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Abstract 

This work focuses on the evaluation of the satisfaction of the Thermodynamic Uncertainty Relation 

that expresses a trade-off between dissipation and precision of a nonequilibrium current observable 

for a chiral system. It studies the case of a topological system with a quantum dot impurity acting under 

the influence of a Maxwell demon and how the influence of the demon can break the time-reversal 

symmetry of a Markov chain to avoid the lower bound of entropy production and current fluctuation 

for electrical currents  
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1. Introduction 

Modern electronics are highly present in our everyday life and nanotechnology has an increasingly 

impactful role in them [1]. The search for faster and more powerful devices has led to the 

miniaturization of their components, allowing us to place an increasing amount of functionality in 

progressively reduced areas [2], [3]. Therefore, many advances regarding the manipulation of matter 

on an atomic scale have been made to develop the required nanostructures for the tasks. However, it 

is at such small dimensions that inter-atomic interactions and quantum effects, like the Quantum Hall 

effect [4] or the tunnel effect, are needed for describing the properties of the devices. In fact, these 

quantum effects are precisely those that cause novel behaviour that does not occur in larger 

magnitudes, which makes nanodevices more interesting.  

The performance of these components is measured in terms of electrical currents. Thus, having a 

precise description and control over them is very useful. This is precisely the topic addressed in this 

study. There is a trade-off between precision and energy dissipation for nonequilibrium current 

observables called the Thermodynamic Uncertainty Relation (TUR) [5]–[8]. Originally derived for 

classical Markovian systems [9], this relation states that current fluctuations are lower bounded by the 

entropy production of the system. Therefore, having more precision for the current comes at the cost 

of producing more entropy and, consequently, dissipating more energy. This Final Degree Project aims 

to demonstrate that this TUR can be violated under certain circumstances of time irreversibility and 

electrostatic interaction asymmetry for a Markovian quantum system. More specifically, the proposed 

setup for this study will be a chiral system with a quantum dot impurity in a scenario that includes 

measurement and feedback. 

The rest of this section introduces the basic notions about nanostructures and thermodynamics 

needed for the understanding of this work. Section 1.1 introduces the Thermodynamic Uncertainty 

Relation. Basic notions of confined systems are presented in Section 1.2 emphasizing the Quantum Dot 

and how Coulomb Interaction affects it. Then Section 1.3 introduces topological chiral systems and 

Section 1.4 explains what a Maxwell Demon is. 

1.1. Thermodynamic Uncertainty Relation (TUR) 

Fluctuations near equilibrium are completely characterized by the fluctuation-dissipation theorem of 

thermodynamics [10]. However, fluctuations present less universal structure when they are 

characterized far from equilibrium, leading to the problem of having to be handled on a case-by-case 

basis. Regarding this matter, Barato and Seifert [9] proposed a new kind of nonequilibrium principle, 

i.e., a thermodynamic uncertainty relation that expresses how the signal-to-noise ratio of a given 

observable is bounded by dissipation or entropy production as follows  

〈𝛿𝜙2〉

〈𝜙〉2
 ≥  

2

〈𝜎〉
 ( 1 ) 

Where 〈·〉 denotes the ensemble average, 〈𝛿𝜙2〉 =  〈𝜙2〉 − 〈𝜙〉2 is the variance, and 𝜎 is the entropy 

production. This definition considers stochastic processes that describe a sequence of events for which 

the probability of each event depends on the state of the previous event. In other words, the future of 
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the process depends only on the actual state, without any memory of what happened in the past. This 

stochastic model is called a Markov process or a Markov chain [11] and the TUR has been rigorously 

proven for current observables in time-homogeneous Markov dynamics with local detailed balance 

[5], [12], [13]. This work will study the validity of this TUR for a system with broken local detailed 

balance. 

1.2. Confined Systems 

Confined systems are defined as any system in which the motion of the charge carriers is restricted in 

one or more directions. These are categorized according to the number of dimensions of movement 

that are not constrained, from two to zero [14]. For example, the two-dimensional electron gas (2DEG) 

has its carriers moving freely in two spatial dimensions and constrained in the other, while quantum 

wires have carriers that travel freely only in one direction.  

The definition of the charge distribution of confined systems begins with Schrödinger’s time-

independent equation, presented as 

[
𝐩2

2𝑚
+ 𝑉(𝐫)] 𝜓 = 𝐸𝜓 ( 2 ) 

Where 𝐩 is the particle momentum, 𝑚 is its reduced mass, 𝐸 is its energy and 𝜓 is the wavefunction. 

If there is no confining potential 𝑉(𝐫) = 0, the free particle solution is obtained for equation ( 50 ). 

However, if there is, for example, a quantum potential well, the solutions are stationary states related 

to discrete energy levels. This means that the motion of particles can be restricted in a particular 

direction if a certain potential is applied. 

1.2.1. From two to zero dimensions 

The motion of electrons can be confined to two dimensions, called two-dimensional electron gas 

(2DEG), by forming a narrow interface between two different semiconductors with different band gap 

(e.g. GaAs and AlGaAs [15]). The separation between the conduction and valence bands acts as a 

confining potential restricting the electron motion from jumping between materials, as shown in the 

example of Figure 3:. Now, take Figure 3: as an example, the overlapping of thin layers of GaAs and 

AlAs results in finite quantum wells where electron motion is limited for the 𝑧-direction but free for 

the 𝑥,𝑦-direction. These conditions give a solution to equation ( 50 ) as a separable wavefunction 

𝜓(𝑥, 𝑦, 𝑧) = 𝑋𝑘𝑥
(𝑥)𝑌𝑘𝑦

(𝑦)𝑍𝑛𝑧
(𝑧) =  𝜓𝑘𝑥,𝑘𝑦,𝑛𝑧

(𝑥, 𝑦, 𝑧) that has plane wave expressions (𝑋𝑘𝑥
, 𝑌𝑘𝑦

) =

 𝑒𝑖(𝑘𝑥,𝑘𝑦)(𝑥,𝑦) for 𝑥,𝑦-direction components and discrete stationary states for the 𝑧-direction 

component quantized by 𝑛𝑧. These electrons would have an energy 𝐸𝑛𝑧
(𝑘𝑥, 𝑘𝑦) =  

ℏ2𝑘𝑥
2

2𝑚∗
+ 

ℏ2𝑘𝑦
2

2𝑚∗
+

 𝐸𝑛𝑧
 where the first two terms are the free particle energy with continuum values for momentums 𝑘𝑥 

and 𝑘𝑦 and  𝐸𝑛𝑧
 are the discrete energy levels that confine the electron motion in the 𝑧-direction.  
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a)  

 

b) 

 
Figure 1: a) Schematic of a Type I AlGaAs/GaAs/AlGaAs quantum well [16]. Green lines represent 

electron energy levels, which are confined due to the difference in the conduction bands of 
the materials ∆Ec. The same happens with the red lines that represent holes confined due to 
the difference in the valence bands of the materials ∆Ev. b) GaAs/AlAs heterostructure 
arranged in a superlattice configuration [17]. 

Repeating this process for the other two directions would reduce the number of dimensions of the 

system. Starting with a 2DEG heterostructure, confinement in another direction, say the 𝑦-direction, 

would form a quantum wire, which corresponds to a one-dimensional system. Free electron motion is 

still possible along the axis of the wire, maintaining a continuum spectrum of one-dimensional states. 

Another way of building quantum wires could be using self-assembled structures from carbon 

nanotubes or epitaxially formed nanowires [18]. 

Finally, once the motion of the charge carriers is restricted in all three directions, zero-dimensional 

systems are obtained, giving rise to a completely discrete spectrum of bound states, similar to those 

of an isolated atom or molecule. These systems are called quantum dots or artificial atoms and are of 

special relevance for this work since they are the nanostructure studied for the TUR. 

1.2.2. Quantum dots 

Quantum dots are built by constricting the motion of electrons in all three dimensions and are 

nanostructures whose electronic states are completely quantized. There are many types of quantum 

dots depending on the fabrication method, for example: extending the lateral confinement of a wire 

structure to its remaining degree of freedom, cleaving a substrate of GaAs/AlGaAs during its MBE-

growth [19], or growing such structures in the form of nano-pillars directly on a substrate in a process 

named self-assembly [20]. In any case, the zero-dimensional name is an idealization and quantum dots 

are modelled as 3-dimensional structures, like a sphere or a cube, with a radius of the order of 

nanometres so that from a macroscopic point of view, they look like dots. That is why they are usually 

referred to as quasi-zero-dimensional systems. 
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Figure 2: a) Sketch of a quantum dot transistor, where Vg is the potential applied to the gate that 

modifies the quantum dot’s energy level and ∆V is the applied potential bias. 

