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Why are discrete implications necessary?
An analysis through the discretization process

M. Munar, S. Massanet, D. Ruiz-Aguilera

Abstract—Discrete implications have been studied for almost
two decades as those operators needed to perform inference
processes when dealing with qualitative information from a finite
chain. However, it is known that by means of some adequate
transformations, fuzzy logic operators defined in [0, 1] can gen-
erate the corresponding discrete operators. Thus, an immediate
question arises: do we need to study discrete implications or
is it enough to study implications defined in [0, 1] and then to
discretize them? The answer must rely on the preservation of the
additional properties of fuzzy implication functions through these
discretization methods. In this paper, for two specific methods
based on the ceiling and floor functions it is proved that most of
the additional properties are not preserved in general, showing
that the preservation of the additional properties depends directly
on the properties of the underlying operators considered in the
discretization. Thus, sufficient, and for some properties necessary,
conditions to guarantee the preservation are presented.

Index Terms—discrete implications, discretization, finite chains

I. INTRODUCTION

When we have to deal with qualitative information, the use
of finite scales is a good framework to model this type of
data. For example, considering the set of linguistic labels that
an expert has to assess the behavior of a certain system:

S = {Very Slow,Slow,Medium,Fast,Very Fast} .

In this context, in order to generically represent this type
of information, the finite chains Ln = {0, 1, . . . , n} or
Γn = { i/n | i ∈ Ln} are usually considered to model these
linguistic labels. The operations defined on these two sets
are often referred to as discrete operators, and their main
objective is to handle qualitative information directly, avoiding
the numerical conversion between the finite chain and the
unit interval. Some well-known families of discrete operators
are discrete negations [1], discrete t-norms ([1], [2], [3])
and discrete implications ([4], [5]), which are the discrete
counterpart of fuzzy negations [6], t-norms [2] and fuzzy
implication functions ([7], [8]), respectively, in the [0, 1]
framework. In addition, for more information about other
families of operators and their applications, we recommend
the reader to visit [9] and [10] for discrete uninorms (a
generalization of discrete t-norms), [11], [12], [13] and [14] for
discrete fuzzy numbers and its applications in decision making,
and finally, [15] and [16] for image processing applications of
discrete implications and discrete t-norms in the framework of
discrete mathematical morphology.

This paper is part of the R&D&I project PID2020-113870GB-I00 funded
by MCIN/AEI/10.13039/501100011033/.

Among all these discrete operators, we highlight discrete
implications whose aim is to generalize in the discrete setting
the conditional statement if p then q. Despite the undoubted
importance that the concept of discrete implication presents,
a question that arises is precisely in its reason to be studied
separately. If the numerical conversion process preserves the
properties that are satisfied in one domain into the other,
it should not be necessary to consider discrete implications:
it would be enough to convert a fuzzy implication function
defined in [0, 1] to a discrete implication in Ln or Γn. As
far as we know, the literature has only considered the study
of the conversion between t-norms and discrete t-norms in
[2], and between copulas and discrete copulas in [17]–[19].
In fact, it is only studied when the restriction of a t-norm and
a copula over Γn is a discrete t-norm and a discrete copula,
respectively. Apart from these references, we have not found
any other studies that explores this question in depth.

From the above discussion, the main objective of this paper
is to study whether the conversion between fuzzy implica-
tion functions and discrete implications, which we call the
discretization process, preserves some well-known properties
of fuzzy implication functions, pretending to argue that it is
indeed necessary to consider discrete implications separately.
To do so, the paper is structured as follows. First, Section II
establishes the common notation to be used throughout the
paper, and introduces the main concepts to work with. Sec-
tion III shows that it is possible to convert a fuzzy implication
function to a discrete implication and vice versa by means
of the floor and ceiling functions. This fact could lead to the
idea that, since the chosen discretization process is appropriate
for the task of transforming fuzzy implication functions to
discrete implications, a separate study of discrete implications
would not be entirely necessary. Then, in Section IV we
study the preservation of additional properties through this dis-
cretization process. For the discretization methods presented in
Section III, it is shown that they are not entirely satisfactory
since some properties are not translated directly from their
version in [0, 1] to their discrete counterpart. The paper ends
with some conclusions and some samples of future work.

II. PRELIMINARIES

In order to this paper be self-contained, we recall in this
section some concepts about fuzzy implication functions ([7],
[8]), t-norms [2], negations [6] and their corresponding con-
cept in the discrete framework ([1], [4]).

First of all, we give the definition of fuzzy negation.
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Definition II.1. [6] A fuzzy negation is a function N :
[0, 1]→ [0, 1] such that satisfies the following axioms:

(N1) N is decreasing, i.e., for all x, y ∈ [0, 1] such that x 6 y,
then N(x) > N(y).

(N2) N(0) = 1 and N(1) = 0.

Another widely studied operator is the triangular norm,
which is a well-known family of fuzzy conjunctions.

Definition II.2. [2],[20] A triangular norm (briefly t-norm)
is a binary operator T : [0, 1]2 → [0, 1] such that, for all
x, y, z ∈ [0, 1], satisfies the following axioms:
(T1) T is commutative, i.e., T (x, y) = T (y, x).
(T2) T is associative, i.e., T (T (x, y), z) = T (x, T (y, z)).
(T3) T is monotone increasing, i.e., T (x, y) 6 T (x, z) when-

ever y 6 z.
(T4) T (x, 1) = x.

We now recall the definition of a fuzzy implication function.

Definition II.3. [7] A fuzzy implication function is a binary
operator I : [0, 1]2 → [0, 1] such that, for all x, y, z ∈ [0, 1],
satisfies the following axioms:
(I1) I is decreasing in the first argument, i.e., I(x, y) >

I(z, y) whenever x 6 z.
(I2) I is increasing in the second argument, i.e., I(x, y) 6

I(x, z) whenever y 6 z.
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that from this definition, it follows that I(0, x) = 1 and
I(x, 1) = 1 for all x ∈ [0, 1], whereas the segments I(x, 0) and
I(1, x) are not derived from the definition. Now, we present
some additional interesting properties for fuzzy implication
functions:

• The exchange principle,

I(x, I(y, z)) = I(y, I(x, z)), x, y, z ∈ [0, 1]. (EP)

• The left neutrality principle,

I(1, y) = y, y ∈ [0, 1]. (NP)

• The identity principle,

I(x, x) = 1, x ∈ [0, 1]. (IP)

• The ordering principle,

I(x, y) = 1⇔ x 6 y, x, y ∈ [0, 1]. (OP)

• The consequent boundary,

I(x, y) > y, x, y ∈ [0, 1]. (CB)

• The contrapositive symmetry with respect to a negation
N ,

I(x, y) = I(N(y), N(x)), x, y ∈ [0, 1]. (CP(N ))

• The law of importation with respect to a t-norm T ,

I(T (x, y), z) = I(x, I(y, z)), x, y, z ∈ [0, 1]. (LI(T ))

In addition to the previous properties, continuity is another
property that will be taken into account in the following
sections. Given a fuzzy implication function I , we say that it

is continuous when it is with the usual concept of continuity
for real-valued functions.

To avoid confusion between operators defined in [0, 1] and
those defined in the discrete framework, we will add the
subscript n to indicate that the operator is discrete, and we
will denote discrete negations by Nn : Ln → Ln, discrete
t-norms by Tn : L2

n → Ln and discrete implications by
In : L2

n → Ln, which are defined simply by changing the
domain of definition and keeping the axioms of its [0, 1]
counterpart. However, due to its discrete nature, continuity
is not available in the discrete case; therefore, an attempt to
translate the continuity to the discrete framework is made with
the idea of smoothness, which appeared for the first time in
[21] and has been extensively studied in [1] for discrete t-
norms, and in [4], [5], [22], [23] for discrete implications. Let
us give the definition of smoothness.

Definition II.4. [1] Let f : Ln → Ln be a unary operator. It
is said that f is k-smooth (or simply smooth when k = 1) if

0 6 |f(x+ 1)− f(x)| 6 k, (1)

for all x ∈ Ln \ {n}.

