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Abstract: In the present study, the thermodynamic parameters of Polylactic Acid (PLA) under
conditions of thermal degradation were determined. The PLA material, previously sampled and char-
acterized, was analyzed by dynamic thermogravimetry (TG) at heating rates of 5, 10 and 15 ◦C min−1

with a nitrogen flow of 20 mL min−1 from a temperature of 25 to 900 ◦C. The data were treated
using isoconversional kinetic models to obtain the activation energy and the pre-exponential factor
of each model. To fit the DTG curves, the Arrhenius equation was used applying the Contraction
Sphere reaction model: two-dimensional phase limit reaction (R2). The thermodynamic parameters
such as enthalpy, Gibbs free energy and entropy were determined from the kinetic parameters of
suitable models for each heating rate after statistical validation and comparison with other studies.
The results showed that as the heating rate increases, the degradation temperature also increases,
while the activation energy, enthalpy and pre-exponential factor decrease. According to the value
of ∆G (171.65 kJ mol−1), PLA has a significant potential to be used as a raw material to produce
bioenergy/biofuels by pyrolysis.

Keywords: thermodynamic parameters; polylactic acid; degradation temperature; kinetic triplet

1. Introduction

According to the European Association of Plastic Materials Producers [1], the pro-
duction of plastics in the world reached 359 million tons in 2018. One of the reasons for
this high use is due to their great versatility, which makes them the preferred option to be
used in a bewildering range of consumer goods. With the growth of the human population
and development activities, the consumption of these materials is also increasing at an
accelerated rate, which has led to them be considered a latent environmental problem,
being one of the largest contributors to urban solid waste worldwide [2].

The production of polymers from renewable resources as a substitute of polymers of
petrochemical origin has increased significantly in recent years [3]. One of the most popular
biodegradable polymers is the Polylactic Acid (PLA), represented by the chemical formula
(C3H4O2)n. PLA can be produced from renewable non-toxic raw materials. In addition,
PLA has aroused a large amount of interest not only due to being a renewable material
but because of its biocompatibility, biodegradability, mechanical properties, thermoplastic
processability and low environmental impact, which make it a versatile option for use in
biomedicine and tissue engineering as an alternative to conventional polymers [4]. In recent
years, additive construction or 3D printing has increased for the manufacture of many
technological components. This construction procedure has and will have a great industrial
impact. There are many 3D printing procedures and, among them, the best known is
called Fused Deposition Modeling (FDM), in which a thermoplastic such as PLA is used
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in both amorphous and crystalline states, due to its optimal behavior in the process of
impression. In addition, PLA is generally used for the manufacture of automated analytical
devices such as lab-on-a-chip platforms due to the proven potential of this renewable
and biodegradable aliphatic polyester (PLA) to replace petrochemical-based polymers in
industrial applications.

Currently, the study of PLA is focusing on its processing, since its main problem is
thermal stability, which has been reported as a complex issue when subjected to different
recycling techniques such as pyrolysis [5]. In this sense, a promising solution to describe
its behavior, as well as to determine the thermal properties of this material, is through
thermogravimetry (TG). TG is a widely used technique to study different polymeric mate-
rials and to determine the reaction order, activation energy, frequency factor and the rate
of thermal decomposition that a given material undergoes [6,7]. PLA presents a different
activation energy with respect to conventional thermoplastics due to its particular structure
that determines its properties, as seen in several studies using isoconversional kinetic
models for non-isothermal TG data [8–11]. This difference depends on several factors:
(1) polymer preparation method; (2) molecular weight of the polymer; (3) operational
conditions such as sample weight, particle size, heating rate, mass flow rate, type of gas
used and sample-holder thermal contact; (4) mathematical treatment of TG data according
to different methods (integral, differential and special) [12]. The data of TG analyses are
also used to estimate thermodynamic parameters such as enthalpy, Gibbs free energy and
entropy from kinetic models, which are of importance for the analysis of mixtures and
the energy required for the thermal degradation process and the waste treatment of this
plastics type by chemical recycling, which help to decrease its environmental impact [13].
Thus, according to the information summarized so far, the objective of the present work is
to obtain and examine the changes in the thermodynamic parameters of PLA under condi-
tions of thermal degradation by applying a non-isothermal TG method at three different
heating rates. In addition, this study covers a kinetic analysis of the thermal degradation
process of PLA.