Among their many applications, their ability to store charge, acting similarly to a parallel plate capacitor 

is the most interesting for this study. A quantum dot can be capacitively coupled to an electrode, called 

the gate, with which the electronic potential of the dot can be controlled and, consequently, its active 

energy level 𝜖𝑑. If the dot is coupled to reservoirs of electrons (Figure 3:) via tunneling barriers (using 

insulating materials), it is possible to make electrons flow through it one by one. That means that the 

dot only stores one electron at a time due to the electrostatic repulsion between charges, which 

produces the Coulomb Blockade. Because of this sequential transport, quantum dots can operate as 

Markov chains and as single electron transistors (SET).  

1.2.3. Coulomb Interaction 

The properties of quantum dots, similar to the properties of atoms, are modified by alterations in the 

number of electrons confined in the nanostructure. This happens due to what is called Coulomb 

Interaction [16] which has important effects at nanoscale magnitudes within temperatures slightly 

above zero Kelvin. Thus, the number of electrons is well defined if the quantum dot is practically 

isolated (using tunneling barriers), but it can still vary with single electron tunneling. How Coulomb 

Interaction affects the Quantum Dot system properties when adding an electron is explored below in 

more detail. 

Consider the simple case in Figure 3: where a quantum dot is coupled to two reservoirs. This quantum 

dot has only one active level for the transport with energy 𝜖𝑑 because the rest of the levels are already 

occupied. The different electronic states that describe the system are |0⟩ if the active dot level is empty 

and |1⟩ if it has one electron. The electrochemical potentials of the left and right reservoirs are 𝜇𝐿 =

 𝐸𝐹 + 𝑒𝑉𝐿 and 𝜇𝑅 =  𝐸𝐹 + 𝑒𝑉𝑅, respectively, where 𝐸𝐹 is the Fermi Energy that they have in common 

and 𝑉𝐿, 𝑉𝑅 are the externally applied voltages. Then, the electrochemical potential of the quantum dot 

determines the necessary energy for an electron to tunnel from a reservoir to the dot. Since there is 

electrostatic interaction, a charge 𝑄 inside the quantum dot would interact with an electron trying to 

get into it, which means that the energy level of the quantum dot is 𝜖𝑑 plus the interaction energy ∆𝑈.  
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Figure 3: a) Schematic drawing of the Coulomb interaction in a quantum dot. Left (Right) reservoir has 

potential 𝑉𝐿(𝑅), temperature 𝑇𝐿(𝑅) and is capacitively coupled to the dot with capacitance 

𝐶𝐿(𝑅). The energy level of the quantum dot is 𝜖𝑑 but is altered a quantity ∆𝑈 when an extra 

electron is inside. 

The minimum charge that can be transferred to the dot is the elemental electron charge 𝑒, therefore 

𝑄 can be assumed to be an integer number 𝑁 of this electron charge 𝑄 = 𝑁𝑒. Hence, if the 

electrostatic energy of the dot without the extra electron is 𝑈(𝑁𝑒), and with the extra electron is 

𝑈((𝑁 + 1)𝑒) then the interaction energy carried by the electron is ∆𝑈(𝑁𝑒) =  𝑈((𝑁 + 1)𝑒) −

 𝑈(𝑁𝑒). Hence, the redefinition of the active level of the quantum dot is 

𝜇𝑑(𝑁𝑒) =  𝜖𝑑 + ∆𝑈(𝑁𝑒) =  𝜖𝑑 +  𝑈((𝑁 + 1)𝑒) −  𝑈(𝑁𝑒) ( 3 ) 

The electrochemical potential 𝜇𝑑 is the minimum energy required for introducing an electron to the 

dot, which means that the higher the potential, the more expensive it is to introduce an electron and, 

consequently, the more difficult it is for the transport to happen. Since the presence of an electron 

inside the dot (state |1⟩) increases the energy level by a quantity ∆𝑈 due to the Coulomb Interaction, 

the energy of the electrons of the reservoirs 𝐿,𝑅 with 𝜇𝐿,𝑅 is lower than the energy needed to enter 

the quantum dot 𝜇𝑑 and the quantum transport from the reservoirs to the dot is blocked until the 

electron inside the dot jumps out of it. This phenomenon is called the Coulomb Blockade and it is what 

produces the sequential transport of electrons. 

Then, the energy level of the dot depends on the discrete number of charges N transferred to it. But 

since the quantum dot is coupled to two external sources at electric potentials 𝑉𝐿, 𝑉𝑅 a polarization 

charge is created to keep the dot as a neutral charge object. Using a capacitive coupling model like the 

one shown in Figure 3, each coupling has an associated capacitance 𝐶𝐿, 𝐶𝑅 that we can use to calculate 

the internal potential 𝑉𝑑 of the quantum dot via the definition of the capacitance 𝐶 = 𝑄/∆𝑉. For each 

reservoir coupling we have 𝐶𝑖 = 𝑄𝑖/( 𝑉𝑑 − 𝑉𝑖) so, if  𝑄 = ∑ 𝑄𝑖𝑖  and 𝐶 =  𝐶𝑅 + 𝐶𝐿 then the internal 

potential of the dot is 

𝑉𝑑 =  
𝑄

𝐶
+  

𝐶𝐿𝑉𝐿 + 𝐶𝑅𝑉𝑅

𝐶
 ( 4 ) 

Using the definition of electrical potential 𝑉 = 𝑑𝑈/𝑑𝑞 and the assumption that 𝑄 = 𝑁𝑒 we obtain 

𝑈(𝑄) =  ∫ 𝑉𝑑(𝑞)𝑑𝑞 =
𝑄2

2𝐶
+  

𝐶𝐿𝑉𝐿 + 𝐶𝑅𝑉𝑅

𝐶

𝑄

0

𝑄 =
(𝑁𝑒)2

2𝐶
+ 

𝐶𝐿𝑉𝐿 + 𝐶𝑅𝑉𝑅

𝐶
(𝑁𝑒) ( 5 ) 
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The first term is known as the charge energy 𝐸𝑐 =
(𝑁𝑒)2

2𝐶
, which will be commented on later. Then, 

applying equation ( 3 ), the electrochemical potential of the dot is defined as 

𝜇𝑑(𝑁) =  𝜖𝑑 +
𝑒2

2𝐶
+

𝑁𝑒2

2𝐶
+

𝐶𝐿𝑉𝐿 + 𝐶𝑅𝑉𝑅

𝐶
𝑒 ( 6 ) 

Because the dot has been defined with only two states: empty |0⟩ or occupied |1⟩, then 𝑁 = 0 and  

∆𝑈(𝑁 → 𝑁 + 1) =  ∆𝑈(0 → 1) obtaining 

𝜇𝑑 =  (𝜖𝑑 +
𝑒2

2𝐶
) + 

𝐶𝐿𝑉𝐿 + 𝐶𝑅𝑉𝑅

𝐶
𝑒 =  𝜖𝑑̃ +  

𝐶𝐿𝑉𝐿 + 𝐶𝑅𝑉𝑅

𝐶
𝑒 ( 7 ) 

Where the level of the quantum dot has been redescribed as (𝜖𝑑 +
𝑒2

2𝐶
) →  𝜖𝑑̃ because the charge 

energy of the dot does not vary during the study. 

However, Coulomb interactions are not guaranteed to be strong enough for Coulomb Blockade to 

occur, some requirements must be met. The charging energy 𝐸𝑐 =  𝑒2/2𝐶, where C is the capacitance 

of the dot, is of relevance for the transport if it is greater than the thermal energy 𝑘𝐵𝑇. In addition, the 

tunnel probability Γ must be low enough for the electrons to be well localized. In other words, the 

tunnel resistance 𝑅𝑡, which is inversely proportional to the tunnel probability Γ, must be strong enough 

for electrons to tunnel one by one. Since 𝑅𝑡 defines the typical discharge time of a capacitor as ∆𝑡 =

 𝑅𝑡𝐶, according to Heisenberg’s uncertainty relation ∆𝑡∆𝑈 = 𝑅𝑡𝐶𝑒2/𝐶 > ℎ. This implies that the 

tunneling resistance is lower bound. To sum up, Coulomb Interaction will only be relevant if the 

following conditions are fulfilled [21] 

𝑅𝑡 ≫  
ℎ

𝑒2
,                    

𝑒2

2𝐶
≫  𝑘𝐵T  ( 8 ) 

These conditions can be achieved respectively by a weak coupling of the dot to the reservoirs and by 

making the dot small enough. 

