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Abstract

We present the new computationally efficient IMRPhenomXP_NRTidalv2 frequency-domain phe-
nomenological tidal model for gravitational-wave signals coming from precessing binary neutron
star coalescences. The model is composed of the frequency-domain binary black hole baseline
IMRPhenomXP of [1] with the addition of a new precession version that is more suitable for binary
neutron star coalescences, and the NRTidalv2 tidal extension of [2], which adds the description
of matter effects. We provide a general theoretical introduction to gravitational waves and the
concepts behind the model with emphasis on precession and matter effects and compare different
treatments of precession through timing tests and match calculations.

Abstracte

Presentem el nou model fenomenològic computacionalment eficient nadiu del domini de freqüèn-
cia IMRPhenomXP_NRTidalv2 per a ones gravitacionals procedents de coalescències de sistemes
binaris d’estrelles de neutrons en precessió. El model està compost de la base nativa del domini
de freqüència IMRPhenomXP [1] per sistemes binaris de forats negres, en la qual s’ha afegit una
nova versió de precessió més adequada pels sistemes binaris d’estrelles de neutrons, i de l’extensió
NRTidalv2 [2] que incorpora els efectes provocats per la matèria. Oferim una introducció teòrica
a les ones gravitacionals i els conceptes involucrats en la construcció del model amb èmfasi en
els efectes de la precessió i la matèria. També comparem diferents tractaments de precessió
mitjançant proves de cronometratge i de coincidència entre models.

Abstracto

Presentamos el nuevo modelo fenomenológico computacionalmente eficiente nativo del dominio
de frecuencia IMRPhenomXP_NRTidalv2 para ondas gravitacionales procedentes de coalescencias
de sistemas binarios de estrellas de neutrones en precesión. El modelo está compuesto de la base
nativa del dominio de frecuencia IMRPhenomXP [1] para sistemas binarios de agujeros negros, en
la que se ha añadido una nueva versión de precesión más adecuada para los sistemas binarios
de estrellas de neutrones, y de la extensión NRTidalv2 [2] que incorpora los efectos provocados
por la materia. Ofrecemos una introducción teórica en las ondas gravitacionales y los conceptos
involucrados en la construcción del modelo con énfasis en los efectos de la precesión y la materia.
También comparamos distintos tratamientos de precesión mediante pruebas de cronometraje y
de coincidencia entre modelos.
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1 Introduction

Gravitational waves were predicted by Einstein’s General Theory of Relativity in 1916. How-
ever, it was not until 1974 (20 years after Einstein’s death) that astronomers Russell Hulse
and Joseph Taylor found indirect evidence of these waves by finding the first binary neutron
star pulsar (a candidate system for radiating gravitational waves) and confirmed that the stars
were approaching each other at the pace predicted by general relativity if they were emitting
gravitational waves [3]. Observations of the same kind were repeated on other binary neutron
stars as they were being discovered, until on the 14 of September 2015 (almost a century after
their theoretical prediction), the Laser Interferometer Gravitational-Wave Observatory (LIGO)
announced the first direct detection of gravitational waves coming from the binary black hole
merger GW150914 [3].

Since the first detection in 2015, many more gravitational waves have been detected by the
LIGO-Virgo network during the three observation runs that have taken place until now. So
far, gravitational waves coming from binary black hole (BBH) systems, binary neutron star
(BNS) systems, and binary systems composed of a black hole and a neutron star (NSBH) have
been detected [4–6]. These waves interact very weakly with matter and reach Earth fairly
unperturbed, which makes them a precious channel for obtaining information from astronomical
bodies, especially from those that would otherwise be invisible (or very difficult to detect) in
the electromagnetic spectrum. For example, they provide a unique method of measuring the
properties of black holes and neutron stars and may hold the key to revealing precious information
about the states of matter in their cores [7].

A key component of gravitational-wave detection and parameter estimation of the source prop-
erties is the existence of good theoretical waveform models. The purpose of this thesis is to
study the performance of a new computationally efficient frequency-domain phenomenologi-
cal tidal model for precessing binary neutron star coalescences, IMRPhenomXP_NRTidalv2. In
this introductory section, we will explain some general concepts regarding gravitational waves,
gravitational-wave sources, and gravitational-wave data analysis; in section 2 we will go into
the details of precession and introduce a new precession version implemented in IMRPhenomXP

for the construction of the tidal model; in section 3 we will explain matter effects and how are
these modelled in NRTidalv2; and finally, in section 4 we will introduce the combination of those
components into the new model IMRPhenomXP_NRTidalv2 and present timing and match tests.

1.1 Gravitational Waves

The General Theory of Relativity (GR) states that gravity is a manifestation of the geometric
properties of spacetime. In the theory, the presence of energy or momentum produces curvature
in the four-dimensional spacetime, and matter travels along the geodesic lines (the generalization
of straight lines on curved spaces) of this spacetime.

The fundamental object of the theory is the metric tensor field, gµν , which contains information
about the geometry of spacetime. This tensor field is determined by solving Einstein’s field
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equations,

Gµν + Λgµν =
8πG

c4
Tµν , (1)

where G is the gravitational constant, Λ is the cosmological constant (which has to do with the
expansion of the universe), Tµν is the energy–momentum tensor (which acts as the source), and

Gµν = Rµν −
1

2
Rgµν (2)

is the Einstein tensor, which obeys the Bianchi identity ∇µGµν = 0. The Ricci tensor, Rµν , and
Ricci scalar, R, that appear on the definition of the Einstein tensor are constructed in terms of
the Christoffel symbols,

Γλµν =
1

2
gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν) , (3)

in the following way:

R = gµνRµν , Rµν = Rσµσν = ∂σΓ
σ
µν − ∂νΓ

σ
µσ + ΓλµνΓ

σ
λσ − ΓλµσΓ

σ
λν . (4)

In vacuum, the energy-momentum tensor is null and the equations simplify to Rµν = Λgµν .
Furthermore, if we take Λ = 0, which implies ignoring those effects provoked by the expansion
of the universe, the equations further simplify to Rµν = 0. The Einstein field equations are
the fundamental tools modern physics employs to describe incredibly fascinating phenomena like
black holes (BHs) and gravitational waves (GWs).

1.1.1 Gravitational Waves: Linearized Theory in Vacuum

Although very compact in tensor notation, Einstein’s field equations are a system of ten coupled,
non-linear, partial differential equations, whose general solution remains a formidable challenge
[8]. However, when gravity is sufficiently weak, one can work in the regime of linearized gravity
and consider small gravitational perturbations around a fixed background. Let us assume the
background spacetime to be flat and choose a coordinate system xµ in which the metric takes
the form:

gµν = ηµν + hµν , |hµν | ≪ 1 , (5)

where, in cartesian coordinates, ηµν = diag(−1, 1, 1, 1) is the Minkowski metric, and hµν are
the small perturbations we are considering. Next, by introducing the above expression into the
definition of the Ricci tensor and discarding all terms that are not linear in hµν , one obtains that
Einstein’s equations (without the cosmological constant) can be written as:

□h̄µν + ηµν∂
ρ∂σh̄ρσ − 2∂ρ∂(µh̄ν)ρ = −16πG

c4
Tµν , h̄µν = hµν −

1

2
hηµν , h = ηµνhµν ; (6)

where □ = ηµν∂µ∂ν is the d’Alembertian operator in flat space, the parentheses mean the indices
are symmetrized according to 2A(µν) = Aµν + Aνµ for any tensor Aµν , and we have defined the
trace-reversed perturbation h̄µν [9, 10].

