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Abstract

Invariants for complicated objects such as those arising in phylogenetics, whether they are

invariants as matrices, polynomials, or other mathematical structures, are important tools

for distinguishing and working with such objects. In this paper, we generalize a complete

polynomial invariant on trees to a class of phylogenetic networks called separable networks,

which will include orchard networks. Networks are becoming increasingly important for

their ability to represent reticulation events, such as hybridization, in evolutionary history.

We provide a function from the space of internally multi-labelled phylogenetic networks, a

more generic graph structure than phylogenetic networks where the reticulations are

also labelled, to a polynomial ring. We prove that the separability condition allows us to

characterize, via the polynomial, the phylogenetic networks with the same number of

leaves and same number of reticulations by considering their internally labelled versions.

While the invariant for trees is a polynomial in Z½x1; . . . ; xn; y� where n is the number of

leaves, the invariant for internally multi-labelled phylogenetic networks is an element of

Z½x1; . . . ; xn;l1; . . . ;lr; y�, where r is the number of reticulations in the network. When the net-

works are considered without leaf labels the number of variables reduces to r + 2.

Introduction

A complete polynomial invariant able to uniquely distinguish between rooted trees has been

recently introduced in [1]. Motivated to analyze and compare tree shapes in a phylogenetic

context, this polynomial (to which we will refer as the Liu polynomial) has been used both to

define a similarity measure on rooted tree shapes and to estimate parameters and models via
its coefficients [2]. Moreover, its generalization from trees to networks (by analyzing the set of

embedded spanning trees in the network) has also been used to study the properties of ran-

domly generated networks [3].

We note that the word “invariant” is used here in its traditional sense, and not the one used

in algebraic geometry approaches to phylogenetics, in which phylogenetic invariants for an

evolutionary model along a tree are the polynomials which vanish on the expected frequencies

of base patterns at the leaves [4]. Throughout this article, a (complete) invariant of a set A is a
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function f: A! B with the property that x�A y if and only if f(x)�B f(y), where B is some

other set (such as the set of polynomials), and�A and�B are equivalence relations in the

respective sets.

A multitude of (non-polynomial) invariants have been defined for specific subclasses of

phylogenetic networks. To name just a few, the μ-vectors which store the number of paths

from nodes to leaves characterize (among others) tree-child networks [5] and orchard net-

works (without stacks) [6]; the set of displayed trees that characterizes regular networks [7];

and the induced trinets (minimal subnetworks induced by triples of leaves) that characterize

(among others) level-2 networks [8] and orchard networks [9].

In this paper we show how a polynomial invariant can be defined for rooted phylogenetic

networks, generalizing the Liu polynomial invariant for trees. In order to do so, we consider

phylogenetic networks and a labelled version of them, called internally labelled phylogenetic

networks, where we keep the labels on leaves and also (bijectively) label the reticulations. In

fact, internally labelled phylogenetic networks are a subset of a more general set of networks,

which we call internally multi-labelled phylogenetic networks, or IMLN’s. On these networks

the presence of elementary nodes is allowed, and leaves, reticulation and elementary nodes are

all labelled. Then, if we denote by PN the set of all phylogenetic networks (up to isomorphism)

and by ILPN the set of all internally labelled phylogenetic networks (up to isomorphism), the

map F: ILPN! PN that sends each internally labelled phylogenetic network to the phyloge-

netic network obtained by “forgetting” all the internal labels (on reticulations) is obviously

well defined; therefore for each N 2 PN, F−1(N) is the set of all the internally labelled phyloge-

netic networks that have its same topology; its fiber, in mathematical terms.

The aim of this paper is to define a polynomial p that uniquely characterizes these fibers

and, in so doing, also characterizes the phylogenetic networks beneath them. See the diagram

below. Since F is not injective, the dashed arrows denote maps that are not unique. We will see

that, in general, p is not injective, but that it will be so under a suitable topological condition.

This paper is organized as follows. In the Methods section we include the three main graph

structures of study: phylogenetic networks, internally labelled phylogenetic networks and

internally multi-labelled phylogenetic networks (or IMLN’s). We also define the concept of

isomorphism on these structures. The Results section is divided into two main subsections.

The first one studies a process that unfolds an IMLN into a tree (an IMLT) and its reverse,

folding, that recovers the initial IMLN. The key result of this section is the characterization of

an IMLN by an IMLT (Corollary 10). The second subsection is dedicated to the definition and

study of an extension of the Liu polynomial on IMLN’s. If N is an IMLN on a set of leaves

labelled by X, the assigned polynomial p(N) has |X| + r + 1 variables, where r is the number of

reticulations in the network. This subsection is further divided into multiple parts. The first

part studies a special type of path (composed only of reticulations or elementary nodes) in

IMLN’s, called strong paths. Roughly speaking, these allow us to define an equivalence relation

between IMLN’s, and we prove that two IMLN’s share the polynomial if, and only if, they are

equivalent (Theorem 15). The second part gives a sufficient condition on the space of phyloge-

netic networks (which we call separability) for the derived internally labelled phylogenetic net-

works to be completely characterized by the polynomial. The multiple lemmas proved in this

part allow us to prove the main result (Theorem 22) in the third part; that is, the polynomial is

a complete invariant in the set of internally labelled separable phylogenetic networks up to
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isomorphism. The fourth part of this subsection proves that orchard networks are separable,

and so are characterized by the polynomial introduced in this paper (Theorem 23). Finally, in

the last part, we present how the obtained results can be applied for an unlabelled version of

networks, in the sense that we forget the labelling of the leaves, reducing the polynomial to

r + 2 variables (Proposition 24). This paper finishes with a section of Discussion and

Conclusion.

Methods

In this section we introduce the mathematical notation that will be used in the rest of the

paper.

Throughout this paper, X will denote a non-empty finite set (of taxa). Commonly, we will

use X = {x1, . . ., xn}, and we will allow ourselves to see each member of X as an irreducible poly-

nomial in Z½x1; . . . ; xn�; i.e., we will consider the labels of the leaves in our networks to be poly-

nomials of the form xi for i 2 {1, . . ., n}.

Definition 1. A rooted binary phylogenetic network N = (V, E) on X, or simply a phylogenetic
network on X, is a rooted directed acyclic graph with no parallel arcs satisfying the following

conditions:

1. any node with out-degree zero (a leaf) has in-degree one, and the set of nodes with out-

degree zero, denoted by L(N), is identified with X via a bijection φ: L(N)! X;

2. the root is the only node with in-degree zero, and has out-degree two;

3. any other node has either in-degree one and out-degree two (a tree node), or in-degree two

and out-degree one (called a reticulation node).

We shall consider the leaves and root to be tree nodes.

Definition 2. A rooted binary internally multi-labelled phylogenetic network N = (V, E) on

X, or simply an IMLN on X, is a rooted directed acyclic graph with no parallel arcs satisfying

the following conditions:

1. any node with out-degree zero (a leaf) has in-degree one, and the set of nodes with out-

degree zero, denoted by L(N), is identified with X via a surjection φ: L(N)! X;

2. the root is the only node with in-degree zero, and it can have out-degree one (in which case

we shall say it is an elementary node) or two (a tree node);

3. any other node has either in-degree one and out-degree two (again, a tree node), or in-

degree two and out-degree one (called a reticulation node), or in-degree one and out-degree

one (again, an elementary node);

4. if R(N) denotes the set of reticulation nodes and E(N) the set of elementary nodes of N, then

there exists ℓ: R(N) [ E(N)! {λ1, . . ., λr} a labelling function such that its restriction to R
(N) is injective and if u 2 R(N) and v 2 E(N), ℓ(u) 6¼ ℓ(v).

Definition 3. A rooted binary internally multi-labelled phylogenetic tree T = (V, E) on X, or

simply IMLT on X, is an IMLN without reticulation nodes.

We will consider the labels λ1, . . ., λr to be irreducible polynomials in

Z½x1; . . . ; xn; l1; . . . ; lr�. Notice that Definition 2 implies that IMLN’s are a recursive structure

in the following sense: given any IMLN N, for any u 2 V(N), the subgraph rooted at u is still an

IMLN. This is not the case in general for phylogenetic networks.

In the case that an IMLN (with the root of out-degree two) does not have elementary nodes

and the labelling on the leaves is a bijection, by definition, it becomes a phylogenetic network
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if the labelling ℓ on reticulations is suppressed. Also, if we consider a phylogenetic network

and we add a labelling bijection ℓ: R(N)! {λ1, . . ., λr}, it becomes an IMLN. In order to reflect

this possibility, we introduce the following definition.

Definition 4. An internally labelled phylogenetic network N on X is an IMLN on X without

elementary nodes and where the maps φ: L(N)! X and ℓ: R(N)! {λ1, . . ., λr} are bijections.

