
 

 

 

 

FINAL DEGREE PROJECT 
  

 

 

 

LOTKA-VOLTERRA DYNAMICS IN MODEL 
ECOSYSTEMS 

 

 

 

 

Francesca Sofía Blanco Janer 
 

Degree in Physics 

Faculty of Sciencies 

 

Academic Year 2021-22 

 

  



 

 

 

LOTKA-VOLTERRA DYNAMICS IN MODEL 
ECOSYSTEMS 
 

 

 

 

Francesca Sofía Blanco Janer 
 

Bachelor’s Thesis 

Faculty of Physics 

University of the Balearic Islands 

Academic Year 2021-22 

 

 

Keywords:  

Generalized Lotka-Volterra, Stability, Birth-and-Death, Gillespie Algorithm 

 

 

 

Thesis Supervisor’s Name: Emilio Hernández-García    

 

Co-Supervisor’s Name (if applicable):   

 
 
 

The University is hereby authorized to include this project in its 
institutional repository for its open consultation and online 
dissemination, for academic and research purposes only. 

   Author Supervisor 

Yes  No  Yes  No 

☒ ☐ ☒ ☐ 

 

 



Abstract

This work explores different types of population dynamics and stability, and their implications
for the coexistence of biological species, using the Generalized Lotka-Volterra model. On the
one hand, an analysis of the model is carried out from a deterministic point of view. First,
the simplest case that the model is able to describe, the logistic equation, is presented. Then,
already established parameterizations are used to represent examples of different dynamics for
systems of 3-4 species, and the stability analysis is performed for each of them. Then, the study
focuses on systems whose parameters are unknown and are given by randomness, which leads
to the need to present the stability criteria established by the Theory of Random Matrices.
On the other hand, the model is analyzed from the point of view of stochastic methods. The
objective here is to solve the case of a single species, i.e., the logistic equation, from a stochastic
method. An analogy is made between the logistic growth and the Markovian process known as
Birth-and-Death. Finally, it is solved by means of Gillespie’s Algorithm. To conclude, once the
two resolutions have been presented, a comparison of both is made.

Resum

Aquest treball explora diferents tipus de dinàmica i estabilitat de poblacions, aix́ı com les seves
implicacions per a la coexistència de les espècies biològiques, utilitzant el model Lotka-Volterra
Generalizat. D’una banda, es fa una anàlisi del model des d’un punt determinista. Primer, es
presenta el cas més senzill que el model és capaç de descriure, l’equació loǵıstica. A continuació,
s’utilitzen parametritzacions ja establertes per representar exemples de diferents dinàmiques
per a sistemes de 3-4 espècies i es fa l’anàlisi de l’estabilitat per a cadascun. Després, l’estudi
s’enfoca en sistemes amb paràmetres desconeguts, per tant, venen donats per l’aleatorietat, la
qual cosa comporta la necessitat de presentar els criteris d’estabilitat establerts per la Teoria
de les Matrius Aleatòries. D’altra banda, el model s’analitza des del punt de vista dels mètodes
estocàstics. L’objectiu és resoldre el cas d’una espècie, és a dir, l’equació loǵıstica, a partir d’un
mètode estocàstic. Es realitza una analogia entre el creixement loǵıstic i el procés markovià
conegut com a Birth-and-Death. Finalment, es resol mitjançant l’algorisme de Gillespie. Per
concloure, una vegada presentades les dues resolucions es realitza la comparació entre ambdues.

Resumen

Este trabajo explora diferentes tipos de dinámica y la estabilidad de poblaciones, aśı como sus
implicaciones para la coexistencia de las especies biológicas, utilizando el modelo Lotka-Volterra
Generalizado. Por un lado, se realiza un análisis del modelo desde un punto determinista.
Primero, se presenta el caso más sencillo que el modelo es capaz de describir, la ecuación loǵıstica.
A continuación, se utilizan parametrizaciones ya establecidas para representar ejemplos de dis-
tintas dinámicas para sistemas de 3-4 especies y se realiza el análisis de la estabilidad para cada
uno de ellos. Después, el estudio se enfoca en sistemas cuyos parámetros son desconocidos y
vienen dados por la aleatoriedad, lo cual conlleva a la necesidad de presentar los criterios de
estabilidad establecidos por la Teoŕıa de las Matrices Aleatorias. Por otro lado, se analiza el
modelo desde el punto de vista de los métodos estocásticos. El objetivo aqúı es resolver el caso
de una especie, es decir, la ecuación loǵıstica a partir de un método estocástico. Se realiza una
analoǵıa entre el crecimiento loǵıstico y el proceso markoviano conocido como Birth-and-Death.
Finalmente, se resuelve mediante el Algoritmo de Gillespie. Para concluir, una vez presentadas
las dos resoluciones se realiza la comparación de ambas.
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1 INTRODUCTION

1 Introduction

The evolution of mankind has been linked from its beginnings to the study of ecosystems. An
ecosystem is defined as a biological system made up of a community of living organisms and the
physical environment in which they interact. The scientific community has always been dedi-
cated to studying them in order to understand them and thus facilitate their development with
the aim of reaching their maximum performance. Ecology is a branch of science that, like most,
in its beginnings was purely observational in nature, but with the development of mathematical
models this has changed. Experience showed that models made it possible to quantitatively
describe simplified systems of reality, and this opened the way to new approaches.

There is a whole branch of physics oriented to the study of systems made up of a large
number of elements, and this is statistical physics. Its objective is to link the macroscopic or
collective properties of a system with the properties of its members. This connection is made
using statistical mechanics as a mathematical tool, which, by means of probability theory, is
capable of deducing the behavior of physical systems. Although in the beginnings of statistical
physics the studies were oriented to the explanation of the macroscopic properties of matter
in terms of its microscopic properties, nowadays the field of study has been extended to other
situations that are far from the original idea of the parents of the theory (basically Boltzmann
and Gibbs) [1]. The aim is to take advantage of experience in the methods of statistical physics
to deduce the global behavior of a system made up of several relatively simple constituents, even
if these simple systems are not described by the classical fundamental laws of physics. Among
them is the object of study of this work, the coexistence between species within an ecosystem.

Within a single ecosystem inhabited by different species, the factors that determine the
course of its life are more than the sum of the properties of its constituents. Moreover, for a
realistic study of the system’s behavior, the relationships between the constituents are more
important than if only the constituents and their properties are taken into account. In other
words, in an ecosystem there are many conditions that affect the growth of coexisting species,
e.g., seasonal variation, habitat, food, sexual partner, etc. In all these examples, the time it
takes to find the targets is a totally determining factor, and even the survival of the individual
may depend on minimizing it. Individuals of the same species interact with each other, but
also with those of other species, this interaction can have different levels of intensity. This
type of systems composed of interwoven parts whose links create additional information due
to interactions between elements are known as complex systems. In order to function properly,
ecosystems must maintain adequate proportions between their constituent species, resources and
others. The events that mainly govern ecosystems are stochastic in nature. A stochastic process
is a mathematical concept used for the representation of random quantities that vary with time.
Stochastic Processes allow to treat dynamic processes in which there is randomness.