As explained in the first paragraph, the coordinate system xµ, must be chosen so that the
restriction of small perturbations, |hµν | ≪ 1, holds. However, after such choice, one is left with
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a residual gauge symmetry that can be exploited to further simplify eq. (6) [9]. The symmetry
in question is the ability to perform transformations of coordinates of the form

xµ → xµ
′
= xµ + ξµ(x) , (7)

upon which the perturbations transform as:

hµν → h′µν = hµν − 2∂(µξν) , h̄µν → h̄′µν = h̄µν − 2∂(µξν) + ηµν∂ρξ
ρ ; (8)

where we must impose that |∂µξν | is at most comparable to |hµν | for the restriction of small
perturbations to be preserved [9, 10]. The remaining freedom of choice for ξµ can be exploited
to set the Lorenz gauge, ∂ν h̄′µν = 0, for imposing this restraint on eq. (8) provides □ξµ = ∂ν h̄µν ,
which is always solvable [9]. This choice of gauge reduces eq. (6) to a wave equation, thus
revealing why we talk about gravitational waves,

□h̄µν = −16πG

c4
Tµν . (9)

Furthermore, there still is remaining gauge freedom within the Lorenz gauge, for it is preserved
by transformations of the form ξµ → ξ′µ = ξµ+ζµ, as long as □ζµ = 0, which is always invertible
as well [9]. In vacuum, i.e. where Tµν = 0, these extra gauge freedom can be exploited to set1

h̄ = 0 and h0i = 0, which together with the fact that time-independent components are irrelevant
for the GW, allows us to summarize our gauge choices into ([9]):

h0µ = 0 , hii = 0 , ∂jhij = 0 . (10)

This choice is known as the transverse-traceless gauge, in which the perturbation is usually
denoted by hTT

ij . Out of the 16 a priori independent components of a rank 2 tensor on a four-
dimensional manifold, the perturbation hµν loses 6 due to the symmetry requirement of the
metric, and each of our gauge choices further reduces it by 4, which leaves us with only 2

independent components. In this gauge h̄TT
µν = hTT

µν , and the general solution to □hTT
µν = 0 can

be written as

hTT
ab (t, z) =

(
h+ h×

h× −h+

)
ab

cos [ω(t− z/c)] , (11)

where we have chosen z as the axis of propagation, a, b ∈ {1, 2} are indices in the transverse
(x, y) plane, and h+, h× are the amplitudes of the two independent polarizations of the wave [9].
The notation is related to the way in which different polarizations of gravitational waves would
deform a ring of test particles in the plane transverse to their propagation.

1.1.2 Gravitational Waves in Curved Backgrounds

In curved backgrounds, it is not trivial to differentiate GWs from the background, though it is
still possible if there is a separation of spacial or temporal scales allowing to distinguish between

1We are using the conventional index notation in which Greek indices go over all the coordinates (e.g. µ =
0, 1, 2, 3) and Latin indices only over the three spacial coordinates (e.g. i = 1, 2, 3).

7



background and perturbations [10]. In this setting, the propagation equation of GWs in the
Lorenz gauge, ∇µh̄µν = 0 (where ∇µ is the dual of the covariant derivative), can be generalized
to [11]

□h̄µν −Rλ σ
µν h̄λσ = 0 . (12)

However, in order to find expressions for the energy and momentum carried by GWs, which is to
say, in which way are GWs a source of spacetime curvature themselves, one must go beyond the
linear theory over a Minkowski background [10]. Then, it is possible to obtain the GWs energy-
momentum tensor by expanding Einstein’s equations to second order2 and taking averages of
the physical quantities over a smaller time-scale than that of the background [10]. In the Lorenz
gauge, the resulting expression is

TGW
µν =

c4

32πG
⟨∇µhαβ∇νh

αβ⟩ , (13)

where the brackets denote the average [9, 10]. The energy density of the GWs can be obtained
from the above expression, which in the TT gauge reads

ρGW = T 00
GW =

c2

32πG
⟨ḣij ḣij⟩ , (14)

where the dots stand for ∂t = c∂0 [9, 10].

1.1.3 Gravitational Waves from Compact Binary Inspirals

In this subsection we will introduce some key concepts and equations regarding gravitational
waves coming from binary systems of two compact stars, which are our sources of interest.

For weak-field sources, eq. (9) of the linearized theory over a flat background can be used. This
equation can be solved analytically, and for non-relativistic sources (in which the velocities are
much smaller than the speed of light), it provides, to lowest order in v/c, the mass quadrupole
formula for GWs

hTT
ij (t, r⃗) =

1

r

2G

c4
Q̈TT
ij (t− r/c) , (15)

where QTT
ij is the trace-free part of the mass quadrupole tensor of the source in the TT gauge,

and t− r/c is the retarded time (which accounts for propagation effects) [9]. This is to say, the
GWs coming from a binary system (or any system for all that matters) can be obtained to lowest
order by calculating the mass quadrupoles and applying the mass quadrupole formula.

In this quadrupole approximation, the total radiated power as GWs is given by

Pquad =
G

5c5
⟨
...
Qij

...
Qij⟩ , (16)

where the brackets denote a temporal average over various GW periods, and the quadrupoles’
derivatives must be evaluated at the retarded time [9]. For two point-mass particles in a circular

2It is needed to, at least, go to second order, for the oscillatory nature of the waves makes the averages of
linear quantities disappear.
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orbit, the above expression can be particularized to

P =
32

5

c5

G

(
GMcωGW

2c3

)10/3

, (17)

where Mc = [m3
1m

3
2/(m1 +m2)]

1/5 is the chirp mass and ωGW is twice the orbital angular
frequency given by Kepler’s law [9]. This expression shows how the emitted power grows with
the angular frequency of the orbit, which in a binary coalescence increases as the bodies get closer,
producing the characteristic “chirp” shape of the GWs in which the power reaches a maximum
right before the bodies merge.

1.2 Properties of Gravitational-Wave Sources

Gravitational-wave sources can be widely grouped by the type of GW signals they produce. Fol-
lowing [3], these signals are broadly divided into transient waveforms and continuous waveforms.
At the same time, transient waveforms are divided into modelled transient waveforms (for which
we have good theoretical models) mainly produced by compact binary coalescences, and unmod-
eled transient waveforms (for which we do not have good theoretical models) mainly produced by
gravitational-wave bursts coming from supernovae and neutron star quakes. Continuous sources
are those that emit continuous gravitational-wave signals and can be divided into narrow-band
waveforms which include GWs produced by spinning asymmetrical neutron stars, and broad-band
waveforms which are identified with the stochastic gravitational-wave background.

To date, the vast majority of detected GWs have been transient waveforms coming from binary
black hole (BBH) mergers [4–6, 12]. BBH mergers belong to the wider category of compact
binary coalescences, which feature two compact objects (black holes or neutron stars) in a grad-
ually shrinking orbit due to gravitational-wave radiation that eventually merge into a single
object. In the case of BBHs, these can be modelled as Kerr (rotating) black holes until late in
their evolution. A black hole binary in a quasi-circular orbit can be described generically by 15
parameters, some of which describe the relative position of the binary with respect to the de-
tector (extrinsic parameters), whilst others encapsulate individual properties of the components
(intrinsic parameters). By the no-hair conjecture, the intrinsic properties of Kerr black holes are
uniquely determined only by their masses m1 and m2, and spins S⃗1 and S⃗2. These parameters
are often re-expressed in terms of other variables, such as the mass ratio q = m2/m1 ≥ 1, and
dimensionless spins χ⃗i = S⃗i/m

2
i (in geometrized units) [13]. Other common mass parameters are:

the total mass MT = m1 +m2, reduced mass µ = m1m2/MT , symmetric mass ratio η = µ/MT ,
and chirp mass Mc = η3/5MT .

Whilst the multipolar structure of the Kerr spacetime is entirely determined by the black hole’s
mass and spin, the multipole moments of a neutron star also depend on its internal structure.

