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Resumen en castellano 

La gestión de la pesca recreativa es un reto particularmente difícil debido a (1) su 

creciente relevancia, sobre todo a lo largo de la costa mediterránea, y (2) a la escasez de 

datos disponibles. La relevancia de la pesca recreativa es hoy indiscutible, pero las 

capturas, la mortalidad por pesca, el esfuerzo pesquero, la abundancia y casi todos los 

descriptores de esta actividad son desconocidos o poco conocidos en la mayoría de los 

casos. Dificultando el conocer la dinámica de la población de las especies objetivo. Esta 

circunstancia impide el diseño, la implementación y la evaluación de cualquier plan de 

gestión con una base científica. 

Por lo tanto, es urgente desarrollar métodos de observación que proporcionen 

datos objetivos, precisos y exactos sobre la pesca recreativa. Esta tesis tiene como 

objetivo llenar este vacío, explorando las capacidades de las cámaras submarinas para la 

obtención de estos datos. 

Los avances tecnológicos experimentados por las cámaras submarinas han sido 

impresionantes en los últimos años. Actualmente, la calidad de la imagen, la duración de 

la batería, la durabilidad, la capacidad de memoria o el coste de éstas ya no son factores 

limitantes para su uso. Sin embargo, las imágenes subacuáticas deben traducirse en datos 

cuantitativos, necesarios para diseñar planes de gestión adecuados y que estén de acuerdo 

con los procesos ecológicos subyacentes. La conexión de imágenes y datos está lejos de 

ser banal. 

En concreto, he explorado cómo obtener datos para dos variables particularmente 

difíciles: la abundancia de peces y la vulnerabilidad de los peces a la pesca con caña. En 



 

XX 

 

el caso de la abundancia de peces, el primer paso fue combinar cámaras sin cebo y con 

visionado de campo horizontal con uno de los métodos más populares utilizados para 

estimar la abundancia de peces costeros: buceadores que cuentan peces a lo largo de 

transectos (es decir, censos visuales submarinos o UVC). He demostrado cómo combinar 

cámaras con UVCs para explorar y tener en cuenta cualquier dependencia ambiental o de 

las características de los peces en la detectabilidad de éstos y, lo que es más importante, 

he demostrado que una vez estimada la detectabilidad de los peces, la abundancia de éstos 

puede ser estimada con precisión y exactitud sólo mediante cámaras. Este hecho tan 

destacable abre la posibilidad de estimar la abundancia de peces a escalas espaciales y 

temporales relevantes para gestionar la pesca recreativa, siempre que el número de 

cámaras y el tiempo de implantación de éstas no sean factores limitantes. 

El siguiente paso fue resolver dos problemas pendientes: (1) el área mostrada por 

las cámaras sin cebo con visionado de campo horizontal no se puede estimar con precisión 

y (2) el método estadístico desarrollado para las cámaras proporciona valores de 

abundancia a la escala del método de referencia, en este caso, los UVC. A pesar de ser el 

estándar más común, también se reconoce que los UVC pueden introducir algunos sesgos 

a la hora de estimar la abundancia de peces. En consecuencia, se desarrolló un nuevo 

diseño de cámaras sin cebo con visionado de campo vertical, un nuevo protocolo de 

muestreo y un nuevo análisis estadístico. He demostrado que este nuevo marco produce 

estimaciones de la abundancia de peces de manera más precisa y exacta. Posteriormente, 

el tercer paso fue demostrar la aplicabilidad y la viabilidad de determinar la abundancia 

de peces a gran escala, tanto espacial como temporal. Como prueba de concepto, se estimó 

con éxito la abundancia de una especie de serránido objetivo de la pesca recreativa 

(Serranus scriba), a lo largo de más de 100 km de la costa sur de Mallorca. Además, este 
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diseño permitió identificar los principales factores ecológicos que se correlacionan con la 

abundancia de peces. Por ejemplo, demostré que la abundancia de peces se correlaciona 

negativamente con la exposición a la pesca. 

En cuanto a la vulnerabilidad de los peces, he utilizado cámaras cebadas para 

averiguar los patrones de correlación de una variable sustituta (el tiempo de latencia hasta 

que el pescado muerde el cebo) con diversas variables relacionadas con los complejos 

procesos subyacentes. Los resultados evidenciaron que las interacciones pez-pez 

(sociales) juegan un papel relevante en la probabilidad de que un pez específico sea 

capturado. Los resultados reportados aquí sugieren firmemente que se debería encontrar 

una explicación mecanicista de los procesos que configuran la vulnerabilidad de los peces 

con el fin de mejorar el diseño de planes de gestión. En caso contrario, la pesca recreativa 

puede llegar a generar poblaciones con un gran porcentaje de peces no vulnerables, lo que 

no sólo es indeseable ecológicamente, sino que también afecta a la satisfacción de los 

pescadores. 

Finalmente, hemos explorado en profundidad una de las consecuencias ecológicas 

de la vulnerabilidad. Los marcos teóricos existentes plantean la hipótesis de que los peces 

no vulnerables pueden tener un potencial reproductivo menor que el de los peces 

vulnerables. En consecuencia, he desarrollado un método para cuantificar la 

vulnerabilidad de los peces y lo he aplicado para diseñar grupos experimentales en 

cautividad, emulando poblaciones con una vulnerabilidad media diferente. Los resultados 

demuestran que ni el número de huevos puestos ni el patrón de puesta estacional están 

relacionados con la vulnerabilidad de los peces. Por el contrario, la calidad de los huevos 

producidos por los peces no vulnerables parece ser mayor al final de la temporada de 



 

XXII 

 

puesta que la de los peces vulnerables. Si la calidad de los huevos afecta la capacidad de 

supervivencia y dispersión de estos, los resultados de este hallazgo se deben explorar y 

tener en cuenta a la hora de diseñar planes de gestión espacial. 

Para terminar, esta tesis ha alcanzado su objetivo principal: desarrollar técnicas 

de muestreo viables y fiables basadas en cámaras subacuáticas, que produzcan datos 

precisos y exactos ya listos para ser utilizados para la evaluación de la pesca recreativa y 

de otras pesquerías con carencia de datos.
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Resum en català 

La gestió de la pesca recreativa és un repte particularment difícil a causa de (1) la 

seva creixent rellevància, sobretot al llarg de la costa mediterrània, i (2) de l’escassetat de 

dades disponibles. La rellevància de la pesca recreativa és avui indiscutible, però les 

captures, la mortalitat per pesca, l’esforç pesquer, l’abundància i gairebé tots els 

descriptors d’aquesta activitat són desconeguts o poc coneguts en la majoria dels casos. 

Per tant, també es desconeix la dinàmica de la població de les espècies objectiu. Aquest 

fet impedeix el disseny, la implementació i l’avaluació de qualsevol pla de gestió amb 

una base científica. 

Per tant, és urgent desenvolupar mètodes d’observació que proporcionin dades 

objectives, precises i exactes sobre la pesca recreativa. Aquesta tesi té com a objectiu 

omplir aquest buit explorant-ne les capacitats de les càmeres submarines. 

Els avenços tecnològics experimentats per les càmeres submarines han estat 

impressionants en els darrers anys. Actualment, la qualitat de la imatge, la durada de la 

bateria, la durabilitat, la capacitat de memòria o el cost d’aquestes ja no són factors 

limitants. Tot i això, les imatges subaquàtiques s’han de traduir en dades quantitatives, 

necessàries per dissenyar plans de gestió adequats, d’acord amb els processos ecològics 

subjacents. La connexió entre imatges i dades és lluny de ser banal. 

En concret, vaig explorar com generar dades per a dues variables particularment 

difícils: l'abundància de peixos i la vulnerabilitat dels peixos a la pesca amb canya. En el 

cas de l’abundància de peixos, el primer pas va ser combinar càmeres sense esca amb 

visionat de camp horitzontal amb un dels mètodes més populars que s’utilitzen actualment 
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per estimar l’abundància de molts de peixos costaners: bussejadors que compten peixos 

al llarg de transectes (és a dir, censos visuals submarins o UVC). Vaig demostrar com 

combinar càmeres i UVC per explorar i tenir en compte qualsevol dependència ambiental 

o del les característiques dels peixos amb la detectabilitat d’aquests i, el que és més 

important, vaig demostrar que un cop estimada la detectabilitat dels peixos, l’abundància 

d’aquests pot ser estimada amb precisió i exactitud només mitjançant càmeres. Aquest fet 

tan destacable obre la possibilitat d’estimar l’abundància de peixos a escales espaials i 

temporals rellevants per gestionar la pesca recreativa, sempre que el nombre de càmeres 

i el temps de desplegament d’aquestes no siguin factors limitants. 

El següent pas va ser resoldre dos problemes pendents: (1) l’àrea que mostren les 

càmeres sense esca amb visionat de camp horitzontal no es pot estimar amb precisió i (2) 

el mètode estadístic desenvolupat per a les càmeres proporciona valors d’abundància a 

l’escala del mètode de referència, que en aquest cas són els UVC. Tot i ser un dels 

’estàndards més comuns, també es reconeix que els UVC poden introduir alguns biaixos 

a l’hora d’estimar l’abundància de peixos. En conseqüència, es va desenvolupar un nou 

disseny de càmeres sense esca amb visionat de camp vertical, un nou protocol de mostreig 

i una nova anàlisi estadística. Vaig demostrar que aquest nou marc produeix estimacions 

de l'abundància de peixos de manera més precisa i exacta. Després, el tercer pas va ser 

demostrar l'aplicabilitat i la viabilitat de controlar l'abundància de peixos a gran escala, 

tant espaial com temporal. Com a prova de concepte, es va estimar amb èxit l’abundància 

d’un serrànid que és una espècie objectiu de la pesca recreativa (Serranus scriba), al llarg 

de més de 100 km de la costa sud de Mallorca. A més, aquest disseny va permetre 

identificar els principals factors ecològics que es correlacionen amb l’abundància de 
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peixos. Per exemple, vaig demostrar que l’abundància de peixos es correlaciona 

negativament amb l’exposició a la pesca. 

Pel que fa a la vulnerabilitat dels peixos, he utilitzat càmeres amb esca per esbrinar 

els patrons de correlació d’una variable sustituta (el temps de latència fins que el peix 

ataca l’esca) amb diverses variables relacionades amb els complexos processos 

subjacents. Els resultats van evidenciar que les interaccions peix-peix (socials) juguen un 

paper rellevant en la probabilitat que un peix específic sigui capturat. Els resultats 

reportats aquí suggereixen fermament que s’hauria de trobar una explicació mecanicista 

als processos que configuren la vulnerabilitat dels peixos per tal de millorar el disseny de 

plans de gestió. En cas contrari, la pesca recreativa pot arribar a generar poblacions amb 

un gran percentatge de peixos no vulnerables, cosa que no només és indesitjable 

ecològicament, sinó que també afecta la satisfacció dels pescadors. 

Finalment, he explorat en profunditat un dels conseqüències ecològiques de la 

vulnerabilitat. Els marcs teòrics existents plantegen la hipòtesi que els peixos no 

vulnerables poden tenir un potencial reproductiu menor que els peixos vulnerables. En 

conseqüència, he desenvolupat un mètode per quantificar la vulnerabilitat dels peixos i 

l’he aplicat per dissenyar grups experimentals en captivitat, emulant poblacions amb una 

vulnerabilitat mitjana diferent. Els resultats demostren que ni el nombre d’ous posats ni 

el patró de posta estacional estan relacionats amb la vulnerabilitat dels peixos. Per contra, 

la qualitat dels ous produïts pels peixos no vulnerables sembla ser més gran al final de la 

temporada de posta que la dels peixos vulnerables. Si la qualitat dels ous afecta la 

capacitat de supervivència i dispersió d’aquests, els resultats d’aquesta troballa s’han 

d’explorar i tenir en compte a l’hora de dissenyar plans de gestió espaial. 
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Per acabar, aquesta tesi ha assolit el seu objectiu principal: desenvolupar tècniques de 

mostreig viables i fiables basades en càmeres subaquàtiques, per a produir dades precises 

i exactes ja llestes per ser utilitzades per l’avaluació de la pesca recreativa i d’altres 

pesqueries amb mancança de dades.
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Abstract 

Managing recreational fishing is particularly challenging because of (1) its 

growing relevance, particularly along the Mediterranean coast, and (2) the scarcity of data 

available. The relevance of recreational fishing is nowadays indisputable, but catches, 

fishing mortality, fishing effort, abundance and almost all the descriptors of this activity 

are unknown or poorly known in most of the cases. Thus, population dynamics of the 

target species remains unknown too. This fact precludes the design, implementation, and 

evaluation of any scientifically based management plan. 

Therefore, there is an urgent need for developing observation methods that supply 

objective, precise, and accurate data on recreational fishing. This thesis is aimed to fulfill 

this gap by exploring the capabilities of underwater cameras. 

The technological advances experienced by underwater cameras has been 

impressive in the recent years. Nowadays, image quality, battery life, durability, memory 

capability or cost are no longer limiting factors. However, the underwater images must 

be distilled into the quantitative data needed for designing proper management plans in 

accordance with the underlaying ecological processes. Connecting images and data is far 

to be trivial. 

Specifically, I explored how to deliver data for two particularly challenging 

variables: fish abundance and fish vulnerability to angling. In the case of fish abundance, 

the first step was to combine unbaited cameras with horizontal field view with one of the 

most popular methods currently used for estimating abundance of many costal fish: scuba 

divers counting fish along transects (i.e., underwater visual censuses, or UVCs). I 
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demonstrated how to combine cameras and UVCs for exploring and accounting for any 

environmental or fish dependencies on fish detectability and, more important, I proved 

that once fish detectability has been estimated, fish abundance could be precisely and 

accurately estimated using only cameras. Provided that the number of cameras and the 

deployment time are not limiting factors, this fact opens the possibility of estimating fish 

abundance at spatial and temporal scales relevant for managing recreational fisheries. 

The second step was to solve two pending problems: (1) the area surveyed by 

unbaited cameras with horizontal view cannot be precisely estimated and (2) the statistical 

method developed for the cameras renders abundance values at the scale of the reference 

method, which is, in this case, UVC. In spite of being the common standard, it is also 

recognized that UVC may introduce some biases when estimating fish abundance. 

Accordingly, a new design of unbaited cameras with vertical view, a new sampling 

protocol, and a new statistical analysis were developed. I demonstrated that this new 

framework produces estimates of fish abundance more precise and more accurate. The 

third step was to demonstrate the applicability and feasibility of monitoring fish 

abundance at large spatial and temporal scale. As a proof-of-concept, the abundance of a 

small serranid targeted by recreational fishers (Serranus scriba) was successfully 

estimated along more than 100 km of the South coast of Mallorca. Moreover, this design 

allowed identifying the main ecological drivers that are correlated with fish abundance. 

For example, I demonstrated that fish abundance is negatively correlated with exposure 

to fishing. 

Concerning fish vulnerability, I used baited cameras for disentangling the 

correlational patterns of a surrogate variable (latency time until a fish attacks the bait) 
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with several variables related with the complex underlying processes. The results 

evidenced that fish-fish (social) interactions play a relevant role in the odds a specific fish 

has of being captured. The results reported strongly suggest that a mechanistic 

understanding of the processes shaping fish vulnerability should be unravelled in order to 

improve the design of appropriate management plans. Otherwise, recreational fishing 

may lead to populations with a large percentage of non-vulnerable fish, which is not only 

ecologically undesirable but also affects fisher’s satisfaction. 

Finally, I have in-depth explored one of the ecological outcomes of vulnerability. 

The existing theoretical frameworks hypothesize that non-vulnerable fish may depict 

smaller reproductive potential than vulnerable fish. Accordingly, I have developed a 

method for scoring fish vulnerability, and I have applied it to design experimental groups 

in captivity, emulating populations with a different average vulnerability. The results 

demonstrate that neither the number of eggs laid, nor the seasonal spawning pattern is 

related with fish vulnerability. Contrasting, the quality of the eggs quality of non-

vulnerable fish seems to be higher toward the end of the spawning season than that of 

vulnerable fish. Provided that egg quality is affecting survival and dispersal capability, 

the outcomes of this finding should be explored and accounted for when designing spatial 

management plans. 

Overall, this thesis has achieved its primary objective: to develop feasible and 

reliable sampling frameworks based on underwater cameras that produce accurate and 

precise data ready to be used for assessing recreational fishing and other poor-data 

fisheries.
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General Introduction 

Fish Populations and Fishing Management 

One of the main challenges that researchers and managers are facing, both in 

terrestrial and aquatic environments, is trying to know as accurately and precisely as 

possible the number of individuals in a population. Estimating abundance is always 

complex, but the characteristics of aquatic environments imposes additional challenges. 