According to this definition, the idea of continuity corre-
sponds in the discrete framework to the 1-smooth case. Now,
given a binary operator, we give the definition of smoothness.

Definition II.5. [1] Let F : L2
n → Ln be a binary operator.

It is said that F is k-smooth (or simply smooth when k = 1)
if it is k-smooth in each argument; that is,

|F (x+ 1, y)− F (x, y)| 6 k, (2)

for all x ∈ Ln \ {n} and y ∈ Ln, and

|F (x, y + 1)− F (x, y)| 6 k, (3)

for all x ∈ Ln and y ∈ Ln \ {n}.

Finally, let us anticipate that practically all the results of
this paper involve the floor and ceiling functions and some
properties about them. Next, we recall their definition.

Definition II.6. Let x ∈ R. The floor and ceiling functions
are defined, respectively, as the greatest integer less than or
equal to x, and the least integer greater than or equal to x,
and are represented as

bxc = max {m ∈ Z |m 6 x} , (4)
dxe = min {m ∈ Z |m > x} . (5)

Now we present a technical lemma about some useful
properties about floor and ceiling functions.

Lemma II.1. The following statements are satisfied:

(i) The functions f(x) = bxc and c(x) = dxe are increasing.
(ii) For all x, y ∈ R, bxc − byc − 1 6 bx− yc 6 bxc − byc.

(iii) For all x, y ∈ R, dxe − dye 6 dx− ye 6 dxe − dye+ 1.

Proof. Let us prove each statement.
(i) The proof is straightforward by applying the definition of

floor and ceiling.
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(ii) Given x, y ∈ R, we can decompose each number as x =
n+ α and y = m+ β, with n,m ∈ Z and α, β ∈ [0, 1[.
Then:
• bxc − byc = bn+ αc − bm+ βc = n−m.
• bx− yc = bn+ α−m− βc = bn−m+ (α− β)c =
n−m+ bα− βc. When 0 6 α− β < 1, we have that
bα − βc = 0; conversely, when −1 < α − β < 0, it
follows that bα− βc = −1.

With these two conditions, bxc − byc − 1 6 bx − yc 6
bxc − byc.

(iii) Given x, y ∈ R, using the same decomposition x = n+α
and y = m+ β, with n,m ∈ Z and α, β ∈ [0, 1[:
• dxe−dye = dn+αe−dm+βe = (n+1)−(m+1) =
n−m.

• dx− ye = dn+ α−m− βe = dn−m+ (α− β)e =
n −m + dα − βe. When −1 < α − β 6 0, we have
that dα− βe = 0; conversely, when 0 < α− β < 1, it
follows that dα− βe = 1.

With these two conditions, dxe−dye 6 dx−ye 6 dxe−
dye+ 1.

To conclude the section, we present the following lemma
which relates the floor and ceiling functions.

Lemma II.2. The following statements are satisfied:
(i) If x ∈ Z and y ∈ Z, then bxc − byc = dxe − dye.

(ii) If x ∈ R \Z and y ∈ R \Z, then bxc− byc = dxe− dye.
(iii) If x ∈ Z and y ∈ R \Z, then bxc− byc = dxe− dye+ 1.
(iv) If x ∈ R \Z and y ∈ Z, then bxc− byc = dxe− dye− 1.

Proof. (i) If x ∈ Z and y ∈ Z, then bxc = dxe = x and
byc = dye = y; directly bxc − byc = dxe − dye.

(ii) If x ∈ R \ Z and y ∈ R \ Z, then dxe = bxc + 1 and
dye = byc + 1. Subtracting both expressions, the result
follows:

dxe − dye = (bxc+ 1)− (byc+ 1) = bxc − byc.

(iii) If x ∈ Z and y ∈ R \ Z, then bxc = dxe = x and
dye = byc + 1. Subtracting both expressions, the result
follows:

dxe − dye = bxc − (byc+ 1) = bxc − byc − 1.

(iv) If x ∈ R \ Z and y ∈ Z, then dxe = bxc+ 1 and byc =
dye = y. Subtracting both expressions, the result follows:

dxe − dye = bxc+ 1− byc.

III. DISCRETIZATION OF FUZZY IMPLICATION FUNCTIONS
AND EXTENSION OF DISCRETE IMPLICATIONS

From a fuzzy implication function I : [0, 1]2 → [0, 1],
it would be interesting to generate a discrete implication
In : L2

n → Ln. Moreover, if I satisfies a certain property,
one would expect that the property is preserved and In also
satisfies it in the discrete framework, obtaining a link between
fuzzy implication functions and discrete implications. In order
to convert a scalar-valued function to a discrete operator, we

will now define the generic upper and lower discretizations
with respect to a positive integer using the floor and ceiling
functions (see Definition II.6). This process will be called
discretization.

Definition III.1. Let F : R2 → [0, 1] be a scalar-valued func-
tion. The upper and lower discretizations of F with respect to
a positive integer n > 1 are defined as the discrete mappings
FU
n , F

L
n : L2

n → Ln whose expressions are, respectively,

FU
n (i, j) =

⌈
n · F

(
i

n
,
j

n

)⌉
, (6)

F L
n (i, j) =

⌊
n · F

(
i

n
,
j

n

)⌋
, (7)

for all i, j ∈ Ln.

For the discretization to be an appropriate process, when
applying it to a fuzzy implication function I the result must
be a discrete implication. The following result shows that
when discretizing a fuzzy implication function through these
methods, a discrete implication is obtained.

Proposition III.1. Let I : [0, 1]2 → [0, 1] be a fuzzy
implication function. Then, the upper and lower discretizations
IU
n , I

L
n : L2

n → Ln of I are discrete implications.

Proof. First of all, let us see that the upper and lower dis-
cretizations are well-defined; that is, that the image of any
point of L2

n lies inside Ln. Since I is a fuzzy implication
function, it satisfies that 0 6 I(x, y) 6 1 and, therefore,
0 6 n · I(x, y) 6 n. In consequence, 0 6 bn · I(x, y)c 6 n
and 0 6 dn · I(x, y)e 6 n for all (x, y) ∈ [0, 1]2. In short, the
discrete mappings

IU
n (i, j) =

⌈
n · I

(
i

n
,
j

n

)⌉
,

IL
n(i, j) =

⌊
n · I

(
i

n
,
j

n

)⌋
,

are well-defined. Let us check that both satisfy the axioms of
discrete implications. Without loss of generality we will prove
only for IU

n since the proof for IL
n is analogous.

• IU
n (0, 0) = dn · I(0, 0)e = dn · 1e = dne = n.

• IU
n (n, n) = dn · I(1, 1)e = dn · 1e = dne = n.

• IU
n (n, 0) = dn · I(1, 0)e = dn · 0e = 0.

Now, we know that I is decreasing in the first argument and in-
creasing in the second. Applying statement (i) of Lemma II.1,
IU
n , I

L
n are also decreasing in the first argument and increasing

in the second.

Throughout the paper we will consider both discretizations
as they are different operators and may not coincide in some
cases, as shown in the following example.

Example III.1. The discretizations IL
n and IU

n do not coincide
in general. If we consider the Reichenbach implication, given
by IRC(x, y) = 1 − x + xy for all x, y ∈ [0, 1], the
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discretizations evaluated at (n − 1, n − 1) do not coincide
because

IL
n(n− 1, n− 1) =

⌊
n− 1 +

1

n

⌋
= n− 1,

IU
n (n− 1, n− 1) =

⌈
n− 1 +

1

n

⌉
= n,

for all n > 1.