1.3. Topological Systems: Quantum Hall Effect [4] 

A moving charge with velocity 𝐯 influenced by a magnetic field 𝐁 experiences a force 𝐅 = q𝐯 × 𝐁 

perpendicular to the velocity and the magnetic field, diverting its trajectory. If 𝐯 and 𝐁 are 

perpendicular to each other, the trajectory becomes completely circular with a frequency 𝜔 =  
𝑞|𝐵|

𝑚
 

called the cyclotron frequency. This is what the Hall Effect is based on. 

When a two-dimensional electron gas is subjected to a strong magnetic field, the electrons in the bulk 

describe cyclotron orbits with energy levels that are quantized and discrete (Landau levels). On the 

other hand, the electrons near the borders cannot complete the cyclotron orbits and instead make 

skipping orbits that follow the edges. This edge motion creates right and left chiral edge channels for 

transport since these electrons can move only in one direction “jumping” from one orbit to the next 

one as represented in Figure 4a. It is important to notice that changing the sign of the magnetic field 

would change the direction of the Lorentz force, causing the cyclotron and skipping orbits to change 
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their orientations, therefore changing the orientation of the edge states and modifying the chirality of 

the system. 

a)  

 

b) 

 

Figure 4:  Quantum Hall Effect a) Represents the cyclotron orbits of the charges in a 2DEG 
subjected to a strong magnetic field B. b) Representation of the Landau levels 
(Yellow) and how they are flat in the bulk but rise near the edges, crossing the Fermi 
Energy and creating the Edge states. Reprinted from [21]. 

For a deeper perspective of the Quantum Hall Effect, it is important to mention that the Landau levels 

for electrons under the influence of a magnetic field have a degeneracy of 
S

2π

𝑒B

ℏ
 with S being the area 

of the plane they can move in. If the magnetic field 𝐁 is especially strong, the degeneracy of the Landau 

levels describing the cyclotronic orbits of the electrons of the bulk is extremely big, which allows all 

the electrons to be in just a few Landau levels. Therefore, the conduction band is essentially flat in the 

bulk and the corresponding Landau energies are practically constant as represented in Figure 4b. 

However, in the zones close to the boundaries that confine the electrons, the conduction band rises 

above the Fermi level and each occupied Landau level in the interior of the 2DEG intersects the Fermi 

level at two points located at opposite ends of the sample. Consequently, this yields two propagating 

edge states with different directions that function as current channels. This process serves to produce 

systems where charge flows alongside their borders but act as insulators on the bulk, also referred to 

as topological systems.  

 

1.4. Maxwell Demon 

Maxwell proposed in his gedankenexperiment [22] (or mental experiment) the idea of an entity 

capable of separating warm and cold particles of gas without performing work, apparently violating 

the second law of thermodynamics. How this ideal entity, the Maxwell Demon, works, is explained 

below.  
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The second law of thermodynamics can be expressed in many specific ways, but one simple statement 

of it is that, unless energy is supplied, heat always moves from a hotter system to a colder one. Another 

version of the law establishes the concept of entropy S as a physical property of a thermodynamic 

system, stating that the universal entropy cannot decrease  ∆S𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 ≥ 0 for any isolated system left 

to spontaneous evolution. This means that isolated systems always reach thermodynamic equilibrium 

where the entropy is highest at the given internal energy. If a process is irreversible, then ∆S𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑒 >

0 which implies that dissipation occurs. For a heat engine, this means that not all heat can be converted 

to work and vice versa since a part of it is dissipated through the irreversibility of the process. 

Statistical mechanics gave a new definition of the entropy 𝑆 =  𝐾𝐵 ln(𝛺) where 𝛺 is the number of 

microstates (states that define all possible microscopic variables). Therefore, entropy can be 

interpreted as a degree of disorder or “microscopic chaos” and, dissipation, as the work or energy 

needed to disorder the system. To the Statistical Mechanics description, there is a higher probability 

of finding a system in a macroscopic configuration that maximizes the number of possible microscopic 

states, in other words, a more disordered one. But this law does not forbid the system to be in any 

other macroscopic configuration, for it is not a physical law, but a statistical one that states that a 

system evolves from a lesser probable state to a more probable one. Here is where the Maxwell Demon 

intervenes. 

In his gedankenexperiment, Maxwell considered the following: There is a gas inside an isolated 

container divided into two portions, A and B, by a wall with a hole. It is a known fact that gas molecules 

inside a vessel at uniform temperature are moving with velocities by no means uniform, even though 

the mean velocity of any great number of them is almost exactly uniform. Then, imagine an ideal entity 

capable of distinguishing individual molecules. If this being opens and closes the hole, allowing only 

the faster molecules to pass from B to A and the slower ones to pass from A to B, he would, without 

any expenditure of work, raise the temperature of A and lower the temperature of B, in contradiction 

to the second law of thermodynamics. 

This apparent paradox was sorted using Claude Shannon’s information theory, where information is 

treated as a physical magnitude that obeys physical laws. A system with more entropy has more 

possible microstates and, consequently, needs more information to be characterized. Therefore, the 

entropy of a system is directly connected to the information it contains. 

By identifying the state of the particles, the demon is making a measure and acquiring information 

from it. This information needs to be stored, but because the demon cannot infinitely store it, 

information must be erased. Erasing information implies energy dissipation that compensates for the 

entropy reduction the system undergoes because of the demon’s intervention, solving the paradox 

and satisfying the second law of thermodynamics. 

This work implements a protocol that mimics Maxwell’s demon idea but to transport charge currents 

against a set potential difference. 
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2. The Setup  

The proposed system for evaluating the TUR is exposed in this section and it is represented in Figure 

5. The system consists of a topological system in the presence of a magnetic field 𝐁, as explained before 

in section ¡Error! No se encuentra el origen de la referencia., with a quantum dot inside acting as an i

mpurity. The system is connected to two electron reservoirs 𝐿 and 𝑅, each one with its own 

electrochemical potential 𝜇𝐿,𝑅 =  𝐸𝐹 + 𝑒𝑉𝐿,𝑅 and temperature 𝑇𝐿, 𝑇𝑅. Because topological systems are 

insulators in their bulk, the electrons provided by the reservoirs can only travel through the channels 

created by the edges (i.e., through the edge states). Therefore, each edge state is associated with the 

electrochemical potential of a reservoir. Since the chirality of the system depends on the sign of the 

magnetic field (justified in section ¡Error! No se encuentra el origen de la referencia.) the direction of t

hese edge states also depends on it. This means that which reservoir’s electrochemical potential is 

associated with the edge state varies according to the sign of the magnetic field.  

a)  

 

b) 

 
Figure 5: The diagram represents the dispositive with a quantum dot impurity of energy 

level 𝜖𝑑 and the edge states are represented by green arrows 1, 2 connected to 
the reservoirs 𝐿, 𝑅. The electrons from the edge states interact with the dot 
through the tunnel probabilities Γ1 and Γ2 and the capacitances C1 and C2. In a) 
there is 𝐁 > 0, so the upper (lower) edge state travels as 𝐿→𝑅 (𝑅→ 𝐿), while in 
b) there is 𝐁 < 0, so the upper (lower) edge state travels as 𝑅→ 𝐿 (𝐿→𝑅). 
Reprinted from [21] 

Electrons on the edge states can jump to the empty level of the quantum dot with tunneling 

probabilities Γ1 and Γ2 following a model of capacitances C1 and C2 where the subscript refers to the 

upper and lower edge states, respectively.  