2. Methodology
2.1. Determination of Properties and Equipment

The PLA samples to be characterized come from the remains of a laser printing
company and were collected during a common production day. These samples are in
the form of pellets resulting from the residues obtained after the 3D printing process
as uncured resin after cleaning with isopropyl alcohol, as well as the residues obtained
after the curing process by means of visible ultraviolet radiation. The properties of this
material were obtained as follows. The density of the PLA was determined by volume shift
and the heat capacity by the mixing method using an adiabatic calorimeter (Calorimeter
PHYWE 04401.00). The main components of the PLA structure were identified by FT-
IR spectroscopy (Perkin–Elmer Frontier spectrometer) in the wave number comprised
between 4000 and 600 cm−1 with a resolution of 4 cm−1. To determine the kinetics of the
reaction, thermogravimetric analysis (TGA) was performed using the Mettler Toledo STAR
System at three heating rates, 5, 10 and 15 ◦C min−1, with an inert nitrogen atmosphere at
a flow of 20 mL min−1 and a temperature program from 25 to 900 ◦C. The loss of mass in
relation to the reaction time was studied using TGA curves and their first derivative (DTG).

2.2. TGA Data Processing

In the thermal degradation of polymers, the conversion must be determined from the
weight loss rate, showing the plastic’s behavior when heated [14]:

α =
wi − w
wi − w f

(1)

where α is the conversion, wi, w and wf are the initial mass, instantaneous mass and final
mass of the sample recorded by the TGA instrument. The reaction rate is influenced by
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2 variables, the temperature (T) and the degree of conversion (α) [10,15]. The combination
of the generalized form of the kinetic equation and the Arrhenius’s law results in kinetic
models that follow this form:

β
dα

dT
= A e(−

E
RT ) f (α) (2)

where E is the apparent activation energy (J/mol), A is apparent pre-exponential factor
(1/s), β is the linear heating rate, R is ideal gas constant and 8.314 (J/mol K) and T are the
absolute temperature (K). The mathematical manipulation of the last equation leads to the
determination of the kinetic triplets (E, A and f (α)) by fitting the TGA degradation data.

2.2.1. Isoconversional Kinetic Models

Isoconversional methods are a powerful and very reliable tool for calculating kinetic
parameters. The kinetic models detailed below were based on previous studies of thermal
degradation for virgin PLA and, in certain cases, processed PLA [10,12,16].

Friedman Method (FR)

FR is a differential kinetic model presented by Friedman [17], who proposes (Equation (3))
the use of the logarithm of the conversion rate dα/dT as a reciprocal function of temperature,
applied directly to the previous Equation (2):

ln
(

dα

dt

)
= ln

(
β

dα

dT

)
= ln(A)− E

RT
+ ln( f (α)) (3)

Kissinger-Akahira-Sunose Method (KAS)

KAS is an integral kinetic model that results from an integral fit of Equation (2). The
method in question is based on the Coats–Redfern approximation [18], and its standard
kinetic equation can be written as follows:

ln
(g(α))

Tm2 = ln
AR
E

− ln β − E
RT

(4)

Flynn-Wall-Ozawa (FWO) Method

The FWO method is an integral kinetic model derived from the isoconversional
method of Flynn and Wall [19] and Ozawa [20]. This method considers the general kinetic
equation and uses the Doyle approximation [21], resulting in:

ln(g(α)) = ln
AR
E

− ln β − 5.331 − 1.052
E

RT
(5)

2.2.2. Reaction Model

The reaction model f (α) is the parameter that determines the reaction mechanism most
consistent with the results of thermal degradation. The geometric models of solid-state
reactions are based on the nucleation and growth processes of the nuclei of the product by
advancing the interface. Some studies [10,16] suggest the use of the contraction area model
(R2) for PLA, taking into account two modelling considerations: (1) the Solid particle has
a cylindrical shape and (2) the geometric contraction modelling assumes that nucleation
occurs rapidly at the surface of the solid and the reaction is controlled by the resulting
reaction interface progressing towards the center. Taking into account these considerations
for PLA, we proceeded to work with this reaction model.

f (α) : 2(1 − α)1/2 (6)

g(α) : (1 − (1 − α)1/2) (7)
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To determine the kinetic parameters of the material, we worked with a range of
degrees of advance α in such a way that the linear fit is adequate to perform the analysis of
the TGA data.