Marine environments cover over 71% of the surface of the Earth and are structurally less 

accessible than the terrestrial ones, which that they remain poorly known, despite the 

growing effort invested. 

Accordingly, one of the fundamental challenges in marine ecology and fisheries 

science is to describe the current state of fish populations in terms of abundance, which 

is imperative for understanding population dynamics, (Agnew et al., 2013; Hilborn and 

Walters, 1992). However, reliable abundance data at relevant spatio-temporal scales are 

rarely available in marine systems. Data scarcity is especially severe in the cases of 

recreational and artisanal fisheries targeting coastal fish, for which science-based 

sustainable management is often unfeasible (Pita et al., 2018). In addition, even in well-

monitored fisheries, most of the data come from catches and the biases of this data source 

are widely recognized (Kleiber and Maunder, 2008). Consequently, it is advisable to 

provide accurate, scientifically validated information to support the decisions making 

when managing fish populations and fisheries resources. 

Although the strength and extend of overfishing is still under debate (Pauly et al., 

2013), commercial fishing has traditionally been identified as the main source of fish 
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catches but there is growing concern about the potential impact of recreational fishing on 

fishery resources (Cooke and Cowx, 2006; Lewin et al., 2006). It is estimated that the 

annual catches of recreational anglers worldwide can reach 47 billion fish per year, which 

represents more than half of the global catches of commercial fishing, although 

approximately two thirds of the recreational catches are released (Cooke and Cowx, 

2006). The socioecological and economical importance of the recreational fisheries is 

nowadays being increasingly recognized (Arlinghaus et al., 2019), and in many places, 

such as the Mediterranean, it is common that this practice displays an increasing trend, 

which contrasts with the declining trend of traditional fisheries (Grau, 2008). In regards 

of the Balearic Islands, many people carry out this activity typically close to the coast. 

The numbers of participants do not stop to increase, but the information available on 

catches and effort is still poorly known (Gordoa et al., 2019; Morales-Nin et al., 2015). 

Currently, the coastal areas worldwide suffer a high anthropogenic pressure and 

experience the immediate effects of climate change (Savo et al., 2017). Aimed to face all 

these threats, decision-making tools for better fish conservation and fisheries 

management in coastal areas are constantly advancing (Long et al., 2015). Nevertheless, 

reliable methods to obtain the data needed for evaluating the monitoring programs are 

essential for improving decision-making strategies. In this line, the Marine Strategy 

Framework Directive is aimed to provide a scientifically founded advice to management 

programs. The ecosystem approach to fisheries and the marine spatial planning are 

examples of the framework resulting from such a science-management cooperation. 

However, these worthy intentions may lead nowhere if not supported by the development 

and on-site application of effective methods to survey fish stocks and quantify fish 

population dynamics in a reliable and accurate way, which must be adapted to the case-
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specific conditions to successfully meet the complex and critical challenges of conserving 

and managing fishery resources. 

 

Monitoring tools for assessing marine fish populations 

With the rise of the modern natural sciences, diverse tools and methods have been 

developed to explore marine environments, from the littoral zone to open waters, from 

the shelf to the abyssal seafloor (Murphy and Jenkins, 2010). Scientists extract data using 

diverse methods: From those emulating fishing to the most recent technological 

innovations as, for example, the use of autonomous, remotely controlled vehicles. 

Technological advances have decisively contributed to successful marine field studies at 

many levels: from individuals to populations, to meta-populations, to communities, and 

to entire ecosystems (Devine and Jensen, 2018). Different methods have been developed 

and applied to assess fish populations under management. Conventional fishing gears has 

been used either, directly exploiting the data provided by the fishers or reported by on-

board observers, or included within scientifically rigorous survey designs. These methods 

are not only invasive for the environment but also potentially biased. Traps, hooks or nets 

are known to experience some behaviour or size selectivity (i.e., the catches are not a 

random sample of the fish). Moreover, most of them are time and effort consuming. 

Contrasting, fishing-dependent methods can cover broad spatial areas and wide 

environmental ranges (Murphy and Jenkins, 2010). Therefore, fishing-dependent 

methods not only can cause some environment damage, such as the specific case of 

trawling surveys (Spedicato et al., 2019; Trenkel et al., 2019), but also provide potentially 

biased data.  
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On the other hand, other non-invasive, fishing independent methods has been 

developed to monitor coastal fish populations. Among them, one of the most widely used 

method is the direct observations by divers that follow some standardized protocol, 

known as underwater visual censuses (UVCs) (Murphy and Jenkins, 2010). UVCs has 

been extensively used to quantify spatial distribution, species richness, abundance and 

size distribution of fishes in shallow marine habitats (Edgar et al., 2004). UVCs can be 

based in either transects or fixed points. Depending on water depth and environmental 

conditions, snorkelling and scuba diving have been used. It has been claimed that UVCs 

provide accurate and precise data on conspicuous, sedentary fish species, but surveys can 

be biased, among many other factors, by the observer experience and by the diver 

presence itself. Advantages and disadvantages of UVCs for estimating fish abundance 

and diversity have been reported and discussed in several papers (Dickens et al., 2011; 

Kulbicki et al., 2010; Thompson and Mapstone, 1997; Trevor et al., 2000). For example, 

UVCs has been claimed to allow replication (which may increase the statistical power for 

testing the hypothesis under evaluation), to afford surveys at large areas, to estimate fish 

sizes, or to describe species-specific habitat preferences. Some additional advantages 

have been proposed: UVCs are environment-friendly and the data recorded by the divers 

can be readily exploited. On the contrary, some disadvantages of UVCs can be signalled: 

the observers must be thoroughly trained, observations are prone to some subjective 

interpretation, water visibility must reach a minimum threshold, and scuba diving 

imposes severe security restrictions, both for depth and time. UVC observations may be 

biased in relation the estimated size of the fish or with the number of fish counted. These 

potential biases depend, among others, on the observer’s experience, the spatio-temporal 
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variability of fish abundance and on the effects of the presence of divers on fish 

behaviour. 

Due to these potential drawbacks and surfing on the astonishing technological 

advances available today, the use of underwater cameras for monitoring fish populations 

are currently increasing. Underwater video methods are also non-invasive and non-

extractive. Moreover, underwater cameras overcame most of the limitations of UVCs 

related with diving security restrictions, reduce the diver/device influence on fish 

behaviour and allow long-term monitoring of fish populations (Cappo et al., 2003).  

The two main types of camera devices are baited or unbaited. Baited remote 

underwater video surveys (BRUVs) are one the most widely used methods worldwide  

(Whitmarsh et al., 2017). However, the fact that many fish are attracted by the bait is at 

the same time its major potential drawback because depending on the fish-specific 

attractiveness, fish density can be overestimated in a unknown, species-specific way 

(Mallet and Pelletier, 2014). Although BRUVs allow obtaining many replicated 

observations, can cover many study sites and can attract a wide range of fish species, it 

also has a restricted field of view and, most importantly, it takes long time and effort to 

extract the variables of interests (i.e., fish counts) from the videos. 

Remote unbaited cameras (RUVs) have been used to a lesser stand than BRUVs 

to monitor fish. It is also a non-invasive and non-extractive method, and presents fewer 

drawbacks compared to all the aforementioned methodologies (Mallet and Pelletier, 

2014). It has been claimed that the application of RUVs, along with the technological 

opportunities offered by camera-based wildlife assessment, can revolutionize the way we 

monitor fish and other aquatic organisms. One of the major promises of RUVs is that fish 



 

6 

 

density (number of animals per unit area) can be properly (i.e., with accuracy and 

precision) from the fish counts across a relatively few video frames (Campos-Candela et 

al., 2018). However, RUVs also have certain objections to be solved or assumptions to 

be checked before this methodology can be routinely applied as a monitoring tool for 

coastal fisheries resources. One of the key assumptions for extracting absolute density 

from RUVs is that the animal density must remain constant at the spatial and temporal 

scale of a given sampling event. Fortunately, this assumption is probably met by many 

resident coastal fish because they tend to remain within a given area of activity, called 

home range (HR), which are orders of magnitude smaller than the extent of suitable 

habitat (Alós et al., 2016; March et al., 2010; Villegas-Rios et al., 2014). For fish 

displaying a HR pattern of spatial occupation, no emigration, no immigration, no changes 

in the HR location and distribution, no birth and no death can be safely assumed at the 

spatial and temporal scales commonly used for sampling abundance. Another assumption 

is that any fish in the field view of the camera must be detected or, more precisely, 

detectability (i.e., the probability that a fish actually within the field of view would be 

detected) must be known. Therefore, the species-specific environmental dependencies of 

detectability should be assessed, which may be challenging. Habitat features such as the 

bottom roughness or seagrass cover determine the shelter landscape for a given species, 

thus they are expected to affect detectability (Hutto, 2016; Marques et al., 2017). Water 

turbidity is expected to affect detectability too. Thus, extreme cases (e.g., cryptic species 

that remain sheltered most of the time, or sites with limited water transparency) are 

inappropriate for being assessed using unbaited cameras. Fortunately, water transparency 

is excellent in the Balearic Islands, where many benthic species spend most of the time 
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swimming over the seagrass canopy or other sea bottom types, thus they are easily 

detectable by an underwater camera. 

 

Detectability and Abundance of Coastal Fish using RUVs 

The concept of detectability deserves special attention. Detectability, or detection 

probability, refers to the near-universal situation in animal population monitoring in 

which survey methods do not detect the presence of all animals actually present in the 

sampling area. Monitoring programs must, thus, incorporate methods for estimating and 

account for the effects of detectability, in such a way that the true, absolute fish abundance 

must be derived from the observed variable (e.g., fish counts) (Pollock et al., 2002). In 

the present thesis, the methodological protocol for the use of RUVs is progressively 

improved in Chapter I and Chapter II in order to develop an efficient and reliable tool for 

estimating absolute densities. I have selected Serranus scriba as model fish because is 

one of the most common targets of recreational fishing in the Balearic Islands (Dedeu et 

al., 2019). First, I demonstrate how to design a proper sampling program, in terms of 

number of cameras and deployment time, for achieving a predefined precision when 

estimating fish density. This goal was reached by means of simulations: a number of fish 

were moved according the movement model proposed by Campos-Candela et al., (2018). 

Once moving from simulations to the fieldwork, the main constraint in my case has been 

the recording time, since the underwater cameras depend on batteries with a limited life 

(3 hours). This recording time fits well with one of the method’s assumptions (abundance 

must be constant within a sampling event), thus the number of cameras was increased 
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until it is guaranteed to reach the predefined precision. The simulation experiments 

showed that 10 cameras were enough in my case, but the simulation software produced 

can find the optimal combination in other cases. Other aspects to take into account has 

been how to properly manage the large number of videos produced, to provide storage 

space and, mainly, to manually extract the information from the videos. In the near future, 

the application of deep learning algorithms is expected to overcome the huge effort 

needed for extracting data from the videos (Campos‐Candela et al., 2019).  

At Chapter I, RUVs with horizontal field view was used and combined with 

conventional UVCs transects in order to better understand the environmental 

dependencies S. scriba. Fish can hide behind rocks, within the seagrass meadows and 

they could be hard to detect or identify at long distance when surveyed with RUVs. In 

addition, the area actually surveyed by horizontal RUVs cannot be precisely delimited, 

and this uncertainty negatively propagates on the precision of fish density. These 

problems were solved after designing a new camera device, with vertical field view, 

which is introduced in Chapter II. The area surveyed can be precisely measured for 

vertical RUVs. Moreover, I demonstrated that fish could be safely classified when viewed 

from the top. 

The next step in Chapter II was to assess the environmental dependencies of 

detectability when using vertical RUVs. Provided that conventional UVCs are not the 

ground true, I designed an ad-hoc diving method for estimating the actual number of S. 

scriba in a relatively small area. This number was compared with the number of S. scriba 

counted from a video of the same area, thus allowing estimating detectability. After 

replicating the simultaneous (ad-hoc diving method and cameras) sampling of many sites 
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along all the environmental gradient of S. scriba, the environmental dependencies of 

detectability were assessed. Therefore, Chapter II demonstrates the full methodological 

protocol for estimating absolute fish density of S. scriba at any site, using vertical 

cameras. The feasibility of applying this method at a spatio-temporal scale relevant for 

adopting management decisions was demonstrated at Chapter III, where the abundance 

of S. scriba was estimated along the Southern coast of Mallorca (nearly 100 km) and at 

two season (Spring and Summer). The sampling was specifically designed for testing the 

correlational patterns between the abundance of S. scriba and the recreational fishing. 

Furthermore, this species presents different behavioural traits regarding vulnerability to 

angling  (Alós et al., 2015), which may have consequences on its survival, reproductive 

success, habitat use and distribution. All these aspects were explored at Chapter IV and 

Chapter V.  

 

Vulnerability to fishing and its biological consequences 

In the case of hock-and-line fishing, vulnerability is the chance that a given fish 

attack the bait. Vulnerability is the results of many interrelated processes; among them, 

fish behaviour has a key role. Encountering a bait is not sufficient to cause a fish to strike 

(Monk and Arlinghaus, 2017), and lure-striking decisions by fish result from the 

combination of a number of factors that include encountering the angling gear, the fish 

interaction with the angling gear, and certain internal characteristics of the fish, including 

several behavioural traits and other traits correlated with behaviour, such as metabolic 

rate (Lennox et al., 2017). Bolder, more exploratory behavioural phenotypes can be more 

vulnerable to capture by angling than shyer behavioural phenotypes (Monk et al., 2021). 
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The relationship between boldness and vulnerability has been repeatedly tested. However, 

vulnerability not only depends on fish behaviour but also on many abiotic and biotic 

environmental factors (Lennox et al., 2017). At this regard, the social learning is a 

widespread mechanism in many fish species for acquiring information (Lovén Wallerius 

et al., 2020; Takahashi and Masuda, 2021). In this thesis, the relative importance of the 

social context (fish-fish interactions) on vulnerability were experimentally examined 

using BRUVs in Chapter IV. It is noteworthy that the experiments were completed in the 

natural environment. The use of BRUVs specifically designed for this assessing 

vulnerability has allowed exploring the correlational patterns of vulnerability in relation 

with several potential explanatory variables. I have made special emphasis in exploring 

the role of social interactions in shaping the vulnerability of S. scriba.  

Finally, it is relevant to understand the potential consequences of vulnerability to 

angling on fish population dynamics. In addition to the obvious consequences of 

removing part of the population, I was interested in testing the existence of any effect of 

angling in the per capita reproductive potential because these effects may compromise 

the long-term sustainability of a population (Ospina-Alvarez et al., 2020). It seems that 

angling preferentially selects and removes the bolder phenotypes. Assuming that 

behaviour (and particularly, the behavioural traits related with vulnerability) may be at 

least partially heritable (Philipp et al., 2009), the log-term outcome would be that shyer 

phenotypes would became progressively more abundant. It seems that the repeated 

removal (by angling) of fish with specific, heritable behavioural traits (i.e., bolder or more 

active individuals (Biro and Post, 2008) may induce behavioural changes at the 

population level (Alós et al., 2016; Cooke et al., 2007). Angling, therefore, has the 

potential to render fish populations less catchable overall (Philipp et al., 2009) due to the 
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emergence of timidity-syndromes (Arlinghaus et al., 2017), making mechanisms of 

vulnerability an important concept for managers to consider when conserving, protecting, 

and enhancing recreational fish stocks. The vulnerability of fish to fishing depends on a 

range of life-history (e.g. growth, reproduction), behavioural (e.g. boldness) and 

physiological (e.g. metabolic rates) traits which are usually correlated with reproductive 

success. Based on the above, one of the hypotheses that can be raised is that more 

vulnerable to fishing could also be bolder, and that bolder fish, in turn, could display 

accelerated metabolic rate, which could be traduced in accelerated growth rate and in 

larger reproductive potential. The hypothesis that vulnerable fish may have greater 

reproductive potential was empirically evaluated in Chapter V. 
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Objectives and structure 

Chapter I 

The use of underwater cameras without bait to obtain fish densities is being a great 

advance when it comes to being able to use them in a great spatial and temporal range. 

Objectives: To be able to use the cameras with a precision and accuracy to other 

sampling methods. In this case, we focus on UVCs, but the final objective is to be able to 

calibrate them to be used by any method. 

Hypothesis: Underwater cameras can suffer when it comes to individually 

detecting all the fish in an area because there may be obstacles in front of it that prevent 

an ideal view. 

Chapter II 

Horizontal cameras have been observed to present difficulties when it comes to 

being able to extract the number of individuals from an area because there may be 

obstacles in front of it that hinder their vision. Among these obstacles, the roughness of 

the habitat or the presence of Posidonia oceanica meadows may be affecting it. 

