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Abstract: This study assessed the applicability of geolocation data provided by public Wi-Fi infra-

structures as information sources that can contribute to urban planning and management. We fo-

cused particularly on modeling and monitoring real-time mobility and congestion using geolocation 

capabilities of Wi-Fi public networks in Smart cities. The proposed methodology combines a de-

tailed geographic analysis of the space with high-frequency indicators generated from network 

data. This study emphasizes the importance of Wi-Fi infrastructures as noninvasive monitoring sys-

tems, and describes how network data can be applied to generate useful indicators for urban plan-

ning and management. The methodology was empirically implemented in the city of Palma (Bale-

aric Islands, Spain), where the social distance level was measured to identify conflicting areas. We 

demonstrate how the proposed solution can estimate pedestrians’ density efficiently and precisely 

through high-frequency monitoring (5 min or less) and the construction of comprehensive indica-

tors. In this context, we suggest several public policies that can be implemented by using this meth-

odological approach to monitor dynamic patterns of pedestrian mobility, especially during health 

crises or during high tourist seasons. 

Keywords: Wi-Fi network data; real-time urban monitoring; pedestrian mobility; COVID-19 social 

distancing measures 

 

1. Introduction 

The huge increase in the usage of digital mobile devices has led to several methodo-

logical approaches being proposed for generating new types of data. In this paper, we 

focus on high-frequency monitoring of mobile devices through a Wi-Fi infrastructure 

platform. One trend in most modern cities has been the promotion of Wi-Fi communica-

tion infrastructure in public spaces to improve local connectivity and boost the introduc-

tion of digital services [1]. 

Wi-Fi data has two novel characteristics: real-time frequency and precise geolocation. 

With the appropriate transformations, this information has many applications, including 

planning for smart cities, use of resources and services in retail settings, contribution to a 

better understanding of the city through behavioral analysis of its citizens, and dynamic 

traffic-management systems [2]. If we consider the example of a city hosting an event, we 

could count in real time the number of devices being used, and by making appropriate 

adjustments estimate the number of participants. Thus, we could improve event manage-

ment by identifying and eliminating critical obstacles, designing mechanisms to limit the 

physical proximity of participants, and implement time slots. Similarly, understanding 

the flow of participants can be used to improve commercial services’ locations, optimize 
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impact on visitors, and for strengthening Wi-Fi network connectivity in areas of higher 

device density. 

It is important to highlight that Wi-Fi infrastructure data can be obtained for both 

closed and open spaces [3]. However, it is primarily in these open spaces where this data 

source achieves remarkable importance for urban planning. In this sense, pedestrian-

counting technology based on Wi-Fi networks has been identified as a cost-effective infra-

structure to collect pedestrian mobility data [4]. In addition, under smart destination de-

ployments, the use of Wi-Fi networks to identify and classify visitors’ behavior has been 

explored preliminarily in recent work[5]. 

Most mobility studies that have used Wi-Fi networks obtained mobile devices’ loca-

tions by analyzing data generated by wireless communication protocols based on the IEEE 

802.11 standard. During the network discovery phase, a search mechanism at nearby con-

nection points (Wi-Fi access points) operates via pings. The data accessed during the 

standard discovery mechanism is registered by the network controller for technical pur-

poses. However, it also contains valuable information that can be used to detect the pres-

ence of a device, discover how long it has been connected, or quantify the number of times 

it has been detected [1–3,5,6]. Coverage area is generally limited to the space where an 

event is performed (e.g., a conference or a music show) or the area where a certain com-

pany or public service (e.g., a library) runs its activities. This limited coverage area is con-

sidered a limiting factor [4], and can be solved by combining different data sources or 

different technologies, such as video tracking systems or GPS (Global Positioning System) 

tracking devices. Obviously, this increases the cost when applied to large pedestrian fa-

cilities [7]. Additionally, combining tracking data from different areas (train stations, air-

ports, shopping malls, etc.) is an option to extend the limited data coverage attained from 

just one Wi-Fi network. However, this can become a challenging task when different in-

frastructures collect data in non-uniform formats. Other previous works [5] required a city 

SSID (service set identifier) database to be created, or the preferred SSIDs were collected 

from devices and this data analyzed to estimate mobility patterns. In our opinion, the SSID 

database has certain limitations including the requirement of continuously revision to up-

date the database; and furthermore that collection of preferred SSIDs from devices could 

include personal information like personal Wi-Fi SSIDs, which raises privacy concerns. 

