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Abstract 

English: In today’s globalised world, understanding the dynamics of financial markets 
is key to preventing future crashes that could bring the system down to its knees. 
Traditionally, stock returns were modelled using gaussian distributions. However, real 
returns have large tails, and these models heavily underestimate them. We present a 
literature analysis and test several generalized distribution fittings to the logarithmic 
returns and its tails for three market indices. Another complication in financial modelling 
is dealing with volatility, which we try to connect to entropy as a measure of chaos or 
uncertainty. Its constraints from thermodynamical uncertainty relations (TUR) bounds 
both in literature and empirical data are studied and further applications are discussed. 

Català: En el món globalitzat d’avui dia, la comprensió de la dinàmica dels mercats 
financers es clau per a prevenir futures crisis que podrien ferir greument el sistema. 
Tradicionalment, els rendiments de les accions es modelitzaven mitjançant distribucions 
gaussianes, però els rendiments reals tenen cues anormalment amples i aquests models els 
subestimen en gran mesura. Presentem una anàlisi de la literatura i testegem diversos 
ajustaments de distribució generalitzats per als rendiments logarítmics i les cues per a 
tres índexs de mercat. Una altra complicació en la modelització financera és el tractament 
de la volatilitat que intentem connectar amb l'entropia com a mesura de caos o incertesa. 
S'estudien les seves limitacions a partir dels límits de les relacions d’incertesa 
termodinàmiques (TUR) tant a la literatura com a les dades empíriques i es discuteixen 
altres aplicacions. 

Castellano: En el mundo globalizado de hoy, la comprensión de la dinámica de los 
mercados financieros es clave para prevenir futuros choques que podrían dañar 
gravemente el sistema. Tradicionalmente, los rendimientos de las acciones se modelizaban 
mediante distribuciones gaussianas. Sin embargo, los rendimientos reales tienen colas 
anchas y estos modelos las subestiman notablemente. Presentamos un análisis de la 
literatura y testeamos varios ajustes de distribución generalizados para los rendimientos 
logarítmicos y sus colas para tres índices de mercado. Otra complicación en la 
modelización financiera es el tratamiento de la volatilidad, que intentamos conectar con 
la entropía como medida de caos o incertidumbre. Se estudian sus limitaciones a partir 
de los límites de las relaciones de incertidumbres termodinámicas (TUR) tanto en la 
literatura como en los datos empíricos y se discuten otras aplicaciones. 
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1 Introduction 
1.1 Complex systems  
A fundamental problem in modern science is the study of so-called “complex” systems, in 
which many participants have a large degree of interaction which makes them difficult to 
model accurately because of the sheer computational cost. The applicability domain for these 
theories is incredibly broad, and ranges from the fields of Biology ([1],[2]), Chemistry([3], [4]) 
or Physics ([5],[6]) to sociology [7] or even finance, as we shall later see. These systems 
possess a number of  interesting properties, since they are highly non-linear, correlated, and 
rife with emergent phenomena. However, the study of the system through each of its 
individual components and their interactions is not possible, and we must resort to a 
probabilistic approach, elucidating emergent macroscopic trends similarly to how we study 
thermodynamics from a Statistical Physics approach, employing the system’s collective 
(average) variables as though it were a single entity evolving under a specific probability 
measure.  
We can model the evolution of complex systems by what are known as Stochastic Processes, 
a random variable (or a collection thereof) of which the time evolution occurs over a 
probability space Ω through a certain system sample path 𝑋֏(𝜔) for each 𝑡 value. One such 
process is the Geometric Brownian Motion (GBM), which follows the equation:  

𝑑𝑌 (𝑡)

𝑌 (𝑡)
= 𝜎𝑑𝑊֏ + 𝜇𝑑𝑡 ;  (𝜎, 𝜇) 𝑐𝑜𝑛𝑠𝑡. ;  𝑆 ∈ ℒϵ 

Where 𝑑𝑊֏ is the differential for the Weiner process, the limit of random walks, such 
that the logarithm of the process will be a Brownian motion with drift, normally 
distributed with mean 𝑥Ј + 𝜇𝑡 and variance 𝜎ϵ𝑡,  𝑋(𝑡) ~ 𝒩(𝑥Ј + 𝜇𝑡, 𝜎ϵ𝑡), where 
𝑋(0) = 𝑥Ј: 

           𝑑𝑋(𝑡) = 𝜎𝑑𝑊֏(𝑡) + 𝜇𝑑𝑡  
Here the 𝜎, 𝜇 parameters give us the drift and volatility of the process. 
 
1.2 Financial Markets 
One of the modern backbones of the global economy are financial markets. Even though 
primitive forms of financial markets have existed since the Roman Republic (and then 
Empire), the powerhouse of ancient which took the torch from the Greeks and saw a 
precipitous evolution in the fields of banking and finance [8] which was picked up in Europe 
later, during the renaissance. However, these were far removed from the modern financial 
structures and exchanges we know today, of which the firstmost was established in 
Amsterdam c.1602 by the Dutch East India company [9]. 
 
In general, we refer to a financial market as any market where securities are traded, such as 
the various stock markets (New York Stock Exchange (NYSE), Nasdaq, London Stock 
Exchange (LSE), Euronext) to trade equity, bond markets for debt, Foreign Exchange(FX) 
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to trade foreign currencies, and many others. Securities or financial assets are defined as 
non-physical assets such as bonds, deposits or shares who are written on an underlying real 
asset (currency, property, etc). The main function of financial markets is that of providing 
a channel for the transfer of resources from agents with a surplus wishing to get returns on 
their assets towards agents in search of funds who are willing to pay a premium, doing this 
through the price discovery mechanism: bids are placed by potential buyers and matched 
with asking prices by sellers, and the price reflected in markets is that which in which the 
transactions go through, in other words, it is where supply and demand form an equilibrium. 
Today, this process happens in exchanges in a matter of nanoseconds [10]. While some 
markets are highly liquid (most securities markets fall into this category, such as the stock 
market or FX) others are more complicated to model due to large gaps and slow trading.  
 