Objectives: Use a structure specifically conceived to overcome obstacles that 

prevent horizontal cameras from observing the number of fish well. A new vertical 

structure is used that observes the bottom and that can work better in the different habitats 

of coastal species in addition the area surveyed is known. 
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Hypothesis: The vertical cameras, when observing from above, can see between 

the rocks or inside the Posidonia oceanica, notably improving the number of individuals 

capable of being seen. Habitat effects will affect it less than horizontal cameras. 

Chapter III 

The use of cameras can be a very powerful tool when it comes to finding absolute 

densities of fish in the coastal environment. Thanks to them, management programs can 

be improved thanks to the fact that they can sample large areas and a wide range of 

temporalities. In addition, the camera could be a tool that would improve methodologies 

dependent on fishing. 

Objectives: Use vertical cameras to find the density of a shore fish, which is a 

target species for recreational fishing. To do this, it is intended to sample the entire south-

west coast of Mallorca, more than 100 km of coastline, and see the population dynamics 

in a context of exposure to recreational fishing. 

Hypothesis: Our target fish, the Serranus scriba presents differences in density 

depending on its exposure to areas where recreational fishing may be taking place. In 

addition, this density may be higher before the recreational fishing season, in late spring, 

and decrease in late summer. 

Chapter IV 

Vulnerability to being fish is a behaviour-related syndrome. The information 

related to this is increasing its importance in the management of fishery resources, 

especially in those related to recreational fishing. This vulnerability is related to different 
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intrinsic characteristics of the fish, but extrinsic characteristics such as socialization with 

other congeners and species or even the habitat itself may also be playing an important 

role. 

Objectives: Using BRUV’s we want to know how the habitat and the intra and 

inter specific social context affects the vulnerability of the Serranus scriba to being 

fished. 

Hypothesis: The environment habitat and the local species (the fish community) 

would differ in their behaviours towards the bait at different levels and that could interfere 

in the vulnerability to angling of the S. scriba. 

Chapter V 

Exist an extensive bibliography describes that fish can exhibit different traits. In 

our case, the Serranus scriba has different life-history (e.g. growth; reproduction), 

behavioural (e.g. boldness) and physiological (e.g. metabolic rates) traits that makes it 

more or less vulnerable to fishing by anglers. 

Objectives: Evaluate whether the quantity of eggs and their quality are related to 

the behavioural syndrome of being more or less vulnerable to fishing. 

Hypothesis: One of the consequences of the different traits is to have different 

egg production between the vulnerable and non-vulnerable fish syndrome and this could 

be different due to the characteristics of the metabolism and consequently the release of 

different quantity and quality of eggs. 
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Chapter I - Estimating the density of resident coastal 
fish using underwater cameras: accounting for 
individual detectability  
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Chapter II - Fish density estimation using unbaited 
cameras: Accounting for environmental-dependent 
detectability 
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Abstract 

Accurate and precise monitoring of absolute density (i.e., number of fish per area 

or volume unit) of exploited fish stocks would be strongly advisable for deriving the 

stock's status and for designing proper management plans. Moreover, monitoring should 

be achieved at relevant (i.e., large enough) temporal and spatial scales. This objective is 

particularly challenging for data-poor fisheries, as it uses to be the case of recreational 

fishing. Therefore, here, as a proof of concept, the feasibility of underwater video 

monitoring (vertical unbaited cameras) for estimating the absolute density of coastal 

sedentary fish species is demonstrated. The absolute density of a small serranid (Serranus 

scriba) has been estimated with suitable accuracy and precision alongside the south coast 

of Mallorca Island (nearly 100 km). Fish density ranged between 2 ind/km2 and 59,115 

ind/km2. These large differences are explained by exposure to fishing, and by minor site-

specificities of habitat and depth, all well within the previously reported environmental 

range of the studied species. Site-specific, seemingly long-term, effects of fishing are 

negatively correlated with fish density, but short-term effects (assessed by the interaction 

between exposure to fishing and before/after the season when recreational fishing 

accumulated at the studied area) were not detected. We suggest that the short-term effects 

of fishing may remain undetected because highly exploited sites could inhabit fish that 

are already non-vulnerable to fishing, irrespective of the short-term fishing pressure 

exerted. Such a process may explain some hyperdepletion patterns and should prevent the 

use of fisheries-dependent data for monitoring fish density. 
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Introduction 

Proper assessment of population dynamics is essential for ensuring sustainable 

management and effective conservation of species and habitats (Milner-Gulland and 

Rowcliffe, 2007). Specifically, supplying accurate and precise monitoring of the absolute 

density (i.e., number of fish per area or volume unit) of exploited fish stocks is strongly 

advisable for deriving the stock's status and for designing proper management plans 

(Giacomini et al., 2020; Pauly et al., 2013). Nevertheless, biological reference points of 

stock assessment are usually defined using fishery-dependent data, in spite that it is well 

known that they are prone to bias (Alós et al., 2014, 2015a; Alós and Arlinghaus, 2013; 

Saul et al., 2020) and, thus, they may lead to inappropriate management decisions 

(Simmonds, 2007). In addition, wildlife monitoring should be achieved at relevant (i.e., 

large enough) temporal and spatial scales for adopting management decisions (Pollock et 

al., 2002). 

These problems exacerbate in the case of recreational fishing (Post, 2013), about 

which there are concerns on its impact on fishery resources (Cooke and Cowx, 2004). 

Marine recreational fishing is one of the most extended leisure activities in coastal waters 

worldwide (Hyder et al., 2018; Post, 2013) and it is a particularly relevant activity along 

the Mediterranean coasts, where may represent around 10% of total catches, and where 

is involving a huge number of practitioners (Grau, 2008; Morales-Nin et al., 2015, 2005). 
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However, collecting data about recreational fishing efforts or catches and, most 

importantly, predicting the effects of recreational fishing on the population dynamics of 

the exploited species are particularly elusive tasks (Arlinghaus and Cooke, 2005; Radford 

et al., 2018). 

Provided that underwater video techniques are increasingly used for monitoring 

reef fish, here we aim to demonstrate the feasibility of underwater video for estimating 

the absolute density of, as a proof of concept, a coastal fish species heavily exploited by 

recreational fishing. Underwater cameras are already providing an unprecedented amount 

of fishery-independent data (Mallet and Pelletier, 2014; Przeslawski and Foster, 2018; 

Sheaves et al., 2020). Their use is currently so widespread that underwater cameras are 

reshaping the way the marine realm is observed (Mallet and Pelletier, 2014; Sheaves et 

al., 2020). 

The relative abundance indexes extracted from several camera settings have been 

extensively compared to each other and against underwater visual censuses and other 

methods (Watson et al., 2005). Unfortunately, these empirical comparisons evidenced 

that effective integration of relative abundance indexes from different monitoring 

methods is problematic,  and it is better to use each method for each specific case (Cheal 

et al., 2021). 

In contrast with those relative abundance indexes, several methodological 

advances for extracting absolute density (i.e., number of fish per area or volume unit) 

from fish counts per frame have been recently proposed (Abolaffio et al., 2019; Campos-

Candela et al., 2018; Campos‐Candela et al., 2019; Follana-Berná et al., 2020, 2019). 

However, these contributions are developing theoretical concepts, are computer-
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simulated experiments focussing on statistical challenges (e.g., accuracy and precision) 

or deal with technical issues (e.g., fish detectability or device design), but a real-world 

demonstration of the feasibility of extracting fish density at field conditions and at a scale 

large enough for supporting management decisions is still lacking. Such a real-world 

demonstration is essential because, in spite that the density estimates obtained by these 

methodological advances seem unbiased and accurate (Abolaffio et al., 2019; Campos-

Candela et al., 2018), there is still some debate on whether the sampling effort needed for 

achieving a target precision is affordable or not (Abolaffio et al., 2019; Campos‐Candela 

et al., 2019). Thus, our primary aim is to demonstrate the feasibility of underwater 

cameras for estimating the absolute density at the mesoscale (near 100 km along the south 

coast of Mallorca Island) of a small serranid (Serranus scriba) exploited by recreational 

fishing (Dedeu et al., 2019). 

Moreover, and as a proof of concept too, we evaluated the feasibility of the 

proposed framework for testing ecological hypotheses. Specifically, we evaluated the 

effects of three of the most typical drivers affecting coastal fish density: habitat type, 

depth, and fishing (Stoner, 2004). Concerning fishing, the putative short term effects (i.e., 

between seasons in the same year) have been discriminated from the site-specific effects 

(i.e., exposure to fishing based on the distance to harbours; March, 2014) by monitoring 

the same sites before and after the summer, which is when most of the recreational fishing 

activity accumulates in Mallorca (Cabanellas-Reboredo et al., 2014; March et al., 2014). 

The hypothesis of short-term effect is assessed by comparing the between-season 

differences in density along a gradient of fishing exposure (i.e., larger decreases in density 

are expected at sites more exposed to fishing), while fish average (across-seasons) density 
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is expected to be smaller at more exposed sites under the hypothesis of site-specific (i.e., 

plausibly long-term) effects. 

 

Materials and Methods 

Study area and sampling 

To estimate the absolute density of S. scriba, 15 sites were sampled covering the 

south coast of Mallorca Island (Figure III—1 and Supplementary figure B-1).  



 

31 

 

 

Figure III—1. Map with the location of each sample in the area of the coast of Mallorca. The 

anchors represent the presence of ports, the red buttons the location where cameras were 
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deployed, the polygons with lines represent the MPA’s and the Exposure to fishing from white 

(no fishing exposure) to red (maximum exposure to fishing) . 

The selected sampling sites were distributed along 100 km, and they display well-

contrasted exposure to fishing and management strategies (e.g. from heavily exploited 

sites to marine protected areas, MPAs), and cover the full environmental gradient range 

inhabited by S. scriba: from rocky bottoms to seagrass meadows of Posidonia oceanica, 

and from the coastline to around 30 m depth (March et al., 2010). 

At each sampling site, ten vertical underwater camera devices (Supplementary 

figure B-2) were randomly deployed within an area of approximately between 1 and 0.5 

km2 for assessing the variability of fish density at a short spatial scale. Camera sites were 

located on suitable habitat for S. scriba, and distances between cameras in the same 

Season were larger than 200 m to minimize between-cameras spatial autocorrelation 

(Chapter II; Follana-Berná et al., 2020). All the devices from a given site and season were 

deployed on the seabed in a single day and left from (approx.) 8:00 to 12:00 pm, which 

ensures that each device has been recording till the battery life lasted (about 3 h and 15 

min). 

As stated above, two samplings were completed at each of the 15 sites for 

assessing the short-term effects of exposure to fishing on fish density: late spring and late 

summer. This sampling design should provide overall 300 videos (15 sites, 10 cameras 

per site, and 2 seasons per site) but the actual number of videos analysed was 257 because 

of wrong deployments or technological problems with the cameras. Sampling dates and 

the coordinates of all the points where cameras were deployed are provided at the 
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repository (https://doi.org/10.17632/8c5jwvkvsz.1 (Follana-Berná, G. & Palmer, M. 

2021). 

The underwater camera device consists of a vertical structure with two action 

cameras Sony HDR AS50® separated each other by a distance of 20 cm and looking 

down with an angle of 45º. This design has been already successfully used for estimating 

the fish density of S. scriba (Chapter II; Follana-Berná et al., 2020). The device, built 

with PVC pipes, incorporates a counterweight at the base and a buoy at the top, which 

ensures its vertical position at any moment. The cameras were located at 150 cm from the 

base of the device (Supplementary figure B-2). The seabed area surveyed by a camera 

was 5.0 m2 (Follana-Berná et al., 2020). 

The videos were manually examined by an observer, following a previously 

developed and tested protocol (Chapter II; Follana-Berná et al., 2020). Briefly, the first 

minute after the device landing on the seafloor was discarded to avoid any abnormal fish 

behaviour. Then, the number of individuals in one single frame was counted every 120 

seconds. The average number of frames counted per video was 90. Previous trials ensured 

that temporal autocorrelation between frames is not relevant at this counting frequency. 

In practice, the reading was made easier by using video viewing software that jumps from 

the actual target frame to a few seconds just before the next target frame. Fish movement 

largely facilitated fish detection during these few seconds but only those fish that are 

strictly present at the target frame were counted. 

 

https://doi.org/10.17632/8c5jwvkvsz.1
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Explanatory variables: Exposure to fishing, habitat, and depth 

Distance to ports has been used as a proxy of commercial fishing effort for 

explaining the spatial distribution of fishing effort (Caddy and Carocci, 1999). 

Accordingly, and following the rationale developed by (March et al., 2014), the variable 

exposure_to_fishing was defined based on a gravity model of the distance from all the 

ports on the south coast of Mallorca to each of the points where the cameras were 

deployed. These distances were weighted by the number of sport fishing licenses of each 

port (years 2014 to 2016, data provided by Direcció General Pesca i Medi Mari, Govern 

de les Illes Balears). In addition, this index was also weighted by the scaled number of 

days that recreational fishing is allowed at a given site. That is, this additional weight is 

zero at no-take marine reserves, one at fully open sites, or something between at partial 

marine reserves, depending on the number of days per week that fishing is allowed. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �∑ 𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗/𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑗𝑗→𝑖𝑖𝑗𝑗=15 � ∗

𝑀𝑀𝑀𝑀𝐴𝐴′𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 Equation III-1 

Where i is the site where a camera has been deployed and j is each of the ports. 

The costDistance function from the gdistance package (van Etten, 2017) was used to 

estimate the least-cost distance of each sampling site to each port. 

As stated above, sea bottom type and depth are also expected to drive the density 

of most coastal fish. The depth of each sampling location was extracted in-situ using the 

boat’s probe. Sea bottom type at the specific point where a camera device was deployed 

was quantified using the percentage cover of three types of substrate (Follana-Berná et 

al., 2020): (1) percentage of patches with sand to gravel; (2) percentage of rocks or rocky 
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patches with many crevices and sharp slope changes, with or without small-sized algae; 

and (3) percentage of seagrass. These cover percentages were transformed according to 

Aitchison (1983). Finally, a Principal Component Analysis was completed on the 

transformed percentages and the PCA’s scores on the two resulting axes (habitat_1 and 

habitat_2) were used as explanatory variables summarizing the habitat characteristics.  

 

Modeling fish density 

One of the main challenges for translating fish count per frame into absolute 

abundance is to properly deal with environmental dependencies of detectability 

(P_detection, the probability of counting a fish that is actually within the surveyed area 

by the camera). Moreover, uncertainty in the detectability estimation must be properly 

propagated to the precision of density estimates. In the case of S. scriba, detectability has 

been previously estimated to be 0.82, with a 95% Bayesian credibility interval between 

0.52 and 0.99 (Follana-Berná et al., 2020). Moreover, P_detection has been demonstrated 

to be independent of the sea bottom characteristics, at least within the environmental 

gradient considered (Follana-Berná et al., 2020). Countsi,j (the number of fish counted for 

the ith camera device at the jth frame, where i = 1 to 257 videos and j = 1 to approx. 90 

frames per video) has been assumed to be Poisson distributed as (Campos-Candela et al., 

2018; Follana-Berná et al., 2019; Follana-Berná et al., 2020): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑗𝑗 ∼ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(Area_camera * 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖* P_detection)     Equation III-2 

where Densityi is the fish density around the i camera and Area_camera is the area 

surveyed by the camera, which has been estimated with negligible error (5.0 m2) obtaining 
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the density of fish per square meter. Fish density was modelled as a linear combination 

(at the log scale) of the exposure_to_fishing index describe above, the two quantitative 

variables describing habitat (habitat_1 and habitat_2), and depth. The correlations 

between the four explanatory variables considered were small (the largest Pearson´s r2 

was 0.06), thus collinearity problems are not expected. A quadratic term has been 

included for habitat_1, habitat_2, and depth to account for possible unimodal responses. 

Moreover, the season was also included in the model allowing for (1) different intercepts 

(between season differences) and (2) different slopes for the fishing effort at late spring 

versus late summer (i.e., an interaction term). Finally, two random effects were 

considered. First, fish density at the point where a camera device has been deployed was 

allowed to be normally distributed (at the log scale) around the site mean, with a common 

standard deviation (σcamera). Second, the model intercept for a given site was allowed to 

be normally distributed (at the log scale) around a general intercept with a given standard 

deviation (σsite), thus the latter random effect is accounting for the between-site variability 

that is not explained by the fixed factors (exposure_to_fishing, habitat type, and depth). 