Therefore, this work proposes the use of data anonymously available in public Wi-Fi net-

works. 

Beyond the analysis of pedestrian flows, there is a growing literature that uses ad-

vanced techniques to solve alternative problems. In this vein, researchers tried to solve 

the last-mile delivery distribution of agricultural products using vehicles and a multi-ob-

jective VRP algorithm [8]. Similar solutions could be applied focusing on pedestrian mo-

bility, when high-frequency mobility data is available. The use of hyperspectral image 

classification methods has been explored [9], but its application in Smart City areas in-

creases equipment costs. In fact, cameras are not usually used for monitoring pedestrian 

mobility, due to costs of image computation and rules about individual privacy in Euro-

pean countries. Other solutions based on unmanned aerial vehicles (UAVs) [10] do not 

require camera installation, but the management of UAVs in crowded areas is challenging 

for security reasons. Of course, these kinds of solutions can be used by public administra-

tions, but the required image technologies are not available and associated equipment 

costs are restrictive in small or medium-sized communities. Moreover, application of 

these methods is problematic for pedestrian urban management. This paper focuses on 

Wi-Fi network capabilities because these kinds of infrastructures are often deployed in 

small and medium-sized communities in Spain, and aims to demonstrate which infra-

structures and which methods could be easily adopted and applied for urban manage-

ment. In addition, when data from the Wi-Fi networks is collected and organized into a 

relational database, it is possible to apply novel mathematical solutions [11] to obtain use-

ful information for urban mobility managers. 

The contributions of this work are summarized; see also Table 1. 
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 This study explored the technological issues of using a unique urban public Wi-Fi 

infrastructure deployed in Palma City, covering a much larger outdoor space than 

previous analysis. 

 Two algorithms are proposed to classify the detected devices, considering two rele-

vant dimensions: First, between static or mobile users considering geographic pat-

terns; second, between usual or sporadic users considering temporal patterns. 

 A Level of Service indicator is defined to monitor the fulfilment of COVID-19 re-

strictions. In addition, a transformation factor is derived to obtain an estimation of 

the number of pedestrians, according to the monitored devices inside the calibrated 

areas (devices/m2). 

 The paper defines a public Wi-Fi networks methodology, and discusses the techno-

logical infrastructure that can be used to generate a set of useful urban mobility indi-

cators, and implement real-time monitoring and analysis in complex urban spaces. 

Table 1. Comparison of contributions of different analysis of pedestrian research works. 

Feature [1] [2] [3] [4] [5] [6] [7] This Work 

Pedestrian-oriented -        

Outdoor pedestrian flow monitoring -      -  

Results with high volume of users - -  - - -   

Using additional components     -  - - 

Using passive probe requests -   -     

Geolocation  -   -    

Device classification - -    -   

Counting devices         

Density estimation - - -  -    

Obtaining level of service in urban 

space 
- - -  - - -  

In Table 1, the contribution of this paper is compared with previous works. The ap-

plication of our proposal should strengthen the use of public Wi-Fi infrastructures data. 

Specifically, we proved how it is possible to transform the data’s space and time compo-

nents into usable knowledge that can be efficiently integrated in urban mobility planning 

and management. This work reports the level of service of analyzed areas using a high 

volume of users in a crowded touristic city. 

In general, urban mobility models assume that congestion occurs when a high num-

ber of individuals coincide in the same space and time. Therefore, monitoring the number 

of people is not sufficient to determine the congestion level. Congestion depends on the 

available space at a precise moment in time, e.g., ten people walking across an open square 

are not the same as ten people on the sidewalk of a street. In this light, this study describes 

a methodology that combines monitoring data from public Wi-Fi networks and detailed 

urban information, to estimate congestion density and social distance at near-real-time 

observability. 

We tested this proposal in the city of Palma (Balearic Islands, Spain) using Wi-Fi net-

works covering the main touristic areas. The application demonstrated that our proposal 

provided useful urban mobility data regarding two specific challenges, i.e., monitoring 

pedestrian flows in an urban tourism destination, and controlling social distancing 

measures associated with the COVID-19 pandemic. 

Considering the further replicability and generalization of our proposal, we recom-

mend using public Wi-Fi infrastructures as monitoring tools in smart cities, as a cost-ef-

fective solution to cover as many city areas as possible. Hence, our technical proposal is 

based on the proposed architecture’s capacity to manage three specific challenges from 

the network data; high volumes of geolocation data; real-time reception; and recording. 