So far, we have seen that it is possible to convert a fuzzy
implication function in [0, 1] to a discrete implication. Let us
tackle the inverse problem. Given a discrete implication, we
ask whether it is possible to find a fuzzy implication function
whose discretizations coincide and are the initial discrete im-
plication. As the reader should be foreseeing, the answer to this
problem is affirmative: it is enough to construct an implication
I such that I(x, y) = In(n·x,n·y)

n when (x, y) ∈ Γ2
n, where

Γn = { i/n | i ∈ Ln}; for the points in the remaining space
[0, 1]2 \ Γ2

n, we can perform a piece-wise linear interpolation.

Theorem III.1. Let In : L2
n → Ln be a discrete implication.

Then, In is the upper and lower discretization of some
continuous implication I : [0, 1]2 → [0, 1].

Proof. From the given discrete implication In, let us construct
a continuous implication. Let us consider the set Γn ⊂ [0, 1],
such that Γ2

n defines a grid within [0, 1]2. For each i, j ∈
Ln \ {n}, let us consider the following points:

Pi,j =

(
i

n
,
j

n
,
In (i, j)

n

)
,

Pi,j+1 =

(
i

n
,
j + 1

n
,
In (i, j + 1)

n

)
,

Pi+1,j =

(
i+ 1

n
,
j

n
,
In (i+ 1, j)

n

)
,

Pi+1,j+1 =

(
i+ 1

n
,
j + 1

n
,
In (i+ 1, j + 1)

n

)
.

Fig. 1. Scheme for the construction of the planes that will define the
continuous implication. Within each triangle in the XY plane generated by
Pi,j , Pi,j+1, Pi+1,j+1 and Pi,j , Pi+1,j , Pi+1,j+1, a plane passing through
these three points will be constructed.

The plane passing through the points Pi,j , Pi,j+1, Pi+1,j+1

has v1 =
−−−−−−→
Pi,jPi,j+1 and v2 =

−−−−−−−−→
Pi,jPi+1,j+1 as director

vectors, and passes through the point Pi,j . Likewise, the plane
that passes through the points Pi,j , Pi+1,j , Pi+1,j+1 has as
director vectors the same v2, and also v3 =

−−−−−−→
Pi,jPi+1,j .

Because both planes pass through the same point Pi,j and
share the director vector of the diagonal, continuity is assured
on the diagonal of each square (see Figure 1). Now, each
triangle named above defines a domain in [0, 1]2, and the
expression of the continuous implication in each domain is
the plane passing through the three points of the triangle. Let
us calculate the expression in each domain.

• Domain of the plane generated by Pi,j , Pi,j+1, Pi+1,j+1:

R1
i,j =

{
(x, y) ∈

[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

] ∣∣∣∣(
y − j

n

)
>

(
x− i

n

)}
.

The expression of the plane is:

zij(x, y) =

(
x− i

n

)(
In (i+ 1, j + 1)

n
− In (i, j + 1)

n

)
+

(
y − j

n

)(
In (i, j + 1)

n
− In (i, j)

n

)
+
In (i, j)

n
.

• Domain of the plane generated by Pi,j , Pi+1,j , Pi+1,j+1:

R2
i,j =

{
(x, y) ∈

[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

] ∣∣∣∣(
y − j

n

)
6

(
x− i

n

)}
.

The expression of the plane is:

wij(x, y) =

(
x− i

n

)(
In (i+ 1, j)

n
− In (i, j)

n

)
+

(
y − j

n

)(
In (i+ 1, j + 1)

n
− In (i+ 1, j)

n

)
+
In (i, j)

n
.

Then, for all i, j ∈ Ln\{n}, the continuous implication
I : [0, 1]2 → [0, 1] is defined as:

I(x, y) =

{
zij(x, y), if (x, y) ∈ R1

i,j for some i, j ∈ Ln\{n},
wij(x, y), if (x, y) ∈ R2

i,j for some i, j ∈ Ln\{n}.
(8)

It is direct to show that this binary function satisfies the
boundary conditions of an implication in [0, 1] and it is
decreasing in the first argument and increasing in the second
one, and therefore is a fuzzy implication function.

Remark III.1. The continuous implication constructed in
Theorem III.1 is not unique. In the proof, a linear piece-
wise interpolation has been applied on each of the two
triangles generated by the main diagonal of each square[
i
n ,

i+1
n

]
×
[
j
n ,

j+1
n

]
, for all i, j ∈ Ln \ {n} (see Equation (8)

for its expression). However, an analogous reasoning can be
performed to obtain another continuous interpolation. Let us
consider all the triangles generated in the same way, and let
us also perform the same linear piece-wise interpolation on all
of them, except for the lower triangle R1

0,1 ⊂
[
0, 1

n

]2
, where

we will construct a ruled surface.
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(a) Extension of IL,5. (b) Extension of ILK,5. (c) Extension of IGD,5.

(d) Extension of IWB,5. (e) Extension of IFD,5. (f) Extension of IRS,5.

Fig. 2. Representation of the continuous extension of the discrete implications defined in Example III.2 with n = 5. The black dots represent the discrete
implication scaled in Γ5 to fit in the unit cube. The piece-wise appearance can be observed using the planes over each domain R1

i,j and R2
i,j .

Indeed, let us consider the function f(x) = −ax2+1, which
will represent the values of I on the lower boundary, i.e.,
I(x, 0) = f(x), for all x ∈

[
0, 1

n

]
. To be an interpolation of

the discrete implication In, we have to determine the value of
a with the relation

f

(
1

n

)
=
In(1, 0)

n
,

that leads us to get

a = n (n− In(1, 0)) .

Therefore, it only remains to generate the ruled surface that
has as directrices functions the straight line that joins the
point (0, 0, 1) with

(
1
n ,

1
n ,

In(1,1)
n

)
, and the function f . It

is straightforward to observe that the generated surface is
decreasing in the first argument, since f is decreasing, and
increasing in the second argument, since each line of the sheaf
of straight lines is increasing.

Example III.2. Let us consider the following discrete impli-
cations. In order of appearance: largest, Łukasiewicz, Gödel,
Weber, Fodor and Rescher, whose expressions are, respectively,

IL,n(i, j) =

{
0, if (i, j) = (n, 0),
n, otherwise,

ILK,n(i, j) = min(n, n− i+ j),

IGD,n(i, j) =

{
n, if i 6 j,
j, otherwise,

IWB,n(i, j) =

{
n, if i < n,
j, otherwise,

IFD,n(i, j) =

{
n, if i 6 j,
max(n− i, j), otherwise,

IRS,n(i, j) =

{
n, if i 6 j,
0, otherwise.

Applying Theorem III.1, in particular Equation (8), in
Figure 2 we have the plot of the continuous extensions of
these discrete implications such that their discretizations yield
the original discrete implications. It can be seen that the
extension of the Łukasiewicz discrete implication ILK,n results
in Łukasiewicz implication ILK, since it is continuous and
linearly piece-wise defined. For the other discrete implications,
it is not satisfied that their extension is their corresponding
version in [0, 1]. Since IL, IGD, IWB, IFD and IRS are non-
continuous fuzzy implication functions, when extending their
discrete version in Ln they cannot be recovered because the
extension procedure generates continuous implications.

Moreover, if we consider a continuous fuzzy implication
function, we discretize it and then we construct its continuous
extension, we may not recover the original fuzzy implication
function even though it is continuous. For instance, con-
sidering the Reichenbach implication IRC, this behavior is
illustrated in Figure 3.
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(a) Plot of IRC. (b) Extension of the upper discretization of IRC.

Fig. 3. Graphical representation of the Reichenbach implication (Figure 3a), and the continuous extension of its upper discretization (Figure 3b). It can be
seen that the original implication is not recovered, even if it is continuous.

IV. PRESERVATION OF PROPERTIES THROUGH THE
DISCRETIZATION PROCESS

We start this section by returning to the problem raised
at the beginning of Section III. Given a fuzzy implication
function I which satisfies a certain property, by means of
the discretization process, the aim of this section is to study
whether IU

n and IL
n also satisfy it in its discrete counterpart. If

the answer is affirmative, it would not be necessary to carry out
a separate study of the properties of the discrete implications,
since it would be sufficient to discretize I and conclude that IU

n

and IL
n also satisfy it. However, if the answer is negative, it is

interesting to establish under which conditions the properties
are preserved.