The parameters of this model were fitted using a Bayesian approach. Samples 

from the joint posterior distribution for fish density and the slopes and intercepts of the 

model given the data (fish counts) were obtained using STAN and the rstan library (Stan 

Development Team, 2020) of the R package (R Core Team, 2017). Uncertainty in 

P_detection was injected in the model after adjusting the posterior distribution reported 

by (Follana-Berná et al., 2020) to a beta distribution, which was done using the fitdistrplus 

library (Delignette-Muller and Dutang, 2015) from the R package. Any additional detail 

on the model structure has been made available in an R script provided at the repository 

https://doi.org/10.17632/8c5jwvkvsz.1 (Follana-Berná, G. & Palmer, M. 2021). The data 

https://doi.org/10.17632/8c5jwvkvsz.1
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counts and explanatory variables are available too. Four chains were run. Chain 

convergence was assessed by visual inspection of the chains and was evaluated using the 

Gelman-Rubin statistic (Gelman et al., 2015). Posterior distributions of the model 

parameters were estimated by 12,000 valid iterations after appropriate warm-up (the first 

1,000 iterations were discarded). 

Results 

The mean depth in meters of all sampling sites was 13.3 ± 5.1 m. The depth range 

of the deployment points of the camera devices ranged from 2 m to 32 m (Figure III—2).  
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Figure III—2. Depth between-site boxplot at camera level. The line in the middle of the box 

indicates the median; the upper and lower limits of the box represent the interquartile range and 

whiskers represent values at 1.5 times the interquartile range of the box. 

 

The exposure_to_fishing index varied among sampling sites, reaching the highest 

values close to marinas (e.g., Es Molinar, S'Arenal; Figure III—3) and the lowest values 

at MPAs and sites far from any harbour (i.e. El Toro, Cap Enderrocat, Cabrera, Sa 

Conillera). 
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Figure III—3. Exposure to fishing between-site boxplot at camera level. The line in the middle 

of the box indicates the median; the upper and lower limits of the box represent the interquartile 

range and whiskers represent values at 1.5 times the interquartile range of the box. 

 

Regarding the habitat, the 257 sampling locations were classified according to the 

bottom coverage (%), which after transformation and factorization (i.e., PCA) resulted in 

two axes (habitat_1 and habitat_2) that explain the 57% and the 43% of the variance 

(Figure III—4).  
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Figure III—4. PCA habitat scores. The images of the Axis 1 is a sample of the maximum and 

minimum habitat axis score. The same for the axis 2 but the middle image is the median score. 

 

Both axes were used as explanatory variables (Figure III—5). The axis 1 explains 

the gradient between sand (minimum score = -0.4797) to rock (maximum score = 0.4729). 

The axis 2 is related with the coverage of P. oceanica. Sites with scores close to the 

maximum (0.4369) display covers close to 100%, while P. oceanica is absent at sites with 

score close to the minimum (-0.8996). 
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Figure III—5. Habitat scores (A) axis 1 and B) axis 2) between-site boxplots at camera level. 

The line in the middle of the box indicates the median; the upper and lower limits of the box 

represent the interquartile range and whiskers represent values at 1.5 times the interquartile 

range of the box. 

 

The parameters of the statistical model detailed above given the counted number 

of fish per frame have been successfully estimated (no divergences, E-BFMI indicated no 

pathological behaviour, Rhat was always between 0.998 and 1.002; the effective number 

of samples was always larger than 2,000). Regarding the estimated densities of S. scriba 

(Figure III—6), the highest absolute densities were found in Cabrera (median: 14,294 

ind/km2; 95% Bayesian Credibility Interval, 95%BCI: 8,229 to 29,238 fish/km2), 
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followed by Cap Blanc (4,932 fish/km2, 95%BCI: 2,949 to 9,629 fish/km2) and El Toro 

(4,844 fish/km2, 95%BCI: 2,622 to 9,990 fish/km2). The lowest absolute densities were 

expected in Es Molinar (299 fish/km2, 95%BCI: 36 to 1,640 fish/km2), followed by 

Portals Vells (659 fish/km2, 95%BCI: 271 to 1,534 fish/km2) and S'Arenal (811 fish/km2, 

95%BCI: 269 to 2,550 fish/km2) (Figure III—6). 

 

Figure III—6. Boxplot with estimated fish density (ind/km2). The red dot indicate the mean. The 

line in the middle of the box indicates the median; the upper and lower limits of the box represent 
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the interquartile range and whiskers represent values at 1.5 times the interquartile range of the 

box. 

 

Concerning the effects included in the statistical model, the intercepts for late 

spring and late summer did not differ between each other (95%BCI includes zero; Figure 

III—7), suggesting that the average density across sites remained the same between the 

two seasons of a given year.  

 

Figure III—7. Model effect (showing whether it includes zero or not) of different fishing and 

temporal seasons, as well as habitat parameters, on S. scriba densities surveyed with vertical 

RUVs. 
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However, relevant effects (95%BCI does not include zero) on fish density were 

detected for the slope of the habitat scores at the first dimension and its quadratic term 

(i.e., the response to the habitat gradient seems to be an unimodal pattern). The slopes of 

the habitat scores at the second dimension were not relevant. According to these results, 

the worse habitat score for S. scriba along the habitat's gradient sampled (Figure III—4 

and Figure III—5), were -0.37 (95%BCI: -0.94 to 0.11), which corresponds to uniform 

Posidonia meadows (Figure III—4). Fish density is expected to increase toward 

Posidonia meadows mixed with either, rocks or sand (i.e., toward more heterogeneous 

habitats; the expected patterns when one explanatory variable by turn is allowed to change 

along the actual gradient while the other are kept constant at its average value are provided 

at Figure III—8A). 

Similarly, there were relevant effects on fish densities of the season-specific 

slopes of exposure_to_fishing (Figure III—7). In both seasons, the larger the 

exposure_to_fishing index, the smaller the fish density is expected to be, which suggests 

that fishing is reducing the site-specific (i.e., averaged across seasons) fish density (Figure 

III—8B). Interestingly, 95%BCI of the difference between these two slopes does include 

zero (Figure III—7), which strongly suggests that the interaction between season and 

exposure_to_fishing was not relevant and, thus, no short-term (between seasons) effects 

of fishing was detected. Finally, relevant effects (95%BCI does not include zero) on fish 

density were also detected regarding the slope related to depth. In that case, provided that 

the effect of the quadratic term was not relevant, the existence of an optimal depth within 

the sampled depth gradient (Figure III—2) was not supported; thus, the deeper a site, the 

smaller the fish density is expected to be (Figure III—6, and Figure III—8C). 
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Figure III—8. Description of relevant effects (95% BCI does not include zero) on fish density. 

Average value of the expected patterns for A) Habitat score 1, B) Exposure to fishing Index and 

C) Depth 

 

Discussion 

The feasibility of underwater video monitoring for estimating the absolute density 

of coastal fish species has been demonstrated. The absolute density of a small serranid (S. 

scriba) has been estimated with suitable accuracy and precision alongside the south coast 

of Mallorca Island (nearly 100 km). Therefore, the proposed sampling framework arises 

as a realistic alternative for long-term monitoring of coastal fish at temporal and spatial 

scales that are relevant for adopting management decisions (i.e., at the mesoscale). In 

addition, the capability of the proposed framework for testing ecological hypotheses has 

been demonstrated too. Certainly, the effects of habitat, fishing, and depth on coastal fish 

density are well known (Geraldi et al., 2019). Thus, the relevance here is that the proposed 

framework is fully capable of generating the data needed for testing any ecologically 

sound hypothesis with enlarged statistical power and at an affordable cost. 
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The proposed framework implies monitoring with vertical unbaited cameras, 

which seems to be robust against the biases affecting other fishery-dependent sampling 

methods and other camera settings. The advantages and limitations of the vertical 

unbaited cameras are compared against the two fishery-independent methods most 

commonly used for monitoring coastal fish at similar temporal and spatial scales (baited 

cameras and underwater visual censuses; Table III-1). Cameras with horizontal field 

views are not explicitly included in Table III-1 because irrespective of using bait or not, 

they suffer from the problem that measuring the area surveyed is elusive (Sheaves et al., 

2020) and that some fish may remain occluded by rocks or any other item. Certainly, the 

area surveyed by a vertical camera can experience slight variations depending on the 

substrate roughness and the precision of the area limits in a belt census would depend on 

the diver training, but these uncertainties are negligible when compared with those from 

horizontal cameras. Apart from that, the advantages and limitations of horizontal cameras 

are those linked with the use of bait or not (Table III-1). 
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Some generic advantages of cameras over visual censuses are the reduced risks 

for the staff (divers), and the wider gradient of extreme habitats that can be safely sampled 

(Mallet and Pelletier, 2014). Cameras also allow re-checking of the interpretation of the 

videos (fish counts and species identification). Cost is certainly more difficult to compare, 

but overall the initial investment of the divers' equipment and its maintenance seems 

larger when compared with action cameras, which are quickly becoming more affordable 

and with better quality. Thus, the number of cameras, the deployment time, or the area 

surveyed by a camera will not be an economic limiting factor in the near future (Aguzzi 

et al., 2020b, 2020a, 2015; Campos‐Candela et al., 2019; Matabos et al., 2015, 2014; 

Struthers et al., 2015). The training cost of the divers and the staff cost per sample 

(fieldwork) is larger in comparison with cameras. 

Both, visual censuses and vertical unbaited cameras can produce unbiased 

estimates of absolute fish density after species-specific fish detectability has been 

estimated. Detectability should preferably be estimated in an independent field survey 

(Follana-Berná et al., 2019; Follana-Berná et al., 2020; MacNeil et al., 2008; Pollock et 

al., 2002). Detectability estimation is species-specific and may need ad-hoc solutions 

(Follana-Berná et al., 2020) but it is feasible to model environmental dependencies 

(Follana-Berná et al., 2020; Follana-Berná et al., 2019) and, thus, properly account for 

potentially confounding effects as, for example, those related with water turbidity 

(Figueroa-Pico et al., 2020). Similarly, the area surveyed by visual censuses and vertical 

unbaited cameras can be measured with no or small error, thus allowing to link the count 

to an area unit. As stated above, this is a major handicap of any camera setting with a 

horizontal field view. 
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Both visual censuses and vertical unbaited cameras can theoretically reach any 

target precision, but the number of samples needed may be unaffordable (Abolaffio et al., 

2019). Nevertheless, this problem exacerbates in the case of visual censuses because the 

cost per sample is larger. It should be noted here that the number of counted fish per frame 

follows an ergodic process concerning time and space, provided that fish density is 

constant at the surveyed temporal scale (Campos-Candela et al., 2018). This assumption 

seems to meet at the one-day temporal scale of sampling used here and for most of the 

coastal fish displaying a home-range pattern of space occupation (Alós et al., 2016; 

Arechavala-Lopez et al., 2019; Follana-Berná et al., 2020; Jadot et al., 2006; Jones, 2005; 

March et al., 2010; Palmer et al., 2011). Therefore, the surface sampled by belt visual 

censuses (typically, in the range of 1,000 m2/day, assuming 4 censuses per day of 50 m 

long and 5 meters wide census; (Follana-Berná et al., 2019) may be even smaller than the 

area surveyed by the camera settings used here (4,500 m2/day: 90 frames per camera, 10 

cameras, and 5.0 m2). Computer simulation experiments suggest that the later sampling 

setting ensures a target accuracy of about 90 % (Campos-Candela et al., 2018; Follana-

Berná et al., 2020b; Follana-Berná et al., 2019). Therefore, the use of vertical unbaited 

cameras emerge as a plausible method for monitoring fish abundance at large spatial (as 

reported here) or temporal scales (e.g., permanent underwater observatories (Aguzzi et 

al., 2020; Matabos et al., 2014)). 

The use of baited cameras is certainly widespread but it is also well known that 

the fish counts provided by this method are biased (Cheal et al., 2021). To see more fish 

does not means that the counted fish reflects the actual density. Bait interferes with fish 

behaviour and the attraction strength may depend on the bait characteristics (Ghazilou et 

al., 2016), the hydrography or dynamics of the odour plume (Taylor et al., 2013), of 
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species-specificities (e.g., species-specific olfactory capability; carnivores versus 

herbivores) or even individual-specificities (competitive interactions at either within- and 

between-species, satiety, or many other processes) (Bassett and Montgomery, 2011; 

Stoner, 2004). Certainly, some interesting attempt for modelling the attraction dynamics 

have been made (Dunlop et al., 2015; Vabo et al., 2004), but the multiple processes 

involved and its complexity make very difficult to generalize a method for linking fish 

density with the fish counts recorded by a baited camera. Unbaited cameras and UVCs 

can also trigger some species- or individual-specific abnormal behaviour (e.g., diver 

presence may trigger flight or hiding behaviour (Pierucci and Cózar, 2015; Trevor et al., 

2000)), but the responses wound not be comparable with those of the baited cameras. An 

extreme case of potential bias could the permanent underwater observatories (e.g., 

https://imedea.uib-csic.es/sites/sub-eye/home_es/) that may act as artificial reefs (Aguzzi 

et al., 2020). These potential drawbacks should be further and carefully analysed but they 

are expected to be minimized with, for example, the sampling settings adopted here 

(discarding the few minutes of video after the device landing on the seafloor and sampling 

during a few hours only). 

Video post-processing has been adduced as one of the major disadvantages of 

cameras in front of censuses (Mallet and Pelletier, 2014). However, Deep Learning 

algorithms (Connolly et al., 2021; Ditria, 2020; Salman et al., 2019; Tabak et al., 2019) 

for automatically extract information from fish images and videos are currently exploding 

(Álvarez-Ellacuría et al., 2019; Connolly et al., 2021; Martorell-Barceló et al., 2021; 

Moen et al., 2018). Some operational (i.e., real-time) applications for counting fish maybe 

even plausible soon (Meng et al., 2018), which may circumvent the bottleneck of memory 

https://imedea.uib-csic.es/sites/sub-eye/home_es/
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for video storage. Thus, it is expected that post-processing time and effort may drop in 

the near future. 

As stated above, absolute density, in addition to the obvious advantages when 

modelling population dynamics for informing management decisions, allows proper 

comparison between studies (Cheal et al., 2021). However, if fish detectability is not 

estimated, such a comparison should be done with some caution. Nevertheless, the figures 

provided by underwater censuses at the same region (Balearic Islands) seem comparable 

with the figures reported here, which suggest a high fish detectability of underwater 

censuses. For example, the densities of S. scriba in the northern coast of Mallorca Island 

(5,000 ind/km2), in the south-western coast of Mallorca (11,300 to 18,500 ind/km2) or 

Cabrera (at the south of Mallorca; from 6,400 to 22,400 ind/km2; Deudero et al., 2008; 

Ordines et al., 2005; Reñones et al., 1997) fall within the densities estimated here. 

Similarly, the environmental preferences deducted from these studies fully agree with 

those reported here (e.g., S. scriba seems more abundant at shallow, heterogeneous 

Posidonia meadows), excepting in the case of Deudero et al., (2008), who suggest that 

the abundance of S. scriba is larger at deeper sites. The presence of rocks per se seems 

not enough for enhancing density because S. scriba inhabits artificial reefs on seagrass 

meadows but is absent from the artificial reefs located at nearby sandy areas (Coll et al., 

1998). 

In the same line, the abundance and environmental preferences of S. scriba 

estimated from visual censuses at other Mediterranean regions are similar to those 

reported here. At the Western Mediterranean (Serra Gelada: between 2,000 to 14,500 

ind/km2 (Arechavala-Lopez et al., 2008) and Cabo de Palos: 10,200 ind/km2; (García-
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Charton and Pérez-Ruzafa, 2001). At the Adriatic Sea (between 4,000 and 27,000 ind/km2 

at shallow rocky algal reefs, whereas lower density was reported at uniform P. oceanica 

meadows (Bonaca and Lipej, 2005). At the South-Easter coasts of Italy (27,500 ind/km2 

at P. oceanica meadows and 17,500 ind/km2 at other rocky-algal reefs (Guidetti, 2000)) 

or at the Central Aegean Sea, where S. scriba display close habitat preferences to those 

reported here (Giakoumi and Kokkoris, 2013). Interestingly, also in agreement with the 

results reported here, S. scriba densities at marine protected areas seem larger than those 

from non-protected areas (Guidetti et al., 2005). 

The between-site variation reported here is well explained by the three 

explanatory variables considered (season, exposure to fishing, depth, and habitat 

characteristics). The sites with the highest density of S. scriba densities (i.e. Cabrera, El 

Toro, and Cap Blanc) display large patches of suitable habitats and experience no or very 

low fishing (Figure III—3, Figure III—4, Figure III—5). Recreational fishing is banned 

at Cabrera and limited at El Toro (partial MPA but far from any recreational fishing port) 

and Cap Blanc (open site to fishing but far from any port). Sites with intermediate density 

display either, low exposure to fishing or a larger patches of suitable habitat for S. scriba. 

