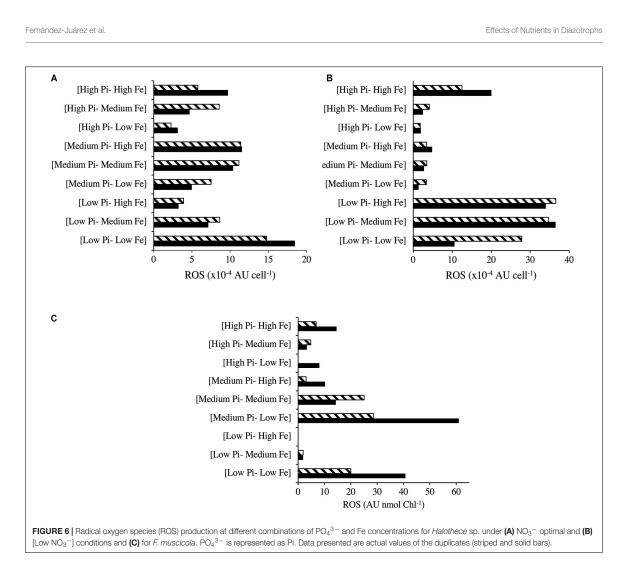
other hand, cells under PO_4^{3-} and Fe limitation ([Low PO_4^{3-} -Low Fe]) and optimal NO_3^- showed higher ROS production, as observed with the greener color (oxidized DCF) of cells, compared with the red color of cells that were not producing ROS in [High PO_4^{3-} -High Fe] (**Figures 7A,B**). On the other hand, under [Low NO_3^-] conditions, we did not detect significant differences in ROS production (Kruskal–Wallis, H = 13.80, 8 d.f., p = 0.087, **Figure 6B**). Nonetheless, we observed ROS production under [Low NO_3^-] conditions to be higher at

[Low PO_4^{3-} -Medium/High Fe] than the rest of the treatments except at [High PO_4^{3-} -High Fe] and [Low PO_4^{3-} -Low Fe] (**Figure 6B**). At [Medium Fe] conditions, increasing PO_4^{3-} concentrations reduced ROS production (**Figure 6B**).


The ROS production of *F. muscicola* did not vary among the different treatment combinations of PO_4^{3-} and Fe (Kruskal–Wallis, H = 12.30, 8 d.f., p = 0.14, **Figure 6C**). Nonetheless, there was a tendency of higher ROS production at [Low PO_4^{3-} -Low Fe] compared with [High PO_4^{3-} -High Fe] conditions, consistent

Frontiers in Microbiology | www.frontiersin.org

September 2020 | Volume 11 | Article 541558



Frontiers in Microbiology | www.frontiersin.org

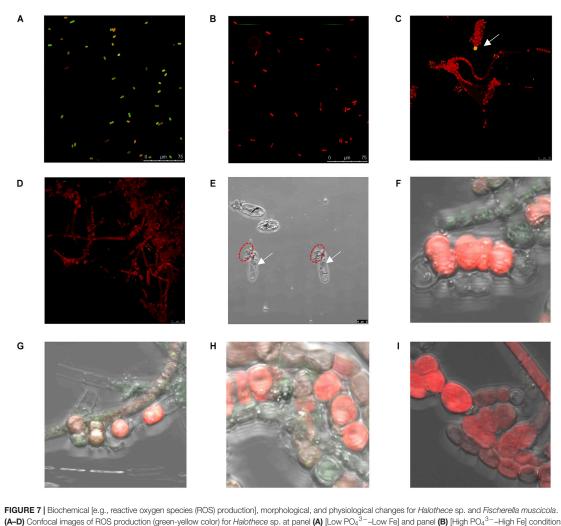
10

with the confocal images showing oxidative stress, observing more green-yellowish color cells (indicative of ROS production) in [Low PO_4^{3-} -Low Fe] treatments (**Figure 7C**) than in [High PO_4^{3-} -High Fe] conditions (**Figure 7D**).

Effect of Varying Concentrations of P and Fe on the Morphology and Physiology of *Halothece* sp. and *Fischerella muscicola*

Halothece sp. cells under optimal nutrient conditions (PO₄³⁻, Fe, and/or NO₃⁻) exhibited sizes between 4 and 7 µm. Limitation of PO₄³⁻ and Fe under NO₃⁻ optimal and [Low NO₃⁻] conditions did not cause changes in sizes. However, extremely limiting NO₃⁻ conditions caused an increase in size of the cells (up to two-fold with respect to the normal size), reaching an average size of 12.7 \pm 0.74 µm. Under extremely limiting NO₃⁻ conditions together with PO₄³⁻ and Fe limitation, cells experience vacuole production together with modification of shape and breakage of the cells (**Figure 7E**). In addition, we also observed that under these same conditions, cells experience total chlorosis

(dramatic loss of phycobiliproteins), and cells were barely visible under confocal microscopy compared with cells under optimal nutrient conditions.


Programmed cell death for *F. muscicola* was studied through apoptosis assay to detect mortality in four treatments: [Low PO_4^{3-} -Low Fe] (**Figure 7F**), [Low PO_4^{3-} -High Fe] (**Figure 7G**), [High PO_4^{3-} -Low Fe] (**Figure 7H**), and [High PO_4^{3-} -High Fe] (**Figure 7I**). Results showed that PO_4^{3-} -High Fe], there was no signal of annexin V in conjugation with phosphatidylserine detected, indicating the good status of the cells in this treatment.

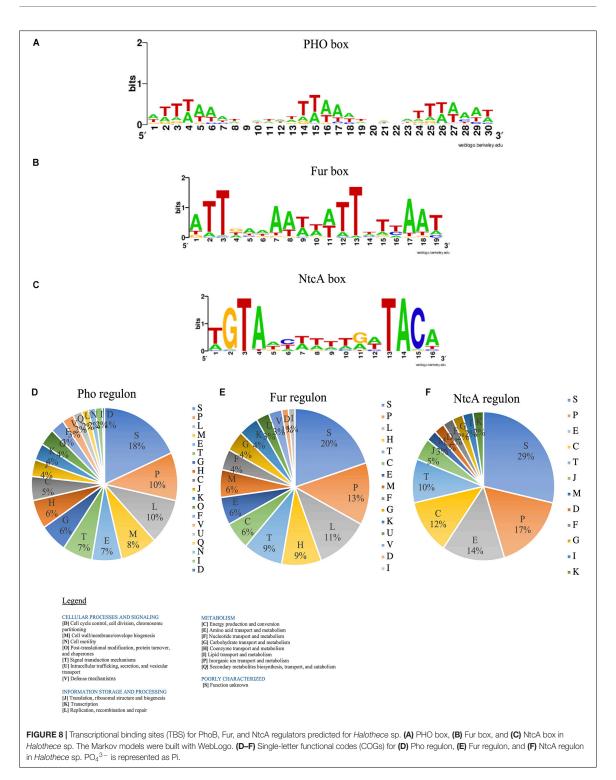
Prediction of Genes Involved in P, Fe, and N Adaptation and Survival in *Halothece* sp.

We predicted the consensus sequences for TBSs for SphR-PhoB (PHO box), Fur regulator (Fur Box), and NtcA protein (NtcA box) for *Halothece* sp. For PHO box, we

Frontiers in Microbiology | www.frontiersin.org

(**A-D**) Confocal images of ROS production (green-yellow color) for *Halothece* sp. at panel (**A**) [Low PO_4^{3-} -Low Fe] and panel (**B**) [High PO_4^{3-} -High Fe] conditions and for *F. muscicola* at panel (**C**) [Low PO_4^{3-} -Low Fe] and panel (**C**) [Low PO_4^{3-} -High Fe] conditions. Images were taken at 400×. Panel (**E**) [Low PO_4^{3-} -Low Fe] condition under extremely limiting NO_3^{-} conditions under the bright field (arrows indicate vacuole formation, and red dashed circles indicate cell breaks). (**F–I**) Apoptosis assay results for *F. muscicola* under confocal microscopy. Panel (**F**) [Low PO_4^{3-} -Low Fe], panel (**G**) [Low PO_4^{3-} -High Fe], panel (**H**) [High PO_4^{3-} -Low Fe], and panel (**G**) [Low PO_4^{3-} -High Fe], panel (**H**) [High PO_4^{3-} -Low Fe], and panel (**G**) [Low PO_4^{3-} -High Fe], panel (**H**) [High PO_4^{3-} -Low Fe], and panel (**G**) [Low PO_4^{3-} -High Fe], panel (**H**) [High PO_4^{3-} -Low Fe], and panel (**G**) [Low PO_4^{3-} -High Fe], panel (**H**) [High PO_4^{3-} -Low Fe], and panel (**G**) [Low PO_4^{3-} -High Fe]. In panels (**F–I**), the green color resulted from the binding of annexin with the phosphatidylserines that were exposed in apoptotic cells, and images (**E–I**) were taken at 1,000× with zoom. PO_4^{3-} is represented as Pi.

established that consensus sequence was formed by three tandem repeats of 8 bp ([ATTTAAAT]₃) separated by 3 bp (**Figure 8A**). Fur Box was formed by 19 bp inverted repeats (ATTGAAAATTATTTT[T/C]AAT) (**Figure 8B**). Finally, NtcA box was constituted by TGTAN₈TACA in which GTA at positions 2–4 and TAC at positions 13–15 were well conserved (**Figure 8C**). From the prediction of these boxes, we described what potential genes are implicated in Pho, Fur, and NtcA regulons (**Supplementary Tables S2–S4**).


Pho regulon (Figure 8D) was mainly constituted by genes involved in inorganic ion transport and metabolism (P) (10%), replication, recombination and repair (L) (10%), and cell

wall/membrane/envelope biogenesis (M) (8%), detecting 218 genes (**Supplementary Table S2**). Among them, we detected genes that are part of the "classical" Pho regulon (e.g., some of them found in the same operon): PstS family phosphate ABC transporter substrate-binding protein-phosphate (*pstS*), ABC transporter permease subunit PstC-phosphate (*pstC*), ABC transporter permease PstA-phosphate (*pstA*), ABC transporter ATP-binding protein PstB (*pstB*), PhoQ sensor (*phoQ*), or alkaline phosphatase (*phoA*). In addition, we detected other genes under the control of PhoB such as *nblA* (involved in chlorosis processes); *gvpA*, *gvpN*, *gvpL*, and *gvpF* (involved in gas vesicles); *cas* genes (involved in CRISPR-Cas systems); and a

Frontiers in Microbiology | www.frontiersin.org

September 2020 | Volume 11 | Article 541558

```
Fernández-Juárez et al.
```


whole group of genes that codify for transferases, endonucleases, ABC transporters, or transposases (**Supplementary Table S2**).

Fur regulon (**Figure 8E**) mostly was distributed in P (13%), L (11%), coenzyme transport and metabolism (H) (9%), and signal transduction mechanisms (T) (9%), detecting 73 genes (**Supplementary Table S3**). We detected genes under the control of Fur box directly involved in Fe acquisition, such as energy transducer TonB (*tonB*), MotA/TolQ/ExbB proton channel family protein, and three operons of transporter permease subunit (*feoA-feoB*). Fur boxes were detected upstream of genes related in photosynthesis and respiration [e.g., photosystem II reaction center protein X (*psbX*)], in the pathway of chlorophyll biosynthesis [glutamate-1-semialdehyde-2,1-aminomutase (*gsaI*)], and in bacteriochlorophyll biosynthesis [magnesium-protoporphyrin IX monomethyl ester anaerobic oxidative cyclase/DNA-binding response regulator (*bchE*)].

Finally, NtcA regulon (**Figure 8F**) was constituted by genes mostly involved in P (17%), amino acid transport and metabolism (E) (14%), and energy production and conversion (C) (12%), detecting 40 genes (**Supplementary Table S4**). We detected genes involved in N₂-fixation processes: FeMo cofactor biosynthesis protein (*nifB*) and molybdate ABC transporter substrate-binding protein (*modA*); in nitrogen assimilation: ferredoxin–nitrite reductase (*nirA*); in glutamine/glutamate assimilation: glutamate synthase [NADPH] large chain (*gltB*), type I glutamate-ammonia ligase (*glnN*) and sodium:glutamate symporter (*gltS*); and in ammonium assimilation: ammonium transporter (*amt*). In addition, Fur regulator itself potentially has a NtcA box.

DISCUSSION

Effect of Varying N Concentrations on Halothece sp. Compared With Fischerella muscicola

In this study, the dependence on the concentration of combined N sources such as NO3⁻ for growth of diazotrophic cyanobacterial cultures differed between the unicellular Halothece sp. and the filamentous heterocyst-forming F. muscicola (Table 1 and Figures 1A-C, 2A, 3A, 4A). Theoretically, N2-fixers are independent of inorganic N source (e.g., F. muscicola) because of their capability of fixing N2 (Knapp, 2012). However, at extremely limiting NO3⁻ conditions (i.e., 6.66 nM), almost having N2 as sole N source, Halothece sp. were barely growing (Table 1 and Figures 1C, 4A), and their morphology (increased size) and physiology (i.e., exhibiting extreme chlorosis) changed. Chlorosis can result from the deprivation of NO₃⁻, which promotes the degradation of phycobilisomes through the protein NblA (Klotz et al., 2015), which was detected here under the PhoB control (Supplementary Table S2). The observed increases in cell size, possibly, is a result of cell division cessation (Klotz et al., 2016). Moreover, vacuole formation was observed possibly due to the storage of compounds in response to severe N limitation (Figure 7E). Our results indicate that in some N₂-fixing species, e.g., Halothece sp., a minimum amount of combined N sources is necessary for the proper functioning of the cells (Q_{\min} ranging from 1.19 to 1.51 mM of NO_3^- , **Figure 4A**). However, it remains to be investigated whether these cells in the natural environment, indeed, require a combined source of inorganic nitrogen and if this requirement can be supplied by other diazotrophs in N-limited waters.

Contrary with Halothece sp., F. muscicola cells were totally independent of combined N source and were able to grow with N2 as the sole N source. The viability of unicellular N2fixers to grow under N2 as sole N source may be dependent on the presence and type of additional carbon (C) source to support their growth as shown with Synechococcus sp. strain SF1 (isolated from macroalgae, Sargassum fluitans), which was not able to grow with HCO3⁻ as sole C source (Spiller and Shanmugam, 1987). Here, Halothece sp. were cultured with glucose and citrate, and these may not be the optimal C source for their growth when grown at almost having N2 as sole N source. Unicellular N2-fixers also have been shown to grow more when NO_3^- is added compared when grown with only N_2 as sole N source (Agawin et al., 2007), since a larger energetic cost is associated with assimilating N₂ versus NO₃⁻ assimilation. Since N₂-fixation is sensitive to oxygen (O₂), cyanobacteria must develop strategies to avoid N2-fixation inhibition by the O2 liberated from photosynthesis. Unicellular cyanobacterial cells are able to separate temporarily two incompatible processes: N2fixation (at night) and photosynthesis (at day) in the same cell (De Bruijn, 2015). These two processes have to be tightly controlled to avoid inhibition of N2-fixation through well-regulated circadian clocks (Toepel et al., 2008), and these strategies can be energy consuming. Aside therefore of the energy cost of assimilating N2, Halothece sp. may have an add-on cost of temporally separating N2-fixation and photosynthetic process, and thus they cannot be totally independent of combined sources of inorganic N. On the contrary, filamentous heterocyst-forming cells have specialized cells (heterocyst) in which N2-fixation takes place in anoxic conditions and may not have an add-on cost of temporally separating N2-fixation and photosynthetic processes and thus are better adapted to growing with N2 as sole N source (De Bruijn, 2015; Figure 5B).

Effect of Varying Concentrations of P and Fe on *Halothece* sp. and *Fischerella muscicola*

Concentration of P and Fe in *Halothece* sp. and *Fischerella muscicola*

Phosphorus (P) is needed for many cellular components, such as cellular membranes, nucleic acids, and ATP-dependent reactions such as N₂-fixation, which is energetically costly, requiring 16 ATPs (N₂ + 8e⁻ + 16ATP + 8H⁺ \rightarrow 2NH₃ + H₂ + 16ADP + 16PO₄³⁻) (Hoffman et al., 2014). Under optimum conditions for N₂-fixation (at low [Low NO₃⁻] for *Halothece* sp. and without any combined N source in the case of *F. muscicola*), increasing concentrations of PO₄³⁻ generally increased the growth of both species, suggesting that PO₄³⁻ was an important limiting factor for both species and affected their N₂-fixation rates (**Figures 1–5**). These results are consistent with the previous study of Fernández-Juárez et al. (2019) reporting

Frontiers in Microbiology | www.frontiersin.org

the increased rates of P-acquisition mechanisms (PO_4^{3-} uptake rates and APAs) at [Low NO_3^{-}] for *Halothece* sp. At high concentrations of NO_3^{-} where N_2 -fixation rates were lower (and thus this P-requirement can be lower), growth of *Halothece* sp. was independent of varying concentrations of PO_4^{3-} . It is well described that in some cyanobacteria, e.g., *Trichodesmium* sp., one of the major N_2 -fixers in the Atlantic, P is the main element regulating N_2 -fixation (Sañudo-Wilhelmy et al., 2001). Under P-limiting environments (e.g., the Mediterranean Sea), N_2 -fixers must therefore depend on external P sources (such as Saharan dust deposition, Tanhua et al., 2013), and cells have to be well adapted to P limitation with mechanisms for phosphorus scavenging (Dyhrman and Haley, 2006; Fernández-Juárez et al., 2019).

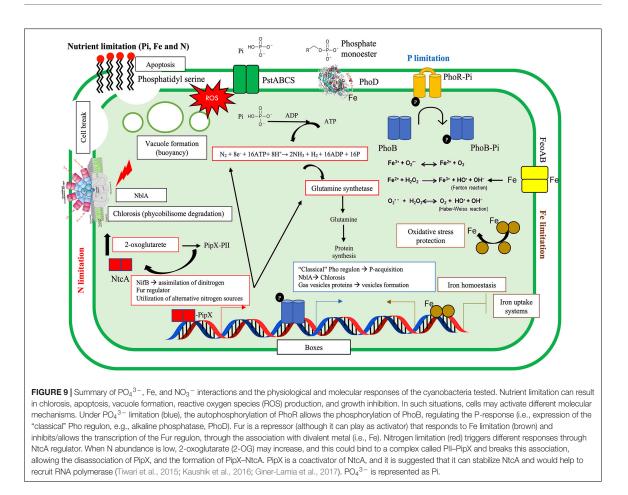
Iron (Fe) had differing effects for Halothece sp. (i.e., toxic effect under high Fe levels under [Low NO3-]) and for F. muscicola (i.e., limiting growth under low Fe levels) (Table 1 and Figures 1B, 2A, 3B,C, 4, 5). The results for F. muscicola were consistent with studies on Crocosphaera watsonii in which severe Fe limitation (3 nM) showed strong negative changes in growth and N2-fixation, limiting both processes, while higher Fe levels (up to 400 nM) increased these two parameters (Jacq et al., 2014). N2-fixation is an Fe-dependent process, since nitrogenase complex contains 38 Fe atoms per holoenzyme (Hoffman et al., 2014). This Fe dependence was observed for F. muscicola at high PO_4^{3-} levels (Figure 5B). However, in Halothece sp., high amounts of Fe (7.5 μ M) inhibited N₂-fixation but only under high PO43- levels, suggesting toxicity at these levels of PO_4^{3-} and Fe for this species (Figures 3C, 4B, 5A). Nonetheless, Fe can control N2-fixation in Halothece sp. cells, considering the Fe dependence of their alkaline phosphatase D (PhoD), which releases PO4³⁻ from organic sources to fuel N2fixation (Fernández-Juárez et al., 2019). Further studies must be conducted especially in Halothece sp. to determine which threshold of Fe concentrations can Fe inhibit/enhance growth and N2-fixation rates.

Interaction Between P and Fe Under Different Nitrogen Concentrations

Cell Recovery Under P, Fe, and N Limitation in Halothece sp. It is well documented how unicellular cyanobacteria cells are able to recover their phenotype by a genetically determined program (Klotz et al., 2016). Re-inoculum of PO_4^{3-} and Fe in [Low PO43--Low Fe] under NO3- optimal conditions and even in [High PO43-High Fe] under extremely limiting $\mathrm{NO_3}^-$ conditions with the addition of $\mathrm{NO_3}^-$ had as a consequence the partial or complete recovery of the green natural color and growth of the cells (Figure 1C). However, here, we observed that for Halothece sp., this program is "canceled" under extreme $\rm NO_3^-$ limitation and co-limitation of $\rm PO_4{}^{3-}$ and Fe. Under extremely limiting NO_3^- and [Low PO_4^{3-} -Low Fe] conditions, addition of PO_4^{3-} and Fe did not result in growth recovery of the cells, suggesting that nutrient co-limitation (PO43-, Fe, and NO3-) could kill cells irreversibly by breakage of cells (Figures 1C, 7E).

Nature of Nutrient Co-Limitation (P, Fe, and N) in Halothece sp. and Fischerella muscicola

In oligotrophic areas, e.g., the tropical North Atlantic, bacterial productivity and biomass are usually co-limited with N, P, and/or Fe (Mills et al., 2004; Arrigo, 2005; Moore et al., 2008). The interactions between these limiting nutrients can trigger different types of limitation: simultaneous co-limitation (nutrient limitation of, e.g., N, P, and/or Fe have collective responses), independent co-limitation (nutrient limitation of, e.g., N, P, and/or Fe have different responses), and serial limitation wherein the response of a second limiting nutrient is appreciable after the previous addition of the primary limiting nutrient (Harpole et al., 2011). To our knowledge, this study is the first to show evidences of serial limitation of N (NO3⁻) and P (PO_4^{3-}) in diazotrophs with combined N as the primary limiting nutrient as suggested by the results for Halothece sp. (Figure 3A). This suggests that in extremely N-limited waters, diazotrophs like Halothece sp. are not competitive enough to compensate for N-deficits of the system through their N2-fixation activities and cannot deplete the P concentration enough for the other co-occurring diazotrophic or non-diazotrophic species in the community to become P-limited. The reverse would follow for F. muscicola, which was independent of combined N source. The simultaneous co-limitation of PO43- and Fe observed in Figure 3C for Halothece sp. and F. muscicola may be due to the nature of the process of N2-fixation, which is ATP dependent, and Fe is a structural component of the nitrogenase enzyme (Hoffman et al., 2014). Iron (Fe) is also a co-factor of alkaline phosphatases, which is one of the P-acquisition mechanisms of diazotrophs when P is in short supply (Santos-Beneit, 2015; Fernández-Juárez et al., 2019). However, the mechanisms behind the simultaneous limitation of PO_4^{3-} and Fe have to be further investigated as we also observed deleterious effects depending on the concentrations of these nutrients.


Differences in Nutrient Kinetics in Diazotrophs at Different P and Fe Concentrations

Of the two species of cvanobacteria tested, the one that can most probably adapt to low levels of PO43- is the unicellular cyanobacterium Halothece sp. based on their nutrient kinetics (Figure 4B). Based on the Monod curves, the unicellular strain had the lowest K_{μ} and Q_{\min} , indicating a better adaptation to PO_4^{3-} than the filamentous diazotroph (Figure 4B), albeit the K_{μ} measured in Halothece sp. under [High Fe] (i.e., 10 nM) shows lower affinity for PO4³⁻ than that reported in the marine picophytoplankton Synechococcus (1 nM) (Kretz et al., 2015). In addition, its Q_{min} (2.27 $\mu\text{M})$ was much higher than that of the marine Synechococcus (3 nM) (Kretz et al., 2015), indicating that Halothece sp. is well adapted to P limitation but not at the level of Synechococcus. Unicellular cyanobacteria with smaller sizes are more efficient in acquiring nutrients in nutrient-limited waters because of their high surface: area ratios, while heterocystforming bacteria, which are generally bigger in size, need higher nutrient requirements (Haramaty et al., 2007). This is clearly shown in the Monod plot (Figure 4B), in which F. muscicola needs high amounts of Fe to growth, on the contrary of

Frontiers in Microbiology | www.frontiersin.org

September 2020 | Volume 11 | Article 541558

Halothece sp. in which high Fe levels inhibited cell abundance (Figures 3C, 4B).

Reactive Oxygen Species Production and Apoptotic Changes Derived From P, Fe, and N Limitation

Nutrient limitation (i.e., PO43-, Fe, and/or NO3-) increased ROS in both species, Halothece sp. and F. muscicola (Figures 6A-C, 7A-D). Iron (Fe) had a key role in regulating ROS production. Increasing Fe levels can have different responses as shown in Figures 6A-C: (1) beneficial through increase activity of enzymatic antioxidant defenses or (2) extremely toxic through increase in Fenton and Haber-Weiss reaction (Latifi et al., 2009; Diaz and Plummer, 2018). The second case is suggested in Figure 6B, in which under [Low NO3-] and [High PO4³⁻], Fe increased ROS production and in turn can inhibit N2-fixation (Alquéres et al., 2010). This could explain why Halothece sp. under [High PO43-High Fe] had lower growth and N₂-fixation rates than the other treatments with high levels of PO_4^{3-} (**Figure 5A**). On the contrary, in *F. muscicola*, Fe generally reduced ROS production (Figure 6C). The reduction of ROS production with Fe addition is consistent with a study on Anabaena PCC 7120, in which ROS increased up to 10-fold when the cells were starved with Fe (Latifi et al., 2005). The results of our apoptosis tests (normally applied to eukaryotic cells) for *F. muscicola* when cells were limited by PO_4^{3-} and/or Fe are first evidences of programmed cell death in cyanobacteria by nutrient limitation (**Figures 7F–I**). Further investigations have to be performed to figure out the molecular mechanisms behind this.

Prediction of Genes Involved in P, Fe, and N Limitation in *Halothece* sp.

We predicted the Pho, Fur, and NtcA boxes in the unicellular cyanobacterium *Halothece* sp. (PCC 7418), controlled by the master regulators in P, Fe, and N metabolism (PhoB, Fur, and NtcA, respectively), showing well-conserved sequences in this bacteria (**Figures 8A–C**), consistent with several studies (Tiwari et al., 2015; Kaushik et al., 2016; Giner-Lamia et al., 2017). A large majority of these genes associated to these boxes were involved in inorganic ion transport and metabolism (P) (**Figures 8D–F** and **Supplementary Tables S2–S4**), providing key information of how cyanobacteria respond to P, Fe, and N limitation (**Figure 9**). We detected genes involved in typical transporters in P, Fe, and N metabolism, in Fe storage, cell wall biosynthesis, amino acid metabolism,

Frontiers in Microbiology | www.frontiersin.org

Fernández-Juárez et al

photosynthesis, chlorosis, chlorophylls and PC biosynthesis, anti-phage systems (e.g., cas genes, implicated in the CRISPR-Cas systems), or even virulence (Supplementary Tables S2-S4). Through the created algorithms, we were able to detect elements from the "classical" Pho regulon (e.g., transporters, pstABCS, enzymes through which PO43- is obtained from dissolved organic phosphorus, APases or stored phosphate, ppK), Fe transporters (e.g., feoA and feoB), and a whole group of genes involved in N metabolism (e.g., gltBNS, amt, and nifB) and thus being the most probable genes controlled by these TFs as is already described in Cyanothece, Gloeobacter, Microcystis, Nostoc, Prochlorococcus, Synechococcus, Synechocystis, Thermosynechococcus, and Trichodesmium (Supplementary Material [Multifasta] and Supplementary Tables S2-S4). A N2-fixation regulator, nifB, was predicted under the control of NtcA, whose product is crucial in iron-molybdenum biosynthesis (Supplementary Table S4). Downstream of this gene, we localized an entire cluster of genes related to N2-fixation: Fd III 4Fe-4S, nifS, nifU, nifH, nifD, nifK, nifZ, nifE, nifN, nifX, DUF683, and nifW. In addition, some reports affirm that NtcA binds and controls Fur protein (López-Gomollón et al., 2007), as we predicted in this study, showing that N limitation can increase Fur protein levels and suggesting the narrow connection between N and Fe metabolism.

In summary, we show that two species of N2-fixing cyanobacteria potentially associated with seagrasses have differing sensibilities to PO43-, Fe, and NO3- concentrations, showing that these nutrients interact with each other based on our experimental and bio-informatic analysis. Despite the low number replications (being conscious that some results cannot be generalized), the growth responses reported here at varying concentrations of PO4³⁻ and Fe at different NO3⁻ conditions must be taken with precaution since the internal storage of these nutrients could affect these results considering that the cells were inoculated from optimal nutrients conditions. This is a pilot study in which insights on nutrient limitation in N2fixers are reported. Nonetheless, our study of a multifactorial design provides useful data and important findings of nutrient limitation in marine diazotrophs (at physiological, biochemical, and genetic levels). Deeper molecular assays (i.e., transcriptomic or proteomic assays) are recommended to investigate all the predicted genes involved in P, Fe, and N metabolism.

DATA AVAILABILITY STATEMENT

The raw data supporting the article of this manuscript will be made available by the authors, without undue reservation, to any qualified researcher.

REFERENCES

Agawin, N. S. R., Benavides, M., Busquets, A., Ferriol, P., Stal, L. J., and Arístegui, J. (2014). Dominance of unicellular *Cyanobacteria* in the diazotrophic community in the Atlantic Ocean. *Limnol. Oceanogr.* 59, 623–637. doi: 10.4319/ lo.2014.59.2.0623 Effects of Nutrients in Diazotrophs

AUTHOR CONTRIBUTIONS

VF-J and NA designed the experiments. VF-J conducted all experiments. All authors led the writing of the manuscript, reviewed, and supervised by NA.

FUNDING

This work was supported by funding to NA through the Ministerio de Economía, Industria y Competitividad-Agencia Estatal de Investigación, and the European Regional Development Funds project (CTM2016-75457-P). AS-G was supported by the Spanish Ministry of Economy and Competitiveness, Instituto de Salud Carlos III (CIBEROBN CB12/03/30038).

ACKNOWLEDGMENTS

We acknowledge the support and help of Scientific Technical Service (Maria Trinidad Garcia Barceló) of the University of the Balearic Islands for gas chromatography analyses. We also thank Pere Ferriol Buñola and Alba Coma Ninot for the help in the acquisition of the cultures.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2020.541558/full#supplementary-material

Supplementary Table 1 | List of all experimental treatments conducted in this study.

Supplementary Table 2 | Pho regulon prediction. PHO boxes sequences, their position in the genome, orientation, the genes that are controlling (the Pho regulon), locus tag from these genes, the distance of the box from the gene and the gen function from single-letter of functional (COGs) are presented.

Supplementary Table 3 | Fur regulon prediction. Fur boxes sequences, their position in the genome, orientation, the genes that are controlling (the Fur regulon), locus tag from these genes, the distance of the box from the gene and the gen function from single-letter of functional (COGs) are presented.

Supplementary Table 4 | NtcA regulon prediction. NtcA boxes sequences, their position in the genome, orientation, the genes that are controlling (the NtcA regulon), locus tag from these genes, the distance of the box from the gene and the gen function from single-letter of functional (COGs) are presented.

- Agawin, N. S. R., Ferriol, P., Cryer, C., Alcon, E., Busquets, A., Sintes, E., et al. (2016). Significant nitrogen fixation activity associated with the phyllosphere of Mediterranean seagrass *Posidonia oceanica*: first report. *Mar. Ecol. Prog. Ser.* 551, 53–62. doi: 10.3354/meps11755
- Agawin, N. S. R., Ferriol, P., Sintes, E., and Moyà, G. (2017). Temporal and spatial variability of in situ nitrogen fixation activities associated with the

Frontiers in Microbiology | www.frontiersin.org

Mediterranean sseagrass *Posidonia oceanica* meadows. *Limnol. Oceanogr.* 62, 2575–2592. doi: 10.1002/lno.10591

- Agawin, N. S. R., Rabouille, S., Veldhuis, M. J. W., Servatius, L., Hol, S., Van Overzee, M. J., et al. (2007). Competition and facilitation between unicellular nitrogen-fixing *Cyanobacteria* and non – nitrogen-fixing phytoplankton species. *Limonol. Oceanogr.* 52, 2233–2248. doi: 10.4319/lo.2007.52.5.2233
- Alquéres, S. M. C., Oliveira, J. H. M., Nogueira, E. M., Guedes, H. V., Oliveira, P. L., Câmara, F., et al. (2010). Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in *Gluconacetobacter diazotrophicus. Arch. Microbiol.* 192, 835–841. doi: 10.1007/ s00203-010-0609-1
- Arrigo, R. K. (2005). Marine microorganisms and global nutrient cycles. Nature 437, 343–348. doi: 10.1038/nature04158
- Baichoo, N., and Helmann, J. D. (2002). Recognition of DNA by Fur: a reinterpretation of the Fur box consensus sequence recognition of DNA by Fur: a reinterpretation of the fur box consensus sequence. J. Bacteriol. 184, 5826–5832. doi: 10.1128/JB.184.21.5826
- Browning, T. J., Achterberg, E. P., Yong, J. C., Rapp, I., Utermann, C., Engel, A., et al. (2017). Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. *Nat. Commun.* 8, 1–7. doi: 10.1038/ncomms15465
- Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004). WebLogo: a sequence logo generator. *Genome Res.* 14, 1188–1190. doi: 10.1101/gr.849004
- De Bruijn, F. J. (2015). Biological Nitrogen Fixation. Amsterdam: Elsevier Inc, doi: 10.1002/9781119053095
- de Jong, A., Pietersma, H., Cordes, M., Kuipers, O. P., and Kok, J. (2012). PePPER: a webserver for prediction of prokaryote promoter elements and regulons. *BMC Genomics* 13:299. doi: 10.1186/1471-2164-13-299
- Diaz, J. M., and Plummer, S. (2018). Production of extracellular reactive oxygen species by phytoplankton: past and future directions. J. Plankton Res. 40, 655–666. doi: 10.1093/plankt/fby039
- Dyhrman, S. T., and Haley, S. T. (2006). Phosphorus scavenging in the unicellular marine diazotroph Crocosphaera watsonii. Appl. Environ. Microbiol. 72, 1452– 1458. doi: 10.1128/AEM.72.2.1452-1458.2006
- Fernández-Juárez, V., Bennasar-Figueras, A., Tovar-Sanchez, A., and Agawin, N. S. R. (2019). The role of iron in the P-acquisition mechanisms of the unicellular N2-fixing *Cyanobacteria halothece* sp., found in association with the Mediterranean seagrass *Posidonia oceanica*. *Front. Microbiol.* 10:1903. doi: 10.3389/fmicb.2019.01903
- Geider, R. J., and La Roche, J. (2002). Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. *Eur. J. Phycol.* 37, 1–17. doi: 10.1017/S0967026201003456
- Giner-Lamia, J., Robles-Rengel, R., Hernández-Prieto, M. A., Isabel Muro-Pastor, M., Florencio, F. J., and Futschik, M. E. (2017). Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium Synechocystis sp. PCC 6803. Nucleic Acids Res. 45, 11800– 11820. doi: 10.1093/nar/gkx860
- Golosova, O., Henderson, R., Vaskin, Y., Gabrielian, A., Grekhov, G., Nagarajan, V., et al. (2014). Unipro UGENE NGS pipelines and components for variant calling. RNA-seq and ChIP-seq data analyses. *PeerJ* 2:e644. doi: 10.7717/peerj.644
- Haramaty, L., Quigg, A., Berman-Frank, I., Finkel, Z. V., and Irwin, A. J. (2007). Nitrogen-fixation strategies and Fe requirements in *Cyanobacteria. Limnol. Oceanogr.* 52, 2260–2269. doi: 10.4319/lo.2007.52.5.2260
- Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M. E. S., et al. (2011). Nutrient co-limitation of primary producer communities. *Ecol. Lett.* 14, 852–862. doi: 10.1111/j.1461-0248.2011.01651.x
- Hedges, L. V., Gurevitch, J., and Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. *Ecology* 80, 1150–1156. doi: 10.1890/0012-9658(1999)080[1150:tmaorr]2.0.co;2
- Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R., and Seefeldt, L. C. (2014). Mechanism of nitrogen fixation by nitrogenase: the next stage. *Chem. Rev.* 114, 4041–4062. doi: 10.1021/cr400641x
- Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., et al. (2018). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.* 47, 309–314. doi: 10.1093/nar/gky1085
- Jacq, V., Ridame, C., L'Helguen, S., Kaczmar, F., and Saliot, A. (2014). Response of the unicellular diazotrophic cyanobacterium *Crocosphaera watsonii* to iron limitation. *PLoS One* 9:e0086749. doi: 10.1371/journal.pone.0086749

- Jensen, B. B., and Cox, R. P. (1983). Direct measurements of steady-state kinetics of *Cyanobacterial* N2 uptake by membrane-leak mass spectrometry and comparisons between nitrogen fixation and acetylene reduction. *Appl. Environ. Microbiol.* 45, 1331–1337. doi: 10.1128/aem.45.4.1331-1337.1983
- Kaushik, M. S., Singh, P., Tiwari, B., and Mishra, A. K. (2016). Ferric Uptake Regulator (FUR) protein: properties and implications in *Cyanobacteria. Ann. Microbiol.* 66, 61–75. doi: 10.1007/s13213-015-1134-x
- Klotz, A., Georg, J., Bučinská, L., Watanabe, S., Reimann, V., Januszewski, W., et al. (2016). Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined program. *Cell Press* 26, 2862–2872. doi: 10. 1016/j.cub.2016.08.054
- Klotz, A., Reinhold, E., Doello, S., and Forchhammer, K. (2015). Nitrogen starvation acclimation in *Synechococcus elongatus*: redox-control and the role of nitrate reduction as an electron sink. *Life* 5, 888–904. doi: 10.3390/life50 10888
- Knapp, A. N. (2012). The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front. Microbiol. 3:374. doi: 10.3389/fmicb.2012.00374
- Kranzler, C., Lis, H., Finkel, O. M., Schmetterer, G., Shaked, Y., and Keren, N. (2014). Coordinated transporter activity shapes high-affinity iron acquisition in *Cyanobacteria*. *ISME J.* 8, 409–417. doi: 10.1038/ismej.2013.161
- Kranzler, C., Rudolf, M., Keren, N., and Schleiff, E. (2013). Iron in *Cyanobacteria*. *Adv. Bot. Res.* 65, 57–105. doi: 10.1016/B978-0-12-394313-2.00003-2
- Kretz, C. B., Bell, D. W., Lomas, D. A., Lomas, M. W., and Martiny, A. C. (2015). Influence of growth rate on the physiological response of marine *Synechococcus* to phosphate limitation. *Front. Microbiol.* 6:85. doi: 10.3389/fmicb.2015.00085
- Latifi, A., Jeanjean, R., Lemeille, S., Havaux, M., and Zhang, C. C. (2005). Iron starvation leads to oxidative stress in *Anabaena* sp. strain PCC 7120. J. Bacteriol. 187, 6596–6598. doi: 10.1128/JB.187.18.6596-6598.2005
- Latifi, A., Ruiz, M., and Zhang, C. C. (2009). Oxidative stress in *Cyanobacteria*. *FEMS Microbiol. Rev.* 33, 258–278. doi: 10.1111/j.1574-6976.2008.00134.x
- Llacer, J. L., Espinosa, J., Castells, M. A., Contreras, A., Forchhammer, K., and Rubio, V. (2010). Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Proc. Natl. Acad. Sci. U.S.A. 107, 15397–15402. doi: 10.1073/pnas.1007015107
- López-Gomollón, S., Hernández, J. A., Wolk, C. P., Peleato, M. L., and Fillat, M. F. (2007). Expression of FurA is modulated by NtcA and strongly enhanced in heterocysts of *Anabaena* sp. PCC 7120. *Microbiology* 153, 42–50. doi: 10.1099/ mic.0.2006/000091-0
- Manhart, J. R., and Wong, P. P. (1980). Nitrate effect on nitrogen fixation (acetylene reduction): activities of legume root nodules induced by rhizobia with varied nitrate reductase activities. *Plant Physiol*, 65, 502–505, doi: 10.1104/pp.65.3.502
- Mills, M. M., Ridame, C., Davey, M., La Roche, J., and Geider, R. J. (2004). Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. *Nature* 429, 232–294. doi: 10.1038/nature02550
- Monod, J. (1949). The growth of bacterial cultures. Annu. Rev. Microbiol. 3, 371–394. doi: 10.1146/annurev.mi.03.100149.002103
- Moore, C. M., Mills, M. M., Langlois, R., Milne, A., Achterberg, E. P., La Roche, J., et al. (2008). Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. *Limnol. Oceanogr.* 53, 291–305. doi: 10.4319/lo.2008.53. 1.0291
- Nelson, D. C., Waterbury, J. B., and Jannasch, H. W. (1982). Nitrogen fixation and nitrate utilization by marien and freshwater *Beggiatoa*. Arch. Microbiol 133, 172–177. doi: 10.1007/BF00414997
- Ng, T. S., Chew, S. Y., Rangasamy, P., Mohd Desa, M. N., Sandai, D., Chong, P. P., et al. (2015). SNF3 as high affinity glucose sensor and its function in supporting the viability of *Candida glabrata* under glucose-limited environment. *Front. Microbiol.* 6:1334. doi: 10.3389/fmicb.2015.01334
- Novichkov, P. S., Kazakov, A. E., Ravcheev, D. A., Leyn, S. A., Kovaleva, G. Y., Sutormin, R. A., et al. (2013). RegPrecise 3.0 - A resource for genome-scale exploration of transcriptional regulation in bacteria. *BMC Genomics* 14:745. doi: 10.1186/1471-2164-14-745
- Porra, R. J., Thompson, W. A., and Kriedemann, P. E. (1989). Determination of accurate extinction coefficients and simultaneous equations for assayin chlorophylls a and b extracted with four different solvents. *Biochim. Biophys. Acta* 975, 384–394. doi: 10.1016/s0005-2728(89)80347-0
- Powley, H. R., Krom, M. D., and Van Cappellen, P. (2017). Understanding the unique biogeochemistry of the Mediterranean Sea: insights from a coupled

Frontiers in Microbiology | www.frontiersin.org

September 2020 | Volume 11 | Article 541558

Fernández-Juárez et al

Effects of Nutrients in Diazotrophs

phosphorus and nitrogen model. Global Biogeochem. Cycles 31, 1010-1031. doi: 10.1002/2017GB005648

- Quigg, A., Irwin, A. J., and Finkel, Z. V. (2011). Evolutionary inheritance of elemental stoichiometry in phytoplankton. *Proc. R. Soc. BBiol. Sci.* 278, 526–534. doi: 10.1098/rspb.2010.1356
- Reddy, K. J., Haskell, J. B., Sherman, D. M., and Sherman, L. A. (1993). Unicellular, aerobic nitrogen-fixing *Cyanobacteria* of the genus *Cyanothece. J. Bacteriol.* 175, 1284–1292. doi: 10.1128/jb.175.5.1284-1292.1993
- Redfield, A. C. (1934). "On the proportions of organic derivatives in sea water and their relation to the composition of plankton," in *James Johnstone Meml*, ed. R. J. Daniel (Liverpool: Univ. Press Liverpool), 176–192.
- Richaud, C., Zabulon, G., Joder, A., Thomas, J., and Zabulon, R. (2001). Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the *nblA* gene in *Synechocystis* strain PCC 6803. *J. Bacteriol.* 183, 2989–2994. doi: 10.1128/JB.183.10.2989
- Santos-Beneit, F. (2015). The Pho regulon: a huge regulatory network in bacteria. *Front. Microbiol.* 6:402. doi: 10.3389/fmicb.2015.00402
- Sañudo-Wilhelmy, S. A., Kustka, A. B., Gobler, C. J., Hutchins, D. A., Yang, M., Lwiza, K., et al. (2001). Phosphorus limitation of nitrogen fixation by *Trichodesmium* in the central Atlantic Ocean. *Nature* 411, 66–69. doi: 10.1038/ 35075041
- Sobiechowska-Sasim, M., Stoñ-Egiert, J., and Kosakowska, A. (2014). Quantitative analysis of extracted phycobilin pigments in *Cyanobacteria*—an assessment of spectrophotometric and spectrofluorometric methods. J. Appl. Phycol. 26, 2065–2074. doi: 10.1007/s10811-014-0244-3
- Sohm, J. A., Webb, E. A., and Capone, D. G. (2011). Emerging patterns of marine nitrogen fixation. Nat. Rev. Microbiol. 9, 499–508. doi: 10.1038/nrmicro2594
- Spiller, H., and Shanmugam, K. T. (1987). Physiological conditions for nitrogen fixation in a unicellular marine cyanobacterium, *Synechococcus* sp. strain SF1. *J. Bacteriol.* 169, 5379–5384. doi: 10.1128/jb.169.12.5379-5384.1987
- Stal, L. J. (1988). Acetylene reduction technique for assay of nitrogenase. *Methods Enzymol.* 167, 474–484.
- Stanier, R. Y., Deruelles, J., Rippka, R., Herdman, M., and Waterbury, J. B. (1979). Generic assignments, strain histories and properties of pure cultures of *Cyanobacteria*. *Microbiology* 111, 1–61. doi: 10.1099/00221287-111-1-1
- Statham, P. J., and Hart, V. (2005). Dissolved iron in the Cretan Sea (eastern Mediterranean). *Limnol. Oceanogr.* 50, 1142–1148. doi: 10.4319/lo.2005.50.4. 1142

- Sunda, W., and Huntsman, S. (2015). High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris. Front. Microbiol. 6:561. doi: 10.3389/fmicb.2015. 00561
- Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and Civitarese, G. (2013). The mediterranean Sea system: a review and an introduction to the special issue. *Ocean Sci.* 9, 789–803. doi: 10.5194/os-9-789-2013
- Tiwari, B., Singh, S., Kaushik, M. S., and Mishra, A. K. (2015). Regulation of organophosphate metabolism in *Cyanobacteria*. A review. *Microbiology* 84, 291–302. doi: 10.1134/S0026261715030200
- Toepel, J., Welsh, E., Summerfield, T. C., Pakrasi, H. B., and Sherman, L. A. (2008). Differential transcriptional analysis of the cyanobacterium *Cyanothece* sp. strain ATCC 51142 during light-dark and continuous-light growth. J. Bacteriol. 190, 3904–3913. doi: 10.1128/JB.00206-08
- Tripathi, K., Sharma, N. K., Kageyama, H., Takabe, T., and Rai, A. K. (2013). Physiological, biochemical and molecular responses of the halophilic cyanobacterium *Aphanothece halophytica* to Pi-deficiency. *Eur. J. Phycol.* 48, 461–473. doi: 10.1080/09670262.2013.859303
- Widdel, F. (2010). Theory and Measurement of Bacterial Growth. Bremen: University Bremen.
- Yuan, Z. C., Zaheer, R., Morton, R., and Finan, T. M. (2006). Genome prediction of PhoB regulated promoters in *Sinorhizobium meliloti* and twelve proteobacteria. *Nucleic Acids Res.* 34, 2686–2697. doi: 10.1093/nar/gkl365
- Zehr, J. P. (2011). Nitrogen fixation by marine Cyanobacteria. Trends Microbiol. 19, 162–173. doi: 10.1016/j.tim.2010.12.004

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Fernández-Juárez, Bennasar-Figueras, Sureda-Gomila, Ramis-Munar and Agawin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

19

3.3 Chapter 3

Microbial Ecology https://doi.org/10.1007/s00248-021-01766-z

ENVIRONMENTAL MICROBIOLOGY

Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean Epiphyte *Cobetia* Sp. to Varying Nutrient Concentration

Víctor Fernández-Juárez¹ · Daniel Jaén-Luchoro^{2,3} · Jocelyn Brito-Echeverría⁴ · Nona S. R. Agawin¹ · Antoni Bennasar-Figueras⁵ · Pedro Echeveste^{4,6}

Received: 24 October 2020 / Accepted: 22 April 2021

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Bacteria are essential in the maintenance and sustainment of marine environments (e.g., benthic systems), playing a key role in marine food webs and nutrient cycling. These microorganisms can live associated as epiphytic or endophytic populations with superior organisms with valuable ecological functions, e.g., seagrasses. Here, we isolated, identified, sequenced, and exposed two strains of the same species (i.e., identified as Cobetia sp.) from two different marine environments to different nutrient regimes using batch cultures: (1) Cobetia sp. UIB 001 from the endemic Mediterranean seagrass Posidonia oceanica and (2) Cobetia sp. 4B UA from the endemic Humboldt Current System (HCS) seagrass Heterozostera chilensis. From our physiological studies, both strains behaved as bacteria capable to cope with different nutrient and pH regimes, i.e., N, P, and Fe combined with different pH levels, both in long-term (12 days (d)) and short-term studies (4 d/96 h (h)). We showed that the isolated strains were sensitive to the N source (inorganic and organic) at low and high concentrations and low pH levels. Low availability of phosphorus (P) and Fe had a negative independent effect on growth, especially in the long-term studies. The strain UIB 001 showed a better adaptation to low nutrient concentrations, being a potential N_2 -fixer, reaching higher growth rates (μ) than the HCS strain. P-acquisition mechanisms were deeply investigated at the enzymatic (i.e., alkaline phosphatase activity, APA) and structural level (e.g., alkaline phosphatase D, PhoD). Finally, these results were complemented with the study of biochemical markers, i.e., reactive oxygen species (ROS). In short, we present how ecological niches (i.e., MS and HCS) might determine, select, and modify the genomic and phenotypic features of the same bacterial species (i.e., Cobetia spp.) found in different marine environments, pointing to a direct correlation between adaptability and oligotrophy of seawater.

Keywords *Posidonia oceanica* · *Heterozostera chilensis* · Mediterranean Sea · Humboldt Current System · *Cobetia* sp. (UIB 001 and 4B UA) and nitrogen (N)-phosphorus (P)-iron (Fe) regimes

Víctor Fernández-Juárez victorfi@hotmail.es

¹ Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma, Spain

- ² Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- ³ Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden
- ⁴ Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile
- ⁵ Grup de Microbiologia, Department of Biology, University of the Balearic Islands, Palma, Spain
- ⁶ Instituto Milenio de Oceanografía, Concepción, Chile

Introduction

Seagrasses are one of the most productive ecosystems, placed in continental seashores of all continents but Antarctica [1], providing key ecological services. As relevant coastal primary producers, seagrasses fix atmospheric CO₂, acting as carbon sinks and O₂ releasers. They also sustain secondary production, trap particles, stabilize sediments, are key actors of biogeochemical processes (e.g., nitrogen cycles), and form the habitat and nursery for several micro- and macro-organisms [2]. Their associated microbiome takes part in the major ocean's biogeochemical cycles (e.g., nutrient cycling of nitrogen (N), phosphorus (P), and/or iron (Fe)) and microbial food webs [3–5], essential for the livelihood of seagrasses. Within the bacterial consortia, primary producers (e.g.,

Prochlorococcus and *Synechococcus*) play a critical role through their CO_2 -fixing capacity [6], together with other bacteria in sulfide detoxification (which is highly toxic for plant growth [7]), and biological N₂-fixation (BNF) which compensates denitrification, converting dinitrogen gas (N₂) to inorganic N (i.e., ammonia, NH₃) [8]. The role of environmental factors (e.g., nutrient availability) modulating bacterial community composition, diversity, functioning, and, thus, the health and productivity of the seagrasses, remains to be investigated.

The implication of the microbial communities associated with seagrasses, which can be found as epiphytic or endophytic, has been profusely illustrated on the Mediterranean endemic seagrass Posidonia oceanica (L.) Delile [9-11]. N2-fixers or diazotrophs can supply the entire N-demand of the plant, having a key role in nutrient cycling [12], considering the Mediterranean Sea (MS) oligotrophy. The MS is a semienclosed sea chronically limited by P [13], where P and N concentrations do not obey the Redfield ratio (i.e., 23-28:1) [14, 15]. Besides, Mediterranean waters are subjected to Saharan atmospheric dust deposition, which controls Fe concentrations in the water column [16]. On the other hand, the Humboldt Current System (HCS), which extends from the west coast of South America (Southern Chile) up to Ecuador and the Galapagos Islands, is one of the most productive marine ecosystems as a result of the transport of sub-Antarcticenriched nutrient waters and often poor in Fe [17-19]. There, the endemic Heterozostera chilensis J. Kou seagrass thrives settled after long-distance dispersion of its ancestor, i.e., Heterozostera nigricaulis, from temperate waters of Australia across the Pacific Ocean [20, 21]. Noteworthy, it is intriguing how H. chilensis (former H. nigricaulis) was capable to settle in the cold waters of the HCS, concretely in Puerto Aldea, Bahia Chascos, and Isla Damas [21], where historically seaweeds have proliferated, but no seagrasses [22]. Among the many intrinsic characteristics that may have allowed H. chilensis to survive, the role of its associated microbiota in its maintenance and sustenance remains unclear.

Elucidating the nutrient regimes of N, P, and Fe of these microbial communities is of especial relevance as they limit microbial growth and activity [17], usually controlled by upwelling/downwelling processes or by atmospheric dust deposition [23]. The average ratio of N/P/Fe in microbial communities obeys to Redfield ratio, 16 (N):1 (P):0.0075 (Fe), and hence N and P are the major elements needed for microbial biomass, constituting around 7% and 1% of cell biomass, respectively [24, 25]. In P-limited waters, bacteria are capable of hydrolyzing P-esters contained in dissolved organic phosphorus (DDP) releasing dissolved inorganic phosphorus (DIP), through the so-called alkaline phosphatases (APases). Bacterial APases can be classified into three main families depending on the associated co-factor (i.e., Mg^{2+} , Zn^{2+} , Fe^{3+} , and/or Ca^{2+}): PhoA, PhoX, and PhoD [26]. Thus,

metals, as Fe, are essential for enzyme activity as structural components. Nonetheless, Fe homeostasis has to be tightly regulated since it can promote oxidative stress by the generation of reactive oxygen species (ROS) through Fenton and Haber-Weiss reactions [27].

Multifactorial studies investigating the interactive effects of N, P, and Fe in marine microorganisms are very scarce [28-31]. Low dissolved inorganic N (DIN, e.g., NO₃⁻), inorganic P (PO_4^{3-}), and Fe concentrations can impair growth, enhancing oxidative stress, morphological changes, and apoptosis processes, as well as limiting N2-fixation rates [31]. In oligotrophic waters (e.g., North Atlantic Ocean or the MS), Fe can limit P-mechanisms as the alkaline phosphatase activity (APA) [32], and APA can be subjected to DIN concentration [30]. In the global ocean, microbial communities are faced with a wide range of nutrient regimes (e.g., from oligotrophy to eutrophic) and abiotic scenarios, selecting the best-adapted species worldwide [33]. Analyzing the biogeographic patterns of cosmopolitan species is of special relevance to better address the success of these species in adapting and surviving to a wide range of scenarios, an issue poorly studied with bacteria associated with seagrasses.

Gammaproteobacteria is one of the most distributed marine heterotrophic bacteria in the oceans [34]. Among them, the Halomonadaceae family (which include Modicisalibacter, Halotalea, Zymobacter, Carnimonas, Cobetia, Kushneria, and Salinicola) is found in almost any saline environment, being moderate halophilic bacteria and exopolysaccharides producers [35, 36]. As a result of the re-classification of the Halomonas marina, Arahal et al. (2002) described the genus Cobetia as a member of the Halomonadaceae [20], which comprises five species (i.e., C. amphilecti, C. crustatorum, C. lioralis, C. marina, and C. pacifica) [37-39]. Cobetia spp. are isolated as hydrocarbon-degrading, biosurfactantsproducing, which display a nutritional versatility and different metabolic profiles (e.g., sugar utilization and assimilation), being sources of psychrophile enzymes. Besides, some strains have a key role in improving the water quality [40-43]. Although the ecophysiology and adaptation responses of Cobetia spp. remains poorly explored, the genus Cobetia is well distributed throughout the world oceans having been isolated from different marine ecological niches, pointing to their high adaptability.

Our genomic analysis proved that we isolated two strains that belong to the same species, inside the genus *Cobetia*, placed in geographically unrelated endemic seagrasses: *P. oceanica* from the MS and *H. chilensis* from the HCS. Based on our previous studies in which we described the sensitivity of the diazotrophic bacteria to different nutrient regimes and emerging pollutants [30, 31, 44], the aim of this study, considering the contrasting features of the MS and HCS at nutrient level, was to evaluate the physiological responses of the *Cobetia* spp. isolated, using batch cultures. For this

Fernández-Juárez V. et al.

Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean...

purpose, we conducted long-term (i.e., 12 days (d)) and shortterm experiments (i.e., 4 d/96 h) towards different nutrient regimes (i.e., N, P, and Fe) and pH levels, measuring their physiological and biochemical responses.

Materials and Methods

Isolation, Sequencing, Identification, and Genomic Features of UIB 001 and 4B UA Strains

Isolation of the Strains

The strains UIB 001 and 4B UA were isolated from the roots of P. oceanica and leaves of H. chilensis, respectively. Posidonia oceanica roots were collected from Cala Nova (Mallorca) in Balearic Islands, Spain (39° 33' 02.3" N 2° 36' 02.1" E), while H. chilensis leaves were collected from the seashore of Puerto Aldea (Coquimbo), Chile (30° 17' 37.83" S-71° 36' 24.55" O). Posidonia oceanica roots were triturated in Tris-EDTA 1 mM pH 7.5, whereas H. chilensis leaves were rasped to gather the epiphytic community, which was maintained in sterile seawater. In both cases, the microbial consortia were cultured in modified artificial seawater (ASW) medium (L⁻¹: 25.0 g NaCl, 1.0 g MgCl₂·6H₂O, 5.0 g MgSO₄· 7H₂O, 0.7 g KCl, 0.15 g CaCl₂·2H₂O, 0.1 g KBr, 0.04 g $SrCl_2$ ·6H2O, and 0.025 g H₃BO₃), with 1 ml L⁻¹ trace metal [L⁻¹: 2.86 g H₃BO₃, 1.81 g MnCl₂·4 H₂O, 0.22 g ZnSO₄· 7H₂O, 0.39 g NaMoO₄·2H₂O, 0.079 g CuSO₄·5H₂O, and 0.049 g Co(NO₃)₂·6H2O], glucose/citrate (final concentration 0.1% (v/v)), and with a garose (1.5% (p/v)). Cultures had N_2 as sole N source (with low P and Fe concentrations) and were incubated at 20 °C. The resulting colonies were subcultured in marine agar (MA) to obtain pure cultures.

Genome Sequencing

Total genomic DNA of the strains UIB 001 and 4B UA were extracted using the optimized version of Salvà Serra et al. (2018) [45]. Illumina whole-genome sequencing was performed (Eurofins Scientific, Luxemburg). Briefly, the DNA libraries were prepared following an optimized protocol and standard Illumina adapter sequences. Paired-end sequences were determined using the Illumina HiSeq platform (read mode, 2×150 bp). Additionally, DNAs were sequenced with a MinION Mk101B sequencer (Oxford Nanopore Technologies, Oxford, UK) for the generation of long-read sequences. The DNA library was prepared, using the rapid barcoding sequencing kit vR9 (SKQ-RBK004) and loaded into a FLO-MIN106 vR9.4 flow cell. The sequencing process was performed for 48 h (h) on MinKNOWN software v1.4.2 (Oxford Nanopore Technologies). The raw reads obtained were base called using Guppy software v3.5.1 (Oxford Nanopore Technologies). Quality of Illumina and nanopore reads were determined using fastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and NanoPlot software (https://github.com/wdecoster/NanoPlot), respectively. A hybrid assembly was done using Unicycler v0.4.7 [46] combining the Illumina and nanopore reads. The qualities of the genome sequences obtained were assessed using the Quality Assessment Tool for Genome Assemblies (QUAST) v4.5 [47]. For submission to GenBank, the whole-genome sequences were annotated with the Prokaryotic Genome Annotation Pipeline (PGAP) [48, 49].

Strain Identification

Complete 16s rRNA gene sequences were extracted from the obtained genomes and analyzed using EzBioCloud to determine the closely related species [50]. Afterward, the genome sequences or the strains UIB 001 and 4B UA were compared with the genomes of the closely related species, which were obtained from NCBI. Comparative 16S rRNA gene sequence analyses were done using the Kimura two-parameter model to calculate evolutionary distances. Cluster analyses and phylogenetic trees were built by Neighbor-Joining, using the MEGA7 software [51]. Bootstrap values were determined for 1000 replications. Average nucleotide identities by BLAST (ANIb) were determined using the JSpeciesWS tool [52]. The digital DNA–DNA hybridization (dDDH) similarity values were determined with the Genome-to-Genome Distance Calculator (GGDC) [53]. Only results of the recommended formula 2 (sum of all identities found in high-scoring segment pairs (HSPs) divided by the overall HSP length) in the GGDC analyses were considered.

Genomic Difference Detection Through Pan-Genome Analysis and Single Nucleotide Polymorphisms (SNPs)

Pan-genome analysis was performed following an already described procedure [54]. Briefly, homologous determinations were performed using the software Get_Homologues [55], based on two different algorithms: Cluster of Orthologous Genes Triangle (COGT) and Orthologous Markov Cluster (OMCL). The total number of clusters conforming the pangenome was determined with the consensus of COGT and OMCL. Exclusive proteins of each strain, extracted from the pan-genome determination, were assigned to a functional category using the eggNOG-mapper v2 online tool [56]. Single nucleotide polymorphism (SNPs) analyses were done using Snippy (https://github.com/tseemann/snippy), using the default parameters and the genome of strain UIB 001 as a reference.

Experimental Design

Prior to the experiments, temperature (4–42 °C) and NaCl tolerance (0–20% (p/v)) were tested. Besides, biochemical tests were carried out in the Spanish Type Culture Collection (CECT) using API 20NE and API ZYM test kits (Biomerieux), following the manufacturer's instructions and adding Marine Cations Supplement in a 1/10 ratio, and incubated at 30 °C. To evaluate their ability to cope with different nutrient regimes and changes in cell morphology, bacterial cells were grown in ASW with agarose (1.5% (p/v)), containing optimal nutrients (+N, +P, +Fe, and +carbon source (C)), N₂ as sole N source (–N, +P, +Fe, and +C), without P and Fe (+N, –P, –Fe, and +C), without N, P, Fe, and ot C (+N, +P, +Fe, and –C), and without N, P, Fe, and C (–N, –P, –Fe, and –C).

Cobetia sp. isolates were cultured and acclimatized in marine broth (MB) at 20 °C and 150 r.p.m. The subcultures for seeding were centrifuged and washed with their corresponding medium without N, P, and Fe. All the experiments were performed in triplicate in sterile 50 mL Falcon tubes and/or 2 mL microplates in modified ASW culture media (without agarose), in batch cultures. We inoculated 7×10^5 cell mL⁻¹ in each treatment. Samples were manipulated in a glass-clean hood to avoid Fe contamination, and cultures were maintained over 4–12 d, at 20 °C and 120 r.p.m.

Different inorganic/organic N (i.e., NH3 from NH4Cl and/ or C₄H₁₁NO₃ [Tris]), inorganic P (i.e., PO₄³⁻ from K₂HPO₄), and Fe (from ferric citrate [C₆H₅FeO₇]) concentrations were tested at different pH (6-8), as shown in the Supplementary Table S1, based in previous works [30, 31]. Briefly, for N, four levels of inorganic (NH₃) and/or organic N (Tris) were tested: Non-N [0 mM], 0.8 mM NH₃, 1 mM Tris, and 1 mM Tris +0.8 mM NH₃; for PO_4^{3-} , two levels were tested: [Low PO_4^{3-} , 0.005 µM] and [High PO_4^{3-} , 50 µM], as well as for Fe, [Low Fe, 1 nM] and [High Fe, 1 µM]. All these concentrations were combined in three different experimental designs: (I) long-term studies (12 days) performing growth curves (where growth rates (μ) and duplication times (Tg) were measured) at pH 8 and (II) and (III) short-term studies (96 h), testing N, and PO₄³⁻ concentration effects at different pH levels, respectively. During the experiment, subsamples were taken to measure growth, alkaline phosphatase activity (APA), and reactive oxygen species (ROS). Besides, (IV) we measured APA under different levels of $\text{PO}_4{}^{3-}$ (0.005–100 $\mu M)$ and Fe (1 nm and 1 μ M) at pH 8 after 96 h (Supplementary Table S1).

Flow Cytometry and Growth Responses

Flow cytometry was used to assess changes in cell abundances. For long-term studies, subsamples of the culture (1.5 mL) were daily sampled, fixed with 36% (p/v) of formalin and froze at -20 °C until reading at the end of the

Fernández-Juárez V. et al.

experiments. For the rest of the experiments, measurements were performed without freezing nor fixing. The cytometer used was the BD FACSJazzTM, previously calibrated with the SPHEROTM Ultra Rainbow Fluorescent Particles, 3.08 µm. The cells were separated by adjusting the voltages, according to size and complexity: forward scatter (FCS) versus side scatter (SSC), respectively. Cell counts were adjusted to count for 10 s or 1000,000 events. To measure the growth rates (µ) and duplication times (T_g), we followed the equations used in Fernández-Juárez et al. (2020) [31]. To evaluate the effect of the low nutrient concentration (i.e., serial, simultaneous, or independent) of the growth response to P and Fe (with N replete), the log ratio effect-size criteria based on the mean treatment and control response was assessed as in Fernández-Juárez et al. (2020) [31].

Microscopical Analysis

Microscopical images were taken with the Leica TCS SPE confocal microscope, Leica Microsystems. The samples were placed on a clean slide with DAPI at a final concentration of 0.1 mg mL⁻¹. The samples were kept in the dark until reading, taking the images with the ×100 objective combining the brief-field I (BF) channel. Images were processed with ImageJ software, and cell volume was calculated following Hillebrand et al. (1999) [57].

Alkaline Phosphatase Activity

Alkaline phosphatase activity (APA) was evaluated using a fluorometric assay and following the MUF-P hydrolysis [30]. At the end of the experiment, APA was tested at low levels of PO_4^{3-} (i.e., 0.005 µM) with low or high levels of Fe (1 nm or 1 μ M) combined with different pH levels (pH 6-8). Moreover, a battery of concentrations of PO_4^{3-} (0.005, 0.05, 0.5, 5, 50, and 100 µM) combined with different levels of Fe (1 nm and 1 µM) at pH 8 was performed (Supplementary Table S1). An endpoint assay was conducted, using 5 µM MUF-P. After 1 h of incubation in darkness at room temperature, APA was measured in a microtiter plate that contained buffer borate pH 10 (3:1 of sample: buffer). With a Cary Eclipse spectrofluorometer (FL0902M009, Agilent Technologies), MUF production (fmol MUF cell⁻¹ h⁻¹) was measured at 359 nm (excitation) and 449 nm (emission), using a calibration standard curve with commercial MUF (Sigma-Aldrich). Results were normalized by cell number.

Structural Analysis of the Alkaline Phosphatase

Sequences of PhoD of the UIB 001 and 4B UA (locus_tag: HA399_02660 and H2O77_02640) in FASTA format were sent to the I-Tasser server for protein 3D-structure prediction [58], with their domains previously checked in Pfam 32.0

Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean...

[59]. The predicted structures were sent to POSA for a structural alignment between them [60]. The description of the Ca^{2+} and Fe^{3+} coordination positions of these proteins was based on the descriptions of the catalytic center of the PhoD from *C. amphilecti* KMM 296 (WP_043333989) [61] and the PhoD crystal structure of *Bacillus subtilis* (PDB: 2YEQ). Residues from PhoD from UIB 001 and 4B UA strains against the PhoD of *C. amphilecti* KMM 296 were mapped through alignments with Uniprot Clustal Omega [62]. The predicted structures and the corresponding structural alignments were visualized with Pymol [63].