In order to formally define the concept of isomorphism between a pair of phylogenetic net-

works or between a pair of IMLN’s, we consider the alternative notation, (V, E, φ) and (V, E, φ,

ℓ), to reflect the labelling functions, respectively.

Definition 5. Two phylogenetic networks N1 = (V1, E1, φ1) and N2 = (V2, E2, φ2) on X are

isomorphic if there exists a bijection f: V1! V2 such that φ1(x) = φ2(f(x)) for all x 2 L(N1), and

(u, v) 2 E1 if and only if (f(u), f(v)) 2 E2.

Definition 6. Two IMLN’s N1 = (V1, E1, φ1, ℓ1) and N2 = (V2, E2, φ2, ℓ2) on X are isomorphic
if there exists a bijection f: V1! V2 such that φ1(x) = φ2(f(x)) for all x 2 L(N1), ℓ1(x) = ℓ2(f(x))

for all x 2 R(N1) [ E(N1), and (u, v) 2 E1 if and only if (f(u), f(v)) 2 E2.

That is, a graph isomorphism that preserves the labels of both the reticulation and elemen-

tary nodes.

Results

Folding and unfolding

Following [10], a phylogenetic network can be “unfolded” in a specific manner to obtain a

multi-labelled tree, that is a particular IMLT without elementary nodes in terms of the previ-

ous definitions. Moreover, in some cases, this process can be reverted, and the multi-labelled

tree can be “folded” recovering the initial network. A phylogenetic network cannot in general

be characterized by a multi-labelled tree, and this correspondence is valid only for the subclass

of FU-stable phylogenetic networks [10].

In this subsection, however, we prove that an internally labelled phylogenetic network can be

uniquely characterized by an IMLT obtained by a sequence of “unfoldings” on its reticulation

nodes. Roughly speaking, considering the reticulations of an IMLN in a specific order, it is pos-

sible to sequentially duplicate the subnetwork descending from these nodes until an IMLT is

obtained.

Let N be a (generic) IMLN, and R(N) the set of its reticulation nodes. The relation of being

a descendant of another node induces a partial order over R(N), which we will denote by�R.

That is, for any two nodes u, v 2 R(N), u�R v if, and only if, there exists a directed path from v
to u. Let Rmin(N) be the set of the minimal elements of R(N) under this order, i.e. reticulation

nodes such that none of their descendants are also reticulation nodes.

Lemma 1. Let N be an IMLN and u 2 Rmin(N). Then the graph rooted at u is an IMLT.

Proof. If u 2 Rmin(N), then there is no path in N from u to another reticulation. This means

that there are no reticulations in the graph rooted at u; and therefore it is an IMLT.

Let N be an IMLN, and consider u 2 Rmin(N) (so that u is labelled by an element in {λ1, . . .,

λr}). Let v1, v2 be its parents, noting that v1 6¼ v2 due to the fact that parallel arcs are excluded.

Define U(N, u) to be the unfolded IMLN of N at u, obtained by the following algorithm:

1. delete edges (v1, u) and (v2, u);

2. duplicate N(u), the IMLT rooted at u, including all its labels;

3. add an edge from v1 to one of the resulting copies of u, and an edge from v2 to the remain-

ing copy of u.

PLOS ONE A polynomial invariant for a new class of phylogenetic networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0268181 May 20, 2022 4 / 22

https://doi.org/10.1371/journal.pone.0268181


Remark 1. Notice that the process of unfolding preserves paths in the following sense: if N0

is obtained from N by unfolding N at some node u, then any path between two nodes in N0

comes from an existing path in N; and vice versa, any path between two nodes in N corre-

sponds to a path in N0. Notice, however, that a path in N might very well correspond to two dif-

ferent paths in N0, and so this assignation is not injective.

Corollary 2. Let N be an IMLN, and u 2 Rmin(N). Then U(N, u) is an IMLN.

Let N be an IMLN. We say that a sequence (u1, . . ., uk) of nodes in R(N) is compatible if the

associated sequence ðN;Nu1
;Nu2

; . . . ;Nuk
Þ of IMLN’s is such that uiþ1 2 RminðNui

Þ and u1 2

Rmin(N), where Nuiþ1
¼ UðNui

; uiþ1Þ and Nu1
¼ UðN; u1Þ. Then, if (u1, . . ., uk) is compatible,

for each i 2 {1, . . ., k − 1} there is no path from ui to uj when j> i; i.e., it is non decreasing

under the partial order�R induced by the network over R(N).

Lemma 3. Let N be an IMLN and u1, u2 2 Rmin(N). Then,

UðUðN; u1Þ; u2Þ ¼ UðUðN; u2Þ; u1Þ:

Proof. It is straightforward by Lemma 1 and the steps of the unfolding algorithm. If u1 2

Rmin(N), then u2 2 Rmin(U(N, u1)); otherwise there would be a reticulation node u0 in R(U(N,

u1)) and a path from u2 to u0 in U(N, u1), and so in N, which is a contradiction. Then, by

Lemma 1, the graph rooted at u2 in U(N, u1) is an IMLT. Since u2 is not a node in any of the

copies of the IMLT rooted at u1 in the construction of U(N, u1), there is no intersection

between the copies from u1 and the copies from u2. Since the same argument holds if we start

by u2, the result is achieved.

Lemma 3 can be extended following the same arguments for any set of reticulations {u1, . . .,

uk} if all of them are in Rmin(N), since there will be no intersection between the created copies

of IMLT’s.

Let N be an IMLN. We define an equivalence relation� in the set of compatible sequences

of elements of R(N) as follows:

ðu1; u2; . . . ; ukÞ � ðv1; v2; . . . ; vk0 Þ , fu1; u2; . . . ; ukg ¼ fv1; v2; . . . ; vk0 g:

That is, we say that two compatible sequences are equivalent if they are composed by the

same set of nodes.

An�R-chain in an IMLN N is a chain under the�R order defined on R(N) (or a subset of

it). That is, a subset of reticulations such that u1�R � � � �R us. And, an�R-antichain in an

IMLN N is an antichain under the�R order; i.e., a subset of reticulations of N which are pair-

wise incompatible (ui≰R uj and uj≰R ui if ui 6¼ uj) under the�R order.

In the next lemma we prove that if we consider an�R-chain in an IMLN N then there is a

single way to traverse these nodes in a compatible sequence, from bottom to top. On the other

hand, if we consider an�R-antichain, then every way to traverse these nodes is valid to form a

compatible sequence.

Lemma 4. Let N be an IMLN and S = {v1, . . ., vr}� R(N). Then

(a). If v1�R v2�R � � � �R vr is an�R-chain, then vi must precede vj in every compatible
sequence containing S if i< j.

(b). If S is an�R-antichain, then every possible ordering of its nodes produces a compatible
sequence composed by S.

Proof. We first prove (a). If v1�R v2�R � � � �R vr is an�R-chain, then there is a path from

vj to vi if i< j. Therefore if there exists a path from vi to vj, it produces a cycle in N; but this is

not possible because N is an IMLN, and so in particular it is acyclic. This means that there is

no path from vi to vj when i< j. Consequently, if i< j, vi must precede vj in every compatible

sequence containing S.
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Now we prove (b). Let v and v0 be two nodes in S. If v precedes v0 in a sequence there cannot

be a path from v to v0; otherwise v0 �R v. If v0 precedes v in a sequence there cannot be a path

from v0 to v; otherwise v�R v0. Since S is an�R-antichain, then both cases derive compatible

sequences.

Corollary 5. Let N be an IMLN and (u1, u2, . . ., uk)� (v1, v2, . . ., vk) a pair of equivalent
compatible sequences of elements of R(N). Let ðN;Nu1

;Nu2
; . . . ;Nuk

Þ and ðN;N 0v1
;N 0v2

; . . . ;N 0vkÞ
be the associated sequences of IMLN’s to their corresponding compatible sequences. Then Nuk

and N 0vk are isomorphic.
Proof. For k = 1 there is nothing to prove, since u1 = v1. For k = 2. If u1, u2 2 Rmin(N), there

is nothing to prove, because (u1, u2) and (u2, u1) are compatible sequences and Lemma 3

applies. If (u1, u2) is a compatible sequence and u1�R u2, then must be (v1, v2) = (u1, u2) (and

not (v1, v2) = (u2, u1)), since u1=2RminðNu2
Þ.