In the case of the MPA at Cap Enderrocat, the large number of harbours and marinas at 

the Palma Bay may counteract the soft fishing limitations (fishing is allowed 4 days per 

week in most of the protected areas). The relatively low density estimated at Sa 

Dragonera deserves special attention because it is environmentally suitable for S. scriba 

but it is submitted to a relatively important recreational fishing. However, this area has 

been recently declared as MPA (in 2019), just before the fieldwork reported here was 

completed. Therefore, this site offers an unique opportunity for monitoring fish density 

in the next years and testing the effects of the establishment of the new fishing limitations. 
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Finally, the smallest densities were found at sites displaying both, a smaller proportion of 

optimally suitable habitats (heterogeneous P. oceanica meadows) and a larger 

recreational fishing (Es Molinar and S'Arenal). 

The data reported here clearly support that sites with less fishing support larger 

fish densities. The correlational nature of this study precludes to explicitly suggest a 

cause-and-effect relationship, but the same pattern has been repetitively described at the 

same area and for the same species (Alós and Arlinghaus, 2013; March et al., 2014). 

Nevertheless, the sampling plan was specifically designed for discriminating short term 

effects (i.e., between seasons in the same year) from site-specific effects (i.e., long-term 

exposure to fishing) by monitoring the same sites before and after the summer, which is 

when most of the recreational fishing activity accumulates in Mallorca (Cabanellas-

Reboredo et al., 2014; March et al., 2014). Therefore, short-term effects can be assessed 

by comparing the between-season differences in density along a gradient of fishing 

exposure (i.e., larger decreases in density are expected at sites more exposed to fishing). 

As stated above, the hypothesis of site-specific, long-term effects of fishing seems 

supported by the results, but no short-term effect has been detected. Several plausible 

explanations may be adduced. For example, the few remaining fish at heavily exploited 

sites may be almost invulnerable, thus the number of fish in those sites remains constant 

after the increase of the fishing pressure during the summer. The existence of a spatial 

pattern in vulnerability (fish are less vulnerable along a gradient of fishing) has been 

already described for the same species and area (Alós et al., 2015b) and should be a note 

of caution against the use of catch-per-unit-effort (i.e., fishery-dependent data) as a 

surrogate of fish abundance (Alós et al., 2019; Monk et al., 2021) because hyper-depletion 
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processes may give the wrong impression that fish abundance is smaller than actually is 

(Ahrens and Walters, 2005; Hilborn and Walters, 2013). 

In summary, the results reported here suggest that fish monitoring with vertical 

unbaited cameras at large spatial and temporal scales is a reliable alternative in the near 

future. Baited cameras do not seem a reliable alternative for monitoring absolute density 

while the dynamic of the attraction was better understood and modelled. The proposed 

monitoring framework may be strongly benefited from the complementary role of diver's 

censuses but the combination of underwater cameras and artificial intelligence may 

represent a unique opportunity for a qualitative jump in the way marine wildlife is 

observed. 
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Abstract 

Proper assessment of the potential effects of recreational fishing on fishery 

resources implies not only monitoring fishing effort but also a better understanding of the 

factors affecting the probability of capture (i.e., fish vulnerability). Multiple interrelated 

processes (those related with (1) the internal state of the fish, with (2) the fish-gear 

encounter processes or with (3) the gear specificities) have been suggested to shape the 

odds that a given fish can be captured or not in a given moment and at a given site. Here 

we explore the correlational patterns of a vulnerability surrogate (latency to bite, or the 

time a fish takes to attack the bait) with a number of potential explanatory variables that 

are related with most of the processes that has been proposed as vulnerability triggers, 

placing special stress in evaluating the role of social (i.e., between-fish) interactions. As 

a case study, we focused in Serranus scriba, an abundant, small-sized, carnivorous 

species that is a common target of recreational fishers in Mallorca. After deploying 138 

underwater cameras at 15 locations covering all the South coast of Mallorca (i.e., covering 

all the environmental gradient inhabited by the species, and including marine protected 

areas and heavily fishing-exploited sites), we screened more than 2,500 minutes of video 

recordings, showing a device that emulates the most used hook-and-line configuration in 

Mallorca. The time between an individual of S. scriba appear in the scene and it, 

eventually, baits the hook (i.e., the latency time to bite) were recorded for 386 fish. The 

results showed that the larger the biting rate of other fish (any species) or the larger the 

number of S. scriba in the scene, the shorter the latency time to bite is. Contrasting, the 

larger the number fish around the bait but not interacting with it, the longer the latency 

time is. Habitat specificities are also affecting the latency time to bit of S. scriba, which 
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displayed larger latency times to bite at rocky habitats). Finally, S. scriba arriving short 

time after the camera deployment showed shorter latency time to bite. Conversely, no 

effects of exposure to fishing or S. scriba abundance were detected. These results support 

the relevance of the social interactions and the environmental specificities in shaping 

vulnerability. The role of the internal state of the fish should be considered too, as the 

arrival time could be a surrogate of the short-term bioenergetics state of a fish. 

Nevertheless, the correlational approach implemented here is only a first step towards a 

mechanistic understanding of the complex, interrelated processes shaping fish 

vulnerability to angling. 

 

Introduction 

Recreational fishing is one of the most extended leisure activities in marine coastal 

waters worldwide and involves a large numbers of participants (Hyder et al., 2018; Pita 

et al., 2018; Radford et al., 2018). Therefore, there is a growing concern about the 

potential effects of recreational fishing on fishery resources (Arlinghaus et al., 2019; 

Cooke and Cowx, 2006). Recreational fishers typically use passive gears: the fishing 

success also relies on the willingness of the fish to eat or attack the lure or bait (Lennox 

et al., 2017; Lokkeborg et al., 2005). Therefore, catches and fishing mortality depend not 

only on fishing effort and on fish abundance but also on fish vulnerability (i.e., the 

probability of being captured). However, vulnerability is a very complex variable (Figure 

IV—1; reproduced from Lennox et al., 2017) resulting from a number of interrelated 

processes that has been clustered into three main categories: (1) processes related with 

the internal state of the individual (e.g., hunger); (2) processes affecting the encounter 
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probability with the fishing gear (e.g., fish movement); and (3) processes related with the 

gear itself (e.g., size-dependent selectivity). Moreover, all the processes involved can be 

modulated by several environmental (biotic and abiotic) factors (Lennox et al., 2017). 

 

Figure IV—1. Factors and processes affecting vulnerability (reproduced from Lennox et al., 

2017) 
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The conceptual frame proposed by Lennox et al. (2017) suggests also to consider 

that vulnerability as a dynamic state variable of each fish (e.g., it can change within the 

same fish, between individuals of the same species, between sites, along the ontogeny,...). 

The processes that may affect vulnerability are diverse and they may be interrelated in 

complex ways (Figure IV—1). One example is that fish from marine reserves are more 

vulnerable to passive gears and fish vulnerability decreases when increasing the distance 

to marine reserves (Alós et al., 2015). Possible explanations of such a pattern may be the 

prevalence of different types of behaviour: Fish from heavily exploited sites seems to 

display shyer, less aggressive behaviour than fish from marine reserves where fishing is 

banned. However, the underlying process of this pattern remains elusive. For example, 

behavioural differences may be related with either learning (Askey et al., 2006; Lovén 

Wallerius et al., 2020) or selective mortality against bolder behavioural phenotypes (Alós 

et al., 2016; Monk et al., 2021). Moreover, provided that marine reserves may display 

enhanced abundances of some species, denso-dependent processes (i.e., inter- or intra-

specific competition) may lead to a reduced per-capita food availability, which in turn 

drives to some bioenergetics deficit, that is known to enhances foraging movement 

(Campos‐Candela et al., 2019b), which finally increases vulnerability (Alós et al., 2012). 

Thus, cause-effects chains are expected to be complex. 

Irrespective of the complexity of the processes behind, the ecosystem and 

community level interactions are expected to play a relevant role in shaping vulnerability 

(Ward et al., 2006). For example, different predator landscapes, differences in shelter 

densities or its interaction may depict contrasted fear landscapes, which may modulate 

vulnerability. Moreover, social interactions may buffer (or trigger) behavioural responses 

leading to vulnerability changes. For example, exploitative competition can make the bait 
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unavailable to the less efficient feeders (i.e., gear saturation); whereas some individuals 

may actively prevent the access to the baits by others fish (interference competition). The 

attack rate could also be enhanced by the presence of perceived competitors (social 

facilitation). Moreover, habitat-specific differences in vulnerability have been reported 

too (Lennox et al., 2017; Stoner, 2004). These differences may be related not only with 

the biotic components of the ecosystem (for example, some of the social interactions 

mentioned above) but also with temperature, light, turbidity, wind, currents, tides and 

other abiotic variables that may directly affect the detectability or the accessibility of the 

gear, or affect indirectly the willingness of the fish to attack the gear (Stoner, 2004). 

A relevant outcome of the existence of spatio-temporal variations in vulnerability 

is that fish abundance may be decoupled with catches, which leads to hyperdepletion 

(catch rate declines more quickly than fish abundance; Hilborn and Walters, 1992) or 

hyperstability (more skilled anglers overrides any behaviourally-based decoupling of the 

catch rate and fish abundance; Ward et al., 2013). Although decoupling between catch 

rate and abundance seems more common than it was previously believed, the processes 

behind remains unknown too (Alós et al., 2015). Therefore, a better understanding of the 

processes affecting vulnerability, and the outcomes of vulnerability in the resource 

dynamics are essential for assessing the potential effects of recreational fishing on fishery 

resources. Field measurements on vulnerability of wild fish have been made possible after 

the extensive use of baited remote underwater video (BRUV; Alós et al., 2015; Díaz-Gil 

et al., 2017). Here we use BRUVs for measuring a surrogate of vulnerability (latency time 

to bite, or the time a fish lasts to attack the bait) and exploring the correlational patterns 

of such a latency to bite with a number of potential explanatory variables. The case study 

focuses in Serranus scriba, an abundant, benthic, small-sized, carnivorous species that is 
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one of the main targets of the recreational fishers at the Balearic Islands (Alós and 

Arlinghaus, 2013; Dedeu et al., 2019). We specifically assessed the effects on 

vulnerability-to-angling of variables related with social interactions (e.g., number and 

behaviour of other conspecific fish and fish of other species) and environmental 

characteristics (e.g., habitat type, depth, season or exposure to fishing). 

 

Materials and Methods 

Overview 

Provided that the objective is to relate the response variable (latency to bite, or the 

time spent by a given fish to attack the bait) with a number of potential explanatory 

variables, the statistical unit of the analysis is the time period between a given fish appear 

in the scene until it, eventually, attacks the bait or disappear. This time is equivalent to 

the full, continuous track of a given fish in a video scene. Accordingly, potential 

explanatory variables must be measured at this scale. However, some variables can be 

assumed to be constant at larger spatio-temporal scales. Thus, several scales have been 

actually considered: (1) variables summarizing events during the latency to bite (e.g., 

average number of fish counted in the scene during the latency to bite), (2) variables 

summarizing events along the full deployment time (e.g., the maximum number of fish 

counted at any frame in a full video), (3) variables specific of the camera deployment 

location (e.g., depth or sea bottom characteristics), (4) site-specific variables (absolute 

abundance of S. scriba; see 0) and (5) season-specific variables (e.g., late spring vs late 

summer comparison). 



 

78 

 

The explanatory variables recorded and the a priori expected process(es) that 

depict each one of those variables are summarized at Table IV-1.
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Table IV-1. Overview of the explanatory variables considered. 

 
Variable Scale Source/Observations Processes 

Habitat 

Habitat score 1 

Camera deployment location 
The habitat scores result from a multivariate analysis 
on the cover percentages of sand, seagrass and rocks 
recorded at the camera deployment location. 

Food availability (long-term bioenergetics). Fear landscape. 
Shelter availability. Community level interactions (predators, 
competitors). Denso-dependent processes. Differences in the 
dynamic of the olfactory cues. 

Habitat score 2 
squared Habitat score  1 
squared Habitat score 2  

Depth  Camera deployment location  
Food availability (long-term bioenergetics).  Fear landscape. 
Shelter availability. Community level interactions (predators, 
competitors). Denso-dependent processes. 

Time since sunset  Camera deployment time  Short-term bioenergetics. Circadian rhythm. Light-related, 
anti-predator behaviour. 

Arrival time  Latency to bite of a given S. scriba Time between camera deployment and the moment a 
given fish appears in the scene. Short-term bioenergetics. 

S1: number of fish of any species biting the 
bait 

 Latency to bite  of a given S. scriba Number of events standardized by the duration of the 
latency to bite Social interactions (Community level). 

S2: number of fish of any species not biting 
but clearly interested by the bait 

 Latency to bite of a given S. scriba Number of events standardized by the duration of the 
latency to bite 

Social interactions (Community level). Inter-specific 
competition. Gear saturation. Interference competition. Social 
facilitation. 

S3: number of fish of any species near the bait 
but not clearly interested on it 

 Latency to bite of a given S. scriba Number of events standardized by the duration of the 
latency to bite 

Social interactions (Community level). Inter-specific 
competition. Gear saturation. Interference competition. Social 
facilitation. 

Diversity of the species attracted by the bait  Camera deployment time Estimated from species relative abundance pooled over 
the deployment time Social interactions (Community level). 

Nmax-like  Camera deployment time Maximum number of S. scriba counted at any moment 
over the deployment time Social interactions. 

Number of S. scriba biting the bait 
(conspecific fish) 

 Latency to bite of a given S. scriba Number of events standardized by the duration of the 
latency to bite 

Social interactions. Intra-specific competition. Gear 
saturation. Interference competition. Social facilitation. 

Number of S. scriba around the bait.  Latency to bite of a given S. scriba Number of events standardized by the duration of the 
latency to bite 

Social interactions. Intra-specific competition. Gear 
saturation. Interference competition. Social facilitation. 

Absolute abundance of S. scriba  Site-specific variable Estimated number of S. scriba per area unit (the 
method is fully described at Chapter III) 

Social interactions. Intra-specific competition. Denso-
dependent processes. 

Exposure to fishing.  Camera deployment location 
Function of the weighted distance of a given 
deployment location to all the ports from the study area 
(this variable is fully described at Chapter III) 

Differential mortality (behavioural type). Learning. Denso-
dependency (released competence at heavily exploited sites). 
Food availability. Long-term bioenergetics. 

Season  Season-specific effects (Spring vs 
Summer) 

 Denso-dependency. Population dynamics (e.g., recruitment). 
Food availability. Long-term bioenergetics. 

Interaction between season and fishing effort  Camera deployment location 
Provided that fishing effort peaks at Summer, but 
Summer fishing outcomes are expected to be larger at 
heavily exploited sites. 

Differential mortality (behavioural type). Learning. 

Site-specific random effects  Site  Random noise and any other unaccounted process at the site 
level. 

Camera deployment location-specific random 
effects   Camera deployment location   Random noise and any other unaccounted process at the 

deployment location level. 
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In addition, for completeness, the multivariate pattern of species turnover along 

the deployment time has been described. Finally, the maximum number of S. scriba 

counted at any moment during the deployment time (a Nmax-like metric) were compared 

with the absolute number of S. scriba (i.e., number of fish per area unit as estimated in 0) 

in order to evaluate the existence of possible biases related with the use of baited cameras 

when assessing fish abundance. Note that multivariate description of the fish community 

using the relative abundances directly obtained with the baited cameras used here has 

been explicitly avoided because the fish counted seems to be unrelated with fish absolute 

abundance (results reported and discussed below). 