Reactive Oxygen Species Production

ROS detection was measured with the molecular probe 2',7'dichlorofluorescein diacetate (DCFH-DA, Sigma) [31]. Briefly, bacterial samples were placed in a 96-well microplate (Thermo Scientific) spiked with DCFH-DA at a final concentration of 15 μ g mL⁻¹. The green fluorescence product, 2',7'dichlorofluorescein (DCF), generated after its oxidation by ROS was measured at 25 °C in the Eclipse spectrofluorometer (FL0902M009, Agilent Technologies) for 1 h with an excitation of 480 nm and emission of 530 nm. The results were expressed as the slope of the linear regression obtained and normalized by cell (arbitrary units [AU] cell⁻¹). DCFH-DA was added in ASW without cells as blanks under the same conditions.

Statistical Analysis

A parametric univariate analysis of variance (ANOVA) factor and post hoc (Bonferroni) was used to study the effect of N, P, and Fe concentrations in the UIB 001 and 4B UA strains. The statistical analyses were performed using the SPSS software v21 (IBM Corp year 2012).

Results

Characterizing Cobetia Sp. UIB 001 and 4B UA

Genomic Analyses

Based on 16S rRNA, ANIb, and GGDC analyses, we revealed that both strains from the endemic Mediterranean seagrass *P. oceanica* and the endemic HCS seagrass *H. chilensis*, respectively, corresponded to the same species and belonging to the *Cobetia* genus (Table 1, Fig. 1, Supplementary Tables S2, S3 and S4). The 16s rRNA analysis of the UIB 001 and 4B UA strains showed a similarity between 99.5 and 99.9% with the type strains *C. amphilecti* KMM 1516^T, *C. litoralis* KMM 3880^T, *Cobetia marina* JCM 21022^T, and *C. pacifica* KMM 3879^T (Supplementary Table S2). Besides, the 16S rRNA

phylogenetic tree showed a clade formed by these species, supported with high bootstrap values (Fig. 1). Based on these results, the UIB 001 and 4B UA strains seem to be more closely related to C. amphilecti and C. litoralis (Supplementary Table S2). In agreement with the 16s rRNA analysis, ANIb and DDH analyses also confirmed that strains UIB 001 and 4B UA belong to the same species, showing a similarity over 96% (ANIb) and 70% (dDDH) between them (Table 1 and Supplementary Tables S3 and S4). Comparisons with genomes of the Cobetia genus present in GenBank were carried out to provide deeper insights into their taxonomic affiliation (Supplementary Table S3 and S4). There is an important lack of genome sequences of type strains inside the Cobetia genus, being C. marina the unique species for which the type strain has been genome sequenced (JCM 21022^{T} , accession number CP017114). The genome of C. amphilecti KMM 296, which is not the type strain, showed the highest score by ANIb and dDDH (over 96 and 70%, respectively), indicating that, presumably, our strains might be representatives of C. amphilecti (Supplementary Tables S3 and S4). However, due to the lack of type strain genomic information, it was not possible to perform an accurate final taxonomic classification at the species level. Overall, with our results, we can affirm that the strains isolated belong to the Cobetia genus, and they are not C. marina. Thus, the strains were named Cobetia sp. UIB 001 and 4B UA.

Genomic Features

Sequencing and assembly procedures generated two complete and closed genomes. The genome sequence of the strain UIB 001 was composed of one chromosome (4,177,647 bp) and one putative plasmid (10,679 bp), while the genome of strain 4B UA was composed of one chromosome (4,319,205 bp) and two putative plasmids (4702 and 2015 bp). The main genomic features of each genome are included in Table 1 and Fig. 2A and B. The complete genome sequences were deposited at DDBJ/EMBL/GenBank under the accession numbers CP058244 to CP058245 (*Cobetia* sp. UIB 001) and CP059843 to CP059845 (*Cobetia* sp. 4B UA).

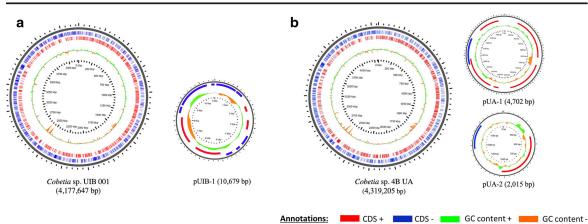
Genomic Differences

The pan-genome analysis determined that both strains shared 3087 homologous proteins (Fig. 3A). Functional analysis of the entire set of proteins of each strain displayed that both strains shared almost the same distribution of gene functions (Supplementary Fig. S1). Additionally, 197 proteins were exclusively present in the strain UIB 001, whereas the strain 4B UA had 278 specific proteins (Fig. 3A). It is worth mentioning that the functional category with the most representatives was "Function unknown" (Fig. 3B). Results from the SNPs

Fernández-Juárez V. et al.

Table 1Genomic features ofCobetia sp. UIB 001 and 4B UA

	UIB 001	4B UA	
Genome length (bp)	4,177,647	4,319,205	
G+C (%)	62.78%	62.56%	
Genes	3488	3562	
Protein-coding genes	3391	3474	
rRNA operons	7	7	
tRNA genes	74	72	
Putative plasmids	1 (10,679 bp)	2 (4702 and 2015 bp)	
16s rRNA identity (%, between each other)	100%	100%	
ANib (%,between each other)	96.99%	96.93%	
dDDH (%, between each other)	75.80	75.80%	


analysis showed up to 66,929 SNPs between both strains. Among the "classical" proteins implicated in the adaptation and survival to low N, P, and Fe availability, we detected up to 1045 SNPs, 470 SNPs for proteins related to N-metabolism, 277 SNPs for proteins related to P-metabolism, and 298 SNPs for proteins related to Fe-metabolism (Fig. 3C).

Phenotypic Features

From the phenotypic point of view, these rod-shaped bacteria (1–1.5 μ m length and 0.7–0.8 μ m width) were able to grow in nutrient-depleted media, i.e., in N-, P-, and Fe-depleted solid media (with 1.5% (p/v) agarose), as long as carbon (C)

Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean..

Fig. 2 Genome BLAST atlas of the chromosomes for the strains A UIB 001 and B 4B UA, showing the overall similarity of the chromosome organization between them. Position of CDS+ and CDS-, as well as GC content, is indicated

source was present (Table 2). In agreement with the species more related to them (*C. amphilecti* KMM 1516^{T} and *C. litoralis* KMM 3880^{T}), both isolated had a tolerance over 15% NaCl (yet growth was not detected at 20%

NaCl) and up to 42 °C (Table 2). Overall, biochemical tests showed that both *Cobetia* sp., UIB 001 and 4B UA, had the same metabolic profiles and similar to the most related type strains (Table 2).

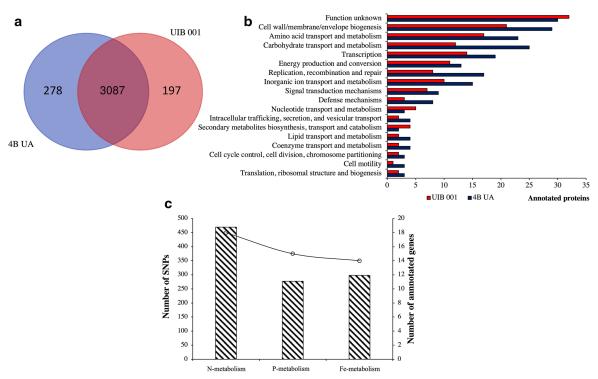


Fig. 3 Genomic differences between *Cobetia* sp. UIB 001 and 4B UA. A Pan-genomic analysis between *Cobetia* sp. UIB 001 and 4B UA, showing the number of shared proteins between the strains, as well as the number of exclusive proteins of each strain. **B** Functional categorization by COG

analyses of the exclusive proteins of UIB 001 and 4B UA strains. C Number of SNPs detected in genes implicated in N, P, and Fe metabolism. The bar chart represents the number of SNPs, whereas, lines represent the number of annotated genes implicated in N, P, and Fe metabolism

Description Springer

Fernández-Juárez V. et al.

		UIB 001	4B UA	KMM 1516 ^T	KMM 3880 ^T
	Habitat	Mediterranean Sea (Balearic Islands, Spain)	Humboldt Current System (Puerto Aldea, Chile)	Internal tissue of the sponge Amphilectus digitatus (Alaska)	Sandy sediment sample collected at a depth of 1 m from the shore of the Sea of Japan, Russia
	Motility		-	+	+
	Morphology	Rod-shaped (0.76 μm width and 1.2 μm length)	Rod-shaped (0.76 μm width and 1.1 μm length)	Rod-shaped (0.8–0.9 μm width and 1.1–1.6 μm length)	Rod-shaped (0.7–0.9 μ m width and 1.8–2.2 μ m length)
Growth Nacl	0%	_	-	s	S
(%)	1%	+	+	+	+
	10%	+	+	+	+
	20%	_	_	+	+
Growth (°C)	4 °C	+	+	+	+
	42 °C	+	+	+	+
Optimum pH		≅ 8	≅ 8	6.5-8.5	7.5-8.5
Growth under very low nutrient	(+P+Fe+N+C)	++	++	Non-tested	Non-tested
	(-P-Fe+N+C)	++	+		
	(+P+Fe-N+C)	+	+		
concentration	(-P-Fe-N+C)	+	+		
	(+P+Fe+N-C)	_	_		
	(-P-Fe-N-C)	_	_		
API 20NE test	PNPG test; assimilation D-glucose, D-mannitol, maltose and D-gluconate	+	+	+	+
	Nitrate reduction, indole production, glucose fermentation, arginine dihydrolase and urease activity, aesculin hydrolysis, gelatinase; assimilation of L-arabinose,	_	_	_	-
	N-acetylglucosamine, D-mannose Caprate	_	w	_	+
	Adipate	_	w	_	
	L-Malate	W	w	+	+
	Citrate and phenylacetate	w	w	_	-
Enzyme activities (API ZYM)	Alkaline phosphate, esterase (C4), esterase	+	+	+	+
	Airkinic phosphate, estetase (C4), estetase lipase (C8), acid phosphatase, a-glucosidase naphthol-AS-BI-phosphohydrolase Lipase (C14), cystine arylamidase, trypsin, a-chymotrypsin, a-galactosidase, β-glucuronidase, β-glucosidase, N-acetyl-β-glucosaminidase, a-mannosidase, a-fucosidase	-	-	-	-
	Valine arylamidase, β -galactosidase	_	_	W	_

Symbols +, -, w, and s, indicate positive, negative, weak, and slow reaction, respectively

Long- and Short-Term Effects of Varying Nutrient Concentration (N, P, and Fe)

Effect on Morphology

Nitrogen, P, and Fe triggered differential responses on the morphology of the UIB 001 and 4B UA strains (Fig. 4A-I).

With N2 as the sole N source, rod-shaped cells became more circular ($\simeq 1.2 \ \mu m$ length and 0.97 $\ \mu m$ width) than under optimal nutrient conditions (\simeq 1.16 μ m length and 0.76 μ m width) (Fig. 4C, D, and I). Under P/Fe or total nutrient (N, P, and Fe) depletion, cells became larger and wider (${\simeq}1.68~\mu m$ length and 0.95 μm width) than under optimal concentrations (~1.16 μm length and 0.76 μm width) (Fig. 4E–I). Overall, Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean...

under low nutrient concentrations, both strains' volume (μ m³) significantly increased (Fig. 41).

Changes of N Concentrations

Long-Term Effect of N Long-term studies testing N₂ as the sole N source showed differential effects between UIB 001 and 4B UA (ANOVA, p < 0.05, Fig. 5A and B). N-depletion for UIB 001 reduced cell growth by 3-fold (μ , 0.18 d⁻¹ and Tg, 3.87 d) compared to optimal nutrient conditions (μ , 0.51 d⁻¹ and Tg, 1.37 d) (Bonferroni test, p < 0.05, Fig. 5B). Nevertheless, UIB 001 strain was capable to grow under this condition, showing its diazotrophic features. Although we did not find any annotated *nif* genes, UIB 001 possesses a cbb3-type cytochrome oxidase (locus_Tag: HA399_01480) found in N₂-fixing organisms and had active N₂-fixation rates (Supplementary Fig. S2A).

Besides, both strains were capable of growth in Burk's Nfree medium, recommended for detecting N₂-fixing organisms [64] (Supplementary Fig. S2B).

Short-Term Effects of N along with pH Different N sources (i.e., inorganic, NH₃, and/or organic, Tris) triggered different effects on UIB 001 and 4B UA at pH 8 after 96 h (ANOVA, p < 0.05, Fig. 5C). For both, increasing N sources had a positive impact, reaching the highest growths at 0.8 mM of NH₃ and 1 mM of Tris for UIB 001 and 4B UA, respectively (Fig. 5C). However, combining inorganic and organic N sources (i.e., 1 mM Tris + 0.8 mM NH₃) impaired the growth of both strains (Bonferroni test, p < 0.05, Fig. 5C). At low N levels (i.e., 0.08 mM NH₃), UIB 001 responded better than 4B UA. However, organic N (i.e., 1 mM Tris) was more toxic to UIB 001 than 4B UA (Bonferroni test, p < 0.05, Fig. 5C).

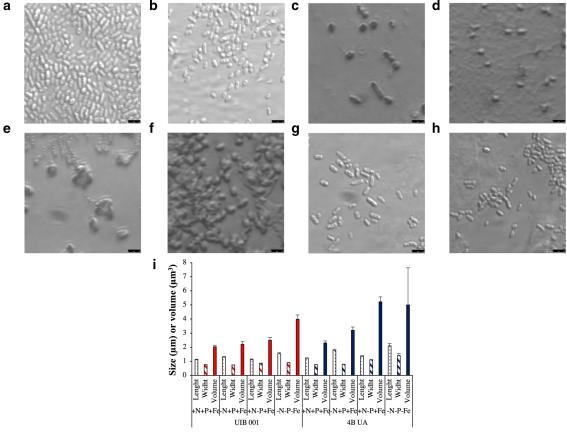
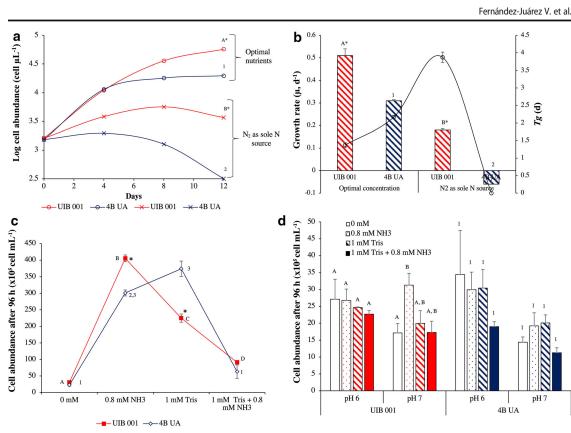



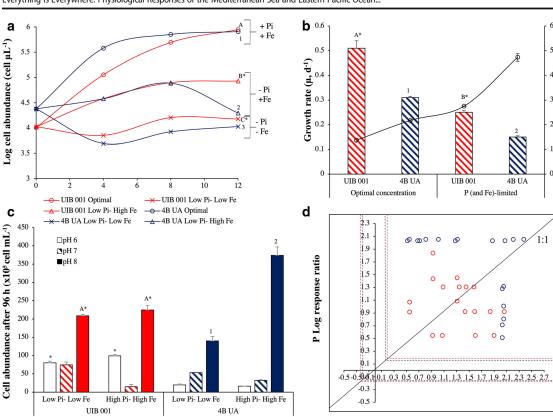
Fig. 4 Microscopic analysis of *Cobetia* sp. UIB 001 and 4B UA under different N, P, and Fe nutrient regimes. A Optimal condition, +N + P + Fe + C, for the UIB 001 strain. **B** Optimal condition, +N + P + Fe + C, for the 4B UA strain. **C** N₂ as the sole N source, -N + P + Fe + C, for the UIB 001 strain. **D** N₂ as the sole N source, -N + P + Fe + C, for the 4B UA strain. **E** P- and Fe-depleted condition, +N - P - Fe + C, for the UIB 001

strain. **F** P- and Fe-depleted condition, +N-P-Fe+C, for the 4B UA strain. **G** Nutrient-depleted condition, -N-P-Fe+C, for the UIB 001 strain. **H** Nutrient depleted condition, -N-P-Fe+C, for the 4B UA strain. **I** Length, width, and volume changes derived from changes in nutrient regimes for *Cobetia* sp. UIB 001 and 4B UA. For **A–H**, microscopical images were taken at ×100 with 4.73 of zoom

Fig. 5 Nitrogen (N) concentration effect for *Cobetia* sp. UIB 001 and 4B UA. **A–B** Long-term effect. **A** Growth curve under the optimal condition and N₂ as the sole N source and **B** growth rate (μ , d⁻¹, as a bar chart) and duplication time (*Tg*, d, as a line) under the optimal condition and N₂ as the sole N source. **C–D** Short-term (cell abundance, cell mL⁻¹) after 96 h under different N sources (inorganic, NH₃, or organic, Tris) at **C** pH 8 and

Lowering pH to 6 or 7 affected growth to a higher degree than the N source itself (ANOVA, p < 0.05, Fig. 5D). Indeed, the significant differences found previously were banished when pH was dropped, without any differences between strains (ANOVA, p > 0.05, Fig. 5D), except for UIB 001 at pH 7, in which 0.8 mM of NH₃ had a positive impact on cell abundance (Bonferroni test, p < 0.05, Fig. 5D).

Changes of P and Fe Concentrations


Long-Term Effect of P and Fe Not surprisingly, higher growth rates (μ) were reached under optimal PO₄³⁻ and Fe concentrations than at low PO₄³⁻, decreasing growth \approx 2-fold for both strains, and more pronouncedly at low Fe levels (ANOVA, p < 0.05, Fig. 6A and B). Noteworthy, higher μ and lower *Tg* were reached by UIB 001, compared to 4B UA, independently of the nutrient levels (Bonferroni test, p < 0.05, Fig. 6B).

Deringer

D at pH 6 and 7. Values are the mean \pm SE between the replicates. Letters (for UIB 001) and numbers (for 4B UA) indicate significant differences according to the treatment inside each strain, and asterisks (*) indicate significant differences between each strain inside each treatment, using a post hoc test (Bonferroni test, p < 0.05) after ANOVA over the whole dataset

Short-Term Effects of P and Fe Along with pH Short-term studies (during 96 h) showed that for both strains, $PO_4^{3^-}/Fe$ concentrations and pH levels (6, 7, and 8) variations significantly affected cell abundances (ANOVA, p < 0.05, Fig. 6C). Overall, low concentrations of $PO_4^{3^-}$ and Fe combined with different pH levels (6–8) did not significantly differ between strains (ANOVA, p > 0.05, Fig. 6C), albeit a higher tolerance to lower pH was observed for the UIB 001 strain. However, at pH 8 and low $PO_4^{3^-}$ and Fe levels, UIB 001 grew as it did at high $PO_4^{3^-}$ and Fe levels (Bonferroni test, p > 0.05, Fig. 6C), as opposed to 4B UA (Bonferroni test, p < 0.05, Fig. 6C), Decreasing pH levels had a dramatic effect on cell abundances (i.e., pH 6 and 7) (Bonferroni test, p < 0.05, Fig. 6C), showing that pH 8 was the optimum for UIB 001 and 4B UA strains independently of $PO_4^{3^-}$ and Fe levels (Fig. 6C).

Effect of Low Concentrations of P and Fe The responses to low PO_4^{3-} and Fe availability (under long term or short term) for both strains revealed an independent effect of P and Fe (P

Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean..

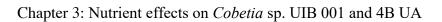
Fe Log response ratio

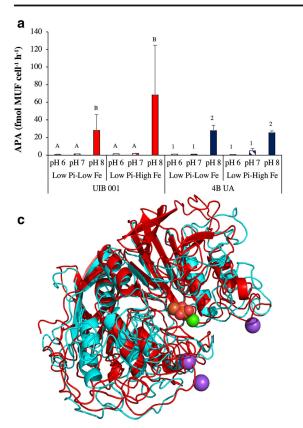
Fig. 6 Phosphorus (P) and Fe concentration effect for *Cobetia* sp. UIB 001 and 4B UA. **A–B** Long-term effect studies. **A** Growth curve under optimal nutrient condition and low PO₄³⁻ and/or Fe concentrations (0.005 μ M and/or 1 nM, respectively) and **B** growth rate (μ , d⁻¹, as a bar chart) and duplication time (Tg, d, as a line) curve under optimal nutrient condition and low PO₄³⁻ and/or Fe concentrations. **C** Short-term studies (cell abundance, cell mL⁻¹) after 96 h under different PO₄³⁻ and Fe concentrations at pH 6, 7, and 8. In **A-C** values are the mean \pm SE between the replicates. Letters (for UIB 001) and numbers (for 4B UA) indicate significant differences according to the treatment inside

strain inside each treatment, using a post hoc test (Bonferroni test, p < 0.05) after ANOVA over the whole dataset. PO₄³⁻ is represented as Pi. **D** Log P and Fe responses. Each data point represents each replicate (red: UIB 001; blue: 4B UA) in which X-axis is the P log response and Y-axis is the Fe log response. Dashed red (for *Cobetia* sp. UIB 001) and blue lines (*Cobetia* sp. 4B UA) represent the critical threshold values (data points outside the critical values are significantly different (at p = 0.05) from P₀Fe₀)

each strain, and asterisks (*) indicate significant differences between each

response >0, Fe response >0 and P + Fe response >0, p < 0.05, Fig. 6D). The threshold for P and Fe was slightly lower for UIB 001 than 4B UA, displaying a better response to low concentrations of P and Fe.


Effects of P on APA and Structure of PhoD The alkaline phosphatase activity (APA) was extremely influenced by PH at low PO_4^{3-} levels, i.e., 0.005 μ M (ANOVA, p < 0.05, Fig. 7A). Alkaline pH (i.e., pH 8) enhanced APA an average of 40-fold in both strains compared with the acidify conditions (Bonferroni test, p < 0.05, Fig. 7A). Different Fe levels (1 nM–1 μ M) did not cause any significant differences in APA at [Low PO₄³⁻], i.e., 0.005 μ M (ANOVA, p < 0.05, Fig. 7A). Increasing levels of PO₄³⁻ (up to 100 μ M) induced different inhibition responses on each strain (ANOVA,


p < 0.05, Fig. 7B), detecting positive feedback with Fe, especially for the *Cobetia* sp. UIB 001 (Fig. 7B). For the UIB 001, at pH 8 and high levels of Fe (1 μ M), APA did not respond to higher P levels (up to 50 μ M) and required the highest PO₄³⁻ level (100 μ M) to inhibit its activity (Bonferroni test, p < 0.05, Fig. 7B), unlike for 4B UA in which APA at 50 μ M was significantly inhibited (Bonferroni test, p < 0.05, Fig. 7B).

Structural analysis revealed the potential protein structure and the catalytic center for both PhoD of UIB 001 and 4B UA (Fig. 7 C and D). PhoD sequences shared an identity of 88%, while at the structural level, they shared an identity of 76%. Both PhoD had the same catalytic center as predicted for the PhoD of *C. amphilecti* KMM 296 (WP_043333989): ASP (241/238), TYR (244/241), ASP (306/303), HIS (308/305),

🖄 Springer

Tg (d)

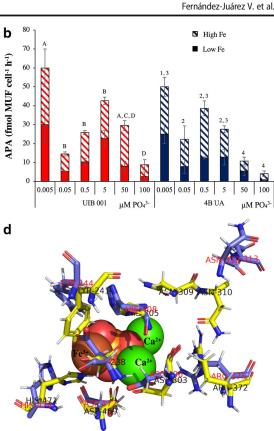
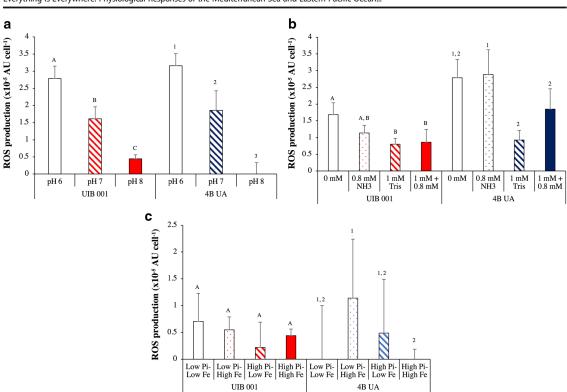


Fig. 7 P-acquisition mechanisms for *Cobetia* sp. UIB 001 and 4B UA. **A** Alkaline phosphatase activity (APA) under low levels of PO_4^{3-} (0.005 μ M) and differential concentration of Fe (1 nm and 1 μ M). **B** APA under different levels of PO_4^{3-} (0.005–100 μ M). Solid bars are low Fe level conditions, whereas the stripped bars are under high levels conditions. Values are the mean ± SE between the replicates. Letters (for UIB 001) and numbers (for 4B UA) indicate significant differences

ASN (312/309), ASN (313/310), ARG (375/372), ASP (472/469), and HIS (474/471) (Fig. 7D).

Effects of N, P, and Fe on ROS Production Along with pH Different pH levels had a significant effect on ROS production for both strains (ANOVA, p < 0.05, Fig. 8A). Alkaline pH (i.e., pH 8) reduced an average of 15-fold ROS compared with the acidify conditions (Bonferroni test, p < 0.05, Fig. 8A). At pH 8, ROS production was affected by the different sources of inorganic and organic N (ANOVA, p < 0.05, Fig. 8B). However, no significant differences were achieved between strains (ANOVA, p > 0.05, Fig. 8B), decreasing ROS production with an increase of N (ANOVA, p < 0.05, Fig. 8B). Indeed, different PO₄³⁻ and Fe levels did not have any effect on ROS production for both strains (ANOVA, p > 0.05, Fig. 8C), except for 4B UA at high concentrations of PO₄³⁻ and Fe, with ROS production decreasing significantly



according to the treatment inside each strain using a post hoc test (Bonferroni test, p < 0.05) after ANOVA over the whole dataset. PO_4^{3-} is represented as Pi. **C–D** Protein structural analysis base on the description of the PhoD of *C. amphilecti* KMM 296. **C** Structural analysis of PhoD from UIB 001 (red) and 4B UA (blue) strains. **D** Catalytic center for PhoD: UIB 001 strain, in red (aa letters) and blue (aa structure), and 4B UA, in black (aa letters) and yellow (aa structure)

compared to [Low $PO_4^{3^-}$ -High $PO_4^{3^-}$] condition (Bonferroni test, p < 0.05, Fig. 8C).

Discussion

For decades, the study of microbial biodiversity has sought to determine why microbes live where they live, embracing the tenet that "Everything is everywhere, but the environment selects" [33]. Here, we isolate and identify two strains of the same species (i.e., as endophytic and epiphytic bacteria, *Cobetia* sp. UIB 001 and 4B UA) which thrive on two different seagrasses in contrasting environments: *Posidonia oceanica* found in the Mediterranean Sea (MS) and the *Heterozostera chilensis* (formerly *H. nigricaulis*) found in the Humboldt current system (HCS). As noticed before, the MS is an oligotrophic semi-enclosed sea, where *P. oceanica* is

Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean...

Fig. 8 Reactive oxygen production (ROS) production for *Cobetia* sp. UIB 001 and 4B UA. **A** At different pH levels (6–8). **B** At different concentrations of N source. **C** At different combinations of PO_4^{3-} and Fe. Values are the mean ± SE between the replicates. Letters (for UIB

001) and numbers (for 4B UA) indicate significant differences according to the treatment inside each strain using a post hoc test (Bonferroni test, p < 0.05) after ANOVA over the whole dataset. PO₄³⁻ is represented as Pi

widely extended, while the HCS is a nutrient-rich cold current where *H. chilensis* thrives in just a few locations, settled relatively recently [21]. Our results suggest that regardless of the contrasting environments considered, the same endophytic and epiphytic bacteria can perform analogous functions and adapt similarly to stressful scenarios.

After culturing the whole epiphytic community of both seagrasses, the gamma-proteobacteria Cobetia sp. (UIB 001 and 4B UA) arose above all in both seagrasses. Although we made an effort to taxonomic classify these isolates, it was only possible to determine that both strains are the same Cobetia species, presumably C. amphilecti, and they do not belong to the Cobetia marina species. Due to the lack of type strain genome sequences of the genus Cobetia, precise taxonomic classifications cannot be performed from the genomic point of view. From a genomic view, high G+C % contents were detected in both strains (i.e., 62-63%), which has previously been correlated to N availability [65]. This means that the ecological niche of Cobetia sp. UIB 001 and 4B UA are rich in N, probably by the high rates of N₂-fixation detected in P. oceanica (i.e., higher than the rest of tropical seagrasses) [9] and the high N availability in the HCS [19]. Even though Balabanova et al. (2016ab) did not show physiological data, it revealed the potential genomic adaptation to the changing nutrient regimes of *C. amphilecti*, reporting different metabolic and biochemical profiles between differential strains placed in different marine niches [66, 67]. Yet, this work reveals that the *Cobetia* sp. isolates respond differently to seawater conditions. Thus, we hypothesize that these different traits might be the consequence of a different genomic evolution subjected to environmental pressures that led to the development of specific proteins and the significant number of SNPs that were found.

According to classical classifications [68, 69], both *Cobetia* sp. strains (UIB 001 and 4B UA), might belong to the group of oligotrophic bacteria, as they were capable of growing with minimal content of organic matter and nutrients (i.e., 1–15 mg of C mL⁻¹ and N₂ as the sole N source). Indeed, these strains may be considered as extreme oligotrophic bacteria, as they were able to grow with N₂ as the sole N source, and P- and Fe-depleted conditions, being just dependent on the carbon (C) source (e.g., citrate or glucose), as metabolic tests revealed. Oligotrophic bacteria usually have small sizes ($\leq 1 \mu m$) to optimize the low availability of resources

Fernández-Juárez V. et al.

available by increasing their S/V ratio. However, microbes can expand their size to increase the cell surface area to accommodate enough uptake sites to meet uptake demands [70], as observed in both *Cobetia* sp. Through this plasticity to respond to the changing environment, bacteria play a key role in marine food webs and nutrient recycling (e.g., accumulation, export, remineralization, and transformation of nutrients), being a reservoir for nutrients as C, N, and P [71, 72], as *Cobetia* sp. does for the sustenance and maintenance of both seagrasses.

The ability to grow with N₂ as the sole N source and the N₂-fixation activity found in the UIB 001, remarks its potential role as N₂-fixer, as previously seen in other Cobetia spp., isolated as hydrocarbon-utilizing microbiota [73, 74]. Although non-putative N2-fixation genes annotated were found in their genomes (i.e., UIB 001 and 4B UA), genes typically involved in N2-fixing bacteria as ADP-ribosyl (dinitrogen reductase) glycohydrolase (draG), which products can regulate the nitrogenase complex (i.e., formed by NifH, NifK, and NifD) [75], and cbb3-type cytochrome c oxidase, required for symbiotic N₂-fixation [76], were found in both bacteria. This observation may suggest that the UIB 001 might contain alternative genes for N2-fixation. Noteworthy, the utilization of trace amounts of atmospheric ammonia through high-affinity ammonium transporters (AmtB) might be also a potential source of N for extreme oligotrophic bacteria [77], which explains why isolated 4B UA was capable of growth in (semi)solid media with N2 as sole N source.

In vast oligotrophic areas of the ocean, N2-fixation is limited by P [78], while, in eutrophic coastal areas, P can trigger harmful algal blooms [79]. In our experiments, only the 4B UA strain isolated from the eutrophic HCS was P limited, as opposed to the oligotrophic MS isolate (UIB 001) that was relatively unaffected. Contrariwise, APA of the UIB 001 strain was prolonged with a higher concentration of PO_4^{3-} (without enhancing ROS production, unlike the 4B UA), suggesting a higher P-demand to achieve homeostasis. Previously, it was observed that under low concentrations of P, bacteria associated with P. oceanica (e.g., Halothece sp. species) were able to release dissolved inorganic phosphorus (DIP) from dissolved organic phosphorus (DOP) through the alkaline phosphatases (APases), which are expressed and activated through the PhoB-PhoR system [30]. Alkaline phosphatase D (PhoD) varied between the two strains at the sequence and structural levels, 88% and 76%, respectively, pointing to the structural differences as the most relevant in the differential APA, due to the lack of differences at the catalytic center.

Both APases are Fe-dependent (such as antioxidant enzymes or the nitrogenase complex [27, 80]) and are therefore impacted by the extended iron limitation throughout the ocean, including the MS and the HCS [17]. For both strains, APA was enhanced by increasing Fe levels since we predict in our PhoD model the coordination with one Fe^{3+} atom. However, high Fe levels did not induce ROS production at the optimal pH 8. Ferric iron, Fe^{3+} , is insoluble at neutral pH, but at a lower pH, its solubility increases. At acidified pH, organic ligands have less affinity for Fe, reducing Fe absorption and thus affecting cell growth [81]. Moreover, ROS production was enhanced under acidic pH (i.e., pH 6), possibly by lower intracellular Fe content for antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione reductase, or glutathione peroxidase).

The increasing carbon dioxide (CO₂) concentrations emitted to the atmosphere are irremissibly increasing ocean acidification (OA), posing serious risks to marine life [82]. However, lower pH levels may ameliorate some of the concomitant impacts of OA, i.e., reducing the impacts of un-ionized NH₃ on the activity of some cytosolic enzymes [83]. Both *Cobetia* sp. were significantly affected by high N sources at pH 8, but not at pH 6 or 7, not accompanied by ROS increments, suggesting that antioxidant enzymes were not affected by un-ionized NH₃. Moreover, it has been observed that OA may play a significant role in P eutrophication [84]. Previous works pointed to the sensitivity of the APA of *Cobetia* spp. exposed to acidification [61, 85, 86].

Our multifactorial design showed that the same species growing in different ocean basins (i.e., MS or HCS) displays different physiological and biochemical responses to different nutrient regimes (N, P, and/or Fe). Not surprisingly, the Mediterranean strain (exposed to oligotrophic water of the MS) coped with low N and P concentrations more efficiently. Nonetheless, the appearance of oligotrophic bacteria in nutrient replete waters (i.e., 4B UA) may point to the origin of this species, as its host, H. chilensis, reached the Chilean coast after long-distance dispersal from its native East Australian Current [21], characterized by warm waters and oligotrophy. Moreover, this species settled ~30°S, where a drop in primary production has been associated with the poleward migration of the South Pacific Anticyclone [87], pointing to substrate availability as the more important factor controlling bacterial activity and abundance in the HCS [88].

Conclusions

In summary, the present study brings new clues to better understand how biotic (host) and abiotic (i.e., nutrient levels and pH) interactions affect the plasticity and phenotypic acclimation of epiphytic bacteria thriving in contrasting environments, pointing to the intriguing relationships between epiphytes and seagrasses on the nutrients cycling around the global ocean. Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean...

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00248-021-01766-z.

Acknowledgements VFJ acknowledges the travel funds provided by the Santander Iberoamérica 2019–2020 fellowship. We are grateful to Prof. Mario Edding and Felipe Sáez of the Laboratorio de Botánica Marina at the Universidad Católica del Norte for providing us with leaves of *H. chilensis*.

Author Contribution VFJ and PE designed the experiments. VFJ conducted all the laboratory experiments and isolated the UIB 001 strain. JBE isolated the Pacific 4B UA strain. DJL conducted the bioinformatic analyses. All the authors, VFJ, DJL, JBE, ABF, NSRA, and PE, led the writing of the paper.

Funding NSRA was funded through the Ministerio de Economía, Industria y Competitividad-Agencia Estatal de Investigación and the European Regional Development Funds project (CTM2016-75457-P). PE acknowledges the financial support of the research grants Fondecyt Iniciación 11170837, FONDEQUIP EQM120137, and REDI170403.

Data and Availability and Code Availability This manuscript contains previously unpublished data. The name of the repository and accession number(s) are CP058244 to CP058245 (*Cobetia* sp. UIB 001) and CP059843 to CP059845 (*Cobetia* sp. 4B UA).

Declarations

Studies Involving Animal Subjects No animal studies are presented in this manuscript.

Studies Involving Human Subjects No human studies are presented in this manuscript.

Inclusion of Identifiable Human Data No potentially identifiable human images or data is presented in this study.

Consent to Participate Not applicable.

Consent for Publication Not applicable.

Conflict of Interest The authors declare no competing interests.

References

- Hemminga MA, Duarte CM (2002) Seagrass ecology. Cambridge University Press. James W. Fourqurean. https://doi.org/10.4319/lo. 2002.47.2.0611
- Gutiérrez JL, Jones CG, Byers JE, Arkema KK, Berkenbusch K, Commito A et al (2012) Physical ecosystem engineers and the functioning of estuaries and coasts. Treatise Estuar Coast Sci 7: 58–81. https://doi.org/10.1016/B978-0-12-374711-2.00705-1
- Renn CE (1937) Bacteria and the phosphorus cycle in the sea. Biol Bull 72:190–195
- Tortell PD, Maldonado MT, Price NM (1996) The role of heterotrophic bacteria in iron-limited ocean ecosystems. Nature. 383:330– 332. https://doi.org/10.1038/383330a0
- 5. Anderson OR (2018) Evidence for coupling of the carbon and phosphorus biogeochemical cycles in freshwater microbial

communities. Front Mar Sci 5:1-6. https://doi.org/10.3389/fmars. 2018.00020

- Flombaum P, Gallegos JL, Gordillo RA, Rincon J, Zabala LL, Jiao N, Karl DM, Li WKW, Lomas MW, Veneziano D, Vera CS, Vrugt JA, Martiny AC (2013) Present and future global distributions of the marine Cyanobacteria *Prochlorococcus* and *Synechococcus*. Proc Natl Acad Sci 110:9824–9829. https://doi.org/10.1073/pnas. 1307701110
- Ugarelli K, Chakrabarti S, Laas P, Stingl U (2017) The seagrass holobiont and its microbiome. Microorganisms 5:81. https://doi. org/10.3390/microorganisms5040081
- Sohm JA, Webb EA, Capone DG (2011) Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol 9:499–508. https:// doi.org/10.1038/nrmicro2594
- Agawin NSR, Ferriol P, Cryer C, Alcon E, Busquets A, Sintes E, Vidal C, Moyà G (2016) Significant nitrogen fixation activity associated with the phyllosphere of Mediterranean seagrass *Posidonia oceanica*: first report. Mar Ecol Prog Ser 551:53–62. https://doi.org/10.3354/meps11755
- Agawin NSR, Ferriol P, Sintes E, Moyà G (2017) Temporal and spatial variability of in situ nitrogen fixation activities associated with the Mediterranean seagrass *Posidonia oceanica* meadows. Limnol Oceanogr 62:2575–2592. https://doi.org/10.1002/lno. 10591
- Agawin NSR, Ferriol P, Sintes E (2019) Simultaneous measurements of nitrogen fixation activities associated with different plant tissues of the seagrass *Posidonia oceanica*. Mar Ecol Prog Ser 611: 111–127. https://doi.org/10.3354/meps12854
- 12. Perry CJ, Dennison WC (1999) Microbial nutrient cycling in seagrass sediment. J Aust Geol Geophys 17:227–231
- Tanhua T, Hainbucher D, Schroeder K, Cardin V, Álvarez M, Civitarese G (2013) The Mediterranean Sea system: a review and an introduction to the special issue. Ocean Sci 9:789–803. https:// doi.org/10.5194/os-9-789-2013
- 14. Thingstad TF, Krom MD, Mantoura RFC, Flaten GA, Groom S, Herut B, Kress N, Law CS, Pasternak A, Pitta P, Psarra S, Rassoulzadegan F, Tanaka T, Tselepides A, Wassmann P, Woodward EM, Riser CW, Zodiatis G, Zohary T (2005) Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science (80-) 309:1068–1071. https://doi.org/10. 1126/science.1112632
- Ridame C, Le Moal M, Guieu C et al (2011) Nutrient control of N₂ fixation in the oligotrophic Mediterranean Sea and the impact of Saharan dust events. Biogeosciences 8:2773–2783. https://doi.org/ 10.5194/bg-8-2773-2011
- Statham PJ, Hart V (2005) Dissolved iron in the Cretan Sea (eastern Mediterranean). Limnol Oceanogr 50:1142–1148. https://doi.org/ 10.4319/lo.2005.50.4.1142
- Moore JK, Doney SC, Glover DM, Fung IY (2001) Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep Res Part II Top Stud Oceanogr 49:463–507. https:// doi.org/10.1016/S0967-0645(01)00109-6
- Thiel M, Macaya EC, Acuña E, Amtz WE, Bastias H, Brokordt K, Camus PA, Castilla JC, Castro LR, Cortés M, Dumont CP, Escribano R, Fernández M, Gajardo JA, Gaymer CF, Gomez I, González AE, González HE, Haye PA et al (2007) The Humboldt Current System of Northern and Central Chile oceanographic processes, ecological interactions and socioeconomic feedback. Oceanogr Mar Biol 195–344
- Montecino V, Lange CB (2009) The Humboldt Current System: ecosystem components and processes, fisheries, and sediment studies. Prog Oceanogr 83:65–79. https://doi.org/10.1016/j.pocean. 2009.07.041
- Kuo J (2005) A revision of the genus *Heterozostera (Zosteraceae)*. Aquat Bot 81:97–140. https://doi.org/10.1016/j.aquabot.2004.10. 005

Fernández-Juárez V. et al.

- Smith TM, York PH, Broitman BR, Thiel M, Hays GC, van Sebille E, Putman NF, Macreadie PI, Sherman CDH (2018) Rare longdistance dispersal of a marine angiosperm across the Pacific Ocean. Glob Ecol Biogeogr 27:487–496. https://doi.org/10.1111/ geb.12713
- Santelices B (1980) Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia. 19:1–12. https:// doi.org/10.2216/i0031-8884-19-1-1.1
- Mahowald NM, Hamilton DS, Mackey KRM, Moore JK, Baker AR, Scanza RA, Zhang Y (2018) Aerosol trace metal leaching and impacts on marine microorganisms. Nat Commun 9:2614. https:// doi.org/10.1038/s41467-018-04970-7
- Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, Galbraith ED, Geider RJ, Guieu C, Jaccard SL, Jickells TD, Ia Roche J, Lenton TM, Mahowald NM, Marañón E, Marinov I, Moore JK, Nakatsuka T, Oschlies A, Saito MA, Thingstad TF, Tsuda A, Ulloa O (2013) Processes and patterns of oceanic nutrient limitation. Nat Geosci 6:701–710. https://doi.org/10.1038/ ngco1765
- Bristow LA, Mohr W, Ahmerkamp S, Kuypers MMM (2017) Nutrients that limit growth in the ocean. Curr Biol 27:R474– R478. https://doi.org/10.1016/j.cub.2017.03.030
- Sebastian M, Ammerman JW (2011) Role of the phosphatase PhoX in the phosphorus metabolism of the marine bacterium *Ruegeria pomeroyi* DSS-3. Environ Microbiol Rep 3:535–542. https://doi. org/10.1111/j.1758-2229.2011.00253.x
- Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253– 278
- Yang M, Zhao W, Xie X (2014) Effects of nitrogen, phosphorus, iron and silicon on growth of five species of marine benthic diatoms. Acta Ecol Sin 34:311–319. https://doi.org/10.1016/j.chnaes. 2014.10.003
- Garcia NS, Fu F, Sedwick PN, Hutchins DA (2015) Iron deficiency increases growth and nitrogen-fixation rates of phosphorusdeficient marine cyanobacteria. ISME J 9:238–245. https://doi. org/10.1038/ismej.2014.104
- Fernández-Juárez V, Bennasar-Figueras A, Tovar-Sanchez A, Agawin NSR (2019) The role of iron in the P-acquisition mechanisms of the unicellular N₂-fixing cyanobacteria *Halothece* sp., found in association with the Mediterranean seagrass *Posidonia oceanica*. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019. 01903
- Fernández-Juárez V, Bennasar-Figueras A, Sureda-Gomila A, Ramis-Munar G, Agawin NSR (2020) Differential effects of varying concentrations of phosphorus, iron, and nitrogen in N₂-fixing cyanobacteria. Front Microbiol 11. https://doi.org/10.3389/fmicb. 2020.541558
- Browning TJ, Achterberg EP, Yong JC, Rapp I, Utermann C, Engel A, Moore CM (2017) Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. Nat Commun 8:1–7. https:// doi.org/10.1038/ncomms15465
- Baas-Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon, The Hague, the Netherlands
- 34. Sanz-Sáez I, Salazar G, Sánchez P, Lara E, Royo-Llonch M, Sà EL, Lucena T, Pujalte MJ, Vaqué D, Duarte CM, Gasol JM, Pedrós-Alió C, Sánchez O, Acinas SG (2020) Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiol 20:1–16. https://doi.org/10.1186/s12866-020-01884-7
- Arahal DR, Ventosa A (2006) The family *Halomonadaceae*. In: E S (ed) The Prokaryotes. Springer, New York, pp 811–835
- De La Haba RR, Arahal DR, Márquez MC, Ventosa A (2010) Phylogenetic relationships within the family *Halomonadaceae* based on comparative 23S and 16S rRNA gene sequence analysis.

🖄 Springer

Int J Syst Evol Microbiol 60:737–748. https://doi.org/10.1099/ijs.0. 013979-0

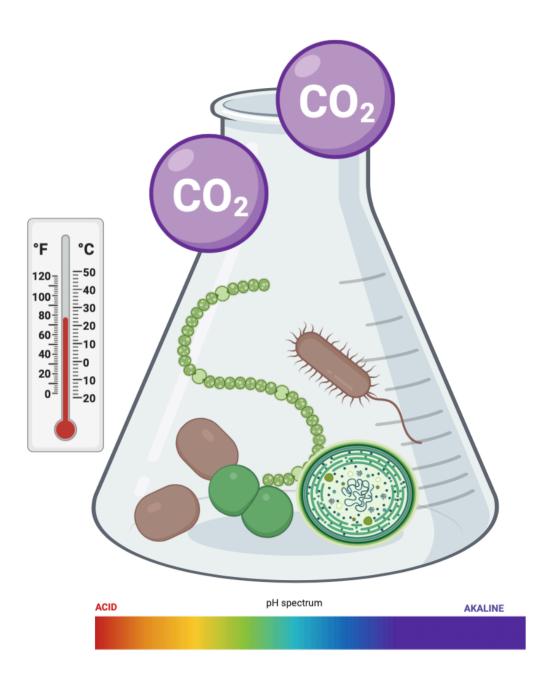
- 37. Romanenko LA, Tanaka N, Svetashev VI, Falsen E (2013) Description of *Cobetia amphilecti* sp. nov., *Cobetia litoralis* sp. nov. and *Cobetia pacifica* sp. nov., classification of Halomonas halodurans as a later heterotypic synonym of *Cobetia marina* and emended descriptions of the genus *Cobetia* and *Cobetia* marina. Int J Syst Evol Microbiol 63:288–297. https://doi.org/10.1099/ijs.0. 036863-0
- Kim MS, Roh SW, Bae JW (2010) *Cobetia crustatorum* sp. nov., a novel slightly halophilic bacterium isolated from traditional fermented seafood in Korea. Int J Syst Evol Microbiol 60:620– 626. https://doi.org/10.1099/ijs.0.008847-0
- Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A (2002) Proposal of *Cobetia marina* gen. nov., comb. nov., within the family *Halomonadaceae*, to include the species Halomonas marina. Syst Appl Microbiol 25:207–211. https://doi.org/10.1078/ 0723-2020-00113
- Yumoto I, Hirota K, Iwata H, Akutsu M, Kusumoto K, Morita N, Ezura Y, Okuyama H, Matsuyama H (2004) Temperature and nutrient availability control growth rate and fatty acid composition of facultatively psychrophilic *Cobetia marina* strain L-2. Arch Microbiol 181:345–351. https://doi.org/10.1007/s00203-004-0662-8
- 41. Ivanova EP, Christen R, Sawabe T, Alexeeva YV, Lysenko AM, Chelomin VP, Mikhailov VV (2005) Presence of ecophysiologically diverse populations within *Cobetia marina* strains isolated from marine invertebrate, algae and the environments. Microbes Environ 20:200–207. https://doi.org/10.1264/ jsme2.20.200
- Ibacache-Quiroga C, Ojeda J, Espinoza-Vergara G, Olivero P, Cuellar M, Dinamarca MA (2013) The hydrocarbon-degrading marine bacterium *Cobetia* sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking. Microb Biotechnol 6:394–405. https://doi.org/ 10.1111/1751-7915.12016
- 43. Lv N, Pan L, Zhang J, Li Y, Zhang M (2019) A novel microorganism for removing excess ammonia-N in seawater ponds and the effect of *Cobetia amphilecti* on the growth and immune parameters of *Litopenaeus vannamei*. J World Aquacult Soc 50:448–459. https://doi.org/10.1111/jwas.12561
- Fernández-juárez V, López-alforja X, Frank-comas A, Echeveste P (2021) "The good, the bad and the double-sword" effects of microplastics and their organic additives in marine bacteria. Front Microbiol 11:1–12. https://doi.org/10.3389/fmicb.2020.581118
- 45. Salvà Serra F, Salvà-Serra F, Svensson-Stadler L, Busquets A, Jaén-Luchoro D, Karlsson R, R. B. Moore E, Gomila M (2018) A protocol for extraction and purification of high-quality and quantity bacterial DNA applicable for genome sequencing: a modified version of the Marmur procedure. Protoc Exch. https://doi.org/10. 1038/protex.2018.084
- Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13:e1005595. https://doi.org/10.1371/ journal.pcbi.1005595
- Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for genome assemblies. Bioinformatics. 29: 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
- Tatusova T, Dicuccio M, Badretdin A et al (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569
- 49. Haft DH, DiCuccio M, Badretdin A, Brover V, Chetvernin V, O'Neill K, Li W, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, Lu F, Marchler GH, Song JS, Thanki N, Yamashita RA, Zheng C, Thibaud-Nissen F, Geer LY, Marchler-Bauer A, Pruitt KD (2018) RefSeq: an update on prokaryotic genome

Everything Is Everywhere: Physiological Responses of the Mediterranean Sea and Eastern Pacific Ocean...

annotation and curation. Nucleic Acids Res 46:D851–D860. https://doi.org/10.1093/nar/gkx1068

- Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0. 001755
- Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
- Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J (2016) JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 32:929– 931. https://doi.org/10.1093/bioinformatics/btv681
- Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. https:// doi.org/10.1186/1471-2105-14-60
- Jaén-Luchoro D, Gonzales-Siles L, Karlsson R, Svensson-Stadler L, Molin K, Cardew S, Jensie-Markopolous S, Ohlén M, Inganäs E, Skovbjerg S, Tindall BJ, Moore ERB (2020) Corynebacterium sanguinis sp. nov., a clinical and environmental associated corynebacterium. Syst Appl Microbiol 43:126039. https://doi.org/10. 1016/j.syapm.2019.126039
- Contreras-Moreira B, Vinuesa P (2013) GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701. https://doi.org/10.1128/aem.02411-13
- Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P (2018) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47:309– 314. https://doi.org/10.1093/nar/gky1085
- Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424. https://doi.org/10.1046/j.1529-8817.1999. 3520403.x
- Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. https://doi.org/10.1186/1471-2105-9-40
- Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279– D285. https://doi.org/10.1093/nar/gkv1344
- Li Z, Natarajan P, Ye Y, Hrabe T, Godzik A (2014) POSA: a userdriven, interactive multiple protein structure alignment server. Nucleic Acids Res 42:W240–W245. https://doi.org/10.1093/nar/ gku394
- Noskova Y, Likhatskaya G, Terentieva N, Son O, Tekutyeva L, Balabanova L (2019) A novel alkaline phosphatase/phosphodiesterase, CamPhoD, from marine bacterium *Cobetia amphilecti* KMM 296. Mar Drugs 17:1–20. https://doi.org/10.3390/ md17120657
- The UniProt Consortium (2014) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. https://doi.org/10. 1093/nar/gku989
- DeLano WL (2002) The PyMOL molecular graphics system. Schrödinger, LLC. Available online at: http://www.pymol.org
- Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133. https://doi.org/10.1016/j.micres. 2004.10.003

- Hellweger FL, Huang Y, Luo H (2018) Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model. ISME J 12:1180–1187. https://doi.org/10. 1038/s41396-017-0023-7
- 66. Balabanova LA, Golotin VA, Kovalchuk SN, Babii AV, Shevchenko LS, Son OM, Kosovsky GY, Rasskazov VA (2016) The genome of the marine bacterium *Cobetia marina* KMM 296 isolated from the mussel *Crenomytilus grayanus* (dunker, 1853). Russ J Mar Biol 42:106–109. https://doi.org/10.1134/ S106307401601003X
- Balabanova L, Nedashkovskaya O, Podvolotskaya A, Slepchenko L, Golotin V, Belik A, Shevchenko L, Son O, Rasskazov V (2016) Data supporting functional diversity of the marine bacterium *Cobetia amphilecti* KMM 296. Data Br 8:726–732. https://doi. org/10.1016/j.dib.2016.06.034
- Kuznetsov SI, Dubinina GA, Lapteva NA (1979) Biology of oligotrophic bacteria. Annu Rev Microbiol 33:377–387. https://doi.org/ 10.1146/annurev.mi.33.100179.002113
- Schut F, Prins RA, Gottschal JC (1997) Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat Microb Ecol 12:177–202
- Dao MH (2013) Reassessment of the cell surface area limitation to nutrient uptake in phytoplankton. Mar Ecol Prog Ser 489:87–92. https://doi.org/10.3354/meps10434
- Cole J, Findlay S, Pace M (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar Ecol Prog Ser 43:1–10. https://doi.org/10.3354/meps043001
- Biddanda B, Ogdahl M, Cotner J (2001) Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnol Oceanogr 46:730–739. https://doi.org/10.4319/lo.2001.46.3.0730
- Radwan S, Mahmoud H, Khanafer M, al-Habib A, al-Hasan R (2010) Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian gulf coasts, and their potential for oil bioremediation without nitrogen supplementation. Microb Ecol 60:354–363. https://doi.org/10.1007/s00248-010-9702-x
- Al-Awadhi H, Al-Mailem D, Dashti N et al (2012) Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. Arch Microbiol 194:689–705. https://doi.org/10.1007/s00203-012-0800-7
- Zhang Y, Burris RH, Ludden PW, Roberts GP (1997) Regulation of nitrogen fixation in *Azospirillum brasilense*. FEMS Microbiol Lett 152:195–204. https://doi.org/10.1016/S0378-1097(97)00187-0
- Argandoña M, Fernández-Carazo R, Llamas I et al (2005) The moderately halophilic bacterium *Halomonas maura* is a freeliving diazotroph. FEMS Microbiol Lett 244:69–74. https://doi. org/10.1016/j.femsle.2005.01.019
- Yoshida N, Inaba S, Takagi H (2014) Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, *Rhodococcus* erythropolis N9T-4. J Biosci Bioeng 117:28–32. https://doi.org/ 10.1016/j.jbiosc.2013.06.005
- Sañudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone DG, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by *Trichodesmium* in the central Atlantic Ocean. Nature 411:66–69
- Mackey KRM, Mioni CE, Ryan JP, Paytan A (2012) Phosphorus cycling in the red tide incubator region of Monterey Bay in response to upwelling. Front Microbiol 3:1–14. https://doi.org/10.3389/ fmicb.2012.00033
- Hoffman BM, Lukoyanov D, Yang Z-Y, Dean DR, Seefeldt LC (2014) Mechanism of nitrogen fixation by nitrogenase: the next stage. Chem Rev 114:4041–4062. https://doi.org/10.1021/ cr400641x
- Shi D, Xu Y, Hopkinson BM, Morel FMM (2010) Effect of ocean acidification on iron availability to marine phytoplankton. Science (80-) 327:676–679. https://doi.org/10.1126/science.1183517


🖄 Springer

Fernández-Juárez V. et al.

- Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192. https://doi.org/10.1146/annurev.marine.010908.163834
- Kadam PC, Boone DR (1996) Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens. Appl Environ Microbiol 62:4486–4492. https://doi.org/10.1128/ aem.62.12.4486-4492.1996
- Ge C, Chai Y, Wang H, Kan M (2017) Ocean acidification: one potential driver of phosphorus eutrophication. Mar Pollut Bull 115: 149–153. https://doi.org/10.1016/j.marpolbul.2016.12.016
- Yu Plisova E, Balabanova LA, Ivanova EP, Kozhemyako VB, Mikhailov VV, Agafonova EV, Rasskazov VA (2005) A highly active alkaline phosphatase from the marine bacterium *Cobetia*. Mar Biotechnol 7:173–178. https://doi.org/10.1007/s10126-004-3022-4
- Balabanova L, Golotin V, Kovalchuk S, Bulgakov A, Likhatskaya G, Son O, Rasskazov V (2014) A novel bifunctional hybrid with marine bacterium alkaline phosphatase and far eastern holothurian mannan-binding lectin activities. PLoS One 9:e112729. https://doi. org/10.1371/journal.pone.0112729
- Weidberg N, Ospina-Alvarez A, Bonicelli J, Barahona M, Aiken CM, Broitman BR, Navarrete SA (2020) Spatial shifts in productivity of the coastal ocean over the past two decades induced by migration of the Pacific anticyclone and Bakun's effect in the Humboldt upwelling ecosystem. Glob Planet Chang 193:103259. https://doi.org/10.1016/j.gloplacha.2020.103259
- Troncoso VA, Daneri G, Cuevas LA, Jacob B, Montero P (2003) Bacterial carbon flow in the Humboldt Current System off Chile. Mar Ecol Prog Ser 250:1–12. https://doi.org/10.3354/meps250001

2 Springer

SECTION II: EFFECT OF ANTHROPOGENIC FACTORS IN DIAZOTROPHS: GLOBAL CLIMATE CHANGE FACTORS AND EMERGING POLLUTANTS

3.4 Chapter 4

Chapter 4: Effects of climate change factors in diazotrophs

Limnology and Oceanography

Dependence of the effects of pH changes, temperature and elevated levels of CO2 on the nutrient status of N2-fixing bacteria

Journal:	Limnology and Oceanography
Manuscript ID	LO-21-0168
Wiley - Manuscript type:	Original Article
Date Submitted by the Author:	30-Mar-2021
Complete List of Authors:	Fernández-Juárez, Victor; University of the Balearic Islands H. Zech, Elisa ; Universität Wien, Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology Pol-Pol, Elisabet ; University of the Balearic Islands Faculty of Sciences Agawin, Nona Sheila; Universitat de les Illes Balears Facultat de Ciencies, Biology
Keywords:	Ocean acidification and warming, CO2, Phosphorus and iron, Diazotrophs, Reactive oxygen species, Alkaline phosphatase activity
Abstract:	Ocean acidification and warming are current global challenges that marine bacteria have to cope with, including those that are involved in N-cycles (i.e., N2-fixers or diazotrophs). However, there is scarce information about the effects of global climate change factors (i.e., changes in pH and temperature with increased CO2 levels) in combination with other environmental factors (e.g., nutrient availability) in diazotrophs. We tested different pH (from pH 4 to 8) and temperature levels (12-30 °C), both under different nutrient availability of phosphorus (P) and iron (Fe). We also tested different CO2 concentrations (410 and 1000 μ mol CO2 mol-1) under different levels of Fe (1 μ M and 2 nM) and temperatures (18 °C and 30 °C), both under different P-concentrations. Our results reveal that the heterotrophic species are more susceptible to changes in pH and temperature than the phototrophic species. Generally, high CO2 levels (i.e., 1000 μ mol CO2 mol-1) negatively affected the growth for heterotrophic N2-fixing bacteria, but only when cultures were Fe and/or P-limited. Generally, continuous CO2 influx, 410 and 1000 μ mol CO2 mol-1 (according to the Fe and/or temperature levels), in the heterotrophic bacterial cultures resulted in higher reactive oxygen species (ROS) production, and higher N2-fixation rates than in cultures without added CO2. Overall, the alkaline phosphatase activity in cyanobacteria and heterotrophic bacteria decreased with increasing CO2 levels, according to the Fe and/or temperature levels. Our findings suggest that diazotrophic responses to climate change factors can be dependent on their nutrient status and their mode of life (phototrophic or heterotrophic).

Chapter 4: Effects of climate change factors in diazotrophs

Dependence of the effects of pH changes, temperature and elevated levels of CO₂ on the nutrient status of N₂-fixing bacteria

Víctor Fernández-Juárez^{1*}, Elisa H. Zech², Elisabet Pol-Pol¹ and Nona S.R. Agawin^{1*}

¹Marine Ecology and Systematics (MarES) Department of Biology, University of the Balearic Islands, Palma, Mallorca, Spain
²Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology Universität Wien, Wien, Austria

*Corresponding author: victor.fernandez@uib.es and nona.agawin@uib.es

Running title: Effects of climate change factors in diazotrophs.

Keywords: ocean acidification and warming, CO₂, phosphorus and iron, diazotrophs, reactive oxygen species (ROS), alkaline phosphatase activity.

Abstract

Ocean acidification and warming are current global challenges that marine bacteria have to cope with, including those that are involved in N-cycles (i.e., N₂-fixers or diazotrophs). However, there is scarce information about the effects of global climate change factors (i.e., changes in pH and temperature with increased CO₂ levels) in combination with other environmental factors (e.g., nutrient availability) in diazotrophs. We tested different pH (from pH 4 to 8) and temperature levels (12-30 °C), both under different nutrient availability of phosphorus (P) and iron (Fe). We also tested different CO₂ concentrations (410 and 1000 µmol CO₂ mol⁻¹) under different levels of Fe (1 µM and 2 nM) and temperatures (18 °C and 30 °C), both under different P-concentrations. Our results reveal that the heterotrophic species are more susceptible to changes in pH and temperature than the phototrophic species. Generally, high CO_2 levels (i.e., 1000 μ mol CO_2 mol⁻¹) negatively affected the growth for heterotrophic N₂-fixing bacteria, but only when cultures were Fe and/or P-limited. Generally, continuous CO₂ influx, 410 and 1000 µmol CO₂ mol⁻¹ (according to the Fe and/or temperature levels), in the heterotrophic bacterial cultures resulted in higher reactive oxygen species (ROS) production, and higher N₂fixation rates than in cultures without added CO₂. Overall, the alkaline phosphatase activity in cyanobacteria and heterotrophic bacteria decreased with increasing CO₂ levels, according to the Fe and/or temperature levels. Our findings suggest that diazotrophic responses to climate change factors can be dependent on their nutrient status and their mode of life (phototrophic or heterotrophic).

1. Introduction

Carbon dioxide (CO_2) emissions have been increasing since the start of the industrial revolution in 1750 (Etheridge et al., 1996). Anthropogenic activities will continuously emit CO₂ into the atmosphere and projected to reach 750 µmol CO₂ mol⁻¹ or more than 1000 µmol CO₂ mol⁻¹ by the end of this century (Raupach et al., 2007), from the current atmospheric levels of 417 µmol CO2 mol-1 (National Oceanic and Atmospheric Administration [NOAA], https://www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html, retrieved March 23, 2021). Increasing CO₂ levels have clear consequences on the chemistry of marine environments since one-third of anthropogenic emissions are accumulated in the oceans (Global Carbon Project, 2020). Carbon dioxide molecules can chemically react with seawater forming carbonic acid (H₂CO₃) and then bicarbonate (HCO_3^-) which dissociates to carbonate (CO_3^{-2}) , releasing protons (H^+) which causes acidification of the oceans. Future acidification scenarios are predicted to be at pH 7.7 by the end of the century (2100) from current pH values of between pH 8 to 8.25 (Jiang et al., 2019), and warming scenarios predict an increase of 2 to 6 °C in the ocean temperature (Sarmento et al., 2010). The effect of increased CO₂ levels and concomitant changes in pH and temperature have been studied in phytoplankton or microorganisms in general but often with contradictory results. Oliver et al. (2014) reported that increasing CO₂ levels do not have deleterious effects on phytoplanktonic communities, and even can stimulate cell abundance (Kim et al., 2006). Some reports speculate that marine phytoplankton can be resistant to ocean acidification (Berge et al., 2010; Nielsen et al., 2012). However, others affirm that small changes in the pH might change the microbial structure (Krause et al., 2012), while warmer temperatures can enhance phytoplanktonic abundance and activity, triggering algal blooms (Sarmento et al., 2010).

For N₂-fixing microorganisms or diazotrophs which play important roles in N-cyles (Hoffman et al., 2014), several studies have been focus on the effect of increasing levels of CO₂ and temperature. However, these reports are focused on the filamentous cyanobacteria *Trichodesmium* (and *Nodularia spumigena*) or in the unicellular cyanobacteria *Cyanothece* and *Crocosphaera* (Barcelos e Ramos et al., 2007; Breitbarth et al., 2007; Hutchins et al., 2007; Levitan et al., 2007; Fu et al., 2008; Czerny et al., 2009; Garcia et al., 2011, 2013ab; Shi et al., 2012; Eichner et al., 2014ab; Boatman et al., 2017), and to our knowledge, none has investigated the effects of climate change factors to heterotrophic N₂-fixing bacteria, which are suggested to contribute significantly to global N₂-fixation (Shiozaki et al., 2014; Zehr and Capone, 2020). It has been predicted

that N₂-fixation rates will increase to 22 to 27% due to an increase in water temperature by the end of this century (Boyd and Doney, 2002; Fu et al., 2014; Jiang et al., 2018), but these general predictions should be viewed with caution since the N₂-fixing community is composed of different groups, which can differ with their optimal pH, temperature, and nutrient requirements for their growth and activities (Lagus et al., 2004; Thackeray et al., 2008; Striebel et al., 2016), which can regulate their response in future ocean acidification and warming scenarios (Wrightson and Tagliabue, 2020). Diazotrophs have a particularly higher demand for phosphorus (P) and iron (Fe) than other microorganisms (Falkowski, 1997; Ward et al., 2013), because of their N₂-fixation and P-acquisition mechanisms and the dependence of their activities on available N concentrations (Fernández-Juárez et al., 2019, 2020). The availability of these nutrients may also affect their responses to changes in climate change factors (CO₂, pH and temperature).

Here, we studied the effect of climate change factors (i.e., changes in pH, increased temperature and CO₂ levels) in N₂-fixing bacteria, using selected cultures of diazotrophic Mediterranean species found in association with the endemic Posidonia oceanica seagrass (Agawin et al., 2017). From our previous studies, these test species were sensitive to different nutrient concentrations of P, Fe and N (Fernández-Juárez et al., 2019, 2020), and we hypothesize that their response to changes in pH, increased temperature and CO_2 levels are dependent on their nutrient status. Specifically, we investigated the response of four diazotrophic bacteria (phototrophic and heterotrophic) in batch cultures, testing the effects of (I) changes in pH (from pH 4 to 8) and (II) different temperature levels (12-30 °C), both under different nutrient concentrations of inorganic phosphorus (i.e., PO4³⁻) and Fe. We also tested the effects of (III) different levels of CO₂ (atmospheric CO₂, aCO₂: 410 µmol CO₂ mol⁻¹ and elevated CO_2 as predicted at the end of the century, eCO_2 : 1000 µmol CO_2 mol⁻¹) under (i) different levels of Fe (1 µM and 2 nM) at 24 °C and (ii) different temperatures (18 °C and 30 °C), both under different P-concentrations.

2. Materials and methods

2.1 Culture strains tested

We selected three N₂-fixers found in association with *P. oceanica* (Agawin et al., 2017), represented by their culturable strains: two cyanobacteria (i.e., unicellular *Halothece* sp. PCC 7418 and filamentous heterocyst-forming *Fischerella muscicola* PCC

73103), and one heterotrophic bacterium (i.e., *Pseudomonas azotifigens* DSM 17556^T) (**Supplementary Table S1**). Additionally, we tested another heterotrophic bacterium, *Cobetia* sp. UIB 001, isolated from the roots of *P. oceanica*, identified as a potential N₂-fixer (unpublished data). Before the experiments, the stock cultures were maintained in their optimal culture media: ASNIII + Turks Island Salts 4X for *Halothece* sp., BG11₀ for *F. muscicola* and Marine Broth for the heterotrophic bacteria, and they were incubated at 24 °C and 120 rpm in a rotatory shaker with a photoperiod of 12 h dark:12 h light under low-intensity fluorescent light (30 μ E m⁻² s⁻¹).