This price discovery mechanism is the result of the complex interactions between the millions 
of buyers and sellers which through the ensemble of their individual actions determine the 
evolution of the system, and so it could be useful to try treating it using the mathematical 
framework of statistical mechanics and complex systems and checking if different properties 
are sustained in a financial-market context.  
 
Already in 1900, Louis Bachelier realized this in his PhD. Thesis [11] which even though 
badly received at the time, is now regarded as the first modern work on financial 
mathematics and explores the study of markets based on probability theory, postulating 
unpredictable (random) fluctuations around the equilibrium prices that are essentially what 
we know now as Brownian motion processes. In further works [12,13] he expanded these 
results and defined concepts such as Markov processes and path equations like Langevin’s 
[14], therefore laying the foundation and inspiration for the works of Robert C. Merton, 
Fisher Black and Myron Scholes in option pricing, resulting in the Black-Scholes [15] and 
the Black-Scholes-Merton [16] models (to price European and American options, 
respectively) which form one of the eminent results of financial mathematics to date.  
 
An option is a contract between two parties which grants the holder of the contract the right 
(but not the obligation, a key detail that distinguishes options from other future-trading 
instruments, such as futures contracts) to purchase or sell an underlying asset at a specified 
price and time in the future. In this regard, there are European style options, which can only 
be exercised on expiry, and American-style options, which can be exercised at any time prior. 
An options contract must always specify: 

1. The underlying asset 
2. The time at which the option holder can exercise his rights to buy or sell the 
underlying asset, which is usually denoted as T. It is the expiration date, or expiry. 
3. The accorded price at which the underlying is sold/bought if the option is 
exercised, which is called the strike price, K. 
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The brilliance of these models lies in the simplicity and beauty of the resulting option pricing 
formulae. The revolution they brought about in the finance sector cannot be overstated: In 
1973 the Chicago Board Options Exchange (CBOE) is founded, by 1977 1.1 million such 
contracts are traded and already in 1984 100 million are being annually traded [17].  
 
I will expand on the BS model because it provides the perfect platform to understand the 
problem we aim to study. The key observation is that this model takes the underlying asset 
to follow a GBM, the equation of which  we have seen above, so that its logarithmic return, 
log (𝑌֏+φ/𝑌֏) (where 𝑌֏ is the price of the asset at time t) assumed to come exclusively from 
appreciation, is normally distributed. And from there we can convert it into a heat-diffusion 
equation[18], to solve in the general case. Fig 0 shows several simulations for normal random 
walks and stock evolution simulations as GBM for varying parameters of drift and volatility. 
However, real returns do not show this gaussian behaviour. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 0 :  Normal random walk 
simulations for N=1000 steps,  and 
stock simulations as GBM (N=500 
steps) for fixed drift (volatility) and 
varying volatility(drift) respectively 
(left, bottom left , bottom right, 
respectively) 
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In obtaining such results, as we have said (and most analytical ones in the field) two key 
approximations must be made: First, we typically assume that stock prices follow a GBM, 
or equivalently, that logarithmic stock returns are distributed according to a gaussian 
structure. Normal distributions do well to approximate the distributions of log-returns 
around the mean, but its tails heavily underestimate the likelihood of large-sigma events. In 
financial markets, behaviour tends to be non-stationary due to economic growth and the 
effects of inflation and the real behaviour is also non-equilibrium (meaning that the efficient 
market hypothesis does not hold). This means that, due to the tail risk, large crashes such 
as the ones that occurred in 2007 or 2020, which fall outside six normal distributions of the 
mean should happen only twice in a billion events if they followed these Gaussian 
distributions. We will explore the possibility of using several generalized gaussian 
distributions, the q-Gaussian family of distributions, to see if their characteristic kurtotic 
tails better approximate the real behaviour we observe in our empirical data sets. 
  
The second approximation concerns the nature of the volatility 𝜎 of the underlying asset for 
the lifetime of the option, which in finance is typically associated with the variance or 
standard deviation of our data. The problem here is that financial time series are 
heterocedastic, namely, its volatility changes in time with periods of low volatility (in which 
markets are more or less stable) interrupted by periods of high volatility usually associated 
to crisis. When forecasting prices, we always need the future volatility, be it for the BS model 
or any other, but this is not an observable quantity: given the market now, we cannot know 
the exact value for 𝜎 at some future time t, only any given past value of it. This has no 
“easy” solution. It is important to know what the volatility of the asset is because it measures 
the uncertainty contained in the system: a high volatility is synonymous to a state of low 
informative diffusion, and vice versa, since the more information is contained, spread through 
agents, and thus reflected in the market, the more certain it becomes. To this effect, many 
workable solutions have been proposed, such as stochastic volatility in ARCH and GARCH 
models [19]. However, from empirical data we may gauge the volatility for any given time 
series, and thus we will try see if another measure of uncertainty can be used: Entropy. We 
want to observe the behaviour of entropy and its evolution in financial markets and compare 
it with the volatility since this could provide us with a useful alternative in situations where 
the complexity of a system could be estimated but not its fluctuation amplitudes. 
 