Following the model that was presented in section 1.2.3, the energy of the quantum dot is given by 

equation ( 7 ), but the situation is a little bit different. The dot is not coupled directly to the reservoirs, 

but to the edge states instead, therefore {𝐶𝐿, 𝐶𝑅 , 𝑉𝐿, 𝑉𝑅}  →  {𝐶1, 𝐶2, 𝑉1, 𝑉2}. However, the potential of 

the edge states takes the value of the potential of a reservoir depending on the sign of the magnetic 

field. Then, there are two possible energies of the quantum dot obtained using equation ( 7 ): 

• 𝜇𝑑
+ where + denotes the positive sign of the magnetic field  𝐁 > 0 and has 𝑉1,2

+ ≡  𝑉𝐿,𝑅 

𝜇𝑑
+ =  𝜖𝑑̃ +  

𝐶1𝑉𝐿 + 𝐶2𝑉𝑅

𝐶
𝑒 =  𝜖𝑑̃ + 

(𝜂 + 1)

2
𝑒𝑉𝐿 − 

(𝜂 − 1)

2
𝑒𝑉𝑅 ( 9 ) 

• 𝜇𝑑
− where − denotes the negative sign of the magnetic field  𝐁 < 0 and has 𝑉1,2

+ ≡  𝑉𝐿,𝑅 
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𝜇𝑑
− =  𝜖𝑑̃ +  

𝐶1𝑉𝑅 + 𝐶2𝑉𝐿

𝐶
𝑒 =  𝜖𝑑̃ + 

(𝜂 + 1)

2
𝑒𝑉𝑅 −  

(𝜂 − 1)

2
𝑒𝑉𝐿 ( 10 ) 

A new parameter 𝜂 =  
𝐶1−𝐶2

𝐶1+𝐶2
, 𝜂 ∈ {−1,1} that defines the asymmetry between capacitances has been 

introduced for the above equations. Notice that the difference between both energy levels becomes 

𝜇𝑑
+ − 𝜇𝑑

− = 𝑒𝜂(𝑉𝐿 − 𝑉𝑅) ( 11 ) 

This shows that there is a discrepancy between the energy levels of both magnetic field configurations 

only when the setup has a potential bias applied (𝑉𝑅 ≠ 𝑉𝐿) and when capacitances are asymmetric  

𝜂 ≠ 1. These are the parameters that will be controlled and modified for the tests carried out in this 

study. Equation ( 11 ) also reveals that changing the sign of 𝜂 is equivalent to changing the sign of ∆𝑉 =

 𝑉𝐿 − 𝑉𝑅, providing equal values of  𝜇𝑑
+ − 𝜇𝑑

−.  

2.1. Maxwell Demon protocol 

As it was mentioned above, a shift in the sign of the magnetic field causes a change in the chirality of 

the edge states, breaking the time-reversal symmetry. Consequently, the local detailed balance is also 

broken due to the electronic interactions in the quantum dot. This situation provides the possibility to 

create a protocol that mimics the behaviour of the Maxwell Demon and to investigate the 

consequences of applying it to the setup, verifying if it can violate the TUR. This demon will change the 

sign of the magnetic field depending on the absence 𝐁 > 0 or presence 𝐁 < 0 of an extra electron 

inside the dot. 

Taking 𝜂 < 0 and ∆𝑉 = 𝑉𝐿 − 𝑉𝑅 > 0 values for which 𝜇𝑑
− > 𝜇𝑑

+, the protocol is represented in Figure 

2 performing the following steps [21]: 

Step 1: Starting with 𝐁 > 0  and the dot empty. The process begins when an electron coming from the 

right reservoir enters the dot through the lower edge state. The tunneling probability for this event 

was Γ2, the model capacitance C2 and the energy of the electron in the dot is 𝜇𝑑
+. 

Step 2: The demon detects an electron inside the dot and changes the magnetic field to 𝐁 < 0. This 

raises the energy level for the localized state of the dot to 𝜇𝑑
−.  

Step 3: Because 𝜇𝑑
− > 𝜇𝑑

+ it is easier for the electron inside the dot to transition to the left reservoir 

through the upper edge state with Γ1 and C1. Accomplishing a charge transport from 𝑅 to 𝐿, against 

the voltage bias ∆𝑉. (𝑉𝐿 > 𝑉𝑅) 

Step 4: The demon detects the absence of the electron inside the quantum dot and reverses the 

magnetic field again to 𝐁 > 0, returning to step 1. In this step, the demon erases the collected 

information, dissipating energy and increasing the entropy.  
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Figure 6:  Visual representation of the demon protocol steps for pushing electrons against a 

voltage bias. The yellow lightning represents the demon’s actions. Reprinted from 
[21] 

This protocol requires two conditions to be met for the demon to be able to transform information 

into energy: 

• The electrostatic interactions must be asymmetric when the magnetic field is switched by the 

demon →  |𝜂| > 0  

• Tunneling events between the edge states and the localized quantum dot states must be 

energy-dependent.  

3. Theoretical Model 

In the previous section, we defined the setup as a topological system containing a quantum dot 

coupled to two reservoirs with a macroscopic number of electrons. Since the system is weakly coupled 

to the reservoirs, the transport occurs sequentially and the charge states of the system are well 

defined. Therefore, only two states are considered for the dot with an energy level 𝜇𝑑: one where the 

dot is empty |0⟩ and the other, where the dot is occupied |1⟩ . Then, the system can be fully 

characterized using these charge states, and transitions between them happen as electrons transfer. 

These transitions occur with certain probabilities 𝑊𝑓←𝑖 called transition rates, where the “𝑖” index 

denotes the state of the system before the transition, and the “𝑓” index denotes the state towards 

which the system is transitioning. Thus, the probability 𝑃𝑚 to find the system in a state |𝑚⟩ using the 

Master Equation [23] can be obtained.  

𝜕𝑃𝑚

𝜕𝑡
=  ∑ 𝑊𝑚𝑚′𝑃𝑚′ − 𝑊𝑚′𝑚𝑃𝑚

𝑚′≠𝑚

 ( 12 ) 

Where m, 𝑚′ = {0,1}  are the different charge states of the dot. The master equation then defines the 

time-dependent variation of 𝑃𝑚 as the difference between the probability of transitioning from any 

other state |𝑚′⟩ to the state |𝑚⟩  and the probability of transitioning from the state |𝑚⟩ to any other 
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state |𝑚′⟩ . Because our quantum dot is coupled to two reservoirs, the electron can jump into or out 

of the left (𝐿) or right (𝑅) reservoir. Consequently, both contributions to the transition rates 𝑣 = {𝐿, 𝑅} 

must be considered.  

𝑊𝑚𝑚′ =  ∑ 𝑊𝑚𝑚′
𝑣

𝑣

 ( 13 ) 

Combining ( 12 ) and ( 13 ), the following expression is obtained: 

𝜕𝑃𝑚

𝜕𝑡
=  ∑ 𝑊𝑚𝑚′

𝑣 𝑃𝑚′ − 𝑊𝑚′𝑚
𝑣 𝑃𝑚

𝑚′≠𝑚,𝑣

 ( 14 ) 

And then, the explicit expressions for the proposed system can be written as 

𝜕𝑃0

𝜕𝑡
= (𝑊01

𝐿 + 𝑊01
𝑅 )𝑃1 −  (𝑊10

𝐿 + 𝑊10
𝑅 )𝑃0 ( 15 ) 

𝜕𝑃1

𝜕𝑡
= (𝑊10

𝐿 + 𝑊10
𝑅 )𝑃0 −  (𝑊01

𝐿 + 𝑊01
𝑅 )𝑃1 ( 16 ) 

From equations ( 15 ) and ( 16 ), it can be observed that 𝑃̇0 =  −𝑃̇1 which must be satisfied for the 

state probabilities of a system with only two states. However, because the parameters defining the 

system do not vary in time, neither do the rates that define the transitions. Then, the stationary 

solution to the equations can be obtained by considering that 𝑃̇0 =  𝑃̇1 = 0, which also implies that 

the sum of the probabilities must be unity: 𝑃0 + 𝑃1 = 1. This can also be interpreted as particle 

conservation since the number of electrons entering the quantum dot equals the number of electrons 

leaving it. Thus, the equation system is solved to obtain 

𝑃0 =  
𝑊01

𝐿 + 𝑊01
𝑅

𝑊01
𝐿 + 𝑊01

𝑅 + 𝑊10
𝐿 + 𝑊10

𝑅  
( 17 ) 

𝑃1 =  
𝑊10

𝐿 + 𝑊10
𝑅

𝑊01
𝐿 + 𝑊01

𝑅 + 𝑊10
𝐿 + 𝑊10

𝑅  
( 18 ) 

This result is expected as the probability of finding the system in the state |0⟩ (|1⟩) is the sum of both 

contributions 𝐿 and 𝑅 of the transition rates to the state |0⟩ (|1⟩) normalized to the sum of all the 

transition probabilities. 