2Since gravitational radiation tends to circularize binary system’s orbits, this is typically a valid assumption
for binaries formed in galactic fields, where the objects have time to shed their eccentricity by the time they enter
into the LIGO band, and should hold until the bodies begin to combine or tidal effects become significant in the
late stages of the inspiral [14]. On the other hand, binaries formed dynamically can still retain a non-negligible
amount of eccentricity when they become observable [15]. Studies suggest the events observed until now come
from both channels, making it necessary to model the effects of eccentricity [15].
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Neutron stars can deform due to their intrinsic rotation or the gravitational field created by
their companion [16]. These deformations are characterized by the love numbers that appear on
the multipolar expansion of the star’s gravitational field, which depend on the internal structure
of the star, that is, on their equation of state (EoS). This way, continuous gravitational waves
coming from rotating NS or transient waveforms coming from BNS coalescences can provide
information on the EoS of neutron stars by putting constraints on the love numbers [16–18].

1.3 Binary Black Hole Baseline

In this section, we will describe the characteristics of gravitational-wave signals coming from
binary black hole systems at each point in their evolution. These waveforms constitute the base
on top of which matter effects can be included.

The life cycle of these systems can be split into three distinct stages [19]. The first and longest
stage, the inspiral, is characterized by a separation between the objects much larger than their
extents that diminishes at a rate that is much slower than the orbital frequency; the second
stage, the merger, is characterized by a quick plunge when the objects reach their innermost
stable circular orbital (ISCO), merging into a single object whilst emitting maximum GW power;
and the last stage of the evolution, post-merger, consists in the relaxation of the resulting object
until it becomes stationary3 [13, 19].

If the spins are aligned (anti-)parallel to the orbital angular momentum (aligned spin), motion
occurs in the fixed two-dimensional plane defined by L⃗, which is also the direction of maxi-
mum gravitational-wave energy emission [20]. However, in the general case where the spins
have arbitrary orientations, relativistic spin-orbit and spin-spin effects originate precession of
all angular momenta [12, 20]. In most configurations the system undergoes simple precession,
where both spins and orbital angular momentum precess around the total angular momentum
J⃗ = L⃗ + S⃗1 + S⃗2, which remains approximately fixed [20]. Less commonly, when L ≃ S and
L̂ ∼ −Ŝ, the system undergoes transitional precession, where J⃗ flips its direction [20].

In the case of aligned spin, the waveform presents monotonically increasing frequency and ampli-
tude until the merger, where the amplitude reaches a maximum before quickly decaying during
the ringdown, whilst the frequency keeps increasing until it slows down in the late ringdown (see
fig. 1) [19]. In the general case, precession modulates the amplitude and phase of the aligned
spin waveform, resulting in a substantially more sophisticated signal [12].

During the inspiral, binary black hole systems can be treated in the post-Newtonian (PN) ap-
proximation, which consists in systematically adding relativistic corrections to the Newtonian
solutions in the expansion parameter4 ϵ = v2/c2. Approaching the merger, however, orbital
velocities become comparable to the speed of light, and Einstein’s field equations must be solved
numerically. Nowadays numerical relativity simulations provide the waveforms emitted by BBHs
thorough the merger and ringdown; however, GW data analysis applications require a continuous
sampling across the parameter space, which makes of paramount importance the development

3In the case of binary black hole systems, the post-merger is referred to as ringdown, for the resulting object is
another black hole that shows decaying gravitational perturbations until it becomes a stationary Kerr black hole.
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Figure 1: Evolution of the luminosity (top panel) and waveform (middle panel) emitted by a
non-eccentric binary black hole system. Original from [19].

of semi-analytic models that provide a smooth connection between the post-Newtonian and nu-
merical relativity solutions. Three types of waveforms are often used: effective-one-body (EOB)
waveforms, phenomenological waveforms, and numerical relativity surrogates [13].

We focus on the frequency-domain (X) precessing (P) high-modes (HM) model IMRPhenomXPHM
[1] from the IMRPhenom family of phenomenological waveforms, which provides piecewise (IMR
stands for inspiral-merger-ringdown) closed-form expressions for the amplitude and phase of the
GW signal that are fast to evaluate. In the IMRPhenom family, information coming from the
PN approximation, perturbation theory and NR simulations is blended together to cover all the
stages of coalescence [13].

1.4 Gravitational-Wave Data Analysis

LIGO detects gravitational waves using Michelson interferometers, where a laser beam is split and
let travel along two arms before being reflected back and merged anew, producing an interference
pattern. If arm lengths remain constant, the interference pattern will be static; if they do not,
one can infer the change in length from the variation of the interference pattern [3].

However, gravitational waves reaching the Earth produce differences in length of thousands
of times smaller than the diameter of a proton; this led to the development of a number of
technological advancements in order to increase sensitivity and reduce noise [3]. The resulting
enhanced interferometers are known as power recycled Fabry-Perot Michelson interferometers
(details can be found in [3]).

Discerning gravitational wave signals from noise, that is, from any change of the interference pat-
tern produced by something other than gravitational waves, is crucial for searches and systematic
error prevention in parameter estimation [21]. Many forms of noise affect the data collected by
LIGO, most of which is approximately stationary and therefore more easily treated in the fre-

4Solutions that are truncated at ϵn are said to be “expanded to the nth PN order”, or simply “nPN”.
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quency domain [21]. Transient noise events (usually referred to as ‘glitches’) may mimic actual
astrophysical signals in individual detectors but are rarely correlated between detectors [21].

In order to avoid as much of this noise as possible, LIGO has installed a series of noise prevention
systems and deployed a series of sensors that collect data about the environment. The data
collected by these sensors is used to generate noise models and detect environmental disturbances
that might affect the interferometer [3].

In the long-wavelength approximation, where the wavelength of the gravitational wave is much
longer than the size of the detector, one obtains that the interferometers have maximum sen-
sitivity to waves propagating orthogonally to the arms plane and reduced sensitivity to other
directions, with a few blind spots [3]. The existence of various gravitational wave detectors allows
for all-sky coverage and validates simultaneous detections.

The data recorded by a detector d can be decomposed into noise n and gravitational wave signals
h as d = h+n. Generic transient searches look out for strong signals and allow for the discovery
of new, unknown signals, but the existence of theoretical signal models, which we will denote
with h, is critical to the detection of most, weak, signals [21].

When one has theoretical models for the expected signal, and the noise can be considered sta-
tionary and Gaussian, an optimal statistical detection method exists. This method is named
matched filtering, and it consists in calculating the normalized signal-to-noise ratio (SNR) of
the recorded data against a bank of model signals corresponding to different parameters of the
source (usually referred to as templates) in search for values close to unity [21].

Stationary noise can be characterized, without loss of generality, by the following equations [9,
22] 5

⟨n(t)⟩ = 0 , ⟨ñ∗(f)ñ(f ′)⟩ ≡ 1

2
Sn(f)δ(f − f ′) , (18)

where Sn(f) is named the power spectral density of the noise, which provides the average of the
variance of the noise through

⟨n2(t)⟩ =
∫ ∞

0
Sn(f)df . (19)

One then defines the filtered value X of x(t) as [23]

X =

∫ ∞

−∞
x(t)F (t)dt =

∫ ∞

−∞
x̃(f)F̃ ∗(f)df , (20)

where F (t) ∈ R is the filter function, and uses this definition, together with eq. (18), to calculate
the filtered value of the template in the presence of noise, S, and the root-mean-squared of the
filtered value of the noise, N . The maximization of the signal-to-noise ratio (SNR) S/N yields
the optimal expression of the filter function F̃ ∗(f) ∝ h̃(f)/Sn(f) ([9, 23]), named optimal filter,
which is then used to define through eq. (20) the noise-weighted inner product between the signal
and the template [22]

⟨d|h⟩ = 4 Re

∫ ∞

0

d̃(f)h̃∗(f)

Sn(f)
df , (21)