The general situation for k� 3 demands a different approach. Let s1 = (u1, u2, . . ., uk) and s2
= (v1, v2, . . ., vk). Since s1� s2, we have {u1, u2, . . ., uk} = {v1, v2, . . ., vk0}� R(N). Let A = {u1,

u2, . . ., uk}. Then we could iteratively apply the following process to prove the result. Let A0 =
{u 2 A: u 2 Rmin(N)}. Note that A0 is not empty due to u1 and v1 (which could be equal) are in

Rmin(N). Then, let sA0
1

be the sequence obtained from s1 by moving all the nodes in A0 to the

first positions (in such a way that if ui, uj 2 A0 with i< j, then the node ui appears before uj in

sA0
1

) and remain invariant the rest of nodes. Note that sA0
1

is compatible by construction and

sA0
1
� s1. A similar process can be repeated to obtain sA0

2
� s2. Note that the set of nodes of A0

occupying the first |A0| positions in both sA0
1

and sA0
2

are exactly the same, and it is an�R-antic-

hain; but these nodes may not appear in the same order in both sequences.

Let u� be the last node (the rightmost) in sA0
1

such that u� 2 A0. Now let ŝ2A
0

be the compati-

ble equivalent sequence to sA0
2

obtained by remaining invariant all positions except for the node

u�, which comes to be the last node in ŝ2A
0

with u� 2 A0. This ensures that the last node of the

first |A0| positions in both sA0
1

and ŝ2A
0

is the same, u�. Note that, could be u� = uk = vk (when A
= A0). By Lemma 4(b) and Lemma 3, the IMLN Nu� obtained by sequentially unfold at the

nodes in sA0
1

until u� is achieved, is isomorphic to the IMLN obtained by sequentially unfold at

the (same) nodes in ŝ2A
0

until u� is achieved. Then, the same process can be repeated by consid-

ering new equivalent compatible sequences obtained from sA0
1

and ŝ2A
0

by suppressing the first |

A0| positions and starting with the IMLN Nu�.

Therefore, given a compatible sequence (u1, u2, . . ., ur) of all the elements of R(N), and its

associated sequence ðN;Nu1
;Nu2

; . . . ;Nur
Þ, we define the unfolding of an IMLN N, denoted by

U(N), by means of the equation UðNÞ ¼ Nur
. We may refer to such a sequence as a sequence of

unfoldings. See Fig 1 for an example of a sequence of unfoldings for an IMLN; in fact for an

internally labelled phylogenetic network.

Now, we are interested in the “reverse” process to unfolding. Roughly speaking, we are

interested in formally defining a way to “fold” an IMLT to recover the IMLN from which it

comes. We can, given an IMLN N, also define a partial order over the set of elementary nodes

E(N) by saying that for any two u, v 2 E(N), u�E v if and only if there exist u0, v0 2 E(N) with

ℓ(u) = ℓ(u0) and ℓ(v) = ℓ(v0) and a directed path from v to u. We call the set of elementary

nodes that are maximal under this order Emax(N).

Lemma 6. Let ðN;Nu1
;Nu2

; . . . ;Nur
Þ be a sequence of unfoldings of an internally labelled phy-

logenetic network N. For any Nui
in it and for every u 2 EmaxðNui

Þ, there exists exactly another
v 2 EmaxðNui

Þ such that ℓ(u) = ℓ(v) and the IMLT’s Nui
ðuÞ and Nui

ðvÞ are isomorphic.
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Proof. Let Nui
be one of the IMLN’s in the sequence of unfoldings. Let N 0 ¼ Nui� 1

, with N0 =

N when i = 1. By construction, ui 2 Rmin(N0).
Since Nui

¼ UðN 0; uiÞ, the IMLT N0(ui) is duplicated; say u and v the two resulting copies of

ui in Nui
, we have ℓ(u) = ℓ(v) and Nui

ðuÞ ¼ Nui
ðvÞ. Moreover, u; v 2 EmaxðNui

Þ; otherwise, if u
(or v) is not maximal under the order�E in Nui

, it means that there are w;w0 2 EðNui
Þ with

ℓ(w) = ℓ(w0) such that there is a path from w to u. By Remark 1 this path is preserved in every

Nuj
with j< i. Since the labelling function ℓ is injective over reticulation nodes and N has not

elementary nodes, this means that the pair w, w0 corresponds to a reticulation node in some

Nuj
with j< i; equivalently, this is a reticulation node equal to some uj with j< i. This leads to

a contradiction with the fact that the sequence (u1, u2, . . ., ur) is compatible. If we consider a

maximal element in Nui
different to the two coming from the duplication of ui in N0, the previ-

ous argument can be reproduced similarly. These pair of maximal elements are preserved as

maximal in every Nuj
with j< i right up until the unfolding on this reticulation is produced.

This proves that the IMLT’s rooted on the corresponding copies of it are also preserved until

Nui
is reached.

In particular, in the proof of Lemma 6, and following the same notation, we show that the

node ui is maximal under the�E order in Nui
. Notice also that this could be false if elementary

nodes are allowed in the initial IMLN N.

Proposition 7. Let ðN;Nu1
;Nu2

; . . . ;Nuk
Þ be a sequence of unfoldings of an internally labelled

phylogenetic network N. For any Nui
in it, let w 2 EmaxðNui

Þ. Then, v 2 EðNui
Þ is such that v�E

w if and only if v�R w in R(N).

Proof. We begin by the “if” direction. If v, w are such that v�R w when seen as reticulation

nodes in N, there exists at least a path from w to v. Now, since w 2 EmaxðNui
Þ, by Lemma 6,

there exists w0 2 EmaxðNui
Þ such that ℓ(w) = ℓ(w0) and Nui

ðwÞ ¼ Nui
ðw0Þ, via an isomorphism f.

Fig 1. The unfolding of an IMLN. Top two figures: A phylogenetic network N on {x1, x2, x3, x4}, and the IMLN

obtained by considering the labelling function over R(N) given by ℓ(ui) = λi for i 2 {1, 2, 3}. Notice that N is an

internally labelled phylogenetic network. The three figures below are the sequence of unfoldings ðNu2
;Nu3

;Nu1
Þ

associated to the compatible sequence of reticulations (u2, u3, u1). Following the introduced terminology,

Nu2
¼ UðN; u2Þ, Nu3

¼ UðUðN; u2Þ; u3Þ and Nu1
¼ UðUðUðN; u2Þ; u3Þ; u1Þ ¼ UðNÞ. Note that u2, u3 2 Rmin(N) and

u1 =2 Rmin(N), there is a path from u1 to u2 in N.

https://doi.org/10.1371/journal.pone.0268181.g001
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Then, since by hypothesis v 2 EðNui
Þ and, by Remark 1, the path from w to v in N is preserved

in Nui
, there exist paths from w to v and from w0 to f(v) in Nui

, such that ℓ(v) = ℓ(f(v)) and there-

fore v�E w in Nui
.

On the opposite direction, suppose that v, w are such that v�E w. Again by Lemma 6, in

Nui
there exists w0 such that ℓ(w) = ℓ(w0) and Nui

ðwÞ ¼ Nui
ðw0Þ via an isomorphism f. Since v

�E w, there exists a path from w to v and a path from w0 to f(v) and ℓ(v) = ℓ(f(v)). Now, since

there are no elementary nodes in N, there must exist j< i such that in Nuj
(it could be that

Nuj
¼ N), the nodes v and w are reticulations. By Remark 1, this implies that there would exist

a path from w to v in Nuj
, and therefore v�R w in Nuj

, and so in N. Thus concludes the proof.

Given N an IMLN, u 2 Rmin(N) and U(N, u), we would like to consider N to be the result of

a folding operation over U(N, u): N = F(U(N, u), u), for some suitable F. For any unfolding

sequence ðN;Nu1
;Nu2

; . . . ;Nur
Þ, we say that each of its members is a (phylogenetic) pseudo-net-

work—in particular, they are IMLN’s. Equivalently, we can define a pseudo-network recursively

as follows: let N be an IMLN; it is a pseudo-network if it satisfies the following three conditions:

(i). no reticulation node descends from an elementary node;

(ii). for any u 2 Emax(N) there exists v 2 Emax(N) such that ℓ(u) = ℓ(v) and N(u) = N(v) as

IMLT’s;

(iii). for any u 2 Emax(N), the IMLN obtained by the process of

1. considering the node v 2 Emax(N) such that ℓ(v) = ℓ(u) and N(u) = N(v), and the parent

of v, say v(1);

2. deleting N(v), as well as the edge (v(1), v);

3. adding the arc (v(1), u),

is also a pseudo-network.

The IMLN obtained by the process described in (iii) is denoted by F(N, u), and called the

folded IMLN of N at u. Notice that if u, v 2 Emax(N) are such that ℓ(u) = ℓ(v), then F(N, u) = F
(N, v).

Lemma 8. Let N be a pseudo-network and u 2 Rmin(N). Then,

FðUðN; uÞ; uÞ ¼ N:

Proof. Let N0 = U(N, u). Since u 2 Rmin(N), then N(u) (the tree rooted at u) is an IMLT. Let

v1, v2 be the parents of u in N. When N(u) is duplicated in the unfolding process, u and a new

copy of it, say v, are elementary nodes and the roots of N0(u) and N0(v) respectively, such that

N0(u) = N0(v). Moreover, (v1, u), (v2, v) are arcs in N0. Since u 2 Emax(N0) (because u 2
Rmin(N)), by Lemma 6, v is the other node in Emax(N0), such that ℓ(u) = ℓ(v) and N0(u) = N0(v).