Let us start studying the conversion between continuity in
[0, 1] and smoothness in Ln. The following example shows
that continuity is not necessarily converted into smoothness,
and therefore property preservation is not always satisfied.

Example IV.1. The fuzzy implication function I : [0, 1]2 →
[0, 1] given by

I(x, y) =


1, if x 6 y,
1 + 2y − 2x, if x− 1

2 6 y 6 x,
0, otherwise,

(9)

is a continuous function. However, both discretizations are not
smooth because

IL
n(0, 0)− IL

n(1, 0) = IU
n (0, 0)− IU

n (1, 0)

= n−
⌈
n · I

(
1

n
, 0

)⌉
= n−

⌈
n− 2

⌉
= 2,

for all n > 2. The plot of the fuzzy implication function and
the plot of its upper discretization are illustrated in Figure 4.

In Example IV.1, the smoothness fails because the fuzzy
implication function I presents a too sharp growth over a
region of Γ2

n. For the discretizations to be smooth, each
section of I restricted to Γ2

n must not present sharp differences

between consecutive values. This condition is sufficient to
ensure smoothness.

(a)

(b)

Fig. 4. Plot of the continuous implication given in Equation (9) (Figure 4a)
and its upper discretization with n = 7 (Figure 4b), which is not smooth.
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(a)

0

1

2 31

2

3
3

3

3

3

3 3 3

2 2 2

2

2

1

1

1

0

(b)

0

1

2 31

2

3
3

3

3

3

3 3 3

3 3 3

2

2

1

1

1

0

(c)

Fig. 5. Plot of the implication presented in Equation (12) (Figure 5a), its lower
discretization IL

n (Figure 5b) and its upper discretization IU
n (Figure 5c). For

each point (i, j) ∈ L2
n, the image of the point of each discretization is shown.

The white dots represent the points where smoothness fails.

Proposition IV.1. Let I : [0, 1]2 → [0, 1] be a fuzzy im-
plication function, and ∆1 : (Ln\{n})× Ln → [0, 1] and
∆2 : Ln × (Ln\{n})→ [0, 1] be the forward difference op-
erations in each argument of I , given by

∆1(i, j) = I

(
i

n
,
j

n

)
− I

(
i+ 1

n
,
j

n

)
, (10)

∆2(i, j) = I

(
i

n
,
j + 1

n

)
− I

(
i

n
,
j

n

)
. (11)

If 0 6 ∆1(i, j) 6 1
n , for all (i, j) ∈ (Ln\{n}) × Ln, and

0 6 ∆2(i, j) 6 1
n for all (i, j) ∈ Ln × (Ln\{n}), the lower

and upper discretizations IU
n , I

L
n : L2

n → Ln of I are smooth.

Proof. Let us prove the smoothness of IL
n in the first argument

by considering the inequalities proved in Lemma II.1 and
considering two cases:

• If 0 6 ∆1(i, j) < 1
n for some (i, j) ∈ (Ln\{n}) × Ln,

applying that bxc − byc − 1 6 bx− yc for all x, y ∈ R:

IL
n(i, j)− IL

n(i+ 1, j)− 1 =

=
⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
−1

6
⌊
n ·
(
I

(
i

n
,
j

n

)
− I

(
i+ 1

n
,
j

n

))⌋
= bn ·∆1(i, j)c = 0.

• If ∆1 = 1
n for some (i, j) ∈ (Ln\{n})× Ln, using that

bx+ kc = bxc+ k for all x ∈ R and k ∈ Z:

IL
n(i, j)− IL

n(i+ 1, j) =

=
⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
=
⌊
1 + n · I

(
i+ 1

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
= 1 +

⌊
n · I

(
i+ 1

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
= 1.

In any case, we have proved that IL
n(i, j)−IL

n(i+1, j) 6 1 for
all (i, j) ∈ (Ln\{n}) × Ln. Smoothness in the second argu-
ment can be proved with an analogous argument considering
two cases with ∆2. Now, let us prove the smoothness of IU

n

in the first argument.

IU
n (i, j)− IU

n (i+ 1, j) =
⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
6
⌈
n ·
(
I

(
i

n
,
j

n

)
− I

(
i+ 1

n
,
j

n

))⌉
= dn ·∆1(i, j)e = 1.

Obtaining that IU
n (i, j) − IU

n (i + 1, j) 6 1 for all (i, j) ∈
(Ln\{n})×Ln. The smoothness in the second argument can
be proved with an analogous argument.

Example IV.2 shows that the smoothness of IL
n does not

imply the smoothness of IU
n . Furthermore, it is also shown

that the condition stated in Proposition IV.1 is not a necessary
condition.

Example IV.2. Let us consider the non-continuous piece-wise
implication I : [0, 1]2 → [0, 1] given by

I(x, y) =



1, if x = 0 or y = 1,
2
3 , if x ∈

]
0, 1

3

]
and y ∈

[
0, 2

3

[
,

23
30 , if x ∈

]
0, 1

3

]
and y ∈

[
2
3 , 1
[
,

1
3 , if x ∈

]
1
3 ,

2
3

]
and y ∈

[
0, 2

3

[
,

43
60 , if x ∈

]
1
3 ,

2
3

]
and y ∈

[
2
3 , 1
[
,

0, if x ∈
]

2
3 , 1
]

and y ∈
[
0, 1

3

[
,

1
3 , if x ∈

]
2
3 , 1
]

and y ∈
[

1
3 ,

2
3

[
,

7
10 , if x ∈

]
2
3 , 1
]

and y ∈
[

2
3 , 1
[
.

(12)

Setting n = 3, although the lower discretization is smooth,
the upper discretization is not; see diagram in Figure 5.
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Furthermore, it can be observed that the conditions of Propo-
sition IV.1 are not satisfied since

∆2(2, 1) = I

(
2

3
,

2

3

)
− I

(
2

3
,

1

3

)
=

43

60
− 1

3
>

1

3
=

1

n
,

but the lower discretization is still smooth. The reason why
smoothness is not met in the upper discretization is due to two
facts. On the one hand, since IL

3 is smooth at point (3, 1), it
follows that IL

3 (3, 2)−IL
3 (3, 1) 6 1. Because 3 ·I

(
3
3 ,

2
3

)
6∈ L3

and 3 · I
(

3
3 ,

1
3

)
∈ L3, applying Lemma II.2, we get

⌊
3 · I

(
3

3
,

2

3

)⌋
−
⌊
3 · I

(
3

3
,

1

3

)⌋
=

=
⌈
3 · I

(
3

3
,

2

3

)⌉
−
⌈
3 · I

(
3

3
,

1

3

)⌉
−1 6 1.

Therefore IU
3 (3, 2) − IU

3 (3, 1) 6 2. On the other hand,
I
(

3
3 ,

2
3

)
− I

(
3
3 ,

1
3

)
> 1

3 , and this causes that 3 · I
(

3
3 ,

2
3

)
−

3 · I
(

3
3 ,

1
3

)
> 1. Applying ceiling function at both sides of the

inequality and using that dx + ke = dxe + k, for all x ∈ R
and k ∈ Z, we get

⌈
3 · I

(
3

3
,

2

3

)⌉
−
⌈
3 · I

(
3

3
,

1

3

)⌉
> 1.

With all this, it must necessarily happen that IU
3 (3, 2) −

IU
3 (3, 1) = 2.

Next, we consider when it is that the smoothness of IU
n is

equivalent to the smoothness of IL
n.

Proposition IV.2. Let I : [0, 1]2 → [0, 1] be a fuzzy implica-
tion function and IU

n , I
L
n : L2

n → Ln be its discretizations. Let
us suppose that for each (i, j) ∈ (Ln\{n})2 one, and only
one of the following conditions is satisfied:

(i) I
(
i
n ,

j
n

)
∈ Γn, I

(
i+1
n , j

n

)
∈ Γn and I

(
i
n ,

j+1
n

)
∈ Γn.