The method involves transforming this information into useful indicators for urban man-

agement and health risk monitoring. 
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The rest of the paper is structured as follows: Section two discusses proposals for 

using Wi-Fi networks to study urban mobility. Section three introduces the proposed 

monitoring system architecture connected to Palma’s Wi-Fi network. Section four de-

scribes the data analysis implemented to transform the technical information into usable 

urban mobility information. Specifically, the city’s areas are characterized through a set 

of indicators combining geospatial information and real-time monitoring data. Section 

five describes two applications that illustrate the usefulness of these indicators. In partic-

ular, we employ dynamic urban flows and social distancing as examples. Finally, section 

six contains the conclusions and recommendations. 

2. Using Wi-Fi to Analyze Device Mobility 

Developing public Wi-Fi infrastructure is one of the main policies included in the 

smart city’s strategy [12]. In this sense, allowing city users to connect their devices to the 

internet in public spaces has become a priority for many public administrations. This has 

been accompanied by even more general use of mobile devices, for work and leisure ac-

tivities. In tourist destinations, the infrastructure is deemed an opportunity to offer digital 

services to visitors. 

Similarly, these public infrastructures have, in recent years, become a tool for moni-

toring urban mobility by providing useful data for city administrators. These new uses 

take advantage of the increasing number of mobile devices owned by the general popu-

lation. Devices come equipped with a Wi-Fi transmitter that periodically sends out probe 

requests to identify available Wi-Fi networks in the surrounding area [1–3,6]. The perio-

dicity of the probe request can be considered random because it depends on different fea-

tures, including the operating system, the apps that are installed and running, the device 

status (running, screen turned on or off, executing apps in the second plane, making a 

phone call), etc. Based on these probe requests, Wi-Fi networks can estimate the location 

of the mobile device if it remains in the coverage area. It is relevant to emphasize that the 

identification of the device does not require that it is logged into the Wi-Fi network, but 

only that it has the transmitter antenna turned on. 

Detecting people in an area by using Wi-Fi networks is a cost-effective option with 

advantages over other alternatives, such as the GSM (Global System for Mobile Commu-

nications) network, which provides too much imprecise data to be used at a pedestrian 

scale; or Bluetooth; or image-based analysis, which requires the installation of specific 

scanners and cameras. Thus, where GPS is not available, for example indoors, location 

through Wi-Fi is a highly effective alternative [13–16]. In fact, its use in outdoor spaces is 

gaining greater attention due to its potential for providing mobility data in large areas. In 

this regard, we focused on urban public Wi-Fi infrastructures available to public admin-

istrations, and how they can be used to monitor levels of service throughout the city. As 

far as the authors are aware, there have been few studies that propose feasible methodol-

ogies to transform automatic Wi-Fi-based device-detection data in extended urban areas 

into useful and interpretable indicators, for incorporation in urban planning and manage-

ment systems or to provide real-time warnings in smart-city decision-support systems, to 

prevent security risks and unhealthy congestion. 

3. Public Wi-Fi as Monitoring Systems 

Locating the presence of a mobile device near an access point is performed by detect-

ing the probe requests that are sent by the devices with connectivity based on the 802.11 

protocol family. Two simple methodologies can be used to detect the presence of the de-

vice, using an activated Wi-Fi antenna. The first is based on knowing the exact geographic 

location of every access point in the network. Then, we need to assume that each access 

point creates an isolated network outside the radio range of another access point. Thus, 

when a mobile device is detected, its location can be approximated to the position of the 

access point (generally, this distance is calculated at 200 m in all directions in an obstacle-

free area). The second method sees the network as a set of access points that collaborate 
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and exchange information. The position of the mobile device is linked to the distance be-

tween the device and the access point, based on the quality of the communication channel 

according to the received signal strength (RSS). The RSS parameter indicates the signal 

strength received by the access point antenna during its probe requests; the signal strength 

is generally inversely proportional to the distance. Therefore, the estimated distances be-

tween the mobile device and each access point enable high spatial resolution if the number 

of access points is high [17]. 

Probe requests are periodically sent by mobile devices, whether they are connected 

to a Wi-Fi network or not. Indeed, these requests are the device’s procedure to detect 

nearby Wi-Fi infrastructures and are essential for detecting the access points that offer the 

best service quality. Wi-Fi access points can detect discovery request frames that include 

the MAC address identifier (media access control). Therefore, if the location of the access 

points is known, it is possible to geolocate and identify the presence of a specific mobile 

device in a service area. The time intervals used to generate probe request frames depend 

on several factors [18], including the mobile model, the operating system, the number of 

open applications, types of applications using the communication channel, etc. For exam-

ple, Cisco Meraki published the technical information shown in [19], based on empirical 

tests performed at its networks. 