1.3 Entropy 
The concept of entropy originates in the field of Thermodynamics and is first defined by 
Clausius [20] to be interpreted as a measure of randomness or chaos of a system, or its 
degrees of freedom. It is central to the definition of the Second Law, which is one of the most 
important results to date in physics and has the most equivalent formulations. Its results 
have been extended to a variety of fields, such as information theory, probability theory, 
and finance. Several entropies are used in financial mathematics, such as the Shannon 
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entropy or the Tsallis entropy we will present three such entropies to compare the results 
obtained by measuring each. 
 
1.3.1 Shannon Entropy 
First proposed by C. Shannon in 1948 [21], the Shannon entropy (sometimes also called 
Boltzmann-Gibbs (BG) or Boltzmann-Gibbs-Shannon (BGS) entropy) measures the 
information or uncertainty inherent in a random variable’s possible paths, and for some 
probability measure 𝑝  such that 𝑋 = {𝑝ք} is defined as [22,23] for discrete-time: 

𝐻(𝑋) = 𝑆։(𝑋) ≡ − ం𝑝ք log 𝑝ք

։

ք=φ

(1) 

Where X is the random variable, and 0 ln 0 = 0. Of course, the probabilities are taken to be 
normalised, so that ∑ 𝑝ք

։

ք=φ
= 1. The entropy for a continuous-time variable is simply: 

𝐻(𝑋) = 𝑆։(𝑋) ≡ − ௷ 𝑝(𝑥) log 𝑝(𝑥) 𝑑𝑥
+�

−�

, ௷ 𝑝(𝑥)𝑑𝑥
+�

−�

= 1 (2) 

These equations are valid for any non-negative, normalised probability distribution 𝑝. 
1.3.2 Tsallis Entropy 
A generalisation of Boltzmann-Gibbs (BG) statistics, called nonextensive statistics or q-
statistics was proposed by C. Tsallis in 1988 [24] and expanded upon in subsequent papers 
for the next several decades [25-31].The starting point of this model is the q-entropy,  which 
is really the same as the entropy proposed in information theory by Havrda & Charvát in 
1967 [32]: 

𝐻֌(𝑋) = 𝑆֌ ≡ 𝑘
1 − ∑ 𝑝ք

֌ո

ք=φ
 

𝑞 − 1
  (𝑞 ∈ ℝ ∧ 𝑘 ≥ 0) (3) 

And for a continuous random variable, we have: 

𝑆֌[𝑝] =
1

𝑞 − 1
ভ1 − ௷ 𝑝֌(𝑥)𝑑𝑥

�

−�

ম (4) 

The B-G entropy is a subcase of this entropy which is recovered in the 𝑞 → 1 limit. We note 
that the real parameter 𝑞 constitutes the degree of non-extensivity of the system, and in 
general this is not an extensive entropy, contrary to what we would expect. This is because 
in the standard formulation for statistical mechanics, interactions are assumed to be short-
ranged and fast decaying with distance, so that extensivity arises as a property, but in 
reality, does not exist due to the long-range forces (such as gravity) that are present. When 
the system becomes non-ergodic, the central limit theorem that ensures the distribution is 
an exponential or gaussian (and therefore, ensuring the system is in equilibrium) does not 
hold, and the systems are rather in some quasi-stationarity represented by a q-exponential 
or q-gaussian distribution [33-36]. We will test this hypothesis later by fitting q-Gaussian 
distributions to the logarithmic returns using several q parameters to explore which could 
better approximate the real data. 
 
1.3.3 Rényi Entropy 
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First proposed by Alfréd Rényi [37], the entropy that bears his name is also a generalisation 
of the Shannon entropy, and as such recovers the usual entropy at the 𝛼 → 1 limit. As 
before, we can write this entropy for a discrete and a continuous random variable, such that 
we have: 

𝐻ᆿ(𝑋) =
1

1 − 𝛼
log ভం𝑝ք

ᆿ
։

ք=φ

ম , ∀𝛼 ≥ 0 ∩ 𝛼 ≠ 1 (5) 

𝐻ᆿ(𝑋) =
1

1 − 𝛼
log ௷ 𝑝ᆿ(𝑥)𝑑𝑥

�

Ј

 , ∀𝛼 ≥ 0 ∩ 𝛼 ≠ 1 (6) 

 
Where we label it 𝐻ᆿ to distinguish it from the other generalised entropy, 𝐻֌. This entropy 
was derived by Rényi using Fadeev’s postulates [38] for the Shannon entropy and Erdös’s 
result [39] for additive number-theoretical functions such that 𝐻ᆿ would be the most 
generalized entropy function that still preserves the additivity of entropy for independent 
events. This has been used in applications for the Principle of Maximum Entropy such as 
calibrating the prices for options [40]. We will also measure this entropy to compare its 
results against those that are obtained when employing the previous entropies (Shannon, 
Tsallis). 
 
 
1.3.4 Kullback – Leiber divergence, relative entropy 
The relative entropy or K-L divergence, introduced in the 50s by Kullback and Leiber[41,42], 
is a sort of statistical distance measure that allows us to gauge the difference between two 
probability distributions P,Q. Essentially, it tells us the information divergence between the 
two observed distributions, by measuring the average bits needed to encode events in p 
under model q, and so if both distributions have almost the same information content, the 
relative entropy is almost zero: The closer the informative content is, the lower the K-L 
divergence, such that: 

𝐷լխ(𝑃 ∥ 𝑄) = ం𝑃(𝑥) log গ
𝑃(𝑥)

𝑄(𝑥)
ঘ

֓

(7) 

For some two discrete probability distributions over a joint probability space. It therefore 
tells us how far two distributions are from each other, and we can use it to gauge the 
adequacy of fitted distributions to our data.  
 