(ii) I
(
i
n ,

j
n

)
∈ [0, 1] \ Γn, I

(
i+1
n , j

n

)
∈ [0, 1] \ Γn and

I
(
i
n ,

j+1
n

)
∈ [0, 1] \ Γn.

Then, IL
n is smooth if and only if IU

n is smooth.

Proof. Given (i, j) ∈ (Ln\{n})2, let us prove each case.

• If I satisfies (i), applying statement (i) of Lemma II.2,
we have that IL

n is smooth if, and only if,
⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
6 1⌊

n · I
(
i

n
,
j + 1

n

)⌋
−
⌊
n · I

(
i

n
,
j

n

)⌋
6 1


⇔


⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
6 1⌈

n · I
(
i

n
,
j + 1

n

)⌉
−
⌈
n · I

(
i

n
,
j

n

)⌉
6 1

 ,

and this occurs if, and only if, IU
n is smooth.

• If I satisfies (ii), applying statement (ii) of Lemma II.2,
we have that IL

n is smooth if, and only if,
⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
6 1⌊

n · I
(
i

n
,
j + 1

n

)⌋
−
⌊
n · I

(
i

n
,
j

n

)⌋
6 1


⇔


⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
6 1⌈

n · I
(
i

n
,
j + 1

n

)⌉
−
⌈
n · I

(
i

n
,
j

n

)⌉
6 1

 ,

and this occurs if, and only if, IU
n is smooth.

This proposition establishes an equivalence between the
smoothness of IL

n and the smoothness of IU
n assuming only

two conditions about the range of the implication I . However,
the reader will have noted that these two conditions are quite
restrictive. In the next two propositions, we will study when
the smoothness of IL

n implies the smoothness of IU
n and vice

versa, adding more possibilities about the ranges of I .

Proposition IV.3. Let I : [0, 1]2 → [0, 1] be a fuzzy implica-
tion function and IU

n , I
L
n : L2

n → Ln be its discretizations. Let
us suppose that for each (i, j) ∈ (Ln\{n})2 one, and only
one of the following conditions is satisfied:

(i) I
(
i
n ,

j
n

)
∈ Γn, I

(
i+1
n , j

n

)
∈ Γn and I

(
i
n ,

j+1
n

)
∈ Γn.

(ii) I
(
i
n ,

j
n

)
∈ Γn, I

(
i+1
n , j

n

)
∈ [0, 1]\Γn and I

(
i
n ,

j+1
n

)
∈

Γn.
(iii) I

(
i
n ,

j
n

)
∈ [0, 1] \ Γn, I

(
i+1
n , j

n

)
∈ [0, 1] \ Γn and

I
(
i
n ,

j+1
n

)
∈ Γn.

(iv) I
(
i
n ,

j
n

)
∈ [0, 1] \ Γn, I

(
i+1
n , j

n

)
∈ [0, 1] \ Γn and

I
(
i
n ,

j+1
n

)
∈ [0, 1] \ Γn.

Then, the smoothness of IL
n implies the smoothness of IU

n .

Proof. Given (i, j) ∈ (Ln\{n})2, let us prove each case.
• If I satisfies condition (i), the smoothness of IL

n implies
the smoothness of IU

n as a consequence of Proposi-
tion IV.2.

• If I satisfies condition (ii), applying statements (i) and
(iii) of Lemma II.2, we have that IL

n is smooth is smooth
if and only if,

⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
6 1⌊

n · I
(
i

n
,
j + 1

n

)⌋
−
⌊
n · I

(
i

n
,
j

n

)⌋
6 1


⇔


⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
+1 6 1⌈

n · I
(
i

n
,
j + 1

n

)⌉
−
⌈
n · I

(
i

n
,
j

n

)⌉
6 1


⇔


⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
6 0⌈

n · I
(
i

n
,
j + 1

n

)⌉
−
⌈
n · I

(
i

n
,
j

n

)⌉
6 1

 ,

and this implies that IU
n is smooth.
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• If I satisfies condition (iii), applying statements (ii) and
(iii) of Lemma II.2, we have that IL

n is smooth if and
only if,

⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
6 1⌊

n · I
(
i

n
,
j + 1

n

)⌋
−
⌊
n · I

(
i

n
,
j

n

)⌋
6 1


⇔


⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
+1 6 1⌈

n · I
(
i

n
,
j + 1

n

)⌉
−
⌈
n · I

(
i

n
,
j

n

)⌉
6 1


⇔


⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
6 0⌈

n · I
(
i

n
,
j + 1

n

)⌉
−
⌈
n · I

(
i

n
,
j

n

)⌉
6 1

 ,

and this implies that IU
n is smooth.

• If I satisfies condition (iv), the smoothness of IL
n implies

the smoothness of IU
n as a consequence of Proposi-

tion IV.2.

Proposition IV.4. Let I : [0, 1]2 → [0, 1] be a fuzzy implica-
tion function and IU

n , I
L
n : L2

n → Ln be its discretizations. Let
us suppose that for each (i, j) ∈ (Ln\{n})2 one, and only
one of the following conditions is satisfied:

(i) I
(
i
n ,

j
n

)
∈ Γn, I

(
i+1
n , j

n

)
∈ Γn and I

(
i
n ,

j+1
n

)
∈ Γn.

(ii) I
(
i
n ,

j
n

)
∈ Γn, I

(
i+1
n , j

n

)
∈ Γn and I

(
i
n ,

j+1
n

)
∈ [0, 1]\

Γn.
(iii) I

(
i
n ,

j
n

)
∈ [0, 1]\Γn, I

(
i+1
n , j

n

)
∈ Γn and I

(
i
n ,

j+1
n

)
∈

[0, 1] \ Γn.
(iv) I

(
i
n ,

j
n

)
∈ [0, 1] \ Γn, I

(
i+1
n , j

n

)
∈ [0, 1] \ Γn and

I
(
i
n ,

j+1
n

)
∈ [0, 1] \ Γn.

Then, the smoothness of IU
n implies the smoothness of IL

n.

Proof. Given (i, j) ∈ (Ln\{n})2, let us prove each case.
• If I satisfies condition (i), the smoothness of IU

n implies
the smoothness of IL

n as a consequence of Proposi-
tion IV.2.

• If I satisfies condition (ii), applying statements (i) and
(iv) of Lemma II.2, we have that IU

n is smooth if and
only if,
⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
6 1⌈

n · I
(
i

n
,
j + 1

n

)⌉
−
⌈
n · I

(
i

n
,
j

n

)⌉
6 1


⇔


⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
6 1⌊

n · I
(
i

n
,
j + 1

n

)⌋
−
⌊
n · I

(
i

n
,
j

n

)⌋
+1 6 1


⇔


⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
6 1⌊

n · I
(
i

n
,
j + 1

n

)⌋
−
⌊
n · I

(
i

n
,
j

n

)⌋
6 0

 ,

and this implies that IL
n is smooth.

• If I satisfies condition (iii), applying statements (ii) and
(iv) of Lemma II.2, we have that IU

n is smooth if and only
if,

⌈
n · I

(
i

n
,
j

n

)⌉
−
⌈
n · I

(
i+ 1

n
,
j

n

)⌉
6 1⌈

n · I
(
i

n
,
j + 1

n

)⌉
−
⌈
n · I

(
i

n
,
j

n

)⌉
6 1


⇔


⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
+1 6 1⌊

n · I
(
i

n
,
j + 1

n

)⌋
−
⌊
n · I

(
i

n
,
j

n

)⌋
6 1


⇔


⌊
n · I

(
i

n
,
j

n

)⌋
−
⌊
n · I

(
i+ 1

n
,
j

n

)⌋
6 0⌊

n · I
(
i

n
,
j + 1

n

)⌋
−
⌊
n · I

(
i

n
,
j

n

)⌋
6 1

 ,

and this implies that IL
n is smooth.