2.2 Experimental culture conditions

All the experiments were performed at least in triplicates (n = 3) and carried out in 2 mL microtiter plates (2 mL) or 50 mL falcon tubes (30 mL) in batch cultures, using modified artificial seawater medium, following in Fernández-Juárez et al. (2021). Inorganic phosphorus (P, in the form of K₂HPO₄), iron [Fe, in the form of ferric citrate, (C₆H₅FeO₇)] and inorganic nitrogen (N, in the form of NH₃Cl) were added depending on the nutrient regimen and the response variable selected (**Supplementary Table S1**). Cells were precipitated and washed with artificial seawater without P, Fe and N, inoculating in each treatment ~20-60 x10⁴ cells mL⁻¹. Cells were then maintained again at the initial conditions of 120 rpm, 12 h dark:12 h light and under low-intensity fluorescent light (30 μ E m⁻² s⁻¹) for 72 h. To avoid Fe contamination, all the samples were manipulated in a class-100 clean hood. Cell abundance, N₂-fixation rates, reactive oxygen species (ROS) and alkaline phosphatase activity were measured as response variables (**Supplementary Table S1**).

Effects of variation in pH and temperature levels

We tested varying levels of pH and temperature for the four bacteria mentioned above (**Supplementary Table S1**). For the first part of the experiment, the pH levels of the cultures were adjusted to different levels (pH 4, 5, 6, 7 and 8), using Tris-HCl or Trizma base (Sigma-Aldrich) at 0.1 mM (final concentration) in a calibrated pH-Meter BASIC 20 (CRISON). Moreover, for *Halothece* sp. and *Cobetia* sp., we tested the effects of pH between pH 6.5 to 8 (**Supplementary Table S1**). Cells were incubated at a constant temperature (24 °C), which is the temperature at which all the bacterial species tested have high growth rates. For the second part, the cultures were incubated at different

temperatures (12, 18, 24 and 30 °C) with coolers and thermostats and the pH was adjusted to 8 (**Supplementary Table S1**). The cultures were incubated at different nutrient concentrations in both pH and temperature experiments: at optimal nutrient concentrations (1.5 mM PO₄³⁻, 1 μ M Fe) and under nutrient limitation (0.1 μ M PO₄³⁻, 2 nM Fe), both under low levels of NH₃ (0.15 mM) to avoid inhibition of N₂-fixation (Knapp, 2012).

Effects of increased CO₂ levels

To investigate the effects of increased CO₂ levels (without bubbling), we used the unicellular cyanobacterium, *Halothece* sp., and the heterotrophic bacterium, *Cobetia* sp., as our test species following Fernández-Juárez et al. (2021). We tested two different levels of CO₂: atmospheric, aCO₂: 410 µmol CO₂ mol⁻¹ and elevated, eCO₂: 1000 µmol CO₂ mol⁻¹ (as predicted at the end of the century, IPCC, 2014), and included a control with no CO₂ influx. All the experiments were performed under low levels of NH₃ (0.15 mM). Combinations with two variables (Fe and temperature) with the different levels of CO₂ were conducted: (i) CO₂ and Fe (1 µM and 2 nM) at constant temperature (24 °C) and (ii) CO₂ and temperature (18 °C and 30 °C) with 1 µM of Fe. Both types of experiments were subject to different concentrations of PO4³⁻ (optimal, 1.5 mM; limited, 0.1 µM). The initial pH was adjusted to pH 8 in each treatment.

The microplates and Falcon tubes with the cultures were placed inside hermetic tanks (**Supplementary Figure S1**). Mass flow controllers (MFCs, Aalborg) were set-up to control the air mixture. The gas mixture was introduced inside the hermetic tanks, with an outlet hole to allow the flow-through of the gas mixture. To achieve these mixes, air from an air-pump was connected to a filter with soda lime to remove CO_2 and mixed with pure CO_2 from a bottle to reach the desired concentration. Mixing was achieved in a tube with marbles to assure the homogenization of gases. After splitting the resulting treatment air gas mixture, the volume that entered each tank was regulated by a flow meter with a volume of 2.5 L min⁻¹ (LPM). The pH was continuously measured and monitored (ENV-40-pH) every 30 min, and the resulting data was stored in two control boxes (IKS-AQUASTAR) (**Supplementary Figure S1**).

2.3 Flow cytometry and growth measurement

Fresh unfixed cells at the initial (T_o) and the final time point (T_f) of the experiments were counted with a Becton Dickinson FACS-Verse cytometer (Beckton and Dickinson, Franklin Lakes, New Jersey, USA). Fluorescent beads, BD FACSuiteTM CS&T research beads (Beckton and Dickinson and Company BD Biosciences, San Jose, USA), were used as an internal standard to calibrate the instrument. Cells were separated by combinations of the flow cytometer parameters: forward scatter (FSC, reflecting cell size), side scatter (SSC, reflecting internal complexity of the cells) and/or fluorescein isothiocyanate (FITC, 488 nm excitation, 530/30 nm emission) parameters, recording for each sample a total of 1 x10⁴ cells.

2.4 Nitrogen fixation activity

Nitrogen fixation rates were measured through the acetylene reduction assay at the end of the experiments (i.e., after 72 h), following the general method described in Agawin et al., (2014). Nitrogen fixation activities were measured under the dark period and at high P concentrations, as these conditions are previously found to be optimal for N₂-fixation of the species tested (Fernández-Juárez et al., 2019; 2020). Briefly, a known volume of the culture media (8 mL) was transferred into a 10 mL vial. Liquid saturated acetylene was injected in these vials achieving a final concentration of 20% (v/v) and incubated for 3 h. Ethylene and acetylene were determined using a gas chromatograph (model HP-5890, Agilent Technologies) equipped with a flame ionization detector (FID). The column was a Varian wide-bore column (ref. CP7584) packed with CP-PoraPLOT U (27.5 m length, 0.53 mm inside diameter, 0.70 mm outside diameter, 20 µm film thickness), using the set up described in Fernández-Juárez et al. (2019 and 2020). Ethylene produced was calculated using the equations in Stal (1988). The acetylene reduction rates were converted to N₂-fixation rates (nmol mL⁻¹ h⁻¹) using a factor of 4:1 (Jensen and Cox, 1983).

2.5 Determination of reactive oxygen species (ROS)

The molecular probe 2'-7'-dichlorofluorescein diacetate (Sigma) was used to measured ROS production after 72 h, following Fernández-Juárez et al. (2020). The 2'-7'-dichlorofluorescein diacetate diluted in artificial seawater (previously stabilized in acetone at 1 mg mL⁻¹) was added in a 96-well microplate (Thermo Scientific) containing

the bacterial samples, achieving a final concentration of 15 μ g mL⁻¹. The emission of the green fluorescence of the resulting 2'-7'-dichlorofluorescein was measured by a Cary Eclipse spectrofluorometer (FL0902M009, Agilent Technologies). Fluorescence was monitored for 1 h with an excitation of 480 nm and an emission of 530 nm. The slope of the linear regression between the fluorescence and time elapsed is reported as the ROS production expressed in arbitrary units (A.U.) and normalized by the cell number. The 2'-7'-dichlorofluorescein diacetate was added in artificial seawater without cells under the same conditions as above and served as blanks. To avoid the effect of nutrient limitation, described in Fernández-Juárez et al. (2020), all the variables were measured under P (or Fe) optimal conditions.

2.6 Determination of the alkaline phosphatase activity

Alkaline phosphatase activity was evaluated after 72 h through a fluorometric assay following the hydrolysis of the substrate 4-methylumbelliferyl phosphate (MUF-P, Sigma-Aldrich) to 4-methylumbelliferyl (MUF) following Fernández-Juárez et al. (2019). The culture media was PO_4^{3-} limited (0.1 µM, PO_4^{3-}) to induce the activity of the alkaline phosphatases. An endpoint enzymatic assay was conducted at the end of the experiment with 8 µM of MUF-P (**Supplementary Table S1**). For the pH experiments, we tested *Halothece* sp. and *Cobetia* sp. at the pH range of 6.5 to 8. After 1 h incubation in darkness, alkaline phosphatase activity was measured in a microtiter plate that contained borate pH buffer 10 (3:1 of sample: buffer). The MUF production was measured at 359 nm (excitation) and 449 nm (emission), using a calibration standard curve with commercial MUF (Sigma-Aldrich), with the Cary Eclipse spectrofluorometer (FL0902M009, Agilent Technologies).

2.7 Statistical analysis

Normality and homogeneity of variances were checked, and the statistical significance level was set at p < 0.05. Parametric analysis was used to examine normally distributed data using ANOVAs with Bonferroni post-hoc test. Spearman correlation analysis was used to determine the relationships between ROS vs. cell abundance, and alkaline phosphatase activity vs. cell abundance. All analyses were done in R-Studio, R version 3.6.3 (2020-02-29).

3. Results and discussion

3.1 Effect of varying levels of pH and temperature in N₂-fixing bacteria *Growth responses*

The growth responses of the diazotrophs tested to varying pH and temperature levels were dependent on the nutrient status of the cells (ANOVA, p < 0.05, n = 3, Figures 1 and 2), with generally higher growth in nutrient (P and Fe) replete cells than in nutrient-limited cells across the pH and temperature treatments. Diazotrophs require large amounts of P to fuel the N₂-fixation process (i.e., requiring up to 16 ATP) (Sañudo-Wilhelmy, 2001; Fernández-Juárez et al., 2019 and 2020), while Fe is a co-factor of the nitrogenase complex (i.e., contains 38 Fe atoms per holoenzyme) (Hoffman et al., 2014), which can explain the higher growth in nutrient replete cells. Moreover, Fe has a key role in P-acquisition mechanisms, being a co-factor of the alkaline phosphatases, through which inorganic P (PO₄³⁻) is released from the dissolved organic phosphorus, further fueling the N₂-fixation processes (Fernández-Juárez et al., 2019 and 2020). The lower growth in nutrient-limited cells here can be due to higher oxidative stress, cell breaks, and apoptotic processes, as reported in a previous study (Fernández-Juárez et al., 2020).

The growth of *Halothece* sp. and *Cobetia* sp. at pH between 6.5 to 8 generally were not affected (ANOVA, p > 0.05, n = 3, Figure 1A), in agreement with previous reports in marine microorganisms (Nielsen et al., 2012). However, under low pH (pH < 6.5), the magnitude of the difference between the growth of nutrient replete and nutrient-limited cells varies among the species tested and the pH (Figures 1A and 1B). Under nutrient replete conditions, very low pH (between pH 4-5) negatively affected the growth of all species tested with an average of 14-fold lower compared with the growth in higher pH (Bonferroni test, p < 0.05, n = 3, Figure 1B). The cyanobacterium, F. muscicola, and the heterotrophic bacterium, Cobetia sp. were the most affected species to low pH levels (Bonferroni test, p < 0.05, n = 3, Figure 1B). The sensitivity to low pH under nutrient replete situation is consistent with reports in other phytoplanktonic groups conducted under nutrient replete conditions (Berge et al., 2010). Under nutrient-limiting conditions, the optimal pH for growth in the cyanobacteria species tested shifted towards an acidic pH (i.e., pH 5), with 9-fold higher growth compared with the rest of the pH treatments (Bonferroni test, p < 0.05, n = 3, Figure 1B). A slight change from optimal pH of growth towards the acidic-neutral pH (at pH 6-7) rather than pH 8 was also observed for the heterotrophic species tested under nutrient limitation (Figure 1B). These results suggest species-specific responses on changes in pH and dependence of the responses on the nutrient status of cells. The negative effect observed under low pH levels (e.g., pH < 6.5) could be due to a decrease in nutrient uptake. Under lower pH levels, Fe (III) is less available for organic chelators (e.g., siderophores), and Fe (II) can be oxidized in non-bioassimilable forms (Samperio-Ramos et al., 2016) and thus Fe-uptake may be reduced. The reduction of Fe-uptake along with changes in cell membranes and gene expression can limit microbial activity and growth (Millero et al., 2009; Shi et al., 2010, 2012; Yu and Chen, 2019) with low pH levels as observed here (**Figure 1B**). The cyanobacterial species (*Halothece* sp. and *F. muscicola*) are suggested to be more resistant to lower pH than the heterotrophic bacteria (*Cobetia* sp.) under nutrient P and Fe limitation (**Figure 1B**). The mechanisms behind the higher tolerance to lower pH of cyanobacteria over heterotrophs need to be investigated further.

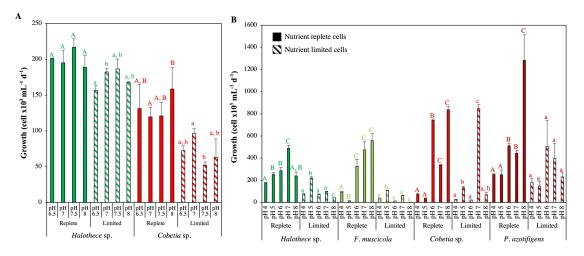
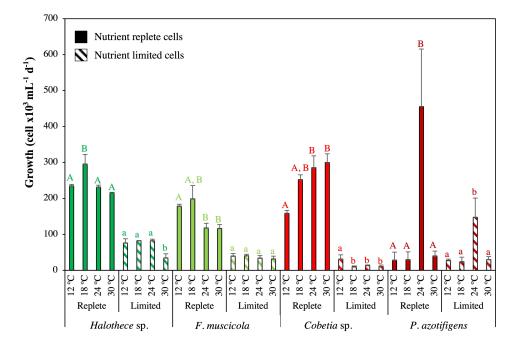



Figure 1. Effect of different levels of pH on growth after 72 h under different nutrient concentrations at 24 °C, A) at the pH range of 6.5 to 8, and B) at the pH range of 4 to 8. Values are the mean \pm SE (n = 3). Letters (i.e., capital letters or lower case) indicate significant differences (p < 0.05) with the rest of the treatments for each strain and nutrient level, using a posthoc test (Bonferroni test) after ANOVA over the whole dataset.

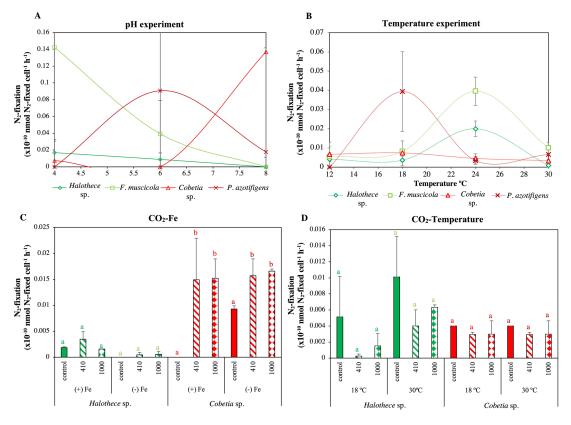

The response of the N₂-fixers tested at different temperatures was also dependent on the nutrient status of the cells and the species (ANOVA, p < 0.05, n = 3, **Figure 2**). Generally, nutrient replete cells of heterotrophic bacteria, *Cobetia* sp. and *P. azotifigens*, grew better in warmer temperatures (24-30 °C) than the cyanobacterial strains, *Halothece* sp. and *F. muscicola* (12-18 °C) (**Figure 2**). However, under nutrient limiting conditions, the optimal growth temperature of *Cobetia* sp. was 12 °C (Bonferroni test, p < 0.05, n =3, **Figure 2**). For the cyanobacterial strains, their optimal temperature range increased up to 24 °C (Bonferroni test, p < 0.05, n = 3, Figure 2). For *P. azotifigens* we did not detect significant changes under nutrient limitation (Bonferroni test, p > 0.05, n = 3, Figure 2). The mechanisms behind these results need to be further studied, but there are reports in which under nutrient replete conditions, warmer temperatures can stimulate heterotrophic bacteria respiration and enhances growth (Pomeroy and Wiebe, 2001), while lower temperatures reduce the ability to obtain inorganic nitrogen from the medium and decrease growth (Reay et al., 1999). Our results suggest that temperature-nutrient interactions can change the optimal growth temperature, in agreement with Thomas et al. (2017) and Marañón et al. (2018), which report changes of 3-6 °C in the optimal temperature according to the nutritional status in *Synechococcus* sp., *Skeletonema costatum, Emiliania huxleyi* or *Thalassiosira pseudonana*, probably by alterations in enzymatic kinetics.

Figure 2. Effect of different levels of temperature on growth after 72 h under different nutrient concentrations. Values are the mean \pm SE (n = 3). Letters (i.e., capital letters or lower case) indicate significant differences (p < 0.05) with the rest of the treatments for each strain and nutrient level, using a posthoc test (Bonferroni test) after ANOVA over the whole dataset.

Changes in N_2 -fixation rates

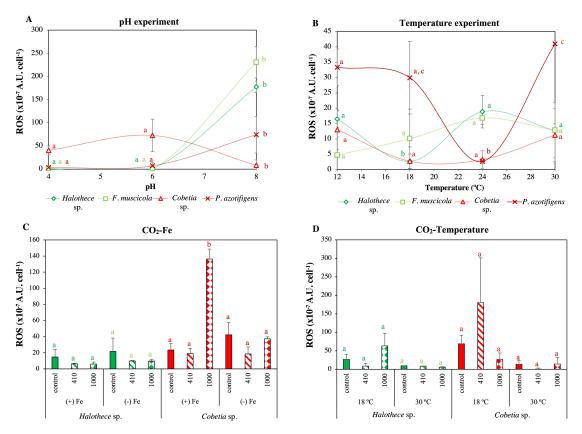
We did not detect any significant changes in N₂-fixation rates in response to changes in pH and temperature (ANOVA, p > 0.05, n = 3, Figures 3A and 3B). However, we detected clear differential trends in the N₂-fixation rates between cyanobacteria and heterotrophs (**Figures 3A** and **3B**). Heterotrophic bacteria maintained active N₂-fixation rates at pH 5-8 (**Figure 3A**), in agreement with the chemolithotroph *Azotobacter vinelandii* (Pham and Burgess, 1993), and cyanobacteria have active N₂-fixation rates under acidic conditions (< pH 7) (**Figure 3A**). Low cytosolic pH can decrease N₂-fixation rates (Hong et al., 2017), and as our results show, heterotrophic bacteria could be more sensitive to low pH than cyanobacteria (**Figure 1B**). The exact mechanisms by which N₂fixation rates are enhanced under acidic conditions in cyanobacteria remain to be investigated (**Figure 3A**), because to date, this is the first study that considers the independent effect of water acidification (aside from the effects of increased CO₂) on N₂fixation activity for marine diazotrophs.

Figure 3. Effect in N₂-fixation rates after 72 h, under different **A**) pH and **B**) temperature levels, and **C-D**) different concentrations of CO₂ [control, atmospheric CO₂ (aCO₂): 410 µmol CO₂ mol⁻¹, and elevated CO₂ (eCO₂): 1000 µmol CO₂ mol⁻¹] in combination with different **C**) Fe (+Fe, 1 µM and -Fe, 2 nM) and **D**) temperature levels (18 °C and 30 °C). All the measurements were taken under optimal P-concentration to promote the N₂-fixation. Values are the mean \pm SE (n = 3). Letters indicate significant differences (p < 0.05) with the rest of the treatments for each strain and experimental set-up, using a posthoc test (Bonferroni test) after ANOVA over the whole dataset.

Cyanobacteria (i.e., *Halothece* sp. and *F. muscicola*) reached the maximum N₂fixation rates at 24 °C, while in the heterotrophic bacteria, it was at 18 °C (**Figure 3B**). These differential responses between the photosynthetic and heterotrophic species remain to be investigated, but in both, temperatures over 30 °C have an inhibitory effect (**Figure 3B**). Studies conducted in marine bacteria show that N₂-fixation rates are active within the temperature range of 24 to 30 °C, but at temperatures > 30 °C the activity decrease, suggesting that temperature levels can control nitrogenase activity and expression (Breitbarth et al., 2007; Fu et al., 2014). Considering the pH and temperature effects on the growth of N₂-fixing cells tested (**Figures 1** and **2**), changes in their abundance can affect the bulk N₂-fixation rates.

Responses at the biochemical level and P-mechanisms

Significantly high ROS production was measured for Halothece sp., F. muscicola and P. azotifigens at the pH of normal ocean water (i.e., pH 8) compared to other pH treatments while for *Cobetia* sp. at this pH ROS was the lowest (ANOVA, p < 0.05, n = 3, Figure 4A). In other studies in phytoplankton cells, e.g., Chattonella marina and Heterosigma akashiwo, alkaline pH increases ROS production (Twiner, 2000; Liu et al., 2007), but our results indicate species-specific ROS production responses to alkaline pH (Figure 4A). Under acidified conditions, in most of the species tested, generally low ROS levels were measured and may suggest that the diazotrophic population must have mechanisms or efficient antioxidant defenses for low pH conditions (Figure 4A). Temperature also affected ROS production, but their response was also dependent on the species tested (Figure 4B). For Halothece sp. and P. azotifigens, ROS production was lower at intermediate temperatures than at the lowest (i.e., 12 °C) and highest (i.e., 30 °C) temperature treatments (Bonferroni test, p < 0.05, n = 3, Figure 4B), while for the other species, i.e., F. muscicola and Cobetia sp., no significant differences were detected (Bonferroni test, p > 0.05, n = 3, Figure 4B). Cooler and warmer temperatures may promote adaptative responses to survive and adapt to non-optimal conditions which can trigger higher ROS production (Twiner, 2000; Chattopadhyay, 2006).


For *Halothece* sp. and *Cobetia* sp., the maximum alkaline phosphatase activity was achieved at alkaline pH (i.e., above pH 7) (**Figure 5A**), and the rates dropped significantly from pH 8 to 6.5 for both bacteria (ANOVA, p < 0.05, n =3, **Figure 5A**). These results are consistent with studies in cyanobacteria (e.g., *Nostoc flagelliforme*) and heterotrophic bacteria (e.g., *Cobetia amphilecti* KMM 296), wherein alkaline phosphatase activities

were dramatically inhibited with acidification, possibly due to loss of the stability of the enzyme (Li et al. 2013; Noskova et al. 2019; Yu Plisova et al. 2005). Different temperature levels also affected the alkaline phosphatase activity in the diazotrophs tested (ANOVA, p < 0.05, n = 3, Figure 5B). The optimal temperature for the alkaline phosphatase activity varied by species (i.e., for cyanobacteria at 24 °C and heterotrophic bacteria at 12-18 °C), but for all the species we tested, the phosphatase enzymatic activities tended to have lower rates at 30 °C (Figure 5B) consistent with nitrogenase activities (Figure 3B). This suggests that alkaline phosphatase activity fuels the N₂fixation processes (Fernández-Juárez et al., 2019; Agawin et al., 2021). The stability of the enzyme, the velocity of organic phosphate breakdown, and enzyme-substrate affinity are controlled by temperature (Hernández et al., 2002). Contrary to our results, in vitro studies with the purified alkaline phosphatase (e.g., PhoD) show that for cyanobacteria (e.g., N. flagelliforme) and heterotrophic bacteria (e.g., C. amphilecti KMM 296) the optimal alkaline phosphatases activity is within a range of 40 to 45 °C (Noskova et al., 2019; Li et al., 2013). To date, this is the first study reporting the in vivo temperature effect of the alkaline phosphatase activity in marine N₂-fixing bacteria. Moreover, in some of the bacteria tested (i.e., Halothece sp. or P. azotifigens, Figure 5B), the alkaline phosphatases might be adapted to cold temperatures, as in the case for the marine Vibrio sp. (Hauksson et al., 2000). More studies about P-acquisition mechanisms should be carried out under in vivo conditions to understand the mechanisms behind the temperature responses in the marine diazotrophs.

3.2 Varying levels of CO₂ (aCO₂: 410 μmol CO₂ mol⁻¹ and eCO₂: 1000 μmol CO₂ mol⁻¹)

Growth responses

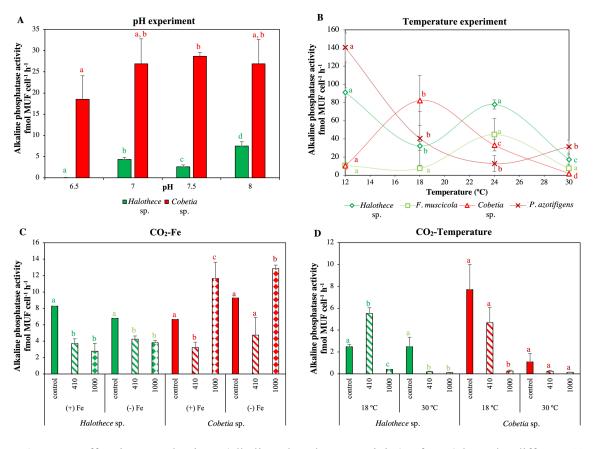
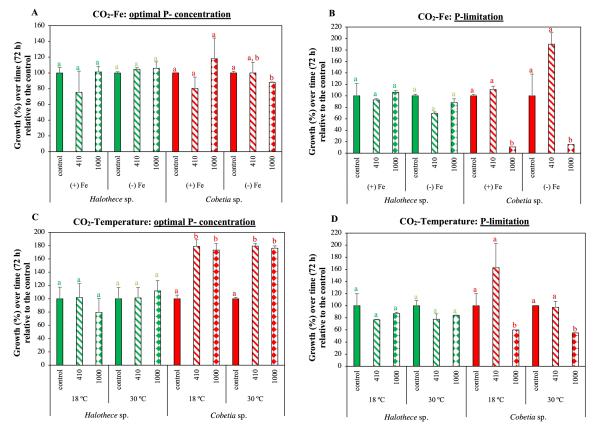

Elevated CO₂ (eCO₂, 1000 μ mol CO₂ mol⁻¹) resulted in lower pH than at ambient levels (aCO₂, 410 μ mol CO₂ mol⁻¹) (**Supplementary Figure S2**). The differences of pH between the two CO₂ treatments were lower for the cyanobacterium, *Halothece* sp. (an average of 0.21 units of pH), than for the heterotrophic bacterium, *Cobetia* sp. (an average of 0.55 units of pH). These results follow the premise that cyanobacterial, as phototrophs, perform photosynthesis, removing CO₂ from the media through efficient carbon concentration mechanisms (CCMs) which transport and concentrate CO₂ into the carboxysomes (i.e., structures in which CO₂-fixing enzyme, RuBisCO, is encapsulated).

Figure 4. Effect at the biochemical level (i.e., reactive oxygen species, ROS), after 72 h, under different **A)** pH and **B)** temperature levels, and **C-D)** different concentration of CO₂ [control, atmospheric CO₂ (aCO₂): 410 µmol CO₂ mol⁻¹, and elevated CO₂ (eCO₂): 1000 µmol CO₂ mol⁻¹] in combination with different **C)** Fe (+Fe, 1 µM and -Fe, 2 nM) and **D)** temperature levels (18 °C and 30 °C). Values are the mean \pm SE (n = 3). Letters indicate significant differences (*p* < 0.05) with the rest of the treatments for each strain and experimental set-up, using a posthoc test (Bonferroni test) after ANOVA over the whole dataset.

Thus, cyanobacteria can buffer the effect of acidification (Zhang et al., 2017). The growth of unicellular cyanobacterium tested (*Halothece* sp.) did not vary significantly at the different CO₂ levels applied in our study under different nutrient regimes (PO₄³⁻ and/or Fe) nor temperature levels (i.e., 18 °C and 30 °C) (ANOVA, p > 0.05, n = 3, **Figures 6A-D**). Our results are consistent with other studies on known cultures of N₂-fixing cyanobacteria (i.e., *Cyanothece* sp. ATCC51142, *Crocosphaera watsonii* WH850 /WH0401/WH0402 and *Trichodesmium erythraeum* IMS101) (Barcelos e Ramos et al., 2007; Fu et al., 2008; Kranz et al., 2009; Garcia et al., 2011, 2013a; Eichner et al., 2014b). However, in other reports of N₂-fixing cyanobacteria (i.e., *Crocosphaera, Cyanothece, Trichodesmium* and *Nodularia*), the authors report a growth increase or decrease due to elevated CO₂ levels depending on the nutritional status (Levitan et al., 2007; Garcia et al., 2014, 2013; Eichner et al., 2014b).

2011, 2013b; Wannicke et al., 2012). According to Eichner et al. (2014b) cyanobacteria may have different CCMs, which causes different CO_2 sensitivities and depending on the habitat in which the different species live, they have to cope with different carbonate chemistry, and differentially adapted, suggesting that the effect increased CO_2 levels in cyanobacteria is species-specific.


Figure 5. Effect in P-mechanisms (alkaline phosphatase activity), after 72 h, under different **A**) pH (6.5-8) and **B**) temperature levels (12-30 °C), and **C-D**) different concentration of CO₂ [control, atmospheric CO₂ (aCO₂): 410 µmol CO₂ mol⁻¹, and elevated CO₂ (eCO₂): 1000 µmol CO₂ mol⁻¹] in combination with different **C**) Fe (+Fe, 1 µM and -Fe, 2 nM) and **D**) temperature levels (18 °C and 30 °C). The measurements were taken under P limitation (0.1 µM) to induce the activity of alkaline phosphatases. Values are the mean \pm SE (n = 3). Letters indicate significant differences (*p* < 0.05) with the rest of the treatments for each strain and experimental set-up, using a posthoc test (Bonferroni test) after ANOVA over the whole dataset.

For the heterotrophic species, *Cobetia* sp., different CO₂ concentrations combined with varying Fe and temperature levels had a significant effect on their growth (ANOVA p < 0.05, n = 3, **Figures 6A-D**). In the CO₂-Fe experiments, growth was significantly lower at eCO₂ compared to the control (i.e., no CO₂ influx) without Fe at optimal P

concentration (Bonferroni test, p < 0.05, n = 3, Figure 6A). Under P-limitation, growth was drastically reduced at eCO₂ compared to the control, independently of the Fe level (Bonferroni test, p < 0.05, n = 3, Figure 6A). In the CO₂-temperature experiments, under P-optimal concentrations, growth was higher at aCO₂ and eCO₂ compared to the control, irrespective of the temperature level (Bonferroni test, p < 0.05, n = 3, Figures 6C), while under P-limited conditions, growth at eCO₂ was lower compared to the control, irrespective of the temperature level (Bonferroni test, p < 0.05, n = 3, Figures 6C and 6D). In both CO₂-Fe and CO₂-temperature experiments, growth at eCO₂ was lower compared with aCO₂, only when cultures were P-limited (Bonferroni test, p < 0.05, n = 3, Figures 6B and 6D). These results suggest the nutrient control (i.e., P and Fe) in Cobetia sp. responses with increased CO₂ levels. There have been few studies investigating the effect of CO₂ effect in heterotrophic bacteria in general, and one reports that continuous bubbling with elevated CO₂ levels in heterotrophic bacteria cultured in enriched nutrient media (i.e., P and Fe) does not affect microbial growth (Teira et al., 2012). However, nothing is known about N₂-fixing heterotrophic bacteria, and this study reports for the first time the interactive effect between CO₂ and nutrient limitation for the diazotrophic heterotrophic bacteria (Figures 6A-6D), which can be due to (I) limitation of protein synthesis and enzymatic activities under Fe and P-limitation (Bristow et al., 2017, Fernández-Juárez et al., 2019) and (II) the lowered pH due to increased CO₂ can limit nutrient uptake and microbial activity (Figures 1A and 1B).

Changes in N₂-fixation rates

No significant changes in the N₂-fixation rates, irrespective of the CO₂, Fe and/or temperature levels (ANOVA, p > 0.05, n = 3, Figures 3C and 3D) were found for *Halothece* sp. This is contrary to the previous reports conducted in other cyanobacterial species, in which CO₂ can enhance N₂-fixation rates (Fu et al., 2008; Hutchins et al., 2007; Levitan et al., 2007) or reduce N₂-fixation rates depending on Fe concentrations (Shi et al., 2012). In some cyanobacteria, high CO₂ levels can downregulate carboxysome genes (Morris et al., 2008), decreasing the energy used for concentrating CO₂ in these organelles. It is hereby suggested that cyanobacteria can save energy by concentrating CO₂ and use this energy instead for N₂-fixation (Kranz et al., 2011; Eichner et al., 2014a). However, the absence of effect of increased CO₂ in the cyanobacteria tested here (*Halothece* sp.) suggests that regulatory processes of carbon concentrating mechanisms

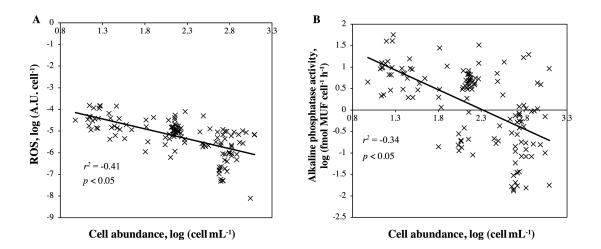
or carbon uptake mechanisms can be species-specific, and thus N₂-fixing responses in diazotrophic cyanobacteria to global climate change factors cannot be generalized.

Figure 6. Growth (calculated as % difference relative to the control over the incubation time of 72 h) after the exposure to atmospheric CO₂ (aCO₂, 410 µmol CO₂ mol⁻¹) and elevated CO₂ (eCO₂, 1000 µmol CO₂mol⁻¹). **A-B**) Exposure with CO₂ at different concentrations of Fe (+Fe, 1 µM and -Fe, 2 nM) under **A**) P-optimal conditions (1.5 mM) and **B**) P-limitation (0.1 µM). **C-D**) Exposure with CO₂ at different temperature levels (18 °C and 30 °C), under **C**) P-optimal conditions and **D**) P-limitation. Values are the mean \pm SE (n = 3). Letters indicate significant differences (*p* < 0.05) with the rest of the treatments for each strain and experimental set-up, using a posthoc test (Bonferroni test) after ANOVA over the whole dataset.

For the heterotrophic species tested, *Cobetia* sp., continuous influx of CO₂ (i.e., both aCO₂ and eCO₂) significantly enhance the N₂-fixation rates compared to the control in the CO₂-Fe experiments at 24 °C, irrespective of the Fe level, (Bonferroni test, p < 0.05, n = 3, **Figure 3C**). This suggests that CO₂ may regulate N₂-fixation processes in heterotrophic bacteria. Some heterotrophic bacteria can fix CO₂ through different carboxylation reactions catalyzed by the phosphoenolpyruvate (PEP) carboxylase and pyruvate carboxylase. These enzymes are capable of converting HCO₃⁻ in oxalacetate which can be included in the Krebs cycles (Santruckova et al., 2005), contributing to 2-

8% of the cell's biomass carbon abundance (Spona-Friedl et al., 2020). Thus, heterotrophic bacteria can take advantage of increasing CO_2 levels, increasing the ATP synthesis, which can fuel N₂-fixation processes. In the genome of *Cobetia* sp. (UIB 001) (accession number: CP058244-CP058245), we found that this bacterium contains a PEP carboxylase (locus tag: HA399_04700) and two SulP family inorganic anion transporters (locus_tag: HA399_00940 and HA399_13445), responsible for bicarbonate transport into the cells. These findings suggest its potential as CO_2 -fixing bacteria. Hence, this explains their enhanced growth under a CO_2 and e CO_2 in the CO_2 -temperature experiment (Figure 6C).

Responses at the biochemical level and P-mechanisms


Production of ROS was not significantly affected (ANOVA, p < 0.05, n = 3, Figure **4**C) in response to the addition of CO₂ combined with different Fe and temperature levels for *Halothece* sp. For *Cobetia* sp. no significant ROS production was also observed with the addition of CO₂ at different temperature levels (ANOVA, p > 0.05, n = 3, Figure **4**D). However, for *Cobetia* sp., eCO₂ levels with added Fe, ROS production increased 5-fold compared with the control and aCO₂ (Bonferroni test, p < 0.05, n = 3, Figure **4**C). The exact molecular mechanisms behind the response remain unknown, but high Fe-levels can enhance Fenton and Haber-Weiss reactions, which generate free radicals such as hydroxyl radicals (·OH) which are extremely toxic for cells (Diaz and Plummer 2018). On the other hand, CO₂ can downregulate the catalase expression, which is responsible for the detoxification of the H₂O₂, and thus, causing a 6-fold decrease in ROS removal (Hennon et al., 2017). This suggests a negative interactive effect between CO₂ and Fe, which cannot be compensated by the antioxidant defenses of the N₂-fixing heterotrophic bacteria.

Generally, under both, aCO₂ (except in the temperature experiments) and eCO₂ levels, alkaline phosphatase activity decreased significantly compared to the control treatment (Bonferroni test, p < 0.05, n = 3, **Figures 5C** and **5D**) for *Halothece* sp. However, we did not find any significant differences between aCO₂ and eCO₂ (Bonferroni test, p < 0.05, n = 3, **Figures 5C** and **5D**). Moreover, alkaline phosphatase activity was negatively affected with increasing temperatures (i.e., 30 °C) (ANOVA, p < 0.05, n = 3, **Figure 5C**), as we previously reported in the temperature experiments (**Figure 5B**). Although CO₂ per se did not affect significantly the growth of *Halothece* sp. (**Figures 6A-D**), our results show the alkaline phosphatase activity is sensitive to lower pH levels (i.e., pH < 7.5)

(Figure 5A), and may affect the viability of the cyanobacterial cells with the concomitant acidification of water from increased CO₂ levels. For the heterotrophic species, Cobetia sp., elevated CO₂ levels enhanced the alkaline phosphatase activity irrespective of the Fe levels at 24 °C compared with the control and compared with aCO₂ levels in the Fe-CO₂ experiments (Bonferroni test, p < 0.05, n = 3, Figure 5C). Elevated CO₂ levels significantly reduced alkaline phosphatase activity at 18 °C, compared to the control and aCO_2 levels in the CO₂-temperature experiments (Bonferroni test, p < 0.05, n = 3, Figure **5D**). At 30 °C, we did not find any significant differences among treatments (ANOVA, p > 0.05, n = 3, Figure 5D), but the enzymatic activity was again lower than compared to 18 °C (Bonferroni test, p > 0.05, n = 3, Figure 5D). Phosphorus (P) availability can be controlled by pH, and lower pH (e.g., < pH 5.5) can cause fewer free phosphate ions to be transported into the cells (Cerozi and Fitzsimmons, 2016), and consequently increasing alkaline phosphatase activity, as evidenced by the enhancement of the alkaline phosphatase activity of Cobetia sp. at eCO₂ levels in the CO₂-Fe experiments at 24 °C (Figure 5C). However, at 18 °C, the sensitivity of the alkaline phosphatases from *Cobetia* sp. to pH decrease may be different, suggesting that the regulation of the activity of alkaline phosphatases depends on the interaction between pH and temperature and this interaction should be investigated further.

3.3 Reactive oxygen species (ROS) and alkaline phosphatase activity as molecular biomarkers

Cell abundance of all the species tested were negatively correlated with specific production of ROS and specific alkaline phosphatase activity (Spearman's correlation, p < 0.05, n = 144, $r^2 = -0.41$ and $r^2 = -0.34$, respectively, **Figures 7A** and **7B**). These results suggest that under optimal nutrient availability, pH, temperature and/or CO₂ conditions in which cell abundance may be higher and presumably the cells are healthy and growing, ROS production (i.e., triggered as a consequence of the biochemical metabolism) and alkaline phosphatase activity (i.e., triggered as a mechanism for obtaining P) are lower, indicating cells are not under stress. These correlations imply that ROS production and alkaline phosphatase activity can be used as molecular biomarkers to assess the health of diazotrophic microorganisms exposed to global climate change factors and other environmental stressors.

Figure 7. Linear regression analyses between **A**) cell abundance and the reactive oxygen species (ROS) per cell, and **B**) cell abundance and alkaline phosphatase activity per cell. All replicates of all treatments and species from the pH, temperature and CO₂ experiments were combined.

4. Conclusions

Ocean acidification and warming due to increased CO_2 levels may have a significant impact on N₂-fixing microorganisms. However, the impact may depend on whether they are phototrophic or heterotrophic bacteria, suggesting that the community structure of the N₂-fixing community may also change. The response of N₂-fixing microorganisms with climate change factors depends on their nutritional status. Moreover, climate change factors affect nutrient acquisition mechanisms, impairing the diazotrophic activities. The measurement of nutrient acquisition mechanisms such as phosphatase alkaline activities and production of ROS can be used as molecular biomarkers to assess the response of diazotrophic cells to climate change factors.

5. Declarations

5.1 Funding

This work was supported by funding to NSRA through the Ministerio de Economía, Industria y Competitividad- Agencia Estatal de Investigación and the European Regional Development Funds project (CTM2016-75457-P).

5.2 Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

5.3 Authors contributions

VFJ conducted all experiments with the help of EHZ, EPP and NSRA in the various parameters measured in the study. VFJ and NSRA led the writing of the MS, and NRSA is the supervisor of the laboratory.

5.4 Acknowledgments

We acknowledge the support and help of the Scientific Technical Service (Dr. Guillem Ramis Munar and Maria Trinidad Garcia Barceló) of the University of the Balearic Islands (UIB) for cytometry and gas-chromatography analyses, respectively. We acknowledge Aida Frank Comas and Xabier López-Alforja for the help in the CO₂ setup. We also thank Dr. Pere Ferriol Buñola, Alba Coma Ninot, and Group de Microbiologia de la UIB for the help in the acquisition of the diazotrophic cultures.

6. References

- Agawin, N. S. R., Benavides, M., Busquets, A., Ferriol, P., Stal, L. J., and Arístegui, J. (2014). Dominance of unicellular cyanobacteria in the diazotrophic community in the Atlantic Ocean. *Limnol. Oceanogr.* 59, 623–637. doi:10.4319/lo.2014.59.2.0623.
- Agawin, N. S. R., Ferriol, P., Sintes, E., and Moyà, G. (2017). Temporal and spatial variability of in situ nitrogen fixation activities associated with the Mediterranean seagrass *Posidonia oceanica* meadows. *Limnol. Oceanogr.* 62, 2575–2592. doi:10.1002/lno.10591.
- Agawin, N. S. R, Gil Atorrasagasti, M. G, Frank Comas, A., Fernández-Juárez, V., López-Alforja, X, and Hendriks, I.E (2021). Response of the seagrass *Posidonia oceanica* and its associated N₂ fixers to high business-as-usual climate change scenario in winter. *Limnol. Oceanogr.*
- Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J., and Riebesell, U. (2007). Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer *Trichodesmium. Global Biogeochem. Cycles* 21, 1–6. doi:10.1029/2006GB002898.
- Berge, T., Daugbjerg, N., Andersen, B. B., and Hansen, P. J. (2010). Effect of lowered pH on marine phytoplankton growth rates. *Mar. Ecol. Prog. Ser.* 416, 79–91. doi:10.3354/meps08780.
- Boatman, T. G., Lawson, T., and Geider, R. J. (2017). A key marine diazotroph in a changing ocean: the interacting effects of temperature, CO₂ and light on the growth of *Trichodesmium erythraeum* IMS101. *PLoS One* 12, 1–20. doi:10.1371/journal.pone.0168796.
- Boyd, P. W., and Doney, S. C. (2002). Modelling regional responses by marine pelagic ecosystems to global climate change. *Geophys. Res. Lett.* 29, 53-1-53–4. doi:10.1029/2001gl014130.
- Breitbarth, E., Oschlies, A., and LaRoche, J. (2007). Physiological constraints on the global distribution of *Trichodesmium*-Effect of temperature on diazotrophy. *Biogeosciences* 4, 53–61. doi:10.5194/bg-4-53-2007.
- Bristow, L. A., Mohr, W., Ahmerkamp, S., and Kuypers, M. M. M. (2017). Nutrients that limit growth in the ocean. *Curr. Biol.* 27, R474–R478. doi:10.1016/j.cub.2017.03.030.
- Cerozi, B. da S., and Fitzsimmons, K. (2016). The effect of pH on phosphorus availability

and speciation in an aquaponics nutrient solution. *Bioresour. Technol.* 219, 778–781. doi:10.1016/j.biortech.2016.08.079.

- Chattopadhyay, M.K (2006). Mechanism of bacterial adaptation to low temperature. J. Biosci. 31, 157–65. doi: 10.1007/BF02705244.
- Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., et al. (2015). Impact of ocean acidification on the structure of future phytoplankton communities. *Nat. Clim. Chang.* 5, 1002–1006. doi:10.1038/nclimate2722.
- Eichner, M., Kranz, S. A., and Rost, B. (2014a). Combined effects of different CO₂ levels and N sources on the diazotrophic cyanobacterium *Trichodesmium*. *Physiol. Plant*. 152, 316–330. doi:10.1111/ppl.12172.
- Eichner, M., Rost, B., and Kranz, S. A. (2014b). Diversity of ocean acidification effects on marine N₂ fixers. *J. Exp. Mar. Bio. Ecol.* 457, 199–207. doi:10.1016/j.jembe.2014.04.015.
- Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M., and Morgan, V. I. (1996). Natural and anthropogenic changes in atmospheric CO₂ over the last 1000 years from air in Antarctic ice and firn. *J. Geophys. Res. Atmos.* doi:10.1029/95JD03410.
- Falkowski, P. G. (1997). Evolution of the nitrogen cycle and its influence on the biological sequestration of CO₂ in the ocean. *Nature* 387, 272–275. doi:10.1038/387272a0.
- Fernández-Juárez, V., Bennasar-Figueras, A., Tovar-Sanchez, A., and Agawin, N. S. R. (2019). The role of iron in the P-acquisition mechanisms of the unicellular N₂-fixing cyanobacteria *Halothece* sp., found in association with the Mediterranean seagrass *Posidonia oceanica. Front. Microbiol.* 10, 1–22. doi:10.3389/fmicb.2019.01903.
- Fernández-Juárez, V., Bennasar-Figueras, A., Sureda-Gomila, A., Ramis-Munar, G., and Agawin, N. S. R. (2020). Differential effects of varying concentrations of phosphorus, iron, and nitrogen in N₂-fixing cyanobacteria. *Front. Microbiol.* 11, 1– 19. doi:10.3389/fmicb.2020.541558.
- Fernández-Juárez, V., López-Alforja, X., Frank-Comas, A., Echeveste, P., Bennasar-Figueras, A., Ramis-Munar, G., Gomila, R. M., and Agawin, N. S. R. (2021). "The good, the bad and the double-sword" Effects of microplastics and their organic additives in marine bacteria. *Front. Microbiol.* 11, 1–12. doi:10.3389/fmicb.2020.581118.

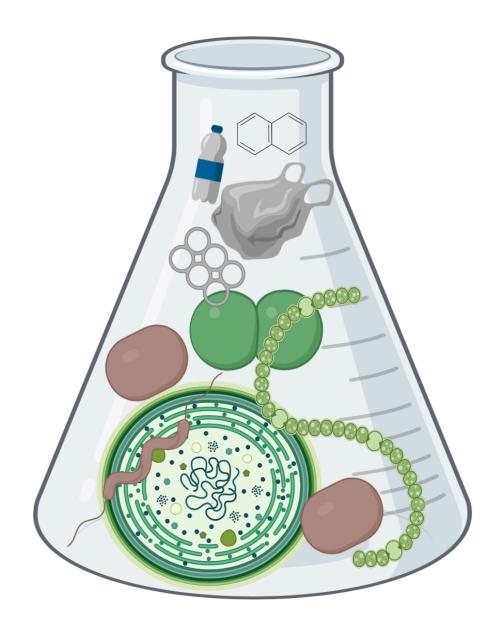
- Fu, F. X., Mulholland, M. R., Garcia, N. S., Beck, A., Bernhardt, P. W., Warner, M. E., Sañudo-Wilhelmy, S. A, and Hutchins, D. A. (2008). Interactions between changing pCO₂, N₂ fixation, and Fe limitation in the marine unicellular cyanobacterium *Crocosphaera. Limnol. Oceanogr.* 53, 2472–2484. doi:10.4319/lo.2008.53.6.2472.
- Fu, F. X., Yu, E., Garcia, N. S., Gale, J., Luo, Y., Webb, E. A., and Hutchins, D. A. (2014). Differing responses of marine N₂ fixers to warming and consequences for future diazotroph community structure. *Aquat. Microb. Ecol.* 72, 33–46. doi:10.3354/ame01683.
- Garcia, N. S., Fu, F. X., Breene, C. L., Bernhardt, P. W., Mulholland, M. R., Sohm, J. A., and Hutchins, D. A. (2011). Interactive effects of irradiance and CO₂ on CO₂ fixation and N₂ fixation in the diazotroph *Trichodesmium erythraeum* (cyanobacteria). *J. Phycol.* 47, 1292–1303. doi:10.1111/j.1529-8817.2011.01078.x.
- Garcia, N. S., Fu, F. X., Breene, C. L., Yu, E. K., Bernhardt, P. W., Mulholland, M. R., and Hutchins, D. A. (2013a). Combined effects of CO₂ and light on large and small isolates of the unicellular N₂-fixing cyanobacterium *Crocosphaera watsonii* from the western tropical Atlantic Ocean. *Eur. J. Phycol.* 48, 128–139. doi:10.1080/09670262.2013.773383.
- Garcia, N. S., Fu, F. X., and Hutchins, D. A. (2013b). Colimitation of the unicellular photosynthetic diazotroph *Crocosphaera watsonii* by phosphorus, light, and carbon dioxide. *Limnol. Oceanogr.* 58, 1501–1512. doi:10.4319/lo.2013.58.4.1501.
- Hauksson, J. B., Andrésson, Ó. S., and Ásgeirsson, B. (2000). Heat-labile bacterial alkaline phosphatase from a marine *Vibrio* sp. *Enzyme Microb. Technol.* 27, 66–73. doi:10.1016/S0141-0229(00)00152-6.
- Hennon, G. M., Morris, J. J., Haley, S. T., Zinser, E. R., Durrant, A. R., Entwistle, E., et al. (2017). The impact of elevated CO₂ on *Prochlorococcus* and microbial interactions with a 'helper' bacterium *Alteromonas*. *ISME J.* 12, 520–531. doi:10.1038/ismej.2017.189.
- Hernández, I., Niell, F. X., and Whitton, B. A. (2002). Phosphatase activity of benthic marine algae. An overview. J. Appl. Phycol. 14, 475–487. doi:10.1023/A:1022370526665.
- Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R., and Seefeldt, L. C. (2014). Mechanism of nitrogen fixation by nitrogenase: The Next Stage. *Chem. Rev.* 114, 4041–4062. doi:10.1021/cr400641x.
- Hong, H., Shen R., and Zhang, F. (2017). The complex effects of ocean acidification on

the prominent N₂-fixing cyanobacterium *Trichodesmium*. *Science (80-.).* 357, 527–531. doi:10.1126/science.aao0067.

- Hutchins, D. A., Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K., Bernhardt,
 P. W, and Mulholland, M. R. (2007). CO₂ control of *Trichodesmium* N₂ fixation,
 photosynthesis, growth rates, and elemental ratios: implications for past, present,
 and future ocean biogeochemistry. *Limnol. Oceanogr.* 52, 1293–1304.
 doi:10.4319/lo.2007.52.4.1293.
- Jensen, B. B., and Cox, R. P. (1983). Direct measurements of steady-state kinetics of cyanobacterial N₂ uptake by membrane-leak mass spectrometry and comparisons between nitrogen fixation and acetylene reduction. *Appl. Environ. Microbiol.* 45, 1331–1337.
- Jiang, H. B., Fu, F. X., Rivero-Calle, S., Levine, N. M., Sañudo-Wilhelmy, S. A., Qu, P. P., Wang, X. W., Pinedo-Gonzalez, P., Zhu, Z., and Hutchins D. A. (2018). Ocean warming alleviates iron limitation of marine nitrogen fixation. *Nat. Clim. Chang.* 8, 709–712. doi:10.1038/s41558-018-0216-8.
- Jiang, L. Q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. *Sci. Rep.* 9, 1–11. doi:10.1038/s41598-019-55039-4.
- Kim, J. M., Lee, K., Shin, K., Kang, J. H., Lee, H. W., Kim, M., et al. (2006). The effect of seawater CO₂ concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. *Limnol. Oceanogr.* 51, 1629–1636. doi:10.4319/lo.2006.51.4.1629.
- Knapp, A. N. (2012). The sensitivity of marine N₂ fixation to dissolved inorganic nitrogen. *Front. Microbiol.* 3, 1–14. doi:10.3389/fmicb.2012.00374.
- Kranz, S. A., Sültemeyer, D., Richter, K. U., and Rost, B. (2009). Carbon acquisition by *Trichodesmium*: the effect of pCO₂ and diurnal changes. *Limnol. Oceanogr.* 54, 548–559. doi:10.4319/lo.2009.54.2.0548.
- Kranz, S. A., Eichner, M., and Rost, B. (2011). Interactions between CCM and N₂ fixation in *Trichodesmium*. *Photosynth*. *Res.* 109, 73–84. doi:10.1007/s11120-010-9611-3.
- Krause, E., Wichels, A., Giménez, L., Lunau, M., Schilhabel, M. B., and Gerdts, G. (2012). Small changes in ph have direct effects on marine bacterial community composition: a microcosm approach. *PLoS One* 7. doi:10.1371/journal.pone.0047035.

Lagus, A., Suomela, J., Weithoff, G., Heikkilä, K., Helminen, H., and Sipura, J. (2004).

Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. *J. Plankton Res.* 26, 779–798. doi:10.1093/plankt/fbh070.


- Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Grigel, J., Klepetar, J., Prasil, O. and Berman-FranK, I. (2007). Elevated CO₂ enhances nitrogen fixation and growth in the marine cyanobacterium *Trichodesmium*. *Glob. Chang. Biol.* 13, 531–538. doi:10.1111/j.1365-2486.2006.01314.x.
- Li, P., Liu, W., and Gao, K. (2013). Effects of temperature, pH, and UV radiation on alkaline phosphatase activity in the terrestrial cyanobacterium *Nostoc flagelliforme*. *J. Appl. Phycol.* 25, 1031–1038. doi:10.1007/s10811-012-9936-8.
- Liu, W., Au, D. W. T., Anderson, D. M., Lam, P. K. S., and Wu, R. S. S. (2007). Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina. *J. Exp. Mar. Bio. Ecol.* 346, 76–86. doi:10.1016/j.jembe.2007.03.007.
- Marañón, E., Lorenzo, M. P., Cermeño, P., and Mouriño-Carballido, B. (2018). Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. *ISME J.* 12, 1836–1845. doi:10.1038/s41396-018-0105-1.
- Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I., and Zinser, E. R. (2008). Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by 'helper' heterotrophic bacteria. *Appl. Environ. Microbiol.* doi:10.1128/AEM.02479-07.
- Millero, F. J., Woosey, R., Ditrolio, B., and Water J. (2009). Effect of ocean acidification on the speciation of metals in seawater. *Oceanography* 22, 72–85. doi:10.5670/oceanog.2009.98
- Nielsen, L. T., Hallegraeff, G. M., Wright, S. W., and Hansen, P. J. (2012). Effects of experimental seawater acidification on an estuarine plankton community. *Aquat. Microb. Ecol.* 65, 271–285. doi:10.3354/ame01554.
- Noskova, Y., Likhatskaya, G., Terentieva, N., Son, O., Tekutyeva, L., and Balabanova, L. (2019). A novel alkaline phosphatase/phosphodiesterase, CamPhoD, from marine bacterium *Cobetia amphilecti* KMM 296. *Mar. Drugs* 17, 1–20. doi:10.3390/md17120657.
- Oliver, A. E., Newbold, L. K., Whiteley, A. S., and van der Gast, C. J. (2014). Marine bacterial communities are resistant to elevated carbon dioxide levels. *Environ. Microbiol. Rep.* 6, 574–582. doi:10.1111/1758-2229.12159.

- Pham, D. N., and Burgess, B. K. (1993). Nitrogenase reactivity: effects of pH on substrate reduction and CO inhibition. *Biochemistry* 32, 13725–13731. doi:10.1021/bi00212a043.
- Pomeroy, L. R., and Wiebe, W. J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. *Aquat. Microb. Ecol.* 23, 187–204 doi:10.3354/ame023187
- Stal, L. J. (1988). Acetylene reduction technique for assay of nitrogenase. *Methods Enzymol.* 167, 474–484.
- Striebel, M., Schabhüttl, S., Hodapp, D., Hingsamer, P., and Hillebrand, H. (2016). Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition. *Oecologia* 182, 815–827. doi:10.1007/s00442-016-3693-3.
- Teira, E., Fernández, A., Álvarez-Salgado, X. A., García-Martín, E. E., Serret, P., and Sobrino, C. (2012). Response of two marine bacterial isolates to high CO₂ concentration. *Mar. Ecol. Prog. Ser.* 453, 27–36. doi:10.3354/meps09644.
- Thackeray, S. J., Jones, I. D., and Maberly, S. C. (2008). Long-term change in the phenology of spring phytoplankton: species-specific responses to nutrient enrichment and climatic change. *J. Ecol.* 96, 523–535. doi:10.1111/j.1365-2745.2008.01355.x.
- Thomas, M. K., Aranguren-Gassis, M., Kremer, C. T., Gould, M. R., Anderson, K., Klausmeier, C. A., et al. (2017). Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. *Glob. Chang. Biol.* 23, 3269–3280. doi:10.1111/gcb.13641.
- Twiner, M. J. (2000). Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate *Heterosigma akashiwo*. J. Plankton Res. 22, 1961–1975. doi:10.1093/plankt/22.10.1961.
- Wannicke, N., Endres, S., Engel, A., Grossart, H.-P., Nausch, M., Unger, J., and Voss, M (2012). Response of *Nodularia spumigena* to pCO₂ - Part 1: growth, production and nitrogen cycling. *Biogeosciences* 9, 2973–2988. doi:10.5194/bg-9-2973-2012.
- Ward, B. A., Dutkiewicz, S., Moore, C. M., and Follows, M. J. (2013). Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. *Limnol. Oceanogr.* 58, 2059–2075. doi:10.4319/lo.2013.58.6.2059.
- Wrightson, L., and Tagliabue, A. (2020). Quantifying the impact of climate change on marine diazotrophy: insights from earth system models. *Front. Mar. Sci.* 7, 1–9.

doi:10.3389/fmars.2020.00635.

- Yu Plisova, E., Balabanova, L. A., Ivanova, E. P., Kozhemyako, V. B., Mikhailov, V. V., Agafonova, E. V., et al. (2005). A highly active alkaline phosphatase from the marine bacterium *Cobetia. Mar. Biotechnol.* 7, 173–178. doi:10.1007/s10126-004-3022-4.
- Yu, T., and Chen, Y. (2019). Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. *Sci. Total Environ.* 655, 865–879. doi:10.1016/j.scitotenv.2018.11.301.
- Zehr, J. P., and Capone, D. G. (2020). Changing perspectives in marine nitrogen fixation. *Science (80-.).* 368. doi:10.1126/science.aay9514.
- Zhang, A., Carroll, A. L., and Atsumi, S. (2017). Carbon recycling by cyanobacteria: Improving CO₂ fixation through chemical production. *FEMS Microbiol. Lett.* 364, 1–7. doi:10.1093/femsle/fnx165.

Chapter 4: Effects of climate change factors in diazotrophs

3.5 Chapter 5

ORIGINAL RESEARCH published: 20 January 2021 doi: 10.3389/fmicb.2020.581118

"The Good, the Bad and the Double-Sword" Effects of Microplastics and Their Organic Additives in Marine Bacteria

Víctor Fernández-Juárez^{1*}, Xabier López-Alforja¹, Aida Frank-Comas¹, Pedro Echeveste², Antoni Bennasar-Figueras³, Guillem Ramis-Munar⁴, Rosa María Gomila⁵ and Nona S. R. Agawin^{1*}

OPEN ACCESS

Edited by:

Ondrej Prasil, Academy of Sciences of the Czech Republic (ASCR), Czechia

Reviewed by:

Edo Bar Zeev, Ben-Gurion University of the Negev, Israel Olivier Pringault, Institut de Recherche Pour le Développement (IRD), France

*Correspondence:

Víctor Fernández-Juárez victorfj@hotmail.es Nona S. R. Agawin nona.agawin@uib.es

Specialty section:

This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology

Received: 07 July 2020 Accepted: 21 December 2020 Published: 20 January 2021

Citation:

Fernández-Juárez V, López-Alforja X, Frank-Comas A, Echeveste P, Bennasar-Figueras A, Ramis-Munar G, Gomila RM and Agawin NSR (2021) "The Good, the Bad and the Double-Sword" Effects of Microplastics and Their Organic Additives in Marine Bacteria. Front. Microbiol. 11:581118. doi: 10.3389/fmicb.2020.581118 ¹ Marine Ecology and Systematics (MarES), Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain, ² Instituto de Ciencias Naturales Alexander von Humboldt, Universidad de Antofagasta, Antofagasta, Chile, ³ Grup de Recerca en Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain, ⁴ Celomic Unit of the University Institute of Research in Health Sciences of the Balearic Islands, Palma de Mallorca, Spain, ⁵ Servicio Científico-Técnicos, University of the Balearic Islands, Palma de Mallorca, Spain

Little is known about the direct effects of microplastics (MPs) and their organic additives on marine bacteria, considering their role in the nutrient cycles, e.g., N-cycles through the N₂-fixation, or in the microbial food web. To fill this gap of knowledge, we exposed marine bacteria, specifically diazotrophs, to pure MPs which differ in physical properties (e.g., density, hydrophobicity, and/or size), namely, polyethylene, polypropylene, polyvinyl chloride and polystyrene, and to their most abundant associated organic additives (e.g., fluoranthene, 1,2,5,6,9,10-hexabromocyclododecane and dioctyl-phthalate). Growth, protein overproduction, direct physical interactions between MPs and bacteria, phosphorus acquisition mechanisms and/or N2-fixation rates were evaluated. Cyanobacteria were positively affected by environmental and high concentrations of MPs, as opposed to heterotrophic strains, that were only positively affected with high concentrations of \sim 120 μ m-size MPs (detecting the overproduction of proteins related to plastic degradation and C-transport), and negatively affected by 1 µm-size PS beads. Generally, the organic additives had a deleterious effect in both autotrophic and heterotrophic bacteria and the magnitude of the effect is suggested to be dependent on bacterial size. Our results show species-specific responses of the autotrophic and heterotrophic bacteria tested and the responses (beneficial: the "good," deleterious: the "bad" and/or both: the "double-sword") were dependent on the type and concentration of MPs and additives. This suggests the need to determine the threshold levels of MPs and additives concentrations starting from which significant effects can be observed for key microbial populations in marine systems, and these data are necessary for effective environmental quality control management.

Keywords: microplastics, organic additives, marine pollution, cyanobacteria and heterotrophic bacteria, N2-fixing bacteria

1

INTRODUCTION

Marine coastal ecosystems are the most impacted zones by the pollution of plastics. Up to 10 million tons of plastic enter annually in the oceans (Almroth and Eggert, 2019). This oceanic "soup" of plastic is composed of different particle sizes: macroplastics (>250 mm), mesoplastics (1-25 mm), microplastics (MPs) (1-1,000 µm), and nanoplastics (NPs) (<1 µm) (Hartmann et al., 2019). The most abundant polymers (at the macro- and micro-size scale) on the surface of the oceans and seas are polyethylene (PE), followed by polypropylene (PP) and then by others such as polyvinyl chloride (PVC) or polystyrene (PS) (Suaria et al., 2016). MPs have associated chemical additives (usually organic) that have been added to them to improve their chemical properties, and these low molecular weight additives can leach from the plastic polymers, being also sorbed onto them (Bakir et al., 2014). Therefore, MPs can also be sources and vectors for these organic pollutants, which are deleterious for marine organisms (Hahladakis et al., 2018).

The abundance of plastic particles declines exponentially with depth according to their densities, resulting in low-density polymers (e.g., PE and PP) predominating in the surface waters and higher density polymers (e.g., PS) in the deeper areas (Erni-Cassola et al., 2019). However, some evidence suggests that much of the small plastic particles at the surface, independently of their density, end up in sediments by transport mechanisms (Reisser et al., 2015; Urbanek et al., 2018). The accumulation of MPs at depth indicates the susceptibility of planktonic and benthic macro- and micro-organisms to the effects of these pollutants.

In eukaryotic microorganisms, the deleterious effects of plastics have already been described (Wang and Zheng, 2008; Cole and Galloway, 2015; Nelms et al., 2018). However, studies investigating the direct effects of plastics, especially MPs, on marine prokaryotic organisms (e.g., in their growth, biochemistry or nutrient acquisition mechanisms) are still scarce (Harrison et al., 2011; Bryant et al., 2016; Romera-Castillo et al., 2018; Tetu et al., 2019; Machado et al., 2020; Piccardo et al., 2020; Sarker et al., 2020; Seeley et al., 2020). None have investigated the direct effect of MPs, for example, on marine diazotrophs, which are capable of converting the nitrogen gas (N2) into ammonia (NH₃) through the nitrogenase enzyme complex and playing an important role in the marine N cycle. The few studies that have been done on other microorganisms usually are focused on plastic degradation and biofilm formation (Urbanek et al., 2018). Nonetheless, Machado et al. (2020) and Seeley et al. (2020) suggest that MPs can be anthropogenic stressors affecting microbial diversity and N-cycles. Other studies have reported changes in the microbial communities associated with the floating plastics through metagenomic analysis (Yang et al., 2019), suggesting that the response to plastic pollution can be species-specific. Tetu et al. (2019), Sarker et al. (2020), and Piccardo et al. (2020) also revealed the importance of concentration levels of leached plastic in cyanobacteria and heterotrophic bacteria. Considering these previous results, experimental studies investigating the effect of MPs and their additives should take into account the response of different Microplastic Effects in Marine Bacteria

bacterial test species and different concentration levels of the pollutants. Moreover, the previous studies investigating the effect of plastic pollution use plastics with unknown chemical additives, and to separate the effects of plastics and additives, pure MPs and their known additives must be tested. Furthermore, varying physical properties of MPs have to be considered (e.g., density, hydrophobic, or size) since could affect the response of microorganisms.

Here, we report the responses of different bacterial species, specifically N_2 -fixing phototrophic and heterotrophic bacteria to different concentrations of pure MPs (i.e., PE, PP, PVC, and PS) and their most predominant organic chemical additives [fluoranthene, 1,2,5,6,9,10-hexabromocyclododecane (HBCD) and dioctyl-phthalate (DEHP)]. Our results show beneficial, detrimental or both effects, depending on the species tested and the type and concentrations of MPs and additives added.

MATERIALS AND METHODS

Culture Strains Tested

Five marine N₂-fixing species (two cyanobacteria and three heterotrophic bacteria), found in association with *P. oceanica* (Agawin et al., 2017; Fernández-Juárez et al., in prep), were selected according to the experimental design described in **Supplementary Table 1**. Before the experiments, the cells were acclimatized and cultured in their respective optimal culture media to achieve their exponential phase. Culture media were composed of synthetic seawater medium (ASN-III) + Turks island salts 4X for *Halothece* sp., BG11₀ for *F. muscicola* and marine broth (MB) for the rest of the heterotrophic bacteria (Rippka et al., 1979). The cells were acclimated at 25°C at 120 r.p.m in a rotatory shaker with a photoperiod of 12 h (hours) dark:12 h light under low-intensity fluorescent light (30 μ E m⁻² s⁻¹).

Experimental Culture Conditions

All the experiments and response variables were performed in triplicate (n = 3) in artificial seawater (ASW) medium following Kim et al. (2007) at pH 7, adding 1 mL⁻¹ per L of trace metal [L⁻¹: 2.86 g H₃BO₃, 1.81 g MnCl₂·4H₂O, 0.22 g ZnSO4·7H2O, 0.39 g NaMoO4·2H2O, 0.079 g CuSO4·5H2O and 0.049 g Co(NO₃)₂·6H2O], glucose (final concentration 0.1% [v/v]), and with the respective MPs and/or organic additives. Inorganic phosphorus (PO_4^{3-} , 0.04 g L⁻¹ K₂HPO₄), iron (Fe, 0.006 g L⁻¹ ferric citrate) and inorganic nitrogen (NH₃, 0.5 g L⁻¹ NH₃Cl) were added according to the response variable measured as we described below. Bacteria at their exponential phase were inoculated in the treatments (Supplementary Table 1) and incubated for 72 h under the same conditions as when they were previously acclimatized (i.e., at 25°C, 120 r.p.m in a rotatory shaker with a photoperiod of 12 h dark:12 h light, under lowintensity fluorescent light, 30 μ E m⁻² s⁻¹).