A more in-depth study [18] that analyzed requests from four mobile models in dif-

ferent circumstances reached similar conclusions. Probe request frequency is an issue to 

bear in mind when implementing monitoring methodologies. In our research, we consid-

ered that although the number of probe frames per minute may increase according to each 

specific situation, both studies indicated that at least one request per minute was made 

when the device was asleep. Therefore, counting devices for periods under a minute 

would likely lead to underestimationg of numbers. Due to this and to account for reason-

able urban pedestrian mobility, we set a minimum five-minute interval period when per-

forming the monitoring exercises. 

Additionally, it is important to consider that devices were detected regardless of 

whether they were associated with the Wi-Fi network. In this sense, it is relevant to re-

member that probe requests are inherently a discovery mechanism seeking nearby net-

works, and are therefore constantly generated at intervals as it is explained in [19]. Thus, 

devices were detected whenever they were in the coverage area of at least one access 

point, when they had their Wi-Fi transmitter activated. Therefore, we want to emphasize 

that whether or not the device was connected to mobile networks for internet connection 

(4G or 5G), its probe request packets could be sniffed by APs, and were included in the 

analysis. 

Currently, there are commercial products available that provide precise geolocation 

data based on these working principles. In this sense, public Wi-Fi infrastructures with 

device geolocation capacities are a reality that is generating high expectations regarding 

their potential for smart cities. One of these commercial products is provided by Cisco 

Meraki; the system combines devices’ raw location data and the physical location of each 

access point. With this data, it provides real-time location estimations for all devices with 

active Wi-Fi or Bluetooth (BLE) transmitters. 

Nonetheless, the technical architecture required to process the enormous amount of 

geolocated data is a challenge for the creation of real solutions for wide Wi-Fi networks. 

When commissioning a computing architecture, it is important that the product possesses 

sufficient processing capabilities to be able to collect the huge volume of geolocation data 

generated by urban Wi-Fi environments. The following section describes the architecture 

and computing services that are required for our urban monitoring applications. 

3.1. Network Connections and Computer Services Architecture 

Obviously, an initial requirement for implementing an urban mobility modelling ser-

vice based on Wi-Fi data is to install the corresponding network that can geolocate de-

vices. There are commercial products that provide suitable solutions for installation in 
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urban spaces. These products are equipped with a cloud platform that has configuration 

and management capabilities for the access points. Geolocation data is also provided by 

this cloud platform, although due to the large volumes involved, data is aggregated for 

storage on the platform. Aggregation may be based on different dimensions: time (only 

the final value is saved for each given interval, i.e., one per hour), space (defining geo-

graphic areas and saving their aggregate information), or other device categorizations, 

such as detected devices, connected devices, habitual devices, etc. All these aggregations 

enable a reduction in data size, although they also decrease the precision of any further 

analyses. 

One alternative that maintains data precision is to provide a data collection protocol 

able to process all the records as they are produced. Note that the data is generated at a 

non-fixed rate depending on the number of network access points and detected devices 

at each moment. The main challenge associated with this massive real-time recording is 

the infrastructure required to avoid any data loss. Figure 1 shows the implementation in 

Palma, with services based on a producer–consumer strategy. 

 

Figure 1. The connection architecture of the Wi-Fi network and computing services for data pro-

cessing. 

An initial logical division of the Wi-Fi network into three subnetworks is performed 

in this setup, to reduce the number of access points comprising each subset. The objective 

is to decrease the number of detections in each service coverage area. To capture the data 

flow, we implemented a cluster based on an Apache Kafka server (Kafka.apache.org). This 

is an open-source server for distributed management of data flows. Using this server, up 

to three producers or input channels are created, and each channel is associated with each 

of the subnetworks. The data received by the producer channels are stored in a queue, 

waiting for the consumer to read the format of the received data, process them, and order 

them in relational tables. We used the PostgreSQL database engine as the relational tables’ 

manager. 

Once the data is organized into a relational database, analytics can be performed fol-

lowing different methodological approaches depending on final application require-

ments. 

This design enabled over four million average daily detections to be processed from 

over 250,000 unique daily devices in the Wi-Fi service areas in Palma. 