For the study and development of complex systems, mathematical models have been created
to simulate the system’s evolution taking into account the connections between its constituents.
This study will focus on the development of one of them, the Generalized Lotka-Volterra method.
This model was introduced during the 1920s independently by the two scientists after whom it is
named. Lotka was studying a specific chemical reaction, which exhibited perpetual oscillations
in terms of the concentrations of reactants and products, when he developed a system of two
equations that gave an answer to the behavior described above. Regarding Volterra, he reached
the same conclusions while studying the demographic variation of piscivorous fishes during the
WWI. The original model described the particular case of the Predator-Prey, which can be seen
in the papers presented by each of them [2, 3]. The Generalized Lotka-Volterra equation is a
simple model of population dynamics in which the factors of trophic interactions are included
for a deeper analysis of coexistence, thus allowing a study of the dynamics and stability of com-
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1 INTRODUCTION

munities [4].

In Section 2 the Generalized Lotka-Volterra model is presented. The objective of this section
is to carry out an in-depth analysis of the model. Taking into account the generality of the
model, the aim is to establish criteria to help classify the systems in terms of stability. The
models generality refers to the fact that this set of equations is capable of describing all types
of dynamics, e.g., Predator-Prey (which is the most famous), mutualism or competition rela-
tionships. First, the simplest case, corresponding to a single species, is presented, and then the
study focuses on more complex systems formed by several species. Considering that this model
requires the knowledge of the parameters to represent concrete dynamics; the stability theory
is presented. It allows to classify the system according to its feasibility and stability. Once
the theory is presented, concrete examples of each possible dynamics are shown. Continuing
with the study of stability, the concept of stability of random large communities is introduced.
Finally, stability criteria are presented with the objective of classifying the stability of these
systems.

Once the deterministic model has been developed, and taking into account that, as men-
tioned above, the processes governing ecosystems are stochastic in nature; Section 3 presents an
analysis of the model based on stochastic processes. To approach the problem as realistically as
possible, the dynamics of the system is described as a Markov process, i.e., the probability of
each event is considered to depend only on the state of the previous event. Then, an analogy is
made between the logistic equation of the Generalized Lotka-Volterra with the Birth-Death Pro-
cess, which is a scheme in which each individual of the species can reproduce or die and each of
these possibilities has an associated rate. Thus, the case is particularized so that it responds in
the same way as the logistic equation. Finally, to simulate the system, the Gillespie’s algorithm
is presented with its parameters particularized.

To conclude, Section 4 presents the comparison between the two models developed during
the study: the deterministic and the stochastic.

2



2 GENERALIZED LOTKA-VOLTERRA MODEL

2 Generalized Lotka-Volterra Model

The Generalized Lotka-Volterra equations are a set of non-linear ordinary differential equations
that for n populations are given as:

dxi(t)

dt
= xi(t)

ri +
n∑

j=1

aijxj(t)

 , i = 1, ..., N, (1)

where xi denotes the abundances of species i at time t. Regarding ri, they are “intrinsic growth
(or death) rates” hence r is the parameter in charge of measuring the variations of population i
when grown alone at low density. Thus, positive values of r are attributed to producers because
they are able to reproduce in the absence of any other species, and negative values to consumers,
due to their incapacity to survive unless the appropriate other species are present. As for A,
which is the matrix grouping the interaction coefficients, aij , it represents the relationships be-
tween the species. The interaction coefficients, aij , will be positive when the growth is benefited
by the interaction and negative when it is detrimental. As aij represents the effect that species
j has upon species i, it will be determinant on the type of relationship established between the
species in the system. So that, a competitive interaction will be represented when aij and aji
are both negative due to the negative effect that each species creates on the other species. In the
event that aij is positive and aji is negative, species i is considered to be a predator on species
j because it grows at j’s expenses. When aij and aji are both positive the described interaction
is mutualism, but it is not usually used due to the possibility of having an indefinite growth. As
stated, the parameters r and A are the ones that determine the type of dynamics followed by
the system [5]. The fact that it is referred to as Generalized is due to the capacity of this model
to represent all the combinations of pairs of signs for both species.

The model’s aim is to describe the variation of the state of a set of elements, the abundances
of the species studied, as time goes by. In other words, it is a dynamical system. Population
dynamics is too complex a system to be fully described by current numerical models. This leads
to questioning the validity of numerical resolutions. In order to study their viability, we proceed
to examine the stability of the systems. Part of the system’s behavior can be extracted from the
fixed points (constant solution of a differential equation), therefore, it will be useful to analyze
the stability of an equilibrium.

Dynamical systems are described mathematically in a state space, which in the present case
is the non-negative orthant Rn

+={x=(x1,...,xn) ∈ Rn: xi ≥ 0 for i = 1, ..., n}. Its boundary
points are on xi=0, corresponding to the absence of species i. Assuming the system had no fea-
sible equilibrium, the trajectories (solutions of the dynamical systems, derived by the numerical
models) described by the species would reach Rn

+’s boundary, what implies the extinction of the
species [5, 4].

This section aims to show the more general characteristics of the dynamics of the Generalized
Lotka-Volterra. To this end, at the beginning, the simplest case that the GLV is able to represent
is described. This introduces, in the most fundamental way, the concepts of the Stability Theory.
Then, once they have been established, it will be possible to continue with the development of
the deterministic model. From that point, the study will focus on the simulation of more
complex systems representing different dynamics, all of them obtained from already known
parameterizations. Finally, as the fact of being able to simulate systems only if the parameters
that define them are known gives a rather poor view of the problem, the problem will be analyzed
from the perspective of Random Matrices. Then, some of the most characteristic criteria within
the stability of large random systems will be developed.
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2 GENERALIZED LOTKA-VOLTERRA MODEL

2.1 Logistic Equation

The simplest situation that can be reproduced with this method is that of a single population,
in which case the model goes on to describe the logistic equation [4]. This was introduced to
the scientific scene by Verhulst, who proposed it as an improvement of the exponential growth
model to describe the development of a population in a more realistic way since it describes the
self-limitation of the growth of a species. In this case it is possible to determine the number of
individuals in the species’ population for any time by solving this particular case of the equation
(1):

dx(t)

dt
= x(t)(r + ax(t)). (2)

Whose analytical solution is given by:

x(t) =
rx0e

rt

r − ax0(ert − 1)
, (3)

where x0 is the initial number of individuals in the population. A comparison between the
analytical and numerical solutions is presented below for the parameter values a = −0.05 and
r = 0.1. As expected both results match perfectly.

0 20 40 60 80 100
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0.50
0.75
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x(
t)

Numerical
Analytical

(a)
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x(
t)

Numerical
Analytical

(b)

Figure 1: (a) Plotting of the Logistic Equation with an initial population below the saturation
value. (b) Plotting of the Logistic Equation with an initial population above the saturation
value.

As seen in the graphs, the function presents an exponential growth (or decline, case (b))
until it saturates and reaches equilibrium. This rest point is x = −r/a and is found by setting
dx(t)/dt = 0.