The pure MPs (low-density polyethylene [PE] with size $109 \pm 6.29 \,\mu$ m, polypropylene [PP] with size $90 \pm 7.56 \,\mu$ m and low-density polyvinyl chloride [PVC] with size $164 \pm 8.03 \,\mu$ m) and organic additives (fluoranthene, 1,2,5,6,9,10-hexabromocyclododecane [HBCD] and dioctyl-phthalate

Frontiers in Microbiology | www.frontiersin.org

January 2021 | Volume 11 | Article 581118

[DEHP]) used were obtained from Sigma-Aldrich. Besides, we used fluorescent polystyrene (PS)-based latex beads (Fluoresbrite[®] YG Microspheres 1.00 µm, Polysciences, Inc.) as the lowest sized MPs, based on the definition of MPs (Hartmann et al., 2019). The stock solution of MPs was made at $100\,\mathrm{mg}~\mathrm{mL}^{-1},$ resuspending the MPs (previously UV-sterilized for 15 min) in acetone (98% [v/v]) to avoid aggregation of MPs and for easier manipulation of the workings solutions. To prevent chemical damages of MPs by acetone, the stock solution was rapidly diluted to working solutions of 1 mg mL⁻¹ in ASW. The organic additives, i.e., fluoranthene and HBCD, were initially prepared in 1 mg mL⁻¹ in absolute ethanol and acetone (98% [v/v]), respectively. For the DEHP additive that was in liquid form, a stock solution of $1\,\mathrm{mg}\;\mathrm{mL}^{-1}$ was also prepared. We diluted these stock solutions to working solutions of 3 mg L⁻¹ in ASW. Fluorescent PS beads were sterilized following the manufacturer's instructions, and the different concentrations in ASW were made from a stock solution of 4.55×10^{10} particles mL⁻¹. The controls were made with the respective amounts of acetone and/or ethanol (without any MPs nor organic additives). All the treatments have \leq 1% acetone or ethanol to avoid any biological effect in the cells, and co-solvents effect in water (Schwarzenbach et al., 2002).

performed Experiments in were two parts (Supplementary Table 1), i.e., (I) under environmentally relevant concentrations (in which we performed an initial screening of the five strains selected) and (II) the "worst-case" scenario (in which we selected two strains, one cyanobacterium and one heterotrophic bacterium as our model strains). Ecotoxicology thresholds for MPs were determined following (Reddy et al., 2006; Suaria et al., 2016; Everaert et al., 2018; Kane et al., 2020), which established that MPs can accumulate up to 29–133 μ g mL⁻¹ in the water column and seafloor. For organic additives, we followed the concentrations reported in Hermabessiere et al. (2017), in which it is reported that additives can accumulate between from pg L^{-1} to $\mu g L^{-1}$, finding up to 44.39 μ g L⁻¹ in the water column.

Under Environmental Concentrations

In the first part, we made an overall screening of the five culture strains in sterile 2 mL well microplates (with 2 mL of culture media) to study their growth response under marine environmentally relevant concentrations of MPs and additives, with optimal nutrient conditions of PO_4^{3-} , Fe and NH₃ (n = 3). We used five concentration for MPs (0, 0.01, 0.1, 1, and 100 µg mL⁻¹) and organic additives (0, 0.3, 3, 30, and 300 µg L⁻¹) (**Supplementary Table 1**). Additional treatments combining MPs and plastic additives (e.g., PE-fluoranthene, PP-HBCD, and PVC-DEHP) were done by combining the lowest and the highest number of MPs and additives to test for possible interacting effects of MPs and their organic additives (**Supplementary Table 1**). Growth analysis was assessed through flux cytometry (n = 3).

Under the "Worst-Case" Scenario

In the second part, we selected two strains, one autotrophic (*Halothece* sp., being our model phototrophic bacteria)

Microplastic Effects in Marine Bacteria

and one heterotrophic (*Cobetia* sp., which was our model heterotrophic bacteria). We established two levels MPs and additives concentration: 100 and 1,000 μ g mL⁻¹ for MPs, and 300 and 3,000 μ g L⁻¹ for the organic additives. We also selected a concentration of 4.55 \times 10⁶ and 4.55 \times 10⁷ particles mL⁻¹ for PS beads. We cultured the test bacteria in 50 mL falcon (with 30 mL of culture media) tubes under N₂-fixing conditions (limiting NH₃ [~ 0.15 mM] and with optimal PO₄³⁻ and Fe) for growth, protein overproduction, microscopical analysis, PO₄³⁻-uptake and N₂-fixation assays, or under PO₄³⁻-limiting conditions (with optimal NH₃ and Fe) for alkaline phosphatase activity (APA) (*n* = 3, **Supplementary Table 1**).

Flow Cytometry

Aliquots of cultures from all the experiments were taken initially and after 72 h of incubation and counted in fresh (without freezing nor fixing) with a Becton Dickinson FACS-Verse cytometer (Beckton & Dickinson, Franklin Lakes, New Jersey, USA). Fluorescent beads, BD FACSuite[™] CS&T research beads (Beckton & Dickinson and Company BD Biosciences, San Jose, USA), were used as internal standards to calibrate the instrument. Cells were separated by combinations of the scatter plots of the flow cytometer parameters: forward scatter (FSC, reflecting cell size), side scatter (SSC, reflecting internal complexity of the cells), and/or fluorescein isothiocyanate filter (FITC, reflecting fluorescence, 488 nm excitation, 530/30 nm emission). For treatments with fluorescent PS beads, adsorption to them was measured (without detaching cells from the beads) using the FSC and FITC cytometer signals (Supplementary Figure 1). Adsorbed bacteria were those with intermediate intensity fluorescence signals between the free bacteria and the beads (Supplementary Figure 1). In all the experiments, a total of 10,000 cells (or cells recorded in 30 s) were counted in each sample. Changes in growth were calculated as the changes in cell concentrations after 72 h.

Protein Identification: MALDI-TOF Assay and Protein Structure Prediction

Crude cell extracts were done following the methods described in Ivleva and Golden (2007), using the cultures of *Halothece* sp. and *Cobetia* sp. after 72 h of incubation in the "worst-case" scenario (at the highest concentration treatment of MPs/additives and the control). Protein concentrations were determined with Bradford protein assay (Thermofisher), following the manufacturer's instructions. The protein extracts were run into polyacrylamide gels, 4–20% (p/v) Amersham ECL Gel (GE Healthcare, Chicago, Illinois, EEUU), using the ECL Gel Box system (GE Healthcare, Chicago, Illinois, EEUU) following the manufacturer's instructions.

The different bands detected only in *Cobetia* sp. exposed to high concentrations of MPs (1,000 ug mL⁻¹ of PE, PP, and PVC), which did not appear at the control, were excised from the gel with a clean scalpel and sent to MALDI-TOF analysis. Each gel slice was cut into small pieces and then transferred to a clean and sterile Eppendorf tube. Protein identification was performed following Jaén-Luchoro et al. (2017). The samples were then analyzed with an Autoflex III MALDI-TOF-TOF

January 2021 | Volume 11 | Article 581118

Microplastic Effects in Marine Bacteria

(BrukerDaltonics) spectrometer using the software Compassflex series v1.4 (flexControl v3.4, flexAnalysis v3.4 and BioTools 3.2). The spectra were calibrated using the peptide calibration standard (BrukerDaltonics). The obtained mass spectra were used for the protein identification and the in-house database was created with the predicted protein sequence of the annotated genome of *Cobetia* sp. The search process was performed with the algorithm MASCOT (MatrixSciences).

Fasta sequence of the alcohol dehydrogenase (ADH) (detected through MALDI-TOF) was sent to the I-Tasser server for protein 3D-structure prediction (Zhang, 2008), with their domains previously checked in Pfam 32.0 (Finn et al., 2016). The predicted structure was sent to the FunFOLD2 server for the prediction of protein–ligand interactions (Roche et al., 2013). Besides, we detected the potential sites of ligand or "pockets" through MetaPocket 2.0 (Huang, 2009). Finally, we predicted the orientation and position of the protein-ligand complex between polyethylene glycol (PEG) and ADH, docking these with Swissdock (Zoete and Michielin, 2011). All the structures were visualized by Pymol (DeLano, 2002).

Microscopic Observations

At the final time (after 72 h), the five strains tested were placed onto a microplate for inverted microscopy visualization of the physical interactions between bacterial cells and the MPs (i.e., PE, PP, and PVC) at 100x objective (Leica DM IRB). For *Halothece* sp. and *Cobetia* sp., their interaction with PS fluorescent beads (with an excitation of 441 nm and emission of 485 nm) were visualized by confocal microscopy (Leica TCS SPE, Leica Microsystems). Images were processed using the software Leica application suite (Leica Microsystems). The specific autofluorescence for *Halothece* sp. was observed with an excitation of 532 nm and an emission of 555–619 nm. For *Cobetia* sp., the cells were stained with Sybr green (Sigma-Aldrich), or propidium iodide (Sigma) to properly visualize the cells distinguishing them from the PS beads.

P-Metabolism Analysis

Alkaline phosphatase activity (APA) was evaluated through fluorometric assay following the hydrolysis of the substrate (S) 4-methylumbelliferyl phosphate (MUF-P, Sigma-Aldrich) to 4methylumbelliferyl (MUF), following Fernández-Juárez et al. (2019). The culture media, i.e., in the "worst-case" scenario, was PO₄³⁻ limited (but with optimal NH₃ and Fe) to promote APA. Saturation curves of velocity (V, fmol MUF cell⁻¹ h⁻¹) vs. substrate (S, µM) were made for each experimental condition for each of the two selected strains (Halothece sp. and Cobetia sp.). We used different concentrations of MUF-P: 0, 0.05, and $5\,\mu M$ of MUF-P. After 1h incubation in darkness at room temperature, APA was measured in a microtiter plate that contained buffer borated pH 10 (3:1 of sample: buffer). The MUF production (fmol MUF cell⁻¹ h⁻¹) was measured with a Cary Eclipse spectrofluorometer (FL0902M009, Agilent Technologies) at 359 nm (excitation) and 449 nm (emission), using a calibration standard curve with commercial MUF (Sigma-Aldrich). The maximum velocity (Vmax) at saturating substrate concentrations

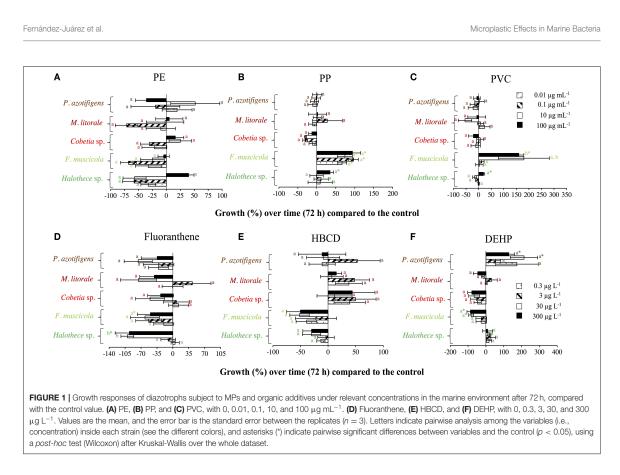
was obtained from each plot of V vs. S, using the Lineweaver-Burk plot.

For the determination of inorganic PO_4^{3-} concentrations for *Halothece* sp. and *Cobetia* sp. experiments, 1 mL of the culture was centrifuged for 15 min at 16,000 × g under 4°C. The bacteria-free clear supernatant was collected and used for PO_4^{3-} determinations following standard spectrophotometric methods (Hansen and Koroleff, 2007). The PO_4^{3-} concentrations in the culture media were determined at the initial and final time (after 72 h). Specific PO_4^{3-} -uptake rates (pmol PO_4^{3-} cell⁻¹ d⁻¹) were calculated as described in Fernández-Juárez et al. (2019) and Ghaffar et al. (2017).

Determination of N₂-Fixation Rates Through Acetylene Reduction Assay (ARA)

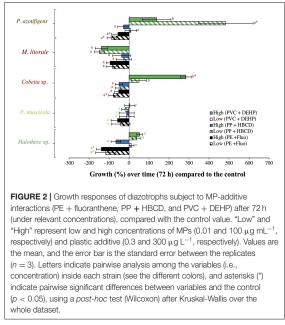
Rates of N2-fixation were measured for Halothece sp. as our model strain, described in Fernández-Juárez et al. (2019, 2020), under the "worst-case" scenario. A known volume of culture (8 mL) was sampled during the dark photoperiod and transferred to a closed hermetic vial and oxygen was flushed from the sample through bubbling with N₂ gas. A medium with saturated acetylene was injected at 20% (v/v) final concentration in each vial with a sterile syringe. Samples were incubated for 3 h at room temperature (24°C) in the dark. After the 3 h incubation time, 10 mL of liquid was removed and transferred to Hungate tubes containing 1.25 mL of 20% trichloroacetic acid (Agawin et al., 2014). Prior to analysis with the gas chromatograph (GC), the Hungate tubes were incubated at 37°C overnight in a water bath. Ethylene and acetylene gas from the gas phase of the Hungate tubes were determined using a GC (model GC-7890, Agilent Technologies) equipped with a flame ionization detector (FID), following the set up described in Fernández-Juárez et al. (2019, 2020). Ethylene produced was calculated using the equation in Stal (1988). The acetylene reduction rates were converted to N2-fixation rates (nmol mL⁻¹ h⁻¹) using a factor of 4:1 (Jensen and Cox, 1983).

Statistical Analysis


Non-normally distributed data, the Kruskal-Wallis rank-sum non-parametric test was used since the size sample was n < 20. An unpaired two-sample Wilcoxon test was used to determine the significant effects among different concentrations of MPs and additives. All analyses were done in R-Studio, R version 3.5.3 (2019-03-11).

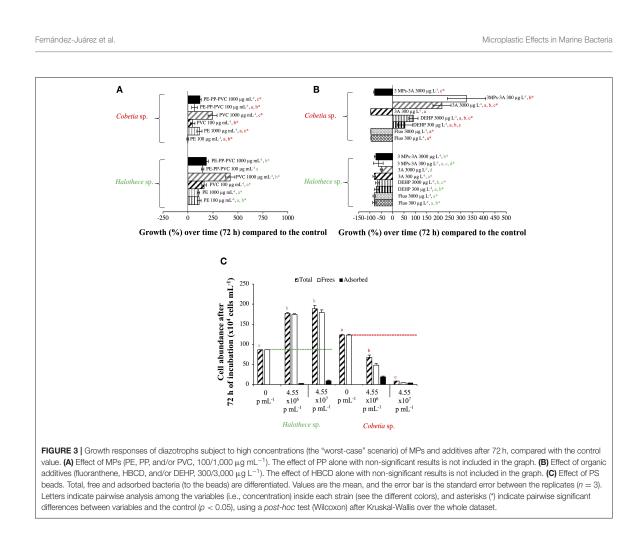
RESULTS AND DISCUSSION

Effects of Varying Concentrations of MPs and Additives, Under Relevant Concentrations in the Marine Environment


The addition of PE within the range of 0–100 μ g mL⁻¹ did not significantly affect all the diazotrophs tested (p > 0.05, n = 3, **Figure 1A**), in agreement with Machado et al. (2020). Moreover, PP and PVC within the range of 0–100 μ g mL⁻¹ did not significantly affect the growth of heterotrophic bacteria (*Cobetia* sp., *Marinobacterium litorale* and *Pseudomonas azotifigens*)

Frontiers in Microbiology | www.frontiersin.org

(p > 0.05, n = 3, **Figures 1B,C**). This is consistent with the results obtained by Piccardo et al. (2020), in which PET microparticles at 100 µg mL⁻¹ do not have affect in the heterotrophic bacteria (e.g., *Vibrio fischeri*). However, species-specific growth responses of the bacteria tested with the addition of MPs were exemplified here when PVC and PP addition (at 100 µg mL⁻¹) significantly enhanced the growth of the autotrophic cyanobacterial diazotrophs (*Halothece* sp. and *Fischerella muscicola*) by 1.5- to 4- fold (p < 0.05, n = 3, **Figures 1B,C**). This supports the idea that MPs may be selecting bacterial communities in the ocean (Seeley et al., 2020).


The effect of organic additives on bacterial growth is suggested here to be dependent on the type of additive (i.e., fluoranthene, HBCD and DEHP) (Figures 1D-F). Fluoranthene reduced the growth of Halothece sp. and F. muscicola, by 22- and 7- fold, respectively, at the highest concentrations compared to the control (p < 0.05, n = 3, Figure 1D). Besides, DEHP significantly reduced the growth of F. muscicola at the highest concentrations compared to the control (p < 0.05, n = 3, Figure 1F). On the contrary, the additive HBCD did not affect the growth of any species (p > 0.05, n = 3, Figure 1E), while the additive DEHP significantly enhanced the growth of the heterotrophic P. azotifigens by 4-fold, being significative at 30 and 300 $\mu g \ L^{-1}$ compared to the control (p < 0.05, n = 3, Figure 1F). Additives can be sorbed and/or liberated by MPs in marine environments, with contrasting consequences (Gallo et al., 2018; Hahladakis et al., 2018). If sorbed, these chemicals may be less available for cells, being less harmful to sensitive species (Hahladakis

et al., 2018), but detrimental to species making use of them as a C-source (Cao et al., 2015; Wang et al., 2015). If liberated, the increased availability of additives may be more harmful to

Frontiers in Microbiology | www.frontiersin.org

January 2021 | Volume 11 | Article 581118

sensitive species (Tetu et al., 2019; Sarker et al., 2020), but benefit species using them (Cao et al., 2015; Wang et al., 2015). In our experiments, PVC + DEHP significantly enhanced the growth of *P. azotifigens* and *Cobetia* sp. (synergism), but significantly altered it when PE + fluoranthene were added (antagonism) (p < 0.05, n = 3, **Figure 2**), while the addition of PP + HBCD did not have any further effect (p > 0.05, n = 3, **Figure 2**).

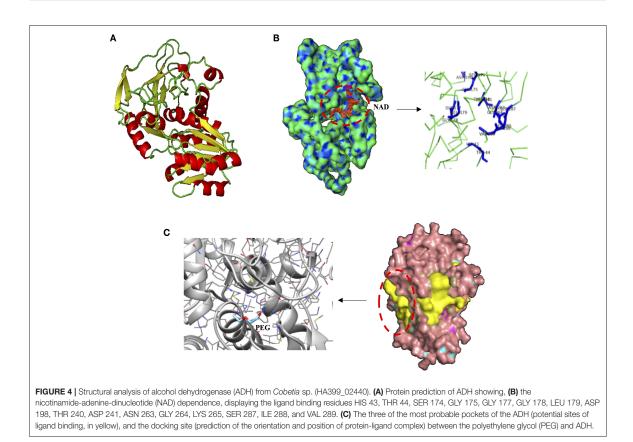
Effect of Varying Concentrations of MPs and Additives, Under the "Worst-Case" Scenario

Effect of High Concentration of MPs

High MPs concentrations stimulated cell growth, especially with the addition of PVC in both strains compared with the control by 6- to 8- fold (p < 0.05, n = 3, **Figure 3A**). The enhancement of the bacterial growth, especially in the heterotrophic strain, *Cobetia* sp., after 72 h of incubation can be due to increased dissolved organic carbon (DOC) pool in the medium that could have leached from the MPs added (Romera-Castillo et al., 2018). Unfortunately, DOC was not measured.

Species-specific responses based on protein production profile are also shown here when two proteins related to plastic degradation (alcohol dehydrogenase [ADH] of 342 amino acids, HA399_02440) and carbon transport (C4-dicarboxylate ABC transporter substrate-binding protein [C4-ABCS] of 329 amino acids, HA399_06715) were overproduced in the heterotroph Cobetia sp., but were not detectable with the MALDI-TOF analyses in the cyanobacteria Halothece sp. after the addition of MPs at high concentrations. ADHs from Rhodopseudomonas acidophila M402 and Pseudomonas oleovorans have been shown to oxidize plastic polymers (e.g., PEG), being NAD-dependent (Ohta et al., 2006; Kawai, 2010), consistent with our in silico structural analysis for Cobetia sp. (Figures 4A-C). Further experimental studies have to be performed to evaluate if Cobetia sp. can degrade PEG polymers or similar ones, and indeed if the carbon released by ADH is transported by C4-ABCS inside the cells since C4-ABCS is a carbon transporter (Rosa et al., 2019).

Effect of the Size of MPs

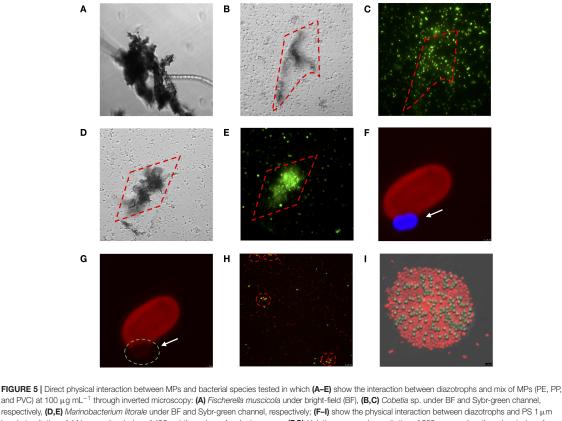

Larger-sized MPs (i.e., $120\,\mu$ m) enhanced the growth of autotropic and heterotrophic bacteria at high concentrations of MPs (**Figure 3A**). Larger-sized MPs may provide more surface area for the cells to adhere and attach as observed in the

```
Frontiers in Microbiology | www.frontiersin.org
```

6

Microplastic Effects in Marine Bacteria

heterotrophs tested here (Figures 5B-E). Surface attachment of the cells to the MPs through hydrodynamic and electrostatic interactions may enhance growth and facilitate nutrient uptake (especially under oligotrophic conditions), in most of the cases by the biofilm formation, increasing the surface of the substrates. This can aid the uptake of the necessary metabolites and cofactors, as suggested in Tuson and Weibel (2013). Smaller-sized MPs (i.e., PS beads of 1 µm-size), however, affected negatively the smallest size heterotrophic bacteria (i.e., Cobetia sp. of ~ 1 μ m-size, p < 0.05, n = 3, Figure 3C), and not the unicellular cyanobacteria (i.e., *Halothece* sp. of \sim 4 to 7 µm-size) (p > 0.05, n = 3, Figure 3C). This can be due to the differences in the degree of physical adsorption between the PS beads and the different bacterial species. Approximately 40-87% of Cobetia sp. cells were adsorbed to PS (Figures 3C, 5H,I), while only \sim 2–5% of *Halothece* sp. cells were adsorbed (Figure 3C). The mechanisms behind the negative effect of small-sized MP in small-sized bacteria needs to be further studied and can possibly be due to disruption of bacterial cell division by the aggregation of the cells and beads. Although fewer PS beads were adsorbed on Halothece sp. cells, an invagination of the cell membranes by PS beads has been observed, possibly being engulfed or included as a carbon source (Figures 5F,G).


Physicochemical Properties of MPs

The physicochemical properties (e.g., hydrophobicity, electrostatic attraction, or roughness) of different MPs may affect the responses of bacterial communities (Ogonowski et al., 2018). Hydrophobicity, for example, can directly affect the bacterial colonization of MPs. PS polymers, which have aromatic phenyl groups, are one of the most hydrophobic polymers (Ogonowski et al., 2018), and this may explain the adherence of both autotrophic and heterotrophic bacteria to PS beads (Figures 5F-I). Contrary to the cyanobacterial diazotrophs (Halothece sp. and F. muscicola), which were not capable of adhering to the MPs, heterotrophic N2-fixers (Cobetia sp., M. litorale, and P. azotifigens) tested were able to adhere to other types of MPs (i.e., PE, PP, and PVC, Figures 5A-E) which are less hydrophobic than PS. Moreover, PVC polymers are slightly more hydrophilic than PE (Kennedy, 2014), suggesting that they can be less available for adhesion and more available for bacterial growth. This may explain why PVC polymers were the MPs that most enhanced bacteria growth (Figure 3A).

Effect of High Concentrations of Organic Additives

Contrary to the effects of MPs, the addition of different types of organic additives (fluoranthene, HBCD and/or DEHP up to 3,000

Frontiers in Microbiology | www.frontiersin.org

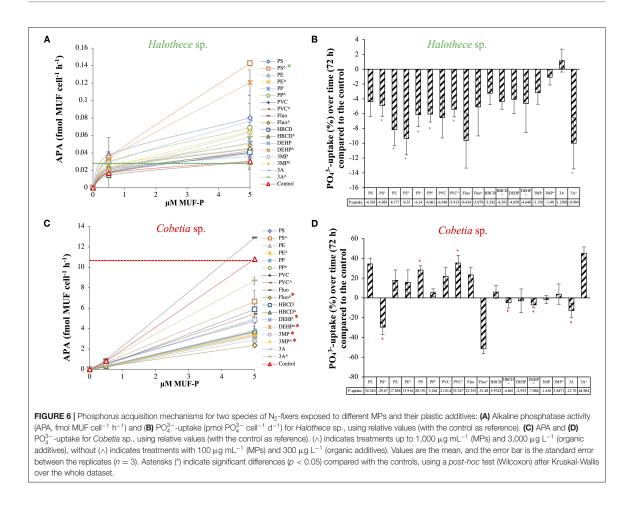
respectively, (**D**, **E**) *manifolacterium intorate* under Br and Syon-green channer, respectively, (**P**-**I**) show the physical interaction between diazotrophs and PS 1 µm beads (excitation of 441 nm and emission of 485 nm) through confocal microscopy: (**F**,**G**) *Halothece* sp. under excitation of 532 nm wavelength and emission of 555–619 nm. The arrows and green dashed circle show where the cell membrane is interacting with the PS beads (bue). (**H**,**I**) *Cobetia* sp. under excitation of 493 and 636 nm of emission. The dashed red circle show cell agglomeration on the PS beads (yellow). Images were taken at 1000x (**A**–**E** and **H**) and further magnified (**F**,**G**,**I**).

 μ g L⁻¹) affected negatively the growth of *Halothece* sp. by 8fold (p < 0.05, n = 3, **Figure 3B**). For the heterotrophic bacteria, different responses were observed, being the fluoranthene the most toxic pollutant (p < 0.05, n = 3, Figure 3B). The differing sensitivities of different species of bacteria to a particular type of additive can be due to cell-size dependent toxicity. For example, here we found an increasing toxicity to a PAH additive, fluoranthene, from bigger- to smaller-sized: Cobetia sp. ($\sim 1 \,\mu$ m) > unicellular cyanobacteria Halothece sp. (4- $7 \mu m$), > filamentous cyanobacteria F. muscicola ($\sim 7 \mu m$) $(p < 0.05, \text{Spearman's correlation}, n = 21, r^2 = 0.7)$ (Figures 1D, **3B**). The negative correlation between cell size and PAH toxicity is consistent with the study of Echeveste et al. (2010), and may be due to the higher surface to volume ratio of smallersized cells which increases the potential of the additives to be adsorbed or consumed by the cells. The DEHP additive (at high concentrations) and the interaction of the three MPs with the three plastic additives at low concentrations enhanced the growth of *Cobetia* sp. (p < 0.05, n = 3, **Figure 3B**), indicating that this species might use DEHP as a C-source and can be a possible bioremediator of DEHP-contaminated environments

like *Rhodococcus* (Wang et al., 2015). Nevertheless, here we did not intend to reproduce an environmental situation since it may be improbable to find such high concentrations in the water column due to their solubility. However in marine sediments, concentrations of up to 2,988 μ g Kg⁻¹ of organic pollutants can be found in extremely impacted areas (Hermabessiere et al., 2017), and thus our results provide useful data to understand the response of the microorganisms associated with the benthic organisms.

Effect of MPs Pollution in the P and N-Metabolism

P-Acquisitions Mechanisms


The MPs and their plastic additives generally enhanced the alkaline phosphatase activity (APA) of *Halothece* sp. The addition of PS beads (at 4.55 × 10⁷ particles mL⁻¹) increased the maximum rate of reaction (V_{max}) up to 0.21 fmol MUF cell⁻¹ h⁻¹, significantly higher than controls with a V_{max} of 0.033 fmol MUF cell⁻¹ h⁻¹ (p < 0.05, n = 3, **Figure 6A**). In previous experiments, we described that the cyanobacterial N₂-fixer *Halothece* sp. synthesizes an alkaline phosphatase D (PhoD)

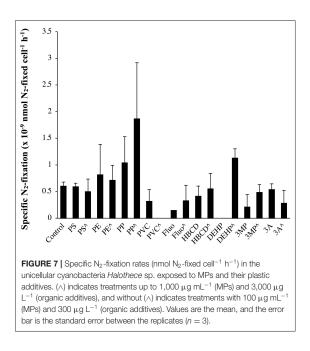
Frontiers in Microbiology | www.frontiersin.org

January 2021 | Volume 11 | Article 581118

```
Fernández-Juárez et al
```

Microplastic Effects in Marine Bacteria

that is Fe dependent (Fe as metal co-factor) (Fernández-Juárez et al., 2019). Since metals (i.e., Fe) can be accumulated onto the plastics (Rochman et al., 2014), it is hypothesized that MPs may promote an environment rich in Fe co-factors. Considering the P-dependence of important processes (e.g., N2-fixation, Fernández-Juárez et al., 2019), stimulation of APA can promote the growth of Halothece sp. For this unicellular cyanobacterium, PO₄³⁻-uptake rates were significantly downregulated by the addition of MPs and their plastic additives (p < 0.05, n = 3, Figure 6B). Comparisons between treatments were made (Supplementary Table 2), showing that the combination of the three MPs (i.e., high levels) and the three additives (i.e., low levels) were the treatments with lower reduction of the PO_4^{3-} uptake. The decreased PO_4^{3-} -uptake rates observed in *Halothece* sp. may be due to the adsorption of phosphate ions by PE and PVC (Hassenteufel et al., 1963).


Unlike *Halothece* sp., APA for *Cobetia* sp. was generally reduced by MPs and their organic additives (p < 0.05, n = 3, **Figure 6C**). Among the MPs, PE addition at high concentrations caused the most significant decrease in APA ($V_{max} = 8.52$ fmol MUF cell⁻¹ h⁻¹) compared to controls ($V_{max} = 32.78$ fmol

MUF cell⁻¹ h⁻¹) (p < 0.05, **Figure 6C**). Among the plastic additives, fluoranthene caused the highest decrease in APA ($V_{max} = 11.52$ fmol MUF cell⁻¹ h⁻¹) compared to controls (p < 0.05, **Figure 6C**). Significant differences in PO₄³⁻-uptake rates were observed among the treatments tested (p < 0.05, n = 3, **Figure 6D** and **Supplementary Table 2**). Contrary to *Halothece* sp., PO₄³⁻-uptake was increased with the addition of PP and PVC (p < 0.05, n = 3, **Figure 6D**), maybe as a consequence of higher nutrient and energy requirements for growth. Hence, we show species-specific differences of the P-mechanisms and P-requirements and the responses of these processes to MPs and their additives, showing that P-homeostasis can be disturbed with the addition of MPs and their organic additives associated.

Effect on N2-Fixation in Cyanobacteria

In a seminal paper, Bryant et al. (2016) claimed that MPs may be hot spots of N₂-fixing autotrophic bacteria, based on the high abundances of N₂-fixation genes (*nifH*, *nifD*, and *nifK*) in the metagenomes associated with the plastic. Unfortunately, the authors did not measure the N₂-fixation activities, considering

January 2021 | Volume 11 | Article 581118

that N₂-fixation rates in the open ocean are largely maintained by cyanobacteria (Zehr and Capone, 2020). Hence, cyanobacteria N₂-fixers can be one of the most impacted groups. Here, the effects of MPs and their additives on N₂-fixation rates are reported for the first time in cyanobacteria (i.e., *Halothece* sp., **Figure 7**). However, MPs and their additives did not have a significant effect on specific N₂-fixation rates of *Halothece* sp. (p > 0.05, n = 3, **Figure 7**), but as we showed that growth was positively enhanced with the addition of MPs (**Figure 3A**), or negatively affected by the addition of organic additives (**Figure 3B**), these pollutants could eventually enhance/inhibit global N₂-fixation rates in the environment.

In summary, this study shows that the most predominant MPs (e.g., PE, PP, PVC, and PS) in the oceans and their commonly associated organic additives (i.e., fluoranthene, HBCD, and DEHP) can be beneficial (the "good"), deleterious (the "bad"), or both (the "double-sword") to marine bacteria. Our study provides useful data to understand the response of marine bacteria, especially the diazotrophs to MPs pollution. Nevertheless, the transposition of the results obtained under *in vitro* controlled conditions must be taken with precautions since our study used concentrations that may not be representative

REFERENCES

- Agawin, N. S. R., Benavides, M., Busquets, A., Ferriol, P., Stal, L. J., and Arístegui, J. (2014). Dominance of unicellular cyanobacteria in the diazotrophic community in the Atlantic Ocean. *Limnol. Oceanogr.* 59, 623–637. doi: 10.4319/lo.2014.59.2.0623
- Agawin, N. S. R., Ferriol, P., Sintes, E., and Moyà, G. (2017). Temporal and spatial variability of in situ nitrogen fixation activities associated with the

Microplastic Effects in Marine Bacteria

of all marine environments. Open questions such as how the hydrophobicity of MPs can affect the growth responses, or if N_2 -fixers may have another important environmental role of biodegrading synthetic plastic polymers aside from their important ecological role of providing new N into marine ecosystems, have to be addressed. The use of next-generation analysis (i.e., transcriptomic or proteomic assays) to identify changes in gene expression or protein profiles derived from MPs and plastic additives may allow a better comprehension of the molecular responses behind the plastic threat in oceans.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/ **Supplementary Material**.

AUTHOR CONTRIBUTIONS

VF-J and XL-A conducted all experiments with the help of AF-C, PE, AB-F, GR-M, and RG in the various parameters measured in the study. VF-J and NA led the writing of the MS. NA is the supervisor of the laboratory. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by funding to NA through the Ministerio de Economía, Industria y Competitividad-Agencia Estatal de Investigación, and the European Regional Development Funds project (CTM2016-75457-P).

ACKNOWLEDGMENTS

We acknowledge the support and help of scientific technical service (Maria Trinidad Garcia Barceló) of the University of the Balearic Islands for gas-chromatography analyses. We also thank Pere Ferriol Buñola and Alba Coma Ninot for the help in the acquisition of the cultures, and project AAEE117/2017 of the Dirección General Innovación y Recerca CAIB.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2020.581118/full#supplementary-material

Mediterranean seagrass *Posidonia oceanica* meadows. *Limnol. Oceanogr.* 62, 2575–2592. doi: 10.1002/lno.10591

- Almroth, B.C., and Eggert, H. (2019). Marine plastic pollution: sources, impacts, and policy issues. *Rev. Environ. Econ. Policy*, 13, 2, 317–326, doi: 10.1093/reep/rez012
- Bakir, A., Rowland, S.J., and Thompson, R.C. (2014). Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. *Environ. Pollut.* 185, 16–23. doi: 10.1016/j.envpol.2013.10.007

Frontiers in Microbiology | www.frontiersin.org

Microplastic Effects in Marine Bacteria

- Bryant, J.A., Clemente, T.M., Viviani, D.A., Fong, A.A., Thomas, K.A., Kemp, P., et al. (2016). Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. *mSystems* 1, 1–19. doi: 10.1128/mSystems.00024-16
- Cao, J., Lai, Q., Yuan, J., and Shao, Z. (2015). Genomic and metabolic analysis of fluoranthene degradation pathway in *Celeribacter indicus* P73 T. Sci. Rep. 5, 1–12. doi: 10.1038/srep07741
- Cole, M., and Galloway, T.S. (2015). Ingestion of nanoplastics and microplastics by pacific oyster larvae. *Environ. Sci. Technol.* 49, 14625–14632. doi: 10.1021/acs.est.5b04099
- DeLano, W. (2002). The PyMOL Molecular Graphics System. Schrödinger, LLC. Available online at: http://www.pymol.org
- Echeveste, P., Agustí, S., and Dachs, J. (2010). Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. *Environ. Pollut.* 158, 299–307. doi: 10.1016/j.envpol.2009.07.006
- Erni-Cassola, G., Zadjelovic, V., Gibson, M. I., and Christie-oleza, J. A. (2019). Distribution of plastic polymer types in the marine environment : a metaanalysis. J. Hazard. Mater. 369, 691–698. doi: 10.1016/j.jhazmat.2019.02.067
- Everaert, G., Van Cauwenberghe, L., De Rijcke, M., Koelmans, A. A., Mees, J., Vandegehuchte, M., et al. (2018). Risk assessment of microplastics in the ocean: Modelling approach and first conclusions. *Environ. Pollut.* 242, 1930–1938. doi: 10.1016/j.envpol.2018.07.069
- Fernández-Juárez, V., Bennasar-Figueras, A., Sureda-Gomila, A., Ramis-Munar, G., and Agawin, N. S. R. (2020). Differential effects of varying concentrations of phosphorus, Iion, and nitrogen in N₂-Fixing Cyanobacteria. *Front. Microbiol.* 11, 1–19. doi: 10.3389/fmicb.2020.541558
- Fernández-Juárez, V., Bennasar-Figueras, A., Tovar-Sanchez, A., and R. Agawin, N. S. (2019). The role of iron in the P-acquisition mechanisms of the unicellular N₂-fixing cyanobacteria *Halothece* sp. found in association with the Mediterranean seagrass Posidonia oceanica. *Front. Microbiol.* 10, 1–22. doi: 10.3389/fmicb.2019.01903
- Finn, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., et al. (2016). The Pfam protein families database: towards a more sustainable future. *Nucleic Acids Res.* 44, D279–D285. doi: 10.1093/nar/gkv1344
- Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., et al. (2018). Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. *Environ. Sci. Eur.* 30:139. doi: 10.1186/s12302-018-0139-z
- Ghaffar, S., Stevenson, R.J., and Khan, Z. (2017). Effect of phosphorus stress on Microcystis aeruginosa growth and phosphorus uptake. PLoS ONE 12:174349. doi: 10.1371/journal.pone.0174349
- Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E., and Purnell, P. (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. *J. Hazard. Mater.* 344, 179–199. doi: 10.1016/j.jhazmat.2017.10.014
- Hansen, H. P., and Koroleff, F. (2007). "Determination of nutrients," in *Methods of Seawater Analysis, 3rd Edn*, eds K. Grasshoff, K. Kremling, and M. Ehrhard (Weinheim: Wiley VCH Verlag), 159–228. doi: 10.1002/9783527613984.ch10
- Harrison, P., Sapp, M., Schratzberger, M., and Osborn, A.M. (2011). Interactions between microorganisms and marine microplastics: a call for re- search. *Mar. Technol. Soc. J.* 45, 12–20. doi: 10.4031/MTSJ.45.2.2
- Hartmann, N.B., Hüffer, T., Thompson, R.C., Hassellöv, M., Verschoor, A., Daugaard, A.E., et al. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. *Environ. Sci. Technol.* 53, 1039–1047. doi: 10.1021/acs.est. 8b05297
- Hassenteufel, W., Jagitsch, R., and Koczy, F. F. (1963). Impregnation of glass surfacae against sortion of phospahate traces. *Limnol. Oceanogr.* 8, 152–156. doi: 10.4319/lo.1963.8.2.0152
- Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P., et al. (2017). Occurrence and effects of plastic additives on marine environments and organisms: a review. *Chemosphere* 182, 781–793. doi: 10.1016/j.chemosphere.2017.05.096
- Huang, B. (2009). MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13, 325–330. doi: 10.1089/omi.2009.0045
- Ivleva, N. B., and Golden, S.S. (2007). Protein extraction, fractionation, and purification from cyanobacteria. *Methods Mol. Biol.* 362, 365-73. doi: 10.1007/978-1-59745-257-1_26

- Jaén-Luchoro, D., Aliaga-Lozano, F., Gomila, R. M., Gomila, M., Salvà-Serra, F., Lalucat, J., et al. (2017). First insights into a type II toxin-antitoxin system from the clinical isolate *Mycobacterium* sp. MHSD3, similar to epsilon/zeta systems. *PLoS ONE* 12, 1–20. doi: 10.1371/journal.pone.0189459
- Jensen, B. B., and Cox, R. P. (1983). Direct measurements of steady-state kinetics of cyanobacterial N₂ uptake by membrane-leak mass spectrometry and comparisons between nitrogen fixation and acetylene reduction. *Appl. Environ. Microbiol.* 45, 1331–1337. doi: 10.1128/AEM.45.4.1331-1337.1983
- Kane, I.A., Clare, M.A., Miramontes, E., Wogelius, R., Rothwell, J.J., Garreau, P., et al. (2020). Seafloor microplastic hotspots controlled by deep-sea circulation. *Science* 5899:aba5899. doi: 10.1126/science.aba5899
- Kawai, F. (2010). The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms. *Biosci. Biotechnol. Biochem.* 74, 1743–1759. doi: 10.1271/bbb.100394
- Kennedy, E. J. (2014). Biological drug products: development and strategies. ChemMedChem 9, 2814–2815. doi: 10.1002/cmdc.201402432
- Kim, H., Choo, Y. J., Song, J., Lee, J. S., Lee, K. C., and Cho, J. C. (2007). Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int. J. Syst. Evol. Microbiol. 57, 1659–1662. doi: 10.1099/ijs.0.64892-0
- Machado, M. C., Vimbela, G. V., Silva-Oliveira, T. T., Bose, A., and Tripathi, A. (2020). The response of *Synechococcus* sp. PCC 7002 to micro-/nano polyethylene particles - investigation of a key anthropogenic stressor. *PLoS ONE* 15, 1–14. doi: 10.1371/journal.pone.0232745
- Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S., and Lindeque, P. K. (2018). Investigating microplastic trophic transfer in marine top predators. *Environ. Pollut.* 238, 999–1007. doi: 10.1016/j.envpol.2018.02.016
- Ogonowski, M., Motiei, A., Ininbergs, K., Hell, E., Gerdes, Z., Udekwu, K. I., et al. (2018). Evidence for selective bacterial community structuring on microplastics. *Environ. Microbiol.* 20, 2796–2808. doi: 10.1111/1462-2920.14120
- Ohta, T., Kawabata, T., Nishikawa, K., Tani, A., Kimbara, K., and Kawai, F. (2006). Analysis of amino acid residues involved in catalysis of polyethylene glycol dehydrogenase from *Sphingopyxis terrae*, using three-dimensional molecular modeling-based kinetic characterization of mutants. *Appl. Environ. Microbiol.* 72, 4388–4396. doi: 10.1128/AEM.02174-05
- Piccardo, M., Provenza, F., Grazioli, E., Cavallo, A., Terlizzi, A., and Renzi, M. (2020). PET microplastics toxicity on marine key species is influenced by pH, particle size and food variations. *Sci. Total Environ.* 715, 136947. doi: 10.1016/j.scitotenv.2020.136947
- Reddy, M.S., Shaik Basha, Adimurthy, S., and Ramachandraiah, G. (2006). Description of the small plastics fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India. *Estuar. Coast. Shelf Sci.* 68, 656–660. doi: 10.1016/j.ecss.2006.03.018
- Reisser, J., Slat, B., Noble, K., Plessis, K., Epp, M., Proietti, M., et al. (2015). The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre. *Biogeosciences* 12, 1249–1256. doi: 10.5194/bg-12-1249-2015
- Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. *Microbiology* 111, 1–61. doi: 10.1099/00221287-111-1-1
- Roche, D. B., Buenavista, M. T., and McGuffin, L. J. (2013). The FunFOLD2 server for the prediction of protein-ligand interactions. *Nucleic Acids Res.* 41, 303–307. doi: 10.1093/nar/gkt498
- Rochman, C.M., Hentschel, B.T., and Teh, S.J. (2014). Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. *PLoS ONE* 9:e85433. doi: 10.1371/journal.pone.0085433
- Romera-Castillo, C., Pinto, M., Langer, T.M., Álvarez-Salgado, X.A., and Herndl, G.J. (2018). Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. *Nat. Commun.* 9:1430. doi: 10.1038/s41467-018-03798-5
- Rosa, L. T., Dix, S. R., Rafferty, J. B., and Kelly, D. J. (2019). A New Mechanism for high-affinity uptake of C4-dicarboxylates in Bacteria revealed by the structure of *Rhodopseudomonas palustris* MatC (RPA3494), a periplasmic binding protein of the Tripartite Tricarboxylate Transporter (TTT) Family. *J. Mol. Biol.* 431, 351–367. doi: 10.1016/j.jmb.2018.11.016
- Sarker, I., Moore, L. R., Paulsen, I. T., and Tetu, S. G. (2020). Assessing the toxicity of leachates from weathered plastics on photosynthetic marine

Frontiers in Microbiology | www.frontiersin.org

Microplastic Effects in Marine Bacteria

bacteria prochlorococcus. Front. Mar. Sci. 7, 1-14. doi: 10.3389/fmars.2020. 571929

- Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M. (2002). Environmental Organic Chemistry. Hoboken, NJ: John Wiley & Sons, Wiley-Interscience, 2003. doi: 10.1002/0471649643
- Seeley, M. E., Song, B., Passie, R., and Hale, R. C. (2020). Microplastics affect sedimentary microbial communities and nitrogen cycling. *Nat. Commun.* 11, 1–10. doi: 10.1038/s41467-020-16235-3
- Stal, L. J. (1988). Acetylene reduction technique for assay of nitrogenase. *Methods Enzymol.* 167, 474–484. doi: 10.1016/0076-6879(88)67052-2
- Suaria, G., Avio, C. G., Mineo, A., Lattin, G. L., Magaldi, M. G., Belmonte, G., et al. (2016). The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters. *Sci. Rep.* 6:37551. doi: 10.1038/srep37551
- Tetu, S.G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L.D.H., Moore, L.R., et al. (2019). Plastic leachates impair growth and oxygen production in *Prochlorococcus*, the ocean's most abundant photosynthetic bacteria. *Commun. Biol.* 2:184. doi: 10.1038/s42003-019-0410-x
- Tuson, H. H., and Weibel, D. B. (2013). Bacteria-surface interactions. Soft Matter 9, 4368–4380. doi: 10.1039/c3sm27705d
- Urbanek, A. K., Rymowicz, W., and Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. *Appl. Microbiol. Biotechnol.* 102, 7669–7678. doi: 10.1007/s00253-018-9195-y
- Wang, J., Zhang, M. Y., Chen, T., Zhu, Y., Teng, Y., Luo, Y. M., et al. (2015). Isolation and identification of a di-(2-ethylhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil. *Pedosphere* 25, 202–211. doi: 10.1016/S1002-0160(15)60005-4

- Wang, L., and Zheng, B. (2008). Toxic effects of fluoranthene and copper on marine diatom *Phaeodactylum tricornutum. J. Environ. Sci.* 20, 1363–1372. doi: 10.1016/S1001-0742(08)62234-2
- Yang, Y., Liu, G., Song, W., Ye, C., Lin, H., Li, Z., et al. (2019). Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. *Environ. Int.* 123, 79–86. doi: 10.1016/j.envint.2018.11.061
- Zehr, J. P., and Capone, D. G. (2020). Changing perspectives in marine nitrogen fixation. *Science* 368:aay9514. doi: 10.1126/science.aay9514
- Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9:40. doi: 10.1186/1471-2105-9-40
- Zoete, V., and Michielin, O. (2011). SwissDock, a protein-small molecule docking web service based on EADock DSS. *Nucleic Acids Res.* 39, 270–277. doi: 10.1093/nar/gkr366

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Fernández-Juárez, López-Alforja, Frank-Comas, Echeveste, Bennasar-Figueras, Ramis-Munar, Gomila and Agawin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

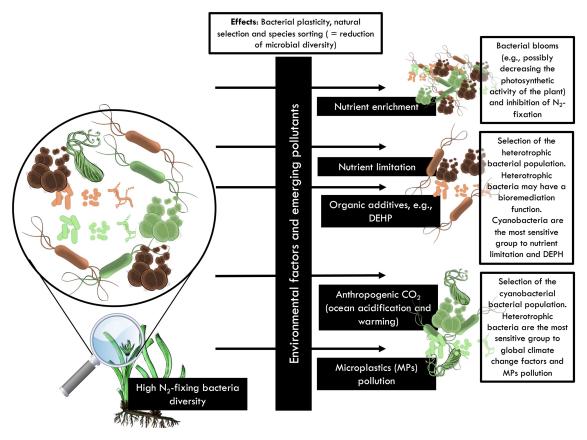
4. GENERAL DISCUSSION

4. General discussion

GENERAL DISCUSSION

Environmental factors and emerging pollutants can affect diazotrophs at physiological and molecular levels, affecting their N₂-fixation activities. Here was investigated the effect of different nutrient concentrations (i.e., P, Fe and N) (**Chapters 1-3**) and anthropogenic factors [i.e., increasing CO₂ levels (and its concomitant effect in ocean acidification and warming), and emerging pollutants (MPs and their associated organic additives) (**Chapters 4-5**)] in the survival and adaptation of the diazotrophic population found in association with *P. oceanica* meadows (*objective 1*). The results suggest that N₂fixing microbial structure could eventually change since species-specific responses were found. The molecular mechanisms that are triggered by environmental and anthropogenic stressors in marine diazotrophs associated with benthic systems were also unveiled, (*objective 2*). The most relevant results are summarized in the **Table 4.1**.

Table 4.1. Summary of the relevance and the main results presented in this thesis, structured in five chapters and two sections. **Abbreviations:** OA, ocean acidification; OW, ocean warming; MPs, microplastics; HCS, Humboldt Current System. Green panels display the results for the cyanobacteria, while the orange panel shows the results for the heterotrophic bacteria.


Chapter 1	Chapter 2	Chapter 3	Chapter 4	Chapter 5
Environmental factors and emerging pollutants				
Section I: Effect of nutrient availability			Section II: Effect of anthropogenic factors	
Effect of different concentrations of P, Fe and N in phototrophic and heterotrophic bacteria			Effect of increasing CO ₂ levels (OA and OW)	Plastic (MPs) pollution and their associated organic additives
P-acquisition mechanisms can be Fe dependent in cyanobacteria containing PhoD	Nutrient limitation (P, Fe and/or N) can reduce growth and N2-fixation rates in cyanobacteria	"Everything is everywhere, but the environment selects"	CO2, pH and temperature effects are controlled by nutrient availability, suggesting an interactive effect between global climate change factors and nutrients. CO2 might have a deleterious effect, only when cultures are P-limited (in the heterotrophic bacteria)	This is the first study where the exposure to MPs and organic additives were evaluated in diazotrophs
Alkaline phosphatase activity (APA) and P- uptake in unicellular cyanobacteria may be controlled by DIN concentration (i.e., higher APA under low N levels)	Reactive oxygen species (ROS), morphological changes, and apoptosis processes are enhanced in cyanobacteria under nutrient limitation	Ecological niches (i.e., Mediterranean Sea and HCS) might determine, select and modify the genomic and phenotypic features of cosmopolitan bacteria	P-acquisition mechanisms are negatively affected by decreasing pH and increasing temperatures levels	MPs and organic additives trigger species-specific responses, generally enhancing or decreasing the growth at high levels, respectively
APA can fuel the N2- fixation processes	Low DIN levels may inhibit cell growth of unicellular cyanobacteria, questioning the "classical" diazotrophic response	Bacteria found in the Mediterranean oligotrophic waters can be better adapted than those found in eutrophic waters (e.g., HCS)	N2-fixing cyanobacteria can be more resistant than heterotrophic N2- fixing bacteria, suggesting a shift in the N2-fixing structure of benthic systems	Cell responses to plastic pollution are suggested to be dependent on the physical properties of MPs and characteristics of the bacteria tested

4.1. *Objective 1*: What is the role of the environmental factors and emerging pollutants in regulating the functioning of N₂-fixers associated with *Posidonia* oceanica?

The prediction of how the N₂-fixing community will respond to environmental factors and emerging pollutants are currently major challenges for marine microbiologists in the field of research on the disturbances of N-cycles (Zehr and Capone, 2020). The outcome of this work reveals that the microbial responses can be species-specific (Chapters 1-5), suggesting the change of the N2-fixing microbial communities found in association with P. oceanica cause by the abiotic factors (i.e., changes in nutrient availabilities, anthropogenic CO₂ and emerging pollutants). This thesis was centered on answering the following questions in the context of diazotrophs associated with benthic systems: "Will the biomass/N₂-fixation rates of diazotrophs decline or increase in the future? What taxonomic groups and individual species could benefit or be hit especially hard by changing environmental conditions?" (Litchman et al., 2012). The environmental factors and emerging pollutants tested may select the responses of N₂-fixers, with "winners" and "losers" according to the taxonomic group (i.e., phototrophs vs. heterotrophic bacteria) since negative, neutral and positive effects were detected at the growth, N2-fixation rates and biochemical levels (Chapters 1-5). Generally, cyanobacteria were more sensitive to changes for nutrient regimes, while heterotrophic bacteria were more sensitive to anthropogenic threats (i.e., ocean acidification and warming) and emerging pollutants (i.e., MPs and their organic additives associated) (Figure 4.1).

According to several studies, marine microorganisms are strongly influenced by environmental stressors (e.g., by changes in the nutrients regimes or anthropogenic factors), affecting their growth and composition (Doney et al., 2009; Li et al., 2009; Hoegh-Guldberg and Bruno, 2010; Litchman et al., 2012). The environmental stressors can affect at different levels the microbial populations: (I) at phenotypic plasticity (i.e., the ability to persist when they are subject to an environmental stressor), (II) at species sorting (i.e., those species with higher plasticity or bacteria will be more abundant in the community), (III) at genetic adaptation (i.e., mutations, recombination or horizontal gene transfer may select species), or a combination of all these processes (Litchman et al., 2012). This work focused on the plasticity of the phototrophic and heterotrophic bacteria through the measurement of physiological and biochemical parameters, e.g., growth, P-acquisition mechanisms [i.e., alkaline phosphatase activity (APA) and P-uptake], oxidative stress [i.e., reactive oxygen species (ROS)], and changes in the cell morphology

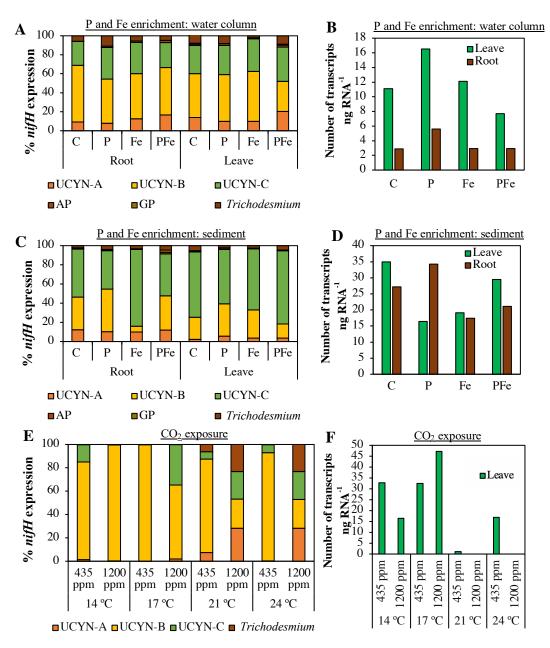
and apoptotic processes (**Chapters 1-5**). Based on the differential responses obtained in the cyanobacteria and heterotrophic bacteria tested (**Chapters 1-5**), those better-adapted species to the environmental pressure, e.g., with higher plasticity, will compensate for the loss of the less poorly adapted species. Hence, this suggests that the "system" (i.e., the epiphytic and endophytic community of *P. oceanica*) might compensate for the decrease in the growth and N₂-fixation rates, at the cost of the loss of microbial diversity (**Figure 4.1**). However, the consequences on the plant remain to be investigated. Therefore, further studies in *P. oceanica* meadows investigating if indeed the N₂-fixing bacterial communities will change are needed for evaluating the environmental consequences in this marine phanerogam.

Figure 4.1. Effect of environmental factors and emerging pollutants on the N₂-fixers found in association with *Posidonia oceanica*. According to the results, changes in the microbiota composition (e.g., N₂-fixing bacteria) may be occurring in *P. oceanica* meadows. Considering the detrimental/beneficial effect of environmental factors and emerging pollutants on the diazotrophic population, the selection for the dominance of the diazotrophic cyanobacteria or heterotrophic bacteria may take place in *P. oceanica*. **Source:** own production.

Role of different concentrations of phosphorus, iron and nitrogen in regulating the functioning of N_2 -fixers

This thesis revealed the interactive effect of nutrient availability (i.e., P, Fe and N) in N₂-fixers, providing useful data in a poorly explored research field on marine diazotrophs associated with marine benthic systems (Chapters 1-3). The P, Fe and N availabilities may be the main factors regulating the functioning of marine N₂-fixers (Chapters 1-3), consistent with Sohm et al. (2011) and Knapp (2012). Studies with cultures of N₂-fixers, e.g., Trichodesmium spp. and Crocosphaera watsonii, show that the limitation of either P or Fe can limit growth and N₂-fixation of diazotrophs (Berman-Frank et al., 2001; Dyhrman and Haley, 2006; Krauk et al., 2006; Küpper et al., 2008). Here, P, Fe, and N co-limitation dramatically affect the diazotrophic activity, increasing the ROS levels and even provoking cell disruption and death (Chapter 2). For all the diazotrophic bacteria tested, the dissolved inorganic phosphorus (DIP) was the main nutrient controlling the growth and N₂-fixation rates, when N₂-fixation was stimulated at low dissolved inorganic nitrogen (DIN) levels (Knapp, 2012) (Chapters 1-3). Under this situation, the N₂-fixation rates increased linearly with increasing P-levels (see discussion in Chapters 1 and 2). Moreover, low DIN concentrations enhanced the APA rates, suggesting a release of DIP from dissolved organic phosphorus (DOP) to fuel the N₂-fixation rates (Chapter 1). These results confirm the P-dependence of growth and N₂-fixation rates of diazotrophs. Iron (Fe) had a positive effect on the growth and N₂-fixation rates, e.g., in the filamentous heterocyst-forming Fischerella muscicola PCC 73103 or the heterotrophic bacteria Cobetia sp. UIB 001. However, its effect cannot be generalized since in the unicellular cyanobacterium Halothece sp. PCC 7418, their growth and N2-fixation rates decreased at high Fe levels (Chapter 2), suggesting different Fe requirements for cyanobacteria and heterotrophic bacteria. Although N₂-fixers are generally not limited by N, the results obtained in Halothece sp. PCC 7418 suggest that limiting levels of N can be important in controlling the diazotrophic activity (Chapter 2). To date, this is the first report in which N₂-fixers are limited by DIN, requiring a minimum amount of DIN for survival. It remains to be investigated whether these cells in the natural environment require a combined source of inorganic nitrogen and if this requirement can be supplied by other diazotrophs in N-limited waters. Therefore, this work opens new questions about the responses of N2fixers in marine environments, questioning the classical functioning of diazotrophs.

The cyanobacterial population (e.g., *Halothece* sp. PCC 7418 and *F. muscicola* PCC 7418) was more sensitive to nutrient limitation (P, Fe and/or N) than the heterotrophic


bacteria (e.g., *Cobetia* sp. UIB 001) (**Chapters 1-3**). The sensitivity of cyanobacteria to limiting concentrations of nutrients may be due to their higher nutrient requirements than other phytoplanktonic taxa, as suggested by their Redfield N:P ratio of 25, which is significantly higher than other marine microbial groups with a ratio of 16 (Redfield, 1934; Geider and La Roche, 2002; Quigg et al., 2011). This is because cyanobacteria contain membrane-anchored multimeric light-scavenging proteins called phycobiliproteins (that contain phycocyanin and phycoerythrin pigments) which capture light for photosynthetic activities, and these proteins are rich in N (Pagels et al., 2019). Under nutrient limitation, phycobiliproteins are degraded as a N source through the expression of the NblA protein, which causes chlorosis (**Chapter 2**). Unlike cyanobacteria, the heterotrophic bacteria generally have smaller sizes, and a higher surface: volume ratio which makes them more efficient in acquiring nutrients (**Chapter 3**). However, the nutrient responses in heterotrophic bacteria, even between strains of the same species, can be controlled by the marine environment in which they are found, as shown for *Cobetia* spp. isolated from *P. oceanica* (Spain) and *Heterozostera chilensis* (Chile) (**Chapter 3**).

In situ and mesocosm experiments were conducted to test the effect of increasing concentrations of P and Fe in the water column and sediment in the *nifH* expression for the diazotrophs associated with P. oceanica. The results revealed that N₂-fixation activity associated with the plant is mainly due to activities of the unicellular cyanobacterial population, especially UCYN-B and UCYN-C (Figures 4.2A-D) (Fernández-Juárez and Agawin, unpublished data). Water column nutrient enrichment (i.e., P and Fe) might increase *nifH* gene expression, increasing N₂-fixation rates (Figures 4.2A and 4.2B), consistent with the studies conducted by Turk-Kubo et al. (2012). The additional nutrient supply could be beneficial to the plant in the short-term. However, long-term nutrient load on the water column might trigger the epiphytic bloom on P. oceanica's leaves, which can cause a decrease in the photosynthetic activities of the plant due to the reduction of light. On the contrary, nutrient enrichment in marine sediments can have the opposite effect, downregulating the expression of the *nifH* gene (Figures 4.2C and 4.2D). Sediment nutrient enrichment may increase the oxidative stress in P. oceanica leaves and can affect the symbiotic relationship between the plant and the epiphytic population (Fernández-Juárez, unpublished results). Thus, the nutrient enrichment can regulate the epiphyte and endophyte community composition and N₂-fixing activities associated with P. oceanica meadows.

Role of anthropogenic threats in N_2 *-fixers associated with Posidonia oceanica* <u> CO_2 effect and its concomitant effect in ocean acidification and warming</u>

This work sheds light on the effect of CO_2 and its concomitant effect (i.e., ocean acidification and warming) in phototrophic and heterotrophic N₂-fixers found in association with *P. oceanica* meadows. The experimental design [i.e., testing varying pH (pH 4-8) and temperature levels (12-30 °C), and different concentrations of CO_2 (i.e., atmospheric, aCO_2 , 410 and expected, eCO_2 , 1000 ppm) in combination with different nutrient regimes and temperatures] conducted in monocultures of N₂-fixers revealed that (I) the effect of global climate change factors (i.e., CO_2 , pH and temperature) may be dependent on nutrient concentrations and negatively affecting heterotrophic bacteria, and (II) lowering pH and increasing temperature affect microbial activity according to the nature of the bacteria (i.e., phototrophic or heterotrophic), decreasing the rates of the nutrient acquisition mechanisms (i.e., APA). The pH drop can enhance protein instability, while warmer temperatures may downregulate the expression APases, and altogether decreasing the APA rates (see results and discussion of **Chapter 4**).

According to the results obtained, nutrient availability is an important factor to consider when looking at the effect of global climate change factors (i.e., CO₂, pH and temperature) in N₂-fixing bacteria (**Chapter 4**). This is consistent with models that consider the role of P, Fe, and N limitation in predicting how N₂-fixation will be affected by climate change at the end of this century (Wrightson and Tagliabue, 2020). A decrease in pH can limit nutrient uptake, while temperature increased can rise ocean stratification, affecting P and N vertical distribution and limiting nutrient availability (Cavicchioli et al., 2019). Some studies predict that global N₂-fixation in the ocean will decrease by 2100, affecting the net primary production of the oceans (Wrightson and Tagliabue, 2020), while other studies predict an increase of the global N₂-fixation rates by the end of the century to 22-27% (Boyd and Doney, 2002). However, the latter studies do not consider competition between diazotrophs and non-diazotroph for nutrients.

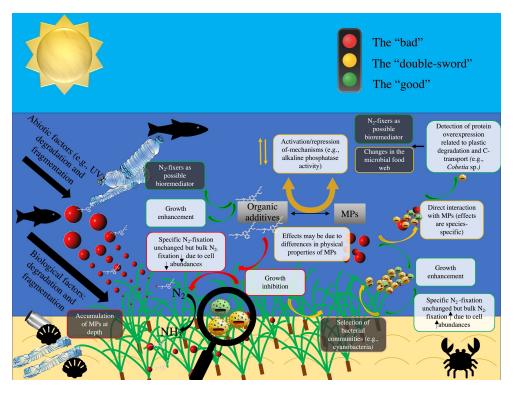
Figure 4.2. RT-qPCR analyses of the *nifH* gene expression of groups UCYN-(A, B and C), *Trichodesmium*, α -proteobacteria (AP) and γ -proteobacteria (GP) measured by RT- qPCR from leaves and roots of *Posidonia oceanica*. **A-B**) P and Fe enrichment concentrations in the water column, **C-D**) P and Fe enrichment concentrations in the sediment, and **E-F**) changing CO₂ concentration together with different temperature levels. It is shown the relative % of *nifH* by N₂-fixer groups and the number of transcripts ng RNA⁻¹. **Source:** Fernández-Juárez and Agawin (unpublished results).

These predictions were done using a few N_2 -fixers as models, but N_2 -fixing heterotrophic bacteria might be more sensitive to global climate change factors than N_2 -fixing cyanobacteria (**Chapter 4**). Cyanobacteria have efficient carbon concentration mechanisms (CCMs) via carboxysomes (i.e., structures in which CO₂-fixing enzyme,

RuBisCO, is encapsulated) which remove inorganic carbon from the media (Rae et al., 2013), and thus, they can be less affected by increased CO₂ or concomitant changes in pH compared to heterotrophic bacteria. Here it is suggested that diazotrophic bacteria might have different types and functioning of CCMs, which could explain the different sensibility to CO₂ for different cyanobacterial species (Eichner et al., 2014b) (**Chapter 4**). The increase in CO₂ levels combined with other environmental factors may select for less sensitive species in the microbial community, reducing the diversity of the diazotrophic population (Joint et al., 2011; He et al., 2014). The results obtained not only suggest that a change in the structure of the diazotrophic community may occur with increased CO₂, but also a decrease in the expression of the *nifH* gene (**Figures 4.2E** and **4.2F**). Therefore, considering the sensibility to the pH and temperature for the N₂-fixers associated with *P. oceanica* (**Chapter 4**), ocean acidification and warming may potentially impact the N₂-fixing structure of *P. oceanica* meadows. The consequences on the plant itself should be further investigated with the possible change in the activity of the diazotrophic community.

Effect of microplastics (MPs) and their associated organic additives

The interest in finding out the effect of MPs in the environments and human health has increased exponentially with more than 3000 reports about MPs (in US National Library of Medicine National Institutes of Health, PubMed, retrieved January 2021) in the last ten years. Yet, there are only a few papers that discuss the direct effect of MPs in bacteria. In the strains tested in this work, MPs and their associated organic additives did not have a significant effect on N₂-fixation rates, but changes in growth (and abundance) of the cells may affect the global N₂-fixation rates in the marine environment (Chapter 5). Further studies are needed to evaluate the potential impacts of increasing levels of MPs and their organic associated additives in N2-fixation activities. It can be hypothesized that N₂-fixation activities can be affected in three different ways: (I) since N₂-fixation is Pdependent, P-scavenging of MPs would inhibit N₂-fixation (Hassenteufel et al., 1963); (II) as N₂-fixation is an energy-costly process, species that also degrade MPs would require additional energy, with N₂-fixation activities being lowered by changes in energy allocation of the cells; (III) since MPs and their additives affect the production of reactive oxygen species (ROS) (Fernández-Juárez and López-Alforja, unpublished data), N2fixation activities could decrease by redox processes in the nitrogenase complex, considering its sensitivity to the radical species (Alquéres et al., 2010). Although the experiments conducted cannot be ecologically relevant since we did not use natural MPs (with the organic additives) (Paul-Pont et al., 2018) and instead it was used non-processed MPs without additives, this work suggest that MPs pollution (MPs: PS, PE, PP and PVC, and organic additives: fluoranthene, HBCD and DEHP) may affect the N and P cycles in the ocean (**Figure 4.3** and **Chapter 5**).