Study area and sampling design 

The study was conducted alongside the South coast of Mallorca, Western 

Mediterranean Sea (Figure IV—3), between May 7th and August 2nd 2018, and covered 

15 sampling sites (Figure IV—3, Table IV-2). Five sites were located at protected areas 

with different regulations (El Toro, Sa Dragonera, Cap Enderrocat, Sa Conillera and 

Cabrera) and ten sites were fully open to recreational fishers (Cala Egos, Es Molinar, 

Portal Vells, S'Arenal, Cap Blanc, Cala en Tugores, Cala Pi, Camp de Mar, Badia Blava 

and S'Estanyol). A full description of the sites is provided in Chapter III (see also Follana-

Berná et al. 2021). Each site was sampled twice, at late Spring and late Summer. A total 

of 138 underwater camera devices were deployed in those 15 sites (Table IV-2). All the 

sites included large areas of suitable habitat for S. scriba (0), including different 

combinations of rocks, seagrass and sand (Fasola et al., 1997). Deployment locations 

within each site were randomly selected with a minimum distance of 250 m between them 

in the same Season to avoid between cameras interference. BRUVs deployments were 



 

81 

 

conducted between 9:30 and 13:30 local time (CET). The cameras were always deployed 

at locations with suitable habitat for S. scriba, but trying to maximize between-location 

environmental variability. The BRUV device consisted in a stainless steel structure, with 

two cameras and a horizontal dipstick of 2 m length. A fake device emulating a fishing 

gear was attached to the end of the dipstick (Alós et al., 2015). The cameras horizontally 

focuses on the fake gear, which consisted in a 1.5 m monofilament nylon line (0.35 mm) 

with four baited but dysfunctional hooks (size 4; gape 7.30 ± 0.03mm). The fake gear was 

attached to the end of the dipstick and a floater in the opposite end keeps it upwards all 

the time. The bait was a piece of shrimp (Penaeus vannamei), which is the most common 

bait used by the local anglers (Alós, 2009; Morales-Nin et al., 2005). The bait was bound 

with Lycra® for preventing that it could be detached from the hook. Baits were replaced 

after every deployment. Each BRUV was deployed on the sea floor during a maximum 

of 30 minutes at each deployment location (Figure IV—2). 
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Figure IV—2. (A) BRUV device using in the field. (B) Image representing a common situation 

during the visualitation of the BRUV videos. The red circles are the target fishes and the yellow 

circles are the bait used. 
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Figure IV—3. Map with the sampling sites along the south western coast of Mallorca 
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Table IV-2. Sampling sites characteristics: Number of cameras deployed in each season and the 

total (Season 1, Season 2 and Total), diversity (Margalef´s index) and total number of observed 

species in each site (Nº Species). 

Site Season 1 Season 2 Total 

S’Arenal 5 5 10 

Badia Blava 6 5 11 

Cap Blanc 5 5 10 

Cabrera 6 0 6 

Cala Pi 5 6 11 

Camp de mar 5 5 10 

Sa Conillera 6 0 6 

Sa Dragonera 5 5 10 

Cala Egos 5 5 10 

S’Estanyol 5 6 11 

Es Molinar 5 0 5 

Portal Vells 3 7 10 

Cap Enderrocat 6 5 11 

El Toro 7 0 7 

Cala en Tugores 5 5 10 

Total 79 59 138 

 

 

Video reading: all fish species 

The protocol for extracting social information (between-fish interactions) related 

with any fish species consisted in recording data at minimum 15 slots, the 95% where 

between 15 and 18, the maximum number of slot from a video was 33. A slot consisted 

in a 10 seconds scene of the video and they were placed one minute apart each other 
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(Figure IV—4). This procedure minimizes the processing time while maximizing the 

detectability of any slow-moving fish, which otherwise may remain undetected when 

inspecting a single frame only. Preliminary trials were completed for ensuring that this 

protocol ensures proper species identification and proper characterization of fish 

behaviour. The first minute just after the BRUV deployment was excluded from any 

further analyses to allow the bait to take effect and to avoid any disturbance related with 

BRUV deployment itself. 

 

Figure IV—4. Schematic representation of selected temporal slots from each video recorded 

sampling. 

All fish were counted and identified to the species level at each of these 15 slots. 

Moreover, the behaviour of any fish was classified into four categories: (1) Category 

Biting: the fish tries to swallow the bait; (2) Category Interested: the fish is close to the 

bait and shows clear interest for it. This behavioural category also includes staring the 

bait, swimming in circles around the bait or swimming towards the bait; (3) Category 

Uninterested: the fish swims near the bait but does not show clear interest for it; and (4) 

Category Background: the fish is in the scene but far away from the bait. 
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Video reading: S. scriba 

Each video was fully screened when extracting information regarding S. scriba. 

The moment (exact frame) when a given S. scriba appears it the scene, the moment(s) 

when it (eventually) bites the bait and the moment that it leaves the scene or the video 

ends were recorded. The full track from a given fish appears in the scene until the fish 

bites for first time (or leaves the scene) is assumed to be an independent observation. The 

response variable (latency to bite: LB, or the time between the moment a given S. scriba 

appears at the scene until it bites the bait for first time) has been measured for each track. 

It is assumed that this time is a surrogate of fish vulnerability (Follana-Berná et al., 2021). 

Accordingly, the proper statistical strategy for analysing the latency to bite is a survival 

analysis (i.e., a time-to-event analysis; Klein et al., 2016). When a given fish do not bite 

the bait, the track is considered to be a right-censored observation (i.e., we know for sure 

that the fish has not bitten the bait at least during the track-specific censoring time). 

The social explanatory variables corresponding to a given track that considered 

all species (variables S1 to S3 in Table IV-1) were derived from the records described in 

the section above (Video reading: all fish species) after define a smoothing function 

(using the splinefun function from the R package), integrate this function (using the 

integrate function from R) between the beginning and the end of the track, and finally 

normalizing by the track duration. This procedure was imposed for the need of linking 

the slot data (count records are available at each minute only) with the continuous time 

records for each S. scriba track. The resulting metrics are equivalent to the average counts 

of events along the track. 
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The three variables intended to measure the social interactions of a given S. scriba 

with other S. scriba (number of S. scriba biting the bait during the latency to bite, number 

of bites of any other S. scriba and number of S. scriba present around the bait; Table 

IV-1) were directly derived from the continuous observational records of all the events in 

any given track. However, provided that the number of S. scriba biting the bait and the 

number of bites of any other S. scriba are highly correlated, only the second variable was 

included in the statistical model described below. 

Other potential explanatory variables considered 

The Margalef’s diversity index (Margalef, 1958) was calculated for each camera 

deployment location according to (Si−1)/ln(Ni), where Si is the number of species of the 

location i, and Ni is the total number of individuals in the location i. These figures were 

obtained after pooling all the slot-level data of a given video. Only fish with behavioural 

categories Biting and Interested were included. 

The fish abundance at each camera deployment location was derived from the 

maximum number of fish (of any species) counted at any of the slots screened in a given 

vedeo. This metric emulates the maxN index (the maximum number of individuals seen 

in any frame/period over a whole video; Cappo et al., 2004). 

The sea bottom features of the specific location where a given camera device was 

deployed were quantified using the percentages covered by three clear-cut types of 

substrates (Follana-Berná et al., 2020): (1) hard substrate with low roughness (i.e., sandy 

to gravel bottoms); (2) hard substrate with high roughness (i.e., rocky bottoms with many 

crevices and sharp slope changes, with a variable cover of small-sized algae); and (3) 
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seagrass (Posidonia oceanica). The cover percentages were transformed according to 

log(𝑋𝑋𝑖𝑖 𝑔𝑔𝑔𝑔𝑔𝑔.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑋𝑋)⁄ ), where 𝑋𝑋𝑖𝑖is one of the three percentages and geo.mean is the 

geometric mean of the three percentages at a given point (Aitchison, 1983). Finally, a 

Principal Component Analysis was completed on the transformed percentages. The 

number of axis to be retained (either one or two) was defined using the rndLambdaF 

function from the PCDimesion package (Coombes and Wang, 2019). The PCA’s scores 

on the retained axes were used as potential explanatory variables for the latency to bite of 

S. scriba. 

In order to facilitate a more intuitive interpretation of the habitat scores, the 

camera deployment locations were classified into discrete habitat types (March et al., 

2013). The function fviz_nbclust from the factoextra library was used to estimate the 

optimal number of discrete categories (Kassambara and Mundt, 2020). After that, the k-

means algorithm from the kmeans function (R Core Team, 2021) was used to assign each 

camera deployment location to one of the discrete habitat types. 

The depth of each sampling location was extracted in-situ using the boat’s deep 

probe. The time after sunrise, was extracted using the getSunlightTimes function from the 

suncalc package (Thieurmel and Elmarhraoui, 2019) from the date and hour recorded 

during the fieldwork. 

As mentioned above, fishing effort is expected to affect vulnerability, thus the 

studied area is particularly well suited for evaluating this hypothesis because recreational 

fishing is one of the main leisure activities in the Balearic Islands (Western Mediterranean 

Sea) as indicated by the high number of fishing licenses issued (Gordoa et al., 2019; Grau, 

2008; Morales-Nin et al., 2015, 2005). Distance to ports has been used as a proxy of 
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commercial fishing effort (Caddy and Carocci, 1999). Accordingly, and following the 

rationale developed by March, (2014), the variable exposure to fishing (Table 1) of a 

given camera deployment location was defined from a gravity model of the distance 

between the deployment to all the ports on the south coast of Mallorca. These least-cost 

distances were estimated using the costDistance function from the gdistance package 

(van Etten, 2017). These distances were weighted by the number of sport fishing licenses 

of each port (years 2014 to 2016, data provided by the Direcció General de Pesca i Medi 

Marí, Govern Illes Balears). Finally, the exposure to fishing index was also weighted by 

the scaled number of days that recreational fishing is allowed at a given site (0). That is, 

this additional weight is zero at no-take marine reserves, one at fully open sites, or 

something between at partial marine reserves, depending on the number of days per week 

that fishing is allowed: 

𝐸𝐸𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (∑ 𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗→𝑖𝑖⁄𝑗𝑗=15 ) ∗

𝑀𝑀𝑀𝑀𝐴𝐴′𝑠𝑠𝐹𝐹𝐹𝐹𝐹𝐹ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  Equation IV-1 

where i is each camera deployment location and j is each port. 

Finally, the sampling season was also included in the model allowing for (1) two 

different intercepts (between season differences) and (2) two different slopes for the 

fishing effort at late Spring versus late Summer (i.e., an interaction term). The rationale 

for including this interaction term is the large fishing impact that takes place during 

Summer in Mallorca (Cabanellas-Reboredo et al., 2014; March, 2014). Thus, latency to 

bite may experience some change related with learning or selective mortality in Summer 

but only at the most heavily exploited sites. 
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Statistical model 

The latency to bite (time since a given S. scriba appears at the scene until it bites 

the bait for first time) has been assumed to be exponentially distributed, which is the 

canonical expectation for time-to-event successes (Klein et al., 2016): 

 LB𝒊𝒊 ∼ 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅(𝝀𝝀𝒊𝒊)  Equation IV-2 

where LBi is the latency to bite of the i fish and λi is the inverse of the success rate. The 

log-transformed λi is modeled as a linear combination of all the variables listed above 

(Table IV-1), which ensures that λi will be strictly positive irrespective of the values of 

the slopes (θj) of the variables considered (Xj; note that Xj was standardized by subtracting 

the mean and dividing by the standard deviation): 

 𝝀𝝀𝒊𝒊 = 𝒆𝒆(𝜽𝜽𝒋𝒋𝑿𝑿𝒋𝒋+𝑹𝑹𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗𝒗,𝒊𝒊+𝑹𝑹𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔,𝒊𝒊)  Equation IV-3 

Two random effects were considered: the common variability attributable to all 

the S. scriba that have appeared at the same video and the common variability attributable 

to all the S. scriba from the same location (Rvideo and Rsite). For shake of simplicity, these 

two random effects were assumed to be independent (non-nested). The random 

components of the fish i were assumed to be normally distributed with zero mean and 

standard deviations σvideo and σsite. 

The parameters of the model were estimated using a Bayesian approach. The 

posterior probability distribution for each parameter was inferred moving Monte Carlo 

Markov Chains (MCMC), as implemented in JAGS 4.3.0 (Plummer, 2015). The priors 

for all the slopes in θj were assumed to be normally distributed with zero mean and a huge 

variance. The priors for the inverse of the variances of the random effects were assumed 
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to be gamma distributed with scale = 0.01 and shape = 0.01. Some fish did not bite the 

hook during the time interval monitored. As usual in survival analyses, those LBi values 

were considered right-censored in the sense that latency to bite must be larger than the 

observation period (limiti). This fact was modeled using the dinterval distribution in 

JAGS, that generates the likelihood for Prob(isCensoredi | yi, limiti) for the parameters 

LBi (unobserved) and limiti. 

Posterior probability distributions were estimated from 10,000 iterations per 

chain, after a burn in period of 10,000 iterations, a thinning factor of 10, and three Markov 

chains. Convergence was then evaluated through visual examination of trace plots of 

MCMC chains and assessing the R.hat values (a statistic that compares within- and 

between-chain variability; Gelman and Shirley, 2011). The analysis were implemented 

with an ad-hoc R script (R Core Team, 2021) that used the R2Jags package (Su and 

Yajima, 2015). 

The full model (i.e., the model including all the variables listed in Table IV-1) 

was submitted to a step-by-step backward model selection procedure. At a given step, the 

variable which 95% credibility includes zero were removed. When more than one variable 

fit this criterion, the variable that showed the largest fraction of its posterior distribution 

around zero were first deleted. 

Describing species turnover 

The existence of a linear relationship between the species composition and the 

(log-transformed) time since a camera has been deployed on the sea floor was explored 

using redundancy analysis (RDA; Borcard et al., 2018). The hypothesis tested is that 
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species-specific dynamics are at play when fish are attracted by the bait. The time effect 

on species composition was evaluated with the model: 

spi,j,k = log(slotj,k) + Condition (camerak)  Equation IV-4 

where spijk is the number of fish counted for the species i at the slot j by the camera k, 

slottk refers to the time slot, and Condition here indicates that the camera has been 

considered as a covariable (i.e., any camera-specific pattern has been removed prior to 

evaluating the effect of time). 

The abundance data were the number of fish behaving accordingly to the 

categories Biting or Interested but only the 9 most abundant species (which represent 95% 

of all the fish) were included in the analysis. Counts were Hellinger-transformed (Borcard 

et al., 2018), thus empty slots (slots with no fish) have been excluded. Abundance was 

not standardized, thus the weight of a given species in shaping the multivariate space was 

proportional to the species’ abundance. The model (Equation IV-4) was evaluated using 

the rda functions of the vegan library (Oksanen et al., 2018) in R. 

Abundance of S. scriba: Comparing baited and unbaited cameras 

Finally, the maximum number of S. scriba counted at any slot during the 

deployment time of the baited cameras used here (an Nmax-like metric) were compared 

with the absolute number of S. scriba (i.e., number of fish per area unit) as estimated 

using unbaited cameras (see 0), in order to evaluate possible biases related with the use 

of baited cameras for assessing fish abundance. 
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Results 

More than 2,500 minutes (or 41 hours) of video were screened and interpreted 

from the 138 locations sampled at 15 different sites. Latency to bite was measured from 

386 S. scriba. 

 

Species detected, diversity and behavioural traits 

A total of 33 different fish at specie-level were recorded and identified, with a 

total of 10,820 individuals counted (Table IV-4). The number of species per site ranged 

from 20 (Sa Dragonera) to 9 (Es Molinar and Portals Vells). Species diversity 

(Margalef’s Index, as estimated using fish counts from the baited cameras) varied 

between 1.29 (Portals Vells) and 3.59 (Sa Conillera) (Table IV-3). 

Table IV-3. Margalef’s Index and Total number of species per site. 

Site Margalef’s Index Nº Species 

S’Arenal 2,26 16 

Badia Blava 1,52 10 

Cap Blanc 1,8 13 

Cabrera 2,37 15 

Cala Pi 1,65 13 

Camp de mar 2,51 18 

Sa Conillera 3,59 18 

Sa Dragonera 2,58 20 

Cala Egos 2,19 17 

S’Estanyol 1,79 12 

Es Molinar 1,4 9 
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Portal Vells 1,29 9 

Cap Enderrocat 1,69 12 

El Toro 2,3 15 

Cala en Tugores 1,7 12 

 

Nine species accumulates 95% of all the recorded fish (Diplodus annularis, Coris 

julis, Chromis chromis, Symphodus tinca, Serranus scriba, Diplodus vulgaris, 

Symphodus mediterraneus, Symphodus ocellatus, Symphodus rostratus) (Table IV-4). 

Diplodus annularis was the most detected species (3,105 fish), followed by Coris julis 

(3,073 fish) and Chromis chromis (2,084 fish). In contrast, the least detected species were 

Sparus aurata (1 fish), pelagic species such as Thunnus thynus (1 fish) and Lichia amia 

(1 fish), and the Chondrichtids Myliobatis aquila (1 fish) and Dasyatis pastinaca (2 fish), 

all of them recorded far from the BRUVs (behavioural categories Uninterested and 

Background) (Table IV-4). 

 

 

 

Table IV-4. Total number and proportion of individuals observed for each species according to 

recorded behavioural traits: S1: Biting; S2: Interested; S3: Uninterested; S4: Background. 