2.2 Multi-Species Dynamics

Returning to ecosystems, a species that inhabits an environment usually shares resources and
space with others, so, if the most precise possible results are to be obtained, it is interesting
to study the relationships between coexisting species. Then, in analogy with the case of one
species, in the study of dynamical systems, an important element to take into consideration is
the stability of the system as this will determine whether a species is able to survive over time.
The characteristic of the systems that establishes the possibility of the existence of a fixed point
(or equilibrium point) in which all species are present, is known as Feasibility. An equilibrium
is referred to as “feasible” when the stationary points of (1) in which all species have non-zero
abundances, i.e. the solution of ri+

∑n
j=1aijxj=0, is positive. Feasibility is one of the elements
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2 GENERALIZED LOTKA-VOLTERRA MODEL

that limits the ability of species to co-exist, so when analyzing a system it is crucial to study its
feasibility by checking the existence of a positive fixed point.

After observing the logistic equation’s results, it is attainable to ask whether in the case of
multi-species there will also be an equilibrium reached by the coexisting species. This is done by
studying local stability, which will be described in the next section, where the Stability Theory
is presented.

2.2.1 Stability Theory

In dynamical systems, Stability Theory, addresses the stability of their trajectories under small
perturbations of initial conditions. During this section, two different types of stability will be
developed. Global Stability, which means that the system reaches the equilibrium point from
any possible starting point (i.e., there is no “nearby” condition). And Local Stability which is
based on the idea of analyzing the behavior of a well-known trajectory after promoting a little
disturbance on the initial condition. If the change that the system undergoes is negligible it
is considered stable. Otherwise, when it departs from the known trajectory it is referred as
unstable. In the following, the study will focus on Local Stability, i.e., the stability close to the
fixed point of the system will be tested. Global Stability is presented in more depth in section 2.3.

In order to study the stability of a system, as mentioned above, the first thing to do is to
check its feasibility, and for this purpose the fixed points of the system in which all the species
have non-zero abundances must be calculated. Mathematically, the values of the abundances
are arbitrary, but in ecological systems the interest is focused on strictly positive equilibria [5,
4]. Then, the point which satisfies this condition will be unique and will correspond to:

x∗ = −A−1r, with x∗i > 0 ∀i. (4)

Once the feasibility is checked and the fixed point has been determined, it is natural to pro-
ceed with the study of their stability. Stability is of great importance in the study of dynamical
systems, since the initial conditions, which determine the solutions of the ODEs, are not known
with complete precision. This leads to the need to verify that the system does not undergo
significant changes when there is a perturbation on the initial value.

Several criteria have been developed to determine whether a fixed point is stable or unstable.
In general, the qualitative behavior of a trajectory (solution of the ODE) that has been perturbed
can be analyzed by linearizing the system in its surrounding area. In particular, an ecological
community can be considered as a system of nonlinear, autonomous ODEs:

dxi(t)

dt
= fi(x(t)). (5)

A given system might have multiple equilibrium points, which are defined as vectors of
abundances such that:

dxi(t)

dt

∣∣∣∣
x∗

= fi(x
∗) = 0 ∀i. (6)

Considering that the system proves to be stable, which means that under small perturbations
the orbits do not suffer notorious changes, two situations can occur. The first one arises when
the nearby orbit stays close to the given one indefinitely i.e. is stable in the Lyapunov sense;
the second case takes places when the neighbouring one eventually converges to the given one,
this is known as asymptotically stable. In the following only the second case will be considered.

5



2 GENERALIZED LOTKA-VOLTERRA MODEL

To analyze local stability, it is assumed that, given a system which is resting in its equilibria,
when it is slightly perturbed its state is then found to be ∆x(0) = x(0) − x∗. The Taylor
expansion around x∗ is then carried out:

f(∆x(0)) = f(x∗) + J |x∗ ∆x(0) + ... (7)

where J is the system’s Jacobian matrix built as:

Jij =
∂fi(x)

∂xj
. (8)

Therefore, J turns out to be a matrix whose elements are functions of the densities of the
populations, x. The “community matrix”, M , turns out to be J evaluated at an equilibrium
point x∗:

M = J |x∗ (9)

Hence, even though every system has a unique Jacobian matrix, J , there will be as many
community matrices as there are equilibrium points. The community matrix, M , exposes the
effect of increasing the density of a species in front of any other species near the equilibria.
Then, it is suitable to rewrite the differential equation depending on M :

d∆x(t)

dt
≈ M∆x(t), (10)

whose solution is:

∆x(t) = eMt∆x(0) = QeΛtQ−1∆x(0), (11)

where Q is the matrix that contains the (unit) eigenvectors of the community matrix, and Λ is
a diagonal matrix containing the eigenvalues of M . The eigenvalues of M are the ones that will
determine the stability of the equilibria. The rule is that if all the eigenvalues have negative real
part, then after being slightly perturbed the system will return to the equilibrium. Otherwise,
if any of the eigenvalues has positive real part, the system will not return and will move away
from its equilibria. Consequently, it is possible to establish a mathematical rule to determine
the stability of an equilibrium. Depending on the sign of the “rightmost” eigenvalue of M , λ1,
the stability criteria will be:

Re(λ1)

{
< 0 −→ x∗ is stable,

> 0 −→ x∗ is unstable.

In the former case, the GLV model, the Jacobian is computed as:

Jij =
∂fi
∂xj

= aijxi, if i ̸= j, (12)

and

Jii =
∂fi
∂xi

= ri +
∑
j

aijxj + aiixi. (13)

Thus, the Jacobian evaluated at the equilibrium point is given by:

Jij(x
∗) = aijx

∗
i , ∀i, j. (14)

6



2 GENERALIZED LOTKA-VOLTERRA MODEL

2.2.2 Variety of Dynamics

Although for a single population the possible scenarios displayed by the General Lotka-Volterra
model are: infinity growth, extinction, or asymptotically reaching an equilibrium point; this
changes when more than two species are involved. Instability is not completely determinant for
the permanence of the species. In the competitive GLV model limit cycles (closed trajectories
in the phase-space that have the property that there is at least one other trajectory that arrives
following a spiral into it, either when time tends to infinity or negative infinity) are a possibility
for three or more species. In the circumstance of having four species, chaotic solutions may be
produced [6]. Some examples of these types of dynamics are constructed and reproduced below.

An illustration of a system for which the equilibrium in which all species coexist is unfeasible
can be shown with the parameterization:

r =

1
1
1

 , A = −

10 9 5
9 10 9
5 9 10

 .

As indicated above, the first step to follow during the study of the stability of a system is
to check the feasibility. For the simulations, the programming language known as Python has
been used, which has the library NumPy with the function np.linalg.solve(), which is the one
used to apply (4). Then, for the given parameters the equilibrium points turn out to be:

x∗ =

−0.083
0.25

−0.083

 .

It results that not all abundances have positive values, in fact, two of the three abundances
calculated have a negative value. This means that the equilibrium in which all three species
coexist is not feasible, since, from a biological point of view, it makes no sense for the equilibrium
point of a species to be given by negative values. As mentioned above, negative abundances are
not possible. This implies that what is expected to be seen in the simulation is that at least one
of the three species that constitute the system will become extinct.