• If I satisfies condition (iv), the smoothness of IU
n implies

the smoothness of IL
n as a consequence of Proposi-

tion IV.2.

Let us start studying other additional properties presented in
Section II. The first property is the exchange principle (EP),
which is not generally preserved through the discretization. For
instance, given the Reichenbach implication IRC, that satisfies
the exchange principle [7], when we discretize it we obtain
that

IU
n (i, j) =

⌈
n− i+

ij

n

⌉
,

IL
n(i, j) =

⌊
n− i+

ij

n

⌋
,

and considering n = 5, we have that

IL
n

(
2, IL

n(3, 2)
)
6= IL

n

(
3, IL

n(2, 2)
)
,

IU
n

(
2, IU

n (4, 1)
)
6= IU

n

(
4, IU

n (2, 1)
)
.

Remark IV.1. The Reichenbach implication IRC is an (S,N)-
implication generated by the probabilistic sum t-conorm
SP(x, y) = x + y − xy, for all x, y ∈ [0, 1] and the classical
negation NC(x) = 1 − x, for all x ∈ [0, 1]. It is known that
every (S,N)-implication, in the [0, 1] or discrete framework,
satisfies (EP) (see [7]). Therefore, since IU

n and IL
n may not

satisfy (EP), the discretizations may not belong to the discrete
counterpart of the family.

However, when I satisfies (EP) and Ran I|Γ2
n
⊆ Γn,

the property is preserved. This direct result is shown in the
following proposition.

Proposition IV.5. Let I : [0, 1]2 → [0, 1] be a fuzzy im-
plication function, and let IU

n , I
L
n : L2

n → Ln be its upper
and lower discretizations, respectively. If I satisfies (EP) and
Ran I|Γ2

n
⊆ Γn, then IL

n and IU
n also satisfy (EP).

Proof. If I satisfies (EP), then I(x, I(y, z)) = I(y, I(x, z))
for all x, y, z ∈ [0, 1]; in particular, the equality is still true
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for all x, y, z ∈ Γn. Setting x = i
n , y = j

n and z = k
n , we

have that

I

(
i

n
, I

(
j

n
,
k

n

))
= I

(
j

n
, I

(
i

n
,
k

n

))
,

for all i, j, k ∈ Ln. From this equality, multiplying by n and
applying the floor and ceiling functions, we get

⌈
n · I

(
i

n
, I

(
j

n
,
k

n

))⌉
=
⌈
n · I

(
j

n
, I

(
i

n
,
k

n

))⌉
,⌊

n · I
(
i

n
, I

(
j

n
,
k

n

))⌋
=
⌊
n · I

(
j

n
, I

(
i

n
,
k

n

))⌋
.

(13)
Since Ran I|Γ2

n
⊆ Γn, the compositions of these equalities

are well defined. Moreover, using this condition, it is true that

I

(
i

n
,
j

n

)
=

⌊
n · I

(
i
n ,

j
n

) ⌋
n

=

⌈
n · I

(
i
n ,

j
n

) ⌉
n

,

for all i, j ∈ Ln. Substituting this equality in Equation (13),
the result holds.

Note that the conditions set out by this result are not
necessary for (EP) to be preserved, as it is shown in the
following example.

Example IV.3. The Goguen implication, given by

IGG(x, y) =

{
1, if x 6 y,
y
x , if x > y,

(14)

for all x, y ∈ [0, 1] satisfies (EP). Setting n = 3, although
Ran I|Γ2

3
6⊂ Γ3 since IGG

(
2
3 ,

1
3

)
= 1

2 , it is straightforward to
check that both discretizations satisfy (EP).

Let us now look at the left neutrality principle (NP).

Proposition IV.6. Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation function, and let IU

n , I
L
n : L2

n → Ln be its upper and
lower discretizations, respectively. Then,

(i) IU
n satisfies (NP) if, and only if, I

(
1, j

n

)
∈
]
j−1
n , j

n

]
for

all j ∈ Ln.
(ii) IL

n satisfies (NP) if, and only if, I
(
1, j

n

)
∈
[
j
n ,

j+1
n

[
for

all j ∈ Ln.

Proof. Let us prove first for IU
n . We have that:

IU
n (n, j) = j ⇔

⌈
n · I

(
n

n
,
j

n

)⌉
= j

⇔ j − 1 < n · I
(
n

n
,
j

n

)
6 j

⇔ j − 1

n
< I

(
1,
j

n

)
6
j

n
,

for all j ∈ Ln. This last expression is equivalent to
I
(
1, j

n

)
∈
]
j−1
n , j

n

]
. Let us prove it for IL

n.

IL
n(n, j) = j ⇔

⌊
n · I

(
n

n
,
j

n

)⌋
= j

⇔ j 6 n · I
(
n

n
,
j

n

)
< j + 1

⇔ j

n
6 I

(
1,
j

n

)
<
j + 1

n
,

for all j ∈ Ln. This last expression is equivalent to I
(
1, j

n

)
∈[

j
n ,

j+1
n

[
, as we want to prove.

Corollary IV.6.1. Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation function, and let IU

n , I
L
n : L2

n → Ln be its upper and
lower discretizations, respectively. If I satisfies (NP), IU

n and
IL
n also satisfy (NP) in the discrete framework.

Proof. Since I satisfies (NP), we have that I(1, y) = y for
all y ∈ [0, 1]; in particular, for all y ∈ Γn. Setting y = j

n

for all j ∈ Ln, it holds that I
(
1, j

n

)
= j

n and applying
Proposition IV.6 both IU

n and IL
n satisfy (NP).

Based on Proposition IV.6 and Corollary IV.6.1, it can be
deduced that the fact that the implication function I satisfies
(NP) is not a necessary condition for the discretizations IU

n and
IL
n to satisfy (NP) in the discrete framework, as the example

below shows.

Example IV.4. Given n > 1, let us consider the piece-wise
implication I : [0, 1]2 → [0, 1] given by:

I(x, y) =

1, if (x, y) ∈ [0, 0.5]× [0, 1] or if y = 1,
j
n , if (x, y) ∈ [0.5, 1] ×

[
j
n ,

j+1
n

[
for

some j ∈ Ln \ {n}.
Clearly, I does not satisfy (NP). However, it is straightforward
to check that the conditions of Proposition IV.6 are fulfilled,
and therefore both discretizations IL

n and IU
n satisfy (NP) in

the discrete framework.

Next, we consider the identity principle (IP) and the order-
ing principle (OP).

Proposition IV.7. Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation function, and let IU

n , I
L
n : L2

n → Ln be its upper and
lower discretizations, respectively. Then,

(i) IU
n satisfies (IP) if, and only if, I

(
i
n ,

i
n

)
∈
]
n−1
n , 1

]
.

(ii) IL
n satisfies (IP) if, and only if, I

(
i
n ,

i
n

)
= 1 for all

i ∈ Ln.

Proof. Let us prove (i). IU
n satisfies the identity princi-

ple if and only if IU
n (i, i) = n, and this occurs if and

only if n− 1 < n · I
(
i
n ,

i
n

)
6 n or, equivalently, I

(
i
n ,

i
n

)
∈]

n−1
n , 1

]
.

Now, we prove (ii). IL
n satisfies the identity principle if

and only if
⌊
n · I

(
i
n ,

i
n

) ⌋
= n. Since the maximum value

of the left side of the equality is n, this occurs if and only if
n · I

(
i
n ,

i
n

)
= n or, equivalently, I

(
i
n ,

i
n

)
= 1.

Corollary IV.7.1. Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation function, and let IU

n , I
L
n : L2

n → Ln be its upper and
lower discretizations, respectively. If I satisfies (IP), IU

n and
IL
n also satisfy (IP).

Proof. Since I satisfies the identity principle, I(x, x) = 1 for
all x ∈ [0, 1]; in particular, setting x = i

n for all i ∈ Ln. With
this, I

(
i
n ,

i
n

)
= 1 and applying Proposition IV.7 the result

holds.