Specie Bitting Interested Uninterested Background Total Percentage Accumulated 

Diplodus annularis 1039 33,46% 1199 38,62% 719 23,16% 148 4,77% 3105 28,70% 28,70% 

Coris julis 692 22,52% 1363 44,35% 684 22,26% 334 10,87% 3073 28,40% 57,10% 

Chromis chromis 199 9,55% 706 33,88% 667 32,01% 512 24,57% 2084 19,26% 76,36% 

Symphodus tinca 21 3,20% 351 53,42% 165 25,11% 120 18,26% 657 6,07% 82,43% 

Serranus scriba 147 25,79% 273 47,89% 104 18,25% 46 8,07% 570 5,27% 87,70% 

Diplodus vulgaris 42 14,09% 118 39,60% 78 26,17% 60 20,13% 298 2,75% 90,45% 

Symphodus mediterraneus 47 18,80% 156 62,40% 40 16,00% 7 2,80% 250 2,31% 92,76% 

Symphodus ocellatus 48 23,53% 119 58,33% 28 13,73% 9 4,41% 204 1,89% 94,65% 

Symphodus rostratus 8 8,99% 55 61,80% 25 28,09% 1 1,12% 89 0,82% 95,47% 

Symphodus cinereus 17 22,97% 38 51,35% 17 22,97% 2 2,70% 74 0,68% 96,16% 

Spondylosoma cantharus 9 13,04% 43 62,32% 10 14,49% 7 10,14% 69 0,64% 96,79% 
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Oblada melanura 10 16,95% 13 22,03% 19 32,20% 17 28,81% 59 0,55% 97,34% 

Atherina hepsetus 1 2,13% 5 10,64% 17 36,17% 24 51,06% 47 0,43% 97,77% 

Unknown 2 6,06% 13 39,39% 8 24,24% 10 30,30% 33 0,30% 98,08% 

Symphodus spp. 0 0,00% 0 0,00% 0 0,00% 25 100,00% 25 0,23% 98,31% 

Thalassoma pavo 5 20,00% 8 32,00% 8 32,00% 4 16,00% 25 0,23% 98,54% 

Pagellus erythrinus 1 4,76% 8 38,10% 11 52,38% 1 4,76% 21 0,19% 98,73% 

Serranus cabrilla 2 9,52% 9 42,86% 7 33,33% 3 14,29% 21 0,19% 98,93% 

Spicara smaris 1 5,56% 4 22,22% 10 55,56% 3 16,67% 18 0,17% 99,09% 

Diplodus sargus 2 13,33% 4 26,67% 2 13,33% 7 46,67% 15 0,14% 99,23% 

Sarpa salpa 0 0,00% 0 0,00% 0 0,00% 15 100,00% 15 0,14% 99,37% 

Mullus surmuletus 0 0,00% 0 0,00% 12 85,71% 2 14,29% 14 0,13% 99,50% 

Symphodus doderleini 0 0,00% 4 57,14% 3 42,86% 0 0,00% 7 0,06% 99,57% 

Symphodus roissali 1 14,29% 4 57,14% 2 28,57% 0 0,00% 7 0,06% 99,63% 

Sciaena umbra 0 0,00% 0 0,00% 0 0,00% 7 100,00% 7 0,06% 99,70% 

Gobius spp. 5 71,43% 2 28,57% 0 0,00% 0 0,00% 7 0,06% 99,76% 

Labrus merula 0 0,00% 3 50,00% 2 33,33% 1 16,67% 6 0,06% 99,82% 

Symphodus melanocercus 0 0,00% 3 50,00% 2 33,33% 1 16,67% 6 0,06% 99,87% 

Spicara maena 0 0,00% 0 0,00% 5 100,00% 0 0,00% 5 0,05% 99,92% 

Sphyraena sphyraena 0 0,00% 0 0,00% 0 0,00% 3 100,00% 3 0,03% 99,94% 

Dasyatis pastinaca 0 0,00% 0 0,00% 2 100,00% 0 0,00% 2 0,02% 99,96% 

Thunnus thynnus 0 0,00% 0 0,00% 0 0,00% 1 100,00% 1 0,01% 99,97% 

Sparus aurata 0 0,00% 0 0,00% 0 0,00% 1 100,00% 1 0,01% 99,98% 

Myliobatis aquila 0 0,00% 0 0,00% 0 0,00% 1 100,00% 1 0,01% 99,99% 

Lichia amia 0 0,00% 0 0,00% 0 0,00% 1 100,00% 1 0,01% 100,00% 

Total 2299 21,25% 4501 41,60% 2647 24,46% 1373 12,69% 10820     

 

 

Regarding behavioural traits (Table IV-4), 62.8% of the fish detected was 

observed either biting (behavioural category Biting, 21.2%) or showing interest towards 

the bait (behavioural category Interested, 41.6%). The records assigned to the behavioural 

categories Uninterested or Background were 24.5% and 12.7% respectively. In the case 

of the key specie, S. scriba the 25.8% of the fish sampled bite the bait, the 47.9% showed 

interest for the bait and were close to it, the 18.2% not were interested and the 8.1% were 

far for the bait in the background. 
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Environmental variables 

In spite that the cameras were deployed at sites well within the suitable habitat for S. 

scriba, we have been successful in selecting locations along a wide environmental 

gradient, thus the sampling design is fully appropriate for detecting any potential 

correlational pattern between latency to bite and the environmental variables considered. 

Concerning the habitat, almost all cameras have been deployed at locations showing some 

cover of seagrass (P. oceanica). However, the gradient of habitat specificities was wide. 

The pattern of between-location similarity regarding the habitat features is shown at  

Figure IV—5. The two axes retained from the PCA on the cover percentages explained 

all (100%) the observed variance. The variance explained by each of these two axis was 

similar (56.4% and 43.6%). According with the scores on these two axes, the camera 

deployment locations have been classified into six discrete categories for facilitating an 

intuitive interpretation of the habitat characteristics. The six habitat categories are: 1) 

sandy bottoms (Sand), 2) seagrass meadows with some rock patches (Seagrass with 

Rock), 3) full seagrass meadows (Seagrass), 4) mixed habitats with seagrass, sand and 

rocks (Mix), 5) rocky bottoms (Rock), and 6) seagrass meadows with some sandy patches 

(Seagrass with Sand) (Figure IV—5). 
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Figure IV—5. A) Optimal number of cluster (habitats). B) Site scores on the first two RDA axis 

on the Aitchison-transformed percentage cover. 

 

The depth of the camera deployment locations ranged from 3 m to 26 m, 

corresponding these two extreme values to cameras deployed in Sa Dragonera. The 

average depth of all the cameras deployed was 13.3 m. The range sampled covers the 

depth range inhabited by S. scriba (Fasola et al., 1997). The time elapsed from sunrise 

until cameras deployment ranged between 2 hours and 27 minutes and 7 hours and 27 

minutes, with an average of 4 hours and 32 minutes after sunrise. Concerning the 

exposure to fishing index, the range of the sites sampled covered from no-take marine 

reserves (e.g., Cabrera) to heavily exploited sites that are close to many of the ports at 

Palma Bay (e.g., Es Molinar). 

 



 

98 

 

Vulnerability of S. scriba 

The model resulting after step-by-step backwards model selection (intermediate 

steps from the full, initial model to the final model are detailed in the repository 

https://doi.org/10.17632/t573gvgfg9.1 (Follana, G. & Palmer, M., 2021) was composed 

by only five variables: (1) the habitat score #1, (2) the arrival time (time since the camera 

deployment), (3) the number of fish from any species that are already biting the bite, (4) 

the number of fish from any species that show Uninterested behaviour for the bait and (5) 

the number of S. scriba present around the bait (Figure IV—6 and Table IV-5). 

 

Table IV-5. Estimated slope values of the five variables applied in the model selection (see 

Figure IV—6). SD: Standard deviation, BCI: Bayesian credibility interval. Rhat: potential scale 

reduction factor, which explains how the chains have converged to the equilibrium distribution. 

Approximate convergence is diagnosed when the upper limit is close to 1. 

Variable Mean SD BCI 2.5% Median BCI 97.5% R.hat 
slope Habitat score 1 0,365 0,137 0,101 0,36 0,639 1 
slope Arrival time -0,621 0,116 -0,86 -0,616 -0,405 1,01 
slope S1: number of fish of any species 
biting the bait 0,309 0,093 0,119 0,311 0,493 1 
slope S3: number of fish of any species 
near the bait but not clearly interested on 
it. -0,369 0,121 -0,602 -0,37 -0,142 1 
slope Number of S. scriba around the 
bait. 0,391 0,052 0,271 0,397 0,478 1 
Intercept -8,227 0,232 -8,702 -8,216 -7,799 1,02 

 

 

https://doi.org/10.17632/t573gvgfg9.1
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Figure IV—6. Model effects. The lines shows the median and the spread of the confidence 

interval (94% and 75% CIs) for the slopes of the five retained variables. 

 

The median latency to bite of S. scriba (i.e., the expected time at a hypothetical site 

displaying the average values for all the five variables retained) was estimated in 1.7 

minutes but 95% bootstrap-inferred interval ranges from 3.8 seconds to 10.2 minutes. The 

expected effects of each variable were assessed by bootstrapping: In turn, a given variable 

was allowed to vary along the actually observed gradient while the other variables were 

kept constant at their average value. Concerning the arrival time, the fish arriving to the 

bait after a short time from the cameras deployment tend to have shorter latency to bite 

(i.e., they are more vulnerable). When a large number of fish of any species are already 

biting the bite, the latency to bite of S. scriba tend to be shorter (i.e., they are more 

vulnerable). S. scriba seems to display shorter latency to bite at rocky habitats (i.e., they 

are more vulnerable). When other S. scriba are already surrounding the bait, the latency 
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to bite of a new S. scriba tend to decrease (i.e., they are more vulnerable). Finally, when 

a large number of fish are swimming around the bait but do not show any interest toward 

it, S. scriba tend to display larger latency to bite (i.e., they are less vulnerable) (Figure 

IV—7). The processes that may drive these patterns are discussed below. 
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Figure IV—7. Description of relevant effects (95% BCI does not include zero) on Latency to 

bite the bait for Serranus scriba. The dot is the average value of the expected patterns and the 

vertical lines the SD for A) Arrival time, B) Number of fish biting, C) Habitat score 1, D) Number 

of S. scriba presents and E) Number the fish uninterested. The Y-axis shows the time in minutes. 

 

Among the variables for which no relevant effect on latency to bite have been 

detected, it should be highlighted the case of exposure to fishing. Neither this variable nor 

its interaction with season (late spring versus late summer) seem to have any effect on the 

latency to bite of S. scriba. 

 

Species turnover 

In spite that some fish of most of the species remains around the bait for 15 or 

more minutes, each species seems to appear in the scene at its own species-specific 

moment (Figure IV—8). Similarly, each species tends to remain more or less time around 

the bait. For example, Coris julis peaks around 3 minutes after the camera deployment, 

while the bulk of Diplodus annularis seems to reach the bait later, around 6 minutes after 

the camera deployment. The species scores better depict the species turnover after the 

multivariate analysis (RDA) of the number of fish counted by species and slot (Figure 

IV—9). Concerning the nine most detected species, the arrival rank to the bait was (1) 

Coris julis, (2) Serranus scriba, (3) Synphodus tinca, (4) Diplodus annularis, (5) 

Symphodus rostratus, (6) Symphodus ocellatus, (7) Diplodus vulgaris, (8) Chromis 

chromis, (9) Symphodus mediterraneus. 
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Figure IV—8. Temporal pattern of the nine most abundant species (representing the 95% of the 

fish). The x-axis represents the time after the camera deployment (15 slots). The y-axis represent 

the averaged (across cameras) number of fish displaying either behavioural category Biting or 

Interested. 
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Figure IV—9. RDA plot showing the order of appearance of each species (species turnover). 

 

Comparing baited and unbaited cameras for assessing S. scriba abundance. 

The maximum number of fish detected in any frame of a video has been proposed 

to be a reliable proxy for relative abundance. This metric, known as maxN (Cappo et al., 

2004; Ellis and DeMartini, 1995; Rhodes et al., 2020), has been also applied to the 

maximum number of fish detected in video slots (Díaz-Gil et al., 2017). Thus, the 

maximum number of S. scriba in any of the slots screed here can be used for deriving a 

maxN-like index for each location where a camera device has been deployed. Moreover, 

absolute abundance estimates (fish/km2) are available for the same sites but using 

unbaited cameras (0). The later method has been demonstrated to render unbiased 

estimates of fish density (Abolaffio et al., 2019; Campos-Candela et al., 2018; Campos‐

Candela et al., 2019a; Follana-Berná et al., 2020, 2019), thus they constitute a ground 

truth standard against which the maxN-like index can be compared. The values obtained 

using both methods are shown in Figure IV—10. 
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Figure IV—10. Comparison of the estimates of absolute density (fish/Km2) obtained with 

unbaited cameras (0) against the maximum number of S. scriba counted at any slot of a video 

obtained with a baited camera. The points have been slightly moved to better show the all the 

cameras deployment sites. 

 

The maxN-like index was clearly uncorrelated with the absolute abundance of S. 

scriba (Pearson correlation r = 0.09). It is particularly noteworthy that sites as Cabrera 

that display absolute abundance values more than 100 times larger than sites as Es 

Molinar, showed the same or very close number of fish when attending the relative 

abundance values obtained using baited cameras (3 fish). The results at the site level are 

qualitatively the same. 
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Discussion 

Most of the species targeted by the recreational fishers in Mallorca (Morales-Nin 

et al., 2005) has been detected by the BRUVs deployed here. After sampling 15 sites, 

deploying 138 camera devices and screening more than 40 hours of video, more than 

10,000 fish belonging to 33 different fishes at specie-level were recorded. Most of the 

fish (60%) displayed behaviours included into the categories Biting or Interested, thus, 

these fish were potentially vulnerable to angling. Accordingly, with the sampling design, 

most of species recorded are benthic and linked to P. oceanica seagrass habitats with 

variable mixtures of rocky and sandy bottoms. However, a few fish from other habitat 

types has been detected too. Some remarkable examples are the Bluefin Tuna (T. thynus), 

the European Barracuda (S. sphyraena) and large Chondrichthyes such as Dasyatis 

pastinaca and Myliobatis aquila. Very similar lists of species have been reported from 

the same biogeographical region when using baited cameras (Alós et al., 2015; Stobart et 

al., 2007). 

The species relative abundance gathered using baited cameras has been used for 

describing the fish assemblages from a given site (Clarke et al., 2019; Whitmarsh et al., 

2017) or to disentangle the environmental drivers that shapes species composition 

(Aguzzi et al., 2015). Baited cameras have been also used for assessing fish communities 

targeted by recreational fisheries (Lowry et al., 2012a; Willis and Babcock, 2000) or 

monitoring marine protected areas (Willis et al., 2000; Willis and Babcock, 2000). In the 

latter case, it has been suggested that the behavioural specificities displayed by the fish 

inhabiting MPAs may be a potential caveat when using UVC (Willis et al., 2000). Here 

we clearly demonstrated that the use of baited cameras introduces severe biases when 
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estimating the abundance of S. scriba, thus these problems may exceed the specific case 

of MPAs. Certainly, the use of baited cameras is, at first glance, more appealing because 

a huge number of fish can be identified in comparison with the small numbers recorded 

when using unbaited cameras. Nevertheless, the results reported here clearly discourage 

the blind use of baited cameras for assessing the abundance of a given species (Cheal et 

al., 2021; Colton and Swearer, 2010; Lowry et al., 2012b; Sheaves et al., 2020). 

These drawbacks apply to the community level too. For example, the detection of 

emblematic species as tunas, barracudas or large Chondrichthyes is exciting but 

anecdotic. Moreover, the dynamics of the response to the attraction cue generated by the 

bait seems to be species-specific. One of the outcomes is the clear species turnover 

reported above. However, it is plausible that the use of other baits (Ghazilou et al., 2016; 

Wraith et al., 2013) or under different environmental scenarios the species turnover may 

change (Schmid et al., 2017). In our case, the number of detected individuals of C. julis 

peaks only 3 minutes after deploying a camera, thus this species might be acting as a 

visual flag for a social facilitated behaviour in other species. This flag role has been 

described for C. julis at the within-species level: some individuals display conspicuous 

foraging movements while others remain sheltered until a prey is detected (Kruschel and 

Schultz, 2012). Therefore, depending on the actual species assemblage of a given site and 

on a poorly known but probably complex web of environmental and social effects, the 

image of the species composition and/or species diversity obtained with baited cameras 

is expected to be uncertain. Again, the use of baited camera for assessing abundance is 

appealing but its extensive use requires an in depth understanding of the attraction 

dynamics and the processes involved. 
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However, it should be noted that the attraction dynamics is one of the essential 

processes shaping vulnerability (Figure IV—1). Therefore, the use of baited cameras as 

those we have developed here is fully justified when the objective is identifying the main 

correlational patterns affecting latency to bite (as a surrogate of vulnerability). Here we 

have demonstrated that latency to bite in S. scriba is correlated with five variables. Three 

of them (number of fish already biting, number of other S. scriba in the scene and number 

of fish displaying uninterested behaviour) are clearly related with social interactions. In 

two cases (number of fish already biting and number of other S. scriba in the scene), an 

increasing number of fish/events is correlated with shorter latency to bite, thus larger 

vulnerability to angling. The processes behind these patterns remains elusive due to the 

correlational nature of the sampling design. However, it could be speculated that inter- or 

intra-specific competition and/or social facilitation may play a role, which is supported 

by empirical evidences: fish increases the feeding rate when they perceive increasing 

levels of interference competition (Dill and Fraser, 1984). The third social variable 

correlated with latency to bite suggest the opposite pattern: when the number of fish 

swimming around the bait (but not directly interested by is increasing, the latency to bite 

of S. scriba increases too, thus fish becomes less vulnerable. Again, the cause-effect 

remains elusive but it could be speculated that the presence of a large number of non-

foraging fish may trigger anti-predator, precautionary behaviour in S. scriba. 