Regarding the parameters, A is symmetric which implies that its eigenvalues are real, thus
the stability will be determined by the sign of its rightmost eigenvalue. The programming lan-
guage used (Python) has the subroutine np.linalg.eig() which provides all the eigenvalues of the
desired matrix. In addition, the Python has the function .real which extracts the real part of the
eigenvalues. Therefore, to study the stability one simply uses these functions by particularizing
them for each set of parameters.

In this particular case, the real part of the rightmost eigenvalue turns out to be positive(
−25+

√
673

2

)
. Following the criteria established in the previous section, the coexistence would

be unstable. But taking into account that the equilibrium is not feasible (i.e., the results show
that there is no fixed point at which species coexist) their stability means nothing.

7
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Figure 2: Competitive system without feasible equilibrium of three species.

As expected, according to the above description, it can be observed in Figure 2 that the
Species 2 is not able to coexist and finally gets extinct.

Then, it is interesting to present an example with a feasible equilibrium that is unstable.
This is given by the following parameters:

r =

 1
0.8
1.2

 , A = −

 1 2 0.1
2 1 0.1
0.1 0.8 1

 .

The next step is to carry out a study of the system’s feasibility, following the steps described
above. Thus, it is obtained that the equilibrium points of each species are:

x∗ =

0.162
0.362
1.148

 .

All the abundances turn to be positive, which implies that the equilibrium is feasible. Finally,
it is necessary to analyze the system’s stability. Then, following the same procedure as in the
previous example, it turns out that the real part of the rightmost eigenvalue is positive, which
means, according to the above theory, that the equilibrium is unstable. Therefore, one of the
expected outcomes to see in the system’s simulation is that at least one of the species becomes
extinct. The results are presented below:
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Figure 3: Competitive system with an unstable feasible equilibrium of three species.

Another example of dynamics described by the model is given by using the growth rates and
the interaction matrix:
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2 GENERALIZED LOTKA-VOLTERRA MODEL

r =

10
10
10

 , A = −

10 7 12
15 10 8
7 11 10

 .

Following the same procedure as in the previous case, the fixed points of the system are
calculated using the function of Python, np.linalg.solve():

x∗ =

0.166
0.365
0.482

 .

The results show that all abundances are positive, which, following the theory, implies that
the equilibrium is feasible. In addition, with this parameterization the real part of the right-
most eigenvalue (−2/301± i

√
1591/301) turns to be negative, what implies that in this case the

system is stable thus the coexistence is expected to be possible.
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Figure 4: Competitive system with a stable feasible equilibrium of three species.

The simulations above show the expected dynamics. Since the equilibrium was feasible and
stable, it was expected that the three coexisting species would survive and reach their equilib-
rium point. Indeed, the three trajectories initially fluctuate quite a lot, but then dampen until
they reach equilibrium.

An example of a stable limit cycle can be represented using the parameterization:

r =

1
1
1

 , A = −

10 6 12
14 10 2
8 18 10

 .

Then, following the indicated procedure, the feasibility of the system is checked by calculating
the equilibrium points corresponding to each species:

x∗ =

0.057
0.014
0.029

 .

The abundances are positive, so the equilibrium is feasible. Regarding the system’s stability,
the real part of the rightmost eigenvalue is positive so the equilibrium is unstable.

9
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Figure 5: Competitive system with stable limit cycles of three species.

The three trajectories fluctuate maintaining the same cycle; while the Species 1 is the one
who reaches the maximum of abundance the Species 2 is the one who goes to the minimum of
abundance but still none of the three is extinguished. And even though they do not stagnate at
a fixed point, all three are able to survive following the observed cycle.

A sample of a chaotic solution for a system of four species can be represented by using the
growth rates, and the interaction matrix:

r =


1.00
0.72
1.53
1.27

 , A = −


1.0000 1.0900 1.5200 0.0000
0.0000 0.7200 0.3168 0.9792
3.5649 0.0000 1.5300 0.7191
1.5367 0.6477 0.4445 1.2700

 .

The feasibility is checked by calculating:

x∗ =


0.301
0.459
0.131
0.356

 .

This implies that the equilibrium is feasible, but the analysis of the eigenvalues determines
that the equilibrium is unstable. The dynamics is shown below.
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Figure 6: Chaotic dynamics shown by the Generalized Lotka-Volterra model in a four species
system.
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2 GENERALIZED LOTKA-VOLTERRA MODEL

As has been previously said, in this particular case, the coexistence equilibrium is unstable,
which may lead to the conclusion that the species will not be able to survive. Instead, what
is observed is that the species are able to coexist on a chaotic system. This is a clear example
of a natural system which operates out-of-equilibrium, and still achieves the persistence of the
species by more complex dynamics.

2.3 Global Stability

So far, the concept of Local Stability has been developed by studying each trajectory separately.
But, as anticipated above, there is the concept of Global Stability, which implies that in the
system there are no unbounded trajectories even if they start far from the origin. By definition,
the concept of Global Stability is more complex than Local Stability, so it is reasonable for its
demonstration to be more complex as well.

There is a property of matrices, based in the Lyapunov Stability, useful to prove Global
Stability. This is based on the assumption of the existence of a positive diagonal matrix ,“C”,
such that CA+AtC is negative definite i.e. it just has negative eigenvalues which are real due to
the symmetry of the matrix. This implies that matrix A is Lyapunov-Diagonally stable, which
means that A is stable and any diagonal positive matrix “D” combined with it as DA is stable
too. Note that the community matrix of the GLV equation (14) is of the form DA, with D
being the diagonal matrix with x∗ in the diagonal. Thus, this condition of ‘Lyapunov-diagonal
stability’ allows to asses the stability of the system GLV by looking only at the matrix A, inde-
pendently of r. Then, considering a Lyapunov Diagonally-stable matrix, A, and the existence of
a feasible equilibrium, x∗, it is possible to prove that all trajectories starting at a non-negative
density will converge to the equilibrium [4].

A couple of examples with random initial conditions are presented below. The parameteri-
zation for this is:

r =

(
1
1

)
, A = −

(
−1 3/2

−1/2 −1

)
.

As in the previous examples, the first step in the stability study is to check the feasibility of
the equilibrium. For this particular parameterization the fixed points are:

x∗ =

(
1.43
0.29

)
.

Implying that the equilibrium is feasible. Therefore, as the conditions for a system to be
globally stable are that a feasible equilibrium, x∗, has to exist, and that matrix A has to be
Lyapunov Diagonally-stable. Then, having proved the existence of x∗ it only remains to show
that A is Lyapunov Diagonally-stable. Which can be done by proving that A + AT has only
negative eigenvalues. This is achieved by using the aforementioned np.linalg.eig(). Thus, the
eigenvalues are −1 and −3, therefore, both are negative and it is confirmed that A is Lyapunov
Diagonally-stable.

11



2 GENERALIZED LOTKA-VOLTERRA MODEL

0 20 40 60 80 100
Time

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

De
ns

ity
Species 1 Species 2

0 20 40 60 80 100
Time

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

De
ns

ity

Species 1 Species 2

Figure 7: Two samples of global stability. The system reaches the same equilibrium even having
different initial conditions.