4. Proposed Urban Monitoring Methodologies 

Urban mobility monitoring is attracting increasing interest in terms of city manage-

ment and to optimize resources and services offered to visitors and residents. However, 

automated monitoring of this mobility remains uncommon. 

Mobility data from public Wi-Fi infrastructures are not currently used at the same 

levels as in shopping centers and other private spaces. This fact may partly be due to the 

lack of methodologies to transfer raw data into easily understandable indicators. If those 

indicators are available, they can be subsequently used to inform public decision-making. 

In this sense, this study defines different indicators focusing on their transferability as 

knowledge to be incorporated in real solutions: 

 The first proposed methodology identifies and classifies the devices discovered by 

the Wi-Fi network. The classification method is based on reducing the data sources 

and obtaining the maximum useful information from the data collected from Wi-Fi 
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networks. The methodology classifies the devices considering their geographical mo-

bility and according to temporal patterns. 

 The second proposal describes how to define a level-of-service indicator based on 

Wi-Fi network data. Using well-known definitions, a novel level-of-service indicator 

is defined and applied to consider COVID-19 social distance restrictions. 

 The finally proposed methodology focuses on real-time observability of the Wi-Fi 

network data. For pedestrian mobility management, the number of devices is not 

relevant; it is necessary to transform the observations from the network to estimated 

pedestrian data. So, this last methodology computes a transformation factor, and de-

fines the method to estimate or calibrate this factor, for use in city mobility applica-

tions. 

The main aim of this paper is to promote the general application of these strategies 

in all cities where public Wi-Fi coverage exists. 

4.1. Identifying Devices in Smart Cities 

Identification of devices has been used in previous research to determine common 

routes based on the device observations. 

The usefulness of detected devices for urban monitoring is enriched if they are clas-

sified into different groups. Three main reasons justify some level of aggregation; first, not 

all detected devices are of interest; second, different groups are likely to present different 

behaviors, and disentangling their particularities improves the overall understanding of 

mobility. Finally, different policies might be more appropriate for different groups. In the 

following paragraphs, we describe the analysis performed for our research. 

4.1.1. Device Classification by Type 

Using Wi-Fi infrastructure data implies the detection of any device that is performing 

probe requests. Thus, printers, routers, personal, and work computers, as well as many 

other devices with Wi-Fi connectivity, were detected and located. Generally, to enhance 

the traceability of mobile devices of interest, these other devices should be identified and 

removed. However, their impact is generally low and represents a somewhat determinis-

tic factor in the results. 

We differentiated between mobile and static devices, taking advantage of the tem-

poral and spatial characteristics of the data. If a device always appeared in the same loca-

tion or with small variations attributable to location error—regardless of the hours of the 

day—we can determine that it was not a mobile device and, therefore, not relevant for 

urban mobility studies. The proposed Algorithm 1 differentiates mobile devices from 

other devices. 

Algorithm 1. Process to differentiate mobile and static devices with a Wi-Fi connection. 

1: define range_monitor = 5 min 

2: define error_position = X meters (value obtained by calibration) 

3: define table_MACS_pos = empty table 

4: Run the SQL sentence “Select DISTINCT MAC_address in new range_monitor” 

5: for each new MAC_address do 

6:   if MAC_address in table_MACS_pos Then 

7:     if MAC_address is device Then 

8:       if |present_position–previous_position| > error_position Then 

9:         MAC_address is defined as mobile 

10:      else 

11:        MAC_address remains classified as device  

12:        update previous_position to present_position 

13:    else 

14:      MAC_address remains mobile 

15:  else 
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16:    previous_position = position of new MAC_address 

17:    Run the SQL sentence “Insert new MAC_address and previous_position in tabla_MACS_pos” 

18:    Identify the MAC_address as device 

This algorithm enables the device type to be continuously assessed in configurable 

periods, five minutes in our case. If a device is mobile, then there are detection records 

with location distances above the positioning error offered by the Wi-Fi infrastructure. 

The “error_position” parameter largely depends on the number of infrastructure antennas 

and the calculation methodology used. Nevertheless, it is possible to observe different 

positioning errors for each urban service area due to the geometry and placement of the 

Wi-Fi antennas. Therefore, the “error_position” values may vary from one place to an-

other in the same city. A good position error value calibration is required, considering a 

mean value for the entire coverage area or a different value for each monitoring area. In 

this work, the “error_position” was considered equal to 20 m as a mean value for all areas, 

considering the error value estimated by Cisco Meraki network location analytics. 