3.1. Quantum transport properties 

Once the proposed system is characterized using the Master Equation, the next step is to obtain the 

necessary analytical expressions required to evaluate the Thermodynamic Uncertainty Relation. The 

assumed criterion is as follows: any current (charge, heat, entropy…) that enters the reservoirs is 

considered positive and any current that leaves them, is negative. 
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3.1.1. Charge current 

Following said sign criterion, the charge current 𝐼𝑣 is defined as the net charge that flows into the 

reservoir 𝑣. This current can be obtained simply by “counting” the electrons so that the net flow is the 

difference between the electrons flowing into the reservoir and the electrons flowing out of it.  

𝐼𝑣 =  𝑒(𝑊01
𝑣 𝑃1 − 𝑊10

𝑣 𝑃0) ( 19 ) 

Substituting here equations ( 17 ) and ( 18 ) and rearranging, the following expressions are obtained 

for the charge currents that flow into the 𝑅 and 𝐿 reservoirs 

𝐼𝐿 =  𝑒
𝑊01

𝐿 𝑊10
𝑅 − 𝑊10

𝐿 𝑊01
𝑅

𝑊01
𝐿 + 𝑊01

𝑅 + 𝑊10
𝐿 + 𝑊10

𝑅   ( 20 ) 

𝐼𝑅 =  𝑒
𝑊10

𝐿 𝑊01
𝑅 − 𝑊01

𝐿 𝑊10
𝑅

𝑊01
𝐿 + 𝑊01

𝑅 + 𝑊10
𝐿 + 𝑊10

𝑅  
( 21 ) 

Notice that 𝐼𝐿 + 𝐼𝑅 =  0 due to the sequential nature of the transport through the quantum dot since 

no charge can be stored in it. 

3.1.2. Energy and heat currents  

Using the same procedure, the net energy flowing into the reservoirs can be obtained by counting the 

number of electrons flowing into and out of them and the energy they are carrying, 𝜇𝑑
 . On the other 

hand, since heat is transferred energy, the amount of energy each electron transfers to the reservoir 

𝑣 from the dot is 𝜇𝑑
 −  𝜇𝑣. Respectively, the expressions for the heat and energy currents to the 

reservoir 𝑣 depending on the sign of the magnetic field are 

𝐽𝑣 =  (𝜇𝑑
 − 𝜇𝑣)𝑊01

𝑣 𝑃1 − (𝜇𝑑
 − 𝜇𝑣)𝑊10

𝑣 𝑃0 ( 22 ) 

𝐽𝑣
𝐸 =  𝜇𝑑

 𝑊01
𝑣 𝑃1 − 𝜇𝑑

 𝑊10
𝑣 𝑃0 ( 23 ) 

It can be confirmed that the sum of these heat currents verifies the Joule effect of energy dissipation 

∑ 𝐽𝑣 = 𝑣 − 𝐼∆𝑉. However, since the Maxwell protocol is applied to this system (See sec. 2.1. Maxwell 

Demon protocol), the energy that electrons carry is 𝜇𝑑
+ when they flow from the reservoirs to the 

quantum dot 0 → 1 and 𝜇𝑑
− when they flow from the dot to the reservoirs 1 → 0 and equations ( 22 ) 

and ( 23 ) turn into 

𝐽𝑣 =  (𝜇𝑑
− −  𝜇𝑣)𝑊01

𝑣 𝑃1 − (𝜇𝑑
+ −  𝜇𝑣)𝑊10

𝑣 𝑃0 ( 24 ) 

𝐽𝑣
𝐸 =  𝜇𝑑

− 𝑊01
𝑣 𝑃1 − 𝜇𝑑

+𝑊10
𝑣 𝑃0 

( 25 ) 
 

Apparently, these expressions no longer verify the Joule effect, but that is because a part of the energy 

is dissipated by the demon. Since charge only flows between the system and the reservoirs the energy 

that the demon receives is purely in the form of heat. In section 1.4. Maxwell Demon it was explained 

that the demon paradox is resolved using information theory, which means that there is a part of the 
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heat ( 24 ) that is used for erasing the information the demon collects. Then, by energy conservation 

𝐽𝐿
𝐸 + 𝐽𝑅

𝐸 + 𝐽𝐷 = 0 and using equations ( 11 ), ( 17 ) and ( 18 ), the energy current that flows to the 

demon can be obtained as 

𝐽𝐷 = 𝜇𝑑
+(𝑊10

𝐿 + 𝑊10
𝑅 )𝑃0 − 𝜇𝑑

−(𝑊01
𝐿 + 𝑊01

𝑅 )𝑃1 = 𝑒𝜂∆𝑉
(𝑊10

𝐿 + 𝑊10
𝑅 )(𝑊01

𝐿 + 𝑊01
𝑅 )

𝑊01
𝐿 + 𝑊01

𝑅 + 𝑊10
𝐿 + 𝑊10

𝑅  ( 26 ) 

This result implies that the energy flow to the demon depends on the voltage bias applied and the 

capacitance asymmetry.  

3.1.3. Entropy production 

As it was mentioned before, the ideal Maxwell demon extracts information from the system in order 

to perform.  This means that the entropy production has a component resulting from the information 

current that flows into the demon and cannot be calculated using the heat currents as Clausius entropy 

would do. Then, using Shannon’s entropy expression [24] 𝑆(𝑡) =  −𝑘𝐵 ∑ 𝑃𝑚(𝑡)𝑚 ln 𝑃𝑚(𝑡), its time 

derivative can be obtained as  

𝑆̇(𝑡) =  −𝑘𝐵 ∑ 𝑃̇𝑚(𝑡)
𝑚

[ln 𝑃𝑚 (𝑡) + 1] = −𝑘𝐵 ∑ 𝑃̇𝑚(𝑡) ln 𝑃𝑚 (𝑡)
𝑚

 ( 27 ) 

Where 𝑃̇𝑚(𝑡) = 𝑑𝑃𝑚/𝑑𝑡 and ∑ 𝑃̇𝑚(𝑡)𝑚 = 𝑑 ∑ 𝑑𝑃𝑚/𝑑𝑡 =  0 𝑚 due to probability conservation. Using 

the master equation ( 12 ) and omitting for compactness of notation the dependence of S and 𝑃𝑚 on 

𝑡, the following equation  is obtained 

𝑆̇ =  −𝑘𝐵 ∑[𝑊𝑚𝑚′𝑃𝑚′ − 𝑊𝑚′𝑚𝑃𝑚]

𝑚,𝑛

ln 𝑃𝑚 ( 28 ) 

Since 𝑚 and 𝑚’ are dummy variables and transition rates 𝑊𝑓←𝑖 have a component for each reservoir 

𝑣, as expressed in equation ( 13 )¡Error! No se encuentra el origen de la referencia., the equation 

above can be rewritten in the form 

𝑆̇ =  −𝑘𝐵 ∑ 𝑊𝑚𝑚′
𝑣 𝑃𝑚′

𝑣,𝑚,𝑛

ln
𝑃𝑚

𝑃𝑚′
 ( 29 ) 

Now, the entropy balance 𝑆̇ =  𝑆̇𝑒 + 𝑆̇𝑖 is divided into an entropy flow 𝑆̇𝑒 and an entropy production 

𝑆̇𝑖 that satisfy 𝑆̇𝑖 =  −𝑆̇𝑒 for the stationary case since 𝑆̇ =  0. These two quantities have the expressions 

( 30 ) and ( 31 ) [21], [23]. 