The results show that the system reaches equilibrium regardless of the initial conditions.

2.4 Stability of Large Random Communities

It has been shown in the previous sections that for an equilibrium to be stable, the eigenvalues
of the community matrix must have negative real part. This implies that to characterize an
equilibrium it is necessary to specify the growth rates, r, and the matrix of interactions, A.
Therefore, if one intends to study a system composed of many individuals this is especially im-
practical, since one would have to describe matrices of n and n2 values. Hence, it is of interest
to investigate the limit in which many species are in the community [4].

Robert May investigated the transition from stability to instability in a large complex system
with the aim of clarifying the relation between stability and complexity in ecological systems
with many interacting species [7]. May attempted to describe a system in which there were
many species by means of the Random Matrix Theory (RMT), whose idea is to analyze the
properties of large matrices built from specific random distributions [8]. He was inspired by
Wigner’s work on symmetric matrices.

2.4.1 Circular Law

The pioneer in this field was Wigner, who described a matrix S × S, A, such that its diagonal
is 0. Next, the upper triangle of the matrix is given values from a probability distribution with
mean 0, variance σ2, and all moments finite. And finally, each element of the lower triangle, Aij ,
is equated to Aji hence making the matrix symmetric. This kind of matrices are called Wigner

matrices. Then, taking into account that the matrix A/
√
Sσ2 is symmetrical, its eigenvalues

are real. It finally turns out that their empirical spectral distribution, for large S, follows the
Wigner semicircle distribution [8].

May, inspired by Wigner’s work, decided to take the study beyond symmetrical matrices. He
designed an algorithm to construct a non-symmetric community matrix. At the present time,
the most general statement of the Circular Law goes as follows. Take an S × S matrix, M ,
whose entries are independent and identically distributed (i.i.d.) random variables with mean
zero and variance one. Then, the empirical spectral distribution (i.e., the distribution putting
1/S probability mass on each eigenvalue) of M/

√
S converges to the uniform distribution on

the unit disk as S → ∞ [9, 10]. The statement does not specify anything about the coefficients
distribution due to “universality”.

12



2 GENERALIZED LOTKA-VOLTERRA MODEL

In a GLV system the elements on the diagonal of the community matrix, Mii = Aiix
∗
i , are

influenced by self-regulation, and those outside the diagonal, Mij = Aijx
∗
i , are responsible for

representing the effect of species j on the equilibrium of species i. Then, for this system the
algorithm consists in constructing the matrix by setting its elements with a certain probability.
In ecology the systems are usually slightly connected, thus most of the community matrix’s
elements are zero. By setting Mij = 0 with probability 1 − C, where C corresponds to the
proportion of established connections and is known as the system’s “connectance”, it is possi-
ble to create a “zero-inflated” distribution. The probability C corresponds to the rest of Mij

which are given by a distribution with mean 0 and variance σ2. The diagonal elements are set
to −d in order to model self-regulation [4]. At last, the built matrix corresponds to an n × n
non-symmetric matrix with independent and identically distributed entries.

While the mean of the non-diagonal elements of Mij sampled from the “zero inflated” distri-
bution is zero, their variance turns out to be Cσ2. As a consequence, the non-diagonal entries of
M/

√
Cσ2 have σ2 = 1. Thus, eigenvalues of M for large n fill uniformly a circle of radius σ

√
nC.

Since the presence of the same value −d in all the diagonal positions shifts all the eigenvalues by
this amount, the circle is centered at the value −d on the real axis. Therefore, May’s criterion
establishes that in order to ensure stability the diagonal has to be reasonably negative [8, 4]:

σ
√
nC < d.

As a demonstration of the previous statements, the plotting of the eigenvalues of two matri-
ces built with different distributions and the parameterization: n = 1000, C = 0.5, σ2 = 1 and
d = 10, is shown below. The eigenvalues are obtained using the aforementioned np.linalg.eig()
function. The results from Figure 8 are the numerical demonstration of the property of univer-
sality.

The Figure 8 also shows in purple the plotting of −d+ σ
√
nC which, as expected, approxi-

mately coincides with the location of the rightmost eigenvalue. It is worth noting that for large
n when the circle crosses the coordinate origin, indicated in the Figure 8 by a yellow line, part
of the eigenvalues turn to be non-negative which determines the equilibrium’s non-stability.
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Figure 8: (a) Plotting of the eigenvalues of May’s random community matrix for entries sampled
from a normal distribution. (b) Plotting of the eigenvalues of May’s random community matrix
for entries sampled from a uniform distribution. The location of −d+ σ

√
nC is shown in both

figures by a purple line. The coordinate origin is shown as a yellow line.
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2 GENERALIZED LOTKA-VOLTERRA MODEL

2.4.2 Elliptic Law

The ecological networks are a representation of the biotic interactions in an ecological commu-
nity, they are used to describe and compare the structures of real ecosystems. When modelling
them, the species are considered as nodes whose links are pairwise interactions, in these cases the
coefficients Mij depend on Mji. In the Circular Law it was assumed that both are independent,
a generalization of this law to the case where both coefficients are sampled from a bivariate
distribution is the Elliptic Law, which is stated as follows. Take M , an n × n matrix whose
coefficients from outside the diagonal are independently sampled in pairs from a bivariate distri-
bution with zero marginal means, unit marginal variances, and correlation ρ, and the diagonal
elements are zero. Subsequently, as n −→ ∞ the eigenvalue distribution of M/

√
n converges

to the uniform distribution on an ellipse centered at the origin of the coordinates system with
horizontal and vertical semi-axis 1 ± ρ [11, 8]. In this case, for a community matrix with −d
in the diagonal, connectance C and correlation ρ between Mij and Mji, the stability criterion
becomes: √

nCσ2(1 + ρ) < d.

It should be noted that when ρ = 0 the Circular Law is recovered. The plotting of two
matrices built by sampling the coefficients in pairs from a bivariate normal distribution are
shown below. The parameterization used is n = 1000, C = 0.5, σ2 = 1, d = 10 and ρ = ±0.4.
The plotting of −d+

√
nCσ2(1 + ρ) is presented at the following figures as a green line and, as

expected, it is approximately the value of the rightmost eigenvalue.
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Figure 9: Plotting of the eigenvalues of matrix M , which coefficients are set from a bivariate
distribution and positive correlation, ρ = 0.4. The location of −d + σ

√
nC(1 + ρ) is shown in

both figures by a green line. The coordinate origin is shown as a yellow line.

The system with positive correlations is described as a horizontally stretched ellipse, com-
paring it with the case of a vertically stretched ellipse also centered at d = −10, shown below in
Figure 10, it is trivial to note that the amount of eigenvalues falling on the positive part of the
real number axis is larger, and therefore, it is more difficult to stabilize. In both figures it has
been plotted in yellow the line that crosses the coordinates origin to get a more visual picture
of how many positive eigenvalues there are, and therefore also to get an idea of the degree of
instability of the system.
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Figure 10: Plotting of the real part of the eigenvalues of matrixM , which coefficients are set from
a bivariate distribution and negative correlation, ρ = −0.4. The location of −d+ σ

√
nC(1 + ρ)

is shown in both figures by a green line. The coordinate origin is shown as a yellow line.