Several reports support the idea that MPs can select bacterial communities in the ocean. Bryant et al. (2016) reported a core group of microbes associated (e.g., Bryozoa, Cyanobacteria, Alphaproteobacteria, and Bacteroidetes) with small plastic fragments in oligotrophic surface waters. This microbial community composition associated with plastics can differ from that of their water column-counterparts (Zettler et al., 2013; Oberbeckmann et al., 2014; Bryant et al., 2016). Plastic accumulation in benthic systems may also trigger a potential change of microbial structure. Considering the beneficial effect of MPs on growth of diazotrophic cyanobacteria but not on heterotrophs (Chapter 5), the selection for the dominance of the diazotrophic cyanobacteria may take place in P. oceanica. Contrary to the effect of MPs, organic additives, except those that can be degraded, may have detrimental effects on diazotrophs and consequently affect the maintenance of the productivity of *P. oceanica* since the activity of these N₂-fixers may provide up to 100% of the N demand of plants (Agawin et al., 2016). Moreover, different physical processes such as currents or eddies could transport both MPs and the diazotrophs in adjacent seawater environments [since these cells can adhere with the MPs (Chapter 5)], allowing them to settle and colonize other ecological niches. The role of MPs as vectors for the transport of microorganisms has already been reported for pathogenic bacteria and harmful algal bloom-forming species (HABs) (Curren and Leong, 2019; Naik et al., 2019), but more studies are needed to investigate the role of natural MPs in N₂-fixing communities in the marine environment.

4.2. *Objective 2*: Investigation of the molecular responses with exposure to environmental factors and emerging pollutants

The second main objective of this thesis was to study the molecular mechanisms behind the diazotrophic responses against exposure to environmental factors and emerging pollutants. The goal was to find out molecular responses which can be used as molecular biomarkers to indicate the health status of N₂-fixing communities associated with benthic systems. According to the US National Academy of Sciences (NAS)-National Research Council (NRC), "biomarker" is defined as an indicator to report about the health of biological systems (e.g., bacteria) exposed to an exogenous factor (e.g., different nutrient regimes or anthropogenic factors) (Committee on Biological Markers of the National Research Council, 1987). With this aim, the molecular mechanisms studied here were the P-mechanisms, through the measurement of the alkaline phosphatase activity (APA) and P-uptake analyses (Chapters 1, 3-5); the oxidative stress responses, through the measurement of the reactive oxygen species (ROS) (Chapters 2, 3, and 4); the morphological changes, monitoring changes in cell size; the apoptotic processes, via the phosphatidylserine detection (Chapter 2); and the protein overproduction, using MALDI-TOF analyses (Chapter 5). The APA and the ROS production were the better biomarkers tested in these studies, as discussed below. The increase of these biological markers was correlated with the decrease in the cell population (Chapter 4), one of the main characteristics to be a good biomarker (Committee on Biological Markers of the National Research Council, 1987).

This thesis reveals the use of APA as a physiological biomarker to assess the phosphorous nutritional status and energy requirements of diazotrophic cells. The APA is activated as a mechanism of adaptation and survival to P-limitation, or when the Pcellular demand increases, e.g., for synthetizing ATP for fueling ATP-dependent reactions (e.g., N₂-fixation) (Santos-Beneit, 2015). Thus, through the measurement of APA, it can be assessed whether the cells are P-limited or whether they have fulfilled their P-requirements (Chapter 2). The abiotic factors that N₂-fixers have to cope with could change the P-requirement and energy demand, and hence, the evaluation of APA can shed light to investigate how environmental stressors are affecting their responses. Generally, it can be interpreted that if an environmental stressor is enhancing APA, this is probably a factor that potentially might trigger a deleterious effect in the short or longterm since cells require higher P-requirements (e.g., for protein synthesis or ATPdependent enzymes) as a response of this factor. However, some abiotic factors can inhibit APA (e.g., increasing temperatures, Chapter 4), decreasing the ability of cells to obtain DIP from DOP, and thus decreasing the survival of N₂-fixers. These findings are coherent with results from several mesocosms experiments in P. oceanica (Fernández-Juárez and Agawin, unpublished data; Frank et al., unpublished data). The results show that APA can be utilized as a biomarker for evaluating coastal P and Fe enrichment, increasing CO₂ levels, and MPs exposure in *P. oceanica* (Figures 4.4A-F). Alkaline phosphatase activity (APA) has also been used as a biomarker for coastal nutrient enrichment in other studies of P. oceanica (Martínez-Crego et al., 2006). Briefly, the

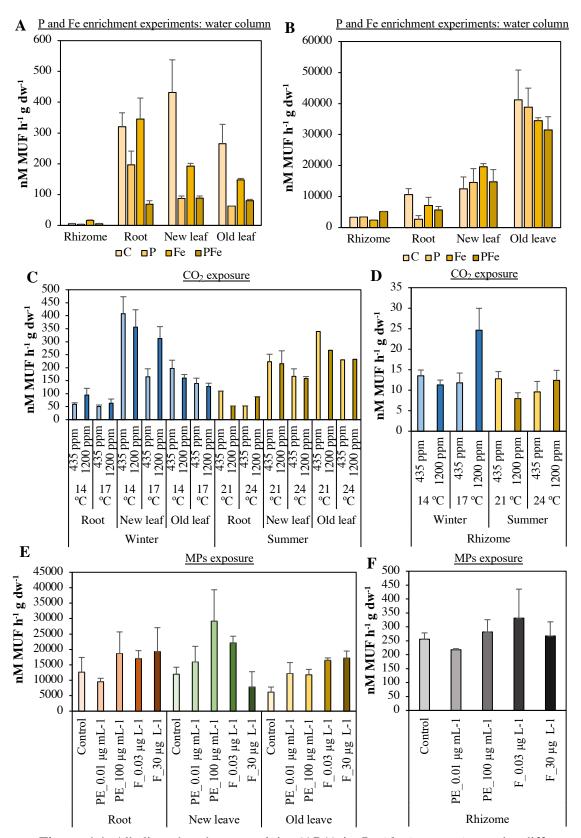
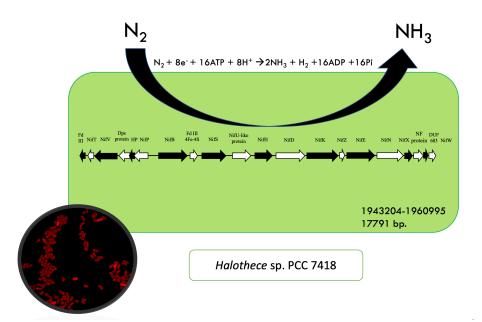

results show that P enrichment in the water column decreased APA, whereas Fe has no significant effect on APA rates (**Figures 4.4A** and **4.4B**); increasing CO₂ and temperature levels decreased APA (in agreement with the results of **Chapter 4**) (**Figures 4.4C** and **4.4D**); and plastic exposure can promote APA, probably due to the higher energy demand required for plastic-degrading bacteria (**Figures 4.4E** and **4.4F**). Considering the narrow connection between the N₂-fixation rates and APA in *P. oceanica* (Agawin et al., 2021), the P-metabolism of its associated microbiota should be further studied in-depth.

Figure 4.3. Effects of MPs and their organic additives in the bacteria associated with benthic systems (e.g., the endemic Mediterranean *Posidonia oceanica*). These can be beneficial or "the good" (green arrows), detrimental or "the bad" (red arrows), and "double-sword" (yellow arrows) (**Chapter 5**). White boxes represent the results obtained in the present study, while the black boxes represent the implications of our results. MPs and their organic additives can trigger species-specific responses, and these responses are suggested to be dependent on the physical properties of the different MPs tested. The species that could grow with particular types of MP/additives can have a bioremediation function, and the results also imply the selection for specific bacterial communities and changes in the microbial food web. **Source:** own production.


Reactive oxygen species (ROS) are biochemical biomarkers used in marine plants and animals (Ferrat et al., 2003; Benedetti et al., 2015), and in bacteria, it can be used to evaluate the plasticity of the bacterial community against different abiotic factors (Lesser, 2006; Litchman et al., 2012). Here, the increased ROS levels depend on the type of bacteria, showing that cyanobacteria accumulate more ROS than heterotrophic bacteria under nutrient-limited conditions (**Chapters 2** and **3**). The detection of high levels of ROS [e.g., caused by nutrient limitation (Chapters 2 and 3), climate change factors (Chapter 4), and exposure to MPs (Fernández-Juárez and López-Alforja, unpublished data)] does not necessarily mean that the cells have oxidative stress that can end up in cell death. Cells can compensate ROS by enzymatic and non-enzymatic defenses without any effect on cell growth. However, if the stimulus persists and ROS are not removed, the increase of ROS can end up in oxidative stress, and consequently lead to programmed cell death (Diaz and Plummer, 2018). Thus, ROS can provide information on the biochemical status of bacteria against an environmental stressor, although there is no visible physiological damage. Abiotic factors (e.g., nutrient limitation or anthropogenic factors) on diazotrophs not only produce ROS but also may induce apoptosis, which was never reported in previous studies (Chapter 2). Programmed cell death can be monitored by investigating cell apoptosis, using a typical kit designed for eukaryotic cells (Alexa Fluor 488 Annexin V / Dead Cell Apoptosis Kit, Thermo Fisher) (Chapter 2). Moreover, morphological changes may be useful for studying the effect of environmental stressors on N₂-fixing communities. Different nutrient concentrations (i.e., P, Fe, and N) provoked morphological changes in N₂-fixing bacteria, in which cells become bigger and larger under nutrient limitation both in cyanobacteria (e.g., triggering cell breaks) and heterotrophic bacteria (Chapters 2 and 3). This can be due to the cessation of cell division with limitations of P, Fe, and N (Klotz et al., 2016). Thus, cell size may be used as an indicator for bacterial nutritional status. Protein profiles (through proteomic analyses) can also be utilized as a molecular parameter for evaluating diazotrophic responses to environmental stressors (Chapter 5).

The use of bioinformatics can help open new hypotheses about the genetic mechanisms that diazotrophs use to thrive under nutrient limitation. The complete genome of the diazotrophic *Halothece* sp. PCC 7418 was used as a model to try to investigate which genetic pathways or functions would be triggered by the transcriptional factors Pho, Fur and NtcA, under P, Fe and N limiting conditions (**Chapter 2** and **Annex Chapters 1** and **2**). Among all the genes detected, it can be highlighted the N₂-fixation regulator gene, *nifB*, which was predicted under the control of NtcA, and whose product is crucial in iron–molybdenum biosynthesis. Downstream of this gene, an entire cluster of twenty genes related to N₂-fixation is localized: Fd III 4Fe-4S, *nifS*, *nifU*, *nifH*, *nifD*, *nifK*, *nifZ*, *nifE*, *nifN*, *nifX*, DUF683, and *nifW* (**Figure 4.5**). Chip analyses revealed that the *nifB* from *Anabaena* sp. PCC 7120 contains upstream a NtcA box, suggesting the role

Figure 4.4. Alkaline phosphatase activity (APA) in *Posidonia oceanica* under different experimental set-ups. **A-B**) P and Fe enrichment experiments, **A**) in the water column and **B**) in sediment. **C-D**) CO₂ exposure, testing different temperature levels. **E-F**) Microplastics (MPs) exposure, i.e., polyethylene (PE), and its organic additive effect, i.e., fluoranthene (F). **Source: A-D**) Fernández-Juárez and Agawin (unpublished results), and **E-F**) Frank et al. (unpublished results).

of NtcA in N₂-fixation regulation (Picossi et al., 2014). Contrary to other N₂-fixing bacteria in which *nif* genes are found in different and distant clusters, the genome of *Halothece* sp. PCC 7418 stands out for co-locating the complete N₂-fixation cluster in just 17.8 kb with all the genes necessary for the N₂-fixation process (**Figure 4.5**). These characteristics make *Halothece* sp. PCC 7418 a potential model organism in which different biotechnological approaches can be carried out to reveal the role of *nif* genes. These findings may open new hypotheses about the genetic mechanisms that cyanobacteria use to thrive under nutrient limitation (**Chapter 2**).

Figure 4.5. Complete N_2 -fixation cluster in *Halothece* sp. PCC 7418. The *nif* cluster of the PCC 7418 strain occupies 17.8 kb in the genome. **Source:** Own production.

4.3 Future directions

The present work dealt with abiotic environmental factors and stressors regulating the functioning of the N₂-fixers associated with the seagrass *P. oceanica*. Future works should consider biotic factors, e.g., ecological interactions between other microorganisms and N₂-fixers, or the influence of viruses in N₂-fixation. For these general purposes, it is necessary to build synthetic microbial communities with two or more bacteria in chemostat experiments (i.e., continuous culture) (Großkopf and Soyer, 2014; Widder et al., 2016). The implementation of novel approaches like microfluidics is required for these studies (Großkopf and Soyer, 2014), through which to evaluate the interactions that diazotrophs can be establishing, e.g., commensalism, competition, predation, no interaction, cooperation or amensalism, between them and other marine microbial groups

found as the epiphytic or endophytic population on the plant. On the other hand, viruses can control bacterial communities participating in the genetic diversity and success of microbial species, considering that in the seawater, viruses can reach 10^7 viruses mL⁻¹ (Whitton, 2012). Among them, cyanophages synthesize bacterial gene homologs, which can control the photosynthetic activities in *Prochlorococcus* and *Synechococcus*, obtaining the energy necessary for viral replication (Puxty et al., 2015). It is hypothesized that according to different abiotic conditions (e.g., temperature, light or nutrient regimes), the viral infection dynamics may be affected (Puxty et al., 2018). Novel research in diazotrophs suggests that in the filamentous heterocyst forming cyanobacterium *Aphanizomenon flos-aquae*, viral infection can impair the flow of the fixed N₂ within the filaments. However, the *nifH* gene expression and N₂-fixation rates were not affected (Kuznecova et al., 2020). Further research should assess the viral effects on the N₂-fixation rates in diazotrophs and the consequences for marine systems (e.g., *P. oceanica*), and how environmental factors (e.g., nutrient availability) can control these responses.

In a more ecological context, future research plans should consider experiments (field or mesocosm) carried out in natural N₂-fixing communities associated with *P. oceanica*, investigating whether there is indeed a change in the N₂-fixing community structure and how the plants cope with the environmental stressors and emerging pollutants tested in this thesis (i.e., nutrient availabilities, global climate change factors and emerging pollutants). High throughput analyses, e.g., metagenomics, metatranscriptomics and metaproteomics approaches, might be useful to know which genes and proteins are responsible for the adaptation and survival of diazotrophic microorganisms to the different abiotic factors tested. Seasonal field experiments on *P. oceanica* beds are also needed to know how the N₂-fixing bacterial community structure change over the seasons and how these relate to changes of the different environmental factors studied during this thesis.

4. General discussion

5. CONCLUSIONS

5. Conclusions

CONCLUSIONS

In summary, this thesis shows for the first time the role of environmental factors and emerging pollutants in N₂-fixing bacteria associated with the endemic Mediterranean seagrass *Posidonia oceanica*. These studies will contribute to predict and anticipate changes in the *P. oceanica* meadows in response to anthropogenic impacts (e.g., nutrient enrichment, anthropogenic increase in CO₂ or plastic pollution) in the Mediterranean Sea. Throughout this work, the plasticity of N₂-fixers to abiotic global stressors was described and discussed. The conclusions of this work are as follows:

- 1- The responses of the N₂-fixing bacteria to environmental factors and emerging pollutants tested are species-specific. As a consequence, some species may be favored or selected when they are subject to environmental stressors, and thus, changes in the microbial N₂-fixing structure (i.e., selecting the cyanobacterial or heterotrophic population) of *Posidonia oceanica* might be occurring as a consequence of the abiotic factors tested, according to the nature of the N₂-fixing bacteria (Chapters 1-5).
- 2- Nutrient limitation (i.e., P, N and Fe) affects nutrient acquisition mechanisms for diazotrophs, e.g., the alkaline phosphatase and N₂-fixation activities. Whatever processes, natural or anthropogenic that can change nutrient concentrations, could consequently affect nutrient acquisition mechanisms, and therefore regulate the diazotrophic responses in benthic systems (Chapter 1).
- 3- This work opens new questions and hypotheses about the responses of N₂-fixers in marine environments, questioning the "classical" diazotrophic responses since some N₂-fixer cyanobacteria can have a threshold dependence of dissolved inorganic nitrogen (DIN) and in theory, N₂-fixing bacteria are independent of the availability of DIN since they can use atmospheric N₂ (Chapter 2).
- 4- The marine environment is suggested to select and determine the genomic and phenotypic responses of the same bacterial species found in different regions as evidenced in this thesis. *Cobetia* spp., found associated with the Mediterranean seagrass *Posidonia oceanica* may be better adapted to oligotrophic conditions than

those found in nutrient-rich waters in the Humboldt Current System and associated with the Chilean seagrass *Heterozostera chilensis* (Chapter 3).

- 5- Ocean acidification and warming due to increased CO₂ levels may have a significant impact on N₂-fixing microorganisms. However, the impact may depend on whether they are phototrophic or heterotrophic bacteria, suggesting that the community structure of the N₂-fixing community may also change. The response of N₂-fixing microorganisms with climate change factors depends on their nutritional status. Moreover, climate change factors affect nutrient acquisition mechanisms, impairing the diazotrophic activities (Chapter 4).
- **6-** For the first time, the role of exposure to microplastics (MPs) and their organic additives in marine diazotrophs was investigated, revealing that generally, non-processed MPs increase growth, unlike organic additives. The diazotrophic cell responses can be dependent on the concentration and physical properties of MPs. Although N₂-fixation rates were not affected, changes in growth or abundance of the diazotrophic cells may affect global N₂-fixation rates. Microplastics (MPs) and their associated organic additives trigger species-specific responses, and thus, the structure of the diazotrophic microbial population associated with the seagrass *Posidonia oceanica* can eventually change with exposure to these contaminants (**Chapter 5**).

6. ANNEXES

6. Annexes

ANNEXES

Chapter 1

Supplementary Table 1. All genes and Locus Tags of the predicted Pho regulon of all the tested strains.

	Nostoc punctiforme PCC 73102 (CP001037)		Chroococcidiopsis thermalis PCC 72	203 (CP003598)
Genes	Annotation (Patric)	Locus Tag	Genes	Annotation (Patric)	Locus Tag
phoU	-	-	phoU	-	-
pstS	-	-	pstS	-	-
pstC	-	-	pstC	-	-
pstA	-	-	pstA	-	-
pstB	-	-	pstB	-	-
phoR	-	-	phoR	Phosphate regulon sensor protein PhoR (SphS)	Chro_5919
phoB	-	-	phoB	-	-
APase	-	-	APase	Alkaline phosphatase	Chro_5919
ррК	-	-	ррК	-	-
ррХ	-	-	ррХ	-	-
ppA	-	-	ppA	-	-
Spirulina subsalsa PCC 9445 (NZ_ALVR01000000)		LVR01000000)		Crocosphaera watsonii WH 8501 (NZ AADV020000	
Genes	Annotation (Patric)	Locus Tag	Genes	Annotation (Patric)	Locus Tag
phoU	Phosphate transport system regulatory protein PhoU	SPI9445_RS0119485	phoU	Phosphate transport system regulatory protein PhoU	CwatDRAFT_5911
pstS	Phosphate ABC transporter, substrate- binding protein PstS	SPI9445_RS0105090	pstS	Phosphate ABC transporter, substrate- binding protein PstS	CwatDRAFT_6534

	Phosphate ABC transporter, substrate- binding protein PstS	SPI9445_RS0120490		Phosphate ABC transporter, substrate- binding protein PstS	CwatDRAFT_5160		
	Phosphate ABC transporter, substrate- binding protein PstS	SPI9445_RS0121920		Phosphate ABC transporter, substrate- binding protein PstS	CwatDRAFT_4928		
pstC	Phosphate ABC transporter, permease protein PstC	SPI9445_RS0120485	pstC	Phosphate ABC transporter, permease protein PstC	CwatDRAFT_4929		
<i>pstA</i>	Phosphate ABC transporter, permease protein PstA	SPI9445_RS0120480	pstA	Phosphate ABC transporter, permease protein PstA	CwatDRAFT_4930		
pstB	Phosphate ABC transporter, permease protein PstB	SPI9445_RS0107060		Phosphate ABC transporter, permease protein PstA	CwatDRAFT_4931		
phoR	Phosphate regulon sensor protein PhoR (SphS)	SPI9445_RS0119490	pstB	Phosphate ABC transporter, permease protein PstB	CwatDRAFT_4932		
phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	SPI9445_RS0119495		Phosphate ABC transporter, permease protein PstB	CwatDRAFT_4933		
APase	-	-		Phosphate ABC transporter, permease protein PstB	CwatDRAFT_1348		
ррК	Polyphosphate kinase	SPI9445_RS0118550	phoR	Phosphate regulon sensor protein PhoR (SphS)	CwatDRAFT_5910		
ррХ	Exopolyphosphatase	SPI9445_RS0101940	phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	CwatDRAFT_2775		
ppA	Inorganic pyrophosphatase	SPI9445_RS0119415	APase	Alkaline phosphatase	CwatDRAFT_1549		
		L	_	Alkaline phosphatase	CwatDRAFT_1629		
			ррК	Polyphosphate kinase	CwatDRAFT_6491		
			ррХ	Exopolyphosphatase	CwatDRAFT_1948		
			ppA	Inorganic pyrophosphatase	CwatDRAFT_2235		
	Synechocystis sp. PCC 7509 (NZ_AL	VU0200000)	<i>Pleurocapsa</i> sp. PCC 7327 (CP003590)				
Genes	Annotation (Patric)	Locus Tag	Genes	Annotation (Patric)	Locus Tag		
phoU	Phosphate transport system regulatory protein PhoU	SYN7509_RS0215960	phoU	Phosphate transport system regulatory protein PhoU	Ple7327_4124		
pstS	Phosphate ABC transporter, substrate- binding protein PstS	SYN7509_RS0206650	pstS	Phosphate ABC transporter, substrate- binding protein PstS	Ple7327_1250		
	Phosphate ABC transporter, substrate- binding protein PstS	SYN7509_RS0207360		Phosphate ABC transporter, substrate- binding protein PstS	Ple7327_3388		
	Phosphate ABC transporter, substrate- binding protein PstS	SYN7509_RS0215920		Phosphate ABC transporter, substrate- binding protein PstS	Ple7327_3389		

	Phosphate ABC transporter, substrate- binding protein PstS	SYN7509_RS0215925		Phosphate ABC transporter, substrate- binding protein PstS	Ple7327_3618		
pstC	Phosphate ABC transporter, permease protein PstC	SYN7509_RS0206655	pstC	Phosphate ABC transporter, permease protein PstC	Ple7327_1249		
	Phosphate ABC transporter, permease protein PstC	SYN7509_RS0207365		Phosphate ABC transporter, permease protein PstC	Ple7327_3387		
pstA	Phosphate ABC transporter, permease protein PstA	SYN7509_RS0206660	pstA	Phosphate ABC transporter, permease protein PstA	Ple7327_1248		
	Phosphate ABC transporter, permease protein PstA	SYN7509_RS0207370		Phosphate ABC transporter, permease protein PstA	Ple7327_3386		
pstB	Phosphate ABC transporter, permease protein PstB	SYN7509_RS0206665	pstB	Phosphate ABC transporter, permease protein PstB	Ple7327_1247		
	Phosphate ABC transporter, permease protein PstB	SYN7509_RS0207375		Phosphate ABC transporter, permease protein PstB	Ple7327_3385		
phoR	Phosphate regulon sensor protein PhoR (SphS)	SYN7509_RS0215965	phoR	Phosphate regulon sensor protein PhoR (SphS)	Ple7327_4123		
phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	SYN7509_RS0215970	phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	Ple7327_4122		
APase	Alkaline phosphatase	SYN7509_RS0210500	APase	Phosphodiesterase/alkaline phosphatase D	Ple7327_0042		
ррК	Polyphosphate kinase	SYN7509_RS0202140		Alkaline phosphatase	Ple7327_1998		
	Polyphosphate kinase 2	SYN7509_RS0205545	-	Alkaline phosphatase like protein	Ple7327_4613		
ррХ	Exopolyphosphatase	SYN7509_RS0215695	ррК	Polyphosphate kinase	Ple7327_2011		
ppA	Inorganic pyrophosphatase	SYN7509_RS0218560	ррХ	Exopolyphosphatase	Ple7327_1164		
			ppA	Inorganic pyrophosphatase	Ple7327_3589		
	Anabaena sp. PCC 7108 (NZ_AJV	VF0100000)		Dactylococcopsis salina PCC 8305 (CP003944)			
Genes	Annotation (Patric)	Locus Tag	Genes	Annotation (Patric)	Locus Tag		
phoU	Phosphate transport system regulatory protein PhoU	ANA7108_RS010733	phoU	Phosphate transport system regulatory protein PhoU	Dacsa_1982		
pstS	Phosphate ABC transporter, substrate- binding protein PstS	ANA7108_RS0104250	pstS	Phosphate ABC transporter, substrate- binding protein PstS	Dacsa_0981		
	Phosphate ABC transporter, substrate- binding protein PstS	ANA7108_RS0114535		Phosphate ABC transporter, substrate- binding protein PstS	Dacsa_1219		
	Phosphate ABC transporter, substrate- binding protein PstS	ANA7108_RS0124135		Phosphate ABC transporter, substrate- binding protein PstS	Dacsa_1417		

	Phosphate ABC transporter, substrate- binding protein PstS	ANA7108_RS0125995		Phosphate ABC transporter, substrate- binding protein PstS	Dacsa_1575
pstC	Phosphate ABC transporter, permease protein PstC	ANA7108_RS0114530		Phosphate ABC transporter, substrate- binding protein PstS	Dacsa_3076
	Phosphate ABC transporter, permease protein PstC	ANA7108_RS0124130	pstC	Phosphate ABC transporter, permease protein PstC	Dacsa_1220
pstA	Phosphate ABC transporter, permease protein PstA	ANA7108_RS0114525		Phosphate ABC transporter, permease protein PstC	Dacsa_1416
	Phosphate ABC transporter, permease protein PstA	ANA7108_RS0124125		Phosphate ABC transporter, permease protein PstC	Dacsa_3114
pstB	Phosphate ABC transporter, permease protein PstB	ANA7108_RS0114520	pstA	Phosphate ABC transporter, permease protein PstA	Dacsa_1224
	Phosphate ABC transporter, permease protein PstB	ANA7108_RS0111425		Phosphate ABC transporter, permease protein PstA	Dacsa_1415
	Phosphate ABC transporter, permease protein PstB	ANA7108_RS0124120	pstB	Phosphate ABC transporter, permease protein PstB	Dacsa_1414
phoR	Phosphate regulon sensor protein PhoR (SphS)	ANA7108_RS0107330		Phosphate ABC transporter, permease protein PstB	Dacsa_3115
phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	ANA7108_RS0107325	phoR	Phosphate regulon sensor protein PhoR (SphS)	Dacsa_1981
Apase	Alkaline phosphatase	ANA7108_RS0104615	phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	Dacsa_1980
	Alkaline phosphatase	ANA7108_RS0104600	APase	Alkaline phosphatase	Dacsa_0439
	Alkaline phosphatase	ANA7108_RS0100780		Alkaline phosphatase	Dacsa_1692
	Alkaline phosphatase	ANA7108_RS0111735		Alkaline phosphatase	Dacsa_1693
ррК	Polyphosphate kinase 2	ANA7108_RS0119175		Alkaline phosphatase	Dacsa_1695
	Polyphosphate kinase	ANA7108_RS0109985		Alkaline phosphatase	Dacsa_1696
ррХ	Exopolyphosphatase	ANA7108_RS0118330		Alkaline phosphatase	Dacsa_2870
ppA	Inorganic pyrophosphatase	ANA7108_RS0101510	ррК	Polyphosphate kinase	Dacsa_1689
			ррХ	Exopolyphosphatase	Dacsa_0957
			ppA	Inorganic pyrophosphatase	Dacsa_3296
	Microcystis aeruginosa PCC 7806SI	L (CP020771)		Fischerella sp. PCC 9339 (NZ_ALV	S0100000)

Genes	Annotation (Patric)	Locus Tag	Genes	Annotation (Patric)	Locus Tag
phoU	Phosphate transport system regulatory protein PhoU	BH695_5315	phoU	Phosphate transport system regulatory protein PhoU	PCC9339_RS0124490
pstS	Phosphate ABC transporter, substrate- binding protein PstS	BH695_0746	pstS	Phosphate ABC transporter, substrate- binding protein PstS	PCC9339_RS0107315
	Phosphate ABC transporter, substrate- binding protein PstS	BH695_0747		Phosphate ABC transporter, substrate- binding protein PstS	PCC9339_RS0115315
	Phosphate ABC transporter, substrate- binding protein PstS	BH695_1907		Phosphate ABC transporter, substrate- binding protein PstS	PCC9339_RS0118145
	Phosphate ABC transporter, substrate- binding protein PstS	BH695_1911		Phosphate ABC transporter, substrate- binding protein PstS	PCC9339_RS0124050
	Phosphate ABC transporter, substrate- binding protein PstS	BH695_4434		Phosphate ABC transporter, substrate- binding protein PstS	PCC9339_RS013259
pstC	Phosphate ABC transporter, permease protein PstC	BH695_0748	pstC	Phosphate ABC transporter, permease protein PstC	PCC9339_RS0107310
	Phosphate ABC transporter, permease protein PstC	BH695_1910		Phosphate ABC transporter, permease protein PstC	PCC9339_RS0124055
pstA	Phosphate ABC transporter, permease protein PstA	BH695_0749		Phosphate ABC transporter, permease protein PstC	PCC9339_RS0132595
	Phosphate ABC transporter, permease protein PstA	BH695_1909	pstA	Phosphate ABC transporter, permease protein PstA	PCC9339_RS0107305
pstB	Phosphate ABC transporter, permease protein PstB	BH695_0750		Phosphate ABC transporter, permease protein PstA	PCC9339_RS0124060
	Phosphate ABC transporter, permease protein PstB	BH695_0752		Phosphate ABC transporter, permease protein PstA	PCC9339_RS0132600
	Phosphate ABC transporter, permease protein PstB	BH695_1908	pstB	Phosphate ABC transporter, permease protein PstB	PCC9339_RS0107300
phoR	Phosphate regulon sensor protein PhoR (SphS)	BH695_3368		Phosphate ABC transporter, permease protein PstB	PCC9339_RS0124065
	Phosphate regulon sensor protein PhoR (SphS)	BH695_5316		Phosphate ABC transporter, permease protein PstB	PCC9339_RS0132605
phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	BH695_5317	phoR	Phosphate ABC transporter, permease protein PstB	PCC9339_RS0124065
Apase	Alkaline phosphatase	BH695_2564	phoB	Phosphate ABC transporter, permease protein PstB	PCC9339_RS0132605
	Alkaline phosphatase	BH695_2565	Apase	Alkaline phosphatase	PCC9339_RS0114510
	Alkaline phosphatase	BH695_2649		Alkaline phosphatase	PCC9339_RS0133125

	Alkaline phosphatase	BH695_3440		Alkaline phosphatase	PCC9339_RS0120820
	Alkaline phosphatase-like protein	BH695_4984	ррК	Polyphosphate kinase	PCC9339_RS0116345
ррК	Polyphosphate kinase	BH695_2980		Polyphosphate kinase 2	PCC9339_RS0129015
ррХ	Exopolyphosphatase	BH695_0037		Polyphosphate kinase	PCC9339_RS0129835
	Exopolyphosphatase	BH695_5350	ррХ	Exopolyphosphatase	PCC9339_RS0123895
ppA	Inorganic pyrophosphatase	BH695_0664	ppA	Inorganic pyrophosphatase	PCC9339_RS0115895
	Halothece sp. PCC 7418 (CP00)3945)		<i>Cyanothece</i> sp. ATCC 51472 (NZ	Z AGJC02000000)
Genes	Annotation (Patric)	Locus Tag	Genes	Annotation (Patric)	Locus Tag
phoU	Phosphate transport system regulatory protein PhoU	PCC7418_3123	phoU	Phosphate transport system regulatory protein PhoU	CY51472DRAFT_RS0222590
pstS	Phosphate ABC transporter, substrate- binding protein PstS	PCC7418_0041	pstS	Phosphate ABC transporter, substrate- binding protein PstS	CY51472DRAFT_RS0201580
	Phosphate ABC transporter, substrate- binding protein PstS	PCC7418_0390		Phosphate ABC transporter, substrate- binding protein PstS	CY51472DRAFT_RS0209720
	Phosphate ABC transporter, substrate- binding protein PstS	PCC7418_1750		Phosphate ABC transporter, substrate- binding protein PstS	CY51472DRAFT_RS0209725
	Phosphate ABC transporter, substrate- binding protein PstS	PCC7418_3269		Phosphate ABC transporter, substrate- binding protein PstS	CY51472DRAFT_RS0210980
pstC	Phosphate ABC transporter, permease protein PstC	PCC7418_1749		Phosphate ABC transporter, substrate- binding protein PstS	CY51472DRAFT_RS0211095
	Phosphate ABC transporter, permease protein PstC	PCC7418_1912		Phosphate ABC transporter, substrate- binding protein PstS	CY51472DRAFT_RS0214500
	Phosphate ABC transporter, permease protein PstC	PCC7418_3270		Phosphate ABC transporter, substrate- binding protein PstS	CY51472DRAFT_RS0224580
pstA	Phosphate ABC transporter, permease protein PstA	PCC7418_1748	pstC	Phosphate ABC transporter, permease protein PstC	CY51472DRAFT_RS0209715
	Phosphate ABC transporter, permease protein PstA	PCC7418_3271		Phosphate ABC transporter, permease protein PstC	CY51472DRAFT_RS0211100
pstB	Phosphate ABC transporter, permease protein PstB	PCC7418_1747	pstA	Phosphate ABC transporter, permease protein PstA	CY51472DRAFT_RS0209710
	Phosphate ABC transporter, permease protein PstB	PCC7418_1911		Phosphate ABC transporter, permease protein PstA	CY51472DRAFT_RS0211105
	Phosphate ABC transporter, permease protein PstB	PCC7418_3272	pstB	Phosphate ABC transporter, permease protein PstB	CY51472DRAFT_RS0201590

phoR	Phosphate regulon sensor protein PhoR (SphS)	PCC7418_3124		Phosphate ABC transporter, permease protein PstB	CY51472DRAFT_RS0224545	
phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	PCC7418_3124		Phosphate ABC transporter, permease protein PstB	CY51472DRAFT_RS0209700	
Apase	Alkaline phosphatase	PCC7418_0071		Phosphate ABC transporter, permease protein PstB	CY51472DRAFT_RS0211110	
	Alkaline phosphatase	PCC7418_0077		Phosphate ABC transporter, permease protein PstB	CY51472DRAFT_RS0209705	
	Alkaline phosphatase	PCC7418_0571		Phosphate ABC transporter, permease protein PstB	CY51472DRAFT_RS0224540	
	Alkaline phosphatase	PCC7418_1065	phoR	Phosphate regulon sensor protein PhoR (SphS)	CY51472DRAFT_RS0221650	
	Phosphodiesterase/alkaline phosphatase D	PCC7418_1982	phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	CY51472DRAFT_RS0201450	
	Alkaline phosphatase	PCC7418_2858	Apase	Alkaline phosphatase	CY51472DRAFT_RS0203850	
	Alkaline phosphatase	PCC7418_3483		Alkaline phosphatase	CY51472DRAFT_RS0203450	
	Alkaline phosphatase	PCC7418_3485		Alkaline phosphatase	CY51472DRAFT_RS0222455	
ррК	Polyphosphate kinase	PCC7418_1073		Alkaline phosphatase	CY51472DRAFT_RS0204765	
ррХ	Exopolyphosphatase	PCC7418_2036	ррК	Polyphosphate kinase	CY51472DRAFT_RS0216060	
ppA	Inorganic pyrophosphatase	PCC7418_0708		Polyphosphate kinase	CY51472DRAFT_RS0224465	
			ррХ	Exopolyphosphatase	CY51472DRAFT_RS0208320	
			ppA	Inorganic pyrophosphatase	CY51472DRAFT_RS0203230	
	Calothrix sp. PCC 7507 (CP0039	943)		<i>Gloeocapsa</i> sp. PCC 7428 (CP003646)		
Genes	Annotation (Patric)	Locus Tag	Genes	Annotation (Patric)	Locus Tag	
phoU	Phosphate transport system regulatory protein PhoU	Cal7507_1625	phoU	Phosphate transport system regulatory protein PhoU	Glo7428_3037	
pstS	Phosphate ABC transporter, substrate- binding protein PstS	Cal7507_0340	pstS	Phosphate ABC transporter, substrate- binding protein PstS	Glo7428_0758	
	Phosphate ABC transporter, substrate- binding protein PstS	Cal7507_1013		Phosphate ABC transporter, substrate- binding protein PstS	Glo7428_0759	
	Phosphate ABC transporter, substrate- binding protein PstS	Cal7507_1206		Phosphate ABC transporter, substrate- binding protein PstS	Glo7428_1132	
	Phosphate ABC transporter, substrate- binding protein PstS	Cal7507_1927		Phosphate ABC transporter, substrate- binding protein PstS	Glo7428_1752	

	Phosphate ABC transporter, substrate- binding protein PstS	Cal7507_1928		Phosphate ABC transporter, substrate- binding protein PstS	Glo7428_1886
	Phosphate ABC transporter, substrate- binding protein PstS	Cal7507_4798		Phosphate ABC transporter, substrate- binding protein PstS	Glo7428_2342
	Phosphate ABC transporter, substrate- binding protein PstS	Cal7507_5691		Phosphate ABC transporter, substrate- binding protein PstS	Glo7428_4983
	Phosphate ABC transporter, substrate- binding protein PstS	Cal7507_5816	pstC	Phosphate ABC transporter, permease protein PstC	Glo7428_1133
pstC	Phosphate ABC transporter, permease protein PstC	Cal7507_0341		Phosphate ABC transporter, permease protein PstC	Glo7428_2341
	Phosphate ABC transporter, permease protein PstC	Cal7507_1207		Phosphate ABC transporter, permease protein PstC	Glo7428_4984
	Phosphate ABC transporter, permease protein PstC	Cal7507_4797	pstA	Phosphate ABC transporter, permease protein PstA	Glo7428_1134
pstA	Phosphate ABC transporter, permease protein PstA	Cal7507_0342		Phosphate ABC transporter, permease protein PstA	Glo7428_2340
	Phosphate ABC transporter, permease protein PstA	Cal7507_1208		Uncharacterized protein Psta_3961	Glo7428_3942
	Phosphate ABC transporter, permease protein PstA	Cal7507_4796		Phosphate ABC transporter, permease protein PstA	Glo7428_4985
pstB	Phosphate ABC transporter, permease protein PstB	Cal7507_0343	pstB	Phosphate ABC transporter, permease protein PstB	Glo7428_1135
	Phosphate ABC transporter, permease protein PstB	Cal7507_1209		Phosphate ABC transporter, permease protein PstB	Glo7428_2339
	Phosphate ABC transporter, permease protein PstB	Cal7507_1210	phoR	Phosphate regulon sensor protein PhoR (SphS)	Glo7428_0220
	Phosphate ABC transporter, permease protein PstB	Cal7507_4795		Phosphate regulon sensor protein PhoR (SphS)	Glo7428_3038
phoR	Phosphate regulon sensor protein PhoR (SphS)	Cal7507_1624		Phosphate regulon sensor protein PhoR (SphS)	Glo7428_5081
phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	Cal7507_1623	phoB	Phosphate regulon transcriptional regulatory protein PhoB (SphR)	Glo7428_0934
Apase	Alkaline phosphatase	Cal7507_1562		Phosphate regulon transcriptional regulatory protein PhoB (SphR)	Glo7428_3039
	Alkaline phosphatase	Cal7507_2517	Apase	Alkaline phosphatase	Glo7428_0109
	Alkaline phosphatase	Cal7507_2523		Alkaline phosphatase	Glo7428_0424
ррК	Polyphosphate kinase	Cal7507_0098		Alkaline phosphatase	Glo7428_0645

	Polyphosphate kinase	Cal7507_2880		Alkaline phosphatase	Glo7428_0796
	Polyphosphate kinase	Cal7507_4641		Alkaline phosphatase	Glo7428_0846
ррХ	Exopolyphosphatase	Cal7507_4902		Alkaline phosphatase	Glo7428_1248
ppA	Inorganic pyrophosphatase	Cal7507_2098		Alkaline phosphatase	Glo7428_1514
				Alkaline phosphatase	Glo7428_1646
				Alkaline phosphatase	Glo7428_1647
				Phosphodiesterase/alkaline phosphatase D	Glo7428_3016
				Alkaline phosphatase	Glo7428_3293
				Alkaline phosphatase	Glo7428_3370
				Alkaline phosphatase	Glo7428_3554
				Alkaline phosphatase	Glo7428_3943
				Alkaline phosphatase	Glo7428_4190
				Alkaline phosphatase	Glo7428_4312
				Alkaline phosphatase	Glo7428_4364
				Alkaline phosphatase	Glo7428_4414
				Phosphodiesterase/alkaline phosphatase D	Glo7428_4942
			ррК	Polyphosphate kinase	Glo7428_1568
				Polyphosphate kinase 2	Glo7428_1966
			ррХ	Exopolyphosphatase	Glo7428_1713
			ppA	Inorganic pyrophosphatase	Glo7428_1953

6. Annexes

Chapter 2

Experimen	ts on <i>Halothece</i> sp	. PCC 7418 and <i>I</i>	Fischerella muscicola PCC 73103
	Treatments		Description
[Low PO ₄ ³⁻ - Low Fe]	[Medium PO ₄ ³⁻ - Low Fe]	[High PO4 ³⁻ - Low Fe]	1 st experiment Optimal NO ₃ ⁻ (4.4 mM) for <i>Halothece</i> sp.
[Low PO4 ³⁻ - Medium Fe]	[Medium PO ₄ ³⁻ - Medium Fe]	[High PO4 ³⁻ - Medium Fe]	2^{nd} experiment Low NO ₃ ⁻ (0.15 mM) for <i>Halothece</i> sp. and N ₂ as sole N source for <i>F. muscicola</i>
[Low PO ₄ ³⁻ - High Fe]	[Medium PO4 ³⁻ - High Fe]	[High PO4 ³⁻ - High Fe]	3 rd experiment Extremely limiting NO ₃ ⁻ conditions (6.66 nM), comparing with optimal NO ₃ ⁻ in selected treatments ([Low PO ₄ ³⁻ - Low Fe], [High PO ₄ ³⁻ - Low Fe], [Low PO ₄ ³⁻ - High Fe] and [High PO ₄ ³⁻ - High Fe]) for <i>Halothece</i> sp.
	Recovery expe	riments on <i>Halot</i>	hece sp. PCC 7418
Initial Treatment	Condition of NO3 ⁻	Nutrient added (at day 12)	Resulting treatment (maintained for 4 days)
[Low PO ₄ ³⁻ - Low Fe]	Optimal NO ₃ ⁻ (4.4 mM)	PO_4^{3-} and Fe	[High PO4 ³⁻ - High Fe] in optimal NO3 ⁻ treatment
[Low PO ₄ ³⁻ - Low Fe]	Extremely limiting NO ₃ - conditions (6.66 nM)	PO ₄ ³⁻ , Fe and NO ₃ ⁻	[High PO ₄ ³⁻ - High Fe] in optimal NO ₃ ⁻ treatment
[High PO4 ³⁻ - High Fe]	Extremely limiting NO ₃ - conditions (6.66 nM)	NO ₃ -	[High PO ₄ ³⁻ - High Fe] in optimal NO ₃ ⁻ treatment

Supplementary Table 1. List of all experimental treatments conducted in this study.

In the recovery experiments, PO_4^{3-} , Fe, and/or NO_3^{-} were added to the different initial treatments to achieve optimal conditions (45 μ M, 7.5 μ M and 4.4 mM, respectively). Initial treatment for PO_4^{3-} : [Low PO_4^{3-}] (0.1 μ M), [Medium PO_4^{3-}] (1 μ M) and [High PO_4^{3-}] (45 μ M). Initial treatments for Fe: [Low Fe] (2 nM), [Medium Fe] (20 nM) and [High Fe] (7.5 μ M).

Supplementary multifasta 1, for PHO boxes in cyanobacteria:

>SYNPCC7002 A1357(SYNPCC7002 A1357) Score=7.8 Pos=-125 [Synechococcus sp. PCC 70021 GCTAACCTNNNCTATATTTNNNTTTTATTT >SYNPCC7002 A2352(phoA1) Score=7.5 Pos=-182 [Synechococcus sp. PCC 7002] ATTTAATTNNNTTTAGTTGNNNCTTAGCTA >SYNPCC7002_A2352(phoA1) Score=9.5 Pos=-91 [Synechococcus sp. PCC 7002] ATTAAACTNNNCTTAGTTTNNNTTTAACTC >SYNPCC7002 A1232(cysR) Score=8.7 Pos=-126 [Synechococcus sp. PCC 7002] **CTTAAACTNNNGATTACATNNNATTTAACT** >SYNPCC7002 A2120(ndbB) Score=7.6 Pos=-309 [Synechococcus sp. PCC 7002] CTAAAATTNNNTTTTACTANNNTTTGATCA >sll0679(sphX) Score=10.9 Pos=-135 [Synechocystis sp. PCC 6803] TTTAACCANNNCTTTACTANNNCTTAACCT >sll0654(phoA) Score=7.3 Pos=-210 [Synechocystis sp. PCC 6803] TTTTACTTNNNCTTTCCCTNNNGTTAGCAA >sll0654(phoA) Score=8.8 Pos=-175 [Synechocystis sp. PCC 6803] CTTAACCTNNNCATAGTCTNNNCATAAGTT >slr1247(pstS) Score=10.5 Pos=-342 [Synechocystis sp. PCC 6803] CTTAATCTNNNCTTAATTCNNNCTTAATTT >slr0115(rpaA) Score=7 Pos=-174 [Synechocystis sp. PCC 6803] ATTACCCANNNTTTAGATGNNNTTTTTCTT >cce 1163(pstS) Score=9.7 Pos=-109 [Cyanothece sp. ATCC 51142] CTTAATCTNNNTTTTACTGNNNTTTAACCC >cce 1859(sphX) Score=8.8 Pos=-141 [Cyanothece sp. ATCC 51142] CTTAATAANNNGTTTAACTNNNCTTCATAT >cce 0886(pstS) Score=7.5 Pos=-53 [Cyanothece sp. ATCC 51142] GTTAGATTNNNCTTTAAGANNNGTTTAGTT >cce 0886(pstS) Score=6.9 Pos=-358 [Cyanothece sp. ATCC 51142] CTTGAAAANNNTATAAATANNNGTTATCAT >cce 3317(SYNPCC7002 A1357) Score=8.4 Pos=-44 [Cyanothece sp. ATCC 51142] CTTATCTANNNCTTTATTTNNNTTTATACT >cce 1211(purF) Score=7.7 Pos=-143 [Cyanothece sp. ATCC 51142] TATAATCTNNNGTTTTATTNNNGTCTATTT >cce 4621(phoA) Score=8.7 Pos=-88 [Cyanothece sp. ATCC 51142] TTTAAAGTNNNTTTAACATNNNCTTTAAAT >cce 4758(fbp) Score=8.3 Pos=-125 [Cyanothece sp. ATCC 51142] ATTAACCTNNNCTGAAATTNNNCTAAAGTT >cce 5183(ackA) Score=9.6 Pos=-74 [Cyanothece sp. ATCC 51142] **GTTAATTTNNNTTTAATCANNNCTTAAAAT** >cce 4392(cce 4392) Score=8.8 Pos=20 [Cyanothece sp. ATCC 51142] CTTTAACCNNNCTCAATCTNNNCTTAAACT >cce 5174(ppk) Score=8.4 Pos=-70 [Cyanothece sp. ATCC 51142] GATAAAAANNNCATAAAGTNNNCTTAAACT >cce 0154(ndbB) Score=7.6 Pos=-83 [Cyanothece sp. ATCC 51142] TTTTATCTNNNGATAATTANNNATTAATGA >PCC8801 1024(pstS) Score=9.8 Pos=-108 [Cyanothece sp. PCC 8801] TTTTATCANNNGTTTACCTNNNCTTAACCC >PCC8801 4067(sphX) Score=8.1 Pos=-157 [Cyanothece sp. PCC 8801] CTTAGCATNNNCTTTTTCTNNNGCTAAACT >PCC8801 1433(spoT) Score=8.5 Pos=-224 [Cyanothece sp. PCC 8801] TTTAACAGNNNCTAAACCTNNNTTTAAACT >PCC8801 1847(SYNPCC7002 A1357) Score=7.5 Pos=-43 [Cyanothece sp. PCC 8801] AATAAATTNNNTCTTATTTNNNATTATCTT

```
>PCC8801 4178(purF) Score=7.5 Pos=-104 [Cyanothece sp. PCC 8801]
GATAAGATNNNGTTAAAGANNNGTTAAAAT
>PCC8801 1683(nucH) Score=9.8 Pos=-246 [Cyanothece sp. PCC 8801]
ATTAAACTNNNCTTAAATTNNNGTTAAATA
>PCC8801 0430(fbp) Score=7.9 Pos=-278 [Cyanothece sp. PCC 8801]
TTAAAATTNNNTTTTATTTNNNCTTTTATT
>PCC8801 0346(cysR) Score=9.7 Pos=-91 [Cyanothece sp. PCC 8801]
TTTAATCTNNNGATTACCTNNNGTTTACCT
>PCC8801 3887(ackA) Score=9.1 Pos=-183 [Cyanothece sp. PCC 8801]
CTTTGACCNNNGTTTACCANNNCTTAACCT
>PCC8801 1625(ppk) Score=7.2 Pos=-95 [Cyanothece sp. PCC 8801]
TATTACCTNNNTATAGCCTNNNGATAGCCT
>PCC8801 3662(rsbU) Score=7.4 Pos=-162 [Cyanothece sp. PCC 8801]
ATTAACGCNNNGATTAACCNNNCCTAATTA
>PCC8801 2302(SYNPCC7002 A0979) Score=7.1 Pos=-232 [Cyanothece sp. PCC 8801]
CATAATGANNNTTTTAAGANNNGTTAAAAA
>Cyan7425 0207 Score=7.8 Pos=-81 [Cyanothece sp. PCC 7425]
TTTAACGANNNCTTTAGCANNNGATTACCT
>Cyan7425 4261(phoA1) Score=9 Pos=-146 [Cyanothece sp. PCC 7425]
ATTAATCANNNGTTTACCTNNNCATAAATC
>Cyan7425 4387(SYNPCC7002 A2263) Score=7.5 Pos=-102 [Cyanothece sp. PCC 7425]
ATTATCATNNNTATTACCTNNNCCTTACCC
>Cyan7425 1977(ppk) Score=8.4 Pos=-238 [Cyanothece sp. PCC 7425]
GTTATCCCNNNGTTAATTTNNNATTAAATC
>Cyan7425 0664(pstS) Score=10.1 Pos=-80 [Cyanothece sp. PCC 7425]
ATTAATCTNNNCTTAATCTNNNCTTTATCC
>MAE 18380(pstS) Score=9.5 Pos=-87 [Microcystis aeruginosa NIES-843]
TTTATTCANNNCTTAACCTNNNCTTTACCA
>MAE 23860(fbp) Score=7.6 Pos=-129 [Microcystis aeruginosa NIES-843]
ATTAGCCANNNCTAAAACTNNNCTAAAAAT
>MAE 18440(cysR) Score=9.6 Pos=-86 [Microcystis aeruginosa NIES-843]
GTTAATCTNNNGATTACCTNNNGTTTACCT
>MAE 02800(ackA) Score=8.8 Pos=-66 [Microcystis aeruginosa NIES-843]
TTTTATCTNNNCTTAACCTNNNTTTGATTA
>MAE 18310(pstS) Score=9.6 Pos=-139 [Microcystis aeruginosa NIES-843]
ATTAACCGNNNTTTTACCGNNNCTTAACCA
>all3651(purF) Score=7.7 Pos=-119 [Nostoc sp. PCC 7120]
TTTAATATNNNGTTAAAGANNNGTTAAGAC
>alr5291(phoA1) Score=10.4 Pos=-229 [Nostoc sp. PCC 7120]
GTTAACCTNNNTTTATATTNNNCTTAACTT
>all4021(fbp) Score=7 Pos=-136 [Nostoc sp. PCC 7120]
CGTAAACTNNNGATTTCTTNNNTTTATCTA
>alr5259(SYNPCC7002 A2263) Score=8.7 Pos=-329 [Nostoc sp. PCC 7120]
GTAAAACTNNNTTTATTTANNNCTTAATTT
>all1758(rsbU) Score=7.5 Pos=-49 [Nostoc sp. PCC 7120]
ATTTATTANNNGTCAATCTNNNATTAACCC
>all0129(rpaA) Score=7.3 Pos=-101 [Nostoc sp. PCC 7120]
TTTATGTTNNNTTTAAAATNNNTTTTATAA
>all3822(SYNPCC7002 A0979) Score=8.6 Pos=-149 [Nostoc sp. PCC 7120]
CTTAATTTNNNCTTAAGTANNNCTCAAATT
>alr4975(alr4975) Score=7.6 Pos=-10 [Nostoc sp. PCC 7120]
ATTAATTANNNTGTTACCTNNNATTTATAT
>alr2234(phoD) Score=9.6 Pos=-275 [Nostoc sp. PCC 7120]
ATTAACCTNNNCTTAGTCANNNATTAATTT
>all0207(phoD) Score=9.3 Pos=-98 [Nostoc sp. PCC 7120]
```

ATTAACCCNNNGATAACTCNNNCTTTACTT >all0911(pstS) Score=10.8 Pos=-105 [Nostoc sp. PCC 7120] CTTAACTTNNNGTTTACCTNNNCTTAACTT >all4575(pstS) Score=8 Pos=-324 [Nostoc sp. PCC 7120] TTTTATCTNNNCTTTTATTNNNCTTTTTT >Tery 3534(pstS) Score=9.7 Pos=-192 [Trichodesmium erythraeum IMS101] TTTGATATNNNTTTAACCTNNNCTTAATCT >Tery 2653(spoT) Score=7.8 Pos=-43 [Trichodesmium erythraeum IMS101] AATAAACTNNNATTTGATANNNATTAACTC >Tery 4322(SYNPCC7002 A1357) Score=7 Pos=-395 [Trichodesmium erythraeum IMS101] CTTATTATNNNAATTATTTNNNATTTAGCT >Tery 3699(purF) Score=8.3 Pos=-97 [Trichodesmium erythraeum IMS101] GTTAAGGANNNCTTAAAGTNNNTTTAAGCT >Tery 0682(fbp) Score=6.5 Pos=-336 [Trichodesmium erythraeum IMS101] TTTTAGATNNNGTTTTTGTNNNCATTATCA >Tery 2568(SYNPCC7002 A2263) Score=7.5 Pos=-208 [Trichodesmium erythraeum IMS101] GATAAGATNNNATTAACCTNNNGTTTGCTA >Tery 0739(rsbU) Score=8.3 Pos=-250 [Trichodesmium erythraeum IMS101] TTAAAACTNNNCTTAATCTNNNACTAACTC >Tery 4937(rpaA) Score=7 Pos=-158 [Trichodesmium erythraeum IMS101] CTTGACAANNNAATAAATTNNNGTTAAAGA >Tery 0954(SYNPCC7002 A0979) Score=8.3 Pos=-309 [Trichodesmium erythraeum IMS101] ATTAACCANNNATTGAATTNNNATTGACTT >Tery 2902(sphR) Score=10.4 Pos=-365 [Trichodesmium erythraeum IMS101] GATAACCCNNNGTTAACCTNNNCTTAACCT >Tery 3661(ndbB) Score=7.8 Pos=-342 [Trichodesmium erythraeum IMS101] TTTTAATANNNAATTACCCNNNCTTAGCCT >Synpcc7942 0004(purF) Score=7.8 Pos=-76 [Synechococcus elongatus PCC 7942] GTTAAGTCNNNGTTAAATTNNNATTAGCCG >Synpcc7942 1392(phoA) Score=9.4 Pos=-233 [Synechococcus elongatus PCC 7942] TTTAACTANNNCATAATCTNNNCTCAATCT >CYA 1552(pstS) Score=10.2 Pos=-203 [Synechococcus sp. JA-3-3Ab] AATAACCTNNNTTTAACCTNNNGTTAACCA >CYA 1732(pstS) Score=9.6 Pos=-75 [Synechococcus sp. JA-3-3Ab] GTTAACCTNNNGATATCCTNNNGTTAACTT >CYA 1541(cvsR) Score=10.5 Pos=-172 [Synechococcus sp. JA-3-3Ab] **CTTAACCTNNNCATAACCTNNNCTTTACTT** >CYA 2506(phoD) Score=7.9 Pos=-129 [Synechococcus sp. JA-3-3Ab] CTTAAACANNNGCTAACCCNNNTTTCACCG >SYNW2391(phoA1) Score=9.2 Pos=-78 [Synechococcus sp. WH 8102] TTTGATCANNNCTTAAACTNNNCCTAACTT >tlr2164(pstS) Score=10.9 Pos=-51 [Thermosynechococcus elongatus BP-1] TTTAAACANNNTTTTACCTNNNCTTAACTT >tll1671(cysR) Score=8.1 Pos=-171 [Thermosynechococcus elongatus BP-1] CTTAACCCNNNCTTGAACCNNNGATTATCT >null(SYNPCC7002 A1357) Score=7.1 Pos=-268 [Thermosynechococcus elongatus BP-1] ATTAAAAANNNATTAAAAANNNTTTCTCTT

Supplementary multifasta 2, for Fur boxes in cyanobacteria:

>SYNPCC7002 A2347(chlL) Score=3.6 Pos=-126 [Synechococcus sp. PCC 7002] TTTTATAAAAACTCTAAGT >SYNPCC7002 G0137(exbB) Score=4.2 Pos=-279 [Synechococcus sp. PCC 7002] ATTAAGAGATTATCTCAAT >SYNPCC7002 G0099(pchR) Score=3.7 Pos=-94 [Synechococcus sp. PCC 7002] ΑΤΤΤΟΤΤΑΤΤΑΑΤΑΤΑΑΑΤ >SYNPCC7002 G0006(iutA) Score=4.6 Pos=-38 [Synechococcus sp. PCC 7002] TTTGAGAATTATTTTTAGT >SYNPCC7002 A1631(apcF) Score=3.3 Pos=-257 [Synechococcus sp. PCC 7002] **TTTTATTATTTTTTTAAA** >SYNPCC7002 A0913(SYNPCC7002 A0913) Score=2.2 Pos=-146 [Synechococcus sp. PCC 7002] TTTTTACAACATTTTTAAA >SYNPCC7002 A0913(SYNPCC7002 A0913) Score=3.8 Pos=-68 [Synechococcus sp. PCC 70021 AATGAGAAAATTTTGATAT >SYNPCC7002 A1018(chlH) Score=3.8 Pos=-57 [Synechococcus sp. PCC 7002] ATAGTTATAAATTTTTAAT >SYNPCC7002 A1443(nifJ) Score=2.2 Pos=-165 [Synechococcus sp. PCC 7002] TTTTCTTATAACTTTTAGC >SYNPCC7002 A0871(afuC) Score=5.1 Pos=-83 [Synechococcus sp. PCC 7002] GTTGAGAATAGTTCTTAAT >SYNPCC7002 A2351(SYNPCC7002 A2351) Score=2.9 Pos=-216 [Synechococcus sp. PCC 7002] TTTATTATTGTTTTTTAGT >SYNPCC7002 A1961(psaA) Score=3.4 Pos=-206 [Synechococcus sp. PCC 7002] AGTTTTAAATATTGTTAAT >SYNPCC7002 G0061(SYNPCC7002 G0061) Score=4.1 Pos=-62 [Synechococcus sp. PCC 70021 ATTGATAAATAATTTAAGT >SYNPCC7002 A1649(fur) Score=3.5 Pos=-88 [Synechococcus sp. PCC 7002] GTTAGTATTTATTTGCAAT >SYNPCC7002 G0138(iutA) Score=4.6 Pos=-67 [Synechococcus sp. PCC 7002] ATTGAGATAATCTCTTAAT >SYNPCC7002 G0090(SYNPCC7002 G0090) Score=5.2 Pos=-83 [Synechococcus sp. PCC 70021 ATTGAAATAAATTCTTATT >SYNPCC7002 G0104(pchR) Score=5.4 Pos=-68 [Synechococcus sp. PCC 7002] ATTGAGAATAATTAGTAAT >SYNPCC7002 G0103(fhuA) Score=3.2 Pos=-46 [Synechococcus sp. PCC 7002] ATTAAGAACTTTTTGAAGT >slr0749(chlL) Score=3.3 Pos=-173 [Synechocystis sp. PCC 6803] ATTTTATTTTTGTCTCAAT >ssr2333(feoA) Score=4.5 Pos=-31 [Synechocystis sp. PCC 6803] GTTGAGAATTATTTGCAGT >sll1406(fhuA) Score=3.4 Pos=-38 [Synechocystis sp. PCC 6803] ΑΤΤΑΑΤΑΑΑΑCTTTTTAAC >sll1404(exbB) Score=6 Pos=-110 [Synechocystis sp. PCC 6803] ATTGAAAATAGTTATCAAT >slr1490(fhuA) Score=4.1 Pos=-86 [Synechocystis sp. PCC 6803] TTTGAGAATTAGTTGCAGT >slr1484(SYNPCC7002 G0090) Score=5.6 Pos=-255 [Synechocystis sp. PCC 6803] ATTGATAACTATTTTCAAT

>slr1318(fecE) Score=4.1 Pos=-176 [Synechocystis sp. PCC 6803] ATTCCTAATTATTCTTAAC >slr1485(SYNPCC7002 G0089) Score=2.2 Pos=-9 [Synechocystis sp. PCC 6803] GTTTTAATAATGTTTAAAT >slr1316(fecC) Score=4.2 Pos=-78 [Synechocystis sp. PCC 6803] ATTGATAATCTTTCCTAGT >slr1485(SYNPCC7002 G0089) Score=2.7 Pos=-42 [Synechocystis sp. PCC 6803] ACTGTGAAATTTATTTAAC >sll1404(exbB) Score=4.6 Pos=-64 [Synechocystis sp. PCC 6803] ATTGAGAATTACTCTTAAC >sll1404(exbB) Score=4.6 Pos=-286 [Synechocystis sp. PCC 6803] TATGTGAAATATTATTATT >slr1295(sufA) Score=4.9 Pos=-44 [Synechocystis sp. PCC 6803] ATTGAGAATTACTTTTATT >sll1911(SYNPCC7002 A0913) Score=4.2 Pos=-59 [Synechocystis sp. PCC 6803] GTTGTTAAAATTTAACAAT >slr0513(sufA) Score=3.9 Pos=-240 [Synechocystis sp. PCC 6803] AATAATAATCTCTTGCAAT >slr0513(sufA) Score=4.1 Pos=-187 [Synechocystis sp. PCC 6803] ATTGCACTTTATTTGCAAT >sll0849(psbD) Score=3.3 Pos=-298 [Synechocystis sp. PCC 6803] AATGTAAAATATTTGCTAA >slr1181(psbA) Score=2.8 Pos=-242 [Synechocystis sp. PCC 6803] ATTAAAATCTTTTTTTTAC >slr1181(psbA) Score=4 Pos=-182 [Synechocystis sp. PCC 6803] TTAAAGAAATATTATTAAT >sll1867(psbA) Score=3.4 Pos=-124 [Synechocystis sp. PCC 6803] ATTTACAAATTGTTACAAT >slr1738(perR) Score=3 Pos=-194 [Synechocystis sp. PCC 6803] ΑΤΤΑΑΤΑΤΤΤΤΤΤΤΤΤΑΤΑΑ >sll0247(isiA) Score=2.8 Pos=-269 [Synechocystis sp. PCC 6803] ATTTCTTAATAATTTTAGT >ssr2333(feoA) Score=4.4 Pos=-69 [Synechocystis sp. PCC 6803] TTTGATATTTATTCTGAAC >slr1392(feoB) Score=4.5 Pos=-278 [Synechocystis sp. PCC 6803] GTTGAGAATTATTTGCAGT >cce 4533(cce 4533) Score=3.7 Pos=-118 [Cyanothece sp. ATCC 51142] TTTGAGTTTTATTTAAAAT >cce 0033(feoA) Score=4.5 Pos=-47 [Cyanothece sp. ATCC 51142] GATAAGAATTATTCTTAAT >cce 0033(feoA) Score=3.3 Pos=-298 [Cyanothece sp. ATCC 51142] ATTAAAAAATACTGTTAAC >cce 0660(psbD) Score=3.4 Pos=-298 [Cyanothece sp. ATCC 51142] ATTGTAAATTTTTTGCTAA >cce 0479(dpsA) Score=4.7 Pos=-144 [Cyanothece sp. ATCC 51142] GATGCAATATATTCTCAAT >cce 2632(sufA) Score=4.8 Pos=-20 [Cyanothece sp. ATCC 51142] ATCAATAATAATTTTCAAT >cce 4358(chlH) Score=2.7 Pos=-183 [Cyanothece sp. ATCC 51142] AATAAATAATTTTTGTAAA >cce 4358(chlH) Score=2.3 Pos=-138 [Cyanothece sp. ATCC 51142] ATTTGTCAATATTTGTAAC >cce 3801(afuC) Score=4.2 Pos=-163 [Cyanothece sp. ATCC 51142] ATTGAAAATTAATGCTAAT >cce 0989(psaA) Score=3.4 Pos=-205 [Cyanothece sp. ATCC 51142]