𝑆̇𝑖 =  𝑘𝐵 ∑ 𝑊𝑚𝑚′
𝑣 𝑃𝑚′ ln (

𝑊𝑚𝑚′
𝑣 𝑃𝑚′

𝑊𝑚′𝑚
𝑣 𝑃𝑚

)

𝑚𝑚′𝑣

 ( 30 ) 

𝑆̇𝑒 = −𝑘𝐵 ∑ 𝑊𝑚𝑚′
𝑣 𝑃𝑚′ ln (

𝑊𝑚𝑚′
𝑣

𝑊𝑚′𝑚
𝑣 )

𝑚𝑚′𝑣

 ( 31 ) 

Using ( 31 ), the expressions for the charge currents ( 20 ) and ( 21 ), the fact that 𝐼𝐿 =  −𝐼𝑅, and that 

𝑆̇𝑖 =  −𝑆̇𝑒, the entropy production for the proposed system acquires the following explicit form 
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𝑆̇𝑖 =  −𝑆̇𝑒 =  
𝐼𝐿

𝑒
𝑘𝐵ln (

𝑊01
𝐿 𝑊10

𝑅

𝑊10
𝐿 𝑊01

𝑅 ) ( 32 ) 

Later we will show that 𝑆̇𝑖 depends on the intensity of the charge current but not on its sign.  

3.1.4. Charge current noise 

The current noise generated in the proposed system can be obtained by introducing counting fields, 

which are “information mechanisms” that count the charges that travel through the dot. This approach 

uses Full Counting Statistics adapting the Master Equation ( 12 ) into the Quantum Master Equation 

[25], which depends on the density matrix 𝜌, in order to add the counting fields to the characterization 

of the system. Then, the Fourier transformation of the Quantum Master Equation is 

𝑑

𝑑𝑡
𝜌(𝜒, 𝑡) = − ℒ(𝜒)𝜌(𝜒, 𝑡)  ( 33 ) 

Where ℒ is the Liouville superoperator used to describe the time evolution of a reduced density matrix 

describing a Markovian system in interaction with a bath, or, in this case, with the system edge estates. 

The value of χ is arbitrary and 𝑡 is the time variable. For the proposed system, the Liouvillian ℒ is [26] 

ℒ(χ) =  (
𝑊01

𝑅 + 𝑊01
𝐿 −𝑊10

𝐿 𝑒𝑖𝜒 + 𝑊10
𝑅

−𝑊01
𝐿 𝑒−𝑖𝜒 + 𝑊01

𝑅 𝑊10
𝑅 + 𝑊10

𝐿 ) ( 34 ) 

Then, the Cumulant Generating Function for the charge current is derived using Flindt’s method [27], 

which uses the Rayleigh-Schrödinger perturbation theory. In Flindt’s method, the following operators 

are defined 

ℒ̃(𝜒) =  ℒ(𝜒) −  ℒ = (
0 −𝑊10

𝐿 𝑒𝑖𝜒 + 𝑊10
𝐿

−𝑊01
𝐿 𝑒−𝑖𝜒 + 𝑊01

𝐿 0
) ( 35 ) 

𝒫 = |𝛼⟩⟨𝛼̃|,              𝒬 =  1 –  𝒫,               ℛ =  𝒬 ℒ−1𝒬 ( 36 ) 

Here, ℒ =  ℒ(0), the ℒ−1 stands for the Drazin inverse of ℒ, and the ket vectors are defined as 

|𝛼⟩ =  (
𝑃0

𝑃1
),                    |𝛼̃⟩ =  (

1

1
) ( 37 ) 

Then, the second cumulant can be obtained by solving the equation  

C2 =  [⟨𝛼̃|ℒ̃(2)|𝛼⟩ − 2⟨𝛼̃|ℒ̃(1)ℛℒ̃(1)|𝛼⟩] ( 38 ) 

where 

ℒ̃ (𝑛) =  𝜕𝑖𝜒
𝑛 ℒ̃(𝜒)|

𝜒=0
 ( 39 ) 

And the explicit expressions for the derivatives are obtained as 
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ℒ̃(1) = (
0 −𝑊10

𝐿

𝑊01
𝐿 0

),            ℒ̃ (2) = (
0 −𝑊10

𝐿

−𝑊01
𝐿 0

) ( 40 ) 

Carrying out the corresponding matrix and ket operations of equation ( 38 ), the second cumulant can 

be obtained and, hence, the noise of the charge current flowing through the quantum dot  C2  ≡  ⟨𝛿𝐼2⟩. 

3.2. Transition rates 

Once all the expressions for the TUR’s thermodynamic variables have been obtained, there’s still one 

more step to fully characterize the system: calculating the transition rates (or tunneling rates since all 

electron transfer events are tunneling events) as functions of the gate and bias voltages. These rates 

are defined as the average number of transitions happening between the states |𝑖⟩ and |𝑓⟩.  

Since here the transitions occur between a continuum of states in the 𝑣 reservoir and the discrete state 

of the dot, Fermi’s Golden rule can be applied to calculate the transition rates as follows 

  𝑊𝑓←𝑖 =  ∫ Γ𝑓𝑖(𝐸)
∞

−∞
𝜌𝑖(𝐸 − 𝜇𝑖)𝜌̅𝑓(𝐸 − 𝜇𝑓)𝑑𝐸 ( 41 ) 

In this notation, Γ𝑓𝑖  represents the tunneling probability through the edge states while 𝜌𝑖(𝐸) and 

𝜌̅𝑓(𝐸) represent respectively the electron and hole density of the states. Then, equation ( 41 ) can be 

understood as the probability of transitioning from an initial state |𝑖⟩ towards a final state |𝑓⟩ 

multiplied by the average number of states |𝑖⟩ that can tunnel and by the average number of states 

|𝑓⟩ that can “accept” the tunneling, just like holes that can accept electrons. 

If the electron and hole density represent a state of the dot, they are equal to a Dirac delta function 

𝜌𝑖(𝐸) =  𝜌̅𝑖(𝐸) =  𝛿(𝐸). On the contrary, considering that electrons are fermions and should follow 

the Fermi-Dirac statistics, the electron density of the states of the reservoir 𝑣 has a Fermi-Dirac 

distribution 𝜌𝑖(𝐸) =  𝘧𝑣(𝐸) with the hole density being the opposite 𝜌̅𝑖(𝐸) = 1 − 𝘧𝑣(𝐸). This 𝘧𝑣(𝐸) is 

the Fermi function ( 42 ).  

𝘧𝑣(𝐸) =  
1

1 + 𝑒
𝐸

𝑘𝐵𝑇𝑣

 ( 42 ) 

Here, 𝑇𝑣 is the temperature of the 𝑣 reservoir and 𝑘𝐵 is Boltzmann’s constant.  

3.2.1. Transition rates for the Maxwell Demon Protocol  

In this study, tunneling probabilities are assumed to be constant Γ𝛼(𝐸) = Γ𝛼 and equal for both edge 

states Γ1 =  Γ2 =  Γ . Also, considering that these transitions happen between the quantum dot and 

two different reservoirs (𝐿 or 𝑅) with different properties and that there cannot be more than one 

electron inside the dot, the only possible transitions in the proposed system are 

𝑊1←0
𝐿,𝑅 = Γ ∫ 𝘧𝐿,𝑅(𝐸 − 𝜇𝐿,𝑅)𝛿(𝐸 − 𝜇𝑑)𝑑𝐸

∞

−∞

 ( 43 ) 
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𝑊0←1
𝐿,𝑅 = Γ ∫ [1 − 𝘧𝐿,𝑅(𝐸 − 𝜇𝐿,𝑅)]𝛿(𝐸 − 𝜇𝑑)𝑑𝐸

∞

−∞

 ( 44 ) 

Solving equations ( 43 ) and ( 44 ), the following expressions are obtained 

𝑊10
𝐿,𝑅 =  Γ 𝘧𝐿,𝑅(𝜇𝑑

± − 𝜇𝐿,𝑅)                       ( 45 ) 

𝑊01
𝐿,𝑅 =  Γ [1 −  𝘧𝐿,𝑅 (𝜇𝑑

± − 𝜇𝐿,𝑅)]                       ( 46 ) 

As was previously mentioned, the demon modifies the sign of the magnetic field depending on the 

absence (𝐵 > 0) or presence (𝐵 < 0)  of an electron inside the quantum dot. This means that the 

transition rates of electrons leaving the dot 𝑊01
𝐿,𝑅 have the level of the quantum dot being 𝜇𝑑

− while 

the transition rates of electrons entering the dot 𝑊10
𝐿,𝑅 have the level of the quantum dot being 𝜇𝑑

+. If 

we consider that the Fermi Energy used to describe de electrochemical potential of the reservoirs has 

zero value for this study, it does not influence the transport properties of the system. Therefore, the 

electrochemical potentials will be defined as 𝜇𝐿,𝑅 = 𝑒𝑉𝐿,𝑅 for the rest of the sections obtaining the 

following results 

𝑊10
𝐿,𝑅 =  Γ 𝘧𝐿,𝑅(𝜇𝑑

+ − 𝑒𝑉𝐿,𝑅)                                  𝐵 > 0 ( 47 ) 

𝑊01
𝐿,𝑅 =  Γ [1 −  𝘧𝐿,𝑅 (𝜇𝑑

− − 𝑒𝑉𝐿,𝑅)]                      𝐵 < 0 ( 48 ) 

Now, all the variables required for characterizing the state of the proposed system have been defined 

and formal results can be obtained.  