As can be seen in Figure 10, the system with negative correlation corresponds to a vertical-
stretched ellipse, which makes it easier to stabilize. As it happened in the symmetric case, the
elliptic law is universal, i.e., any bi-variate distribution with identical marginal variances and
correlation will imply that the eigenvalues are distributed in the same ellipse.

Therefore, the results obtained show that for values of ρ > 0 the systems are more unstable
than those represented by values of ρ < 0. Thus, it can be interpreted that the case in which ρ is
positive corresponds to a competitive relationship between species, since this type of dynamics
usually leads to the extinction of one of the rival species, and the case in which ρ is negative
can be interpreted as a Predator-Prey relationship which corresponds to a system that usually
represents stable cycles.

The study on stability has shown that what is expected when considering a large ecological
community (n → ∞ with d fixed) is that it is unstable, which, considering the examples of
dynamics exposed during the previous section, normally leads to the extinction of some or all
of the coexisting species.
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3 GENERALIZED LOTKA-VOLTERRA MODEL: STOCHASTIC APPROACH

3 Generalized Lotka-Volterra Model: Stochastic Approach

There are two fundamental approaches to the mathematical modelling of the Lotka-Volterra set
of differential equations: the deterministic models which have been described in the previous
sections; and stochastic simulations. A stochastic process can be defined as a mathematical
concept, belonging to probability theory, which is used for the representation of time-varying
random quantities or to characterize a succession of random variables that evolve as a func-
tion of another variable (usually time). Each of these random variables has its own probability
distribution function, and may or may not be correlated with each other. Thus, it can be estab-
lished that each variable or set of variables subject to random influences or effects constitutes
a stochastic process. In the present work, stochastic processes serve as a useful tool for dealing
with dynamic processes governed by certain randomness.

One way of interpreting stochastic processes is to consider that multiple probabilistic simula-
tions are performed, one for each time instant, and the final trajectory of the system will depend
on the product of each simulation. Consequently, to determine the position of the system in
the phase space, it is not enough to know the condition of the system at the initial instant,
but, to fully determine the final state, it is necessary to know the result of all the probabilistic
simulations performed between the initial and the final moment. This is due to the probabilistic
nature acquired by the trajectories [12].

In the Lotka-Volterra model there are occasions when deterministic models are not as real-
istic as one might expect. In these occasions it can be considered that the demography of the
species that inhabit the ecosystem under study is described by stochastic processes, therefore,
it is interesting to study the model from the approach of stochastic numerical methods. The
dynamics of the system can be considered as a Markov process, that is, a stochastic process for
which the probability of each event depends only on the state of the previous event.

Finally, once the identification of the type of stochastic process governing the system has
been made, the election of the resolution method can be performed. Then, in this section the
Lotka-Volterra model for a single species will be considered as a kind of Birth-and-Death process,
which is a Markov process (i.e., a stochastic event will correspond to each time instant). The
case to be studied is that in which there are only three possibilities for each individual at each
particular time instant: that the individual reproduces, which implies that the total number
of individuals of the species is increased by one unit, or, on the contrary, the individual dies,
which means that the total number of individuals of the species is decreased by one. Finally the
individual can continue unchanged after that time instant.

The purpose of this section is to present a stochastic resolution of the model in order to
take into account the random nature of the demography. To this end, a specific resolution
method, the Gillespie algorithm, will be presented and particularized for the analysis of the
aforementioned Birth-and-Death process.

3.1 Birth and Death Process

For this part of the study the interest is in describing a stochastic model that works as the mi-
croscopic analogue of the logistic equation, which, as has been aforementioned, is the simplest
form of the Lotka-Volterra model.

It is worth mentioning that, when introducing the logistic equation, (2), x was used as a
variable whose meaning depended on the units used. In the current case, to link with the
stochastic model, it will be set as the number of individuals in the population. Therefore, it is
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renamed as N leaving equation (2) as follows:

dN(t)

dt
= N(t)(r + aN(t)). (15)

Then, the stochastic model considered to simulate the single species case is the Birth-and-
Death Process. This scheme is an example of the use of a master equation in the context of
population dynamics. The master equations are differential equations that are used to describe
the probabilities’ evolution for Markov processes for systems that jump between states in con-
tinuous time. Their use is emphasized whenever the number of possible states is discrete; in the
current case the possible states are N = 1, 2, 3, ... [12].

The aforementioned Birth-and-Death Process describes how each individual can reproduce,
giving rise to another one with a rate of b0, or, on the contrary, die with a rate of (d0 + aN).
Then, in this process the number of individuals in a species can change in the next two different
ways at each time interval, [t, t+ dt):{

N −→ N + 1 with a global rate of Nb0,

N −→ N − 1 with a global rate of N(d0 + gN),

where N represents the number of individuals in the current state and b0 is the birth rate. Fi-
nally, it is worth mentioning that the death rate is chosen so as to have linear growth, (d0+gN).
It is established this way because the death must gain importance as the number of individuals
increases, in order to obtain a logistic behavior.

Regarding the process’ master equation, it is useful to compute the stochastic mean and
quantify the stochastic fluctuations. To write it, it is necessary to determine the total probability:
P (N ; t + dt). There are three contributions to P (N ; t + dt), according to the event that took
place in the time-step, [t, t + dt). The first corresponds to the case in which during the time
interval there are N individuals and they neither reproduce nor die; this probability is given
by the product of the probability to not disappear, (1−N(d0 + gN)dt), and the probability to
not reproduce, (1 − Nb0dt). The second is the case in which there are (N + 1) individuals at
time t and the event is death, here the probability is (N + 1)(d0 + g(N + 1))dt. Finally, the
last possible event occurs when there are (N − 1) individuals and the event that takes place is
the reproduction, the probability for this situation is given by (N − 1)b0dt. The combination of
these probabilities when dt → 0 results in the next expression for the Birth-and-Death Process’
master equation :

∂p(N ; t)

∂t
= −N(b0+d0+gN)p(N ; t)+(N+1)(d0+g(N+1))p(N+1; t)+(N−1)b0p(N−1; t). (16)

The analytical treatment of master equations presents several difficulties, this leads to the
need to resort the numerical simulations of the underlying stochastic process [12]. In this project
the system will be described by the Gillespie Algorithm.