By definition of the folding process of N0 at u, the IMLT N0(v) and also the arc (v2, v) are

deleted and a new arc (v2, u) is created. This results in a reticulation node u with parents v1

and v2 which is the root of N0(u). Since N(u) = N0(u), then F(N0, u) = N.

Given N an IMLN and ðN;Nu1
;Nu2

; . . . ;Nur
Þ a sequence of unfoldings, by Lemma 8 we have

that Nui
¼ FðNuiþ1

; uiþ1Þ and that N ¼ FðNu1
; u1Þ. Therefore, we derive the following result.

Corollary 9. Let N be an internally labelled phylogenetic network and ðN;Nu1
;Nu2

; . . . ;Nur
Þ

any sequence of unfoldings. Then

N ¼ FðFðFð. . . FðUðNÞ; urÞ . . .Þ; u2Þu1Þ:
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Note that, similarly as we have done by the equivalent compatible sequences, there is not a

unique way to recover the IMLN N by applying a set of foldings.

If N is a pseudo-network we know that it is the product of a sequence of unfoldings per-

formed over an IMLN, N0. We can then rewrite Corollary 9, by defining a function F from the

set of pseudo-networks to the set of IMLN’s by F(N)≔ N0. Hence,

Corollary 10. Let N be an internally labelled phylogenetic network. Then

N ¼ FðUðNÞÞ:

This result is the analogue of the concept of stable networks in Section 4 of [10]. The key

difference here is that we allow elementary nodes.

A polynomial for internally multi-labelled phylogenetic networks

Given a phylogenetic network N on X, one can obtain a rooted tree by removing one incident

arc to each reticulation node. These (sub)trees could contain elementary nodes, and its leaves

might be labelled in X (the leaves from N) and other sets different from it (for instance when

the single outgoing arc to a reticulation is removed). Those trees become unrooted if the direc-

tion of the arcs is suppressed (particularly, the root becomes a degree two node) and are called

embedded spanning trees if its set of leaves is exactly X. Tree-child phylogenetic networks are

characterized by their set of embedded spanning trees [11], but not general phylogenetic

networks.

In [3], the Liu polynomial is generalized to phylogenetic networks by their sets of embedded

spanning trees. Roughly speaking, the polynomial of the network is the product of the polyno-

mials of the embedded spanning trees (considering trees with multiplicity). Consequently, this

extension is a complete invariant for tree-child networks.

There are some natural extensions of the Liu polynomial to IMLN’s that come to mind. The

first one, for internally labelled phylogenetic networks, is to completely unfold such a network

and, from any elementary node u labelled λi, for some i 2 {1, . . ., r} and labels λi distinguish-

able from labels xi, grow an arc to a new node v, label v as λi, and finally forget the labelling of

u. Thus, the unfolded IMLT becomes a multi-labelled tree over leaves {x1, . . ., xn, λ1, . . ., λr}.
See an example of that decomposition in Fig 2 from the internally labelled phylogenetic net-

work N depicted in Fig 1. By means of Corollary 3.5 in [1], this extension of the polynomial is

immediately seen to uniquely characterize an internally labelled phylogenetic network.

We will here deal with a natural extension that reflects the reticulation process in the sheer

morphology of the polynomial, rather than in the name of the variables.

Let N be an IMLN. Then, consider

p : VðNÞ ! Z½x1; . . . ; xn; l1; . . . ; lr; y�

to be defined recursively as follows. Let u 2 V(N), then:

• if u is a leaf, p(u) = φ(u);

• if u is an internal tree node whose two children are v1, v2, p(u) = y + p(v1)p(v2);

• otherwise, i.e. if u has only one child v and its associated label is λi = ℓ(u), then p(u) = λi p(v).

Then, let ρN be the root of N; we define p(N) to be p(ρN). Notice that this definition of the

polynomial p is given over generic IMLN’s.
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For example, the polynomial associated to the IMLN represented in Fig 1 is

pðNÞ ¼ yþ y2 þ y3 þ l1l2x2y3 þ l3x3x4y2 þ l1l2x1x2yþ l1l2x1x2y2þ

þl1l2l3x2x3x4y2 þ l1l
2

2
l3x2

2
x3y2 þ l1l

2

2
l

2

3
x2

2
x2

3
x4yþ

þl1l2l3x1x2x3x4yþ l
2

1
l

2

2
x1x2

2
y2 þ l

2

1
l

2

2
l3x1x2

2
x3x4yþ l

2

1
l

3

2
l3x1x3

2
x3yþ

þl
2

1
l

3

2
l

2

3
x1x3

2
x2

3
x4:

Proposition 11. Let N be an IMLN. Then, for any u 2 V(N), pðuÞ 2 Z½x1; . . . ; xn;
l1; . . . ; lr; y� is an irreducible polynomial if and only if u is a tree node.

Proof. If u is not a tree node the polynomial will not be irreducible, since then there would

exist v 2 V(N) as the only descendant of u, and p(u) = ℓ(u)p(v).

It then remains only to see that if u is a tree node, p(u) is irreducible. In this case, either u is

a leaf and then p(u) = φ(u) = xi for some i 2 {1, . . ., n} and so irreducible, or u has two children

and p(u) = y + Λp(w1)p(w2), where Λ is a product of λi from λ1, . . ., λr, and w1, w2 are the first

descendants from u at each side that are tree nodes (they are possibly equal). Now consider the

polynomial p0(u) obtained from p(u) by changing every variable x1, . . ., xn, λ1, . . ., λr for, say,

x1. Then, it can be seen that p0(u) satisfies Eisenstein’s irreducibility criterion in Z½y�½x1�

(which is an unique factorization domain, UFD) applied to the ideal hyi, and so p(u) is irreduc-

ible when seen as a polynomial in Z½y�½x1; . . . ; xn; l1; . . . ; lr�. But, since y does not divide p(u),

then p(u) is also irreducible in Z½x1; . . . ; xn; l1; . . . ; lr; y�.
The next proposition will show that the polynomial is conserved throughout a sequence of

unfoldings, and therefore will allow us to compute it over any of its members without distinc-

tion. In particular, it can be computed on the unfolding of the network.

Proposition 12. Let N be an IMLN, and ðN;Nu1
;Nu2

; . . . ;Nur
Þ be a sequence of unfoldings.

Then, pðNÞ ¼ pðNu1
Þ and, for any i 2 {1, . . ., r − 1}, pðNuiþ1

Þ ¼ pðNui
Þ.

Proof. Let N0 be an IMLN, and u 2 Rmin(N0). If we are able to show that p(N0) = p(U(N0, u)),

then the proposition will hold. Let v(1), v(2) be the parents of u, in U(N0, u) each of them will be

Fig 2. A multi-labelled tree derived from an internally labelled phylogenetic network. Let N be the network

depicted in Fig 1. This figure depicts a decomposition of N resulting in a multi-labelled tree.

https://doi.org/10.1371/journal.pone.0268181.g002
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the parent of at least one elementary node ux, x 2 {1, 2}, which will be the root of a copy of the

IMLT N0(u), and by construction p(u1) = p(u2) = p(u) = p(N0(u)). Now, by the definition of the

polynomial, p(v(x)) will be the same in N0 and in U(N0, u). Therefore, p(N0) = p(U(N0, u)).

We now introduce two remarks, the first concerning the interpretation of the coefficients

and, the second, about the reconstruction of the unfolding of an IMLN from the polynomial if

it characterizes the IMLN.

Remark 2. The interpretation of the coefficients of the polynomial p(N) can be extended

from Lemma 2.4 in [1] by slightly modifying the definition of primary subtrees to the IMLT T
= U(N). Let a primary subtree S of T be a rooted subtree of T such that S shares the same root

node with T and any leaf node in T is either a leaf node in S or a descendant of a leaf node in S
which does not come from an elementary node.

Then, if we represent p(N) as

X
cðg1; . . . ; gr; a1; . . . ; an; bÞl

g1
1
� � � l

gr
r x

a1
1 � � � xann y

b;

each one of its coefficients counts the number of primary subtrees of U(N) satisfying that:

• γi (for i 2 {1, . . ., r}) is the number of nodes labelled by λi of these subtrees;

• αi (for i 2 {1, . . ., n}) is the number of leaf nodes labelled by xi of these subtrees which are

also leaves in U(N);

• β is the number of leaf nodes of these subtrees which are internal nodes in U(N).

See Fig 3 for the interpretation of some of the terms of the polynomial p(N) of the IMLN N
depicted in Fig 1. Notice that these primary subtrees can then be folded into a sort of “sub-pri-

mary networks”.