4. Results 

The results displayed in this section are obtained following the theoretical model presented in section 

3 for the system proposed in section 2. The  and using the Maxwell demon protocol. The focus here 

will be to obtain the variations of the different properties of the quantum transport under different 

values of the voltage bias ∆V and the quantum dot modified energy level (which will be represented 

as 𝜖𝑑 = 𝜖𝑑̃ for simplicity) in order to evaluate the satisfaction of the Thermodynamic Uncertainty 

Relation presented in section 1.1. Thermodynamic Uncertainty Relation (TUR) .  

For the sake of clarity, the system of units taken has that ℎ = 𝑒 = 1 and takes a reference tunneling 

probability Γ = 1 where the rest of the magnitudes will be expressed as a function of Γ. In this context, 

because Γ is a magnitude of time: the electrical current will be measured in units of 
𝑒Γ

ℎ
, the heat current 

in units of 
Γ2

ℎ
, the entropy flow in 

𝑘𝐵Γ

ℎ
, the temperature in 

Γ

𝑘𝐵
, the voltage bias in 

Γ

𝑒
, the noise in units of 

e2Γ

ℎ
 and energy in the units of Γ. 

4.1. Charge currents 

We start calculating the charge current of the system. As was mentioned in section 3.1.1. Charge 

current, due to the sequential nature of the transport, the charge that enters the dot must leave the 
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dot, which means that 𝐼𝐿 + 𝐼𝑅 =  0. Thus, we consider that the current that flows through the systems 

is < 𝐼 >= 𝐼𝐿. In this framework, when the current flows from the right reservoir to the left reservoir 

(𝑅 → 𝐿), the current flow is considered positive 𝐼𝐿 > 0 and when the current flows from the left 

reservoir to the right reservoir (𝐿 → 𝑅), the current flow is negative 𝐼𝐿 < 0. 

Using equation ( 20 ) we notice that the sign (direction) of the charge flow depends on the sign of 

𝑊01
𝐿 𝑊10

𝑅 − 𝑊10
𝐿 𝑊01

𝑅 . The quotient between these transition rates, calculated using ( 47 ) and ( 48 ), is 

𝑄𝑢 =
𝑊01

𝐿 𝑊10
𝑅

𝑊10
𝐿 𝑊01

𝑅 =  
 [1 −  𝘧𝐿 (𝜇𝑑

− − 𝑒𝑉𝐿)] 𝘧𝑅(𝜇𝑑
+ − 𝑒𝑉𝑅)

[1 −  𝘧𝑅 (𝜇𝑑
− − 𝑒𝑉𝑅)] 𝘧𝐿(𝜇𝑑

+ − 𝑒𝑉𝐿)
 ( 49 ) 

Here ± denotes the sign of the magnetic field. Notice that equation ( 49 ) gives 𝑄𝑢 = 1 when there is 

no current, 𝑄𝑢 < 1 when the current is negative and 𝑄𝑢 > 1 when the current is positive. If there is a 

temperature gradient ∆𝑇 =  𝑇𝐿 − 𝑇𝑅 but not a potential bias ∆𝑉 = 0 then we obtain a weak current 

depending on ∆𝑇 because of the Seebeck effect [28] but it is unaltered by the application of a magnetic 

field due to the electrochemical potentials for both orientations being equal 𝜇𝑑
 =  𝜇𝑑

− =  𝜇𝑑
+. 

Consequently, charge currents generated by the thermoelectric effect are unaltered by the demon and 

temperature gradients will not be considered. Removing the temperature bias so that 𝑇0 = 𝑇𝑅 =  𝑇𝐿, 

when there is no potential bias applied, the quotient has a value of 1 and there is no charge flow, as it 

is expected. On the contrary, with a potential bias ∆𝑉 =  𝑉𝐿 − 𝑉𝑅 the the fermi functions need to be 

evaluated to know what direction to expect from the charge current. Since  𝘧0(𝑥) is a monotonically 

non-increasing function for 𝑥,  1 − 𝘧0(𝑥) is monotonically increasing for 𝑥. Therefore ( 49 ) can be 

addressed by evaluating its variable quantities {𝜇𝑑
−, 𝜇𝑑

+, 𝑉𝐿, 𝑉𝑅}.  For a potential bias ∆𝑉 > 0 so that 

𝑉𝐿 > 𝑉𝑅 and 𝜇𝑑
± − 𝑒𝑉𝑅 > 𝜇𝑑

± − 𝑒𝑉𝐿 obtaining  
 [1− 𝘧0(𝜇𝑑

−−𝑒𝑉𝐿)]

[1− 𝘧0(𝜇𝑑
−−𝑒𝑉𝑅)]

< 1 and 
 𝘧0(𝜇𝑑

+−𝑒𝑉𝑅)

 𝘧0(𝜇𝑑
+−𝑒𝑉𝐿)

< 1, and we know 

that the product of two numbers smaller than 1 is still lesser than 1. The opposite result is obtained if 

the potential bias is reversed ∆𝑉 < 0. This means that the mean charge current flows in favour of the 

potential bias even when it is under the influence of the demon. This has an easy interpretation since 

the reservoir with higher potential has a greater density of charge carriers available for tunneling to 

the quantum dot, and the reservoir with lower potential has a greater density of holes available for 

accepting electrons from the quantum dot. However, this does not mean that a change in the chirality 

of the system does not vary the current output. 

Using equations ( 21 ), ( 47 ) and ( 48 ) one can obtain the net charge current that flows into the left 

reservoir which is represented in Figure 7 for a temperature 𝑇 = 3𝛤 and different values of the 

capacitive asymmetry 𝜂 =  
𝐶1−𝐶2

𝐶1+𝐶2
. The top image with 𝜂 = 0 represents the situation where the 

capacitances of both edge states are equal 𝐶1 = 𝐶2 so that 𝜇𝑑
+ = 𝜇𝑑

− hence the demon protocol has no 

visible influence. Comparing the graphs of Figure 7 with negative (𝐶1 < 𝐶2) asymmetry values 𝜂 =

−0.5 , −0.8  and the top graph without asymmetry 𝜂 = 0 we can see that the presence of the demon 

is flattening the current flow curves for charge moving in the direction 𝐿 → 𝑅 when ∆𝑉 > 0  while 

sharpening the current flow curves for charge moving in the direction 𝑅 → 𝐿 when ∆𝑉 < 0. The 

opposite happens for the graphs with positive (𝐶1 > 𝐶2) asymmetry values 𝜂 = 0.5 , 0.8 where the 

presence of the demon flattens (sharpens) the current flow curves for 𝑅 → 𝐿 (𝐿 → 𝑅 ) when ∆𝑉 <

0 (∆𝑉 > 0). This asymmetry of the demon’s influence has a direct explanation. Since the demon 

protocol designates the magnetic field as positive(negative) when the dot is empty (full), the quantum 
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level of the dot is always 𝜇𝑑
+(𝜇𝑑

−) for carriers tunneling into (out of) the dot. But the dot energy level 

for the first step of the demon protocol is not always higher than the opposite one. Whenever 𝜂 and 

∆𝑉 have the same sign, we have 𝜇𝑑
+ > 𝜇𝑑

−, which, instead of inducing current flow opposite to the 

voltage bias, enhances the flow in favour of it.  
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Figure 7: Current flowing into the left reservoir 𝐼𝐿 with temperature 𝑇 = 𝑇0 = 3𝛤 for different 
values of the capacitance asymmetry 𝜂. The result is that current flows out of the left 
reservoir (𝐼𝐿 < 0) when ∆V > 0 and into the left reservoir (𝐼𝐿 > 0) when ∆V < 0, 
but the curves of the current intensity are asymmetric for values 𝜂 ≠ 0 

It is also clearly noticeable when comparing the curves of Figure 7 with the same sign for the capacitive 

asymmetry 𝜂 = 0.5 and 𝜂 = 0.8 that the influence of the demon grows with 𝜂. This is explained using 

Information Theory because the information input that enters the demon is proportional to the 

asymmetry of the electrostatic interaction, which means that the information that the demon can 

transform into work also grows with 𝜂. 