5From this point on, we are using x̃ to refer to the Fourier transform of x; and ⟨x⟩ to refer to the ensemble
average of x over many repetitions, or, equivalently, to the time average in separate time intervals [9].
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and the SNR as this inner product normalized with respect to the template [23]

SNR =
⟨d|h⟩√
⟨h|h⟩

. (22)

The previous result has been derived implicitly assuming that the signal is of the same duration
as the template, whilst in reality, that will not be the case. We are interested in the matched
filter as a function of the arrival time. This is achieved by writing h(t) = p(t − t0) where t0 is
the arrival time of the GW and p(t) the theoretical waveform, which can be Fourier transformed
into h̃(f) = p̃(f)e−2πift0 , to give a complex time series [21, 22]

⟨d|h⟩ = 4 Re

∫ ∞

0

d̃(f)p̃∗(f)

Sn(f)
e2πift0df . (23)

The detection method consists then in looking for statistically significant peaks, by taking χ2

tests into account, in the SNR time series whilst rejecting data containing noise glitches, which
do not verify the assumptions of stationarity and Gaussianity and could lead to false detections
[21]. Furthermore, a series of waveform consistency tests (which check the deviation of the data
d from the model n + h) are implemented for those cases in which the sensors might not have
picked up the glitch [21], and published results are required to have been detected with consistent
parameters in at least two independent detectors [21].

Once a gravitational-wave detection is made, the next objective is to infer the physical parameters
of its system of origin and their uncertainties. This procedure is done in the framework of
Bayesian parameter estimation. If we denote by θ the parameters of our model M(t; θ) =

n(t) + h(t; θ), and I the background information, Bayes’ theorem provides

p(θ|d,M, I) = p(θ|M, I)
p(d|θ,M, I)

p(d|M, I)
, (24)

where p(θ|d,M, I) is the posterior probability density function of the system having the param-
eters θ given that we have measured d with background information I; p(θ|M, I) is the prior
probability density function (or prior) which contains our assumptions on how likely is to ob-
serve that combination of parameters; p(d|θ,M, I) is the likelihood function of observing d had
the system had θ for parameters, which, assuming stationary Gaussian noise, takes the form

p(d|θ) = exp

(
−1

2

∑
i

[
(di − hi(θ)|di − hi(θ)) +

∫
lnSin(f)df

])
, (25)

where the sum is taken over the different detectors; and p(d|M, I) is the evidence

p(d|M, I) =

∫
p(θ|M, I)p(d|θ,M, I)dθ . (26)
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2 Modeling Precessing Binaries

Whenever the spins of a binary system are not aligned with the orbital angular momentum,
all angular momenta undergo precession, significantly increasing the complexity of the dynamics
and modulating the gravitational-wave signals 6. Binary systems are expected to have spins with
randomly distributed magnitudes and directions, making precession more usual than not [24].
This, together with the fact that having accurate waveform models is necessary for detection
and crucial to parameter estimation, makes of fundamental importance the task of modelling
precessing binaries.

Because precession involves all seven parameters (mass ratio and both vectorial spins), fully
calibrating a model to NR is an incredibly challenging task, and some approximations have been
introduced to reduce the dimensionality and complexity of the problem. One key aspect that
can be leveraged for this purpose is the difference in the characteristic time scales of the orbital
motion (τorb), precession (τprec), and radiation (τrad), for which we have τorb ≪ τprec ≪ τrad. This
observation translates into precession having a subdominant effect on the GW phase during the
inspiral and allows for a great simplification of the waveform by describing it in a co-precessing
frame where the waveforms are characterized by the components of the spins parallel to the
orbital angular momentum, which are approximately constant throughout the inspiral [20, 25].
The non-precessing waveforms in the (non-inertial) co-precessing frame can then be rotated into
the (inertial) observer frame through a time-dependent rotation, obtaining precessing waveforms.
This procedure is often referred as the “twisting-up approximation” in the literature [12, 20, 25].

In this section, we will explain how the twisting-up approximation is constructed in the fre-
quency domain and introduce the analytical approximations of the rotation angles previously
implemented in IMRPhenomXP, together with the new numerical integration implemented for the
construction of IMRPhenomXP_NRTidalv2, following a strategy similar to IMRPhenomTPHM.

2.1 Twisting-up approximation

In the twisting-up approximation, the orbital angular momentum L⃗ is taken as the axis of the co-
precessing frame7, in which the gravitational waves are approximated by aligned-spin waveforms,
and then the precession effects taken into account by rotating the waveforms according to the
movement of the co-precessing frame as seen from an inertial frame of reference [12].

Let us define the relevant frames of reference we will be employing. The co-precessing frame (or
L-frame) will have the orbital angular momentum as the z axis, ẑ = L̂, and the other two axes
will be given by the vector connecting the two black holes, such that r⃗ = rx̂ with r⃗ = r⃗1 − r⃗2,
and the right-hand rule ŷ = ẑ × x̂. Following up, let us define three relevant inertial frames of
reference [1]. Because L⃗ precesses around J⃗ , which is approximately fixed, it is a good choice to
take J⃗ as the axis of an inertial frame8, for the waveform modes will show a simple morphology
in it; we will refer to such frame as the J-frame. In numerical relativity simulations, it is common

6Fortunately, precession does one good thing for us; it might help break degeneracies in parameter estimation.
7We will use the Newtonian orbital angular momentum L⃗N, which does not take into account the in-plane

spins and points in the direction of the instantaneous angular frequency vector as a proxy for the actual orbital
angular momentum L⃗, assuming the difference between the two is negligible [25].
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to choose the initial spin components in the L-frame, which motivates us to define the L0-frame
as the L-frame evaluated at a certain reference time; this frame is commonly referred to as the
source-frame [1]. The last frame we will introduce is that in which the z axis is given by direction
towards the observer N̂ ; this frame is most relevant for observational purposes, and we will refer
to it as N -frame or wave frame [1].

In order to execute the rotation, the waveform is decomposed in the J-frame into a basis of −2

spin-weighted spherical harmonics

hJ(t;λ, θ, ϕ) =
∑
ℓ≥2

ℓ∑
m=−ℓ

hJℓm(t;λ) Y−2 ℓm (θ, ϕ) , (27)

where the intrinsic parameters λ = {q, χ⃗1, χ⃗2} are disentangled from the extrinsic orientation
parameters (θ, ϕ) [25]. These modes are related to those in the L-frame by

hJℓm(t) =

ℓ∑
m′=−ℓ

Dℓ∗
mm′(α, β, γ)hLℓm′(t) , (28)

where (α, β, γ) are the Euler angles that provide the rotation from the J-frame to the L-frame,
and Dℓ∗

mm′ are the complex conjugate of the Wigner D-matrices (further details in [26]). The
angles α and β track the movement of L̂, whilst γ is set by the condition of minimal rotation

α = arctan (Ly/Lx) , β = arccos (Lz) , γ̇ = −α̇ cosβ . (29a-c)

As explained at the start of the chapter, the modes in the co-precessing frame are approximated
by aligned spin (“AS”) modes, that is

hLℓm(t; q, χ⃗1, χ⃗2) ≈ hAS
ℓm(t; q, χ1∥, χ2∥) , (30)

where χi∥ are the components of the dimensionless spins in the direction of the orbital angular
momentum [25]. However, the aligned-spin modes must have their ringdown modified in order
to take into account the final spin of the precessing system, which differs in general from the
non-precessing case [25].

These modes can then be rotated into the wave frame (N-frame) through a time-independent
rotation, and the GW polarizations (which are the measurable quantities at the detectors) con-
structed from

h(t) = h+(t)− ih×(t) . (31)

In order to work in the frequency domain, the time-domain expressions need to be Fourier
transformed. Analytical closed-form expressions for such Fourier transforms can be obtained by
applying the stationary phase approximation (SPA), which is valid throughout the inspiral [1].