1.4 Thermodynamic Uncertainty Relations 
One of the most recently developing areas of research is that of stochastic thermodynamics. 
In the words of Udo Seifert (2012) “Stochastic thermodynamics […] systematically provides 
a framework for extending the notions of classical thermodynamics like work, heat, and 
entropy production to the level of individual trajectories of well-defined non-equilibrium 
ensembles” [43] from this field of research, which now supports a broad and growing 
literature, especially in its biological and biomolecular applications arise the Thermodynamic 
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Uncertainty Relationships (TUR). First presented by Barato and Seifert in 2015, they 
showed that for any steady-state Markov process the dispersion of the output generated by 
a biomolecular system is constrained by its entropic cost [44].Similar results are obtained in 
[45]. Several papers followed, expanding the scope of these relations, such as [46] to bound 
the efficiency of molecular motors, or presenting bounds outside the gaussian regime (so-
called “universal”, with large regions of validity) [47]. The bounds presented in the latter 
paper are of the parabolic and exponential kind and are further tightened subsequently for 
several kind of processes ranging from non-Markovian processes to stationary or periodic 
Markov processes [48-52]. Applications for this kind of formalism has been wide [53-61] and 
new connections and applicability domains are established on a constant basis. One of the 
aims of this work is to establish whether the assumption of such a bound holds when looking 
at empirical market data, from which some crude form of entropy evolution and production 
will be estimated. 
In general, TUR relate the average and variance of some thermodynamic quantity to the 
entropy production as: 

⟨𝑓(ΔS)⟩ ≥
⟨𝜙⟩ϵ

Var[𝜙]
(8) 

For some stochastic process 𝑥 ∈ {𝑥ք}, 𝑖 = 1,… , 𝑁 with some probability distribution 𝑃(𝑥) 
such that ⟨·⟩ is the average with respect to 𝑃 , 𝑓(ΔS) is some function for the entropy 
production ΔS and 𝜙 is typically some time-asymmetric current [62-67]. One of the main 
ideas behind the TUR is that the relative precision for some measurement, given by the 
second term ⟨ᇓ⟩ɞ

Ͻ͘ϝ[ᇓ]
 is bounded by the entropy production: It is not possible for our 

measurements to be precise beyond some upper point. Generally, we take 𝑓(ΔS) to be an 
increasing positive function like 𝑓(Δ𝑆) = ⟨းϢ⟩

ϵ
, such that higher relative precision has the 

requirement of a higher entropy production as well, which is energetically costly. In this 
view, the bound can be viewed as an energetic bound as well.  
For a discrete-time Markov chain subject to time-symmetric external driving, we have that 
the TUR  is the so-called “General” TUR [68-70] 

⟨ΔS⟩

2
≥

⟨𝜙⟩ϵ

Var[𝜙]
→

𝑒⟨းϢ⟩ − 1

2
≥

⟨𝜙⟩ϵ

Var[𝜙]
(9) 

The interest of this particular case is that it is a bound valid for  any dynamic, even non-
Markovian, for any time-antisymmetric observable. 
 
TURs are, in fact, a specific realization for the Linear Fluctuation-Response Inequalities 
(LFRI) case for specific perturbation choices of the broader Fluctuation-Response 
Inequalities (FRIs) commonly associated with generalizations of the second law of 
Thermodynamics, which were first presented by Evans et al in 1993 [71] and which pose a 
solution to Loschmidt's paradox (time-reversal symmetry of most physical laws). In short, 
these inequalities show that even though for nonequilibrium systems the probability at any 
time of system’s entropy flow not being what would be expected via the second law of 
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thermodynamics  is nonzero, it decreases exponentially with the size of the ensemble, so that 
in the macroscopic limit the expected second law is recovered, and the ensemble average is 
never negative.  
 
However, while these developments are recent, the idea that thermodynamical quantities 
could form uncertainty relationships like the bounds obtained through the Heisenberg 
uncertainty principle are not in any way recent, being first suggested by Bohr and other 
scientists in the late 1900s [72-77]. An analysis of such bounds can be found in [43]. 
 
 

2 Methods 
 
The following analysis has been conducted with the help of several python scripts we have 
programmed using the high-level programming language Python, as well as some common 
modules for different analysis functionalities [79-83]. We split the analysis into two main 
components, the static analysis and the evolutive analysis. We will study and compare an 
index Exchange Traded Fund (ETF) (SPY) two stock market indexes (Ibex-35, Nikkei-225). 
 
The SPY (SPDR S&P 500 ETF) is traded on the NYSE Arca and is an exchange-traded 
index fund tracking the S&P 500 market index, which is composed of 500 of the largest 
companies traded in stock exchanges inside the USA, such as Apple (AAPL), Alphabet 
(GOOGL), Chevron(CVX) or Ford (F). The S&P 500 market index evolution is often taken 
as being representative of the financial well-being of the USA economy at large, due to the 
wide representation of major players in all main economic sectors. Therefore, it is strongly 
subjected to national economic policy in the USA and allows us to gain insight into its 
financial health. 
 
The Ibex-35 is the stock market index for the 35 most liquid stocks traded in the Bolsa de 
Madrid. It contains some of the largest public Spanish companies such as Iberdrola (IBE), 
Inditex (ITX) or Santander (SAN). It offers an example of a southern-European occidental 
market, with typically strong correlations to global tendencies due to the strong dependence 
of the Spanish economy on tourism, leisure, and travel industries.  
 