4.2. Entropy production  

The expression for the entropy production of the system is given in equation ( 32 ), which has the same 

quotient 𝑄𝑢 as equation ( 49 ), discussed in the previous section. Using this information, we can verify 

that the second law of thermodynamics is not violated in our setup because the entropy production 

always verifies that 𝑆̇𝑖 ≥ 0. Both the charge and ln 𝑄𝑢 are positive when 𝑄𝑢 > 1  and negative when 

𝑄𝑢 < 1 so the product of them is always positive. It can also be confirmed from the graphs in Figure 8 

that the entropy production is positive for the considered range of all the parameters.  

We can observe by comparing Figure 8 and Figure 7 that the demon influences the symmetry of both 

the charge current 𝐼𝐿 and the entropy production 𝑆̇𝑖 which is expected since the information entropy 

obtained in equation ( 32 ) depends on the current intensity. However, we can observe that the demon 

is producing a larger effect on the entropy when 𝜂 and ∆𝑉 have different signs than where the opposite 

happens. This asymmetry on the demon’s influence on the entropy production comes from the 

information current that the demon gathers in order to work, which translates into the modification it 

produces on the system or “feedback”. When it manages to transport charge carriers in the opposite 

direction of the potential bias 𝜇𝑑
+ < 𝜇𝑑

−, its feedback is much more significative than when it enhances 

the current in the direction of the potential bias.  
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Figure 8: Entropy production 𝑆̇𝑖 of the system under the influence of the demon with temperature  

𝑇 = 𝑇0 = 3𝛤 for different values of the capacitance asymmetry 𝜂. Entropy production is 
symmetric for ∆V when the demon has no effect 𝜂 = 0. Entropy production is specifically 
affected when 𝜂  and ∆𝑉 have different signs, in other words, when the demon gives 
more “feedback”. 

 

4.3. Current noise  

The noise is the characteristic of the nonequilibrium current that suffers the most drastic change in its 

symmetry. If we look at Figure 9 and compare the completely symmetric graph where 𝜂 = 0 with any 

other of the figure it becomes obvious that the effect of the demon has heavily altered the current 

fluctuations. We can see that the noise remains with similar values under the influence of the demon 

only when the potential bias and the energy level of the dot are small whereas regions with higher 

values of these variables have significantly changed. For 𝜂 < 0  the noise reaches especially low values 

for high positive energy levels of the quantum dot 𝜖𝑑 and with a very negative voltage bias ∆𝑉 ≪ 0 so 

𝑉𝐿 ≪ 𝑉𝑅 and the current flowing 𝑅 → 𝐿. On the contrary, for 𝜂 > 0 the noise reaches these low values 

for very negative 𝜖𝑑 and strong voltage bias ∆𝑉 ≫ 0 with the current flowing 𝐿 → 𝑅. 
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Figure 9: Charge current noise ⟨𝛿𝐼2⟩ with temperature 𝑇 = 𝑇0 = 3𝛤 for different values of the 

asymmetry 𝜂. If  𝜂 > 0, current fluctuations are larger for negative voltage bias ∆V < 0 (𝑅 →
𝐿 direction) and if 𝜂 < 0, current fluctuations are larger for positive voltage bias ∆V > 0  
(𝐿 → 𝑅 direction). 

4.4. Thermodynamic Uncertainty Relation 

All the results obtained above are used in this section for evaluating the Thermodynamic Uncertainty 

Relation. The original expression of the TUR represented in ( 1 ) can be rearranged to become 
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⟨𝛿𝐼2⟩〈𝜎〉

2〈𝐼〉2
=  

⟨𝛿𝐼2⟩𝑆̇𝑖

2𝐼𝐿
2  ≥ 1 ( 50 ) 

Hence, for the TUR to be violated this inequality has to be false. The calculations of the left side of the 

inequality ( 50 ) are represented for the different values of the capacitance asymmetry in Figure 10 

and Figure 11. However, before we talk about these results, it is important to point out that the black 

line in the middle of the graphs is a mathematic singularity caused by the charge current and the 

entropy production of the system being zero when no potential bias is applied (see Figure 7 andFigure 

8) and not a physical outcome. 

                                     a) 

 

      b) 

 

 

 

Figure 10: a) Representation of the TUR for temperature 𝑇 = 𝑇0 = 3𝛤 when there is no 
capacitance asymmetry 𝜂 = 0 . b) Representation of the TUR for temperature 𝑇 = 𝑇0 =
3𝛤 with capacitance asymmetry but no demon protocol. 

In Figure 10 a) we observe that the system verifies the TUR when there is no capacitance asymmetry, 

which is an expected outcome since it was already confirmed that for 𝜂 = 0 the system is not affected 

by the demon in a way that time reversal symmetry can be broken. In Figure 10 b) we can also see two 

more graphs where the capacitance asymmetry is 𝜂 ≠ 0 but the demon protocol is not active. Time 
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reversal symmetry is not broken here either because, even though there is a capacitive asymmetry 

that affects the transport properties of the system, the chirality of it does not vary in time and the local 

detailed balance is not broken. 

However, Figure 11 shows very different results. We can see that the TUR is violated under certain 

conditions of voltage bias ∆𝑉 and energy level 𝜖𝑑  of the quantum dot. This is possible because the 

demon protocol takes advantage of the chirality of the system to break time-reversal symmetry. This 

also triggers the breaking of the local detailed balance which is a necessary condition for the TUR to 

apply to Markovian Systems. Thus, we can see in the graphs of Figure 11 that the thermodynamic 

uncertainty relation is not satisfied here for quantum dot energy levels around |𝜖𝑑| > 2𝛤 because the 

left side of the Inequality ( 50 ) is less than the unit. It can be observed that the voltage bias, the 

capacitive asymmetry, and the level of the quantum dot are related to the quotient evaluated as 

follows: When |𝜂| grows, less voltage bias ∆𝑉 is needed and the value of the energy level of the 

quantum dot can be lower for the TUR to be violated. The opposite happens when |𝜂| decreases. 

By comparing two graphs of Figure 11, say 𝜂 = −0.8 and 𝜂 = +0.8 we notice that inverting the scale 

of the energy level of the dot while inverting the scale of the applied potential bias gives the same 

result as switching the sign of the capacitive asymmetry, just like it did for the current noise. Therefore, 

these results can be understood as symmetric. We can also notice how the TUR is violated in both 

cases: when the potential bias and the capacitive asymmetry have equal signs, which is where 𝜇𝑑
+ <

𝜇𝑑
− and the noise is smaller and, with less intensity, when the potential bias and the capacitive 

asymmetry have different signs, which is where more information is gathered and erased by the 

demon. This can be interpreted 
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Figure 11: Representation of the TUR quotient at temperature 𝑇 = 𝑇0 = 3𝛤 with different 

capacitance asymmetries 𝜂 when the demon protocol is applied.  
 

6. Conclusions 

We have studied how the action of a Maxwell Demon affects the satisfaction of The Thermodynamic 

Uncertainty Relation for Markovian systems. Taking advantage of the chirality of a topological system, 

the demon can break the symmetry of the electrochemical potential and the transition rates of the 

states by switching the magnetic field. We observed that this only happens if there is asymmetry 

between the capacitive couplings of the edge states because the demon influences the quantum 

transport properties only if they are affected by the switch in the magnetic field. Then, we have shown 

that the Demon’s influence has altered the entropy and precision of a nonequilibrium observable 

generated by a Markovian process in a chiral system in a way that did not satisfy the TUR. This was 

possible because the implementation of the demon used the Quantum Hall Effect to break the time-

reversal symmetry and therefore breaking the local detailed balance. This result was observed to be 

more significant when the potential bias or the energy levels of the system were greater, reducing 

even further the current fluctuations and dissipation.  
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