The linear area of α was determined by plotting dα/dt or β dα/dT as a function of α. If
you want to obtain a good linear fit, it is recommended to work with a range of α lower
than the maximum point (this range generally ranges from 0.4–0.6), because, in this range,
the slope of the curve tends to be constant [22]. Notice that this range coincides with the
beginning of the degradation reaction of several thermoplastics, and therefore it is very
useful to determine the kinetic parameters of the material [23].

2.2.3. Statistical Adjustment and Validation of Kinetic Models

The adjustment of the experimental values of each model was carried out using the
least squares method. The manipulated variables were the pre-exponential factor (A)
and the activation energy (E), taking into account as a condition that the degradation
temperature must be the same both in the experimental data and in the proposed model.

2.3. Thermodynamic Properties

The Gibbs free energy, the enthalpy and the entropy changes can be estimated by
applying the proper equations. The thermodynamic parameters of the heated material
determine the feasibility and spontaneity of the thermal degradation process.

2.3.1. Enthalpy

It is the thermodynamic property that represents the total heat content of a system at
constant pressure when the only work done is pressure–volume. For pyrolysis, enthalpy
means the total energy consumed by the material for its conversion into various products:

∆H = E − RT (8)

2.3.2. Gibbs Free Energy

Gibbs free energy is also known as free enthalpy, and it represents the total increase in
energy of the system for the formation of the activated complex (radical formation from
the PLA polymer) and is obtained from the following equation:

∆G = E + RTm ∗ ln
(

KB ∗ Tm

h ∗ A

)
(9)

where ∆G is the Gibbs free energy and KB and h are the Boltzmann and the Plank constants,
respectively.

2.3.3. Entropy

The entropy indicates the degree of disorder of the material. A negative entropy
variation shows that the degree of disorder of the products produced by the dissociations
of the bonds is lower than that of the initial reactants. In addition, a very low entropy
value indicates that only certain physical and chemical changes occur in the material [24].
Therefore, if the enthalpy is low, the entropy must have a high negative value to favor the
reaction. This indicates that the evolution of the reaction will not only depend on energy
(enthalpy), since it will also depend on the molecular configuration that is reached (changes
in entropy).

∆S =
∆H − ∆G

Tm
(10)
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3. Results and Discussion
3.1. Characterization of the PLA Sample
3.1.1. Density and Specific Heat

The average density of the experiments was 1.2545 g mL−1. This value is in the
range established by Farah et al. [25], who point out that the density of PLA ranges
between 1.24–1.26 g mL−1. The PLA experimental average specific heat value at 100 ◦C
was 1936 J kg−1 ◦C−1, very close to that cited in the literature, and it was 1955 J kg−1 ◦C−1

at the same working temperature [25].

3.1.2. Mechanical Properties

PLA (Biopolymer Ingeo 4032D) used in this research is a product of NatureWorks
LLC (Minnetonka, MN, USA) [26], which is a thermoplastic resin derived from renewable
resources that presents a racemic mixture with L/D ratios from 24:1 to 32:1 (<5% D-PLA)
with a melting tempera-ture (Tm) of 210 ◦C and a glass transition temperature (Tg) of 57 ◦C.
In addition, its mechanical properties include a tensile modulus of 500 kpsi and a tensile
elongation 6.0%, which have been determined using the ASTM D882 method.

3.1.3. FT-IR Analysis

On the other hand, an FTIR analysis has been carried out for the chemical characteri-
zation of the PLA commonly used in 3D printing. PLA is composed of three main peaks:
C–H, C=O and C-O. Spectra between 1050 and 1205 cm−1 are attributed to asymmetric and
symmetric stretching vibrations of the C–O carboxylic acid group. The stretching vibrations
of the carbonyl C=O are observed at 1755 cm−1, which presents a significant similarity to
that obtained by Choksi and Desai [27]. The peaks at 2992 cm−1 and 1448 cm−1 correspond
to the stretching vibrations of the C-H alkane and the C-H bending alkane of the methyl
group, respectively. When comparing the bands that appear in this spectrum with the FTIR
corresponding to PLA in the literature [28], it was found that this analyzed polymer is
similar to L,D-PLA as shown in Figure 1.
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The results obtained in the TGA experiments consist of 200 points showing the vari-
ation in the PLA mass loss as a function of temperature at the heating rates 5, 10 and
15 ◦C min−1, as shown in Figure 2. The initial weight of the sample for the case at
15 ◦C min−1 was slightly higher.



Appl. Sci. 2021, 11, 10192 6 of 11

Appl. Sci. 2021, 11, 10192 6 of 11 
 

°C min−1, as shown in Figure 2. The initial weight of the sample for the case at 15 °C min−1 
was slightly higher. 