Finally, the Nikkei 225 market index tracks the evolution of 225 of the largest publicly traded 
Japanese companies, such as Mitsubishi or Yamaha, from the Tokyo stock exchange, which 
is the third largest exchange in the world by market capitalisation. This index presents 
interesting characteristics, deviating heavily from typical index dynamics, and usually 
showing strong shock responses to unpredictable natural disasters such as tsunamis or 
earthquakes.  
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2.1 Overall time series analysis 
The analysis hereafter described has been performed on each of the three indicators 
mentioned above. Firstly, data has been imported from the yahoo finance database for the 
previous 10 years and daily granularity and handled using the pandas statistical module. 
Only closing prices have been employed as a measure of a stock’s price on a given day, and 
from these the logarithmic daily returns, also called log-returns have been calculated as 
log५

պՙ+ȯ

պՙ
६ ∀𝑡 for a total of 2518, 2448 & 2557 datapoints, respectively.  

We further calculate some statistical parameters such as the standard deviation, mean and 
kurtosis of said logarithmic returns over the whole time series. The log returns are then 
distributed into an 𝑁 = 250 bin histogram according to their relative frequency and their 
entropy is measured through the Shannon, Tsallis  and Renyi  measures which we have 
defined above. 
Then, several curves are fitted to the logarithmic returns, using the statistical parameters 
we calculated, starting with a gaussian distribution, with a pdf that can be written as: 

𝑁(𝜇, 𝜎ϵ) =
1

𝜎
√

2𝜋
𝑒−φ

ϵॕ
֓−ᇋ

ᇐ ॖ
ɞ
 (11) 

Finally, multiple q-Gaussians are fitted to the data. We want to test if these are better fits 
for the logarithmic returns, in particular at the tails, where we know our usual distributions 
cannot approximate them well. q-Gaussian distributions have a pdf given by: 

𝑄𝐺(𝑥) = 𝑍 গ1 + গ
𝑞 − 1

3 − 𝑞
ঘঁ

𝑥 − 𝜇

𝜎
ং

ϵ

ঘ

φ
֌−φ

(12) 

Where 𝑍 is defined as  

𝑍 ≡ গ
q − 1

(3 − q)σϵ
ঘ

−φ
ϵ
· Γ ঁ

1

2
ং · Γ গ

1

q − 1
−

1

2
ঘ · ৃΓগ

1

q − 1
ঘৄ

−φ

(13)   

And we fit distributions for 𝑞 ∈ {1.25, 1.5, 2, 2.5} values. 
For each distribution fitted, we now measure the entropy using the Shannon and Rényi (𝛼 =

0.75) formulas. For Tsallis entropy, we calculate the entropy contained in every distribution 
fitted, as well as the entropy of the original time series for all values of 𝑞 ∈ [1,4]. Finally, all 
of the previous results have been plotted using several data visualisation modules such as 
matplotlib and seaborn on python. 
 
2.2 Statistical Analysis on time windows 
For the second section of our analysis, we extend our data import to the past 20 years (2002-
2022), and we separate it into 180-day data windows for a total of 45 data sets for each 
indicator. After computing the log returns, we distribute for each of these sets a 𝑁 = 25 bin 
histogram and from those probabilities the Shannon and Rényi (𝛼 = 0.75) entropies are 
calculated. We compare these to the volatility in each period identified as the variance of 
log returns to see if they move in synchrony. For each window the entropy production is 
calculated as the series Δ𝑆 = 𝑆֏+φ − 𝑆֏ ∀𝑡. We then graph the entropy evolution as well as 
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the scaled or fractional entropy production Δ𝑆֎վռևրտ =
մՙ+ȯ−մՙ

մՙ
 to better compare the different 

measures. The statistical moments are also calculated for the whole period, as well as the 
functions ⟨းմ⟩

ϵ
, ր⟨သԾ⟩−φ

ϵ
  that appear in TUR taking ⟨Δ𝑆⟩ as the average of all entropy 

differences and the violation of such bounds is checked. 