3.2 Gillespie Algorithm

The Gillespie Algorithm consists in a extraordinarily simple and effective implementation of the
numerical algorithm to simulate a stochastic process and its associated master equation [12].
The stochastic process consists in a series of jumps in which the system composed by N particles
changes to N − 1 or N + 1 particles. To keep this section more general, let’s consider the case
in which we can have jumps between a state of N particles to a state of M particles, being the
corresponding jump rate (probability of change per unit of time) called ωN→M .
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To simulate the system there are some general steps that need to be performed. It is assumed
that, at the initial time, t0, the system is in the state with N0 particles. The first step is to
compute the rate of escape from the initial state to any other state M ̸= N0. This is given by
WN0 =

∑
M ̸=N0

ωN0→M . Then, the time interval between the current jump and the next one,

tN0→N1 , is a random exponentially distributed variable with mean W−1
N0

. This can be generated
as follows:

tN0→N1 =
− lnu0
WN0

, (17)

where u0 represents a random number uniformly distributed in the interval (0,1).
The time of the next jump is given by: t1 = t0 + tN0→N1 , and therefore, it remains to

determine the state to which it will jump to. Recalling that ωN→Mdt represents the probability
of jumping from state N to state M in the time interval (t, t + dt), WNdt is the probability
attributed to jumping to any state during that same time interval [12]. Thus, the probability of
reaching state M ̸= N0 knowing that there has been a jump, pN0→M , is given by:

pN0→M =
ωN0→M

WN0

. (18)

In the present case, in which the jumps can only increase or decrease by one the number
of particles, there are only two possibilities for M in (18): N0 + 1 and N0 − 1 and, using the
expression for the birth and death rates, (18) becomes:

pN0→N0+1 =
N0b0

N0b0 +N0(d0 + gN0)
, pN0→N0−1 = 1− pN0→N0+1. (19)

To implement the sampling with this probability, another uniformly distributed random
number within the interval (0, 1), v0, is generated and used to establish the condition that an
event has occurred. So that for each time interval the number of individuals will vary according
to:

N(t1 + dt) =

{
N(t1) + 1 if v0 < pN0→M ,

N(t1)− 1 if v0 ≥ pN0→M .

The algorithm is then implemented, and iterations are carried out until it reaches the max-
imum time established.

3.3 Method Application

Finally, the Gillespie algorithm will be particularized for the given parameters. But first, it is
necessary to select the parameters of the equation so that the average variation of the number
of individuals, which is given by:

d⟨N⟩
dt

= ⟨b0N −Nd0 − gN2⟩ = (b0 − d0)⟨N⟩ − g⟨N2⟩, (20)

behaves like the logistic equation, (15). On the one hand, although they are not exactly equal,
for cases where the fluctuations are small one can make the approximation:

⟨N2⟩ ≈ ⟨N⟩2,

so that equation (20) is left as:

d⟨N⟩
dt

= ⟨N⟩(b0 − d0 − g⟨N⟩), (21)
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which turns to be like equation (15) identifying N with the average ⟨N⟩, and the parameters
r = b0 − d0 and g = −a.

Therefore, it has been shown that there are stochastic models that give rise to the logistic
equation itself. These are all models where the value of the (b0 − d0) term would give an ap-
proximation to the same value of r.

Now it is a matter of choosing some combination to perform the simulations. On aver-
age, almost all of them behave in the same way (as long as the fluctuations are small), but as
far as fluctuations (e.g. variance) are concerned they are generally larger the larger b0 and d0 are.

A possible and simple choice is to define d0 = 0, so the birth and death global rates turn to
be: {

N −→ N + 1 with a global rate of rN ,

N −→ N − 1 with a global rate of −aN2.

Note that it is required that r > 0 and a < 0 to keep positivity of the rates.

Then, all that remains is to apply Gillespie’s algorithm using the parameters that have just been
established.

Once the algorithm has been implemented, following the above described steps, all that re-
mains is to decide the simulation parameters. Then, a maximum time of tmax = 100 is set, as
it is considered sufficient time for the dynamics of the system to have developed. Additionally,
the number of simulations has been established to be 1000 because it is a quantity that allows a
satisfactory degree of accuracy to be maintained without the computational load being too high.

To extract as much information as possible from the implemented program, the intention
has been to make simulations for different values of the algorithm’s parameters. Then, in or-
der to illustrate the algorithm’s performance in describing the trajectories, some of them have
been plotted. It has been established that 10 simulations should be plotted instead of all 1000,
because if all of the simulations were to be shown, the results would be visually less clear. In
addition, it has been decided to represent as well the analytical solution of the logistic equation
to indicate the location of the fixed point of the equation, and thus facilitate the analysis of the
results.

As mentioned above, the expected result is that the larger the r the smaller the relative
fluctuations, so that the approximation ⟨N2⟩ ≈ ⟨N⟩2 becomes better and then the stochastic
simulation becomes more similar to the deterministic dynamics. In Figure 11 four simulations
for a fixed value of a = −0.01, and the values r = 0.20, 0.45, 0.70, 0.95, and an initial condition
of N0 = 1 are presented. As predicted, the results show that as the value of r increases the
intensity of the relative fluctuations decreases considerably.
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Figure 11: Four simulations showing 10 trajectories out of 1000 performed for the representation
of the stochastic process corresponding to each of the four values of r represented. The analytical
solution is shown in all the plots, although the legend is included only in the fourth one. The
initial condition is N0 = 1.
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4 Comparison between Stochastic and Deterministic Resolution

When attempting to describe real systems by means of mathematical models, the objective is to
formulate equations that reflect the perception obtained through observation of reality, and that
are therefore capable of describing the dynamics of the system under study. There are several
ways of analyzing these systems. On the one hand, there is the deterministic resolution, which
has been developed in Section 2. It is based on a mathematical model that provides the state of
a system at a certain time provided that the state it was in at the previous time is known. On
the other hand, there is the stochastic resolution, which is presented in Section 3. Stochastic
models are those models in which the prediction of the evolution of the system can only be made
in terms of probabilities.

Then, in the previous sections the Generalized Lotka-Volterra model has been approached
from the deterministic and stochastic standpoints. Therefore, in this last part of the project,
taking into account that most of the events that govern ecosystems are stochastic in nature, it
is interesting to compare the data obtained with the deterministic solution with the stochastic
results obtained with Gillespie’s algorithm.

So far it has been proven that, for the Lotka-Volterra model to represent the desired dy-
namics, the parameters that make up the model must be exactly known. Consequently, if the
aim is to study the dynamics of realistic systems, in which demography is governed mainly by
stochastic processes (i.e., it is represented by random magnitudes that vary with time), it is of
interest to approach the problem from a stochastic standpoint.

In order to compare the deterministic results with the stochastic ones, the average of the 1000
trajectories performed with Gillespie’s algorithm for each of the values of r has been plotted. In
Gillespie’s algorithm each time step is random, this complicates the calculation of the average
of the trajectories, since it is difficult to take the same interval for each one. For this reason,
considering that M is the number of trajectories performed, when they are all computed the
time is discretized in K bins with width h = tmax/K. With this procedure, all the trajectories
are discretized in time in the same way. Then, the value of the trajectory corresponding to each
bin is computed by performing weighted averages of the different values that N(t) takes in each
bin. This is given by:

x(k) =
1

h

imax−1∑
i=imin

n(ti)(ti+1 − ti) + n(timax)(tk + h− timax) + n(timin−1)(timin − tk)

 , k = 1, ...,K,

(22)
where the index i denotes the different values of t included in each bin, and tk = kh . The sum
is done only when imax ≥ imin. Then, the average is computed as:

⟨n(tk)⟩ =
1

M

M∑
j=1

xj(k), k = 1, ...,K. (23)

From these equations, the average of each bin is obtained, which allows to plot the average
of the trajectories calculated with the algorithm as a function of time. The parameters have
been set to be K = 500 and tmax = 100, which implies that h = 0.2. This is a valid value since
it does not involve too many points in the plots, but at the same time it does not lose accuracy
since it is satisfied that ⟨ti+1 − ti⟩ ≪ h.