Proposition IV.8. Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation function, and let IU

n , I
L
n : L2

n → Ln be its upper and
lower discretizations, respectively. Then,
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(i) IL
n satisfies (OP) if and only if I

(
i
n ,

j
n

)
= 1 with i 6 j,

and I
(
i
n ,

j
n

)
< 1 with i > j, for all i, j ∈ Ln.

(ii) IU
n satisfies (OP) if and only if I

(
i
n ,

j
n

)
> n−1

n with
i 6 j, and I

(
i
n ,

j
n

)
6 n−1

n with i > j, for all i, j ∈ Ln.

Proof. Let us prove (i). We obtain that

IL
n(i, j) = n⇔

⌊
n · I

(
i

n
,
j

n

)⌋
= n

⇔ n · I
(
i

n
,
j

n

)
= n

⇔ I

(
i

n
,
j

n

)
= 1,

for all i, j ∈ Ln such that i 6 j. Using that I
(
i
n ,

j
n

)
< 1 if

and only if i > j, the result follows.
Let us prove (ii). We have the following equivalences:

{IU
n (i, j) = n ⇔ i 6 j} ⇔

{⌈
n · I

(
i

n
,
j

n

)⌉
= n ⇔ i 6 j

}
⇔
{
n− 1 < n · I

(
i

n
,
j

n

)
6 n ⇔ i 6 j

}
⇔
{
I

(
i

n
,
j

n

)
∈
]
n− 1

n
, 1

]
⇔ i 6 j

}
,

where i, j ∈ Ln. Using that I
(
i
n ,

j
n

)
< 1 if and only if i > j,

the result follows.

Corollary IV.8.1. Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation function, and let IU

n , I
L
n : L2

n → Ln be its upper and
lower discretizations, respectively. Then,

(i) If I satisfies (OP), IL
n also satisfies (OP).

(ii) If I satisfies (OP) and I(x, y) 6 n−1
n for all x, y ∈ [0, 1]

such that x > y, IU
n also satisfies (OP).

Proof. Let us prove (i). If I satisfies the ordering principle,
then I(x, y) = 1 if and only if x 6 y; in particular, setting
x = i

n and y = j
n , with i, j ∈ Ln. Applying Proposition IV.8

the result holds.
Now, let us prove (ii). Since I (x, y) = 1 > n

n−1 if and
only if x 6 y for all x, y ∈ [0, 1], applying Proposition IV.8
the result holds.

As in the discussion in Example IV.4, it can be derived that
the fact that the implication function I satisfies (OP) or (IP)
are not necessary conditions for the discretizations IL

n and IU
n

to satisfy (OP) or (IP), respectively, in the discrete framework,
as the following example shows.

Example IV.5. Given n > 1, let us consider the piece-wise
implication I : [0, 1]2 → [0, 1] given by:

I(x, y) =

1, if (x, y) ∈
n−1⋃
i=0

[
i

n
,
i+ 1

n

]
×
[
i+ 1

n
, 1

]
,

0, otherwise.
(15)

Clearly, I does not satisfy (IP), since I(x, x) = 1 only when
x ∈ Γn. However, it is straightforward to check that the
conditions of Proposition IV.7 are fulfilled, and therefore both

discretizations IL
n and IU

n satisfy (IP) in the discrete frame-
work. Moreover, I does not satisfy (OP), since I(x, y) 6= 1
for all (x, y) ∈

⋃n−1
i=0 Ri, where

Ri =

{
(x, y) ∈

[
i

n
,
i+ 1

n

]
×
[
i

n
,
i+ 1

n

] ∣∣∣∣ x 6 y

}
.

However, conditions of Proposition IV.8 are satisfied, and
therefore both discretizations IL

n and IU
n satisfy (OP) in the

discrete framework.

Let us now study the preservation of the consequent bound-
ary (CB).

Proposition IV.9. Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation function, and let IU

n , I
L
n : L2

n → Ln be its upper and
lower discretizations, respectively. Then,

(i) IU
n satisfies (CB) if and only if I

(
i
n ,

j
n

)
> j−1

n for all
i, j ∈ Ln.

(ii) IL
n satisfies (CB) if and only if I

(
i
n ,

j
n

)
> j

n for all
i, j ∈ Ln.

Proof. Let us prove (i), observing that

IU
n (i, j) > j ⇔

⌈
n · I

(
i

n
,
j

n

)⌉
> j

⇔ n · I
(
i

n
,
j

n

)
> j − 1

⇔ I

(
i

n
,
j

n

)
>
j − 1

n
,

for all i, j ∈ Ln. With a similar argument, let us prove (ii):

IL
n(i, j) > j ⇔

⌊
n · I

(
i

n
,
j

n

)⌋
> j

⇔ n · I
(
i

n
,
j

n

)
> j

⇔ I

(
i

n
,
j

n

)
>
j

n
,

for all i, j ∈ Ln.

Corollary IV.9.1. Let I : [0, 1]2 → [0, 1] be a fuzzy impli-
cation function, and let IU

n , I
L
n : L2

n → Ln be its upper and
lower discretizations, respectively. Then, if I satisfies (CB), IU

n

and IL
n also satisfy (CB).

Proof. Since I satisfies the consequent boundary, I(x, y) > y
for all x, y ∈ [0, 1]; in particular, setting x, y ∈ Γn. Therefore,
I
(
i
n ,

j
n

)
> j

n for all i, j ∈ Ln, and the consequent boundary
for IL

n is proved using Proposition IV.9. Also, from this in-
equality, we have that I

(
i
n ,

j
n

)
> j

n >
j−1
n , and consequently

IU
n satisfies (CB).

Taking into consideration the results obtained in Proposi-
tion IV.9 and Corollary IV.9.1, and following the constructions
shown in Example IV.4 and Example IV.5, it is easy to con-
clude that the fulfillment of (CB) by the implication function
I is also not necessary for the discretizations IL

n and IU
n to

satisfy (CB) in the discrete framework.
We now turn to study the contrapositive symmetry (CP(N )).

As in the study of (EP) in Proposition IV.5, assuming some
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conditions of RanN , we can obtain when the property is
preserved.

Proposition IV.10. Let I : [0, 1]2 → [0, 1] be a fuzzy
implication function which satisfies (CP(N )) with a fuzzy
negation N : [0, 1]→ [0, 1], and let IU

n , I
L
n : L2

n → Ln be its
upper and lower discretizations, respectively. If RanN ⊆ Γn,
then IU

n and IL
n satisfy (CP(N )) with the discrete negation

Nn : Ln → Ln given by Nn(i) = n ·N
(
i
n

)
.

Proof. The fuzzy implication function I satisfies the contra-
positive symmetry with the fuzzy negation N , and therefore
I(x, y) = I (N(y), N(x)) for all x, y ∈ [0, 1]. In particular,
setting x, y ∈ Γn; in this context, say x = i

n and y = j
n , with

i, j ∈ Ln, we have

I

(
i

n
,
j

n

)
= I

(
N

(
j

n

)
, N

(
i

n

))
,

for all i, j ∈ Ln. Multiplying both sides of the equality and
applying the floor and ceiling functions, we have⌈

n · I
(
i

n
,
j

n

)⌉
=
⌈
n · I

(
N

(
j

n

)
, N

(
i

n

))⌉
,⌊

n · I
(
i

n
,
j

n

)⌋
=
⌊
n · I

(
N

(
j

n

)
, N

(
i

n

))⌋
.

Since RanN ⊆ Γn by hypothesis, RanNn ⊆ Ln and the
operator Nn(i) = n ·N

(
i
n

)
is well defined, and it is a discrete

negation which makes IU
n and IL

n satisfy the contrapositive
symmetry.

We finish the study of some distinguished properties of
implications by analyzing the law of importation (LI(T )),
which has been deeply studied in recent years (see [24],
[25] for further details). Assuming certain assumptions on the
ranges that the fuzzy implication function I and the t-norm T
can take, we obtain that the property is preserved. However,
although the discretization of any implication is a discrete
implication as shown in Proposition III.1, the discretization
of a t-norm need not be a discrete t-norm. For this, we recall
the following result.