 
3 Results 
 
3.1 Overall time series analysis 
 
The evolution for the close prices of the three indicators is graphed in Fig.1. We see that 
this is a mostly growing period for both Nikkei 225 and SPY, with upward tendency and 
very few negative months or even weeks, with the latter having the steadiest growth and the 
former following a more erratic path. On the other hand, Ibex 35 rises until mid-2015 and 
then starts to decline slightly, crashing heavily in 2020. 
The most notable price drop happens from the end of February 2020 until the first week of 
April in the same year. Amid the concerns in 2019 that an economic slowdown or even 
recession was incoming [78], the outbreak of the COVID-19 pandemic decimated the global 
economy and caused a 30% + fall for most major market index funds, with the SPY, Nikkei 
225 and Ibex 35 being no exceptions. The strong dependency of the Spanish economy (which 
Ibex is a gauge of) to tourism, travel, and other service-related industries, the worse affected 
by the pandemic, make it so that the crash registered by this index is the strongest by far, 
and recovery the slowest due to the lingering restrictions on travel for the subsequent 
quarters. However, a quick recovery far above pre-COVID-19 levels is observed in both 
Nikkei and SPY, fuelled by the bullish attitude of individual investors and the quick expected 
recovery post-pandemic which peaks before a small decline in recent weeks. 
We see in Fig.2 larger return amplitudes for all three indicators in this time period, which 
reflects the higher volatility we would expect in such circumstances due to the wild price 
fluctuations. The largest positive % changes happen on the 13&24 March 2020, closing 
+9.29&+9.3% respectively for SPY and, and the largest drops, known as The Black Mondays 
(9,16 March 2020) and Black Thursday (12 March 2020) register 7.60%,11.98% and 9.51% 
drops respectively (SPY). The same movements are observed in the other two indicators, 
and these form the large-sigma events we observe in the asymmetric tails in Fig.3’s 
histogram.  
We observe the period between 2016 and 2018 has the most stable and smallest returns for 
the SPY, but the opposite is true for the Nikkei index, which presents remarkably high 
fluctuations in this period, in which the Ibex has a single large drop and stable evolutions 
later. In general, the SPY presents the most stable returns, while the Nikkei 225 has 
consistently high fluctuations across the whole time series, and Ibex 35 presents large single 
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events and consistent moderate fluctuations. For all three, some fluctuation clustering is 
observed around 2012,2016,2020 & 2022.  
We have represented the N=250 bin histogram edges in Fig.3, which allows us to observe 
the kurtotic nature of returns as well as the asymmetry in the far end of tails, which is 
negatively skewed (as in, the negative tails extend further than the positive ones), contrary 
to smaller events which are more likely to be positive, something particularly notable for the 
Ibex 35 index. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Evolution of the stock during the past 10 years, taking the closing price for each trading day for a 
total of   2518, 2448 & 2557 data points. All three evolutions are plotted in a single graph for ease of 
comparison, with each scale set using the same colour as the curve it concerns. 
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Figure 2: Evolution each of the indicator’s logarithmic returns during the past 10 years, taking the logarithms 
of the closing price for each trading day for a total of   2518, 2448 & 2557 data points. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Distribution of the stock’s logarithmic returns during the past 10 years, in which the kurtotic nature 
of the distribution is observed. The returns are distributed into an N=250 bin histogram and the edges are 
plotted. 
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We see in Fig 4,5,6 the curves we have fitted to our logarithmic returns. Normal distributions 
underestimate the importance of the central event density and large sigma events, while at 
the same time overestimating the frequency of medium returns. On the other hand, we see 
that for q-distributions, the tails get progressively larger as a function of growing q values, 
which allows us to better model the returns. We see that Nikkei 225 returns have a broader 
distribution, with wide midsection and not such large tails, while both Ibex and SPY returns 
are far slenderer in the midsection and narrower width and fatter tails, which is much more 
“textbook” log-return behaviour. In Fig 7,8 & 9, we can see a visual comparison for all the 
fits against the actual data, which allows us to better see how the tails compare between 
distributions. The “eye-tests” tells us the q-Gaussians with parameters 𝑞 = 2, 2.5 are the 
better fitting ones, and so does the K-L divergence statistical distance measure we have 
calculated, which can be found in Table 1. For the Nikkei 225 Index, the best fit is that of 
the q = 2 Gaussian distribution, while for both SPY and Ibex 35 the best fits are those of a 
larger parameter value 2.5 Gaussian distribution. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Log return distribution vs fitted distributions for SPY returns (10 years) 
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Figure 5:  Log return distribution vs fitted distributions for Ibex 35 returns (10 years) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6:  Log return distribution vs fitted distributions for Nikkei 225 returns (10 years) 
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 Gaussian 𝑞 = 1.25 𝐺 𝑞 = 1.5 𝐺 𝑞 = 2 𝐺 𝑞 = 2.5 𝐺 
SPY 2773.99 1149.61 806.54 577.51 528.96 

Ibex 35 5913.24 2032.32 1358.42 906.09 764.85 
Nikkei 225 1263.82 314.43 158.86 80.959 90.190 

Table 1: KL divergence statistic distance or relative entropy used to test the goodness of the fits we have 
employed. I have shortened q-Gaussian to q-G.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Comparison between all distributions and the return data (blue), for the 10-year SPY returns, zoomed 
on the left tails of the distributions. We see that the central region is well approximated by the Gaussian and q 
= 1.25 distributions, whereas the further tail-ends are much better approximated by q=2, q=2.5 Gaussian 
distributions. 
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Figure 8: Comparison between all distributions and the return data (blue), for the 10-year Ibex 35 returns, 
zoomed on the left tails of the distributions. We see that the central region is not too well approximated by all 
except q = 2.5 distributions, and the further tail-ends are much better approximated, in particular by q=2, and 
q=2.5 Gaussian distributions again. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Comparison between all distributions and the return data (blue), for the 10-year Nikkei 225 returns, 
zoomed on the left tails of the distributions. We see that the central region is very badly approximated by all 
distributions, and the further tail-ends are better approximated but still heavily underestimate the far events. 
 



22 
 

3.2 Statistical analysis on time windows 
 
The second part of our analysis consists of a study around the evolution of entropy contained 
in our three time series. As has explained in the methods section, we run 180-day windows 
through the data to analyse the evolution of entropy.  
The results are presented in Figs.10, 11 & 12, where we can see that IBEX seems to have 
the highest entropic variations over the whole timeframe, which can be partly because we 
have run our analysis over 20+ years, and therefore the events surrounding 2007 are 
included, which destabilised the Spanish economy and could cause strong variation in the 
dispersion of the logarithmic returns (which is what entropy is an indicator of). Later swings 
could indicate confirmation of the strong dependence of this economy on commodities that 
affect the travel and service, as well as the construction sector. The SPY is the most 
consistent, indicating a stable, quasi-stationary economy excepting some large sigma events 
around the subprime and Covid crashes. Finally, Nikkei falls in between the two. It does not 
share the same pattern for evolution, having a small response to both subprime and covid 
crises but large swings in 2011 (when the Fukushima nuclear disaster occurred) and 2016. 
 
It is notable to observe that the largest entropic drops are one-time events across all-time 
series; for instance, in the case of SPY, these would correspond, from left to right, to the 
180-day windows starting on 06/04/2007, 12/09/2011, 07/02/2018 and 26/07/2020 
respectively (Fig.10). The general evolutive patterns are common to all three entropic 
measures across the three analysed indicators, with the Rényi and Tsallis entropy showing 
smoother patterns with smaller jumps or changes.  
 
However, correcting for the modulus of entropy, we can see in Figs. 13, 14 & 15 that the 
fractional entropic change or entropic production is almost identical independently of the 
measure used to calculate it. In this regard, it does not seem like any of the measures pose 
particular advantages when conducting these kinds of analysis except as a means of verifying 
the coherence of results.  
 