Remark 3. In this remark we shall give a first approximation to the problem of reconstruct-

ing the Newick string of an IMLT U(N) from p(N), in the case where the polynomial character-

izes N. Roughly speaking, we proceed as follows: start by substracting y from p(N) and then

factor p(N) − y = q1 � q2. Then the Newick string to consider is (q1, q2). From now on, when-

ever it is possible to substract y from a polynomial q, do so. If the factorization involves only

two members, q = q1 � q2, then proceed as before and replace q by (q1, q2). Otherwise, there

could be conflicts in terms of deciding how to group members in a factorization of type

Y

j2J�f1;...;rg

lj

Y

k

qk;

Fig 3. Two primary subtrees of U(N). Let N be the IMLN depicted in Fig 1. The figure depicts two primary subtrees

of U(N) corresponding to the terms λ1λ2 x2 y3 (left), and l
2

1
l

2

2
l3x1x2

2
x3x4y (right), of the polynomial p(N).

https://doi.org/10.1371/journal.pone.0268181.g003
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where qk are polynomials. But there will always be in the queue of factorizations pending to be

grouped, a pair of them where a “minimum” monomial of type λi � qs is common in both; this

allows one to determine that there is an arc from an elementary node labelled by λi to the sub-

tree determined by the polynomial qs. In terms of the Newick string, it could be replaced by

(λi(qs)).
We are now specially interested in determining under which conditions the polynomial

associated to an IMLN uniquely characterizes it. Note that this is not always the case, indeed

for IMLT’s. See for instance the three representations of IMLT’s in Fig 4. The polynomial fails

to correctly distinguish between them. Roughly speaking, looking at the polynomials of the ele-

mentary vertices we could readily distinguish between the three possibilities, but we cannot do

so by only looking at p(u), since p(u) = y + λ1λ2 p(w1)p(w2).

Strong paths. We shall now present a series of definitions. Let N be an IMLN, and u, v 2
V(N). If there exists a path from u to v consisting only of elementary or reticulation nodes, we

say that u is a strong ancestor of v, and that v is a strong descendant of u. Such a path is called a

strong path. For example, by considering the situation in Fig 4, we can see that in all three

cases w1, w2 strongly descend from u.

Lemma 13. Let N be an internally labelled phylogenetic network, and v1, v2 two reticulation
nodes. If p(v1) = p(v2), then v1 = v2.

Proof. Let w1 be the child of v1; by the definition of the polynomial, p(v1)/p(w1) = λi for

some λi 2 {λ1, . . ., λr}. Since p(v1) = p(v2), it also means that p(v2)/p(w1) = λi, but since N is an

internally labelled phylogenetic network this implies that v2 is a parent of w1 and that ℓ(v2) =

λi. Thus, they are the same node.

Lemma 14. Let N be an internally labelled phylogenetic network, and v a reticulation node in
it. A node u is a strong ancestor of v if, and only if, one of the two following conditions happens:

• p(v) | p(u), that is p(v) divides p(u), and then u is a reticulation node, or

• p(v) | (p(u) − y), and then u is a tree node.

Proof. By the definition of the polynomial and Lemma 13.

Now, if we want to compare two IMLN’s on the same sets of labels {x1, . . ., xn} and {λ1, . . .,

λr}, we should take into account the possibility that two of them are isomorphic up to a permu-

tation of the labels. In order to express this possibility, let σ: {x1, . . ., xn, λ1, . . ., λr}! {x1, . . .,

xn, λ1, . . ., λr} be a permutation such that σ(X) = X (i.e., that fixes the sets of labels of the leaves

and of the elementary or reticulation nodes). Given an IMLN N, we denote by σN the network

isomorphic to N that has all its labels permuted according to σ, and by σp(N) we mean p(σN)

or, equivalently, the polynomial that has all its variables changed according to σ.

Definition 7. Let N1, N2 be two IMLN’s, and σ a permutation of their labels such that σ(X)

= X. We say that N1 and N2 are equivalent modulo strong paths if the following three condi-

tions are satisfied:

1. p(N1) = σp(N2);

Fig 4. Non-isomorphic IMLT’s. Three non-isomorphic IMLT’s presenting the same polynomial at u.

https://doi.org/10.1371/journal.pone.0268181.g004
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2. there exists a bijection f between the sets of tree nodes of N1 and N2 such that, if u, v are tree

nodes and v is a strong descendant of u, then f(v) is a strong descendant of f(u);

3. for any tree node u in N1, p(u) = σp(f(u)).

Being equivalent modulo strong paths is an equivalence relation.

Remark 4. The above definition can also be easily stated exclusively in terms of strong

paths, which are intrinsic to the IMLN. However, the definition in terms of the polynomial is

more tractable and concise.

Notice that all the IMLT’s in Fig 4 are equivalent modulo strong paths. Indeed, we present

the following theorem:

Theorem 15. Let N1, N2 be two IMLN’s, and σ a permutation of their labels such that σ(X) =

X. Then, p(N1) = σp(N2) if, and only if, N1 and N2 are equivalent modulo strong paths.
Proof. The “if” part of the implication is direct by the first condition of the definition of

equivalence modulo strong paths.

Suppose now that p(N1) = σp(N2), and let us show that N1 and N2 must be equivalent. We

first see that there exists a bijection f between the sets of tree nodes of N1 and N2 such that for

any tree node u in N1, p(u) = σp(f(u)). We will use the following inductive schema: we shall

prove that, if u is a tree node in N1 and f(u1) is a tree node in N2 such that p(u) = σp(f(u)), then

if w1, w2 in N1 are the two tree nodes that strongly descend from u1, then the two tree nodes

w0
1
;w0

2
that strongly descend from f(u) in N2 are such that pðw1Þ ¼

spðw0
1
Þ and

pðw2Þ ¼
spðw0

2
Þ. Then, we will provide tree nodes u1, u2 in N1 and N2, respectively, from

which all other tree nodes will descend and such that p(u1) = σp(u2).

Let u be a tree node in N1, and w1, w2 be the two tree nodes that strongly descend from it.

Then, p(u) = y + μ1 � . . . � μr0 p(w1)p(w2), for μ1, . . ., μr0 2 {λ1, . . ., λr}. Then, if p(u) = σp(f(u)),

m1 � . . . � mr0pðw1Þpðw2Þ ¼
sm0

1
� . . . � sm0r0

spðw0
1
Þ
spðw0

2
Þ, where w0

1
;w0

2
are the tree nodes that

strongly descend from f(u) in N2; but since p(w1), p(w2) are both irreducible and different

from any λi, then it must happen that (without loss of generality) pðw1Þ ¼
spðw0

1
Þ and

pðw2Þ ¼
spðw0

2
Þ. Thus, set f ðw1Þ ¼ w0

1
and f ðw2Þ ¼ w0

2
.

We will now show that there is a tree node in both N1 and N2 such that any other tree node

descends from it. Suppose that the root of N1, say ρ1, is a tree node; if so, since p(N1) = σp(N2)

and by Proposition 11, the root of N2, say ρ2, must also be a tree node. Therefore, any other

tree node in their respective IMLN’s must descend from them, and furthermore p(ρ1) = σp(ρ2).

Set f(ρ1) = ρ2.

Finally, suppose that ρ1 is not a tree node; then, p(ρ1) is not an irreducible polynomial, and

therefore neither will σp(ρ2). Let w1 be the only tree node strongly descending from ρ1 in N1. It

is straightforward to see that, if w0
1

is the only tree node strongly descending from ρ2 in N2,

then pðw1Þ ¼
spðw0

1
Þ. In both cases, any other tree node in the network will descend from

them. Therefore, set f ðw1Þ ¼ w0
1
.

Now, the question arises: under which conditions can we say that two internally labelled

phylogenetic networks that are equivalent modulo strong paths are actually isomorphic?

Separability: A sufficient condition. In this part we shall give a sufficient condition for

two internally labelled phylogenetic networks to be completely characterized by the polyno-

mial. In order to do so, we will work with the immediate neighbourhood of any tree node.

Let N be a phylogenetic network, and let u be a tree node in N. Let w1, w2 be the two (possi-

bly equal) tree nodes that strongly descend from it. Let v1; . . . ; vr1 ; . . . ; vr1þr2 be the reticulation

nodes in the strong paths from u to w1 and w2, and suppose that there are r1 such nodes in the

path from u to w1 and r2 in the other. See Fig 5. Let U(u) = {u1, . . ., uk} be the set of all the tree

nodes that are strong ancestors of w1 or w2 different from u. Note that the node ui in Fig 5
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(left) is a node in U(u). In what follows, we will allow ourselves to write U if the context is suffi-

ciently clear. We will present now the following lemma.