 
Figure 2. PLA TGA curves at different heating rates of 5, 10 and 15 °C min−1. 

The DTG curves representing the derivative of the mass loss versus temperature are 
shown in Figure 3. At each heating, the maximum peak temperature can be seen where 
the greatest degradation of the sample occurs, resulting in 607, 624 and 631 K for 5, 10 and 
15 °C min−1, respectively, whose values are analogous to those presented by Das & Tiwari 
in their study [10]. 

 
Figure 3. DTG curves of PLA at different heating rates of 5, 10 and 15 °C min−1. 

3.2. Kinetic Parameters of the FR, KAS and FWO Models 
Table 1 shows the obtained kinetic parameters (activated energy and preexponential 

factor) using the different isoconversional kinetic models presented in Section 2.2.1. Re-
gardless of the model, the kinetic parameters E and A decrease with an increasing heating 
rate; on the other hand, the reverse is true for the maximum degradation temperature (Tm), 
since the lower the heating rate, the lower the temperature at which the sample exhibits 
greater degradation. Figures 4–6, below, show a comparison at each heating rate of the 
experimental DTG curves versus the DTG curves of the isoconversional kinetic models 
proposed. 

Figure 2. PLA TGA curves at different heating rates of 5, 10 and 15 ◦C min−1.

The DTG curves representing the derivative of the mass loss versus temperature are
shown in Figure 3. At each heating, the maximum peak temperature can be seen where
the greatest degradation of the sample occurs, resulting in 607, 624 and 631 K for 5, 10 and
15 ◦C min−1, respectively, whose values are analogous to those presented by Das & Tiwari
in their study [10].
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3.2. Kinetic Parameters of the FR, KAS and FWO Models

Table 1 shows the obtained kinetic parameters (activated energy and preexponential
factor) using the different isoconversional kinetic models presented in Section 2.2.1. Re-
gardless of the model, the kinetic parameters E and A decrease with an increasing heating
rate; on the other hand, the reverse is true for the maximum degradation temperature (Tm),
since the lower the heating rate, the lower the temperature at which the sample exhibits
greater degradation. Figures 4–6, below, show a comparison at each heating rate of the
experimental DTG curves versus the DTG curves of the isoconversional kinetic models
proposed.
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Table 1. Kinetic parameters of PLA.

Kinetic Model
Experimental Condition Results

Heating Rate β (◦C min−1) Tm (K) E (kJ mol−1) A (s−1) R2

FR

5 607.2 146.70 1.192 × 1011 0.9840

10 624.8 130.94 5.147 × 109 0.9818

15 631.0 119.44 5.224 × 108 0.9453

KAS

5 607.2 145.59 8.958 × 1010 0.9909

10 624.8 128.27 2.781 × 109 0.9797

15 631.0 119.44 5.224 × 108 0.9663

FWO

5 607.2 145.59 8.958 × 1010 0.9909

10 624.8 128.28 2.789 × 109 0.9797

15 631.0 118.59 4.353 × 108 0.9663

Appl. Sci. 2021, 11, 10192 7 of 11 
 

Table 1. Kinetic parameters of PLA. 

Kinetic Model 
Experimental Condition Results 

Heating Rate β (°C min−1) Tm (K) E (kJ.mol−1) A (s−1)  R2 

FR 
5 607.2 146.70 1.192 × 1011 0.9840 
10 624.8 130.94 5.147 × 109 0.9818 
15 631.0 119.44 5.224 × 108 0.9453 

KAS 
5 607.2 145.59 8.958 × 1010 0.9909 
10 624.8 128.27 2.781 × 109 0.9797 
15 631.0 119.44 5.224 × 108 0.9663 

FWO 
5 607.2 145.59 8.958 × 1010 0.9909 
10 624.8 128.28 2.789 × 109 0.9797 
15 631.0 118.59 4.353 × 108 0.9663 

 
Figure 4. Comparison of the FR, KAS and FWO models at 5 ° C min−1. 

 
Figure 5. Comparison of the FR, KAS and FWO models at 10 °C min−1. 

Figure 4. Comparison of the FR, KAS and FWO models at 5 ◦C min−1.