While we would expect a strong correlation between volatility and entropy, the periods with 
highest volatility do not correspond to those with markedly higher or lower entropies (Annex 
II). Low entropic contents indicate a small dispersion in the logarithmic returns and thus 
strong market correlations, where all behaviours tend in the same direction for the data in 
our time series since such a behaviour indicates the information needed to build the series is 
low.  
However, we observe that strong entropic and volatility movements have some form of lagged 
or asynchronous correlations: In almost all cases across the three indicators, entropic drops 
precede or succeed volatility peaks by a semester, which may indicate that returns 
agglutinate before a period of strong volatility and vice versa at the start of a bear market 
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or bull market, in which sentiment is shared by investors and trends simplify after strong 
rises or sharp crashes (see 2007 movements), suggesting that whenever large shocks are 
observed in either the entropic or volatility curves, traders should hedge against near-future 
shocks in the other. Despite this, it is interesting to note that the intensity of events bears 
no correlation: Large swings in one do not translate into large swings for the other, which is 
to be expected since the entropy calculations only take into account the dispersion of the 
values or frequency thereof rather than the values themselves. Table 2  Shows the Mean, 
standard deviation ,MVAR and  𝑓(⟨ΔS⟩)  for the entire series from 2000-present.  
 

 IBEX 35 Nikkei 225 SPY 
Mean(𝜇) -7.628 · 10−Θ 2.127 · 10−ϵ 3.535 · 10−Κ 

Standard deviation (𝜎) 2.100 · 10−ϵ 1.101· 10−Κ 1.781 · 10−ϵ 
𝜇ϵ/𝜎ϵ 1.3234 · 10−Θ 2.679 · 10−Θ  4.079 · 10−Κ 
⟨ΔS⟩/2 -0.004038 -0.0028217 -0.0011693 

(𝑒⟨းϢ⟩ − 1)/2 -0.004021 -0.0028137 -0.0011679 
Table 2: Statistical parameters for the analysis conducted on the time series of log returns for the whole time 
series from 2000-present, where μϵ indicates the squared mean of log returns over the period and σϵ is the variance 
of said returns over the whole period as well. The ⟨ΔS⟩ function results shown here stem from the averages for 
the Shannon entropy. The numerical results for Tsallis and Renyi entropies are not shown here because they 
share the same behaviour as Shannon. The bottom two rows are the left hand sides of TUR shown in (9) and 
the third row is the right hand side, for each of the indicators. 
 
We also find the bounds established by TUR are not violated for any data sets under our 
calculations, where we have computed ⟨ΔS⟩ for each indicator as the average of all entropic 
variations across the entire window series, and checked both bounds found in (9), but we 
must note that this average which is usually taken over the set of all realizations for the 
studied process is in this case calculated as a time-average over the entropy differences for 
the whole time series which are not necessarily equivalent. If we recall the underlying 
assumptions for such bounds establish processes which are asymmetric currents under time 
reversal, and so one usually has some kind of stochastic master equation or state equation 
from which energy, work , enthalpy and all manner of state functions can be derived. 
However, when analysing a financial process of this kind, all we have is empirical data and 
time reversibility becomes ill-defined: What is the time-reversed process to the evolution of 
ticker pricings? A price involution does not exist. There are other systems in which TUR 
have been well studied and hold as expected, such as some biological processes. The key 
difference is that in our system we cannot control a large number of realizations for the 
process with parameter variations or time reversal to study it: We only have a single system 
path realised in a singular time direction.  
 
Further work could be conducted regarding this crucial aspect: Some measures of time-
dependence could be inferred for the returns, from which a primitive form of time-direction 
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could be conceived to test its reversal. In Annex III we see a matricial structure for joint 
probabilities of the log-returns at time t and lagged time t-1 that could be perhaps refined 
to infer the entropic production of this process. We see that it is not symmetrical, which 
indicates some underlying structure for the logreturns, meaning that the process should have 
nonzero entropy production, which is in accord with our results. It is also noted that the 
nonzero elements are slightly wider in diagonal directions, indicating that similar movements 
aggregate. The main problem with these kinds of approaches is that vast amounts of data is 
required: Sub-1min data is almost a necessity to obtain statistically valid results, and this 
kind of frequency is not in general openly available. 
 
We must also note that the data availability for our purposes is already subpar: for each 
trading day we have only a single point, such that for any given 180-day window we get 
only ∼ 123 events. Fig 16 shows the dependence of entropy on binning frequency for SPY 
daily returns (5037 events, 20 years of trading), we see that Tsallis entropy seems to have 
the highest stability in front of binning changes; in general, below a 1:10 bin to data ratio 
the sensibility to binning frequency slows down but may be a factor to be considered when 
considering numerical results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10:  Evolution of the entropy values as measured under Shannon, Tsallis (q=1.5), Rényi (𝛼 = 0.75) 
equations for SPY. In violet we can contrast the timeline for entropic movements with that of the variance in 
each window. 
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Figure 11:  Evolution of the entropy values as measured under Shannon, Tsallis (q=1.5), Rényi (𝛼 = 0.75) equations, 
for Nikkei-225 returns (45 events) In violet we can contrast the timeline for entropic movements with that of the 
variance in each window. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12:  Evolution of the entropy values as measured under Shannon, Tsallis (q=1.5), Rényi (𝛼 = 0.75) equations, 
for Ibex-35 returns (45 events) In violet we can contrast the timeline for entropic movements with that of the 
variance in each window. 
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Figure 13: Fractional entropy productions for SPY inside each 180-day window change for 2000-present. It can 
be observed that Rényi entropy has some divergence from Tsallis & Shannon entropies, but these present almost 
identical changes with strong fluctuations in 2007, 2011,2018 & 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 14: Fractional entropy productions for Nikkei 225 inside each 180-day window change for 2000-
present. Contrary to the other indicators, only small fluctuations are observed in 2007 & 2020, but large 
ones are seen in 2011 & 2017. 
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Figure 15: Fractional entropy productions for Ibex 35 inside each 180-day window change for 2000-present. 
Markedly large entropic swings characterize the whole time series, with no characteristic pattern observable. This 
is the highest fluctuating of the three. 