Lemma 16. Consider the situation above. Let v be a reticulation node from the collection
v1; . . . ; vr1þr2 . Then, there are two possibilities:

• both its parents are nodes from v1; . . . ; vr1þr2 , or

• there exists at least one tree node ui 2 U such that there is a strong path from ui to v not con-
taining any other reticulation node v1; . . . ; vr1þr2 .

Furthermore, the first possibility can only happen for one reticulation node in v1; . . . ; vr1þr2 ,

and it will hold if, and only if, w1 = w2.

Proof. Suppose that v is the first reticulation node (counting by proximity to u) that satisfies

the first condition (this makes sense, since our networks are binary). In this situation, from it

emerges only one path up to the next tree node. But since N is binary, the two paths that

emerged from u are now confounded in the only path from v to the next tree node, w1 = w2.

See Fig 5, right. Therefore, since there is now only one path of reticulation nodes, no other

node in it can satisfy the first condition.

If v does not satisfy the first condition, one of its parents must not be from v1; . . . ; vr1þr2 . Let

ui be a tree node strong ancestor of such a parent of v. The pair v, ui satisfies the second condi-

tion. See Fig 5, left.

We say that a tree node ui 2 U(u) enters the neighbourhood of u at v if the pair v, ui satisfies

the second condition of Lemma 16. If the context is sufficiently clear, we shall only say that it

enters at v. Likewise, we say that v is the entry of ui to the neighbourhood of u (or that it is just

its entry).

We can then divide the set U into five sets: let v(x), x 2 {1, 2}, be the two children of u, then

we define

UðxÞ1 ¼ fui 2 U : ui enters the neighbourhood of u at only one

reticulation node v that isastrong descendant of vðxÞg;

UðxÞ2 ¼ fui 2 U : ui enters the neighbourhood of u at twoðpossibly equalÞ

reticulation nodes v1; v2 that are strong descendants of vðxÞg;

U3 ¼ U ðUð1Þ1 [ U
ð2Þ

1 [ U
ð1Þ

2 [ U
ð2Þ

2 Þ:

Fig 5. Strong paths from a tree node. A tree node u and its strong descendants w1 and w2 (left) or w1 (right). The

curly paths represent strong paths. The nodes v and ui are used in the proof of Lemma 16.

https://doi.org/10.1371/journal.pone.0268181.g005
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Notice that, if w1 6¼ w2, then

U3 ¼ fui 2 U : ui is a strong ancestor of bothw1 andw2g:

The above division fUð1Þ1 ;Uð2Þ1 ;Uð1Þ2 ;Uð2Þ2 ;U3g is a partition of U. In Fig 6 three tree nodes

u1, u2 and u3 from the set U = U(u) are represented. Note that u1 2 U
ð1Þ

1 , u2 2 U
ð2Þ

2 and u3 2

U3.

In general, given all the polynomials evaluated at each tree node of U, we cannot deduce the

exact configuration of the vi’s. Remember, for instance, for the case where r1 + r2 = 2, the three

situations presented in Fig 4. That is, we had no a priori information on which vi were strong

ancestors of w1 and which of w2. This fact motivates the following definition.

Definition 8. Let N be a phylogenetic network and u a tree node in it. Let v(x), x 2 {1, 2}, be

the two children of u. We say that u is separable if either v(1) and v(2) are tree nodes, or if there

exists a tree node u1 different from u such that it satisfies one of the following conditions:

• is a strong ancestor of v(1) (or v(2)) but not of any other strong descendant of u, or

• is a strong ancestor of v(1) (or v(2)) and of one of its strong descendants.

Remark 5. In this case, the negative definition might be more intuitive. Let u be a tree node

with w1 and w2 the tree nodes strongly descended from u. Then u is not separable if none of its

two children v(1) and v(2) are tree nodes, and

• if w1 6¼ w2, all the strong ancestors of v(1), v(2) that are not u are in U3(u), or

• if w1 = w2 and v is the first reticulation node that is a strong descendant of both v(1) and v(2),

then any strong ancestor of v(1) that is not u will be a strong ancestor of a reticulation node

in the strong path from v(2) to v, and vice versa.

Fig 6. Division of U(u). Three trees nodes evidencing the type of sets in the division of U(u). In this case, u1 2 U
ð1Þ

1 ,

u2 2 U
ð2Þ

2 and u3 2 U3.

https://doi.org/10.1371/journal.pone.0268181.g006
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A phylogenetic network is called separable if all its tree nodes are so.

Remark 6 Notice that separability is a completely topological condition. Thus, we will use it

indistinguishably for phylogenetic networks and internally labelled phylogenetic networks.

The key point in separability is that given u a separable tree node and all the polynomials

of the tree nodes that are strong ancestors of w1 and w2, we can actually identify the polynomial

p(u1) of the tree node that satisfies the conditions of the definition, and thus we can identify

which reticulation nodes descend from v(1) and which from v(2). Indeed: if w1 6¼ w2, p(u1)

will be such that p(w1) divides p(u1) − y but p(w2) does not, and contains the largest number of

λ1, . . ., λr dividing p(u) − y. If w1 = w2, the argument is analogous using pðw1Þ
2∤pðu1Þ � y. As a

result, we are able to deduce that pðvðxÞÞ ¼ mðxÞ1 . . . mðxÞrx pðwxÞ, x 2 {1, 2}, for m
ðxÞ
1 . . . mðxÞrx dividing

p(u) − y. Thus, we are able to “separate” p(u) into the contributions from p(v(1)) and p(v(2)).

Fig 7 depicts two sub-networks which can be part of internally labelled phylogenetic net-

works (and then part of the underlying phylogenetic networks) that are not separable. Notice

that they are not separable at any of the nodes u1, u2, u3. The filled triangle and non-filled tri-

angle pendant at w1 and w2 represent non-isomorphic sub-networks (for example a leaf and a

cherry). Note that in both cases we have the same polynomials at ui, namely p(u1) = y + λ1λ2λ3

p(w1)p(w2), p(u2) = y + λ1λ2λ3λ4 p(w1)p(w2) and p(u3) = y + λ1λ2λ4 p(w1)p(w2). Thus, we can

not distinguish between the sub-networks when looking at p(u1), p(u2), p(u3).

Lemma 17. Let N be an internally labelled phylogenetic network, and u1 a tree node in it such
that it is one of the deepest tree node (i.e., one for which exists path of maximal length from the
root to it) satisfying the following condition: there exists another tree node u2 such that p(u1) = p
(u2). Then, u1 and u2 must have the same set of children.

Proof. If u1 is a leaf, there is nothing to prove, because all the leaves have a different label.

Then if p(u1) = p(u2), and p(u1) = φ(u1), we must have u2 = u1. In the other case, let v(1), v(2) be

the two children of u1; since p(v(1)) and p(v(2)) both divide p(u2) − y and are unique (because

u1 is one of the deepest node satisfying the condition in the statement of the lemma), u2 is a

strong ancestor to both of them. Therefore, v(1), v(2) must be reticulation nodes.

We write

pðu1Þ ¼ yþ mð1Þ1 � . . . � mð1Þr1 m
ð2Þ

1 � . . . � mð2Þr2 pðw1Þpðw2Þ;

where w1, w2 are the tree nodes that strongly descend from u1, pðvðxÞÞ ¼ mðxÞ1 � . . . � mðxÞrx pðwxÞ

for x 2 {1, 2}, and m
ð1Þ

i ; m
ð2Þ

j 2 fl1; . . . ; lrg. From v(x) to wx there is only one strong path of

length rx, and since u2 is a strong ancestor of both v(1) and v(2) there are r1 + r2 polynomials λ1,

Fig 7. Non separable internally labelled phylogenetic networks. None of the nodes u1, u2, u3 are separable. The filled

and non-filled triangles pending from w1 and w2 represent non-isomorphic sub-networks.

https://doi.org/10.1371/journal.pone.0268181.g007
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. . ., λr that divide p(u2) − y. But these are exactly the number of polynomials in λ1, . . ., λr that

must divide p(u2) − y, since p(u1) = p(u2).

Lemma 18. Let N be an internally labelled separable phylogenetic network, and u1, u2 two
internal nodes in it. Then, p(u1) = p(u2) if, and only if, u1 = u2.

Proof. The “if” part is trivial by the definition of the polynomial. By Lemma 13, if either u1,

or u2 is a reticulation node, the result is proven. Therefore, assume that u1, u2 are both tree

nodes, and suppose, for the sake of contradiction, that u1 6¼ u2. Furthermore, assume that u1 is

one of the deepest nodes satisfying that p(u1) = p(u2).

By Lemma 17, their sets of children are the same. Let v1, v2 be the two children of u1 and u2.

Then u1 and u2 are the only strong ancestors of both v1 and v2. Moreover, u2 is in U3(u1). This

means that u1 is not separable and, therefore, neither is N.

Corollary 19. If N is a separable phylogenetic network, then there is no pair of tree vertices
with the same set of children.