AATTTTAATTATTGTTAAG >cce 3809(SYNPCC7002 A2351) Score=3.2 Pos=-132 [Cyanothece sp. ATCC 51142] GTTTTTATTTTCTGTCAAT >cce 1977(coxB) Score=3.7 Pos=-136 [Cyanothece sp. ATCC 51142] AATTTCAATCAATTTCAAT >cce 0019(SYNPCC7002 A0913) Score=3.1 Pos=-75 [Cyanothece sp. ATCC 51142] TTTTTTAATATTTTTGAT >cce 1944(apcF) Score=4.4 Pos=-151 [Cyanothece sp. ATCC 51142] ATTGCTAAAATCTATAATT >cce 3895(SYNPCC7002 G0062) Score=2.8 Pos=16 [Cyanothece sp. ATCC 51142] GTTTAAAAATTCTTTTAGT >cce 0892(fdx) Score=3 Pos=-29 [Cyanothece sp. ATCC 51142] TTTCTTATAATTTCTTAAC >cce 1785(isiA) Score=4.4 Pos=-18 [Cyanothece sp. ATCC 51142] ATTGCAAATCTTTTTAAAT >cce 3031(isiB) Score=4.9 Pos=-66 [Cyanothece sp. ATCC 51142] ATTGAGAATTATTCTAAAC >cce 2330(fur) Score=5.1 Pos=-96 [Cyanothece sp. ATCC 51142] GTTGCTAATTATTTTCAAT >PCC8801 0791(chlL) Score=2.7 Pos=-242 [Cyanothece sp. PCC 8801] ATTTAGTAAATTTTAAAGT >PCC8801 2575(SYNPCC7002 A2351) Score=3.1 Pos=-247 [Cyanothece sp. PCC 8801] ATTTCTCCTTATTTTTAAT >PCC8801 0349(sll1407) Score=3.3 Pos=-107 [Cyanothece sp. PCC 8801] ΑΑΤΑΑΤΤΑΑΤΤΤΤΤΤΤΤΤΑΤ >PCC8801 0256(ctaA) Score=2.2 Pos=-185 [Cyanothece sp. PCC 8801] TTTTATTAACTTATGTAAA >PCC8801 2812(SYNPCC7002 A0913) Score=4.4 Pos=-67 [Cyanothece sp. PCC 8801] TATGATAAAATTTATTAAA >PCC8801 4320(chlH) Score=2.3 Pos=-186 [Cyanothece sp. PCC 8801] ATTTGTCAATATTTGTAAC >PCC8801 0567(coxB) Score=2.7 Pos=-152 [Cyanothece sp. PCC 8801] TTTGTTTATTATTTGTTAC >PCC8801 3918(nifJ) Score=3.4 Pos=-67 [Cyanothece sp. PCC 8801] TTTGTCAATAATTTGTAAC >PCC8801 1443(sufA) Score=4 Pos=-90 [Cyanothece sp. PCC 8801] ATTAGGAATAATTAGCAAC >PCC8801 1928(SYNPCC7002 G0061) Score=2 Pos=-184 [Cyanothece sp. PCC 8801] AATATTTTATATATTTATAGT >PCC8801 2860(fdx) Score=3.8 Pos=-49 [Cyanothece sp. PCC 8801] ATTGTAAAAAAATATTAAC >PCC8801 0870(fur) Score=4.6 Pos=-97 [Cyanothece sp. PCC 8801] GTTGCAAATTATTTGCAAT >PCC8801 3039(SYNPCC7002 G0098) Score=5.5 Pos=-89 [Cyanothece sp. PCC 8801] GTTGACAAAAATTCTCATT >PCC8801 3017(exbB) Score=5.7 Pos=-38 [Cyanothece sp. PCC 8801] ATTGATAACTTTTCTCAAT >Cyan7425 2411(pchR) Score=4.9 Pos=-71 [Cyanothece sp. PCC 7425] ATTGTTAATCTTTTTCATT >Cyan7425 2410(fhuA) Score=5.8 Pos=-56 [Cyanothece sp. PCC 7425] ATTGAGAATAATTCTTATT >Cyan7425 2418(exbB) Score=4.6 Pos=-264 [Cyanothece sp. PCC 7425] ATTGATGATTATTTTCAAC >Cyan7425 2438(pchR) Score=4.5 Pos=-37 [Cyanothece sp. PCC 7425] ATTAAGAATAAGTCTCAGT

>Cyan7425 2439(fhuA) Score=5.1 Pos=-66 [Cyanothece sp. PCC 7425] ATTGAGAGTATTTCTTATT >Cyan7425 1597(perR) Score=4.9 Pos=-88 [Cyanothece sp. PCC 7425] TTTGAGAATTATACTAAAT >Cyan7425 5031(psbD) Score=3.1 Pos=-91 [Cyanothece sp. PCC 7425] GTTTATAAACTTTCGTAAA >Cyan7425 4671(psaA) Score=3.4 Pos=-292 [Cyanothece sp. PCC 7425] TCTATGAATTTTTATTAAT >Cyan7425 3510(afuC) Score=4 Pos=-60 [Cyanothece sp. PCC 7425] GTTGAATAATAGTCTTAAT >Cyan7425 3510(afuC) Score=5.3 Pos=-105 [Cyanothece sp. PCC 7425] ATTGAGAATAATTTTCAAA >Cyan7425 1838(apcF) Score=3 Pos=-245 [Cyanothece sp. PCC 7425] TTTTATATTATCTTTTAAC >Cyan7425 1059(psbA) Score=3.4 Pos=-182 [Cyanothece sp. PCC 7425] ATTATTAATAAGTTTCAAA >Cyan7425 2984(cce 4396) Score=2.7 Pos=-78 [Cyanothece sp. PCC 7425] TATATGAATATCTTGTAAT >Cyan7425 2984(cce 4396) Score=3.9 Pos=-48 [Cyanothece sp. PCC 7425] ATTGCAATTATATTACAAT >Cyan7425 2434(isiA) Score=4.7 Pos=-61 [Cyanothece sp. PCC 7425] ATTGAGTTTATTTCTCAAC >Cyan7425 3508(sufA) Score=3.5 Pos=-165 [Cyanothece sp. PCC 7425] ATTAGGAATGAATCGTAAT >MAE 16250(chlN) Score=2.8 Pos=-107 [Microcystis aeruginosa NIES-843] ATTAAGTAATTCTTTATAT >MAE 16230(chlL) Score=2.8 Pos=-150 [Microcystis aeruginosa NIES-843] ATTTATATAAATTTTTAAGC >MAE 12190(chlH) Score=2.8 Pos=-247 [Microcystis aeruginosa NIES-843] ATTAAATATTAATTTTTGT >MAE 41160(psbD) Score=2.9 Pos=-274 [Microcystis aeruginosa NIES-843] ATTTGTAATTTTTTGCTAA >MAE 47560(psaA) Score=3.2 Pos=-297 [Microcystis aeruginosa NIES-843] ATTAATAAACTTTTGTAAA >MAE 22930(coxB) Score=2.5 Pos=-216 [Microcystis aeruginosa NIES-843] TTTTAGATATTCTTTAGAT >MAE 38140(nifJ) Score=3.9 Pos=-292 [Microcystis aeruginosa NIES-843] ATTCTGAATATTAATTAAT >MAE 12460(afuC) Score=4.4 Pos=-117 [Microcystis aeruginosa NIES-843] TTTGAGAAAGTTTCCTAAT >MAE 56680(sufA) Score=4.9 Pos=-61 [Microcystis aeruginosa NIES-843] GATAAGAATTATTCTCAAT >MAE 22920(ctaA) Score=2.5 Pos=-282 [Microcystis aeruginosa NIES-843] TCTTTTCAATATTTTTAAT >all4365(chlH) Score=2.9 Pos=-272 [Nostoc sp. PCC 7120] >all4365(chlH) Score=3 Pos=-232 [Nostoc sp. PCC 7120] AATATTAATTTTTTTTTTAC >alr5154(psaA) Score=3.4 Pos=-177 [Nostoc sp. PCC 7120] ATTTTGAATTATTGTTAAA >alr0950(coxB) Score=3.7 Pos=-134 [Nostoc sp. PCC 7120] TTTACTCAAGATTATTAAT >alr2803(nifJ) Score=3.8 Pos=-92 [Nostoc sp. PCC 7120] ATTTTTAATCAGTATTAAT >alr3808(dpsA) Score=3.5 Pos=-204 [Nostoc sp. PCC 7120]

GTTTAGAAATTATTGCAAT >alr2514(coxB) Score=3 Pos=-190 [Nostoc sp. PCC 7120] AGTTAAAAAGTTAATAAGT >all4001(isiA) Score=4.8 Pos=-161 [Nostoc sp. PCC 7120] ATTAAGAATCTTTTTCAAT >alr3727(psbA) Score=3.7 Pos=-105 [Nostoc sp. PCC 7120] TTTAGTAATATTAATTAAT >alr4592(psbA) Score=4.1 Pos=-28 [Nostoc sp. PCC 7120] ATAAATAATTAATCGCAAT >asl0884(fdx) Score=3.5 Pos=-90 [Nostoc sp. PCC 7120] ATTCTTAATTTTTTGTAAT >alr3155(SYNPCC7002 G0061) Score=4.1 Pos=-98 [Nostoc sp. PCC 7120] ATTACGAATTAATATAAAT >all3903(cce 4396) Score=4.6 Pos=-47 [Nostoc sp. PCC 7120] TTTAATATAAATTGTCAAT >all2367(all2367) Score=3.2 Pos=-181 [Nostoc sp. PCC 7120] TATTGTAATATCTTTTAAT >alr2405(isiB) Score=5 Pos=-235 [Nostoc sp. PCC 7120] ATTGAAATAAATATTCAAT >all1691(fur) Score=5.2 Pos=-94 [Nostoc sp. PCC 7120] TTTAATAAATATTCTCAAT >all1692(sigC) Score=3.5 Pos=-320 [Nostoc sp. PCC 7120] AATAAACATAATTTTTACT >all2158(fhuA) Score=4.6 Pos=-62 [Nostoc sp. PCC 7120] ATTAAGAATTATTAGCAGT >alr2175(fhuE) Score=4.4 Pos=-120 [Nostoc sp. PCC 7120] GTTAATAATCTTTCGCAAT >alr2626(fhuE) Score=4.7 Pos=-106 [Nostoc sp. PCC 7120] TTTGATATTAATTACTAAT >all2586(fecC) Score=4.6 Pos=-100 [Nostoc sp. PCC 7120] TCTTATATTAATTCTCAAT >all2586(fecC) Score=5 Pos=-32 [Nostoc sp. PCC 7120] AATGACTATATTTTTCAAT >all2237(pchR) Score=5.1 Pos=-40 [Nostoc sp. PCC 7120] TTTGAGAAAGTTTATCTAT >all2235(fecB) Score=3.5 Pos=12 [Nostoc sp. PCC 7120] TTTTATTATCATATTCAAC >all1101(fhuA) Score=3.8 Pos=-238 [Nostoc sp. PCC 7120] ATTAATATTAAATCCTAAT >all4924(fhuE) Score=5.5 Pos=-32 [Nostoc sp. PCC 7120] ATTGAGAATTTTTATCTAT >all5047(exbB) Score=4.7 Pos=-102 [Nostoc sp. PCC 7120] TTTGATAATAATTTGCATC >alr2184(pchR) Score=5.1 Pos=-39 [Nostoc sp. PCC 7120] ATTGAGAAATAATATTATT >alr2185(fhuE) Score=4.3 Pos=-69 [Nostoc sp. PCC 7120] TTTGCAAAAAATTATTAAC >alr2211(fhuA) Score=2.9 Pos=-272 [Nostoc sp. PCC 7120] ATTTATTTAATTATTTAGT >all2580(pchR) Score=5.5 Pos=-48 [Nostoc sp. PCC 7120] ATTGAGAAATAATATCATT >alr2174(pchR) Score=5.6 Pos=-96 [Nostoc sp. PCC 7120] ATTGATAAATACTATCATT >Tery 2879(feoA) Score=3.5 Pos=-270 [Trichodesmium erythraeum IMS101] TTTTCCAAATTTTTTCAGT

>Tery 2644(SYNPCC7002 A2351) Score=4.2 Pos=-122 [Trichodesmium erythraeum IMS101] AATTAGATTAATTTTGAAT >Tery 4282(dpsA) Score=2.4 Pos=-285 [Trichodesmium erythraeum IMS101] ATTTTTTAACAATTGAAAT >Tery 0513(psbC) Score=3.5 Pos=-195 [Trichodesmium erythraeum IMS101] TTTACAAAAAATTTGTAAT >Tery 1780(ctaA) Score=3.3 Pos=-167 [Trichodesmium erythraeum IMS101] ΑΤΤΑΑΑΑΑΑΑΑΤΤΤΑΑΑΑ >Tery 4773(SYNPCC7002 A0913) Score=2.4 Pos=-64 [Trichodesmium erythraeum IMS101] TTTATGAAATATTTATGAT >Tery 3224(chlH) Score=3 Pos=-65 [Trichodesmium erythraeum IMS101] GTTTAAAATTTTTTGATAT >Tery 1781(ctaB) Score=4.1 Pos=-41 [Trichodesmium erythraeum IMS101] AATTATAACCAGTTTCAAT >Tery 4669(psaA) Score=4 Pos=-80 [Trichodesmium erythraeum IMS101] ATTGATAATTCTTTACAAC >Tery 3222(afuC) Score=5.1 Pos=-94 [Trichodesmium erythraeum IMS101] AATGAAAAAAATATTCAAT >Tery 2878(feoB) Score=3 Pos=-43 [Trichodesmium erythraeum IMS101] TATTACATAATTTTTATAT >Tery 3377(sufA) Score=4.4 Pos=-97 [Trichodesmium erythraeum IMS101] ATTAAGAATAAATTGCAAT >Tery 1667(isiA) Score=3.2 Pos=-156 [Trichodesmium erythraeum IMS101] TTTTATAATTTCTTTTAAA >Tery 4504(fdx) Score=2.6 Pos=-35 [Trichodesmium erythraeum IMS101] **GTTAATATTTTTTTTATAAC** >Tery 1958(fur) Score=4.7 Pos=-44 [Trichodesmium erythraeum IMS101] ATTGTGTATCATTGTCAAT >Tery 1780(ctaA) Score=3.5 Pos=-278 [Trichodesmium erythraeum IMS101] ATTGTTAAAATTATGAAAT >Synpcc7942 2601(ctaA) Score=4.3 Pos=-158 [Synechococcus elongatus PCC 7942] GATGACAATATTTTTCGAT >Synpcc7942 1406(afuC) Score=4.2 Pos=-81 [Synechococcus elongatus PCC 7942] ATTGAGAATAAATCGCAGA >Synpcc7942 0938(cce 4396) Score=4 Pos=-30 [Synechococcus elongatus PCC 7942] AATAAAAAAGTTTCGTAAT >Synpcc7942 1542(isiA) Score=5.2 Pos=-45 [Synechococcus elongatus PCC 7942] ATTGAGAATTATTGTAAAT >Synpcc7942 2049(psaA) Score=3.3 Pos=-296 [Synechococcus elongatus PCC 7942] TCTTTGAATTATTGTTAAT >PMT1340(ctaA) Score=2.6 Pos=-30 [Prochlorococcus marinus str. MIT 9313] ATTTAAATTATTTTATTGT >CYA 2647(psbD) Score=3 Pos=-106 [Synechococcus sp. JA-3-3Ab] TTTATTAATTTTTCGTAAG >CYA 2794(afuC) Score=3.8 Pos=-26 [Synechococcus sp. JA-3-3Ab] AGTGAAAATCTTTTGCAAC >CYA 0643(fdx) Score=2.8 Pos=-92 [Synechococcus sp. JA-3-3Ab] ATTAAAAATATGATTTAAA >gvip470(psaA) Score=2.2 Pos=-195 [Gloeobacter violaceus PCC 7421] TTTTTAAAAATTGTTAAGT >glr3733(perR) Score=4.2 Pos=-58 [Gloeobacter violaceus PCC 7421] AATTAGATCTATTCTAAAT >gll1014(afuA) Score=3.7 Pos=-64 [Gloeobacter violaceus PCC 7421] ATTGACAATTAATTGCAGC >null(chlL) Score=2.8 Pos=-211 [Thermosynechococcus elongatus BP-1]

TTTTGTATTTTTGTTTAAT

>null(psbA) Score=3.8 Pos=-135 [Thermosynechococcus elongatus BP-1] ATTTAGTTTTACTAACAAT

>null(apcF) Score=3.1 Pos=-157 [Thermosynechococcus elongatus BP-1] AATTATGAACTTTTGTAAT

>null(cce_4396) Score=4 Pos=-45 [Thermosynechococcus elongatus BP-1] AATTAAAATTATATTCATC

>null(isiA) Score=5.5 Pos=-121 [Thermosynechococcus elongatus BP-1] AATGCTATTAATTCTCAAT

>null(fur) Score=4.4 Pos=-59 [Thermosynechococcus elongatus BP-1] CATTGTAATTATTCTCAAT Supplementary multifasta 3, for NtcA boxes in cyanobacteria:

>SYNPCC7002 A2208(amt1) Score=3.7 Pos=-52 [Synechococcus sp. PCC 7002] GGTTACTTCTGCTACC >SYNPCC7002 A0076(SYNPCC7002 A0076) Score=4.2 Pos=-97 [Synechococcus sp. PCC 7002] AGTATTGAAATATACA >SYNPCC7002 A2395(SYNPCC7002 A2395) Score=4.5 Pos=-200 [Synechococcus sp. PCC 7002] TGTTACTTAAATTACA >SYNPCC7002 A2395(SYNPCC7002 A2395) Score=4.5 Pos=-92 [Synechococcus sp. PCC 7002] TGTAGTAGACGTTACA >SYNPCC7002 A1954(SYNPCC7002 A1954) Score=4.7 Pos=-243 [Synechococcus sp. PCC 7002] TGTAACAGGAGTTACA >SYNPCC7002 A0643(cynS) Score=4.5 Pos=-237 [Synechococcus sp. PCC 7002] CGTATCTTTAATTACA >SYNPCC7002 A0860(cynA) Score=4.1 Pos=-221 [Synechococcus sp. PCC 7002] TGTAATTGATTTAACA >SYNPCC7002 A0582(gifA) Score=5 Pos=-96 [Synechococcus sp. PCC 7002] TGTATCAAATTTTACA >SYNPCC7002 A1630(glnA) Score=3.5 Pos=-125 [Synechococcus sp. PCC 7002] TGTGACCCAGACTACA >SYNPCC7002 A1827(nirA) Score=4 Pos=-111 [Synechococcus sp. PCC 7002] CGTAGTTAACACTACA >SYNPCC7002 A0496(nrrA) Score=4.1 Pos=-75 [Synechococcus sp. PCC 7002] CGTAACCACGGTTACA >SYNPCC7002 A1675(ntcA) Score=3.9 Pos=-177 [Synechococcus sp. PCC 7002] TGAAGCAAAAAGTACA >SYNPCC7002 A1632(ntcB) Score=3.9 Pos=-87 [Synechococcus sp. PCC 7002] TGTAACATCCGGAACA >SYNPCC7002 A2101(SYNPCC7002 A2101) Score=5 Pos=67 [Synechococcus sp. PCC 7002] TGTATCATTAAATACA >SYNPCC7002 A0264(SYNPCC7002 A0264) Score=5 Pos=-29 [Synechococcus sp. PCC 70021 TGTATCAAATACTACA >SYNPCC7002 A0398(urtA) Score=4.1 Pos=-127 [Synechococcus sp. PCC 7002] TGTATCAAGTGTCACA >SYNPCC7002 A1443(nifJ) Score=4.1 Pos=-272 [Synechococcus sp. PCC 7002] TTTATCATTTTCTACA >sll0108(amt1) Score=4 Pos=-189 [Synechocystis sp. PCC 6803] AGTAGTAAATCATACA >sll0108(amt1) Score=4.4 Pos=-18 [Synechocystis sp. PCC 6803] TGTAGATTAAAGTACA >ssr1562(SYNPCC7002 A0076) Score=4.5 Pos=-78 [Synechocystis sp. PCC 6803] TGTAATCGATAATACA >slr1147(SYNPCC7002 A1954) Score=4.7 Pos=-214 [Synechocystis sp. PCC 6803] TGTAATGATAGTTACA >ssl1911(gifA) Score=5 Pos=-89 [Synechocystis sp. PCC 6803] TGTATAAAATGTTACA >slr1756(glnA) Score=4.3 Pos=-98 [Synechocystis sp. PCC 6803] GGTAGCGAAAAATACA >ssl0707(glnB) Score=3.7 Pos=-184 [Synechocystis sp. PCC 6803]

GGTACTGATTTTTACA >slr0851(ndh) Score=4.1 Pos=-72 [Synechocystis sp. PCC 6803] TGTAACAACCATTACC >sll1450(nrtA) Score=3.9 Pos=-96 [Synechocystis sp. PCC 6803] AGTTACAAACTATACA >slr0898(nirA) Score=4.7 Pos=-74 [Synechocystis sp. PCC 6803] TGTAATTTACGTTACA >sll1330(nrrA) Score=4.6 Pos=-75 [Synechocystis sp. PCC 6803] GGTAACTGTTGTTACA >slr0653(rpoD) Score=3.9 Pos=-246 [Synechocystis sp. PCC 6803] TGTTATCGAGGCTACA >sll1515(gifB) Score=4.2 Pos=-119 [Synechocystis sp. PCC 6803] CGTAAAAATGGATACA >slr0447(urtA) Score=4.5 Pos=-211 [Synechocystis sp. PCC 6803] GGTATCCTATGCTACA >slr0009(rbcL) Score=4.3 Pos=-228 [Synechocystis sp. PCC 6803] TGTAATTTAAAAAACA >sll0741(nifJ) Score=3.3 Pos=-181 [Synechocystis sp. PCC 6803] AGAATCAACAAAAACA >sll1733(ndhD) Score=4 Pos=-252 [Synechocystis sp. PCC 6803] TGTAACAATTTTTAGT >sll1732(ndhF) Score=4 Pos=-244 [Synechocystis sp. PCC 6803] TGTAACAAATAACACT >sll1712(hanA) Score=3.8 Pos=-264 [Synechocystis sp. PCC 6803] GGTAGTTTTTGAAACT >cce 3261(amt1) Score=3.5 Pos=-152 [Cyanothece sp. ATCC 51142] TGTTAAGGTTGTAACA >cce 0537(SYNPCC7002 A0076) Score=4 Pos=-137 [Cyanothece sp. ATCC 51142] TGTAAACTATGATATA >cce 0537(SYNPCC7002 A0076) Score=4.8 Pos=-93 [Cyanothece sp. ATCC 51142] TGTAGTCTTTGTTACA >cce 4355(SYNPCC7002 A0077) Score=4.7 Pos=-172 [Cyanothece sp. ATCC 51142] TGTTACAATAGCTACA >cce 2729(SYNPCC7002 A2395) Score=4 Pos=-148 [Cyanothece sp. ATCC 51142] TGTAACATATGATAAC >cce 2729(SYNPCC7002 A2395) Score=4.6 Pos=-87 [Cyanothece sp. ATCC 51142] TGTAATATTGATTACA >cce 3327(SYNPCC7002 A1954) Score=4.7 Pos=-210 [Cyanothece sp. ATCC 51142] TGTAGTCATAGTTACA >cce 3327(SYNPCC7002 A1954) Score=4 Pos=-46 [Cyanothece sp. ATCC 51142] TTTATTTTCTGTTACA >cce 3797(cce 3797) Score=4.9 Pos=-70 [Cyanothece sp. ATCC 51142] TGTAGCTTAATATACA >cce 0259(gifA) Score=5.2 Pos=-95 [Cyanothece sp. ATCC 51142] TGTAGCAAATGTTACA >cce 4432(glnA) Score=4.5 Pos=-89 [Cyanothece sp. ATCC 51142] AGTATCCAATTATACA >cce 4432(glnA) Score=4 Pos=-30 [Cyanothece sp. ATCC 51142] TGTATATATTGAAACC >cce 1063(hupS) Score=4.8 Pos=-204 [Cyanothece sp. ATCC 51142] TGTAAAATTTAATACA >cce 1063(hupS) Score=3.8 Pos=-159 [Cyanothece sp. ATCC 51142] GGTAATAATTAATAGA >cce 0624(ndh) Score=4.7 Pos=-47 [Cyanothece sp. ATCC 51142] TGTAACTGTAGTTACT

>cce 1223(nirA) Score=4.7 Pos=-76 [Cyanothece sp. ATCC 51142] TGTTACATTAGCTACA >cce 1808(nrrA) Score=4.3 Pos=-76 [Cyanothece sp. ATCC 51142] CGTAGCCGATGTTACA >cce 0198(ntcB) Score=4.2 Pos=-73 [Cyanothece sp. ATCC 51142] AGTATCAATTTCTACG >cce 3797(SYNPCC7002 A2101) Score=4.9 Pos=-70 [Cyanothece sp. ATCC 51142] TGTAGCTTAATATACA >cce 0267(psbA3) Score=4.4 Pos=-58 [Cyanothece sp. ATCC 51142] GGTAATCATTGATACA >cce 0875(rpoD) Score=4.3 Pos=-232 [Cyanothece sp. ATCC 51142] AGTAATCAAGGCTACA >cce 2638(gifB) Score=5.2 Pos=-144 [Cyanothece sp. ATCC 51142] TGTAACAATAGATACA >cce 1944(apcF) Score=3.8 Pos=-177 [Cyanothece sp. ATCC 51142] TGTGATAAGAAATACA >cce 2390(trxQ) Score=3.7 Pos=-332 [Cyanothece sp. ATCC 51142] AATAGCTATAATTACT >cce 3633(psbZ) Score=4.2 Pos=-20 [Cyanothece sp. ATCC 51142] TGTAACTGTATTAACA >cce 0953(nifJ) Score=3.8 Pos=-52 [Cyanothece sp. ATCC 51142] TGCAACAAAAATTACC >PCC8801 1229(amt1) Score=5 Pos=-264 [Cyanothece sp. PCC 8801] TGTATTTTTTGATACA >PCC8801 1229(amt1) Score=4.1 Pos=-229 [Cyanothece sp. PCC 8801] AGTAATAAAAAAAAAA >PCC8801 3101(SYNPCC7002 A0076) Score=4.6 Pos=-95 [Cyanothece sp. PCC 8801] TGTATTGGTTGTTACA >PCC8801 2066(SYNPCC7002 A2395) Score=4.8 Pos=-53 [Cyanothece sp. PCC 8801] TGTAATATTAATTACA >PCC8801 3053(SYNPCC7002 A1954) Score=4.8 Pos=-198 [Cyanothece sp. PCC 8801] TGTAATCATAGTTACA >PCC8801 3848(cce 3797) Score=5.1 Pos=-165 [Cyanothece sp. PCC 8801] TGTAACTTTAGATACA >PCC8801 2371(gifA) Score=4.9 Pos=-94 [Cyanothece sp. PCC 8801] TGTATAAATTGCTACA >PCC8801 0808(glnA) Score=4 Pos=-92 [Cyanothece sp. PCC 8801] CGTATCATGGTATACA >PCC8801 3212(hupS) Score=4.3 Pos=-127 [Cyanothece sp. PCC 8801] TGTAACAACAATAACA >PCC8801 3485(ndh) Score=4.6 Pos=-117 [Cyanothece sp. PCC 8801] TGTAACCATAGCTACT >PCC8801 3485(ndh) Score=3.8 Pos=-92 [Cyanothece sp. PCC 8801] CGTAATTGGTTTTACA >PCC8801 4396(nrtA) Score=4.6 Pos=-184 [Cyanothece sp. PCC 8801] TGTAGCAAATAATACG >PCC8801 4396(nrtA) Score=3.9 Pos=-106 [Cyanothece sp. PCC 8801] AGTATTTATAGACACA >PCC8801 2468(nirA) Score=4.6 Pos=-75 [Cyanothece sp. PCC 8801] TGTTACAATTAATACA >PCC8801 2463(narB) Score=4.4 Pos=-165 [Cyanothece sp. PCC 8801] TGTATTACCAAATACA >PCC8801 3375(nrrA) Score=4.5 Pos=-76 [Cyanothece sp. PCC 8801] CGTAGCAGATGTTACA >PCC8801 2329(ntcB) Score=4.7 Pos=-80 [Cyanothece sp. PCC 8801]

TGTATCAAATTCTACT >PCC8801 3848(SYNPCC7002 A2101) Score=5.1 Pos=-165 [Cyanothece sp. PCC 8801] TGTAACTTTAGATACA >PCC8801 3216(psbA3) Score=4.4 Pos=-59 [Cvanothece sp. PCC 8801] AGTAGTTATTGCTACT >PCC8801 0154(rpoD) Score=4.4 Pos=-257 [Cyanothece sp. PCC 8801] TGTAATCGAGGCTACA >PCC8801 0807(apcF) Score=4 Pos=-251 [Cyanothece sp. PCC 8801] TGTATACCATGATACG >PCC8801 0870(fur) Score=3.4 Pos=-380 [Cyanothece sp. PCC 8801] TGTTTATGCTAAAACA >PCC8801 0567(coxB) Score=3.8 Pos=-148 [Cyanothece sp. PCC 8801] TTTATTATTTGTTACC >PCC8801 3918(nifJ) Score=3.5 Pos=-265 [Cyanothece sp. PCC 8801] AGTAACCATAATTATT >PCC8801 4247(ndhF) Score=3.6 Pos=-238 [Cyanothece sp. PCC 8801] CGTATTATGAGTTAGA >Cyan7425 0782(amt1) Score=4.4 Pos=-228 [Cyanothece sp. PCC 7425] TGTATAACGTGATACA >Cyan7425 0729(SYNPCC7002 A0076) Score=4.3 Pos=-128 [Cyanothece sp. PCC 7425] TGTAACATTTGTTATT >Cyan7425 0729(SYNPCC7002 A0076) Score=4.1 Pos=-71 [Cyanothece sp. PCC 7425] AGTATTGGTGGATACA >Cyan7425 0833(SYNPCC7002 A2395) Score=3.7 Pos=-38 [Cyanothece sp. PCC 7425] AGTAGTTTAATAAACT >Cyan7425_0732(cce_3797) Score=5.2 Pos=-33 [Cyanothece sp. PCC 7425] TGTATCATAAGCTACA >Cyan7425 1839(glnA) Score=4.9 Pos=-221 [Cyanothece sp. PCC 7425] TGTAACTCATGATACA >Cyan7425 4042(Cyan7425 4042) Score=4.4 Pos=-151 [Cyanothece sp. PCC 7425] AGTAGCTCGTGATACA >Cyan7425 4573(nirA) Score=4.5 Pos=-123 [Cyanothece sp. PCC 7425] TGTAACTTAATATACC >Cyan7425 0851(nrrA) Score=4.1 Pos=-82 [Cyanothece sp. PCC 7425] AGTAGCTAGAGTTACG >Cyan7425 0755(ntcA) Score=4.8 Pos=-173 [Cyanothece sp. PCC 7425] TGTATCCGATGATACA >Cyan7425 1599(ntcB) Score=4.6 Pos=-78 [Cyanothece sp. PCC 7425] TGTATCACTATCTACA >Cyan7425 0732(SYNPCC7002 A2101) Score=5.2 Pos=-33 [Cyanothece sp. PCC 7425] TGTATCATAAGCTACA >Cyan7425 1838(apcF) Score=4.9 Pos=-281 [Cyanothece sp. PCC 7425] TGTATCATGAGTTACA >Cyan7425 4369(nifJ) Score=3.1 Pos=-120 [Cyanothece sp. PCC 7425] TCTAACGTATTCTCCA >Cyan7425 2260(urtA) Score=3.7 Pos=-148 [Cyanothece sp. PCC 7425] TGTATAATAGATCACA >Cyan7425 1393(gifB) Score=4.7 Pos=-158 [Cyanothece sp. PCC 7425] GGTATCATATAATACA >MAE 62530(icd) Score=3.7 Pos=-30 [Microcystis aeruginosa NIES-843] CGTATAGATAAATACT >MAE 40010(amt1) Score=4.6 Pos=-213 [Microcystis aeruginosa NIES-843] TGTATCAACGAATACA >MAE 39690(SYNPCC7002 A0076) Score=4.3 Pos=-99 [Microcystis aeruginosa NIES-843] TGTAATCGTCGATACA

>MAE 38700(SYNPCC7002 A2395) Score=4.2 Pos=-87 [Microcystis aeruginosa NIES-843] TGTAATCATCTTTACA >MAE 14410(SYNPCC7002 A1954) Score=3.7 Pos=-75 [Microcystis aeruginosa NIES-843] TGTAAACTGGGAAACA >MAE 14840(cce 3797) Score=4.9 Pos=-38 [Microcystis aeruginosa NIES-843] TGTAAATTTAGATACA >MAE 49490(gifA) Score=4.9 Pos=-42 [Microcystis aeruginosa NIES-843] TGTAAAAATAGATACA >MAE 19270(glnA) Score=4.7 Pos=-92 [Microcystis aeruginosa NIES-843] TGTATCGAAAAATACA >MAE 09050(glnN) Score=4.7 Pos=-244 [Microcystis aeruginosa NIES-843] TGTAATGTTTGATACA >MAE 18410(nirA) Score=4.1 Pos=-190 [Microcystis aeruginosa NIES-843] TGTTACAGACAATACA >MAE 14810(MAE 14810) Score=4.2 Pos=-177 [Microcystis aeruginosa NIES-843] TGTAACAATCTATACG >MAE 53960(narB) Score=4.8 Pos=-88 [Microcystis aeruginosa NIES-843] TGTATTAATAACTACA >MAE 09380(ntcB) Score=4.1 Pos=-80 [Microcystis aeruginosa NIES-843] GGTAGCAATTTCTACC >MAE 14840(SYNPCC7002 A2101) Score=4.9 Pos=-38 [Microcystis aeruginosa NIES-843] TGTAAATTTAGATACA >MAE 54470(rpoD) Score=4.9 Pos=-126 [Microcystis aeruginosa NIES-843] TGTAATTAAAGCTACA >MAE 18580(SYNPCC7002 A0264) Score=4.8 Pos=-68 [Microcystis aeruginosa NIES-843] TGTATCTTTAGCTACT >MAE 06220(urtA) Score=4.6 Pos=-140 [Microcystis aeruginosa NIES-843] AGTAGCGAAAGTTACA >MAE 06180(urtE) Score=3.8 Pos=-8 [Microcystis aeruginosa NIES-843] GGTTGACAATGTTACA >MAE 37080(fur) Score=3.7 Pos=-118 [Microcystis aeruginosa NIES-843] AGTAATTTTTCATACT >MAE 22930(coxB) Score=3.8 Pos=-141 [Microcystis aeruginosa NIES-843] AGTTATTTTAAATACT >MAE 06220(urtA) Score=4.7 Pos=-170 [Microcystis aeruginosa NIES-843] AGTAGCAAAAATTACA >all4968(gor) Score=4.1 Pos=-48 [Nostoc sp. PCC 7120] AATAACAACTGTTACA >alr1827(icd) Score=3.4 Pos=-6 [Nostoc sp. PCC 7120] TGAAATATGTACAACA >alr0992(amt1) Score=4.7 Pos=-50 [Nostoc sp. PCC 7120] TGTAACTAAGTATACA >alr0990(amt1) Score=4.7 Pos=-250 [Nostoc sp. PCC 7120] TGTATTAACTAATACA >asr0064(SYNPCC7002 A0076) Score=3.7 Pos=-107 [Nostoc sp. PCC 7120] CGTATAGCAAAATACA >alr4308(SYNPCC7002 A2395) Score=3.9 Pos=-64 [Nostoc sp. PCC 7120] GGTAGTCGGAGTTACA >alr3982(SYNPCC7002 A1954) Score=4.6 Pos=-250 [Nostoc sp. PCC 7120] TGTAGTGATAGCTACA >asl2329(gifA) Score=4.7 Pos=-78 [Nostoc sp. PCC 7120] CGTAGCATAAGATACA >alr2328(glnA) Score=4.8 Pos=-142 [Nostoc sp. PCC 7120] TGTAACAAAGACTACA >all2319(glnB) Score=3.8 Pos=-214 [Nostoc sp. PCC 7120]

AGTTACACAGACTACA >all1127(ndh) Score=4.7 Pos=-146 [Nostoc sp. PCC 7120] TGTAGCTTAAATTACT >all4312(nrrA) Score=4.5 Pos=-75 [Nostoc sp. PCC 7120] AGTAACAAAGACTACA >alr4392(ntcA) Score=3.7 Pos=-151 [Nostoc sp. PCC 7120] GGTATCATTATGAACA >alr4392(ntcA) Score=3.7 Pos=-111 [Nostoc sp. PCC 7120] AGTATAGGAAAGTACA >all0602(ntcB) Score=4.5 Pos=-80 [Nostoc sp. PCC 7120] TGTAACAAAATCTACC >all0602(ntcB) Score=4.7 Pos=-21 [Nostoc sp. PCC 7120] TGTAATTAAGGCTACA >all1327(SYNPCC7002 A0264) Score=4.3 Pos=-52 [Nostoc sp. PCC 7120] CGTAGTGTATGTTACA >all2327(apcF) Score=4.8 Pos=-233 [Nostoc sp. PCC 7120] TGTAGTCTTTGTTACA >all1691(fur) Score=4.1 Pos=-218 [Nostoc sp. PCC 7120] TGTAGCTTGAGATTCA >alr1690(alr1690) Score=3.6 Pos=-91 [Nostoc sp. PCC 7120] TGTGAATATAGAAACA >alr2514(coxB) Score=3.5 Pos=-291 [Nostoc sp. PCC 7120] AGAAGTAGAAGCTACT >all4001(isiA) Score=3.7 Pos=-37 [Nostoc sp. PCC 7120] AGTATTTCTGGCAACA >alr1524(rbcL) Score=3.6 Pos=-32 [Nostoc sp. PCC 7120] AGTAAAAAGAGTGACA >alr4344(gltS) Score=3.5 Pos=-265 [Nostoc sp. PCC 7120] TGGAAAAATTAAAACA >all1258(psbZ) Score=3.4 Pos=-161 [Nostoc sp. PCC 7120] TGTTACAAAAATTAGG >alr1911(nifJ) Score=3.2 Pos=-281 [Nostoc sp. PCC 7120] TGAATTTGATGTAACC >alr4156(ndhF) Score=4 Pos=-260 [Nostoc sp. PCC 7120] TGTCTTATAAAATACA >alr0052(trxA) Score=3.7 Pos=17 [Nostoc sp. PCC 7120] AGTTACAGATTCTACT >asr3935(hanA) Score=3.6 Pos=-279 [Nostoc sp. PCC 7120] GGTATTTTTTCCTACT >all1951(urtA) Score=4.3 Pos=-116 [Nostoc sp. PCC 7120] AGTATCAAAAATAACA >Tery 4477(amt1) Score=4.9 Pos=-83 [Trichodesmium erythraeum IMS101] AGTAGCATTTGATACA >Tery 2891(SYNPCC7002 A0076) Score=4.1 Pos=-191 [Trichodesmium erythraeum IMS101] TGTAATTTAGACAACA >Tery 2891(SYNPCC7002 A0076) Score=4.6 Pos=-110 [Trichodesmium erythraeum IMS101] TGTAACTATATATACT >Tery 0672(SYNPCC7002 A2395) Score=4.3 Pos=-94 [Trichodesmium erythraeum IMS101] AGTATTCAAAATTACA >Tery 3912(SYNPCC7002 A1954) Score=4.3 Pos=-156 [Trichodesmium erythraeum IMS101] TGTAGTTATGGCTACC >Tery 3834(glnA) Score=4 Pos=-250 [Trichodesmium erythraeum IMS101] CGTAACACCCGATACA >Tery 3369(hupS) Score=4.3 Pos=-188 [Trichodesmium erythraeum IMS101] AGTATCAAAAATAACA

>Tery 3368(hupL) Score=4.1 Pos=-64 [Trichodesmium erythraeum IMS101] TGTAGCTACTGATAAA >Tery 1068(nirA) Score=3.8 Pos=-276 [Trichodesmium erythraeum IMS101] TGTATTTTTATATAGT >Tery 1068(nirA) Score=4.1 Pos=-199 [Trichodesmium erythraeum IMS101] TGTTATATAAGCTACG >Tery 0675(nrrA) Score=4.7 Pos=-89 [Trichodesmium erythraeum IMS101] AGTAGCTTCTGTTACA >Tery 4333(ntcB) Score=4 Pos=-27 [Trichodesmium erythraeum IMS101] TGTATAAAATAACACA >Tery 5068(rpoD) Score=4 Pos=-199 [Trichodesmium erythraeum IMS101] TGTAAAATTTTGTACC >Tery 5068(rpoD) Score=3.7 Pos=-46 [Trichodesmium erythraeum IMS101] TGTAAAATAATTTATT >Tery 3029(gifB) Score=3.8 Pos=-349 [Trichodesmium erythraeum IMS101] TGTATCTGATGTTAGG >Tery 1958(fur) Score=3.5 Pos=-40 [Trichodesmium erythraeum IMS101] TGTATCATTGTCAATA >Tery 4410(rbcL) Score=3.4 Pos=-293 [Trichodesmium erythraeum IMS101] GATAACTATTACTACG >Tery 1667(isiA) Score=3.6 Pos=-134 [Trichodesmium erythraeum IMS101] AGTAATTGATCATACT >Tery 0466(gltS) Score=4.2 Pos=-228 [Trichodesmium erythraeum IMS101] TGTATCCTAGGCAACA >Tery 0130(urtA) Score=3.8 Pos=-390 [Trichodesmium erythraeum IMS101] AGTTACAAAAAAAAA >Tery 4747(gor) Score=3.9 Pos=-208 [Trichodesmium erythraeum IMS101] TGTAGTCGTAGATATA >Tery 4747(gor) Score=4.7 Pos=-120 [Trichodesmium erythraeum IMS101] TGTAACTAATTATACT >Synpcc7942 0442(amt1) Score=4.1 Pos=-151 [Synechococcus elongatus PCC 7942] TGTTACATCGATTACA >Synpcc7942 1845(cce 3797) Score=4.3 Pos=-27 [Synechococcus elongatus PCC 7942] TGTATCCGTTGCTACC >Synpcc7942 2107(cynA) Score=4.4 Pos=-67 [Synechococcus elongatus PCC 7942] TGTAACGACGGCTACA >Synpcc7942 2156(glnA) Score=4.8 Pos=-194 [Synechococcus elongatus PCC 7942] TGTATCAGCTGTTACA >Synpcc7942 0321(glnB) Score=4.8 Pos=-103 [Synechococcus elongatus PCC 7942] TGTAGCAGTAACTACA >Synpcc7942 1240(nirA) Score=4.9 Pos=-220 [Synechococcus elongatus PCC 7942] TGTAGCAATTGCTACT >Synpcc7942 1240(nirA) Score=4.3 Pos=-149 [Synechococcus elongatus PCC 7942] AGTATCAATGATTACT >Synpcc7942 1240(nirA) Score=4.4 Pos=-80 [Synechococcus elongatus PCC 7942] TGTAGTTTCTGTTACC >Synpcc7942 0127(ntcA) Score=4.7 Pos=-157 [Synechococcus elongatus PCC 7942] AGTAGCAGTTGCTACA >Synpcc7942 1241(nirB) Score=4.3 Pos=-153 [Synechococcus elongatus PCC 7942] AGTAATCATTGATACT >Synpcc7942 1241(nirB) Score=4.9 Pos=-82 [Synechococcus elongatus PCC 7942] AGTAGCAATTGCTACA >Synpcc7942 1845(SYNPCC7002 A2101) Score=4.3 Pos=-27 [Synechococcus elongatus PCC 7942] TGTATCCGTTGCTACC

>Synpcc7942 2158(apcF) Score=4.8 Pos=-214 [Synechococcus elongatus PCC 7942] TGTAACAGCTGATACA >PMT1853(amt1) Score=3.8 Pos=-160 [Prochlorococcus marinus str. MIT 9313] TGTAACAAAATGAACT >PMT0601(glnA) Score=4.2 Pos=-79 [Prochlorococcus marinus str. MIT 9313] GGTACCTGTTGCTACA >PMT2229(urtA) Score=4 Pos=-146 [Prochlorococcus marinus str. MIT 9313] TGTTGCAACAGCTACC >PMT2229(urtA) Score=4.7 Pos=-95 [Prochlorococcus marinus str. MIT 9313] TGTATCATTCACTACA >CYA 0030(fur) Score=3.6 Pos=-66 [Synechococcus sp. JA-3-3Ab] GCTATTATCAATTACA >CYA 0570(SYNPCC7002 A2395) Score=3.9 Pos=-139 [Synechococcus sp. JA-3-3Ab] GGTAAGATAAAATACA >CYA 0570(SYNPCC7002 A2395) Score=4.2 Pos=-81 [Synechococcus sp. JA-3-3Ab] CGTATCAAAGGCTACT >CYA 1363(glnA) Score=4.3 Pos=-138 [Synechococcus sp. JA-3-3Ab] CGTATCAGAAACTACA >CYA 1508(glnB) Score=4.5 Pos=-74 [Synechococcus sp. JA-3-3Ab] TGTATCCGTTTTTACA >CYA 0612(nirA) Score=3.9 Pos=-72 [Synechococcus sp. JA-3-3Ab] TGTAACTGCCAATACC >CYA 1799(ntcA) Score=4.7 Pos=-181 [Synechococcus sp. JA-3-3Ab] TGTAGCTCCTGCTACA >CYA 0984(ntcB) Score=4.2 Pos=-89 [Synechococcus sp. JA-3-3Ab] TGTAACGGTGTTTACA >CYA 1920(urtE) Score=3.9 Pos=-248 [Synechococcus sp. JA-3-3Ab] AGAAACAGAAGCTACA >CYA 1924(urtA) Score=3.7 Pos=-272 [Synechococcus sp. JA-3-3Ab] GGTATCCCGCGATACA >SYNW0253(amt1) Score=4.2 Pos=-100 [Synechococcus sp. WH 8102] TGTATCAATTAACACA >SYNW0246(SYNPCC7002 A1954) Score=4.1 Pos=-143 [Synechococcus sp. WH 8102] TGTAACTTTGGTTGCA >SYNW2487(cynA) Score=4.1 Pos=-103 [Synechococcus sp. WH 8102] TGTAGCAAGTGAGACA >SYNW2487(cynA) Score=4.5 Pos=-66 [Synechococcus sp. WH 8102] AGTATCACCTGATACA >SYNW2442(urtA) Score=4 Pos=-118 [Synechococcus sp. WH 8102] TGTTGCAACAGCTACC >gvip146(glnA) Score=4 Pos=-116 [Gloeobacter violaceus PCC 7421] CGTATCTCAGACTACA >gvip212(nirA) Score=4 Pos=-146 [Gloeobacter violaceus PCC 7421] TGTATCTGGGGGTTACG >gvip454(ntcA) Score=3.9 Pos=-77 [Gloeobacter violaceus PCC 7421] AGTAGTCCCTAATACA >gvip213(ntcB) Score=4 Pos=-46 [Gloeobacter violaceus PCC 7421] CGTAACCCCAGATACA >glr3304(fur) Score=3.9 Pos=-116 [Gloeobacter violaceus PCC 7421] TGTAACAAATTGTAGA >gll0880(trxA) Score=3.6 Pos=-379 [Gloeobacter violaceus PCC 7421] TGTATCTAGAACTAGC >null(gifB) Score=4.4 Pos=-175 [Thermosynechococcus elongatus BP-1] TGTTAAATTAGATACA >amt1(amt1) Score=4.4 Pos=-190 [Thermosynechococcus elongatus BP-1]

TGTATAACGTGATACA

>tsr2448(SYNPCC7002_A0076) Score=4.1 Pos=-63 [Thermosynechococcus elongatus BP-1] AGTATTGGATATTACA

>tlr1468(SYNPCC7002_A2395) Score=4.3 Pos=-85 [Thermosynechococcus elongatus BP-1] TGTAGTTGAGTTTACA

>tlr0194(tlr0194) Score=4.2 Pos=-111 [Thermosynechococcus elongatus BP-1] TGTAACCTATCTTACA

>tll0591(glnB) Score=5.1 Pos=-80 [Thermosynechococcus elongatus BP-1] TGTAGCTATTGCTACA

>tlr1349(nirA) Score=4.6 Pos=-82 [Thermosynechococcus elongatus BP-1] AGTAGCAAAATTTACA

>tlr1330(nrrA) Score=4 Pos=-138 [Thermosynechococcus elongatus BP-1] AGTATTATTCGTTACG

>null(ntcB) Score=3.9 Pos=-122 [Thermosynechococcus elongatus BP-1] TGTATCAATCAACACA

>tlr1120(urtA) Score=4 Pos=-81 [Thermosynechococcus elongatus BP-1] TGTAGCCTAGCATACA

>tlr2286(trxQ) Score=4 Pos=-130 [Thermosynechococcus elongatus BP-1] AGTAGCAATGACAACA

>null(isiA) Score=3.8 Pos=-195 [Thermosynechococcus elongatus BP-1] AGTTTCTGGAAATACA

>null(ndhF) Score=3.6 Pos=-220 [Thermosynechococcus elongatus BP-1] GGTAACTTTTGCTATG

>null(gifB) Score=4.4 Pos=-146 [Thermosynechococcus elongatus BP-1] TGTTAAATTAGATACA

A: 20	10 18 6	4 3 2	61 43 49	66 61 63	21 24 17	14 4 11	23 16 16	0 0	0 0	0 0	7 12
C: 20	1 2 5	2 0 2 3	49 0 0 3	03 1 1 0	28 30 36	42 38 31	8 6 11	0 0	0 0	0 0	28 34
G: 14	1 1 0	0 1 0	4 2 3	4 7 6	6 2 6	5 7 2	2 4 2	0 0	0 0	0 0	22 18
N: 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	77 77	77 77	77 77	0 0
T: 23	65 56 66	73 71 72	12 32 22	6 8 8	22 21 18	16 28 33	44 51 48	0 0	0 0	0 0	20 13
Supple	ementa	ry posit	ion freq	uency n	natrix (I	PFM 2)	for Fur	boxes in	cyanob	acteria:	
A: 100	29 13	3 26	45 11	101 26	34 147	134 127	129 18	64	58	92	21
C: 1	5 0	1 38	4 5	18 63	9 0	8 1	1 30	6	18	2	18
G: 22	3 2	0 10	67 41	10 2	52 4	2 25	2 2	0	7	2	10
T: 44	130 152	163 93	51 110	38 76	72 16	23 14	35 117	97	84	71	118
Supple	ementa	ry positi	ion freq	uency n	natrix (I	PFM 3)	for Ntc.	A boxes	in cyano	obacteria	ı:
A: 47	3 27	6 225	201 2	99 168	29	108	94	90	88	71	88
C: 18	2 7	1 1	1 211	2 19	131	36	18	28	16	6	61
G: 20	220 2	1 1	3 8	52 12	1	19	43	21	33	113	8
T: 143	3 192	220 1	23 7	75 29	67	65	73	89	91	38	71

Supplementary position frequency matrix (PFM 1) for PHO boxes in cyanobacteria:

Supplementary Table 2. Pho regulon prediction. PHO boxes sequences, their position in the genome, orientation, the genes that are controlling (the Pho regulon), locus tag from these genes, the distance of the box from the gene and the gen function from single-letter of functional (COGs) are presented.

PHO boxes sequences	Position	Orientation	Pho regulon (genes)	Locus_tag	Distance	COG
GATATCCTTAACTATAATTTCTAATAAC TT	37692	(+)	AbgT family transporter	PCC7418_RS00155	-342	Н
TTTAATTTCATCCTAGTTTAGGCTTAAA GT	41629	(+)	serine hydrolase-HP-ABC transporter ATP-binding protein/permease	PCC7418_RS00180/RS00185/RS00190	-145	V, S, S
AATAAAACTTAATTAAAGCCATCTTAAC CT	48034	(+)	PstS family phosphate ABC transporter substrate-binding protein (<i>pstS</i>)	PCC7418_RS00210	-51	Р
AAGAAATAATGTGTTAAAGTTAATATAA AT	54813	(-)	PAS domain-containing protein response regulator	PCC7418_RS00225/RS00230	-315	Τ, Τ
GAGTAAACCAAAGGCTAAATTAACAAT ATT	59558	(-)	thioredoxin	PCC7418_RS00250	-262	0
TCTTAAAGTTACAGTTAATGAAAGATTA TA	61353	(-)	mechanosensitive ion channel	PCC7418_RS00255	-316	М
GAGTTATCGGAAGAAAAAGATGAGTAT AAT	63341	(-)	recombination protein RecR- tetratricopeptide repeat protein	PCC7418_RS00265/RS00270	-47	S, L
ATTTAATTACTTAGAAACTCTGCTTAAC AA	73689	(+)	IS200/IS605 family element transposase accessoryprotein (<i>tnpB</i>)	PCC7418_RS00335	-175	L
TTTAAACTCAGCATTATCTTTAGATTTG AC	119529	(+)	RMD1 family protein-hypothetical protein (HP)-asparagine synthase	PCC7418_RS00490/RS00495/RS00500	-519	S, S, L, E
TTTAGCCTCTTTCTTACCCTTTTTTAAC AA	163587	(+)	universal stress protein	PCC7418_RS00715	-112	Т
TTTTGTGTTACTTTAACCTTCCTTTTAG CA	168098	(+)	ABC transporter substrate binding protein	PCC7418_RS00750	+34	G
AATTTAAAATGAAATTATGCAATCAAAA AT	187427	(-)	HP-glycoside hydrolase	PCC7418_RS00830/RS00835	-221	G, S
AATTAAACCTAAAATAGTTTCAAGGATA AT	192110	(-)	transposase	PCC7418_RS00850	-615	
TCATTAAGTTTTTGTTAAAGGAAGGTTA TC	193598	(-)	phosphoribosylformylglycinamidine cyclo-ligase	PCC7418_RS00865	-47	F
ATTAAGTTTTTGTTAAAGGAAGGTTATC AT	193600	(+)	septal ring lytic transglycosylase RlpA family protein	PCC7418_RS00870	-256	
TTGTAAGGCAGAATCAAAATTCAGTTT ATC	226059	(-)	HP	PCC7418_RS01010	-253	0
CTTAATGTGATTTAAAAATACCATTTAAG TT	226508	(+)	HP	PCC7418_RS01025	-223	S
TTTAATATTAGTTTAATATTAGTTTAAG TA	227609	(+)	Nif11 like leader peptide family natural productprecursor	PCC7418_RS01030	-115	
CTTAGCCCCAGCTTTAGTTAATATTAAT AC	299142	(+)	archease RtcB family protein- phosphoribosyltransferase	PCC7418_0261/RS01330/RS01335	-274	S, L, S

GTTTACTTAATTTTTATTACAAAATAAG AT	323385	(+)	B12-binding domain-containing radical SAM protein	PCC7418_RS01445	-99	С
AATTTAAGACCTAGTAATCAACACGAA ATT	345451	(-)	iron uptake porin	PCC7418_RS01525	-15	М
TTTAGTAATCGCTTAACCTTTTCTTAAC TT	351477	(+)	thylakoid membrane photosystem I accumulation factor	PCC7418_RS01570	-439	СО
GTTTATCAACTTTTTACATAAGATTTAG CA	362063	(+)	NAD(P)H dependent glicerol 3 phosphate dehydrogenase	PCC7418_RS01620	-78	I
А G ТСАААААААТАТТАААТСААТСАТТА АТ	362100	(-)	NUDIX hydrolase	PCC7418_RS01615	-293	F
ATTAAACTTTTTAATATCAGAGTATAAT CA	397041	(+)	HP-NblA/ycf18 family protein	PCC7418_RS01780/RS01785	-106	S, S
АТТАТТТТААТGTTTTTCAGTCTTTTTA ТТ	402390	(+)	3-isopropylmalate dehydrogenase (<i>leuB</i>)	PCC7418_RS01815	-308	CE
AGATTAAAAGCCAATTTATGAAGAGGTT AAA	435783	(-)	bifunctional aminoglycoside phosphotransferase ATP binding protein	PCC7418_RS01975	-39	S
TTTTATTTATATTTACACTGCCTTTAAC GA	440704	(+)	trypsin-like peptidase domain containing protein	PCC7418_RS02005	-238	0
AATTAAAGTTATGATAAAAGCGATCTTA AA	449261	(-)	SIMPL domain containing protein	PCC7418_RS02035	-714	S
AGGTTAAATATGGTTCAAAAACTATTCA AA	449976	(-)	uroporphyrinogen III C- methyltransferase	PCC7418_RS02045	0	Н
GTTTAAGTTTCGATAAAATTTCGTTATC AT	456308	(+)	phosphomannose isomerase type II C-terminal cupin domain-lecithin retinol acyltransferase family protein	PCC7418_RS02090/RS02095	-115	G, KT
AAATGAAGAAGAAAATTATGCTGATGCC AAA	456629	(-)	branched-chain amino acid ABC transporter permease	PCC7418_RS02085	-325	Е
АА GTAAAGTCTTTTTAATAAAAATTTAA ТА	524155	(-)	response regulator-HP	PCC7418_RS02385/PCC7418_RS19225	-356	T, S
AATTCAACAAAATTATAAGGAGGGGTA AAA	543130	(-)	gas vesicle protein GvpG	PCC7418_RS02455	-185	S
GAATGAATTAAAGATTAATTTCTTTTAA AC	547534	(-)	gas vesicle structural protein GvpA (gvpA)-HP-gas vesicle protein GvpN/gas vesicle protein (gvpN)- HP-HP-gas vesicle protein K (gvpK)-GvpL /GvpF family gas vesicle protein (gvpL/gvpF)	PCC7418_RS02490/RS02485/RS02480/ RS02475/RS02470/ RS02465/RS02460	-103	S, S, S, S, S, J, S
AATGAATTAAAGATTAATTTCTTTTAAA CT	547535	(+)	GvpL/GvpF family gas vesicle protein (<i>gvpL/gvpF</i>)	PCC7418_RS02495	-196	S
TTATGAAAAAAATAATTAACAAAAGATAA AT	550498	(-)	histidine phosphatase family protein-glucokinase	PCC7418_RS02510/RS02505	-11	G, G
GAGTTAGAGGATGGTTATAAACATATA AAG	599343	(-)	(2Fe-2S) binding protein	PCC7418_RS02740	-365	С
ATTAAAAATCCGATCAATCTAAAAAATAAG TT	609687	(+)	ferredoxin nitrite reductase	PCC7418_RS02810	+11	С

TATGATTTTCAATTTAACTGTACCTATC TT	612817	(+)	UDP-N-acetylmuramoyl tripeptide D-alanyl-D-alanine ligase	PCC7418_RS02820	-1	М
TTTTCAATTCTTCTTAAAAACCCTGATTA AC	641750	(-)	Ig like domain containing protein	PCC7418_RS02875	-148	S
TTTTACTGAATTTTAATTTAAACTTAGA AC	657612	(+)	ABC transporter ATP binding protein	PCC7418_RS02955	-191	V
TAATTTATATCTTTTTAAGGTTATTTTA AG	675681	(-)	CAP domain-containing protein	PCC7418_RS19240	-284	Q
TTTTACCTGAATTTGTTTTAACCTTAAG TC	677077	(+)	Uma2 family endonuclease-Uma2 family endonuclease	PCC7418_RS03075/RS03080	-73	S, S
TGGCTATCTTTATGTTATAATGATTTTA AC	683216	(-)	Response regulator	PCC7418_RS03100	-432	Т
AATTATCTTCAGTTTAGTTTACGCTAAT CT	728680	(+)	heme oxygenase (biliverdin- producing)	PCC7418_RS03280	-101	С
ATGAAAAACGTTAGATAAAAAACAATTT AAA	739128	(-)	YvcK family protein	PCC7418_RS03330	-60	S
ATTTAATTAAATTTACAATTGATTTAAA TT	766012	(+)	CRISPR associated endoribonuclease Cas6-CRISPR associated protein Cas4 type ID- CRISPR associated endonuclease Cas1-CRISPR associated endonuclease Cas2	PCC7418_RS03470/RS03475/RS03480/RS03485	-264	S, L, L, L
CGTAAACTAAGCATAGTTTGATCTTAAT CC	787591	(+)	WYL domain containing protein	PCC7418_RS03530	-80	K
AGGCAAGGAGGAGATAAAAGCATGATC AAA	801527	(-)	LD carboxypeptidase	PCC7418_RS03590	-7	V
TTTAATGAGTGGTTTAAATTCAGTTGAT TT	805778	(+)	UDP-N-acetylmuramate L-alanine ligase-UDP-N-acetylmuramate dehydrogenase	PCC7418_RS03620/RS03625	-3	М, М
TTTAATACTTGGTTAGTTCAAGATTATC TT	814733	(+)	glutathione S-transferase family protein	PCC7418_RS03660	-664	0
ТТТААТАААСТТАААААТТGTTATTTAC АТ	826909	(+)	tRNA (uridine(34)/cytosine(34)/5- carboxymethylaminomethyluridine(34)-2'-O) methyltransferase TrmL (<i>trmL</i>)	PCC7418_RS03720	-52	J
TATTAAATAATAGATCAAAATGAATTTT AT	832833	(-)	carotenoid biosynthesis protein	PCC7418_RS03740	-19	S
TGGTTAGTGAGTGATTAAACAATGGTT AGT	890284	(-)	precorrin 8X methylmutase	PCC7418_RS04085	-190	HK
GAATTAAGGAACATTTAACTTTTTGCAA AA	898154	(-)	FeoA domain-containing protein (<i>feoA</i>)-Fe(2+) transporter permease subunit FeoB (<i>feoB</i>)	PCC7418_RS04115/RS04120	-240	Р, Р
AAATAATGCTAAGATTATTATAACATAA AA	938858	(-)	IS200/IS605 family element transposase accessoryprotein TnpB (<i>tnpB</i>)	PCC7418_RS04310	-16	L
GTTAATCAAGTTTTTACGAATGATTTAG AT	939282	(+)	MFS transporter	PCC7418_RS04315	-19	G

TTTAATCCCCTGTTTATGGTAACTTTAG AA	953364	(+)	fused MFS/spermidine synthase	PCC7418_RS04390	-35	Н
ATTAACTATCAATTAAAATAGCATTTGC TC	955972	(+)	methyltransferase domain- containing protein	PCC7418_RS04410	-27	Q
AGGTTAAGGCGAAAATAAACTCATTCC AAG	957937	(-)	ABC transporter ATP-binding protein	PCC7418_RS04415	-268	Р
GAGTAAACGTTAAGCAAAAATCACATT AAT	961001	(-)	ABC transporter substrate binding protein-sugar ABC transporter permease arbohydrate ABC transporter permease	PCC7418_RS04430/RS04425/RS04420	-131	G, P, P
AGCAAAACCATAAGCAATGGGCAAGTT AAA	964557	(-)	ATP-grasp domain containing protein	PCC7418_RS04445	-352	F
GATTACCACTCGTTAAATTGGTAATAAC AC	970920	(+)	membrane protein insertase YidC- nucleic acid binding protein	PCC7418_RS04500/RS04505	-105	S, U
TTTTTAATATAAAAATTAATCAATAGTTA AC	1018379	(-)	DNA starvation/stationary phase protection protein	PCC7418_RS04685	-122	Р
GAAAGTTAAAAGTTAACCATTTCTTAAC TT	1047914	(+)	glycosyltransferase family 4 protein-amylo alpha 1,6-glucosidase	PCC7418_RS04835/RS04840	-439	M, G
ATCTTAAATTAAGGTTTAAATGAATTTT AA	1071732	(-)	solanesyl diphosphate synthase	PCC7418_RS04940	-313	Н
CTTAAGATAAGATTAGTCAGTAATTAAT CC	1072305	(+)	uracil-DNA glycosylase	PCC7418_RS04945	-506	L
CTTATACTAATTTTTTCAAAAGTTTATC CT	1132472	(+)	Uma2 family endonuclease	PCC7418_RS05220	-136	S
AGATTATGGGCTGGTTGACAACATATC AAG	1132816	(-)	phycobilisome rod core linker polypeptide	PCC7418_RS05215	-356	G
АТАААТАТТАТТАТАААТТААСТТСААА АТ	1170761	(+)	circadian clock protein KaiC- polyphosphate kinase 1	PCC7418_RS05365/PCC7418_RS05370	-10	F, P
TTTACCATGGCTATGAATTAACCTTAAC CA	1175011	(+)	MogA/MoaB family molybdenum cofactor biosynthesis protein	PCC7418_RS05380	-145	Н
AAGTTAAGAGTGACTTGATCGGGGTTT AAA	1196246	(-)	HlyD family type I secretion periplasmic adaptorsubunit	PCC7418_RS05475	-191	М
ТТТАААТАТСТТТТТТАТТТСТАТТТТТА Т	1234207	(+)	L-aspartate oxidase (<i>nadB</i>)	PCC7418_RS05635	-202	Н
АТТААТСТССТААТТАТСААСАСАТСАС ТА	1249518	(+)	tRNA (adenosine(37)-N6)- threonylcarbamoyltransferase complex transferase subunit (<i>tsaD</i>)	PCC7418_RS05715	-681	J
TGATTGAGGAGAATTTAAATCAATGTC AAT	1261043	(-)	arsenate reductase, glutathione/glutaredoxin type (<i>arsC</i>)-arsenical resistance protein (<i>arsH</i>)	PCC7418_RS05760/RS05755	-346	T, S
ATTAAACTGCTCATAAGGAAACGTAAA TTT	1360953	(+)	acyl-CoA desaturase	PCC7418_RS06160	-88	I
AAATAATGCTAAGATTATTATAACATAA A	1366037	(-)	IS200/IS605 family element transposase accessoryprotein TnpB (<i>tnpB</i>)	-	-15	S

AATTAAAAATAGGAATAAAACTAAGCT AAT	1371373	(-)	tetratricopeptide repeat protein	PCC7418_RS06205	-12	S
TTAGAAAAAGAGTTAAATTCTCGTTAAA AT	1375855	(+)	TIGR04282 family arsenosugar biosynthesis glycosyltransferase	PCC7418_RS06240	-215	S
GTTATTTTGTTCTTTGTTGGCTGTTAAT CA	1425334	(+)	transposase	PCC7418_RS06495	-115	S
GTTAATCAACTTTTTACATAAGATTTAG AA	1439381	(+)	CRISPR associated endonuclease Cas1-CRISPR associated endonuclease Cas2	PCC7418_RS06595/RS06600	-501	L, L
TGATAAACAATAGGTAAAGTAAGGACT TAC	1558203	(-)	type I restriction endonuclease subunit R	PCC7418_RS07055	-251	S
GTTATTTTGTTCTTTGTTGGCTGTTAAT CA	1594235	(+)	transposase	PCC7418_RS07215	-108	S
AGCTGATGACTAGGTTAAGGCTTTCTT AAT	1613769	(-)	ABC transporter substrate binding protein	PCC7418_RS07290	-265	Е
CTTTTTTCCCACCTTTGACCTGTGTTAAA TT	1623103	(+)	glutathione S-transferase family protein	PCC7418_RS07335	-249	S
AGATTAAGGAAAATTAAACCTCAACTT AAA	1664840	(-)	sodium:proton antiporter	PCC7418_RS07540	-114	Р
ATTAAAAACAATATTAAAAACAAATTTTAC TA	1665092	(+)	ATP-dependent zinc protease	PCC7418_RS07545	-115	0
TATAATCTTCGCTATAGCTCATTTTAG TT	1679832	(+)	response regulator	PCC7418_RS07610	-364	Т
TGTTAAAGACGCAGAAAATCTTATTTTA AA	1708354	(-)	site-specific DNA- methyltransferase	PCC7418_RS07755	-130	L
AACTTAATTTCTGAAAAATTCAGGGTTA AT	1744927	(-)	sedoheptulose 7-phosphate cyclase	PCC7418_RS07910	-329	Е
АААТАААТСССТ G ТТАААGCTCATAAAA AT	1754941	(-)	response regulator-EAL domain containing response regulator- response regulator	PCC7418_RS07930/RS07935/RS07940	-60	T, T, T
AAATTAATGTTTCATAATGAGGTGGATT AA	1766429	(-)	N(2) fixation sustaining protein CowN	PCC7418_RS07995	-601	S
AGATCATGAGTAATAAATAAATAGGTT AAA	1767932	(-)	D-alanyl-D-alanine carboxypeptidase/D-alanyl-D- alanine endopeptidase	PCC7418_RS08000	-120	М
TTCATAATTAATCGTTAATAAATGATTA AG	1794333	(-)	ABC transporter substrate-binding protein	PCC7418_RS08120	-6	Е
ATTTTTTTGTTTTTAATTATCCCTTGAC TT	1810041	(+)	ATP phosphoribosyltransferase regulatory subunit	PCC7418_RS08205	-314	Е
TTTTTCCCTCACCTTAGATTTAAGTTTAT TA	1811102	(+)	undecaprenyldiphospho- muramoylpentapeptide beta-N- acetylglucosaminyltransferase	PCC7418_RS08210	-449	М
TTCTAAATCATTCGTAAAAAGTTGATTA AC	1871218	(-)	copper-translocating P-type ATPase	PCC7418_RS08475	-151	Р
TTTAAGCATGACCTTACCCCTAATTATC CT	1889348	(+)	NAD(P)H-quinone oxidoreductase subunit 4	PCC7418_RS08560	-648	С