8Taking J⃗ as fixed rules out the possibility of modelling systems that undergo transitional precession.
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2.2 Euler angles throughout the inspiral

The Euler angles can be calculated by either numerically evolving the spin precession equations
or by using analytical approximations such as the multiple scale analysis (MSA) [24]. We will
test the accuracy and performance of these options at the end of the chapter. This subsection
will introduce the specific equations for each approach to calculating the Euler angles.

2.2.1 Analytical approximations: effective single-spin and double-spin MSA

The effective single-spin description removes one black hole from the equations by modifying
the spin components of the heaviest black hole into effective spin parameters that reproduce the
original problem to a good approximation [20]. The two spin components parallel to L⃗, S⃗1 and
S⃗2, are combined into an effective spin parameter χeff , and the four in-plane spin components
S⃗⊥
1 and S⃗⊥

2 into an effective precession spin parameter χp with expressions:

χeff =
m1χ1∥ +m2χ2∥

m1 +m2
and χp =

1

A1m2
1

max(A1S
⊥
1 , A2S

⊥
2 ) , (32)

where A1 = (2 + 2/3q) and A2 = (2 + 3q/2) [20, 25]. If radiation reaction (the effects on the
source due to the emission of GWs) is neglected, the evolution equations of the Euler angles in
this single-spin case can be expressed in terms of the components of the total angular momentum
J⃗ = L⃗+ S⃗1 in the L⃗-frame (defined in section 2.1) as

dα

dt
= − ϖJx√

J2
x + J2

y

cscβ ,
dβ

dt
=

ϖJy√
J2
x + J2

y

, (33)

where ϖ is the precession angular frequency [27]. These expressions can be analytically solved to
next-to-next-to-leading order in the spin-orbit coupling, and then γ be obtained by analytically
solving eq. (29c) [25].

The MSA (multiple scale analysis) double-spin description exploits the difference in the charac-
teristic time scales explained at the beginning of the chapter to introduce radiation reaction as a
perturbation of the closed-form expressions of the conservative case [24]. The precession angles
are expressed as a PN series with an extra MSA correction in terms of the orbital velocity or
GW frequency; in the case of α, the solution can be split into two contributions:

α = α−1 + α0 , (34)

where α−1 is the leading-order term, and α0 is the first correction that includes double-spin
information [25]. A similar approach is taken for the γ angle, and the expression for the β angle,
which defines the precession cone, is given by

cosβ = Ĵ · L̂ =
J2 + L2 − S2

2JL
. (35)

It is noteworthy that the MSA approximation assumes that the two bodies are black holes, which
might introduce some errors when applying the model to binary neutron star coalescences. This
is one of the reasons behind the introduction of the next precession version.
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2.2.2 Numerical evolution of the spin precession equations

For the construction of IMRPhenomXP_NRTidalv2, the numerical evolution of the spin-precession
equations has been implemented in the black-hole baseline IMRPhenomXPHM. This approach has
the advantage of not introducing further approximations other than the SPA, which might be
relevant for binaries involving neutron stars, for it means the coefficients of the spin-induced
quadrupole moments are not necessarily set to those of a black hole.

Assuming conservation of the total angular momentum, ˙⃗
J(t) =

˙⃗
L(t) +

˙⃗
S1(t) +

˙⃗
S2(t) ≃ 0, the

equations that provide the evolution of the precessing spins and orbital angular momentum are:

dL̂

dt
= Ω⃗L̂ × L̂ ,

dS⃗1

dt
= Ω⃗1 × S⃗1 ,

dS⃗2

dt
= Ω⃗2 × S⃗2 , (36a-c)

where ΩL, Ω1 and Ω2 are precession frequencies that can be obtained in the Post-Newtonian
theory to a given order in ϵ as functions of the binary’s intrinsic parameters and of v(t) =

(ωMT )
1/3, with ω being the derivative of the orbital phase [28]. Radiation reaction can be taken

into account by letting the parameter evolve in time, according to

v̇ = − F
[dE/dv]

, (37)

where F is the GW flux and E the binding energy of the binary [28].

These equations are solved by using the SpinTaylor infrastructure of the LALSimulation mod-
ule in the LALSuite algorithm library, reason for which we will refer to this approach as the
SpinTaylor version of the precession. Additionally, models belonging to the IMRPhenomX family
adopt by default the multibanding (MB) algorithm, which evaluates the waveform on a grid that
is adapted to the signal’s morphology, finer in the inspiral, where the phase evolves more rapidly,
and coarser in the ringdown, where it is sufficient to interpolate from a coarser grid [29].

Once L⃗ has been obtained by solving the spin precession equations (36a-c), it can be introduced
in equations (29a-c) to obtain the Euler angles [25].

3 Tidal Effects and Their Imprints on GW Signals

The consideration of objects with matter distributions, such as neutron stars, adds an extra layer
of complexity to the modelling of GWs.Namely, Einstein’s field equations must be solved together
with the equations of general relativistic hydrodynamics (which provide the kinematics of the
matter distribution) [30]. However, there is much to gain from overcoming such complexity, for
these systems represent unique sources of information about exotic states of matter at supra-
nuclear densities, and GWs are the best carriers of such information [30].

To date, two BNS and several NSBH candidates have been detected by the LIGO Scientific
Collaboration (LSC), and more are expected to be detected in the near future thanks to the
increasing sensitivity of the detectors [6, 30]. However, the extraction of the source parameters
of these systems depends crucially on the existence of accurate GW models for their emitted
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signals, which are quite different from those of BBH systems.

In this section, we will introduce the fundamental effects of NSs’ matter in GW signals, the basic
concepts behind their modelling, and the most relevant models available to represent signals
from BNS coalescences, with emphasis on NRTidalv2.

3.1 Tidal Effects in BNS Coalescences

The dominant tidal effects in BNS coalescences arise from the response of NSs to the spacetime
bending produced by their companion [30]. The quasi-periodic orbit of a NS around its compan-
ion during the inspiral produces a time-varying tidal field that stimulates the NS’s characteristic
oscillation modes, which are determined by the properties of matter in its interior [30]. These
oscillations produce a change in the structure of the external spacetime of the NS that grows
more prominent the closer the stars get (see fig. 2). In the adiabatic regime, the effects of a
star’s internal structure can be characterized through the tidal deformability parameters, whose
measure can provide insight on the EoS of the NS [30]. These effects leave imprints on the
emitted GWs that accumulate over time (see fig. 3).

Figure 2: Drawing that illustrates the tidal deformation of the NS (blue) produced by the tidal
field E of its companion (green). The change in the multipole structure of the NS’s external
spacetime Q will affect the emitted GWs. Picture obtained from [30].

Another matter effect arises in spinning NSs due to the deviations from spherical shape that
rotation produces in the matter distribution and the coupling of this rotation with the tidal
field of the companion star [30]. This translates into the appearance of spin-induced multipole
moments in the multipolar decomposition of the NS’s exterior spacetime that also depend on the
EoS through the rotational Love numbers [30]. These spin-induced effects are at least quadratic
in spin and enter at second PN order, whilst the tidal effects of the previous paragraph first enter
at fifth PN order; this makes spin-spin effects dominant at lower frequencies and tidal effects
dominant at higher frequencies [30]. All BNS systems to date have shown neutron stars with
small dimensionless spin parameters, making the tidal contribution of higher relevance for these
systems [2]. Nevertheless, it is still important to model spin effects, for there could be BNS
systems with higher spins waiting to be discovered.

The post-merger is also greatly affected by matter effects; it involves complicated thermal and
magnetohydrodynamical effects that make it much harder to model than the inspiral. In contrast
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to BBH coalescences, where the resulting object is always a BH, BNS coalescences can produce a
variety of outcomes depending on the initial masses and spins. These outcomes are qualitatively
classified based on the total mass as: prompt collapse, hypermassive, supramassive neutron stars
(SMNS) and massive neutron stars (MNS) [30]. If the total mass is higher than a certain
threshold, the system undergoes prompt collapse into a BH, which might be surrounded by a
low mass accretion disk [30]; if it is smaller than the threshold, the resulting object will be a
neutron star surrounded by a more massive accretion disk. Depending on its baryonic mass, the
remnant is classified into HMNS, SMNS or MNS (see Fig. 5 of [30]).