Four comparisons between the deterministic results and the stochastic approach for four
different values of r are presented below. As a representation of the deterministic solution, the
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analytical solution of the logistic equation already calculated in Section 2 is shown in each figure,
and as concerns the stochastic solution, the average of the stochastic simulations is presented,
calculated as described above. Then, in Figure 12 the same values of r as in the previous section
have been plotted in order to complete the information from the simulations in Figure 11. In
conclusion, as anticipated in the previous section, the simulations show that as the value of the
parameter r increases, the results obtained using Gillespie’s Algorithm become more similar to
the deterministic model. The initial condition used in both models is N0 = 1 and the parameter
a = −0.01.
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Figure 12: Four simulations comparing the mean of 1000 trajectories performed with the Gille-
spie Algorithm and the deterministic solution. The legend is included only in the fourth figure
but is common to all of them. The initial condition used in both models is N0 = 1.

To make these conclusions more visual, the same comparisons will be presented below, but for
extreme values of the parameter r. Figure 13 shows the difference in accuracy of the algorithm
according to the value used for r. In the case where r is very close to 0, the mean of the
trajectories deviates a lot from the analytical solution of the logistic equation. It can be clearly
observed how, from the first instants of the simulation, the number of individuals of the species
does not manage to increase, stagnating at the same value, which does not correspond to the
fixed point. In contrast, it is observed that the results corresponding to a high value of r are
almost perfectly adapted to the analytical solution.
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Figure 13: Two simulations comparing the mean of 1000 trajectories performed with the Gille-
spie Algorithm and the deterministic solution. The legend is included only in the second figure
but is common to both of them. The initial condition used in both models is N0 = 1.

A useful method to analyze the behavior of the algorithm is to create a comparative graph
between the deterministic value of the logistic equation and that obtained by averaging the
times of the average trajectory already in the asymptotic state, i.e., the values belonging to
the time range [60, 90], for different values of the growth rate, r. Therefore, in order to make
a graph that clearly represents the obtained results, several simulations have been carried out
for different values of r, all of them within a range of values between 0 and 1. The behavior of
the stochastic simulations is thus visible, since it has been found that for high values of r the
stochastic results are practically the same as the deterministic ones, and what is of interest to
see now is the behavior of the algorithm for small values of r. The comparison has been plotted
in Figure 14.
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Figure 14: The figure compares, for different values of r, the long-time average population given
by the Gillespie Algorithm with the deterministic long-time population given by the logistic
equation, x∗ = −r/a (a = −0.01).

As expected, the results show that Gillespie’s algorithm responds in the same manner as
the deterministic model above a certain value of r below which the results differ increasingly.
Moreover, the differences between the two methods are visible from the start. This is due,
among other reasons, to the fact that some of the stochastic simulations will eventually become
extinct. Then, what happens for small values of r is that as this value decreases, the fewer
the individuals in the species, and therefore, the easier it is for stochastic trajectories to end in
extinction.
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5 Conclusions

In general terms, this work has focused on the analysis of the dynamics described by the Gen-
eralized Lotka-Volterra in model ecosystems. This model, although quite simple, is capable
of describing population dynamics, taking into consideration the factors of trophic interaction
between species; thus making the results more realistic. The analysis has been carried out from
two different perspectives: from the deterministic point of view, i.e., the description of the state
of the system at a certain time based on prior knowledge of its state at a previous time, and
considering demographic fluctuations by means of a stochastic method.

The deterministic model has been developed starting from the logistic equation. The solu-
tion of this equation has been analyzed, and one of the most important concepts in this work,
the fixed point of the system, has been presented for the first time. It has been proved that
the solution of this equation presents an exponential growth (or decrease) until the dynamics
is fully developed, which is when the function reaches its fixed point. These results alone are
not significantly representative, but they serve to establish the basis for the subsequent analysis,
and highlight the importance of the study of the systems’ stability. Thus, once the theory of
stability has been presented, the need arises to test the validity of its statements. Existing
parameterizations have been used to perform the stability analysis of the systems described by
these parameters. In the description of biological models, the concept of feasibility has been pre-
sented, which establishes whether, given certain parameters, the fixed point in which all species
coexist will be biologically feasible or not.

Once the concept of Local Stability has been exploited, the Global Stability analysis pro-
ceeds. Where it has been verified, by means of an existing parameterization, that the results
of the Global Stability analysis of a system have no unbounded trajectories, and that they are
independent from the initial conditions imposed. So far, specific parameterizations have been
used for the description of known systems. But this is not viable in systems composed of many
species, therefore, the stability criteria established by the random matrix theory are presented.
On the one hand, there is the Circular law, which is defined in section 2.4.1. Two matrices have
been constructed using two different distributions for the assignment of values of the matrix
entries. And it has been proved that the eigenvalues of this matrices form a disk whose center is
given by the value of the diagonal of the matrix and, in addition, universality has been proved.
The same occurs in the case of the elliptic law, where it has also been proven that the stability
of the system depends strongly on the correlation parameter, so that when this is negative, the
probability that the system is stable increases considerably. Then, the conclusion drawn in this
section is that a large ecological community will almost invariably be unstable, which possibly
leads to extinctions.

Regarding the resolution by stochastic methods, an analogy has been made between the
logistic equation and the Birth-and-Death process. The resolution of this process has been car-
ried out by implementing Gillespie’s Algorithm. Thus, by performing 1000 trajectories of the
process, for a fixed value of the parameter a and various values of r, it has been verified that,
indeed, the analogy was well defined, i.e., the mean of the trajectories behaves like the logistic
equation.

Finally, once the processes have been presented and analyzed, the results are compared. The
deterministic solution and the average of the trajectories performed by Gillespie’s Algorithm,
once the system dynamics had been developed and the system had stabilized at its fixed point,
have been plotted. These plots show that the fixed point of the stochastic mean is lower than
that of the deterministic solution. This is mainly due to the fact that in the stochastic model
there are more extinctions because of fluctuations in species abundances. In addition, it has
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been confirmed that the higher the value of r the more the results of both methods assimilate.
Finally, as a corroboration of these ideas, a plot of the value of the fixed point, x∗, as a function
of r has been drawn comparing the deterministic values with the stochastic ones. In this it has
been found that the stochastic solutions die out more frequently as r decreases.

As future work, it would be good to extend the study to new situations. For example,
instead of considering an ecosystem in which species are in the ecosystem from the beginning,
analyze ecosystems in which, as time goes by, species are added. Furthermore, with respect to
the stochastic approach, it would be interesting to extend the range of species studied to more
than one, thus being able to simulate the interaction between species.

25



REFERENCES

References
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