TTTAATTGTAAATTTTCTTATTTTTAG TT	1900730	(+)	glutathione synthase (gshB)	PCC7418_RS08590	-93	Н
TGCTTGTGGTAAAGAAAAGGTTATGTT AAA	1919258	(-)	phosphate ABC transporter substrate binding protein PstS (<i>pstS</i>)-phosphate ABC transporter permease subunit PstC (<i>pstC</i>)- phosphate ABC transporter permease PstA (<i>pstA</i>)-phosphate ABC transporter ATP binding protein PstB (<i>pstB</i>)	PCC7418_RS08670/RS08665/ RS08660/RS08655	-256	P, P, P, P
GTTAATCACAGAGAAAATTAATCTTAAA TT	1932831	(+)	endonuclease MutS2	PCC7418_RS08735	-136	L
GATTAAAGTTTTGATAAAGTCTTGATCT AG	1942813	(-)	cysteine synthase A (cysK)	PCC7418_RS08775	-162	Е
АТТТАТGTTАТААТААТТТТАССАТТАТ ТТ	1970080	(+)	IS200/IS605 family element transposase accessoryprotein TnpB (<i>tnpB</i>)	PCC7418_RS08950	-40	S
ATTGAACCTTTATTAAACTCGGTTTATC AA	1996480	(+)	response regulator-chemotaxis protein CheW (<i>cheW</i>)	PCC7418_RS09080/RS09085	-696	KT, NT
TTGTAATGGGCGGGTTTAGGAATGGTT AAA	2056920	(-)	glycosyltransferase family 2 protein	PCC7418_RS09320	-565	М
GAGCTAAGAAATGATAATGCTGTTCTA AAC	2134623	(-)	cobalt precorrin 8X methylmutase/bifunctional cobalt- precorrin-7 (C(5)) - methyltransferase cobalt precorrin- 6B (C(15)) methyltransferase (<i>cbiE</i>)	PCC7418_RS09630/RS09625	-343	Н, Т
TTTAAAAAAGTAATTGTCTCCCGTTTTC CA	2186011	(+)	late competence development ComFB family protein	PCC7418_RS09865	-39	S
AGGTAATGACGATATTAATCCCATTATA AA	2244285	(-)	RNA methyltransferase	PCC7418_RS10105	-172	L
CGGTAAACGTAAAATTAGCCCCATGTA AAT	2251376	(-)	5-(carboxyamino)imidazole ribonucleotide synthase	PCC7418_RS10145	-205	F
AATAGTCTCATTTTTATTTTTAATTTTT AT	2285162	(+)	alanine:cation symporter family protein	PCC7418_RS10255	-415	U
ATTATTATAGATATTATCTCCGGCTAAA AT	2323958	(+)	serine O-acetyltransferase	PCC7418_RS10410	-391	Е
TTAAATTTAATCATTACTTTAGGTTTAA GT	2388578	(+)	class 1 fructose-bisphosphatase	PCC7418_RS10725	-182	G
GATAAAAAGTTAAATCAACTAAAGATA AAT	2403390	(-)	citramalate synthase	PCC7418_RS10785	-453	Е
TTTTGCCTAAATTTTATTTTCTATTAAC CT	2442208	(+)	PAS domain S-box protein	PCC7418_RS19415	-102	Т
AGTAAAAAACAATCTTTAAATTGAATTAA AA	2467390	(-)	AAA family ATPase	PCC7418_RS11110	-140	0
AATAAAATATTACGTAAACCATAGGCT AAA	2476471	(-)	lipoprotein signal peptidase	PCC7418_RS11185	0	MU

TTTAACTGCAATTTTAATTTTAATTGGC TT	2487840	(+)	glucosylglycerol 3-phosphatase	PCC7418_RS11220	-321	S
GATTTAAAAATAAAGATTTGCTAAGGTTA AA	2519448	(-)	saccharopine dehydrogenase NADP-binding domain containing protein	PCC7418_RS11355	-19	Е
AAATTAAAAGAAGTTTTAAGATTTAATA TA	2523201	(-)	cytochrome ubiquinol oxidase subunit I-cytochrome d ubiquinol oxidase subunit II (<i>cydB</i>)	PCC7418_RS11365/PCC7418_RS11370	-66	C, C
TTTTACGAAGAATTAAACTCATTTTAC CG	2523301	(+)	hemerythrin family protein	PCC7418_RS11375	-80	Р
TTTAAATTTTTTATAACAATTGATTGAT CA	2657664	(+)	EAL domain containing protein	PCC7418_RS19435	-99	Т
GTATGAACGTTAATTAAAGGCATAATT AAT	2669847	(-)	macrophage migration inhibitory factor family protein	PCC7418_RS12020	-7	S
ATTAATCATTTGCTTACTCAGGATTAAA CT	2686183	(+)	Crp/Fnr family transcriptional regulator	PCC7418_RS12095	-165	K
ААТААТGАААСТТТТТССТСТТСТТТТА СТ	2708076	(+)	NADAR family protein	PCC7418_RS12195	-219	0
TTTATTTTTATGTTATAATAATCTTAGC AT	2735781	(+)	IS200/IS605 family element transposase accessoryprotein TnpB (<i>tnpB</i>)	PCC7418_RS12340	-45	S
ATTAAGAAGAACTTAACGAATCTTTAAT TT	2791405	(+)	Crp/Fnr family transcriptional regulator	PCC7418_RS12605	-41	K
TTTAACTTATATTTTTATTTCCCATGAC TT	2871984	(+)	ureidoglycolate lyase	PCC7418_RS13060	-255	F
TTTAACTTTTTGTTTATTGCCACCTTTC CT	2922699	(+)	llutamate cysteine ligase (gshA)	PCC7418_RS13320	-19	S
CACTGAAAAAAAAAAAAAAGGCTAGTTT AAT	2930864	(-)	lysine tRNA ligase	PCC7418_RS13445	-191	J
TGTTCAAAAACTACGCAATGTGAAAATT AAT	2954730	(-)	ribosome maturation factor RimM (<i>rimM</i>)	PCC7418_RS13700	-97	J
АТТТАТАТААТGАТТААТТGАСТТТGTT ТТ	3006109	(+)	polysaccharide pyruvyl transferase family protein	PCC7418_RS13700	-127	S
AGATTATTTCTGATTAAAACGAATACTA AA	3128024	(-)	translocation/assembly module TamB domain-containing protein	PCC7418_RS14210	-32	U
TACTTAAGTATAGTATAAGATTATAATA T	3138188	(-)	YqhA family protein- DUF202 domain containing protein	PCC7418_RS14255/RS14260	-89	S, S
AGTAAGAGGTGAATTAAAGGGGGGGATC AAA	3146602	(-)	formylglycine generating enzyme family protein	PCC7418_RS14295	-69	S
ТТТААААААТААТТААТТТАТТТСТТССААС АТ	3179396	(+)	DMT family transporter	PCC7418_RS14440	-219	EG
АТТТАТСТАААТАТААААСТGААТТААА ТА	3191656	(+)	2Fe-2S iron sulfur cluster binding domain containing protein	PCC7418_RS14510	-279	С
ΑΤΑΤΑΑΑΑΑCΤGΑΑΤΤΑΑΑΤΑΤΑΑΤΤΑΤΑ ΑC	3191666	(-)	M28 family peptidase	PCC7418_RS14505	-8	S
ATTGATGACTTATTAATTATCAATTAAG TT	3224851	(+)	o-succinylbenzoate synthase	PCC7418_RS14660	-11	М

GATAATATCATGATTATTTTTTTTTTTTT TA	3244402	(+)	glycosyltransferase	PCC7418_RS14775	-254	V
AAGCTAAACGTAGATAGAGTTGAGTAA AAA	3247808	(-)	glycosyltransferase-sulfotransferase	PCC7418_RS14780/RS14785	-94	M, S
CTTTATCTAATTTTGATCACTAGTTTTA TA	3275429	(+)	DNA phosphorothioation system sulfurtransferase DndC (<i>dndC</i>)	PCC7418_RS14930	-56	EH
CTTAGAATTTAGTAAATCTTAACTTAAT T	3309133	(+)	BCCT family transporter	PCC7418_RS15085	-305	М
ATTAGAATCAGTTTAAACTAAGCTCAAT GT	3332712	(+)	nickel-type superoxide dismutase maturation protease	PCC7418_RS15220	0	U
GTTAATTGTTGCTTAAAATTACGTTTGC AT	3404962	(+)	peptide chain release factor 1 (<i>prfA</i>)	PCC7418_RS15625	-65	J
ATAATAAAGGGTGGTTATATGAAAGTA AAG	3410009	(-)	DNA (cytosine-5-) methyltransferase	PCC7418_RS15640	-359	Н
СТСТАААААGТААТСТАААААААТТТА АТ	3427651	(-)	TdeIII family type II restriction endonuclease	PCC7418_RS15720	-49	L
AGGTTAGAAGCAACTAAAGTTTTCATA AAT	3454152	(-)	phycobilisome linker polypeptide	PCC7418_RS15845	-4	Н
AAACAAAAAGAAAGTTAAATTTTTATAA AC	3455723	(-)	phycocyanin subunit beta	PCC7418_RS15855	-246	С
TTTAATTTCTCCTTAATAGGATATTAGT TA	3467427	(+)	translation initiation factor IF-2	PCC7418_RS15920	-123	S
ATTGACTTTTTGTTAGACTGAATTTAGT TT	3484159	(+)	IS200/IS605 family transposase	PCC7418_RS15965	-48	S
TTTTTTGTCAACTTAACCTTCCCTTTAC TT	3516392	(+)	PstS family phosphate ABC transporter substrate binding protein (<i>pstS</i>)-phosphate ABC transporter permease subunit PstC (<i>pstC</i>)- phosphate ABC transporter permease PstA (<i>pstA</i>)-phosphate ABC transporter ATP binding protein PstB (<i>pstB</i>)	PCC7418_RS16135/RS16140/ RS16145/RS16150	-147	P, P, P, P
TCATTAAACATCGAATAAACTTTGATTA AA	3579899	(-)	LmeA family phospholipid binding protein	PCC7418_RS16405	0	S
ATTAAACATCGAATAAACTTTGATTAAA AT	3579901	(+)	rRNA pseudouridine synthase	PCC7418_RS16410	-53	-
ATTTTTTTGAGCATTATTTGAGCATTAT TT	3596661	(+)	response regulator-chemotaxis protein CheW (<i>cheW</i>)	PCC7418_RS16505/RS16510	-120	KT, NT
ATTAATTTTTATTAAGATTATGTTTTTT TT	3799356	(+)	class I SAM-dependent methyltransferase	PCC7418_RS17370	-383	Н
ATTTATTGATGTATTTTTTTGTCTTAAC CC	3774649	(+)	alkaline phosphatase	PCC7418_RS17240	-76	Р
ATTAATCATTCTCTATCCTCCAAATAAC CA	3842069	(+)	pentapeptide repeat-containing protein	PCC7418_RS17560	-59	S
ATTATTATTTTTTGTTATTCACGCTTAAC CT	3866970	(+)	transposase	PCC7418_RS17665	-417	Q

ATTAACTTGCAATTATTTATCCCTTGAT C	3887039	(+)	Hemolysin type calcium binding protein	PCC7418_RS17775	-48	S
TTTAGGCTGTAATTAAACTGATGTCAAC AA	3896679	(+)	IS200/IS605 family element transposase accessoryprotein TnpB (<i>tnpB</i>)	PCC7418_RS17810	-155	S
АТТАТАААААТААТТТААААТGААТАТА АА	3944455	(-)	HindVP family restriction endonuclease	PCC7418_RS18040	0	L
TTTTTAAGCGAAATTTATCAAGGAGAA AA	3960433	(+)	glycogen debranching protein GlgX (glgX)	PCC7418_RS18135	-167	G
GTTAAATCAGAGTTAACCCATTATTAAA TT	3992761	(+)	methyl-accepting chemotaxis sensory transducer	PCC7418_RS18275	-107	NT
TGGATAATAGCATATAAAGACTTAATA AAT	4015538	(-)	NAD(P)-dependent oxidoreductase	PCC7418_RS18405	-406	GM
ATAAAAAAGATTAATAATAGTAAGGTA AAA	4030328	(+)	glycosyltransferase	PCC7418_RS18495	-129	J
GATAAATTCTTCTTTTACTCTTCTTTA CA	4066330	(+)	D-alanyl-D-alanine carboxypeptidase family protein	PCC7418_RS18675	-233	М
TATAACCTATCATTTATTGTCAAATAAC CA	4074906	(+)	ABC transporter ATP binding protein-ABC transporter permease	PCC7418_RS18715/RS18720	-61	V
TAGTTAATTTTAATTAATTAATTAATAA TT	4087245	(+)	Na-Ca exchanger/integrin-beta4	PCC7418_RS18775	-319	S
AAATCATCAATTCGTTAAATTCAATTTA AT	4115030	(-)	SDR family oxidoreductase	PCC7418_RS18900	-148	IQ
AGTTTAAATTTATAATCAGTTCAGTTTA AT	4163771	(-)	SHOCT domain-containing protein	PCC7418_RS19070	-26	L
GCTAACCTTTTTATTATCTTAACTTAGA TT	4174392	(+)	GNAT family N-acetyltransferase	PCC7418_RS19130	-255	К

Fur boxes sequences	Position	Orientation	Fur regulon (genes)	Locus_tag	Distance	COG
GTTAATAAATATTTTTTAC	1663	(+)	chromosomal replication initiator protein DnaA (<i>dnaA</i>)	PCC7418_RS00025	-472	L
GTTACAAAATATTTAGAAT	50660	(-)	alpha amylase	PCC7418_RS00215	-58	S
ATCTAAAGTTTTTATAAAA	54620	(-)	PAS domain containing protein	PCC7418_RS00230	-123	Т
AATTCAAGAAATTTTAAAT	63574	(-)	recombination protein RecR	PCC7418_RS00270	-277	L
ATTAAAAACCATTTTTAT	89952	(+)	esterase like activity of phytase family protein	PCC7418_RS20370	-355	F
TTTGTAAATTTTTATCATC	104461	(-)	SDR family oxidoreductase	PCC7418_RS00415	-85	G
АТСТААААТТААТСАТААТ	114408	(-)	ketol-acid reductoisomerase	PCC7418_RS00460	-250	E
AATTTGGATATTTTTAAT	116549	(+)	glycosyltransferase family 2 protein	PCC7418_RS00475	-38	М
ATTTTGATTATATATAAAT	148165	(+)	prepilin-type N-terminal cleavage/methylation domain-containing protein	PCC7418_RS00635	-172	U
ATTTATAAATATTATCAAT	199345	(+)	energy transducer TonB (<i>tonB</i>)	PCC7418_RS00895	-13	М
ATTTATAAATATTATCAAT	199345	(-)	MotA/TolQ/ExbB proton channel family protein	PCC7418_RS00890	-192	U
ATTGCAAATATTTTTTGAT	200598	(+)	AraC family transcriptional regulator	PCC7418_RS00900	-38	K
ATTTTTCTTTTATTTTAAT	247069	(+)	DUF3298/DUF4163 domain containing protein	PCC7418_RS01105	-454	S
ATTAAGTAATATTACAAAA	379625	(-)	heavy metal translocating P-type ATPase	PCC7418_RS01685	-283	Р
AATATTTATATTTCTTAAT	510372	(+)	4-alpha-glucanotransferase	PCC7418_RS02325	-227	G
ATAAAAATTTAATAATAAT	524171	(-)	response regulator	PCC7418_RS02385	-374	Т
ATTGATAATATTTATTAAC	559257	(-)	coenzyme F420 hydrogenase	PCC7418_RS02560	-101	С
TTTTATGATTATTATCAAT	690115	(+)	ShlB/FhaC/HecB family hemolysin secretion/activation protein	PCC7418_RS03120	-17	М
ATTAATAAACTTTTTTAAC	746975	(+)	photosystem I reaction center protein subunit XI-photosystem I reaction center subunit VIII	PCC7418_RS03390	-246	S
ATTTAATTAAATTTACAAT	766012	(+)	CRISPR associated endoribonuclease Cas6	PCC7418_RS03470	-242	S
ATTGACAAAATTTCCTAAT	789753	(-)	photosystem II q(b) protein	PCC7418_RS03535	-74	С

Supplementary Table 3. Fur regulon prediction. Fur boxes sequences, their position in the genome, orientation, the genes that are controlling (the Fur regulon), locus tag from these genes, the distance of the box from the gene and the gen function from single-letter of functional (COGs) are presented.

ATTGAAAGTCATTCTTATT	898088	(-)	ferrous iron transport protein A-Fe (2+) (<i>feoA</i>)-transporter permease subunit FeoB (<i>feoB</i>)	PCC7418_RS04120/ RS04115	-93	P, P
ATTAGAAATTTTTCTAAAA	1004388	(-)	ISAs1 family transposase	PCC7418_RS20420	0	S
AATGTTAAATTTTTATAAA	1169323	(+)	KaiA family protein	PCC7418_RS05355	-185	S
ATTTATAACTTTTCTCTAT	1179409	(+)	MFS transporter	PCC7418_RS05400	-207	G
ATTTTTGATAATTATTAAT	1210254	(+)	HP	PCC7418_RS05535	-184	Р
GTTGAAATAGATTCTTATT	1244480	(-)	adenylyl-sulfate kinase	PCC7418_RS05670	-147	Р
ATTAGAAATTTTTCTAAAA	1277716	(-)	ISAs1 family transposase	PCC7418_RS05850	0	S
ATTTTAATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1541282	(+)	HEAT repeat domain-containing protein	PCC7418_RS07010	-88	C
ACTAATATTTTTTTTTAAAT	1613963	(-)	solute-ABC transporter substrate-binding protein	PCC7418_RS07285	-458	E
АТТААААТААААТСТААТС	1626439	(-)	CDP-diacylglycerolglycerol-3-phosphate 3-phosphatidyltransferase	PCC7418_RS07355	-120	Ι
ATTAACAAATTATAAAAATT	1638172	(-)	sensor domain-containing diguanylate cyclase	PCC7418_RS07405	-11	Р
TTATAAAATTATTTACAAT	1773346	(-)	2-carboxy-1,4-naphthoquinone phytyltransferase (menA)	PCC7418_RS08020	-216	Н
ATTACAAAAGATTCTCAAC	1846361	(-)	ferrous iron transport protein A-Fe (2+) (<i>feoA</i>)-transporter permease subunit FeoB (<i>feoB</i>)	PCC7418_RS08340/ RS08335	-31	P, P
AATTATTAAAAATTATTAAT	1978529	(+)	photosystem II protein PsbX (<i>psbX</i>)	PCC7418_RS08985	-145	C
GTTCATAATATTTTATAAT	2010967	(+)	DUF2207 domain-containing protein	PCC7418_RS09130	-396	S
TTTTAGTATATTTCTCATT	2201702	(+)	30S ribosome-binding factor RbfA (<i>rbfA</i>)	PCC7418_RS09935	-165	Н
ATTGACAACTATTTTAGT	2226486	(+)	methyl-accepting chemotaxis protein	PCC7418_RS10065	-669	L
ATTGCAATTAAAATTTAAAA	2226728	(-)	ferrous iron transport protein A-Fe (2+) (<i>feoA</i>)-transporter permease subunit FeoB (<i>feoB</i>)	PCC7418_RS10060/ RS10055	-316	Р
TTTTGTAAATTTTTGTAAA	2234872	(+)	glutamate-1-semialdehyde-2,1-aminomutase (gsal)	PCC7418_RS10080	-177	Н
TTTGTAAATTTTTGTAAAT	2234873	(+)	magnesium chelatase subunit H (chlH)	PCC7418_RS10075	-214	Н
ТТТТААААТАААААТААТ	2376830	(-)	hydrogenase maturation protease	PCC7418_RS10660	-207	C
ATTGCTATTTATTCATAAT	2425245	(-)	DUF1643 domain-containing protein	PCC7418_RS19410	-256	S

TTTTAGAAAAATTTCTAAT	2459685	(+)	ISAs1 family transposase	PCC7418_RS11060	0	S
TTTGTTATTTATTCTTAGT	2584479	(+)	HP	PCC7418_RS11685	-270	S
AATACAAAAATTTGTTAAA	2609963	(-)	ABC transporter ATP-binding protein	PCC7418_RS11810	-546	V
ATTTTTAATTTTTGTTAA	2785156	(+)	cobalamin biosynthesis protein (cobW)	-	-64	S
ATTGCAAATTTTTTTTTTTTTT	2791453	(+)	Crp/Fnr family transcriptional regulator	PCC7418_RS12605	0	K
ATTAAGAAAAATTAATATT	2858373	(+)	argininosuccinate synthase	PCC7418_RS13005	0	Е
ATTGTTATTTATTATTTGT	2864252	(+)	6-pyruvoyltetrahydropterin synthase	PCC7418_RS13025	-312	Н
ACTGGAAAAAATTATCAAA	2874763	(-)	methyltransferase domain-containing protein	PCC7418_RS1306	-194	L
ATTGAGATATTTTATCGAT	2883764	(+)	transcription-repair coupling factor	PCC7418_RS13105	-64	L
ATTTTGAACAAATTTCAAT	2933424	(+)	SpoIID/LytB domain-containing protein	PCC7418_RS13340	-50	D
GTTTTAAAAAATAATTAAT	3179394	(-)	photosystem II reaction center protein Ycf12	PCC7418_RS14435	-25	S
ATTAAATATAATTATAACT	3191678	(-)	M28 family peptidase	PCC7418_RS14505	-21	S
GTTGAGATTAATTTTCATT	3379840	(-)	PAS domain-containing protein	PCC7418_RS15425	-46	Т
ATTAATAAAGTTTTGCAAA	3441389	(+)	glutamate-5-semialdehyde dehydrogenase	PCC7418_RS15780	-102	E
GTTGCTAATTTTTAGCAAA	3460255	(-)	bifunctional phosphoribosylaminoimidazolecarboxamide formyltransferase/IMP cyclohydrolase (<i>purH</i>)	PCC7418_RS15885	-45	F
AATTGGAAATTTTTTCAGT	3692765	(+)	peptidase S13	PCC7418_RS16905	-39	S
ATTGCAATTTAATTTCAAT	3725995	(-)	alpha/beta hydrolase	PCC7418_RS17030	-21	S
ATTGTCAATTTTTTGTAAT	3727770	(+)	HU family DNA binding protein	PCC7418_RS17045	-245	L
АТТАТААААААСТАТТААС	3774691	(+)	alkaline phosphatase	PCC7418_RS17240	-45	S
GTTAATTTTAATTTTTAAT	3840660	(+)	sensor protein	PCC7418_RS17555	-1	S
ATTGCAAAAGATATTCAAT	3885410	(-)	chlorophyll a/b binding light-harvesting protein-chlorophyll a/b binding light-harvesting protein	PCC7418_RS17760	-16	S
TTTGAAATTAACTTGCAAT	3887033	(+)	hemolysin type calcium binding protein	PCC7418_RS17775	-54	V

ТАТАААААТААТТТААААТ	3944457	(-)	HindVP family restriction endonuclease	PCC7418_RS18040	0	V
GATAAAAAAGATTAATAAT	4030327	(-)	glycosyltransferase family 2 protein	PCC7418_RS18475	-127	М
ATTGAAATAAATTGTCAAC	4047761	(+)	uracil phosphoribosyltransferase	PCC7418_RS18570	-188	F
ATTGAAATAAATTGTCAAC	4047761	(-)	carotene isomerase	PCC7418_RS18565	-141	F
ATTTAGCAAAATTATTAAA	4072511	(+)	magnesium-protoporphyrin IX monomethyl ester anaerobic oxidative cyclase	PCC7418_RS18705	-77	Н
TTTGAGAATATTTCTTTTT	4095529	(+)	PadR family transcriptional regulator (padR)	PCC7418_RS18830	-139	K

Supplementary Table 4. NtcA regulon prediction. NtcA boxes sequences, their position in the genome, orientation, the genes that are controlling (the NtcA regulon), locus tag from these genes, the distance of the box from the gene and the gen function from single-letter of functional (COGs) are presented.

NtcA boxes sequences	Position	osition Orientation NtcA regulon (genes)		Locus_tag	Distance	COG
ТСТААТАТТТСТТААА	193565	(-)	phosphoribosylformylglycinamidine cyclo-ligase (purM)	PCC7418_RS00865	-14	F
TGTAACATTCGATACA	433503	(+)	DUF4278 domain-containing protein	PCC7418_RS01970	-53	Р
TGTAAATTTTGATACC	435747	(+)	PstS phosphate ABC transporter substrate-binding protein (<i>pstS</i>)	PCC7418_RS01980	-166	Р
TGTAAATTTTGATACC	435748	(-)	adenylyl-sulfate kinase (<i>cysC</i>)	PCC7418_RS01975	-3	S
CGTATATTATGATACA	609571	(+)	ferredoxinnitrite reductase (nirA)	PCC7418_RS02810	-89	С
TGTAATAGTAAATAGA	676478	(+)	Uma2 family endonuclease	PCC7418_RS03075	-18	S
TGTATCTATTGTTACA	857460	(-)	DUF4278 domain-containing protein	PCC7418_RS03870	-116	S
TGTATCAAATATTACT	1222068	(-)	2-oxo acid dehydrogenase subunit E2	PCC7418_RS05590	-159	С
TGTATCAAATATTACT	1222069	(+)	response regulator	PCC7418_RS05595	-100	Т
AGTAAAAACTGCTACA	1299552	(+)	hybrid sensor histidine kinase/response regulator	PCC7418_RS05925	-195	Т
TGTATTGTTTTCTACA	1331526	(-)	helix turn helix domain-containing protein	PCC7418_RS06050	-183	С
AGTAGTTTTTGTTACA	1381373	(+)	glutamate synthase large subunit (gltB)	PCC7418_RS06265	-342	Е
TGTATTTTTCGATACA	1487910	(+)	ammonium transporter (amt)	PCC7418_RS06755	-145	Р
ТGTATCTTTTTATACT	1496086	(+)	Crp/Fnr family transcriptional regulator	PCC7418_RS06790	-54	K
ТАТААСТТТТТТТАСА	1502278	(-)	elongation factor G (<i>fusA</i>)-elongation factor Tu (<i>tuf</i>)	PCC7418_RS06815/ RS06810	-82	J, J
AGTAACAATTGATACA	1504147	(-)	cupin domain-containing protein-iron-sulfur cluster assembly accessory protein	PCC7418_RS06835	-14	G

TGTTTTTTCTGATACA	1613632	(-)	solute-ABC transporter substrate-binding protein	PCC7418_RS07290	-120	Е
TGTATCATTTGTTACA	1907277	(-)	pyridoxal phosphate-dependent aminotransferase	PCC7418_RS08620	-77	Е
TGTAGCGTTTGTTACT	1946907	(+)	nitrogenase cofactor biosynthesis protein (nifB)	PCC7418_RS08815	-629	С
AGTATTACTAAATACA	1963729	(+)	molybdate ABC transporter substrate-binding protein (modA)	PCC7418_RS08910	-352	Р
TGTATAAATCGCTACA	1981610	(-)	ammonium transporter (amt)	PCC7418_RS08960	-56	Р
AGTAACATTAAATACA	2022577	(-)	SulP family inorganic anion transporter	PCC7418_RS09170	-90	Р
AGTAACATTAAATACA	2022578	(+)	TIGR03279 family radical SAM protein	PCC7418_RS09175	-78	С
TGTAGTTGCAATTACT	2077841	(-)	sugar transferase	PCC7418_RS09405	-75	М
TGTAGCTGATAATACC	2201041	(-)	orange carotenoid-binding protein	PCC7418_RS09925	-53	S
ТСТААСААААGTTACA	2260357	(+)	photosystem II chlorophyll-binding protein CP47 (psbB)	PCC7418_RS10180	-161	S
TGTAACTTTAGATACG	2301793	(-)	alanine:cation symporter family protein	PCC7418_RS10335	-68	Е
TGTAACTTGTATTACA	2496434	(+)	phosphodiesterase	PCC7418_RS11260	-145	Е
TGTATTTAATGTTACA	2725914	(-)	type I glutamateammonia ligase (glnN)	PCC7418_RS12280	-72	Е
TGTAGTTGAGGTTACA	2977247	(+)	NINE protein	PCC7418_RS13560	-195	Е
AGTAGCAATTATTACA	3197191	(-)	sodium:glutamate symporter (gltS)	PCC7418_RS14540	-106	Е
TGTATTTTTTGATACA	3288086	(-)	MinD/ParA family protein	PCC7418_RS14970	-204	D
AGTAAAATAAAATACA	3502170	(-)	rhodopsin	PCC7418_RS16035	-294	S
TGTACAAAATATTACA	3542559	(-)	tetratricopeptide repeat protein	PCC7418_RS16280	-70	S

TGTTATTTACGATACA	3690483	(-)	[acyl-carrier-protein] S-malonyltransferase (fabD)	PCC7418_RS16890	-7	I
TGTATTCACTAATACA	3817904	(+)	response regulator	PCC7418_RS17455	-61	Т
AGTAATTATTGCTACA	3962735	(+)	transcriptional repressor (fur)	PCC7418_RS16465	-7	Т
AGTATCTTTCGTTACA	4051198	(-)	L-histidine N(alpha)-methyltransferase (egtD)	PCC7418_RS18585	-41	S
CGTATCAAGAGATACA	4130890	(+)	ATP-grasp domain-containing protein	PCC7418_RS18945	-144	S

Chapter 3

Supplementary Table S1. List of all treatments and variables measured in this study.

Strains/Experiments	(I) Long-terr	n stu	dies: gro	wth curv	es (gr	owth rate [µ]	and duplication time $[T_g]$)				
	High PO ₄ ³⁻ (50 μ M)- N ₂ as sole High Fe (1 μ M)			(0.005 (0.0 µM)- Low Hig		Low PO ₄ ³⁻ (0.005)- High Fe (1 μM)	Growth curve for 12 days, with aliquots taken every 2- 4 days, adjusted to pH 8.				
	(II) Short-ter	rm st	udies: N	concentra	ation	effect at diffe	rent pH levels				
UIB 001 (Balearic Islands, Spain)	pH 6 N ₂ a sole N se	ource	1	H 7 0.8 mM o	of NF	<u>рН 8</u> І ₃	Experiment during 96 h (high PO_4^{3-}), in which it was measured cell abundance				
	1 mM Tris N	H ₃	1 mM + 0.8 r			IM NH ₃	and ROS production.				
	(III) Short-term studies: P concentration effect at different pH levels										
	pH 6 Low PO ₄ ³⁻ (0.005		H 7 Low P	O4 ³⁻ (pH 8 0.005 μM)-	Experiment during 96 h with N replete, in which it was				
4B UA (Puerto Aldea, Chile)	Low Fe	e (1 nM)		High Fe		(1 µM)	measured cell abundance, ROS production and alkaline phosphatase activity				
	High PO ₄ ³⁻ (5 Fe (1	nM)	-		Fe (1	50 μM)-High μM)	(APA).				
	(IV) Analysi	s of A	APA und	er increas	ing F	O ₄ ³⁻ concentra	ations				
		1 nM	/		+Fe,	1 μM)	Experiment during 96 h with				
	0.005 μM	-	0.05	μM		0.5 μΜ	N replete at pH 8, in which it was measured APA with 5 μ M of MUF-P at different				
	5 μΜ		50	50 μM		100 μM	levels of Fe.				

Supplementary Table S2. 16S rRNA gene sequence identities of *Cobetia* sp. UIB 001, *Cobetia* sp. 4B UA and the type strains of the genus *Cobetia* (*C. amphilecti* KKM 1561^T, *C. litoralis* KMM 3880^T, *C. marina* JCM 21022^T, *C. pacifica* KMM 3879^T).

	<i>Cobetia</i> sp. UIB 001	<i>Cobetia</i> sp. 4B UA	<i>C. amphilecti</i> KMM 1561 ^T (AB646236)	<i>C. litoralis</i> KMM 3880 ^T (AB646234)	<i>C. marina</i> JCM 21022 ^T (CP017114)	<i>C. pacifica</i> KMM 3879 ^T (AB646233)
Cobetia sp. UIB 001	*	100	99.9	99.8	99.4	99.4
Cobetia sp. 4B UA	100	*	99.9	99.8	99.40	99.4
<i>C. amphilecti</i> KMM 1561 ^T (AB646236)	99.9	99.9	*	99.9	99.5	99.5
<i>C. litoralis</i> KMM 3880 ^T (AB646234)	99.8	99.8	99.9	*	99.4	99.4
<i>C. marina</i> JCM 21022 ^T (CP017114)	99.4	99.4	99.5	99.4	*	100
<i>C. pacifica</i> KMM 3879 ^T (AB646233)	99.4	99.4	99.5	99.4	100	*

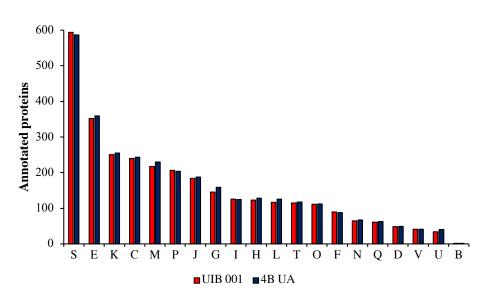
Supplementary Table S3. Average nucleotide identity based on BLAST (ANIb) values between *Cobetia* sp. (UIB 001 and 4B UA), *C. pacifica* GPM2, *C. amphilecti* KMM 296 and *C. marina* JCM 21022^T.

Query genome	<i>C. marina</i> JCM 21022 ^T (NZ_CP017114)	<i>C. pacifica</i> GPM2 (CP047970)	<i>C. amphilecti</i> KMM 296 (GCF_000754225)	<i>Cobetia</i> sp. UIB 001	<i>Cobetia</i> sp. 4B UA
<i>C. marina</i> JCM 21022 ^T (NZ_CP017114)	*	97.97 [92.39]	86.34 [71.89]	86.58 [75.72]	86.53 [77.04]
<i>C. pacifica</i> GPM2 (CP047970)	97.80 [92.34]	*	86.74 [74.05]	86.73 [76.22]	86.93 [79.32]
<i>C. amphilecti</i> KMM_296 (GCF_000754225)	86.23 [75.71]	86.74 [77.84]	*	96.45 [90.42]	96.69 [94.27]
Cobetia sp. UIB 001	86.43 [75.93]	86.67 [76.56]	96.30 [86.09]	*	96.99 [93.08]
Cobetia sp. 4B UA	86.30 [75.09]	86.79 [77.50]	96.58 [87.69]	96.93 [90.71]	*

Supplementary Table S4. Digital DNA-DNA hybridization (dDDH) values between *Cobetia* sp. (UIB 001 and 4B UA) and the genomes of *C. pacifica* GPM2, *C. amphilecti* KMM 296 and *C. marina* JCM 21022^T.

Query genome	Reference genome	DDH	Model C.I.	Distance	Prob. DDH >= 70%
Cobetia sp. UIB 001	C. pacifica GPM2 (CP047970)	32.70	[30.3 - 35.2%]	0.1285	0.3
Cobetia sp. UIB 001	Cobetia sp. 4B UA	75.80	[72.8 - 78.6%]	0.0284	86.69
Cobetia sp. UIB 001	C. amphilecti KMM 296 (GCF_000754225)	72.00	[68.9 - 74.8%]	0.0334	81.6
Cobetia sp. UIB 001	<i>C. marina</i> JCM 21022 ^T (NZ_CP017114)	32.40	[30 - 34.9%]	0.1299	0.27
Query genome	Reference genome	DDH	Model C.I.	Distance	Prob. DDH >= 70%
<i>Cobetia</i> sp. 4B UA	C. pacifica GPM2 (CP047970)	33.10	[30.7 - 35.6%]	0.1265	0.35
<i>Cobetia</i> sp. 4B UA <i>Cobetia</i> sp. 4B UA	<i>C. pacifica</i> GPM2 (CP047970) <i>Cobetia</i> sp. UIB 001	33.10 75.80	[30.7 - 35.6%] [72.8 - 78.6%]	0.1265 0.0284	0.35 86.69

32.20


[29.8 - 34.7%]

0.1307

Cobetia sp. 4B UA *C. marina* JCM 21022^T (NZ CP017114)

0.25

Supplementary Figure S1. COG analysis of the annotated proteins of Cobetia sp. UIB 001 and 4B UA.

CELLULAR PROCESSES AND SIGNALING [D] Cell cycle control, cell division, chromosome partitioning [M] Cell wall/membrane/envelope biogenesis [N] Cell motility [O] Post-translational modification, protein turnover, and chaperones [T] Signal transduction mechanisms [U] Intracellular trafficking, secretion, and vesicular transport [V] Defense mechanisms

INFORMATION STORAGE AND PROCESSING [J] Translation, ribosomal structure and biogenesis [K] Transcription [L] Replication, recombination and repair

 METABOLISM

 [C] Energy production and conversion

 [E] Amino acid transport and metabolism

 [F] Nucleotide transport and metabolism

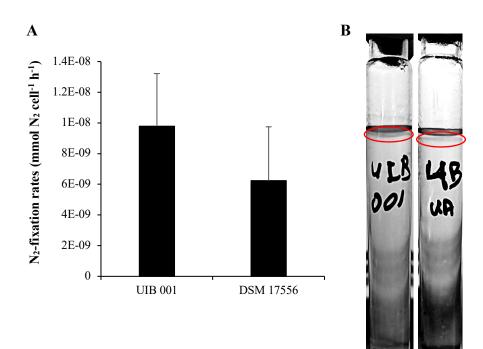
 [G] Carbohydrate transport and metabolism

 [G] Carbohydrate transport and metabolism

 [H] Coenzyme transport and metabolism

 [H] Lipid transport and metabolism

 [H] Lipid transport and metabolism

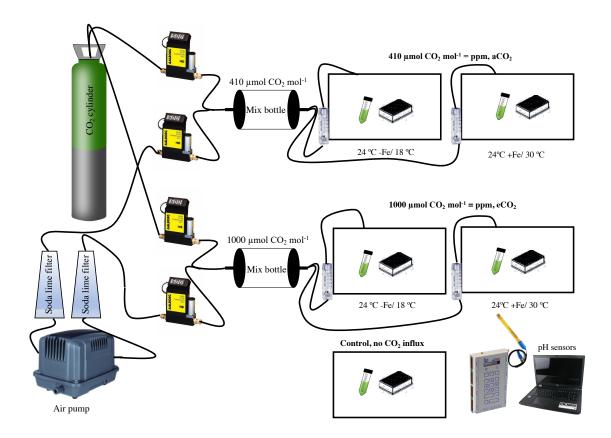

 [P] Inorganic ion transport and metabolism

 [Q] Secondary metabolites biosynthesis, transport, and catabolism

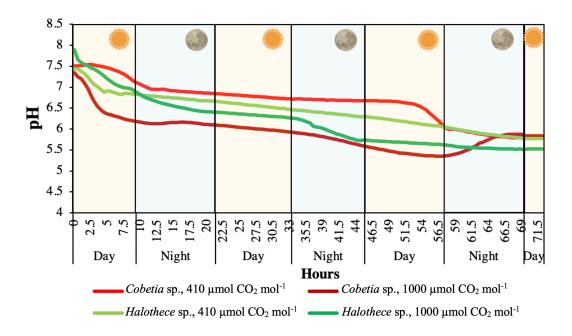
METABOLISM

POORLY CHARACTERIZED
[S] Function unknown

Supplementary Figure S2. Diazotrophic features the *Cobetia* spp. isolated. **A)** N₂-fixation rates of *Cobetia* sp. UIB 001 compared with the diazotrophic *Pseudomonas azotifigens* DSM 17556^T, using the acetylene reduction assay (ARA), as is described in Fernández-Juárez et al. (2019, 2020). **B)** Growth of the UIB 001 and 4B UA in the Burk's N-free medium. Red circles indicate the growth of these strains in this medium.



Chapter 4

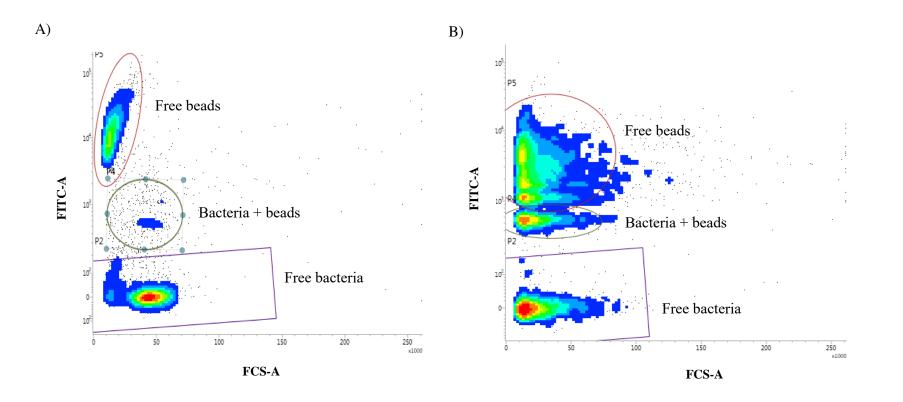

Supplementary Table S1. List of all treatments, strains and variables studied in this report. * Only tested for *Halothece* sp. and *Cobetia* sp.

			(I, II)	Without the inf	usion of CO ₂			
Strains	(I)	pH experin	nent (at 24°	C)	(II) Temperature	experiment (adj	usted to pH 8)	Description
Halothece sp. PCC 7418, Pasteur culture collection		pH	14				$\frac{\text{Under replete nutrients}}{\text{conditions: } 1.5 \text{ mM}}$ $PO_4^{3-}, 1 \ \mu\text{M Fe and } 0.15$	
<i>Fischerella muscicola</i> PCC 73103, Pasteur Culture Collection		pH	H 5			18 °C		mM NH ₃
<i>Cobetia</i> sp. UIB 001, obtained: isolated directly from <i>P. oceanica</i>		pŀ	H 6			24 °C		<u>Under P and Fe</u> <u>limitation</u> .: 0.1 µM
roots (Fernández-Juárez et al., unpublished data). GenBank: CP058244-CP058245	pH 6.5*	pH 6.5*						PO4 ³⁻ , 2 nM Fe and 0.15 mM NH ₃
Pseudomonas azotifigens DSM 17556 ^T , obtained: German Collection of Microorganisms and Cell Cultures GmbH (DSMZ)	pH 7.5*		pH			30 °C		At 120 r.p.m 12:12 day: night photoperiod for 72 h
		(III) Wit	th the infus	sion of CO ₂ (410	and 1000 µmol CO	2 mol ⁻¹)		
Strains	(i) CO ₂ -	Fe (at 24°C	, adjusted	to pH 8)	(ii) CO ₂ -temp	Description		
Halothece sp. PCC 7418 Cobetia sp. UIB 001	(+) Fe, 1 μM (+) PO ₄ ³⁻ , 1.5 mM	(-) Fe (+) PO ₄ ³	, 2 nM , 1.5 mM	(+ or -) Fe, (-) PO ₄ ³⁻ , 0.1 μΜ	18 °C (+) Fe, 1000 nM (+) PO ₄ ³⁻ , 1.5 mM	30 °C (+) Fe, 1000 nM (+) PO ₄ ³⁻ , 1.5 mM	18 °C or 30°C (-) PO ₄ ³⁻ ,0.1 μM	Control, no CO ₂ influx: aCO2: 410 µmol CO ₂ mol ⁻¹ eCO2: 1000 µmol CO ₂ mol ⁻¹ At 120 r.p.m 12 h dark:12 h light photoperiod for 72 h, performed under 0.15 mM NH ₃)
				Response varia	ables			
(1) Growth		(2) N ₂ -fixati	on rates	(3) ROS pi	oduction	(4) P-m	echanisms (APA)*

Supplementary Figure S1. Experimental set-up of the CO₂ experiments, considering two different levels of CO₂, aCO₂: 410 μ mol CO₂ mol⁻¹ and elevated, eCO₂: 1000 μ mol CO₂ mol⁻¹, and included a control with no CO₂ influx. The pH level was monitored for aCO₂ and eCO₂.

Supplementary Figure S2. pH monitoring under a continuous influx of atmospheric CO₂ 410 μ mol CO₂ mol⁻¹ (atmospheric CO₂, aCO₂) and elevated CO₂ 1000 μ mol CO₂ mol⁻¹ (elevated CO₂, eCO₂) for *Halothece* sp. and *Cobetia* sp.

Chapter 5


Supplementary Table 1. List of all treatments performed in this study, divided into two parts: (I) Response to MPs at environmentally relevant concentrations and (II) Response to MPs at environmentally concentrations vs high concentrations (the "worst-case" scenario). Abbreviations: PE, polyethylene; PP, polypropylene; PVC, polyvinyl chloride; Fluo, fluoranthene; HBCD, 1,2,5,6,9,10-hexabromocyclododecane; DEHP, dioctyl-phthalate; PS, polystyrene. Response variables of each experiment are indicated in the table.

Experimental p	lan/treatments:	MPs (PE, PP and/or PVC)	Additive (A) (Fluoranthene, HBCD and/or DEHP)	MPs and A: PE+Fluo/PP+HBCD/ PVC+DEHP or all interacting	PS (beads)
I. Response to MPs at environmentally	y relevant concentrations	•			
	Response variable: growth and	d microscopic analysis			
Species	s tested				
Phototroph: unicellular autotroph	Halothece sp. PCC 7418 Source: Pasteur Culture Collection			Low (L) MPs (0.01 µg ml ⁻¹) and Low (L) A	4.55 x10 ³ particles
Phototroph: filamentous heterocyst- forming mixotroph	<i>Fischerella muscicola</i> PCC 73103 Source: Pasteur Culture Collection	0,0.01,0.1,1,100 μg mL ⁻¹	0, 0.3, 3, 30, 300 μg L ⁻¹	(0.3 µg L ⁻¹)	mL-1
Heterotroph: isolated from roots of <i>P</i> . <i>oceanica</i> , benthic specie	<i>Cobetia</i> sp. UIB 001 Source: isolated directly from <i>P</i> . <i>oceanica</i> roots (Fernández-Juárez et al., in prep). GenBank: CP058244- CP058245			High (H) MPs (100 µg ml ⁻¹) and High (H) A (300 µg L ⁻¹)	In <i>Halothece</i> sp. PCC 7418 (data did
Heterotroph: planktonic species	Marinobacterium litorale DSM 23545 Source: German Collection of Microorganisms and Cell Cultures GmbH (DSMZ)				not show)
Heterotroph: planktonic species	Pseudomonas azotifigens DSM 17556 ^T : Source: German Collection of Microorganisms and Cell Cultures GmbH (DSMZ)				
II. Response to MPs at environmental	ly relevant concentrations vs high conc	entrations (the "worst-c	ase" scenario)		•
	th, microscopic analysis, protein overexp			³⁻ -uptake and N ₂ -fixation	
Species	s tested				
Phototroph: unicellular autotroph	Halothece sp. PCC 7418	0, 100 and 1000 μg mL ⁻¹	0, 300, 3000 μg L ⁻¹	3MPs (100 μg mL ⁻¹) and 3A (300 μg L ⁻¹) (all combined)	4.55 x10 ⁶ particles mL ⁻¹
Heterotroph: isolated from roots of <i>P</i> . <i>oceanica</i> , benthic specie	Cobetia sp. UIB 001			3MPs (1000 μg mL ⁻¹) and 3A (3000 μg L ⁻¹) (all combined)	4.55 x10 ⁷ particles mL ⁻¹

Halothece sp.	Control	PS	PS^	PE	PE^	PP	РР	PVC	PVC^	Fluo	Fluo^	Br	Br^	DEHP	DEHP^	3MP	3MP	3A	3A^
(p-value) Control	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PS	0.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PS^	0.02	0.80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PE	0.03	0.16	0.17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PE^	0.02	0.09	0.10	0.64	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PP	0.02	0.40	0.44	0.37	0.20	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PP^	0.00	0.38	0.36	0.33	0.18	0.95	-	-	-	-	-	-	-	-	-	-	-	-	-
PVC	0.09	0.47	0.54	0.59	0.37	0.88	0.85	-	-	-	-	-	-	-	-	-	-	-	-
PVC^	0.00	0.57	0.66	0.23	0.14	0.46	0.42	0.66	-	-	-	-	-	-	-	-	-	-	-
Fluo	0.09	0.24	0.27	0.71	0.14	0.39	0.38	0.48	0.32	-	-	-	-	-	-	-	-	-	-
Fluo^	0.04	0.09	0.27	0.21	0.94	0.13	0.14	0.14	0.12	0.39	-	-	-	-	-	-	-	-	-
HBCD	0.14	0.56	0.31	0.07	0.30	0.13	0.09	0.27	0.16	0.17	0.07	-	-	-	-	-	-	-	-
HBCD^	0.04	0.25	0.08	0.05	0.04	0.04	0.01	0.17	0.01	0.14	0.07	0.37	-	-	-	-	-	-	-
DEHP	0.09	0.88	0.66	0.13	0.08	0.31	0.29	0.40	0.44	0.22	0.08	0.67	0.29	-	-	-	-	-	-
DEHP^	0.30	0.95	0.95	0.42	0.30	0.71	0.83	0.67	0.84	0.34	0.12	0.72	0.52	0.88	-	-	-	-	-
3MP	0.28	0.54	0.29	0.07	0.05	0.12	0.09	0.26	0.15	0.17	0.07	0.96	0.40	0.64	0.71	-	-	-	-
3MP^	0.21	0.20	0.04	0.04	0.03	0.03	0.00	0.12	0.00	0.11	0.06	0.16	0.25	0.16	0.40	0.18	-	-	-
3A	0.51	0.07	0.05	0.02	0.02	0.03	0.07	0.06	0.08	0.06	0.03	0.10	0.20	0.07	0.22	0.10	0.29	-	-
3A^	0.03	0.19	0.22	0.63	0.86	0.32	0.31	0.41	0.26	0.94	0.41	0.14	0.11	0.17	0.30	0.13	0.09	0.04	-

Supplementary Table 2. Comparison of PO_4^{3-} -uptake (pmol PO_4^{3-} cell⁻¹ d⁻¹) between treatments using a posthoc test (Wilcoxon) after Kruskal-Wallis over the whole dataset in *Halothece* sp. and *Cobetia* sp. (significant differences = p < 0.05).

<i>Cobetia</i> sp.	Control	PS	PS^	PE	PE	РР	PP^	PVC	PVC^	Fluo	Fluo^	Br	Br^	DEHP	DEHP^	3MP	3MP^	3A	3A^
(p-value) Control	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PS	0.08	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PS^	0.01	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PE	0.48	0.19	0.01	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PE^	0.66	0.21	0.03	0.89	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PP	0.00	0.39	0.00	0.34	0.36	-	-	-	-	-	-	-	-	-	-	-	-	-	-
PP^	0.13	0.07	0.01	0.27	0.41	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-
PVC	0.26	0.24	0.01	0.74	0.67	0.47	0.14	-	-	-	-	-	-	-	-	-	-	-	-
PVC^	0.04	0.90	0.00	0.17	0.20	0.77	0.02	0.22	-	-	-	-	-	-	-	-	-	-	-
Fluo	0.13	0.23	0.00	0.62	0.20	0.48	0.07	0.87	0.20	-	-	-	-	-	-	-	-	-	-
Fluo^	0.01	0.01	0.00	0.01	0.57	0.00	0.01	0.00	0.00	0.00	-	-	-	-	-	-	-	-	-
HBCD	0.35	0.03	0.01	0.30	0.02	0.02	0.89	0.15	0.02	0.07	0.00	-	-	-	-	-	-	-	-
HBCD^	0.02	0.02	0.02	0.10	0.17	0.00	0.07	0.04	0.01	0.02	0.00	0.13	-	-	-	-	-	-	-
DEHP	0.30	0.04	0.10	0.19	0.26	0.08	0.50	0.12	0.04	0.10	0.03	0.48	0.87	-	-	-	-	-	-
DEHP^	0.01	0.06	0.05	0.09	0.14	0.00	0.03	0.05	0.01	0.03	0.04	0.08	0.40	0.64	-	-	-	-	-
3MP	0.01	0.04	0.03	0.10	0.17	0.00	0.02	0.05	0.01	0.02	0.01	0.11	0.91	0.83	0.28	-	-	-	-
3MP^	0.55	0.05	0.03	0.33	0.45	0.09	0.95	0.19	0.04	0.14	0.01	0.90	0.37	0.59	0.25	0.35	-	-	-
3A	0.04	0.01	0.09	0.05	0.09	0.01	0.06	0.02	0.00	0.01	0.01	0.06	0.29	0.45	0.50	0.30	0.16	-	-
3A^	0.07	0.29	0.00	0.08	0.10	0.17	0.07	0.09	0.33	0.08	0.01	0.03	0.03	0.03	0.06	0.05	0.06	0.01	-

Supplementary Figure 1. Cytograms showing **A**) *Halothece* sp. and **B**) *Cobetia* sp. cells, being free or adsorbed with the PS-beads, using FITC-A and FCS-A as the flow cytometer parameters.

7. REFERENCES

REFERENCES

- Agawin, N. S. R., Duarte, C. M., and Agusti, S. (2000). Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Am. Soc. *Limnol. Oceanogr.* 45, 591–600. doi: 10.4319/lo.2000.45.3.0591
- Agawin, N. S. R., Rabouille, S., Veldhuis, M. J. W., Servatius, L., Hol, S., Van Overzee, M. J., et al. (2007). Competition and facilitation between unicellular nitrogen-fixing cyanobacteria and non nitrogen-fixing phytoplankton species. *Limonol. Oceanogr*. 52, 2233–2248. doi: 10.4319/lo.2007.52.5.2233
- Agawin, N. S. R., Benavides, M., Busquets, A., Ferriol, P., Stal, L. J., and Arístegui, J. (2014). Dominance of unicellular cyanobacteria in the diazotrophic community in the Atlantic Ocean. *Limnol. Oceanogr.* 59, 623–637. doi:10.4319/lo.2014.59.2.0623.
- Agawin, N. S. R., Ferriol, P., Cryer, C., Alcon, E., Busquets, A., Sintes, E., et al. (2016). Significant nitrogen fixation activity associated with the phyllosphere of Mediterranean seagrass *Posidonia oceanica*: First report. *Mar. Ecol. Prog. Ser.* 551, 53–62. doi:10.3354/meps11755
- Agawin, N. S. R., Ferriol, P., Sintes, E., and Moyà, G. (2017). Temporal and spatial variability of in situ nitrogen fixation activities associated with the Mediterranean seagrass *Posidonia oceanica* meadows. *Limnol. Oceanogr.* 62, 2575–2592. doi:10.1002/lno.10591.
- Agawin, N. S. R., Ferriol, P., and Sintes, E. (2019). Simultaneous measurements of nitrogen fixation activities associated with different plant tissues of the seagrass *Posidonia oceanica. Mar. Ecol. Prog. Ser.* doi:10.3354/meps12854.
- Agawin N. S. R, Gil Atorrasagasti M. G, Frank Comas A., Fernández-Juárez V., López-Alforja X and Hendriks I. E. (2021). Response of the seagrass *Posidonia oceanica* and its associated N₂ fixers to high business-as-usual climate change scenario in winter. *Limnol. Oceanogr.*
- Al-Awadhi, H., Al-Mailem, D., Dashti, N., Khanafer, M., and Radwan, S. (2012). Indigenous hydrocarbon-utilizing bacterioflora in oil-polluted habitats in Kuwait, two decades after the greatest man-made oil spill. *Arch. Microbiol.* 194, 689–705. doi:10.1007/s00203-012-0800-7.

- Alessi E., and Di Carlo G., (2018). "Out of the plastic trap: saving the Mediterranean from plastic pollution". WWF Mediterranean Marine Initiative, Rome, Italy. 28 pp.
- Almroth, B. C. (2019). marine plastic pollution: sources, impacts, and policy issues. 13, 317–326. doi:10.1093/reep/rez012.
- Alquéres, S. M. C., Oliveira, J. H. M., Nogueira, E. M., Guedes, H. V., Oliveira, P. L., Câmara, F., et al. (2010). Antioxidant pathways are up-regulated during biological nitrogen fixation to prevent ROS-induced nitrogenase inhibition in *Gluconacetobacter diazotrophicus*. Arch. Microbiol. 192, 835–841. doi:10.1007/s00203-010-0609-1.
- Anderson, O. R. (2018). Evidence for coupling of the carbon and phosphorus biogeochemical cycles in freshwater microbial communities. *Front. Mar. Sci.* 5, 1– 6. doi:10.3389/fmars.2018.00020.
- Argandoña, M., Fernández-Carazo, R., Llamas, I., Martínez-Checa, F., Caba, J. M., Quesada, E., et al. (2005). The moderately halophilic bacterium *Halomonas maura* is a free-living diazotroph. *FEMS Microbiol. Lett.* 244, 69–74. doi:10.1016/j.femsle.2005.01.019.
- Arnaud-Haond, S., Duarte, C. M., Diaz-Almela, E., Marbà, N., Sintes, T., and Serrão, E.
 A. (2012). Implications of extreme life span in clonal organisms: millenary clones in meadows of the threatened seagrass *Posidonia oceanica*. *PLoS One* 7. doi:10.1371/journal.pone.0030454.
- Arrigo, K. R. (2005). Marine microorganisms and global nutrient cycles. *Nature* 437, 343–348. doi:10.1038/nature04158.
- Ascenzi, P., and Amiconi, G. (1987). Logarithmic plots in enzymology. Representation of the Michaelis-Menten equation. *Biochem. Educ.* doi:10.1016/0307-4412(87)90093-8.
- Baas-Becking, L.G.M. (1934). Geobiologie of inleiding tot de milieukunde, The Hague, the Netherlands: W.P. Van Stockum & Zoon.
- Baichoo, N., and Helmann, J. D. (2002). Recognition of DNA by Fur : a Reinterpretation of the Fur Box Consensus Sequence Recognition of DNA by Fur : a Reinterpretation of the Fur Box Consensus Sequence. *J. Bacteriol.* 184, 5826–5832. doi:10.1128/JB.184.21.5826.
- Bakir, A., Rowland, S. J., and Thompson, R. C. (2014). Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. *Environ. Pollut.* 185, 16–23. doi:10.1016/j.envpol.2013.10.007.

- Balabanova, L., Golotin, V., Kovalchuk, S., Bulgakov, A., Likhatskaya, G., Son, O., et al. (2014). A novel bifunctional hybrid with marine bacterium alkaline phosphatase and far eastern holothurian mannan-binding lectin activities. *PLoS One* 9. doi:10.1371/journal.pone.0112729.
- Balabanova, L. A., Golotin, V. A., Kovalchuk, S. N., Babii, A. V., Shevchenko, L. S., Son, O. M., et al. (2016a). The Genome of the marine bacterium *Cobetia marina* KMM 296 isolated from the mussel *Crenomytilus grayanus* (Dunker, 1853). *Russ. J. Mar. Biol.* 42, 106–109. doi:10.1134/S106307401601003X.
- Balabanova, L., Nedashkovskaya, O., Podvolotskaya, A., Slepchenko, L., Golotin, V., Belik, A., et al. (2016b). Data supporting functional diversity of the marine bacterium *Cobetia amphilecti* KMM 296. *Data Br.* 8, 726–732. doi:10.1016/j.dib.2016.06.034.
- Barcelos e Ramos, J., Biswas, H., Schulz, K. G., LaRoche, J., and Riebesell, U. (2007). Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer *Trichodesmium. Global Biogeochem. Cycles* 21, 1–6. doi:10.1029/2006GB002898.
- Benedetti, M., Giuliani, M. E., and Regoli, F. (2015). Oxidative metabolism of chemical pollutants in marine organisms: molecular and biochemical biomarkers in environmental toxicology. *Ann. N. Y. Acad. Sci.* 1340, 8–19. doi:10.1111/nyas.12698.
- Berge, T., Daugbjerg, N., Andersen, B. B., and Hansen, P. J. (2010). Effect of lowered pH on marine phytoplankton growth rates. *Mar. Ecol. Prog. Ser.* 416, 79–91. doi:10.3354/meps08780.
- Bergersen, F. J. (1970). The quantitative relationship between nitrogen fixation and the acetylene-reduction assay. *Aust. J. Biol. Sci.* doi:10.1071/BI9701015.
- Berman-Frank, I., Cullen, J. T., Shaked, Y., Sherrell, R. M., and Falkowski, P. G. (2001). Iron availability, cellular iron quotas, and nitrogen fixation in *Trichodesmium*. *Limnol. Oceanogr.* 46, 1249–1260. doi:10.4319/lo.2001.46.6.1249.
- Berner, C., Bertos-Fortis, M., Pinhassi, J., and Legrand, C. (2018). Response of microbial communities to changing climate conditions during summer cyanobacterial blooms in the Baltic Sea. *Front. Microbiol.* 9, 1–16. doi:10.3389/fmicb.2018.01562.
- Biddanda, B., Ogdahl, M., and Cotner, J. (2001). Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. *Limnol. Oceanogr.* 46, 730–739. doi:10.4319/lo.2001.46.3.0730.

- Blanco, A. G., Sola, M., Gomis-Rüth, F. X., and Coll, M. (2002). Tandem DNA Recognition by PhoB, a two-component signal transduction transcriptional activator. *Structure* 10, 701–713. doi:10.1016/S0969-2126(02)00761-X.
- Boatman, T. G., Lawson, T., and Geider, R. J. (2017). A key marine diazotroph in a changing ocean: The interacting effects of temperature, CO₂ and light on the growth of *Trichodesmium erythraeum* IMS101. *PLoS One* 12, 1–20. doi:10.1371/journal.pone.0168796.
- Boyd, P. W., and Doney, S. C. (2002). Modelling regional responses by marine pelagic ecosystems to global climate change. *Geophys. Res. Lett.* 29, 53-1-53–4. doi:10.1029/2001gl014130.
- Breitbarth, E., Oschlies, A., and LaRoche, J. (2007). Physiological constraints on the global distribution of *Trichodesmium*-effect of temperature on diazotrophy. *Biogeosciences* 4, 53–61. doi:10.5194/bg-4-53-2007.
- Brierley, A. S., and Kingsford, M. J. (2009). Impacts of climate change on marine organisms and ecosystems. *Curr. Biol.* 19, R602–R614. doi:10.1016/j.cub.2009.05.046.
- Bristow, L. A., Mohr, W., Ahmerkamp, S., and Kuypers, M. M. M. (2017). Nutrients that limit growth in the ocean. *Curr. Biol.* 27, R474–R478. doi:10.1016/j.cub.2017.03.030.
- Browning, T. J., Achterberg, E. P., Yong, J. C., Rapp, I., Utermann, C., Engel, A., et al. (2017). Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. *Nat. Commun.* 8, 1–7. doi:10.1038/ncomms15465.
- Bryant, J. A., Clemente, T. M., Viviani, D. A., Fong, A. A., Thomas, K. A., Kemp, P., et al. (2016). Diversity and activity of communities inhabiting plastic debris in the North Pacific Gyre. *mSystems* 1, 1–19. doi:10.1128/msystems.00024-16.
- By the Committee on biological markers of the national research council (1987). Biological markers in environmental health research. *Environ. Heal. Perspect.* 74, 3–9. doi:10.1210/endo-107-6-1820.
- Cabiscol, E., Tamarit, J., and Ros, J. (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. *Int. Microbiol.* 3, 3–8. doi:10.2436/im.v3i1.9235.
- Campagne, C. S., Salles, J. M., Boissery, P., and Deter, J. (2015). The seagrass *Posidonia* oceanica: ecosystem services identification and economic evaluation of goods and benefits. *Mar. Pollut. Bull.* 97, 391–400. doi:10.1016/j.marpolbul.2015.05.061.

- Cao, J., Lai, Q., Yuan, J., and Shao, Z. (2015). Genomic and metabolic analysis of fluoranthene degradation pathway in *Celeribacter indicus* P73 T. *Sci. Rep.* 5, 1–12. doi:10.1038/srep07741.
- Cavicchioli, R., Ostrowski, M., Fegatella, F., Goodchild, A., and Guixa-Boixereu, N. (2003). Life under nutrient limitation in oligotrophic marine environments: An eco/physiological perspective of *Sphingopyxis alaskensis* (formerly *Sphingomonas alaskensis*). *Microb. Ecol.* 45, 203–217. doi:10.1007/s00248-002-3008-6.
- Cavicchioli, R., Ripple, W. J., Timmis, K. N., Azam, F., Bakken, L. R., Baylis, M., et al. (2019). Scientists' warning to humanity: microorganisms and climate change. *Nat. Rev. Microbiol.* 17, 569–586. doi:10.1038/s41579-019-0222-5.
- Cerozi, B. da S., and Fitzsimmons, K. (2016). The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. *Bioresour. Technol.* 219, 778– 781. doi:10.1016/j.biortech.2016.08.079.
- Chattopadhyay, M.K (2006). Mechanism of bacterial adaptation to low temperature. J. *Biosci.* 31, 157–65. doi: 10.1007/BF02705244.
- Cole, M., and Galloway, T. S. (2015). Ingestion of nanoplastics and microplastics by pacific oyster larvae. *Environ. Sci. Technol.* 49, 14625–14632. doi:10.1021/acs.est.5b04099.
- Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Lasram, F. B. R., Aguzzi, J., et al. (2010). The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. *PLoS One* 5. doi:10.1371/journal.pone.0011842.
- Collier, J. L., and Grossman, A. R. (1994). A small polypeptide triggers complete degradation of light-harvesting phycobiliproteins. *EMBO J.* 13, 1039–1047.
- Contreras-Moreira, B., and Vinuesa, P. (2013). GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. *Appl. Environ. Microbiol.* 79, 7696–7701. doi:10.1128/aem.02411-13.
- Crooks, G. E., Hon, G., Chandonia, J. M., and Brenner, S. E. (2004). WebLogo: A sequence logo generator. *Genome Res.* doi:10.1101/gr.849004.
- Curren, E., and Leong, S. C. Y. (2019). Profiles of bacterial assemblages from microplastics of tropical coastal environments. *Sci. Total Environ.* 655, 313–320. doi:10.1016/j.scitotenv.2018.11.250.
- Dao, M. H. (2013). Reassessment of the cell surface area limitation to nutrient uptake in phytoplankton. *Mar. Ecol. Prog. Ser.* 489, 87–92. doi:10.3354/meps10434.

- De Bruijn, F. J. (2015). Biological Nitrogen Fixation. Amsterdam: Elsevier Inc, doi: 10.1002/9781119053095
- de Haan, W. P., Sanchez-Vidal, A., and Canals, M. (2019). Floating microplastics and aggregate formation in the Western Mediterranean Sea. *Mar. Pollut. Bull.* 140, 523– 535. doi:10.1016/j.marpolbul.2019.01.053.
- de Jong, A., Pietersma, H., Cordes, M., Kuipers, O. P., and Kok, J. (2012). PePPER: a webserver for prediction of prokaryote promoter elements and regulons. *BMC Genomics* 13, 1. doi:10.1186/1471-2164-13-299.
- DeLano, W. L. (2002). PyMOL: An open-source molecular graphics tool. *CCP4 Newsl. Protein Crystallogr.* doi:10.1038/s41598-017-03842-2.
- Diaz, J., Ingall, E., Vogt, S., de Jonge, M. D., Paterson, D., Rau, C., et al. (2009). Characterization of phosphorus, calcium, iron, and other elements in organisms at sub-micron resolution using X-ray fluorescence spectromicroscopy. *Limnol. Oceanogr. Methods* 7, 42–51. doi:10.4319/lom.2009.7.42.
- Diaz, J. M., and Plummer, S. (2018). Production of extracellular reactive oxygen species by phytoplankton: past and future directions. *J. Plankton Res.* 40, 655–666. doi:10.1093/plankt/fby039.
- Doney, S. C., Fabry, V. J., Feely, R. A., and Kleypas, J. A. (2009). Ocean acidification: The other CO₂ problem. *Ann. Rev. Mar. Sci.* 1, 169–192. doi:10.1146/annurev.marine.010908.163834.
- Duhamel, S., Björkman, K. M., van Wambeke, F., Moutin, T., and Karl, D. M. (2011). Characterization of alkaline phosphatase activity in the north and south pacific subtropical gyres: implications for phosphorus cycling. *Limnol. Oceanogr.* 56, 1244–1254. doi:10.4319/lo.2011.56.4.1244.
- Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., et al. (2015). Impact of ocean acidification on the structure of future phytoplankton communities. *Nat. Clim. Chang.* 5, 1002–1006. doi:10.1038/nclimate2722.
- Dyhrman, S. T., and Haley, S. T. (2006). Phosphorus scavenging in the unicellular marine diazotroph *Crocosphaera watsonii*. *Appl. Environ. Microbiol*. doi:10.1128/AEM.72.2.1452-1458.2006.
- Echeveste, P., Agustí, S., and Dachs, J. (2010). Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. *Environ. Pollut.* 158, 299–307. doi:10.1016/j.envpol.2009.07.006.