Figure 3: Numerical relativity simulation of a BNS system near merger. The top panel shows
the emitted GW, and the bottom panel the rest-mass density evolution of the system, which
develops into a BH with an accretion disk. Figure from [30].

3.2 Gravitational Field of Deformed Stars

We will now provide some mathematical insight on the concepts of the previous subsection by
giving a Newtonian introduction that carries over to GR with the appropriate modifications of
how the deformation of stars due to the gravitational field of their companion or their intrinsic
rotation affects their gravitational potential.

Let us start with tidal deformations by considering a non-rotating NS with its center of mass as
the origin of our non-inertial reference frame, together with an orbiting companion. In this set-
ting the companion generates a gravitational field that produces a time-dependent perturbation
δρ(t, r⃗) to the spherical equilibrium configuration ρ̄(r) of the NS, such that its mass distribution
can be written as ρ(t, r⃗) = ρ̄(r) + δρ(t, r⃗) [31]. This gravitational field can be expressed by
means of a potential Uext, that verifies ∇2Uext = 0 outside its source, and which can be Taylor
expanded around the center of mass of the NS. The way in which the fluid dynamics equations
that govern ρ(t, r⃗) depend on this potential (see [32] for details) makes irrelevant the constant
and linear terms of such expansion and leads us to define the tidal potential

Utidal(t, r⃗) = −
∞∑
ℓ=2

1

ℓ!
ELxL , (38)

where L = (a1 · · · aℓ) is a multi-index with the property xL = xa1 · · ·xaℓ , and we are using the
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Einstein summation convention [30, 32]. The quantities

EL = −∂LUext(t, 0⃗) , (39)

where ∂L = ∂a1 · · · ∂aℓ , are the tidal moments of the NS, which, since the contraction of any two
of its indices produces a Laplacian, are symmetric and trace-free (STF) in all pairs of indices
[30, 32]. As we will see, these are the relevant quantities regarding the NS’s tidal deformation.

The gravitational potential generated by the deformed NS can be written as

U(t, x⃗) = G

∫
R3

ρ(t, r⃗ ′)

|⃗r − r⃗ ′|
d3x′ . (40)

This expression can be expanded in multipoles outside the NS by performing the following Taylor
expansion in r⃗ ′ of |⃗r − r⃗ ′|−1 around the origin (center of mass),

1

|⃗r − r⃗ ′|
=

1

r
+

∞∑
ℓ=1

(2ℓ− 1)!!

ℓ!

x⟨L⟩

r2ℓ+1
x′L , (41)

where the brackets around the indices denote the STF projection of a tensor as in x⟨ij⟩ =

xixj − |⃗x|2 δij (the general expression can be found in [32]), and which holds for r > r′ [30–32].
Upon the introduction of this expansion in eq. (40), the distribution of the integrals gives rise to
the Newtonian mass multipole moments,

QL =

∫
R3

ρ(t, r⃗ ′)x′Ld3x′ , (42)

of which: the monopole is the mass of the NS, M =
∫
ρ(t, r⃗ ′)d3x′, and the dipole is zero when

working in centre-of-mass coordinates [31]. With the above definition and the aforementioned
remarks, the star’s gravitational potential can be written as

U(t, x⃗) =
GM

r
+G

∞∑
ℓ=2

(2ℓ− 1)!!

ℓ!

Q⟨L⟩x
⟨L⟩

r2ℓ+1
, (43)

where the reason behind taking the STF part of the multipole moments is that these appear
contracted with x⟨L⟩, and the following is true for any two tensors AL and BL: ALB⟨L⟩ =

A⟨L⟩B⟨L⟩ [32].

In the adiabatic limit, where the internal time scales of the NS are fast compared to the varia-
tions in the tidal field, the fluid equations show that the trace-free induced multipoles Q⟨L⟩ are
proportional to the tidal STF moments EL,

Q⟨L⟩ = −λℓ EL , (44)

where λℓ are the tidal deformability parameters that encapsulate the composition of the NS [30,
32]. Thus, deviation of the gravitational potential outside the star from that of a point mass
only depends on the tidal moments and tidal deformability parameters. In order to simplify the
form of eq. (43), these parameters are often re-expressed in terms of the dimensionless tidal Love
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numbers kℓ, defined through

Gλℓ =
2

(2ℓ− 1)!!
kℓR

2ℓ+1 , (45)

where R is the radius of the unperturbed NS [30, 31].

The total gravitational potential outside the NS can be obtained by adding the external contri-
bution of eq. (38) to the expanded potential of the NS, eq. (43); which after introducing eq. (44)
in terms of the Love numbers, reads

UT (t, r⃗) =
GM

r
−

∞∑
ℓ=2

1

ℓ!
ELxL

[
1 + 2kℓ

(
R

r

)2ℓ+1]
. (46)

If rotation is introduced and its effect considered to be independent of the tidal deformation, its
consequence is the appearance of new spin-induced multipole moments on the expansion of the
NS’s potential [30]. For example, the spin-induced quadrupole is given by

QS
2 ≈ −κχ2M3 , (47)

where χ = cS/(GM2) is the dimensionless spin, and κ is the spin-induced quadrupole parameter.
While κ = 1 for a BH, this parameter can assume a range of values for a NS [30].

In GR, tidal effects are computed on the framework of perturbation theory over the equilibrium
configuration of the NS [31]. In this framework, the perturbations of the metric are separated
into polar and axial modes, the coefficients of which define two families of Love numbers [31].
The Love numbers associated with the polar modes are called “electric-type” and those associated
with axial modes, which disappear in the Newtonian limit, are called “magnetic-type” [31].

3.3 Tidal Waveform Models for BNS Coalescences

There are various approaches to modelling the tidal effects produced by matter distributions.
In BNS coalescences, a significant fraction of the SNR is accumulated during the inspiral, and,
therefore, a natural approach is that of working within the PN framework. However, as we
discussed earlier, the PN approximation is doomed to break down near merger, and hence a
waveform model describing the complete coalescence will need some input from NR. Other ap-
proaches have been developed to alleviate this problem: tidal EOB models, which combine PN
theory results with strong-field effects in the test-particle limit by using the effective-one-body
formalism, and phenomenological tidal models, which extend BBH approximants with a tidal
description that includes finite-size effects of the NSs fitted to NR simulations, and which we will
be considering in this text [30].

The basic assumption of the phenomenological approach is that the BNS waveform phase can
be decomposed as a sum of a non-spinning point-particle (pp) contribution, a spin-orbit (SO)
coupling contribution, a spin-spin (SS) contribution, a tidal (T) contribution that accounts for
the deformation of the NS due to the gravitational field of its companion (see fig. 2), and higher
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order spin-tidal coupling effects [2, 30]

ψ(f) = ψpp(f) + ψSO(f) + ψSS(f) + ψT(f) + · · · .

The point-particle and spin-orbit contributions are unchanged with respect to their BBH coun-
terparts, but the spin-spin contribution depends now on the star’s internal structure through the
rotational Love numbers that appear along the spin-induced multipole moments introduced in
the previous subsection. The new tidal contribution does, of course, depend on internal structure
through the Love numbers, as well [2, 30].

Because of the decrease in detector sensitivity at higher frequencies, the post-merger is expected
to be negligible for current detectors9, which is why nowadays phenomenological waveforms
are smoothly tapered around the merger [33]. However, the smooth frequency and amplitude
development even beyond the point of merger should prevent biases in parameter estimation.
This, together with the fact that BNS inspirals present more cycles than those of BBH (because
of the smaller masses), allows us to obtain relevant information from the inspiral alone [30, 34].