Note that the other direction of the implication in the above Corollary is false. See for

instance the (internally labelled) phylogenetic subnetworks depicted in Fig 7. These are non

separable and they have different set of children for every pair of tree nodes.

Isomorphism of internally labelled phylogenetic networks. In this part we prove the

main theorem of this paper. It roughly says that the polynomial is a complete invariant for the

class of internally labelled separable phylogenetic networks up to equivalence modulo strong

paths.

Lemma 20. Let N1, N2 be two internally labelled phylogenetic networks such that, for any u1,

u2 2 Nx, x 2 {1, 2}, p(u1) = p(u2) implies that u1 = u2. Suppose that, for any u, v 2 V(N2), p(u) 6¼

p(v) if u 6¼ v, and let f: V(N1)! V(N2) be a bijection. If there exists a permutation σ of their
labels with σ(X) = X such that p(u) = σp(f(u)) for any u 2 V(N1), then f is an isomorphism of
internally labelled phylogenetic networks.

Proof. In order to ease the notation, and without loss of generality, let us assume that σ is

the identity. The fact that f is a bijection is already required in the statement of the Lemma.

Then, we must prove that if (u, v) 2 E(N1), then (f(u), f(v)) 2 E(N2) and that f preserves the

labels.

Suppose that u is a reticulation node; if (u, v) 2 E(N1), then p(u) = λi p(v) for some λi 2
{λ1, . . ., λr}. Therefore, p(f(u)) = λi p(f(v)) which, since p(f(v)) is unique for f(v), implies that f
(v) is the only child of f(u) (which is a reticulation node since p(f(u)) is not irreducible).

Suppose now that u is a tree node, and let v1, v2 be its two children. Then, we know that

p(vx) = p(f(vx)) for x 2 {1, 2}, and that p(f(u)) = y + p(f(v1))p(f(v2)). Since each node is uniquely

characterized by its polynomial, it means that both f(v1) and f(v2) are strong descendants of

f(u). By an argument analogous to that in the proof of Lemma 17, we can deduce that f(v1) and

f(v2) are actually the children of f(u).

Now, we prove that f preserves the labels on the leaves and on the reticulations. If u 2 L(N1),

then f(u)2L(N2). Since u 2 L(N1), by definition, p(u) = φ1(u). Moreover, p(u) = p(f(u)) because

leaves are tree nodes. Since f(u) 2 L(N2), p(f(u)) = φ2(f(u)). Then, φ1(u) = φ2(f(u)). Now, let u 2
R(N1) (a reticulation on N1). By definition, p(u) = ℓ1(u)p(v), where v is the single child of u.

We have seen above that p(f(u)) = ℓ1(u)p(f(v)); but, since f(u) is a reticulation in N2 and f(v) is

its single child, by definition, p(f(u)) = ℓ2(f(u))p(f(v)). Then, ℓ1(u) = ℓ2(f(u)).

Theorem 21. Let N1, N2 be two internally labelled separable phylogenetic networks. If they
are equivalent modulo strong paths, then they are isomorphic.

Proof. By Lemma 18, if N1 and N2 are separable, then p(u1) = p(u2) implies u1 = u2 for any

internal node in either N1 or N2. Then, if we are able to find a bijection f between the sets of

nodes satisfying the premises of Lemma 20, we will be able to apply it and show the result.
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Now, N1 and N2 are equivalent modulo strong paths, and that means that there exists a

bijection f between the sets of tree nodes such that, for a fixed permutation σ between the sets

of labels with σ(X) = X, p(u) = σp(f(u)) for any tree node u, and if u, v are tree nodes and v is a

strong descendant of u, then f(v) is a strong descendant of f(u). We shall show that this f
induces our bijection if we generalize it to any internal node (i.e., if we define it correctly over

the reticulation nodes in N1). In order to ease the notation, and without loss of generality, let σ
be the identity.

Let v be a reticulation node in N1, and u a tree node that is a strong ancestor of it. Let v(1),

v(2) be the children of u, and suppose that v strongly descends from v(1). Let w1, w2 be the two

(possibly equal) tree nodes that strongly descend from u.

Since N1 is separable, in particular u is separable, and we know that we can write pðvð1ÞÞ ¼

m
ð1Þ

1 . . . mð1Þr1 pðw1Þ and pðvð2ÞÞ ¼ mð2Þ1 . . . mð2Þr2 pðw2Þ. Now, by Lemma 16, either (1) there exists a

tree node u0 that enters the neighbourhood of u at v, or (2) it does not and both parents of v
are strong descendants of u.

Thus, we distinguish the following cases:

(1). There exists a tree node u0 that enters the neighbourhood of u at v, and

• if v is the only reticulation node at which u0 enters the neighbourhood of u (that is

u0 2 Uð1Þ1 ðuÞ), then pðvÞ ¼ mð1Þi1 . . . mð1Þr1 pðw1Þ, where m
ð1Þ

i1 ; . . . ; mð1Þr1 are the only polynomials

in λ1, . . ., λr that divide both p(u) − y and p(u0) − y.

• if u0 also enters the neighbourhood of u at some v0 and there is no strong path between v
and v0 (that is u0 2 U3(u)), then pðvÞ ¼ mð1Þi1 . . . mð1Þr1 pðw1Þ, where m

ð1Þ

i1 ; . . . ; mð1Þr1 are the only

polynomials in λ1, . . ., λr that divide both p(u) − y and p(v(1)).

• if u0 also enters the neighbourhood of u at some v0 that is a strong ancestor of v (that is a

case where u0 2 Uð1Þ2 ðuÞ), then pðvÞ ¼ mð1Þi1 . . . mð1Þr1 pðw1Þ, where m
ð1Þ

i1 ; . . . ; mð1Þr1 are the only

polynomials in λ1, . . ., λr such that they divide p(u) − y and, for every j 2 {i1, . . ., r1},

ðm
ð1Þ

j Þ
2
j pðu0Þ � y.

• if u0 also enters the neighbourhood of u at some v0 that is a strong descendant of v (that is

a case where u0 2 Uð1Þ2 ðuÞ), then pðvÞ ¼ mð1Þi1 . . . mð1Þr1 pðw1Þ, where m
ð1Þ

i1 ; . . . ; mð1Þr1 are the only

polynomials in λ1, . . ., λr that divide both p(u) − y and p(u0) − y.

Notice that the above arguments are independent of whether w1 = w2 or not.

(2). Both parents of v are strong descendants of u (and so w1 = w2). Let mi1 the label of the

reticulation v and let mi1 ; . . . ; mr3 the labels of reticulations in the strong path from v to

w1. Then pðvÞ ¼ mi1 . . . mr3pðw1Þ, where μj for j 2 {i1, . . ., r3} are the only polynomials in

λ1, . . ., λr such that (μj)2jp(u) − y.

Since N2 is also separable, in particular f(u) is separable, and since p(f(u)) = p(u) (because

N1 and N2 are equivalent modulo strong paths), some of its children cannot be a tree node.

Therefore, if vð1Þ
�
; vð2Þ
�

are its children, there must exist a tree node u1 that is either a strong

ancestor of vð1Þ
�

but not of any other strong descendant of f(u) or a strong ancestor of, say, vð1Þ
�

and of one of its strong descendants. This node will allow us to characterize pðvð1Þ
�
Þ. But since

N1 and N2 are equivalent modulo strong paths, there exists f−1(u1) in N1 that satisfies the same

condition with regard to the pair u, v(1) in N1, and so pðvð1ÞÞ ¼ pðvð1Þ
�
Þ and pðvð2ÞÞ ¼ pðvð2Þ

�
Þ.

Thus, we set f ðvð1ÞÞ ¼ vð1Þ
�

and f ðvð2ÞÞ ¼ vð2Þ
�

.
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Now, for any v� reticulation node strongly descending from either vð1Þ
�

or vð2Þ
�

, any of its

strong ancestors that are tree nodes are such that there exists a tree node in N1 with its same

polynomial (and thus, is a strong ancestor of some v strongly descending from u). Therefore,

we will have that p(v) = p(v�), and we can then set f(v) = v�.
Theorem 15 and Theorem 21 together imply the following main result.

Theorem 22. Let N1, N2 be two internally labelled separable phylogenetic networks, and σ a
permutation of their labels such that σ(X) = X. If p(N1) = σp(N2), then N1 and N2 are isomorphic.

Orchard networks. In this subsection we prove that the phylogenetic networks in the

class of orchard networks [12] are separable. These (strictly) include tree-child networks.

Before we recall the definition of orchard networks, we need to introduce some definitions.

Let N be a phylogenetic network on X. Let {a, b}� X. The set {a, b} is a cherry of N if a and b
share a parent. Let pa and pb the parents of a and b, respectively. If pb is a reticulation and (pa,
pb) is an arc in N, then {a, b} is a reticulated cherry of N.