 
 

Figure 16: Dependence of entropy on the binning of data, for the past 20 years of logarithmic returns. 
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4 Conclusions 
In this thesis, we have explored applications of concepts developed in the context of 
thermodynamics or statistical physics to the study of financial markets, taking empirical 
data from three market indicators (Ibex 35 - Spain, Nikkei 225 – Japan, SPY – Tracking 
S&P 500, USA) to test our hypothesis. An extensive literature review of the field has been 
conducted, and this thesis has also been used to develop the code needed for all the analysis, 
which totals just shy of 6000 lines of code written over the last year. 
 
We first conducted an analysis for a static time series over the past 10 years, which we used 
to fit different generalized q-Gaussian distributions to the logarithmic returns to try and find 
better modelling options than normal distributions. In all our results, the 𝑞 = 2,2.5 Gaussian 
distributions presents the better fits, and we see that the tails are much better approximated 
in this way. However, discrepancies still occur, especially with the Nikkei 225 returns, far 
less centralized and very erratic, such that even these q-distributions which possess larger 
tails underestimate them.  
 
Then, we conducted an analysis from the year 2000-present taking semestral time series and 
analysing their entropy under three different measures: Shannon entropy, Tsallis entropy 
with parameter 𝑞 = 1.5 and Rényi entropy with parameter 𝛼 = 0.75. We also measure the 
volatility and compare its movements to the evolution of entropy and find that almost 
everywhere we have lagged correlations: When substantial changes are seen in entropy, the 
volatility spikes up at a close, later time, and the other way around. This leads us to think 
that indeed entropy may be a good indicator crashes or other unstable market conditions. 
Further work could be done to measure whether this behaviour is observed only for large 
movements or holds also for any variation of entropy, which could be useful in predicting 
the future fluctuations of financial markets as a function of their complexity and vice versa.  
 
Finally, we calculate a primitive form of entropy “production” or entropy difference between 
analysis windows. We check the bounds proposed in (9) and see that they do hold for all 
analysed cases, but further analysis should be conducted to determine if the results are 
conclusive, since the assumptions made in the formulations in such bounds are at their core 
energetic and can only be imprecisely translated into financial quantities. We calculate the 
joint probability matrix and see that it is not symmetrical, possibly corroborating the 
nonzero entropy productions we have found. Further work could be done by developing non-
binning methods, since this process is what scrambles information and destroys any time 
label to calculate the probabilities.  
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ANNEX 1: Entropies for SPY 

In Table 1 we have the entropies calculated through several equations (Shannon, 
Tsallis, Rényi) for every distribution fitted and the logarithmic returns for . This 
allows us to compare the information content of these distributions, and we see that 
the results are consistent across the three  measures, with the 𝑞 = 2.5 Gaussian 
having the largest entropy and the 𝑞 = 1 Gaussian (regular Gaussian, for short) 
having only slightly the lowest one. Tsallis entropy presents the least spread results 
(amplitude about 11% from the smallest to the largest in relation to the average) 
with Shannon entropy presenting the more  spread ones (36%). In Fig.1  we have 
plotted the Tsallis entropy curves for all q values 𝑞 ∈ {1,4} for each of the 
distributions and data; we see the choice of generality parameter q does indeed affect 
our numerical results, but tendencies remain unchanged with the same distributions 
having the largest and lowest entropies. 

 Shannon Tsallis (𝑞 = 1.5) Renyi 
Log return data 5.429903610011825 1.6637745411868106 3.9125348418766404 
Gaussian 4.482560172032928 1.5565287683482614 3.18243808983849 
𝑞 = 1.25 Gaussian 4.695268769884641 1.579823072632985 3.37193002099043 
𝑞 = 1.5 Gaussian 4.990994801583901 1.6088958986816582 3.6446100023598844 
𝑞 = 2 Gaussian 5.7650312134482995 1.6782324204226204 4.2752348638182625 
𝑞 = 2.5 Gaussian 6.382138167970462 1.7310937170434122 4.690511326769886 

Table 1: Entropy calculated for all the fitted distributions, as well as the raw data for logarithmic returns. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1: Tsallis Entropy curves for all distributions fitted 
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Annex II: Regressions for SPY 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Linear regressions for the entropy vs variance for the three entropy measures.Outliers that have 
been eliminated (corresponding to the strongly non-linear periods of market crash in 2020 and 2008) are 
shown to be crossed out in the same colour as the data points in their respective sets. 
 

 Shannon Tsallis Rényi 
R coefficient 0.241978846173                                 0.244991518637                                 0.232238441649                                
R² coefficient  0.058553761995 0.060020844204 0.05393469378 
A coefficient 3.7811353608022 1.4194873457451 2.701622173959 
B coefficient 435.89962363533 102.77812729856 268.7146595496 

Table 1 : Regression coefficients for the analysis represented in  Figure 10 . The linear regression equation 
is 𝑦 = 𝐴 + 𝐵𝑥. 
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ANNEX III : Log return Matrix 

 
Fig 1:Logarithmic returns matrix. The colour gradient marks frequency of a certain value following some other 
in our time-series. 

 