In this work, we focus on the NRTidalv2 [2] approximant, which includes quadrupolar and
octupolar spin-spin and cubic-in-spin effects up to 3.5PN order and provides closed-form approx-
imations for the tidal contributions to both phase and amplitude that are fitted to numerical
relativity simulations; furthermore, it can be added on top of any BBH baseline. In it, the taper
is introduced by multiplying the total amplitude by a window function as

Ã = (ÃBBH + ÃNRTidalv2
T )× ÃPlanck , (48)

where ABBH is the amplitude of the BBH baseline, ANRTidalv2
T is the tidal correction provided

by NRTidalv2, APlanck is the Planck taper introduced in [35], and the tildes indicate that these
functions are in the frequency-domain.

4 Performance of the Model

After having introduced IMRPhenomXP and NRTidalv2 in previous sections, we will now present
the tests we have run in order to evaluate the performance of the combination of these approx-
imants into IMRPhenomXP_NRTidalv2. Additionally, we will provide tests of the SpinTaylor

version of the Euler angles implemented in IMRPhenomXP for the construction of the model.

4.1 Baseline Matches

In this subsection we will present matches against binary black-hole numerical relativity wave-
forms of the MSA and SpinTaylor precession versions of IMRPhenomXP. As we mentioned earlier,
the binary black-hole model is the baseline on top of which matter effects are added: therefore,
the matches below will give information about the performance of the model in the limit of zero
tidal deformability.

9It is expected that next-generation instruments will have enough sensitivity for these effects to be relevant.
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The match M between two waveforms is defined as the noise weighted inner product of eq. (21)
normalized to unity10 and maximized over the relative time and phase shifts between waveforms
[1]. For a precessing system, one also needs to maximise over the polarization angle ψ0 and the
orientation of the in-plane spins at the reference frequency, α0. That is, the match is defined as

M(h1, h2) = max
t0,ϕ0,ψ0,α0

⟨h1|h2⟩
∥h1∥∥h2∥

, (49)

where∥hi∥ =
√

⟨hi|hi⟩; and we will refer to 1−M as the mismatch. For the calculation of these
matches, we have used the Advanced-LIGO design sensitivity power spectral density [36] with a
lower cutoff at 20Hz and an upper cutoff at 2048Hz, exactly as in the original IMRPhenomXPHM
paper [1]. We have also used the same set of 99 NR precessing SXS waveforms ([37]) employed
in [1] over five total masses ranging from 50 to 250 solar masses, three inclinations (the angle
between the line of sight and the orbital angular momentum at the reference frequency) between
0° and 90°, and five values for both the polarization angle of the source and signal phase at the
reference frequency. The polarization angle and reference phase, denoted below by the index i,
are "averaged over" in the SNR-weighted match,

Mw =

[∑
iM3

i

∥∥hNR
i

∥∥3∑
i

∥∥hNR
i

∥∥3
]1/3

, (50)

for each total mass and inclination, which reduces the relevance of those match values with a
low probability of being detected [1].

Starting with an overview of the results, we can observe in the histogram of fig. 4 how both
precession versions produce very similar mismatch distributions with the majority of values
being in the 10−2 to 10−3 range. SpinTaylor does come somewhat on top of MSA by having
a slightly smaller median and a ∼ 60% of the standard deviation, which translates into better
consistency and fewer mismatches on the high tail of the distribution. The results observed here
are entirely consistent with what was previously observed for IMRPhenomTPHM [25], where the
same precession prescription was implemented. More marked improvements might come after
re-calibrating the aligned-spin baseline and incorporating calibration to NR for the Euler angles
as done in [12].

When the results are broken down by inclination and total mass as in the box plots of fig. 5,
both versions show larger median mismatches the greater the inclination but also smaller spreads
with fewer mismatches above 10−1 than the face-on case. Comparing the versions, we observe a
slight improvement in the SpinTaylor matches for ι = π/3 rad and ι = π/2 rad. On the other
hand, for ι = 0 rad (face-on sources), the median values of SpinTaylor are slightly higher than
those of MSA, but the former shows less outliers.

In the line plots of fig. 6 we can see how SpinTaylor produces fewer mismatches above the
fiducial value of 5%, and that when it does, MSA does as well with worse values. Furthermore, all
of these happen for the BBH:0062 and BBH:0165 SXS waveforms, which correspond to strongly

10By using the Cauchy–Schwarz inequality for real inner products ⟨h1, h1⟩ ≤∥h1∥∥h2∥.
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precessing (high in-plane spins) high mass-ratio binaries, which display intricate interactions
between various multipole modes [1].

4.2 Tidal Matches

In this subsection we will present match tests of IMRPhenomXP with the NRTidalv2 extension.
We will start by analyzing the aligned spin case and then move on to precession. We stress here
that matter effects will enter in both the co-precessing frame signals and the Euler angles that
twist those waveforms into precessing ones, but only the SpinTaylor precession version contains
both.

In the aligned spin case, we compare several tidal models on a random sample of 5000 binaries
drawn from a high-spin prior, where the spin magnitudes are required to satisfy ai ≤ 0.89 and the
mass ratio is allowed to take values between 1 and 3. We expect to see increasing disagreement
with other models for systems with non-negligible spins, as a number of spin-dependent effects
(such as tides and quadratic-in-spin effects) are incorporated in different ways by different models.
It should also be noted that the NRTidalv2 extension was calibrated only to a small number
of non-spinning equal-mass NR hybrids: therefore, we expect that some extrapolation will be
present in other regions of parameter space.

The matches presented here compare our new model IMRPhenomXAS_NRTidalv2 with its phe-
nomenological predecessor IMRPhenomD_NRTidalv2 as well as with two models of the EOB family,
i.e. TEOBResumS [38] and SEOBNRv4T [39] over the same random set of parameters. We grouped
our results into the histogram of fig. 7a and the scatter plots of fig. 8. In these plots, we ob-
serve an excellent agreement between the two NRTidalv2 phenomenological models, with only a
0.3% of matches below 0.97 and a median mismatch of 0.0012. There is also a generally good
agreement with TEOBResumS, whilst more differences can be seen with SEOBNRv4T, especially for
high spin configurations. This might be related to the fact that SEOBNRv4T has a more complete
description of tidal effects which includes dynamical tidal effects, whilst the current version of
TEOBResumS does not, putting it closer to NRTidalv2. In conclusion, as expected, all three models
agree quite well for low spin configurations, but discrepancies grow larger the higher the spin
and mass ratio, which hints at issues with waveform systematics.

Regarding precession, and in the absence of sufficiently long precessing binary neutron star
hybrids, we chose to compare precessing tidal models among them. In this case the matches have
been run between the SpinTaylor and MSA versions of IMRPhenomXP, and against IMRPhenomPv2,
both with the NRTidalv2 tidal extension and over the same set of random, precessing, BNS
systems, with spin magnitudes ai ≤ 0.89, spin tilts isotropically distributed and uniform priors
on the component’s masses 1M⊙ ≤ m1,m2 ≤ 3M⊙. As in the aligned case, we have grouped
the results into a histogram (fig. 7b) and a scatter plot (fig. 9).

What we observe is that, when we add precession, the excellent agreement between Phenom
models is lost. The results show 36.2% of matches below 0.97 and a median mismatch of 0.012
for IMRPhenomXP(MSA) against IMRPhenomPv2, and 41.3% of matches below 0.97 and a median
mismatch of 0.019 for IMRPhenomXP(SpinTaylor) against IMRPhenomPv2; which are one order of
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Figure 4: Histogram showing the probability density of the obtained SNR-weighted mismatch
values when running the MSA and SpinTaylor precession versions of IMRPhenomXP against a set
of SXS NR waveforms. The median and standard deviation are, respectively, 0.0031 and 0.0137
for MSA, together with 0.0028 and 0.0084 for SpinTaylor.