Let N be a phylogenetic network and let {a, b} be a cherry of N. Then “reduce b” is the opera-

tion of deleting b and suppressing the resulting elementary node. If pa = pb is the root of N,

then delete b and the root. If {a, b} is a reticulated cherry of N in which pb is the reticulation,

“cut {a, b}” is the operation of deleting (pa, pb), and suppressing the two resulting elementary

nodes. For both operations, we say that a cherry-reduction is performed on N.

Let N be a phylogenetic network. The sequence N = N0, N1, . . ., Nk of phylogenetic networks

is a cherry-reduction sequence of N if, for all i 2 {1, . . ., k}, the phylogenetic network Ni is

obtained from Ni−1 by a (single) cherry-reduction. Then, a phylogenetic network N is orchard
if there exists a cherry-reduction sequence N = N0, N1, . . ., Nk of N such that Nk consists of a

single vertex.

Theorem 23. Orchard networks are separable.
Proof. Let N be an orchard network and let N = N1, . . ., Nk be a sequence of cherry-reduc-

tions of N. We prove that, for any i 2 {1, . . ., k − 1}, if Ni is not separable, then Ni+1 is not either.

This means that if N is not separable, the last network in every cherry-reduction sequence can-

not be a single vertex, reaching a contradiction due to N being orchard.

If a reduction of a leaf in a cherry is produced there is nothing to prove because it does not

involve reticulation nodes. Then suppose that a cut of a reticulated cherry {a, b} is produced in

Ni. Let pa and pb the parents of a and b, respectively, and let pb the reticulation node. Then pa is

a tree node. Moreover pa is a separable node in Ni because the single strong descendant that is

a reticulation node of pa is pb. Then, Ni is not separable due to some other tree node.

Notice that the cut of the reticulated cherry {a, b} does not change the relation of strong des-

cendance in the remaining nodes; i.e., u, v were such that v strongly descended from u in Ni if,

and only if, the correspondent nodes in Ni+1 satisfy this condition too. More precisely, let u be

a non separable tree node, v(1), v(2) its children and w1, w2 the tree nodes that strongly descend

from it. By Remark 5 this means that, to begin with, neither v(1) nor v(2) are tree nodes and, if

w1 6¼ w2, all the strong ancestors of v(1), v(2) that are not u are in U3(u). Now, pa can never be in

U3(u) because one of its children is a leaf, a. Therefore, the cut of the reticulated cherry {a, b}

would not affect the non separability of u. Suppose now that w1 = w2. By Remark 5, if v is the

first reticulation node that is strong descendant of both v(1), v(2), the reticulation node pb can-

not be in the strong paths from v(1) to v and from v(2) to v (note also that must be pb 6¼ v).

Then, both strong paths remain untouched to the cut of the reticulated cherry and also the set

of strong ancestors of v(1) and v(2) that cause the non separability of u. Therefore, any non sepa-

rable tree node in Ni continues to be so in Ni+1.

Unlabelled version. Throughout this paper we have not made any use of the different

labels of the leaves of an IMLN, and so the arguments could be translated, mutatis mutandis,
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to IMLN’s whose leaves are not labelled (although internal labels would still be necessary),

modelled by labelling all leaves using a single variable x, to give a polynomial in

Z½x; l1; . . . ; lr; y�. Again, for the case of phylogenetic networks, this would require that given

two unlabelled phylogenetic networks we consider internally labelled phylogenetic networks

with the same topology. This leads to the following proposition:

Proposition 24. Let N1, N2 be two internally labelled separable phylogenetic networks whose
leaves are all labelled by x. Then, p(N1) = p(N2) implies that N1 and N2 are isomorphic.

Discussion and conclusion

In this paper a new complete polynomial invariant for a class of (binary) phylogenetic net-

works, that of separable networks, is introduced. It generalizes results in both [2] for phyloge-

netic trees and in [3] for phylogenetic networks where their set of embedded spanning trees

(like tree-child) characterizes it. The introduced polynomial p is a generalization of the Liu

polynomial and it is defined in a more generic structure of networks, called IMLN’s, where the

reticulations are also labelled with labels other than those on the leaves. In contrast to [3], we

compute the polynomial directly over the IMLN, and we avoid to previously compute its set of

spanning trees. We prove that for the case of separable phylogenetic networks, the internally

labelled structure derived from those is completely characterized by the polynomial. This

induces a complete polynomial invariant for separable phylogenetic networks. That is, given

two separable phylogenetic networks N1 and N2 on X, we could fix an internally labelled phylo-

genetic network from it, say N�
1
, by bijectively labelling the reticulations. Then, if we consider

all possible internally labelled phylogenetic networks obtained from N2 by the permutation of

all its variables, X and the reticulations, we can compare pðN�
1
Þ with the polynomial of all the

networks obtained from N2. Note that, due to Proposition 24, we could avoid the permutation

of the labels on X, reducing the cost of this computation.

Establishing a complete polynomial invariant for phylogenetic networks opens the door to

several interesting opportunities for exploration, such as new ways to define metrics on net-

works, fast methods to distinguish networks, and possibly ways to extract important features

of a network by examining this polynomial. To this end, it may be helpful to understand

whether a particular polynomial is derived from a network or not (for clearly not all irreduc-

ible polynomials give networks).

Furthermore, the computation of p(N) here may be performed reticulation-by-reticulation

for some network classes, eg orchard networks [12]. That is, suppose that N is an internally

labelled phylogenetic network derived from an orchard network and N = N0, N1, . . ., Nk is a

complete cherry reduction sequence of N (that is Nk is a single node). We can perform an

assignment of polynomials to all leaves in every intermediate IMLN Nj. Finally, p(N) is the

polynomial assigned to the single node in Nk. Start by assigning p(u) = φ(u), for every leaf u in

N0. Then, let {v1, v2} be the two leaves involved in the cherry-reduction to move from Nj to Nj

+1 and let p(vi) be the polynomial assigned to vi in Nj for i 2 {1, 2}. Then,

• if {v1, v2} is a cherry, assign to the resulting leaf in Nj+1 the polynomial y + p(v1)p(v2).

• if {v1, v2} is a reticulated cherry (being v2 the child of the reticulation labelled by λi), assign to

the resulting leaf in Nj+1 coming from the parent of v1 the polynomial y + λi p(v1)p(v2), and

to the resulting leaf in Nj+1 coming from the parent of v2, the polynomial λi p(v2).

It would be interesting to investigate more optimisations for general or for specific sub-

classes of phylogenetic networks.

It would also be interesting to think about ways to reduce the complexity of the polynomial

assigned to a network; even at the expense of a loss of the uniqueness of this assignment. One
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possibility would be, for instance, to define a polynomial for a phylogenetic network over the

IMLT into which is transformed the network following a similar approach that allow the com-

putation of its extended Newick format [13]. Consider, for example, this: for every reticulation,

split it (also copying its label) in two copies, the first such copy with one of its parent and its

child, and the other copy with the other parent and no children. See two examples of this

decomposition in Fig 8 from the internally labelled phylogenetic network N depicted in Fig 1.

Clearly, this transformation process is not unique, and different IMLT’s can be obtained from

the same network; but different networks result in disjoint sets of IMLT’s. Notice that this pro-

cess can be understood as a way to prune irrelevant subtrees of the IMLT U(N) defined in the

Subsection Folding and unfolding, with the goal to keep enough information to code the net-

work. Roughly speaking, to recover the network from these IMLT’s one should only merge

every pair of nodes labelled by the same λi. Applying the definition of the polynomial p to

these IMLT’s, we obtain, for the example depicted in Fig 8(a), the polynomial

pðNÞ ¼ yþ y2 þ y3 þ l1y3 þ l1l3x4y2 þ l1l2l3x2x3y2 þ l1l2l
2

3
x2x3x4yþ

þl1l2x1yþ l1l2x1y2 þ l1l2l3x1x4yþ l
2

1
l2x1y2 þ l

2

1
l2l3x1x4yþ

þl
2

1
l

2

2
l3x1x2x3yþ l

2

1
l

2

2
l

2

3
x1x2x3x4;

where (some of) the terms are notably simpler than in the original.

There are potentially many further questions arising that relate to phylogenetic networks

more broadly. For instance, do embedded spanning trees characterize general internally

labelled phylogenetic networks? That is, if we keep the labels on elementary nodes (which

come from reticulation nodes) of the embedded spanning trees, can we extend the results in

[11] from tree-child networks to more general networks? Which classes of phylogenetic net-

works are separable? Do FU-stable networks require all the labels of the polynomials λ1, . . ., λr
or can these be replaced by a single variable λ? And, over all, is there a complete characteriza-

tion in topological terms of the phylogenetic networks that are characterized by the polynomial

introduced in this article?

With all this, we hope that the results here will stimulate these and many other

investigations.
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