Lemma IV.1. [2] Let T : [0, 1]2 → [0, 1] be a t-norm. Then,
T |Γ2

n
is a discrete t-norm over Γn if and only if

T

(
i

n
,
j

n

)
∈
{

0,
1

n
, . . . ,

min{i, j}
n

}
,

for all i, j ∈ Ln.

Remark IV.2. When a t-norm T satisfies the condition of
Lemma IV.1, we will say that the t-norm T is discretizable and
the mapping Tn : L2

n → Ln given by Tn(i, j) = n · T
(
i
n ,

j
n

)
is a discrete t-norm over Ln such that Tn(i, j) = TU

n (i, j) =
T L
n (i, j) for all i, j ∈ Ln.

Thanks to the previous lemma, we can formulate the preser-
vation of the law of importation.

Proposition IV.11. Let I : [0, 1]2 → [0, 1] be a fuzzy
implication function and let IU

n , I
L
n : L2

n → Ln be its upper
and lower discretizations, respectively. If I satisfies (LI(T ))
with respect to a t-norm T : [0, 1]2 → [0, 1], T |Γ2

n
is a discrete

t-norm over Γn and Ran I|Γ2
n
⊆ Γn, then IU

n and IL
n also

satisfy (LI(T )) with the discrete t-norm Tn(i, j) = n·T
(
i
n ,

j
n

)
for all i, j ∈ Ln.

Proof. If I satisfies LI(T ), then I(T (x, y), z) = I(x, I(y, z))
for all x, y, z ∈ [0, 1]; in particular, the equality is still true for
all x, y, z ∈ Γn. Setting x = i

n , y = j
n and z = k

n , we have
that

I

(
T

(
i

n
,
j

n

)
,
k

n

)
= I

(
i

n
, I

(
j

n
,
k

n

))
, (16)

for all i, j, k ∈ Ln. Now, since T |Γ2
n

is a discrete t-norm over
Γn, from Lemma IV.1 the operator Tn(i, j) = n · T

(
i
n ,

j
n

)
is

a discrete t-norm. Also, applying that Ran I|Γ2
n
⊆ Γn, T and

I can be rewritten, respectively, as

T

(
i

n
,
j

n

)
=

⌊
n · T

(
i
n ,

j
n

) ⌋
n

=

⌈
n · T

(
i
n ,

j
n

) ⌉
n

=
Tn(i, j)

n
,

I

(
i

n
,
j

n

)
=

⌊
n · I

(
i
n ,

j
n

) ⌋
n

=

⌈
n · I

(
i
n ,

j
n

) ⌉
n

.

Replacing these expressions in Equation (16), we get

IU
n (Tn(i, j), k) = IU

n

(
i, IU

n (j, k)
)
,

IL
n (Tn(i, j), k) = IL

n

(
i, IL

n(j, k)
)
,

and therefore the discretizations IU
n , I

L
n satisfy the law of

importation with the discrete t-norm Tn.

Example IV.6. The Kleene-Dienes implication IKD(x, y) =
max{1 − x, y} satisfies the law of importation with the
minimum t-norm, TM(x, y) = min{x, y}, for all x, y ∈ [0, 1].
Applying Lemma IV.1, the discrete operator Tn(i, j) = n ·
TM(x, y) is a discrete t-norm which is the minimum discrete
t-norm. Moreover, since Ran IKD|Γ2

n
⊆ Γn, applying Propo-

sition IV.11, the discretizations of I coincide, and satisfy the
law of importation with the discrete t-norm Tn.

Remark IV.3. The law of importation may not be preserved.
For example, the Reichenbach implication IRC satisfies (LI(T ))
with the product t-norm TP(x, y) = xy, for all x, y ∈ [0, 1].
For instance, setting n = 5, the number of discrete t-norms is
finite and the expression of all of them is known.

Trying every discrete t-norm Tl defined in L5, there is no
one which satisfies IU

n (Tl(i1, j1), k1) = IU
n (i1, I

U
n (j1, k1)) for

all i1, j1, k1 ∈ L5, and IL
n(Tl(i2, j2), k2) = IL

n(i2, I
L
n(j2, k2))

for all i1, j2, k2 ∈ L5, where IU
n and IL

n represent the upper
and lower discretizations, respectively, of IRC.

With all this, we have completed the study for the distin-
guished properties (EP), (NP), (IP), (OP), (CB), (CP(N ))
and (LI(T )). Table I summarizes the preservation of the
aforementioned properties.
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I −→ IU
n I −→ IL

n Result
(EP) S S Prop. IV.5.
(NP) 3 3 Cor. IV.6.1.
(IP) 3 3 Cor. IV.7.1.
(OP) 3 Cor. IV.8.1.
(CB) 3 3 Cor. IV.9.1.

(CP(N )) S S Prop. IV.10.
(LI(T )) S S Prop. IV.11.

TABLE I. Summary of the preservation of some distinguished properties of
an implication through the discretization process. The symbol 3 denotes

that the property is always preserved; S denotes that extra conditions have
to be considered to preserve the property, and sufficient conditions have

been found; finally, denotes that extra conditions have to be considered to
preserve the property, and necessary and sufficient conditions have been

found.

V. CONCLUSIONS AND FUTURE WORK

This paper constitutes the first step in the study of the
discretization of fuzzy implication functions and the extension
of discrete implications. In addition, we have deeply studied
under which conditions some important properties such as
(EP), (NP), (IP), (OP), (CB), (CP(N )) and (LI(T )) are
preserved through the discretization process using the floor
and ceiling functions. Several conclusions can be derived from
this study:

1) With Theorem III.1, given a discrete implication we can
obtain a fuzzy implication function whose upper and
lower discretizations coincide, and they are equal to the
given discrete implication. With Proposition III.1, given a
fuzzy implication function we can obtain two discrete im-
plications. These two results offer an appropriate method
of conversion between operators defined on [0, 1] and Ln.

2) The considered two discretization processes do not pre-
serve some important properties of fuzzy implication
functions. Specifically, (EP), (CP(N )), (LI(T )) for both
discretizations, and (OP) for the lower discretization
need additional properties to be preserved. Regarding the
relation between continuity and smoothness, continuity
does not directly become smoothness; in fact, as noted
in Proposition IV.1, the fuzzy implication function need
not be continuous for its discretizations to be smooth.
All this makes it clear, as the title suggests, that discrete
implications cannot be considered solely as the discretiza-
tion of fuzzy implication functions. They must be studied
separately.

As a future work, we plan to do our utmost to further study
the discretization process. Concretely:

• Determine necessary and sufficient conditions for the
preservation of (EP), (CP(N )) and (LI(T )) using the
proposed discretization method.

• Study the preservation of properties in the extension
of discrete implications; that is, study whether a cer-
tain property in the discrete framework becomes its
corresponding one in [0, 1] using the fuzzy implication
function obtained in Theorem III.1. If not, study if it
is possible to define another extension method which
preserves the property.

• Forasmuch as this paper focuses on two particular dis-
cretization methods, it should be necessary to consider

other discretization processes, performing a study similar
to the one carried out in this paper and compare the
preservation of properties between different discretization
processes.

• It would be interesting to study the preservation of more
additional properties that discrete implications can satisfy,
taking as a reference the ones studied in [26] and [27] in
the [0, 1] framework.

• Further to this line of research, in [28] it is proved
that any fuzzy implication function I satisfies I(x, y) =
A(1 − x, y) for all x, y ∈ [0, 1], for some disjunctor
A. This relationship between fuzzy implication functions
and disjunctors could lead to some relationships between
the discretization processes of both operators and the
preservation of additional properties among them.
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[20] G. Mayor, J. Suñer, and J. Torrens, “Operations on Finite Settings: from
Triangular Norms to Copulas,” in Copulas and Dependence Models with
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