Figure 5: Box plots showing the SNR-weighted mismatch distribution of values obtained when
running the MSA and SpinTaylor precession versions of IMRPhenomXP against a set of SXS NR
waveforms. The results are broken down by inclination (ι) and total mass (MT ).

Figure 6: Line plots where each line shows the SNR-weighted mismatch values obtained when
running the MSA and SpinTaylor precession versions of IMRPhenomXP against one of the employed
SXS NR waveforms for a given inclination (ι) and each one of the selected total masses (MT ).
The highlighted lines are those that have some point above the 5% mismatch.
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magnitude above of what we found in the aligned-spin case. This extra discrepancy was to be
expected due to the extra complexity added by precession, and, based on the results presented
above, we estimate that the impact of a different aligned spin baseline is generally small. The
precession differences can be isolated by matching the SpinTaylor and MSA precession versions
of IMRPhenomXP against each other as in the third plot of fig. 9, where we do not observe as many
mismatches as in the previous comparisons, but we do in any case observe a tail of mismatches
above the 5% level. As can be seen in fig. 10, these mismatches have been found to correspond
to inclination values close to 90° (where the effects of precession and higher modes are typically
maximised) and polarization angles [20, 40] close to 45° which correspond to the lowest SNR’s in
the sample. Nonetheless, we do find a number of systems with SNR ≥ 15 showing matches below
95%, suggesting these effects might be distinguishable, though comparisons to NR simulations
and injections studies would be needed to clarify this.

(a) IMRPhenomXAS with the NRTidalv2 exten-
sion against IMRPhenomD with the same extension,
TEOBResumS and SEOBNRv4T.

(b) SpinTaylor and MSA versions of IMRPhenomXP
against IMRPhenomPv2, both with the NRTidalv2
extension.

Figure 7: Histogram plots of logarithmic mismatch probability density for the aligned spin
IMRPhenomXAS (a) and precessing IMRPhenomXP (b), both with the NRTidalv2 extension, against
a set of other tidal models. The dashed lines represent the median of their respective distribution.

Figure 8: Scatter plot showing match values of IMRPhenomXAS_NRTidalv2 against the same
models and over the same random set of fig. 7a. The matches are sorted by mass ratio (q) and
dimensionless spin of the most massive NS (a1).
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Figure 9: Scatter plot showing match values of IMRPhenomXP_NRTidalv2 against the same mod-
els and over the same random set of fig. 7b. The matches are sorted by mass ratio (q) and
dimensionless spin of the most massive NS (a1).

Figure 10: The same scatter plot presented in fig. 9 of the SpinTaylor and MSA precession versions
of IMRPhenomXP against each other, but sorted by the polarization angle (ψs) and inclination (ι).

4.3 Timing Tests

We will now present timing tests for both IMRPhenomXP_NRTidalv2 and the SpinTaylor version
of IMRPhenomXP. Because the frequency domain is where noise is most easily characterized [21],
and thus the domain of choice when performing parameter estimation, we will be presenting the
waveforms’ evaluation times in the frequency domain; meaning that time-domain models are at a
disadvantage for their waveforms must be Fourier transformed, which increases the computational
cost. The evaluations have been performed between 20Hz and 2048Hz with steps of 1/4Hz for
the BBH baselines and of 0.0029Hz for the tidal models. The frequency bins were adjusted to
each system based on the duration of their GW signals with the help of the lalapps_chirplen

function.
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Starting with the precessing BBH baseline, it can be seen in fig. 11 how both options of the
frequency-domain native IMRPhenomXP show better times than the time-domain IMRPhenomTP;
especially with multibanding (MB) activated, where the analytical MSA approximation of the
Euler angles is about one order of magnitude faster than the time-domain version. As expected,
the numerical integration of the spin-precession equations (SpinTaylor in the plots) is a bit
slower than the analytical MSA approximation, but still competitively fast.

Figure 11: Runtimes of the SpinTaylor and MSA versions of IMRPhenomXP compared to the
default version of IMRPhenomTP for the same random set of precessing BBH binaries, sorted by
total mass. The MB on the version names stands for multibanding.

When higher modes are activated as in fig. 12, all running times become slower, but the same
is observed: both frequency domain options are faster than the default time-domain version.
Additionally, the numerical integration runtimes are now much closer to those of the analytical
MSA approximation.

Regarding BNS systems, in the case of aligned spin, it can be seen in fig. 13 how the frequency-
domain BBH baseline IMRPhenomX with the tidal extension NRTidalv2, is much faster than the
numerical EOB TEOBResumS model, and almost a whole order of magnitude faster than the
single-spin IMRPhenomD baseline with the same tidal extension. This is very relevant, for GWs
coming from BNS systems are longer than those of BBH systems and thus much more expensive
to analyze.

When precession is added into the mix as in fig. 14, IMRPhenomXP with the double-spin MSA
analytical approximation is about twice as fast as the single-spin IMRPhenomPv2 model. On the
other hand, the more accurate numerical integration is about half as fast as IMRPhenomPv2.

As a final comment, inspirals present more cycles the lower the total mass, which translates
into models being generally slower for lower masses, especially those that perform numerical
evolution like TEOBResumS in fig. 13 and XP_NRTidalv2_SpinTaylor in fig. 14; which explains
them showing the same behaviour.
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Figure 12: Runtimes of the SpinTaylor and MSA versions the high-modes frequency-domain model
IMRPhenomXPHM compared to the default version of the high-modes time-domain model IMRPhenomTPHM
over the same set of random precessing BBH systems.

Figure 13: Runtimes of the IMRPhenomX BBH baseline with the NRTidalv2 tidal extension compared
to those of the IMRPhenomD baseline with the same tidal extension and those of the TEOBResumS tidal
model over the same random set of aligned-spin BNS system.

Figure 14: Runtimes of the numerical SpinTaylor and double-spin MSA analytical approximation of
IMRPhenomXP compared to the single-spin IMRPhenomPv2 model; all with the NRTidalv2 extension over
the same set of random precessing BNS systems.
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5 Conclusion

In this thesis, we have presented the new frequency-domain phenomenological tidal model for
BNS coalescences IMRPhenomXP_NRTidalv2. The model can be called with a new precession
prescription where the spin-precession equations are numerically evolved, which was previously
available only in time domain models. This provides extra opportunities to test how different
treatments of precession impact the final template.

Our tests have shown that the new precession prescription produces matches against binary
black-hole numerical relativity waveforms with less outliers than the current default, though at
the expense of an increased computational cost.

Regarding the new tidal model, our tests have shown very good agreement with IMRPhenomD_NR-

Tidalv2, TEOBResumS and SEOBNRv4T for aligned low-spin configurations, but growing differences
for high-spin large mass-ratio configurations, especially with SEOBNRv4T (which currently offers
a more complete description of tidal effects). It will be interesting to repeat this comparison
with future versions of the NRTidal extension. For precessing configurations, the agreement
within Phenom models is lost across all parameter space, especially when high spins are involved.
Future comparisons against BNS precessing hybrids will help to assess the importance of double-
spin effects for these systems, which are not modelled in IMRPhenomPv2_NRTidalv2. The two
double-spin precession versions of IMRPhenomXPHM show less disagreement, though there is still a
fraction of systems with good SNR showing matches below 95%, suggesting these effects might
be distinguishable.

Regarding the waveform evaluation time of tidal models, we underline there is an order-of-
magnitude improvement against TEOBResumS and PhenomD_NRTidalv2 for aligned-spin BNS con-
figurations; and, for precessing BNS configurations, the numerical integration has shown com-
parable times to those of the single-spin model IMRPhenomPv2_NRTidalv2, and half an order of
magnitude improvement has been observed for the analytical MSA approximation.
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