In Figures 4 and 5, it is seen that the FR model curves are above those of KAS and FWO
models and slightly below the experimental one. This occurs due to the different values
obtained from the least squares method applied to each model. The closer to zero that the
value is, the closer it is to the experimental value model. Additionally, it can be observed
that, as the heating rate increases, the curve shifts to the right at a higher temperature due
to thermal diffusion. Based on the correlation of the experimental and calculated data,
the KAS and FWO models are the ones that fit the best with a value very close to 100%
correlation, at the rate of 5 and 15 ◦C min−1. These models included the temperature
as adjusting parameter, to analyze the heating rate in the thermal degradation process.
The present results are very close to those of the study by Valapa et al. [16]. The small
difference that exists could be due to the fact that Valapa et al. worked with virgin PLA
(activation energy 170 kJ/mol), while, in the present investigation, PLA was used that was
thermally treated for its molding (activation energy 146 kJ/mol), showing lower activation
energy due to its processing. The results at the rate of 15 ◦C min−1 were within the same
range as in Das & Tiwari, peak temperature 642 K and activated energy 113 kJ/mol [10].
According to Das & Tiwari, the KAS model is chosen due to the good agreement between
the results obtained with this model and the experimental values; additionally, when
using the maximum degradation temperature, this model allows for the calculation of
thermodynamic parameters. However, it is important to mention that the three models
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are acceptable for the kinetic study of PLA since they presented just small variations with
respect to experimental data, with the FR model being the simplest one compared to the
KAS and FWO models which use a larger number of parameters.
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3.3. Thermodynamic Properties of PLA

The thermodynamic properties calculated for each heating rate were determined using
the kinetic parameters obtained above and the equations presented in Section 2.3. The
change in enthalpy, Gibbs free energy and entropy are shown in Table 2.
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Table 2. Thermodynamic properties of PLA at different heating rates.

β

(◦C min−1)
E

(kJ mol−1)
A

(s−1)
∆H

(kJ mol−1)
∆G

(kJ mol−1)
∆S

(J mol−1)

5 145.59 8.958 × 1010 140.54 170.58 −49.47

10 128.27 2.781 × 109 123.08 172.17 −78.57

15 119.44 5.224 × 108 114.19 172.60 −92.56

In Table 2, it can be observed that there is just a little change (5–6 kJ mol−1) between
enthalpy and activation energy at the same heating rate, showing quite similar values. A
lower activation energy helps the formation of a general activated complex because the
TG curve shows a single degradation peak, which indicates that the process is carried out
in a single step, that is, a single general reaction is assumed despite the fact that there are
a number of reactions; hence, a single activated complex exists. The difference between
the values of ∆H and E confirm that the formation of the products can be carried out by
providing 5 kJ mol−1 of additional energy [29]. The entropies present negative values,
indicating that the degree of disorder of the products formed through dissociation of bonds
is lower than that of the reactants. The low ∆S at the rate of 15 ◦C min−1 means that the
material only undergoes some physical and chemical changes, until it reaches a state close
to its thermodynamic equilibrium. PLA has little reactivity and it takes a long time to form
an activated complex. On the other hand, a high ∆S means that the reactivity will be high,
and it will take less time to form the activated complex; this happens when the heating rate
is lower. On the contrary, the positive values of the Gibbs free energies indicate that the
process requires a contribution of energy for it to occur (non-spontaneous process), taking
into account that ∆G means a total increase in the energy of the system for the formation of
the activated complex [30]. The sample at the rate of 15 ◦C min−1 presents an activation
energy and an enthalpy slightly lower than the other heating rates. However, the difference
in the Gibbs free energies was not significant.

4. Conclusions

The kinetic study carried out for the PLA concludes that the three isoconversional
kinetic models used in the present work are valid since they present a high correlation
coefficient. These isoconversional models can capture the reaction mechanism as the
reaction kinetics progress. However, the KAS model was chosen because it has a slightly
higher correlation coefficient than the other two models, which also considers the maximum
degradation temperature.

The heating rate directly influences the speed and mechanism that follows the thermal
degradation. Regardless of the kinetic model used, at high heating rates, the maximum
degradation temperature of the polymer will be higher while the reaction energy (activation
energy and enthalpy) and the pre-exponential factor will be lower. The ∆G value of PLA at
a rate of 5 ◦C per minute (170.58 kJ mol−1) is slightly lower; therefore, at this heating ramp,
the plastic presents the easiest degradation compared to the other tested heating rates.
Therefore, with the main kinetic parameters obtained governing the reaction undergone in
the pyrolytic reactor, the stability of the PLA thermal degradation can be predicted.
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