The fourth variable correlated with latency to bite is the arrival time. The fish 

arriving to the bait just after the cameras deployment tend to show shorter latency to bite 

(thus, they are more vulnerable) than the fish arriving later. We suggest that this pattern 

may be related with the short-term bioenergetics status of the fish (e.g., hunger level). It 

has been proposed that fish with energetic deficit tend to display enhanced foraging 
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behaviour, explore progressively larger areas and overcome the fear landscape imposed 

by a given predator setting (Campos‐Candela et al., 2019b). Thus, energy-depleted fish 

may move more actively and may have larger chance of finding the bait (or a hook; Alós 

et al., 2012). 

Regarding the habitat type, S. scriba is less vulnerable at rocky bottoms rather 

than at seagrass or sandier bottoms. The structural complexity and roughness are known 

to affect the ability of fish to locate their preys and feed (Rilov et al., 2007; Stoner, 2004). 

Ryer et al., (2004) reported that Pacific halibut tend to reduce foraging movement in 

complex habitats, thus in spite of the huge differences between this species and S. scriba, 

this is an example of habitat-depended behaviour that may affect vulnerability in the same 

direction that the behaviour displayed by S. scriba. Nevertheless, the habitat-related 

vulnerability may be a direct or indirect outcome of many other processes: differences in 

food availability (which may drive to long-term bioenergetics differences) (Ward et al., 

2006), specific fear landscape, shelter availability, several community level interactions 

(e.g., different settings of predators or competitors) (Connell, 1983), denso-dependent 

processes or even differences in the bait plume hydrodynamics (Stoner, 2004). 

We did not detect relevant effects on latency to bite for none of the remaining 

variables, but some of them deserves special attention. We expected that fish at heavily 

exposed sites will display low vulnerability because this pattern has been reported for the 

same species and area (Alós et al., 2015). Similarly, the interaction between exposure to 

fishing and season was expected to be relevant. Provided that fishing effort peaks at 

summer in Mallorca, and that individuals fished are not a random sample but they display 

the most vulnerable phenotypes, either learning (Lovén Wallerius et al., 2020) or selective 
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mortality (Monk et al., 2021) should increase the relative number of low vulnerable fish. 

Finally, absolute abundance of S. scriba seems uncorrelated with vulnerability, in spite 

that any denso-dependent process should lead to some bioenergetics deficit in the less 

competitive fish, which should became more vulnerable. We attribute these results to the 

correlational nature of the experimental design. When a large number of interrelated 

processes are underway (Figure IV—1), the cause-and-effect chain may mask some 

otherwise apparent effect. For example, the effect of exposure to fishing may be masked 

by the fact that fish at heavily exposed sites are already shyer, move less actively and, 

thus, enlarge the arrival time to the bait, which is the relevant effect we have actually 

detected. On the contrary, on those protected areas, the latency to bite of bolder fish can 

be directly influenced, as it was shown above, by locally higher species richness 

compared to areas more exposed to fishing.   

Therefore, the correlational approach developed here should be just considered a 

first step toward a mechanistic understanding of the processes shaping vulnerability. The 

results reported here may help to design controlled lab experiments or exploit the use of 

bio-loggers (Aspillaga et al., 2021; Brownscombe et al., 2019; Rutz and Hays, 2009) for 

disentangling the ultimate causes of vulnerability. This mechanistic understanding of the 

vulnerability drivers is unavoidable when trying to forecast the effects of recreational 

fishing and other fisheries using passive gears, where fishing mortality and catch rate 

pivot on three pillars: fishing effort, fish abundance and fish vulnerability. 
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General Discussion 

Gathering information on the biological biodiversity and abundance of marine 

species and is essential for effective management of marine ecosystems. Fortunately, the 

methods for collecting this information are quickly advancing too. This thesis highlights 

how the technological developments in the field of underwater cameras and their 

application in fish monitoring constitutes a great progress for fish conservation and 

fisheries management. The increase of the spatial and temporal scales along where marine 

observations are now available have been never seen. The safety improvement for the 

observers has been greatly improved too. In addition, the wealth of information that 

underwater cameras can collect while they remain deployed for long periods give us a 

broader image of what is happening under the sea, allowing to assess not only the 

biodiversity and abundance of fish populations, but also to understand the underlying 

ecological processes, to evaluate the environmental effects and to explain the behavioural 

interactions between species, which altogether will help to evaluate and improve the 

existing management plans. 

Fishing-dependent sampling methods are biased and may be invasive for the 

ecosystem. Furthermore, many marine populations are declining and with the increasing 

development of MPA networks, monitoring with extractive methods are restricted or 

banned in many cases. Therefore, non-destructive, remote and fishing-independent 

sampling methods, such as those using underwater cameras, are becoming increasingly 

widespread for monitoring marine biodiversity. Moreover, the use of underwater cameras 

implies negligible risk for the observers when compared with, for example, the censuses 

performed by scuba divers (underwater visual censuses, or UVCs). 
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This thesis also highlights that there is not one fit-for-all underwater camera 

method, but different strategies should be the most appropriate for achieving different 

purposes and for dealing with different scenarios. For example, unbaited cameras, or 

RUVs, have been identified as an effective methodology to provide information on the 

absolute abundance of fish. Any progress in this technique will therefore be particularly 

beneficial to the management of areas with high fishing pressure or conservation interest. 

One of the first milestones achieved in this thesis has been the use of computer simulation 

experiments for estimating the sampling effort needed to obtain a precise and accurate 

estimate of fish density. The theoretical advances in modelling fish movement (Campos-

Candela et al., 2018) has been paramount for that. Based on this approach, a new 

framework was developed in Chapter I. It combines UVC and RUV for the concurrent 

estimation of fish density (individuals per unit area) and the detection probability, or 

detectability (PID). Once PID is estimated, fish density can be estimated accurately and 

precisely at the scale of the preferred reference method using only RUV. Thus, provided 

that none of the commonly used reference methods for estimating density of resident 

coastal fish is precise enough, the possibility of an extensive use of properly calibrated 

RUVs may contribute to substantially enlarge the spatio-temporal scope of density 

monitoring programs for many resident coastal fish species. 

Moreover, detectability of the same individual may depend on many variables. 

For example, differences in the complexity of the bottom structure may result in habitat-

dependent differences in detection probability. I have explored this topic in Chapter II, 

where I propose the use of vertical RUVs due to some key advantages when compared to 

the RUVs with horizontal field view. First, when using horizontal RUVs, some fish may 

remain hidden by rocks or other benthic structures, and therefore remain undetected 



 

124 

 

(Zarco-Perello and Enríquez, 2019). Second, the area actually surveyed by horizontal 

cameras is not easily measurable and any uncertainty in this variable will be inevitably 

translated to fish density uncertainty. Certainly, this challenge can be solved using 

stereoscopic cameras, which allow the user to estimate the distance between any fish and 

the camera (Díaz-Gil et al., 2017), but it could involve an additional effort when analysing 

the videos, and may introduce a size-dependent bias (i.e., larger fish would be more 

detectable at larger distance from the camera). Using vertical RUVs, I demonstrated that 

detectability is independent of fish abundance and habitat type, at least for the case of S. 

scriba and within the environmental gradient that has been sampled. At the same time, 

site-specific differences in abundance has been successfully detected. However, there are 

some other factors influencing fish detectability that must be taken into account in future 

samplings. Some examples are, namely, density-dependent behaviour (Andersen et al., 

2017), seasonal differences in fish behaviour (i.e., fish may be more active and thus be 

more easily detected in warmer seasons), physiological status of the fish (e.g., hunger, 

diseases, etc.), fish size, social interactions or any other species-specific behaviour. 

Therefore, it is mandatory to take into account the behavioural attributes of the target 

species prior to selecting a specific UVC and/or RUV design (Cheal and Thompson, 

1997; Samoilys and Carlos, 2000; Ward-Paige et al., 2010).  

Once the influence of the habitat on fish detectability was assessed for vertical 

RUVs, an on-site assessment was carried out in Chapter III to demonstrate the feasibility 

and applicability of this method for monitoring coastal fish populations. Vertical unbaited 

RUVs were successfully used to estimate absolute densities of coastal fish populations 

along a coastline of more than 100 km, covering from MPAs to unprotected areas and 

along the entire habitat gradient inhabited by S. scriba. The result obtained support that 
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the areas with greater exposure to fishing are also those that have a lower fish density. 

The results reported in Chapter III suggest that fish monitoring with vertical unbaited 

RUVs at large spatial and temporal scales is already a reliable alternative. Moreover, in 

the near future, the combination of underwater cameras and artificial intelligence will 

represent a unique opportunity for a qualitative leap in how marine wildlife is observed. 

Different tools are already exploiting deep learning with similar purposes (Alós et al., 

2020; Cheng et al., 2020; Connolly et al., 2021; Tabak et al., 2019; Xu et al., 2019). 

The use of baited cameras has also its own target usefulness. Previous studies have 

shown that baited cameras (BRUVs) can be used for studying fish vulnerability to 

angling, which is a very relevant topic for fishery managers because catches depend not 

only on fishing effort and fish abundance, but also on fish vulnerability (Alós et al., 

2015a; Lennox et al., 2017). Previous studies on fish vulnerability have manly focused 

on the characteristics of fish (e.g., fish size) or on the environmental setting (e.g., water 

turbidity) but less attention has been paid on the influence of social interactions (i.e., fish-

fish interactions). Therefore, in Chapter IV, BRUVs were used to better understand how 

the environmental conditions and the inter- and intra-specific social interactions might 

influence vulnerability-to-angling of S. scriba. I have used a BRUV device emulating the 

most common hook-and-line gear utilized by the recreational fishers in Mallorca. This 

method has first allowed describing a clear species turnover: some species are quickly 

attracted to the bait (e.g., C. julis) and they seem to trigger the visual attraction of other 

species (e.g., S. scriba). Moreover, vulnerability-to-angling is not only correlated with 

the number of individuals of other species interacting with the bait, but also with the 

number of conspecifics. In addition, the habitat characteristics and the time since the bait 

deployment are affecting the vulnerability-to-angling of S. scriba too. These findings 
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highlight the importance of a mechanistic understanding of the complex processes 

shaping vulnerability when designing management plans for the coastal fish exploited by 

recreational fishing.  

Nevertheless, it is expected that any behaviourally selective fishing will enhance 

the survival probability of low vulnerable phenotypes and, thus, will increase the ratio of 

shy fish in the population (Alós et al., 2015a, 2015b). Accordingly, non-vulnerable 

individuals might act as offspring reservoirs in fish populations under artificial selection, 

as in the case of angling. When vulnerability is heritable, the outcome would be an 

evolutionary response. Therefore, fish behaviour is expected to play a key role in 

determining and modulating the impact of fishing on wild populations (Pine et al., 2009). 

In Chapter V, the relationship between vulnerability and reproductive potential of S. 

scriba was experimentally assessed. Although vulnerability-to-angling was not related 

neither with the total number of eggs produced nor with the seasonal spawning pattern of 

S. scriba in captivity, egg yolk size was larger in the less vulnerable fish but only towards 

the end of the reproductive season. Egg yolk size can be considered as a proxy for viability 

and egg quality (Reading et al., 2018), and therefore, some effects of vulnerability-to-

angling could be suggested, although other processes should be considered when drawing 

conclusions related to fish spawning success. Therefore, Chapter V highlights the need 

for further research to improve our understanding of potential evolutionary changes in 

larval survival and development, as well as other changes in the life-history traits of S. 

scriba related with recreational fishing. 

In summary, this thesis shows that unbaited cameras (RUVs) are highly 

recommended as a tool for monitoring fish populations and evaluating the success of 
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management plans. The application of RUVs, along with other methodologies, can 

exponentially increase the scientific knowledge of the dynamics of fish population, and 

expand the temporal and spatial range of sampling in the natural environment with an 

outstanding precision and accuracy. However, the process of extracting useful 

information from the videos should be improved. Nevertheless, given the astonishing 

development of new technologies, this bottleneck could be overcome within a short term. 

For example, the recent advances in the field of deep learning for automatic data mining 

can minimize the time and effort currently needed for video visualization. 

In addition, this thesis demonstrates that there is not a single fit-for-all underwater 

camera method, and each strategy can be adapted according to the goals to be achieved. 

In this context, I demonstrated how BRUVs cameras could be used to better-understand 

the effects of recreational fisheries at both individual and population levels, but also to 

assess the influence of environmental and social interactions on vulnerability-to-angling. 

Understanding the dynamic of fish populations and the effects of recreational fisheries at 

different levels and perspectives is essential to improve existing management plans or to 

develop new ones.  
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Conclusions 

1. A new framework combining UVC and RUV has been developed and 

successfully applied to estimate fish density (individuals per area unit) and 

individual detectability (PID). 

2. After estimating Probability of Individual Detection, absolute fish density can be 

estimated accurately and precisely using RUVs only. 

3. In the case of S. scriba, fish detectability when using vertical Remote Underwater 

Videos is independent of the bottom-type. 

4. After knowing the environmental dependencies and the species-specificities of 

PID, vertical RUVs can be used to monitor the abundance of many resident coastal 

fish, and at spatial and temporal scales relevant for taking management decisions. 

5. The technological advances in underwater cameras, together with the 

development of artificial intelligence, represent a unique opportunity for a 

qualitative leap in the way marine wildlife is observed. 

6. Baited cameras (BRUVs) are the appropriate tool for understanding fish 

vulnerability-to-angling, which should be took into account when assessing the 

fishing effects. 

7. The variables correlated with vulnerability in the case of S. scriba are social, 

internal and environmental. 

8. Fish vulnerability to fishing are related neither with the total number of eggs 

produced nor with the seasonal spawning pattern of S. scriba in captivity. 
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However, vulnerability is related with egg equality. Low-vulnerable fish present 

higher egg-yolk size (which is expected to improve larval development and 

survival) toward the end of the spawning season.  
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Annexes 

A. Supplementary material Chapter I: 

Estimating the density of resident coastal fish using underwater cameras: accounting 

for individual detectability. 

Reference 

Follana-Berná, G., Palmer, M., Campos-Candela, A., Arechavala-Lopez, P., Diaz-Gil, C., Alós, 

J., Catalan, I., Balle, S., Coll, J., Morey, G., Verger, F., Grau, A., 2019. Estimating the density of 

resident coastal fish using underwater cameras: accounting for individual detectability. Mar. Ecol. 

Prog. Ser. 615, 177–188. doi:10.3354/meps12926 
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B. Supplementary material Chapter III: 

Mesoscale assessment of sedentary coastal fish density using vertical underwater 

cameras. 

 

Supplementary figure B-1. Images of all the places sampled with the points where the cameras 

were anchored. A) Sa Dragonera, B) Cala Egos, C) Camp de Mar, D) El Toro, E) Portal Vells, 

F) Es Molinar, G) S’Arenal, H) Cap Enderrocat, I) Badia Blava, J) Cap Blanc, K) Cala Pi, L) 

S’Estanyol, M)Cala en Tugores, N) Sa Conillera and O) Cabrera. S1, Spring. S2, Summer. 

A)
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Supplementary figure B-2. Camera device deploying on the sea floor. 
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C. Supplementary material Chapter V: 

Consequences of trait-selective fisheries on population reproductive potential: 

an experimental approach. 

Supplementary figure C-1. Example of a tank for the Experiment#1: Scoring vulnerability to 

angling whit the camera in the surface, the hooks and line device and some Posidonia oceanica 

mimics. 
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