- Eichner, M., Kranz, S. A., and Rost, B. (2014a). Combined effects of different CO₂ levels and N sources on the diazotrophic cyanobacterium *Trichodesmium*. *Physiol. Plant*. 152, 316–330. doi:10.1111/ppl.12172.
- Eichner, M., Rost, B., and Kranz, S. A. (2014b). Diversity of ocean acidification effects on marine N₂ fixers. *J. Exp. Mar. Bio. Ecol.* 457, 199–207. doi:10.1016/j.jembe.2014.04.015.
- Erni-cassola, G., Zadjelovic, V., Gibson, M. I., and Christie-oleza, J. A. (2019). Distribution of plastic polymer types in the marine environment; a meta- analysis. J. Hazard. Mater. 369, 691–698. doi:10.1016/j.jhazmat.2019.02.067.
- Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M., and Morgan, V. I. (1996). Natural and anthropogenic changes in atmospheric CO₂ over the last 1000 years from air in Antarctic ice and firn. *J. Geophys. Res. Atmos.* doi:10.1029/95JD03410.
- Everaert, G., Van Cauwenberghe, L., De Rijcke, M., Koelmans, A. A., Mees, J., Vandegehuchte, M., et al. (2018). Risk assessment of microplastics in the ocean: Modelling approach and first conclusions. *Environ. Pollut.* 242, 1930–1938. doi:10.1016/j.envpol.2018.07.069.
- Falkowski, P. G. (1997). Evolution of the nitrogen cycle and its influence on the biological sequestration of CO₂ in the ocean. *Nature* 387, 272–275. doi:10.1038/387272a0.
- Fernández-Juárez, V., Bennasar-Figueras, A., Tovar-Sanchez, A., and Agawin, N. S. R. (2019). The role of iron in the P-acquisition mechanisms of the unicellular N₂ -fixing cyanobacteria *Halothece* sp., found in association with the Mediterranean seagrass *Posidonia oceanica. Front. Microbiol.* 10, 1–22. doi:10.3389/fmicb.2019.01903.
- Fernández-Juárez, V., Bennasar-Figueras, A., Sureda-Gomila, A., Ramis-Munar, G., and Agawin, N. S. R. (2020). Differential effects of varying concentrations of phosphorus, iron, and nitrogen in N₂-fixing cyanobacteria. *Front. Microbiol.* 11, 1– 19. doi:10.3389/fmicb.2020.541558.
- Fernández-Juárez, V., López-Alforja, X., Frank-Comas, A., Echeveste, P., Bennasar-Figueras, A., Ramis-Munar, G., Gomila, R. M., and Agawin, N. S. R. (2021). "The good, the bad and the double-sword" Effects of microplastics and their organic additives in marine bacteria. *Front. Microbiol.* 11, 1–12. doi:10.3389/fmicb.2020.581118.

- Ferrat, L., Pergent-Martini, C., and Roméo, M. (2003). Assessment of the use of biomarkers in aquatic plants for the evaluation of environmental quality: application to seagrasses. *Aquat. Toxicol.* 65, 187–204. doi:10.1016/S0166-445X(03)00133-4.
- Fillat, M. F. (2014). The fur (ferric uptake regulator) superfamily: diversity and versatility of key transcriptional regulators. *Arch. Biochem. Biophys.* 546, 41–52. doi:10.1016/j.abb.2014.01.029.
- Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., et al. (2016). The Pfam protein families database: towards a more sustainable future. *Nucleic Acids Res.* 44, D279–D285. doi:10.1093/nar/gkv1344.
- Flecha, S., Pérez, F. F., García-Lafuente, J., Sammartino, S., Ríos, A. F., and Huertas, I.
 E. (2015). Trends of pH decrease in the Mediterranean Sea through high frequency observational data: Indication of ocean acidification in the basin. *Sci. Rep.* 5, 1–8. doi:10.1038/srep16770.
- Flombaum, P., Gallegos, J. L., Gordillo, R. A., Rincon, J., Zabala, L. L., Jiao, N., et al. (2013). Present and future global distributions of the marine Cyanobacteria *Prochlorococcus* and *Synechococcus*. *Proc. Natl. Acad. Sci.* 110, 9824–9829. doi:10.1073/pnas.1307701110.
- Fredriksson, C., and Bergman, B. (1997). Ultrastructural characterisation of cells specialised for nitrogen fixation in a non-heterocystous cyanobacterium, *Trichodesmium* spp. *Protoplasma* 197, 76–85. doi:10.1007/BF01279886.
- Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S. (2020).

Global Carbon Budget, Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, 2020.

- Fu, F. X., Zhang, Y., Bell, P. R. F., and Hutchins, D. A. (2005). Phosphate uptake and growth kinetics of *Trichodesmium* (Cyanobacteria) isolates from the North Atlantic Ocean and the Great Barrier Reef, Australia. *J. Phycol.* 41, 62–73. doi:10.1111/j.1529-8817.2005.04063.x.
- Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y., and Hutchins, D. A. (2007). Effects of increased temperature and CO₂ on photosynthesis, growth, and elemental ratios in marine *Synechococcus* and *Prochlorococcus* (Cyanobacteria). *J. Phycol.* 43, 485– 496. doi:10.1111/j.1529-8817.2007.00355.x.
- Fu, F. X., Mulholland, M. R., Garcia, N. S., Beck, A., Bernhardt, P. W., Warner, M. E., Sañudo-Wilhelmy, S. A, and Hutchins., D. A (2008). Interactions between changing pCO₂, N₂ fixation, and Fe limitation in the marine unicellular cyanobacterium *Crocosphaera. Limnol. Oceanogr.* 53, 2472–2484. doi:10.4319/lo.2008.53.6.2472.
- Fu, F. X., Yu, E., Garcia, N. S., Gale, J., Luo, Y., Webb, E. A., and Hutchins D. A. (2014). Differing responses of marine N₂ fixers to warming and consequences for future diazotroph community structure. *Aquat. Microb. Ecol.* 72, 33–46. doi:10.3354/ame01683.
- Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., et al. (2018). Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. *Environ. Sci. Eur.* 30. doi:10.1186/s12302-018-0139-z.
- Garcia, N. S., Fu, F. X., Breene, C. L., Bernhardt, P. W., Mulholland, M. R., Sohm, J. A., et al. (2011). Interactive effects of irradiance and CO₂ on CO₂ fixation and N₂ fixation in the diazotroph *Trichodesmium erythraeum* (cyanobacteria). *J. Phycol.* 47, 1292–1303. doi:10.1111/j.1529-8817.2011.01078.x.
- Garcia, N. S., Fu, F. X., Breene, C. L., Yu, E. K., Bernhardt, P. W., Mulholland, M. R., et al. (2013a). Combined effects of CO₂ and light on large and small isolates of the unicellular N₂-fixing cyanobacterium *Crocosphaera* watsonii from the western tropical Atlantic Ocean. *Eur. J. Phycol.* 48, 128–139. doi:10.1080/09670262.2013.773383.
- Garcia, N. S., Fu, F. X., and Hutchins, D. A. (2013b). Colimitation of the unicellular photosynthetic diazotroph *Crocosphaera watsonii* by phosphorus, light, and carbon dioxide. *Limnol. Oceanogr.* 58, 1501–1512. doi:10.4319/lo.2013.58.4.1501.

- Garcia, N. S., Fu, F., Sedwick, P. N., and Hutchins, D. A. (2015). Iron deficiency increases growth and nitrogen-fixation rates of phosphorus-deficient marine cyanobacteria. *ISME J.* 9, 238–245. doi:10.1038/ismej.2014.104.
- García, M. J. L. (2015). Recent warming in the balearic sea and Spanish Mediterranean coast. Towards an earlier and longer summer. *Atmosfera* 28, 149–160. doi:10.20937/atm.2015.28.03.01.
- Gardner, S. G., Johns, K. D., Tanner, R., and McCleary, W. R. (2014). The PhoU protein from *Escherichia coli* interacts with PhoR, PstB, and metals to form a phosphatesignaling complex at the membrane. *J. Bacteriol.* 196, 1741–1752. doi:10.1128/JB.00029-14.
- Ge, C., Chai, Y., Wang, H., and Kan, M. (2017). Ocean acidification: one potential driver of phosphorus eutrophication. *Mar. Pollut. Bull.* 115, 149–153. doi:10.1016/j.marpolbul.2016.12.016.
- Geider, R. J., and La Roche, J. (2002). Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. *Eur. J. Phycol.* 37, 1–17. doi:10.1017/S0967026201003456.
- Ghaffar, S., Stevenson, R. J., and Khan, Z. (2017). Effect of phosphorus stress on *Microcystis aeruginosa* growth and phosphorus uptake. *PLoS One* 12. doi:10.1371/journal.pone.0174349.
- Giner-Lamia, J., Robles-Rengel, R., Hernández-Prieto, M. A., Isabel Muro-Pastor, M., Florencio, F. J., and Futschik, M. E. (2017). Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium *Synechocystis* sp. PCC 6803. *Nucleic Acids Res.* 45, 11800–11820. doi:10.1093/nar/gkx860.
- Golosova, O., Henderson, R., Vaskin, Y., Gabrielian, A., Grekhov, G., Nagarajan, V., et al. (2014). Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses. *PeerJ* 2, e644. doi:10.7717/peerj.644.
- Großkopf, T., and Soyer, O. S. (2014). Synthetic microbial communities. *Curr. Opin. Microbiol.* 18, 72–77. doi:10.1016/j.mib.2014.02.002.
- Guillard, R. R. L. (1973). Division rate. Handb. of phycological methods (Stein, J.R., Ed. Cambridge Univ. Press. Cambridge, 289–311. doi:10.1016/S0927-0507(07)15025-8.
- Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. *Bioinformatics*.

doi:10.1093/bioinformatics/btt086.

- Gutiérrez, J. L., Jones, C. G., Byers, J. E., Arkema, K. K., Berkenbusch, K., Commito, A., et al. (2012). 'Physical ecosystem engineers and the functioning of estuaries and coasts'. *Treatise on Estuarine and Coastal Science* doi:10.1016/B978-0-12-374711-2.00705-1.
- Haft, D. H., DiCuccio, M., Badretdin, A., Brover, V., Chetvernin, V., O'Neill, K., et al. (2018). RefSeq: An update on prokaryotic genome annotation and curation. *Nucleic Acids Res.* doi:10.1093/nar/gkx1068.
- Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., and Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. *J. Hazard. Mater.* 344, 179–199. doi:10.1016/j.jhazmat.2017.10.014.
- Hansen, H. P., and Koroleff, F. (2007). "Determination of nutrients" in *Method of seawater analysis*. eds. K. Grasshoff, K. Kremling, and M. Ehrhardt. doi: 10.1002/9783527613984.ch10
- Haramaty, L., Quigg, A., Berman-Frank, I., Finkel, Z. V., and Irwin, A. J. (2007). Nitrogen-fixation strategies and Fe requirements in cyanobacteria. *Limnol. Oceanogr.* 52, 2260–2269. doi:10.4319/lo.2007.52.5.2260.
- Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken, M.
 E. S., et al. (2011). Nutrient co-limitation of primary producer communities. *Ecol. Lett.* 14, 852–862. doi:10.1111/j.1461-0248.2011.01651.x.
- Harrison, Jesse P.; Sapp, Melanie; Schratzberger, Michaela; Osborn, A. M. (2011). Interactions between micro-organisms and metronidazole. J. Antimicrob. Chemother. 10, 84–87. doi:10.1093/jac/10.2.84.
- Hartmann, N. B., Hüffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard,
 A. E., et al. (2019). Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris. *Environ. Sci. Technol.* 53, 1039–1047. doi:10.1021/acs.est.8b05297.
- Hassenteufel, W., Jagitsch, R., and Kocz, F. (1963). Impregnation of glass surfacae against sortion of phospahate traces. *Limnol. Oceanogr.* 8, 152–156.
- Hauksson, J. B., Andrésson, Ó. S., and Ásgeirsson, B. (2000). Heat-labile bacterial alkaline phosphatase from a marine Vibrio sp. *Enzyme Microb. Technol.* 27, 66–73. doi:10.1016/S0141-0229(00)00152-6.

- He, Z., Xiong, J., Kent, A. D., Deng, Y., Xue, K., Wang, G., et al. (2014). Distinct responses of soil microbial communities to elevated CO₂ and O₃ in a soybean agroecosystem. *ISME J.* 8, 714–726. doi:10.1038/ismej.2013.177.
- Hedges, L. V., Gurevitch, J., and Curtis, P. S. (1999). The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156. doi: 10.1890/0012-9658(1999)080[1150:tmaorr]2.0.co;2
- Hellweger, F. L., Huang, Y., and Luo, H. (2018). Carbon limitation drives GC content evolution of a marine bacterium in an individual-based genome-scale model. *ISME* J. 12, 1180–1187. doi:10.1038/s41396-017-0023-7.
- Hemminga, M. A., and Duarte, C. M. (2002). Book Reviews. *Limnol. Ocean.* 55, 193–196. doi:10.1348/000711002159653.
- Hennon, G. M., Morris, J. J., Haley, S. T., Zinser, E. R., Durrant, A. R., Entwistle, E., et al. (2017). The impact of elevated CO₂ on *Prochlorococcus* and microbial interactions with a 'helper' bacterium *Alteromonas*. *ISME J.* 12, 520–531. doi:10.1038/ismej.2017.189.
- Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P., et al. (2017). Occurrence and effects of plastic additives on marine environments and organisms: A review. *Chemosphere*. doi:10.1016/j.chemosphere.2017.05.096.
- Hernández, I., Niell, F. X., and Whitton, B. A. (2002). Phosphatase activity of benthic marine algae. An overview. J. Appl. Phycol. 14, 475–487. doi:10.1023/A:1022370526665.
- Herrero, A., and Flores, E. (2008). The cyanobacteria: Molecular biology, genomics, and evolution. Wymondham, UK: Caister Academic Press.
- Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. *J. Phycol.* 35, 403–424. doi:10.1046/j.1529-8817.1999.3520403.x.
- Hoegh-Guldberg, O., and Bruno, J. F. (2010). The impact of climate change on the world's marine ecosystems. *Science (80-.).* 328, 1523–1528. doi:10.1126/science.1189930.
- Hoffman, B. M., Lukoyanov, D., Yang, Z.-Y., Dean, D. R., and Seefeldt, L. C. (2014). Mechanism of nitrogen fixation by nitrogenase: the next stage. *Chem. Rev.* 114, 4041–4062. doi:10.1021/cr400641x.

- Hong, H., Shen R., and Zhang, F. (2017). The complex effects of ocean acidification on the prominent N₂-fixing cyanobacterium *Trichodesmium*. *Science (80-.).* 357, 527– 531. doi:10.1126/science.aao0067.
- Huang, B. (2009). MetaPocket : A meta approach to improve protein ligand binding site Prediction. 13, 325–330.
- Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., et al. (2018). eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res.* 47, 309–314. doi:10.1093/nar/gky1085.
- Hutchins, D. A., Fu, F. X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K., Bernhardt,
 P. W, and Mulholland, M. R. (2007). CO₂ control of *Trichodesmium* N₂ fixation,
 photosynthesis, growth rates, and elemental ratios: Implications for past, present,
 and future ocean biogeochemistry. *Limnol. Oceanogr.* 52, 1293–1304.
 doi:10.4319/lo.2007.52.4.1293.
- Ibacache-Quiroga, C., Ojeda, J., Espinoza-Vergara, G., Olivero, P., Cuellar, M., and Dinamarca, M. A. (2013). The hydrocarbon-degrading marine bacterium *Cobetia* sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking. *Microb. Biotechnol.* 6, 394–405. doi:10.1111/1751-7915.12016.
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: global and sectoral aspects. contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change 1132 (Cambridge University Press, 2014).
- Ivleva, N. B., and Golden, S.S. (2007). Protein extraction, fractionation, and purification from cyanobacteria. Methods Mol. Biol. 362, 365-73. doi: 10.1007/978-1-59745-257-1 26
- Jacq, V. (2014). Response of the unicellular diazotrophic Cyanobacterium *Crocosphaera* watsonii to iron limitation. *PLoS One* 9. doi:10.1371/journal.pone.0086749.
- Jaén-Luchoro, D., Aliaga-Lozano, F., Gomila, R. M., Gomila, M., Salvà-Serra, F., Lalucat, J., et al. (2017). First insights into a type II toxin-antitoxin system from the clinical isolate *Mycobacterium* sp. MHSD3, similar to epsilon/zeta systems. *PLoS One* 12, 1–20. doi:10.1371/journal.pone.0189459.
- Jaén-Luchoro, D., Gonzales-Siles, L., Karlsson, R., Svensson-Stadler, L., Molin, K., Cardew, S., et al. (2020). *Corynebacterium sanguinis* sp. nov., a clinical and

environmental associated *Corynebacterium*. *Syst. Appl. Microbiol.* 43, 126039. doi:10.1016/j.syapm.2019.126039.

- Jensen, B. B., and Cox, R. P. (1983). Direct measurements of steady-state kinetics of cyanobacterial N₂ uptake by membrane-leak mass spectrometry and comparisons between nitrogen fixation and acetylene reduction. *Appl. Environ. Microbiol.* 45, 1331–1337.
- Jiang, H. B., Fu, F. X., Rivero-Calle, S., Levine, N. M., Sañudo-Wilhelmy, S. A., Qu, P. P., Wang, X. W., Pinedo-Gonzalez, P., Zhu, Z., and Hutchins D. A. (2018). Ocean warming alleviates iron limitation of marine nitrogen fixation. *Nat. Clim. Chang.* 8, 709–712. doi:10.1038/s41558-018-0216-8.
- Jiang, L. Q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A. (2019). Surface ocean pH and buffer capacity: past, present and future. *Sci. Rep.* 9, 1–11. doi:10.1038/s41598-019-55039-4.
- Joint, I., Doney, S. C., and Karl, D. M. (2011). Will ocean acidification affect marine microbes. *ISME J.* 5, 1–7. doi:10.1038/ismej.2010.79.
- Kadam, P. C., and Boone, D. R. (1996). Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens. *Appl. Environ. Microbiol.* 62, 4486–4492. doi:10.1128/aem.62.12.4486-4492.1996.
- Kageyama, H., Tripathi, K., Rai, A. K., Cha-Um, S., Waditee-Sirisattha, R., and Takabe, T. (2011). An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of *Aphanothece halophytica*, a halotolerant cyanobacterium. *Appl. Environ. Microbiol.* 77, 5178–5183. doi:10.1128/AEM.00667-11.
- Kane, I.A., Clare, M.A., Miramontes, E., Wogelius, R., Rothwell, J.J., Garreau, P., et al. (2020). Seafloor microplastic hotspots controlled by deep-sea circulation. *Science* 5899:aba5899. doi: 10.1126/science.aba5899
- Kaushik, M. S., Singh, P., Tiwari, B., and Mishra, A. K. (2016). Ferric Uptake Regulator (FUR) protein: properties and implications in cyanobacteria. *Ann. Microbiol.* 66, 61–75. doi:10.1007/s13213-015-1134-x.
- Kawai, F. (2010). The biochemistry and molecular biology of xenobiotic polymer degradation by Microorganisms. *Biosci. Biotechnol. Biochem.* 74, 1743–1759. doi:10.1271/bbb.100394.
- Kennedy, E. J. (2014). Biological Drug Products: Development and Strategies . Edited by Wei Wang and Manmohan Singh . *ChemMedChem*.

doi:10.1002/cmdc.201402432.

- Kim, H., Choo, Y. J., Song, J., Lee, J. S., Lee, K. C., and Cho, J. C. (2007). Marinobacterium litorale sp. nov. in the order Oceanospirillales. Int. J. Syst. Evol. Microbiol. 57, 1659–1662. doi:10.1099/ijs.0.64892-0.
- Kim, J. M., Lee, K., Shin, K., Kang, J. H., Lee, H. W., Kim, M., et al. (2006). The effect of seawater CO₂ concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment. *Limnol. Oceanogr.* 51, 1629–1636. doi:10.4319/lo.2006.51.4.1629.
- Kim, M. S., Roh, S. W., and Bae, J. W. (2010). *Cobetia crustatorum* sp. nov., a novel slightly halophilic bacterium isolated from traditional fermented seafood in Korea. *Int. J. Syst. Evol. Microbiol.* 60, 620–626. doi:10.1099/ijs.0.008847-0.
- Klotz, A., Georg, J., Bučinská, L., Watanabe, S., Reimann, V., Januszewski, W., et al. (2016). Awakening of a dormant cyanobacterium from nitrogen chlorosis reveals a genetically determined Program. *Cell Press* 26, 2862–2872. doi:10.1016/j.cub.2016.08.054.
- Klotz, A., Reinhold, E., Doello, S., and Forchhammer, K. (2015). Nitrogen Starvation Acclimation in *Synechococcus elongatus*: Redox-Control and the Role of Nitrate Reduction as an Electron Sink. *Life* 5, 888–904. doi:10.3390/life5010888.
- Knapp, A. N. (2012). The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. *Front. Microbiol.* 3, 1–14. doi:10.3389/fmicb.2012.00374.
- Kornberg, A. (1995). Inorganic polyphosphate: Toward making a forgotten polymer unforgettable. *J. Bacteriol.* 177, 491–496. doi:10.1128/jb.177.3.491-496.1995.
- Kranz, S. A., Sültemeyer, D., Richter, K. U., and Rost, B. (2009). Carbon acquisition by Trichodesmium: the effect of pCO₂ and diurnal changes. *Limnol. Oceanogr.* 54, 548–559. doi:10.4319/lo.2009.54.2.0548.
- Kranz, S. A., Eichner, M., and Rost, B. (2011). Interactions between CCM and N₂ fixation in *Trichodesmium*. *Photosynth*. *Res.* 109, 73–84. doi:10.1007/s11120-010-9611-3.
- Kranzler, C., Rudolf, M., Keren, N., and Schleiff, E. (2013). *Iron in Cyanobacteria*. doi:10.1016/B978-0-12-394313-2.00003-2.
- Kranzler, C., Lis, H., Finkel, O. M., Schmetterer, G., Shaked, Y., and Keren, N. (2014). Coordinated transporter activity shapes high-affinity iron acquisition in cyanobacteria. *ISME J.* 8, 409–417. doi:10.1038/ismej.2013.161.

- Krauk, J. M., Villareal, T. A., Sohm, J. A., Montoya, J. P., and Capone, D. G. (2006). Plasticity of N:P ratios in laboratory and field populations of *Trichodesmium* spp. *Aquat. Microb. Ecol.* 42, 243–253. doi:10.3354/ame042243.
- Krause, E., Wichels, A., Giménez, L., Lunau, M., Schilhabel, M. B., and Gerdts, G. (2012). Small changes in ph have direct effects on marine bacterial community composition: a microcosm approach. *PLoS One* 7. doi:10.1371/journal.pone.0047035.
- Kretz, C. B., Bell, D. W., Lomas, D. A., Lomas, M. W., and Martiny, A. C. (2015). Influence of growth rate on the physiological response of marine *Synechococcus* to phosphate limitation. *Front. Microbiol.* 6, 6–11. doi:10.3389/fmicb.2015.00085.
- Kühn, S., Bravo Rebolledo, E. L., and Van Franeker, J. A. (2015). 'Deleterious effects of litter on marine life', in *Marine Anthropogenic Litter* doi:10.1007/978-3-319-16510-3
 3 4.
- Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. *Mol. Biol. Evol.* doi:10.1093/molbev/msw054.
- Kuo, J. (2005). A revision of the genus *Heterozostera* (*Zosteraceae*). *Aquat. Bot.* doi:10.1016/j.aquabot.2004.10.005.
- Küpper, H., Šetlík, I., Seibert, S., Prášil, O., Šetlikova, E., Strittmatter, M., et al. (2008). Iron limitation in the marine cyanobacterium *Trichodesmium* reveals new insights into regulation of photosynthesis and nitrogen fixation. *New Phytol.* 179, 784–798. doi:10.1111/j.1469-8137.2008.02497.x.
- Kustka, A. B., Sañudo-Wilhelmy, S. A., Carpenter, E. J., Capone, D., Burns, J., and Sunda, W. G. (2004). Iron requirements for dinitrogen- and ammonium-supported growth in cultures of *Trichodesmium* (IMS 101): Comparison with nitrogen fixation rates and iron:carbon ratios of field populations. *Limnol. Oceanogr.* 49, 1224. doi:10.4319/lo.2004.49.4.1224.
- Kuznecova, J., Šulčius, S., Vogts, A., Voss, M., Jürgens, K., and Šimoliūnas, E. (2020). Nitrogen flow in diazotrophic cyanobacterium *Aphanizomenon flos-aquae* is altered by cyanophage Infection. *Front. Microbiol.* 11, 1–14. doi:10.3389/fmicb.2020.02010.
- Kuznetsov, S. I., Dubinina, G. A., and Lapteva, N. A. (1979). Biology of oligotrophic bacteria. *Annu. Rev. Microbiol.* 33, 377–387. doi:10.1146/annurev.mi.33.100179.002113.

- Lagus, A., Suomela, J., Weithoff, G., Heikkilä, K., Helminen, H., and Sipura, J. (2004). Species-specific differences in phytoplankton responses to N and P enrichments and the N:P ratio in the Archipelago Sea, northern Baltic Sea. *J. Plankton Res.* 26, 779– 798. doi:10.1093/plankt/fbh070.
- Latifi, A., Jeanjean, R., Lemeille, S., Havaux, M., and Zhang, C. C. (2005). Iron starvation leads to oxidative stress in *Anabaena* sp. strain PCC 7120. *J. Bacteriol.* doi:10.1128/JB.187.18.6596-6598.2005.
- Latifi, A., Ruiz, M., and Zhang, C. C. (2009). Oxidative stress in cyanobacteria. *FEMS Microbiol. Rev.* 33, 258–278. doi:10.1111/j.1574-6976.2008.00134.x.
- Lau, C. K. Y., Krewulak, K. D., and Vogel, H. J. (2016). Bacterial ferrous iron transport: The Feo system. *FEMS Microbiol. Rev.* 40, 273–298. doi:10.1093/femsre/fuv049.
- Lazzari, P., Solidoro, C., Salon, S., and Bolzon, G. (2016). Spatial variability of phosphate and nitrate in the Mediterranean Sea: a modeling approach. *Deep. Res. Part I Oceanogr. Res. Pap.* 108, 39–52. doi:10.1016/j.dsr.2015.12.006.
- Lee, S. J., Park, Y. S., Kim, S. J., Lee, B. J., and Suh, S. W. (2014). Crystal structure of PhoU from *Pseudomonas aeruginosa*, a negative regulator of the Pho regulon. *J. Struct. Biol.* 188, 22–29. doi:10.1016/j.jsb.2014.08.010.
- Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F., and Pérez, T. (2010). Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. *Trends Ecol. Evol.* 25, 250–260. doi:10.1016/j.tree.2009.10.009.
- Lesser, M. P. (2006). Oxidative stress in marine environments: biochemistry and physiological ecology. *Annu. Rev. Physiol.* 68, 253–278. doi:10.1146/annurev.physiol.68.040104.110001.
- Levitan, O., Rosenberg, G., Setlik, I., Setlikova, E., Grigel, J., Klepetar, J., Prasil, O. and Berman-Frank, I. (2007). Elevated CO₂ enhances nitrogen fixation and growth in the marine cyanobacterium *Trichodesmium*. *Glob. Chang. Biol.* 13, 531–538. doi:10.1111/j.1365-2486.2006.01314.x.
- Li, W. K. W., McLaughlin, F. A., Lovejoy, C., and Carmack, E. C. (2009). Smallest algae thrive as the arctic ocean freshens. *Science (80-.).* 326, 539. doi:10.1126/science.1179798.
- Li, P., Liu, W., and Gao, K. (2013). Effects of temperature, pH, and UV radiation on alkaline phosphatase activity in the terrestrial cyanobacterium *Nostoc flagelliforme*. *J. Appl. Phycol.* 25, 1031–1038. doi:10.1007/s10811-012-9936-8.

- Li, Z., Natarajan, P., Ye, Y., Hrabe, T., and Godzik, A. (2014). POSA: A user-driven, interactive multiple protein structure alignment server. *Nucleic Acids Res.* 42. doi:10.1093/nar/gku394.
- Litchman, E., Edwards, K. F., Klausmeier, C. A., and Thomas, M. K. (2012). Phytoplankton niches, traits and eco-evolutionary responses to global environmental change. *Mar. Ecol. Prog. Ser.* 470, 235–248. doi:10.3354/meps09912.
- Liu, W., Au, D. W. T., Anderson, D. M., Lam, P. K. S., and Wu, R. S. S. (2007). Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga *Chattonella marina*. J. Exp. Mar. Bio. Ecol. 346, 76–86. doi:10.1016/j.jembe.2007.03.007.
- Llacer, J. L., Espinosa, J., Castells, M. A., Contreras, A., Forchhammer, K., and Rubio, V. (2010). Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. *Proc. Natl. Acad. Sci.* 107, 15397–15402. doi:10.1073/pnas.1007015107.
- López-Gomollón, S., Hernández, J. A., Wolk, C. P., Peleato, M. L., and Fillat, M. F. (2007). Expression of furA is modulated by NtcA and strongly enhanced in heterocysts of *Anabaena* sp. PCC 7120. *Microbiology* 153, 42–50. doi:10.1099/mic.0.2006/000091-0.
- Lubin, E. A., Fiebig, A., Laub, M. T., Henry, J. T., and Crosson, S. (2015). Identification of the PhoB regulon and role of phou in the phosphate starvation response of *Caulobacter crescentus*. J. Bacteriol. 198, 187–200. doi:10.1128/jb.00658-15.
- Luo, H., Benner, R., Long, R. A., and Hu, J. (2009). Subcellular localization of marine bacterial alkaline phosphatases. *Proc. Natl. Acad. Sci.* 106, 21219–21223. doi:10.1073/pnas.0907586106.
- Machado, M. C., Vimbela, G. V., Silva-Oliveira, T. T., Bose, A., and Tripathi, A. (2020). The response of *Synechococcus* sp. PCC 7002 to micro-/nano polyethylene particles
 Investigation of a key anthropogenic stressor. *PLoS One* 15, 1–14. doi:10.1371/journal.pone.0232745.
- Mackey, K. R. M., Mioni, C. E., Ryan, J. P., and Paytan, A. (2012). Phosphorus cycling in the red tide incubator region of Monterey Bay in response to upwelling. *Front. Microbiol.* 3, 1–14. doi:10.3389/fmicb.2012.00033.
- Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M., Moore, J. K., Baker, A. R., Scanza, R. A., et al. (2018). Aerosol trace metal leaching and impacts on marine microorganisms. *Nat. Commun.* 9. doi:10.1038/s41467-018-04970-7.

- Maity, S., and Pramanick, K. (2020). Perspectives and challenges of micro/nanoplasticsinduced toxicity with special reference to phytotoxicity. *Glob. Chang. Biol.* 26, 3241–3250. doi:10.1111/gcb.15074.
- Manhart, J. R., and Wong, P. P. (1980). Nitrate effect on nitrogen fixation (acetylene reduction): activities of legume root nodules induced by rhizobia with varied nitrate reductase activities. *Plant Physiol.* 65, 502–505. doi:10.1104/pp.65.3.502.
- Marañón, E., Lorenzo, M. P., Cermeño, P., and Mouriño-Carballido, B. (2018). Nutrient limitation suppresses the temperature dependence of phytoplankton metabolic rates. *ISME J.* 12, 1836–1845. doi:10.1038/s41396-018-0105-1.
- Marmur, J. (1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. doi:10.1016/S0022-2836(61)80047-8.
- Martínez-Crego, B., Romero, J., and Alcoverro, T. (2006). The use of surface alkaline phosphatase activity in the seagrass *Posidonia oceanica* as a biomarker of eutrophication. *Mar. Ecol.* 27, 381–387. doi:10.1111/j.1439-0485.2006.00101.x.
- Meier-Kolthoff, J. P., Auch, A. F., Klenk, H. P., and Göker, M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. *BMC Bioinformatics*. doi:10.1186/1471-2105-14-60.
- Mills, M. M., Ridame, C., Davey, M., La Roche, J., and Geider, R. J. (2004). Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. *Nature*, 232–294. doi:10.1038/nature02550.
- Monod, J. (1949). The growth of bacterial cultures. *Annu. Rev. Microbiol.* doi:10.1146/annurev.mi.03.100149.002103.
- Montecino, V., and Lange, C. B. (2009). The Humboldt Current System: Ecosystem components and processes, fisheries, and sediment studies. *Prog. Oceanogr.* doi:10.1016/j.pocean.2009.07.041.
- Moore, C. M., Mills, M. M., Langlois, R., Milne, A., Achterberg, E. P., La Roche, J., et al. (2008). Relative influence of nitrogen and phosphorus availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. *Limnol. Oceanogr.* 53, 291–305. doi:10.4319/lo.2008.53.1.0291.
- Moore, C. M, Mills, M. M., Achterberg, E. P., Geider, R. J., Laroche, J., Lucas, M. I., et al. (2009). Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. *Nat. Geosci.*, 867–871.

- Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., et al. (2013). Processes and patterns of oceanic nutrient limitation. *Nat. Geosci.*, 701– 710. doi:10.1038/ngeo1765.
- Moore, J. K., Doney, S. C., Glover, D. M., and Fung, I. Y. (2001). Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. *Deep. Res. Part II Top. Stud. Oceanogr.* 49, 463–507. doi:10.1016/S0967-0645(01)00109-6.
- Morris, J. J., R. Kirkegaard, M. J. Szul, Z. I. Johnson, and E. R. Zinser. 2008. Facilitation of robust growth of *Prochlorococcus* colonies and dilute liquid cultures by 'helper' heterotrophic bacteria. Appl. Environ. Microbiol. doi:10.1128/AEM.02479-07
- Millero, F. J., Woosey, R., Ditrolio, B., and Water J. (2009). Effect of ocean acidification on the speciation of metals in seawater. *Oceanography* 22, 72–85. doi:10.5670/oceanog.2009.98
- Mus, F., Alleman, A. B., Pence, N., Seefeldt, L. C., and Peters, J. W. (2018). Exploring the alternatives of biological nitrogen fixation. *Metallomics* 10, 523–538. doi:10.1039/c8mt00038g.
- Naik, R. K., Naik, M. M., D'Costa, P. M., and Shaikh, F. (2019). Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: A potential risk to the marine environment and human health. *Mar. Pollut. Bull.* 149, 110525. doi:10.1016/j.marpolbul.2019.110525.
- Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S., and Lindeque, P. K. (2018). Investigating microplastic trophic transfer in marine top predators. *Environ. Pollut.* 238, 999–1007. doi:10.1016/j.envpol.2018.02.016.
- Nelson, D. C., Waterbury, J. B., and Jannasch, H. W. (1982). Nitrogen fixation and nitrate utilization by marien and freshwater Beggiatoa. *Mar. Biol.*, 172–177.
- Ng, T. S., Chew, S. Y., Rangasamy, P., Mohd Desa, M. N., Sandai, D., Chong, P. P., et al. (2015). SNF3 as high affinity glucose sensor and its function in supporting the viability of *Candida glabrata* under glucose-limited environment. *Front. Microbiol.* 6, 1–12. doi:10.3389/fmicb.2015.01334.
- Nielsen, L. T., Hallegraeff, G. M., Wright, S. W., and Hansen, P. J. (2012). Effects of experimental seawater acidification on an estuarine plankton community. *Aquat. Microb. Ecol.* 65, 271–285. doi:10.3354/ame01554.

- Noinaj, N., Guillier, M., Barnard, T. J., and Buchanan, S. K. (2010). TonB-Dependent transporters: tegulation, structure, and function. *Annu. Rev. Microbiol.* 64, 43–60. doi:10.1146/annurev.micro.112408.134247.
- Noskova, Y., Likhatskaya, G., Terentieva, N., Son, O., Tekutyeva, L., and Balabanova, L. (2019). A novel alkaline phosphatase/phosphodiesterase, CamPhoD, from marine bacterium *Cobetia amphilecti* KMM 296. *Mar. Drugs* 17, 1–20. doi:10.3390/md17120657.
- Novichkov, P. S., Kazakov, A. E., Ravcheev, D. A., Leyn, S. A., Kovaleva, G. Y., Sutormin, R. A., et al. (2013). RegPrecise 3.0 - A resource for genome-scale exploration of transcriptional regulation in bacteria. *BMC Genomics* 14, 1. doi:10.1186/1471-2164-14-745.
- Oberbeckmann, S., Loeder, M. G. J., Gerdts, G., and Osborn, M. A. (2014). Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. *FEMS Microbiol. Ecol.* 90, 478–492. doi:10.1111/1574-6941.12409.
- Ogonowski, M., Motiei, A., Ininbergs, K., Hell, E., Gerdes, Z., Udekwu, K. I., et al. (2018). Evidence for selective bacterial community structuring on microplastics. *Environ. Microbiol.* 20, 2796–2808. doi:10.1111/1462-2920.14120.
- Ohta, T., Kawabata, T., Nishikawa, K., Tani, A., Kimbara, K., and Kawai, F. (2006). Analysis of amino acid residues involved in catalysis of polyethylene glycol dehydrogenase from *Sphingopyxis terrae*, using three-dimensional molecular modeling-based kinetic characterization of mutants. *Appl. Environ. Microbiol.* 72, 4388–4396. doi:10.1128/AEM.02174-05.
- Oliver, A. E., Newbold, L. K., Whiteley, A. S., and van der Gast, C. J. (2014). Marine bacterial communities are resistant to elevated carbon dioxide levels. *Environ. Microbiol. Rep.* 6, 574–582. doi:10.1111/1758-2229.12159.
- Pade, N., and Hagemann, M. (2015). Salt acclimation of cyanobacteria and their application in biotechnology. *Life* 5, 25–49. doi:10.3390/life5010025.
- Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A., and Vasconcelos, V. (2019). Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. *Biotechnol. Adv.* 37, 422–443. doi:10.1016/j.biotechadv.2019.02.010.
- Palmiéri, J., Orr, J. C., Dutay, J. C., Béranger, K., Schneider, A., Beuvier, J., et al. (2015). Simulated anthropogenic CO₂ storage and acidification of the Mediterranean Sea. *Biogeosciences* 12, 781–802. doi:10.5194/bg-12-781-2015.

- Paul-Pont, I., Tallec, K., Gonzalez-Fernandez, C., Lambert, C., Vincent, D., Mazurais, D., et al. (2018). Constraints and priorities for conducting experimental exposures of marine organisms to microplastics. *Front. Mar. Sci.* 5, 1–22. doi:10.3389/fmars.2018.00252.
- Perry, C. J., and Dennison, W. C. (1999). Microbial nutrient cycling in seagrass sediment. J. Aust. Geol. Geophys. 17, 227–231.
- Pham, D. N., and Burgess, B. K. (1993). Nitrogenase Reactivity: Effects of pH on substrate reduction and CO inhibition. *Biochemistry* 32, 13725–13731. doi:10.1021/bi00212a043.
- Piccardo, M., Provenza, F., Grazioli, E., Cavallo, A., Terlizzi, A., and Renzi, M. (2020). PET microplastics toxicity on marine key species is influenced by pH, particle size and food variations. *Sci. Total Environ.* 715, 136947. doi:10.1016/j.scitotenv.2020.136947.
- Picossi, S., Flores, E., and Herrero, A. (2014). ChIP analysis unravels an exceptionally wide distribution of DNA binding sites for the NtcA transcription factor in a heterocyst-forming cyanobacterium. *BMC Genomics* 15. doi:10.1186/1471-2164-15-22.
- Pomeroy, L. R., and Wiebe, W. J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. *Aquat. Microb. Ecol.* 23, 187–204. doi:10.3354/ame023187.
- Porra, R. J., Thompson, W. A., and P.E., K. (1989). Determination of accurate extinction coefficients and simultaneous equations for assayin chlorophylls a and b extracted with four different solvents. *Biochim. Biophys. Acta* 975, 384–394.
- Powley, H. R., Cappellen, P. Van, and Krom, M. D. (2017a). Nutrient cycling in the Mediterranean Sea: the key to understanding how the unique marine ecosystem functions and responds to anthropogenic pressures. *Mediterr. Identities - Environ. Soc. Cult.* doi:10.5772/intechopen.70878.
- Powley, H. R., Krom, M. D., and Van Cappellen, P. (2017b). Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model. *Global Biogeochem. Cycles* 31, 1010–1031. doi:10.1002/2017GB005648.
- Puxty, R. J., Millard, A. D., Evans, D. J., and Scanlan, D. J. (2015). Shedding new light on viral photosynthesis. *Photosynth. Res.* 126, 71–97. doi:10.1007/s11120-014-0057-x.

- Puxty, R. J., Evans, D. J., Millard, A. D., and Scanlan, D. J. (2018). Energy limitation of cyanophage development: implications for marine carbon cycling. *ISME J.* 12, 1273–1286. doi:10.1038/s41396-017-0043-3.
- Quigg, A., Irwin, A. J., and Finkel, Z. V. (2011). Evolutionary inheritance of elemental stoichiometry in phytoplankton. in *Proceedings of the Royal Society B: Biological Sciences* doi:10.1098/rspb.2010.1356.
- Radwan, S., Mahmoud, H., Khanafer, M., Al-Habib, A., and Al-Hasan, R. (2010). Identities of epilithic hydrocarbon-utilizing diazotrophic bacteria from the Arabian Gulf coasts, and their potential for oil bioremediation without nitrogen supplementation. *Microb. Ecol.* 60, 354–363. doi:10.1007/s00248-010-9702-x.
- Rae, B. D., Long, B. M., Badger, M. R., and Price, G. D. (2013). Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO₂ fixation in cyanobacteria and some proteobacteria. *Microbiol. Mol. Biol. Rev.* 77, 357–379. doi:10.1128/mmbr.00061-12.
- Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G., et al. (2007). Global and regional drivers of accelerating CO₂ emissions. *Proc. Natl. Acad. Sci. U. S. A.* 104, 10288–10293. doi:10.1073/pnas.0700609104.
- Reay, D. S., Nedwell, D. B., Priddle, J., and Ellis-Evans, J. C. (1999). Temperature dependence of inorganic nitrogen uptake: reduced affinity for nitrate at suboptimal temperatures in both algae and bacteria. *Appl. Environ. Microbiol.* 65, 2577–2584. doi:10.1128/aem.65.6.2577-2584.1999.
- Reddy, K. J., Haskell, J. B., Sherman, D. M., and Sherman, L. A. (1993). Unicellular, aerobic nitrogen-fixing cyanobacteria of the genus *Cyanothece. J. Bacteriol.* 175, 1284–1292. doi:10.1128/jb.175.5.1284-1292.1993.
- Reddy, M. S., Shaik Basha, Adimurthy, S., and Ramachandraiah, G. (2006). Description of the small plastics fragments in marine sediments along the Alang-Sosiya shipbreaking yard, India. *Estuar. Coast. Shelf Sci.* doi:10.1016/j.ecss.2006.03.018.
- Redfield, A. C. (1934). On the proportions of organic derivatives in sea water and their relation to the composition of plankton. *James Johnstone Meml. Vol. Univ. Press Liverpool*, 176–192.
- Reisser, J., Slat, B., Noble, K., Plessis, K., Epp, M., Proietti, M., et al. (2015). The vertical distribution of buoyant plastics at sea: an observational study in the North Atlantic Gyre. 1249–1256. doi:10.5194/bg-12-1249-2015.
- Renn, C. E. (1937). Bacteria and the phophorus cycle in the sea. Biol. Bull. 72, 190-195.

- Richaud, C., Zabulon, G., Joder, A., Thomas, J., and Zabulon, R. (2001). Nitrogen or sulfur starvation differentially affects phycobilisome degradation and expression of the *nblA* gene in *Synechocystis* Strain PCC 6803. *J. Bacteriol.* 183, 2989–2994. doi:10.1128/JB.183.10.2989.
- Richter, M., Rosselló-Móra, R., Oliver Glöckner, F., and Peplies, J. (2016). JSpeciesWS: A web server for prokaryotic species circumscription based on pairwise genome comparison. *Bioinformatics*. doi:10.1093/bioinformatics/btv681.
- Ridame, C., Le Moal, M., Guieu, C., Ternon, E., Biegala, I. C., L'Helguen, S., et al. (2011). Nutrient control of N₂ fixation in the oligotrophic Mediterranean Sea and the impact of Saharan dust events. *Biogeosciences* 8, 2773–2783. doi:10.5194/bg-8-2773-2011.
- Rippka, R., Deruelles, J., and Waterbury, J. B. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61. doi:10.1099/00221287-111-1-1.
- Roche, D. B., Buenavista, M. T., and McGuffin, L. J. (2013). The FunFOLD2 server for the prediction of protein-ligand interactions. *Nucleic Acids Res.* 41, 303–307. doi:10.1093/nar/gkt498.
- Rochman, C. M., Hentschel, B. T., and The, S. J. (2014). Long-term sorption of metals is similar among plastic types: Implications for plastic debris in aquatic environments. *PLoS One* 9. doi:10.1371/journal.pone.0085433.
- Rodriguez, F., Lillington, J., Johnson, S., Timmel, C. R., Lea, S. M., and Berks, B. C. (2014). Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. *J. Biol. Chem.* 289, 30889–30899. doi:10.1074/jbc.M114.604892.
- Romano, S., Bondarev, V., Kölling, M., Dittmar, T., and Schulz-Vogt, H. N. (2017). Phosphate limitation triggers the dissolution of precipitated iron by the marine bacterium *Pseudovibrio* sp. FO-BEG1. *Front. Microbiol.* 8, 1–11. doi:10.3389/fmicb.2017.00364.
- Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A., and Herndl, G. J. (2018). Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. *Nat. Commun.* 9. doi:10.1038/s41467-018-03798-5.
- Rosa, L. T., Dix, S. R., Rafferty, J. B., and Kelly, D. J. (2019). A new mechanism for high-affinity Uptake of C4-dicarboxylates in bacteria revealed by the structure of *Rhodopseudomonas palustris* MatC (RPA3494), a periplasmic binding protein of

the Tripartite Tricarboxylate Transporter (TTT) Family. *J. Mol. Biol.* 431, 351–367. doi:10.1016/j.jmb.2018.11.016.

- Rubio, L., Marcos, R., and Hernández, A. (2020). Potential adverse health effects of ingested micro- and nanoplastics on humans. Lessons learned from in vivo and in vitro mammalian models. *J. Toxicol. Environ. Heal. - Part B Crit. Rev.* doi:10.1080/10937404.2019.1700598.
- Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., et al. (2004). The oceanic sink for anthropogenic CO₂. *Science (80-.)*. doi:10.1126/science.1097403.
- Salvà Serra, F., Svensson-Stadler, L., Busquets, A., Jaén-Luchoro, D., Karlsson, R., et al. (2018). A protocol for extraction and purification of high-quality and quantity bacterial DNA applicable for genome sequencing: a modified version of the Marmur procedure. *Protoc. Exch.* doi:10.1038/protex.2018.084.
- Samperio-Ramos, G., Santana Casiano, J. M., and González Dávila, M. (2016). Effect of ocean warming and acidification on the Fe(II) oxidation rate in oligotrophic and eutrophic natural waters. *Biogeochemistry* 128, 19–34. doi:10.1007/s10533-016-0192-x.
- Sandh, G., Xu, L., and Bergman, B. (2012). Diazocyte development in the marine diazotrophic cyanobacterium *Trichodesmium*. *Microbiology* 158, 345–352. doi:10.1099/mic.0.051268-0.
- Santelices, B. (1980). Phytogeographic characterization of the temperate coast of Pacific South America. *Phycologia*. doi:10.2216/i0031-8884-19-1-1.1.
- Santos-Beneit, F. (2015). The Pho regulon: A huge regulatory network in bacteria. *Front. Microbiol.* 6, 1–13. doi:10.3389/fmicb.2015.00402.
- Santruckova, H., Bird, M. I., Elhottová, D., Novák, J., Picek, T., Šimek, M., et al. (2005). Heterotrophic fixation of CO₂ in soil. *Microb. Ecol.* 49, 218–225. doi:10.1007/s00248-004-0164-x.
- Sañudo-Wilhelmy, S. A., Kustka, A. B., Gobler, C. J., Hutchins, D. A., Yang, M., Lwiza, K., et al. (2001). Phosphorus limitation of nitrogen fixation by *Trichodesmium* in the central Atlantic Ocean. *Nature* 411, 66–69. doi:10.1038/35075041.
- Sanz-Sáez, I., Salazar, G., Sánchez, P., Lara, E., Royo-Llonch, M., Sà, E. L., et al. (2020). Diversity and distribution of marine heterotrophic bacteria from a large culture collection. *BMC Microbiol.* 20, 1–16. doi:10.1186/s12866-020-01884-7.

- Sarker, I., Moore, L. R., Paulsen, I. T., and Tetu, S. G. (2020). Assessing the toxicity of leachates from weathered plastics on photosynthetic marine bacteria *Prochlorococcus. Front. Mar. Sci.* 7, 1–14. doi:10.3389/fmars.2020.571929.
- Sarmento, H., Montoya, J. M., Vázquez-Domínguez, E., Vaqué, D., and Gasol, J. M. (2010). Warming effects on marine microbial food web processes: How far can we go when it comes to predictions? *Philos. Trans. R. Soc. B Biol. Sci.* 365, 2137–2149. doi:10.1098/rstb.2010.0045.
- Sarthou, G., and Jeandel, C. (2001). Seasonal variations of iron concentrations in the Ligurian Sea and iron budget in the Western Mediterranean Sea. *Mar. Chem.* 74, 115–129. doi:10.1016/S0304-4203(00)00119-5.
- Schabhüttl, S., Hingsamer, P., Weigelhofer, G., Hein, T., Weigert, A., and Striebel, M. (2013). Temperature and species richness effects in phytoplankton communities. *Oecologia* 171, 527–536. doi:10.1007/s00442-012-2419-4.
- Schubert, E., Mengel, K., and Schubert, S. (1990). Soil pH and calcium effect on nitrogen fixation and growth of board bean. *Agron. J.* 82, 969–972. doi:10.2134/agronj1990.00021962008200050026x.
- Schut, F., Prins, R. A., and Gottschal, J. C. (1997). Oligotrophy and pelagic marine bacteria: Facts and fiction. *Aquat. Microb. Ecol.* doi:10.3354/ame012177.
- Schwarz, R., and Forchhammer, K. (2005). Acclimation of unicellular cyanobacteria to macronutrient deficiency: Emergence of a complex network of cellular responses. *Microbiology* 151, 2503–2514. doi:10.1099/mic.0.27883-0.
- Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M. (2002). *Environmental* Organic Chemistry. doi:10.1002/0471649643.
- Sebastian, M., and Ammerman, J. W. (2009). The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. *ISME J.* 3, 563–572. doi:10.1038/ismej.2009.10.
- Sebastian, M., and Ammerman, J. W. (2011). Role of the phosphatase PhoX in the phosphorus metabolism of the marine bacterium *Ruegeria pomeroyi* DSS-3. *Environ. Microbiol. Rep.* 3, 535–542. doi:10.1111/j.1758-2229.2011.00253.x.
- Seeley, M. E., Song, B., Passie, R., and Hale, R. C. (2020). Microplastics affect sedimentary microbial communities and nitrogen cycling. *Nat. Commun.* 11, 1–10. doi:10.1038/s41467-020-16235-3.

- Shi, D., Kranz, S. A., Kim, J. M., and Morel, F. M. M. (2012). Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph *Trichodesmium* under lowiron conditions. *Proc. Natl. Acad. Sci. U. S. A.* 109. doi:10.1073/pnas.1216012109.
- Shi, D., Xu, Y., Hopkinson, B. M., and Morel, F. M. M. (2010). Effect of ocean acidification on iron availability to marine phytoplankton. *Science (80-.).* 327, 676– 679. doi:10.1126/science.1183517.
- Shiozaki, T., Ijichi, M., Kodama, T., Takeda, S., Furuya, K., Ijichi, M., et al. (2014). Heterotrophic bacteria as major nitrogen fixers in the euphotic zone of the Indian Ocean. *Global Biogeochem. Cycles*, 1096–1110. doi:10.1002/2014GB004886.Received.
- Smith, T. M., York, P. H., Broitman, B. R., Thiel, M., Hays, G. C., van Sebille, E., et al. (2018). Rare long-distance dispersal of a marine angiosperm across the Pacific Ocean. *Glob. Ecol. Biogeogr.* 27, 487–496. doi:10.1111/geb.12713.
- Sobiechowska-Sasim, M., Stoń-Egiert, J., and Kosakowska, A. (2014). Quantitative analysis of extracted phycobilin pigments in cyanobacteria—an assessment of spectrophotometric and spectrofluorometric methods. J. Appl. Phycol. 26, 2065– 2074. doi:10.1007/s10811-014-0244-3.
- Sohm, J. A., Webb, E. A., and Capone, D. G. (2011). Emerging patterns of marine nitrogen fixation. *Nat. Rev. Microbiol.* 9, 499–508. doi:10.1038/nrmicro2594.
- Spona-Friedl, M., Braun, A., Huber, C., Eisenreich, W., Griebler, C., Kappler, A., et al. (2020). Substrate-dependent CO₂ fixation in heterotrophic bacteria revealed by stable isotope labelling. *FEMS Microbiol. Ecol.* doi:10.1093/femsec/fiaa080.
- Stal, L. J. (1988). Acetylene reduction technique for assay of nitrogenase. *Methods Enzymol.* 167, 474–484.
- Statham, P. J., and Hart, V. (2005). Dissolved iron in the Cretan Sea (eastern Mediterranean). *Limnol. Oceanogr.* 50, 1142–1148. doi:10.4319/lo.2005.50.4.1142.
- Striebel, M., Schabhüttl, S., Hodapp, D., Hingsamer, P., and Hillebrand, H. (2016). Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition. *Oecologia* 182, 815–827. doi:10.1007/s00442-016-3693-3.
- Su, Z., Olman, V., and Xu, Y. (2007). Computational prediction of Pho regulons in cyanobacteria. *BMC Genomics* 8, 1–12. doi:10.1186/1471-2164-8-156.

- Suaria, G., Avio, C. G., Mineo, A., Lattin, G. L., Magaldi, M. G., Belmonte, G., et al. (2016). The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters. *Sci. Rep.*, 1–10. doi:10.1038/srep37551.
- Sunda, W., and Huntsman, S. (2015). High iron requirement for growth, photosynthesis, and low-light acclimation in the coastal cyanobacterium Synechococcus bacillaris. *Front. Microbiol.* 6, 1–13. doi:10.3389/fmicb.2015.00561.
- Sureda, A., Natalotto, A., Álvarez, E., and Deudero, S. (2013). Increased antioxidant response and capability to produce ROS in hemocytes of *Pinna nobilis* L. exposed to anthropogenic activity. *Environ. Pollut.* 181, 321–324. doi:10.1016/j.envpol.2013.06.029.
- Tandeau de Marsac, N., and Houmard, J. (1993). Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. *FEMS Microbiol. Lett.* 104, 119–189. doi:10.1016/0378-1097(93)90506-W.
- Tanhua, T., Hainbucher, D., Schroeder, K., Cardin, V., Álvarez, M., and Civitarese, G. (2013). The Mediterranean Sea system: a review and an introduction to the special issue. *Ocean Sci.* 9, 789–803. doi:10.5194/os-9-789-2013.
- Tatusova, T., Dicuccio, M., Badretdin, A., Chetvernin, V., Nawrocki, E. P., Zaslavsky, L., et al. (2016). NCBI prokaryotic genome annotation pipeline. *Nucleic Acids Res.* doi:10.1093/nar/gkw569.
- Teira, E., Fernández, A., Álvarez-Salgado, X. A., García-Martín, E. E., Serret, P., and Sobrino, C. (2012). Response of two marine bacterial isolates to high CO₂ concentration. *Mar. Ecol. Prog. Ser.* 453, 27–36. doi:10.3354/meps09644.
- Tetu, S. G., Sarker, I., Schrameyer, V., Pickford, R., Elbourne, L. D. H., Moore, L. R., et al. (2019). Plastic leachates impair growth and oxygen production in *Prochlorococcus*, the ocean's most abundant photosynthetic bacteria. *Commun. Biol.* 2, 184. doi:10.1038/s42003-019-0410-x.
- Thackeray, S. J., Jones, I. D., and Maberly, S. C. (2008). Long-term change in the phenology of spring phytoplankton: Species-specific responses to nutrient enrichment and climatic change. J. Ecol. 96, 523–535. doi:10.1111/j.1365-2745.2008.01355.x.
- The UniProt Consortium (2014). UniProt: a hub for protein information. *Nucleic Acids Res.* 43, D204-12. doi:10.1093/nar/gku989.
- Thiel, M., Macaya, E.C., Acuña, E., Arntz, W.E., Bastias, H., Brokordt, K., Camus, P. A., Castilla, J.C., Castro, L.R., Cortés, M., Dumont, C.P., Escribano, R., Fernández,

M., Gajardo, J.A., Gaymer, C.F., Gomez, I., González, A.E., González, H.E., Haye, P. A., Illanes, J.-E., Iriarte, J.L., Lancellotti, D.A., Luna-Jorquera, G., Luxoro, C., Manríquez, P.H., Marín, V., Muñoz, P., Navarrete, S.A., Perez, E., Poulin, E., Sellanes, J., Sepúlveda, H.H., Stotz, W., Tala, F., Thomas, A., Vargas, C.A., V., et al. (2007). the Humboldt Current System of Northern and Central Chile oceanographic processes, ecological interactions and socioeconomic feedback. *Oceanogr. Mar. Biol.*, 195–344.

- Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, C. A. F., Groom, S., Herut, B., et al. (2005). Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. *Science (80-.).* 309, 1068–1071. doi:10.1126/science.1112632.
- Thomas, M. K., Aranguren-Gassis, M., Kremer, C. T., Gould, M. R., Anderson, K., Klausmeier, C. A., et al. (2017). Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. *Glob. Chang. Biol.* 23, 3269–3280. doi:10.1111/gcb.13641.
- Tiwari, B., Singh, S., Kaushik, M. S., and Mishra, A. K. (2015). Regulation of organophosphate metabolism in cyanobacteria. A review. *Microbiology* 84, 291– 302. doi:10.1134/S0026261715030200.
- Toepel, J., Welsh, E., Summerfield, T. C., Pakrasi, H. B., and Sherman, L. A. (2008). Differential transcriptional analysis of the cyanobacterium *Cyanothece* sp. strain ATCC 51142 during light-dark and continuous-light growth. *J. Bacteriol.* 190, 3904–3913. doi:10.1128/JB.00206-08.
- Tortell, P. D., Maldonado, M. T., and Price, N. M. (1996). The role of heterotrophic bacteria in iron-limited ocean ecosystems. *Nature*. doi:10.1038/383330a0.
- Tripathi, K., Sharma, N. K., Kageyama, H., Takabe, T., and Rai, A. K. (2013). Physiological, biochemical and molecular responses of the halophilic cyanobacterium *Aphanothece* halophytica to Pi-deficiency. *Eur. J. Phycol.* 48, 461– 473. doi:10.1080/09670262.2013.859303.
- Troncoso, V. A., Daneri, G., Cuevas, L. A., Jacob, B., and Montero, P. (2003). Bacterial carbon flow in the Humboldt Current System off Chile. *Mar. Ecol. Prog. Ser.* 250, 1–12. doi:10.3354/meps250001.
- Turk-Kubo, K. A., Achilles, K. M., Serros, T. R. C., Ochiai, M., Montoya, J. P., and Zehr, J. P. (2012). Nitrogenase (*nifH*) gene expression in diazotrophic cyanobacteria in the Tropical North Atlantic in response to nutrient amendments. *Front. Microbiol.* 3, 1– 17. doi:10.3389/fmicb.2012.00386.

- Tuson, H. H., and Weibel, D. B. (2013). Bacteria-surface interactions. Soft Matter 9, 4368–4380. doi:10.1039/c3sm27705d.
- Twiner, M. J. (2000). Possible physiological mechanisms for production of hydrogen peroxide by the ichthyotoxic flagellate *Heterosigma akashiwo*. J. Plankton Res. 22, 1961–1975. doi:10.1093/plankt/22.10.1961.
- Ugarelli, K., Chakrabarti, S., Laas, P., and Stingl, U. (2017). The seagrass holobiont and its microbiome. *Microorganisms* 5, 81. doi:10.3390/microorganisms5040081.
- Urbanek, A. K., Rymowicz, W., and Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. *Appl. Microbiol. Biotechnol.* 102, 7669–7678. doi:10.1007/s00253-018-9195-y.
- Vassallo, P., Paoli, C., Rovere, A., Montefalcone, M., Morri, C., and Bianchi, C. N. (2013). The value of the seagrass *Posidonia oceanica*: A natural capital assessment. *Mar. Pollut. Bull.* 75, 157–167. doi:10.1016/j.marpolbul.2013.07.044.
- Wang, J., Zhang, M. Y., Chen, T., Zhu, Y., Teng, Y., Luo, Y. M., et al. (2015). Isolation and identification of a di-(2-ethylhexyl) phthalate-degrading bacterium and its role in the bioremediation of a contaminated soil. *Pedosphere* 25, 202–211. doi:10.1016/S1002-0160(15)60005-4.
- Wang, L., and Zheng, B. (2008). Toxic effects of fluoranthene and copper on marine diatom *Phaeodactylum tricornutum*. J. Environ. Sci. 20, 1363–1372. doi:10.1016/S1001-0742(08)62234-2.
- Wannicke, N., Endres, S., Engel, A., Grossart, H.-P., Nausch, M., Unger, J., and Voss, M (2012). Response of *Nodularia spumigena* to pCO₂- Part 1: growth, production and nitrogen cycling. *Biogeosciences* 9, 2973–2988. doi:10.5194/bg-9-2973-2012.
- Ward, B. A., Dutkiewicz, S., Moore, C. M., and Follows, M. J. (2013). Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. *Limnol. Oceanogr.* 58, 2059–2075. doi:10.4319/lo.2013.58.6.2059.
- Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., et al. (2017). Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. *Nucleic Acids Res.* 45, D535–D542. doi:10.1093/nar/gkw1017.
- Weidberg, N., Ospina-Alvarez, A., Bonicelli, J., Barahona, M., Aiken, C. M., Broitman,
 B. R., et al. (2020). Spatial shifts in productivity of the coastal ocean over the past two decades induced by migration of the Pacific Anticyclone and Bakun's effect in the Humboldt Upwelling Ecosystem. *Glob. Planet. Change* 193, 103259. doi:10.1016/j.gloplacha.2020.103259.

- Whitton, B. A. ed. (2012). The Biotechnology of Cyanobacteria II: Their Diversity in Space and Time,.
- Wick, R. R., Judd, L. M., Gorrie, C. L., and Holt, K. E. (2017). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. *PLoS Comput. Biol.* doi:10.1371/journal.pcbi.1005595.
- Widdel, F. (2010). Theory and Measurement of Bacterial Growth. Bremen: University Bremen.
- Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., et al. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. *ISME J.* 10, 2557–2568. doi:10.1038/ismej.2016.45.
- Wrightson, L., and Tagliabue, A. (2020). Quantifying the impact of climate change on marine diazotrophy: insights from earth system models. *Front. Mar. Sci.* 7, 1–9. doi:10.3389/fmars.2020.00635.
- Yang, M., Zhao, W., and Xie, X. (2014). Effects of nitrogen, phosphorus, iron and silicon on growth of five species of marine benthic diatoms. *Acta Ecol. Sin.* 34, 311–319. doi:10.1016/j.chnaes.2014.10.003.
- Yong, S. C., Roversi, P., Lillington, J., Rodriguez, F., Krehenbrink, M., Zeldin, O. B., et al. (2014). A complex iron-calcium cofactor catalyzing phosphotransfer chemistry. *Science (80-.).* 345, 1170–1173. doi:10.1126/science.1254237.
- Yoshida, N., Inaba, S., and Takagi, H. (2014). Utilization of atmospheric ammonia by an extremely oligotrophic bacterium, *Rhodococcus erythropolis* N9T-4. *J. Biosci. Bioeng.* 117, 28–32. doi:10.1016/j.jbiosc.2013.06.005.
- Yu Plisova, E., Balabanova, L. A., Ivanova, E. P., Kozhemyako, V. B., Mikhailov, V. V., Agafonova, E. V., et al. (2005). A highly active alkaline phosphatase from the marine bacterium *Cobetia. Mar. Biotechnol.* 7, 173–178. doi:10.1007/s10126-004-3022-4.
- Yu, T., and Chen, Y. (2019). Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. *Sci. Total Environ.* 655, 865–879. doi:10.1016/j.scitotenv.2018.11.301.
- Yuan, Z. C., Zaheer, R., Morton, R., and Finan, T. M. (2006). Genome prediction of PhoB regulated promoters in *Sinorhizobium meliloti* and twelve proteobacteria. *Nucleic Acids Res.* 34, 2686–2697. doi:10.1093/nar/gkl365.
- Zehr, J. P. (2011). Nitrogen fixation by marine cyanobacteria. *Trends Microbiol*. 19, 162–173. doi:10.1016/j.tim.2010.12.004.

- Zehr, J. P., and Capone, D. G. (2020). Changing perspectives in marine nitrogen fixation. *Science (80-.).* 368. doi:10.1126/science.aay9514.
- Zeng, Y. F., Ko, T. P., Lai, H. L., Cheng, Y. S., Wu, T. H., Ma, Y., et al. (2011). Crystal structures of *Bacillus* alkaline phytase in complex with divalent metal ions and inositol hexasulfate. *J. Mol. Biol.* 409, 214–224. doi:10.1016/j.jmb.2011.03.063.
- Zettler, E. R., Mincer, T. J., and Amaral-Zettler, L. A. (2013). Life in the 'plastisphere': microbial communities on plastic marine debris. *Environ. Sci. Technol.* 47, 7137– 7146. doi:10.1021/es401288x.
- Zhang, A., Carroll, A. L., and Atsumi, S. (2017). Carbon recycling by cyanobacteria: Improving CO₂ fixation through chemical production. *FEMS Microbiol. Lett.* 364, 1–7. doi:10.1093/femsle/fnx165.
- Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. *BMC Bioinformatics* 9, 40. doi:10.1186/1471-2105-9-40.
- Zhang, Y., Burris, R. H., Ludden, P. W., and Roberts, G. P. (1997). Regulation of nitrogen fixation in *Azospirillum brasilense*. *FEMS Microbiol. Lett.* 152, 195–204. doi:10.1016/S0378-1097(97)00187-0.
- Zoete, V., and Michielin, O. (2011). SwissDock , a protein-small molecule docking web service based on EADock DSS. *Nucleic Acids Res.* 39, 270–277. doi:10.1093/nar/gkr366.