4.1.2. Devices’ Classification as a Resident or Visitor 

From an urban analysis standpoint, it is useful to differentiate between mobile de-

vices that were repeatedly detected over the weeks and those that were only detected in 

a given period of time. The first group of devices, which we labeled as “usual,” belonged 

to people who often move around the city and are likely to be residents. Sporadic devices 

more likely belong to visitors or tourists. 

Urban mobility studies require analyzing all city users (residents and visitors) iden-

tified as mobile. However, it is also true that considering different groups is useful for 

understand underlying mobility patterns and can provide additional insights into causes 

of congestion. In this vein, and from the perspective of an urban tourist destination such 

as Palma, a usual device should be understood as one that is classified as mobile and has 

been detected on different days over a ‘long’ period of time. Meanwhile, a sporadic mobile 

device would be detected only in what we call a ‘short’ period. We established the dura-

tion of these ‘short’ and ‘long’ periods considering the usefulness of identifying sporadic 

devices that were most likely to belong to a visitor or tourist profile. Considering official 

statistics (INE, 2019), the average length of stay in July, August, and September 2019 was 

between 5.1 and 5.45 days in the islands’ major destinations (Calvià and Palma), and be-

tween 6 and 6.3 days for Majorca as a whole. 

The above features and data were used to develop the identification protocol shown 

in Algorithm 2. Devices classified as mobile that were only detected within a seven-day 

period were deemed sporadic, while those identified for longer periods of time were con-

sidered usual. This is a recursive algorithm that updates the classification results as new 

data is collected by the network. In this sense, all devices were initially classified as spo-

radic; however, if the device was seen again at a date that exceeds the seven-day period, 

it was classified as usual. The classification algorithm shown below includes the definition 

of the parameters that we applied to the data. Note that considering three months of data, 

we established a maximum long period of 92 days in the current application. 

It is important to emphasize that the proposed data classification requires additional 

information to supplement that provided by the network. In other words, data analyses 

require contextualization for transformation into usable knowledge. For example, in our 

case, the definition of the time periods was based on visitors’ lengths of stay. Such contex-

tualization relies on adapting data to the unique nature of the study areas, and to the re-

quirements of the different decision-making agents. 

Algorithm 2. Process of classifying mobile devices into usual or sporadic, depending on the on the 

Wi-Fi connection detection period. 

1: define range_monitor = 5 min 

2: define short_period = 7 days (defined by touristic statistics) 
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3: define long_period = 92 days (maximum period analysed) 

4: define table_MACS_mode = empty 

5: Run the SQL sentence “Select DISTINCT MAC_address in new range_monitor” 

6: for each new MAC_address do 

7:   if each MAC_address in table_MACS_mode then 

8:     if MAC_address is “sporadic” then 

9:       if short_period < (current_time-DATE) < long_period then 

10:        MAC_address is “usual” 

11:      else 

12:        MAC_address remains “sporadic” 

13:        update field DATE at current_time 

14:    else 

15:      MAC_address remains “usual” 

16:      update field DATE at current_time 

17:   else 

18:     DATE = current_time 

19:     Run the SQL sentence “Insert new MAC_address and DATE in tabla_MACS_mode” 

20:     MAC_address is “sporadic” 

4.2. Defining the Level of Service as an Effective Indicator for COVID-19 Management 

Due to the current COVID-19 pandemic, urban congestion has become a particular 

area of concern. Consequently, the terms social distance and physical distance have sud-

denly appeared as an emerging indicator for public and private managers. In this regard, 

detection of crowdedness based on communication infrastructures is drawing considera-

ble attention in the context of pedestrian flow management [4,20,21], especially regarding 

Wi-Fi or Bluetooth-based technologies [2,13,14]. 

However, detecting the number of devices in a period only provides a partial pedes-

trian congestion indicator. Detecting 100 devices in a wide, open square is not the same as 

detecting them on a shopping street with traffic lanes between them. Therefore, we must 

incorporate further urban information to transform network data into usable high-fre-

quency indicators. Only then can the raw data become detailed spatial data for improving 

pedestrian flow management. 

In this sense, we use the concept of level of service (LoS) [22]. This framework has 

traditionally been used for modeling transport capacity where pedestrians interact with 

street traffic. LoS measures the number of services that a given infrastructure provides to 

its users, considering its carrying capacity and the level of use. This conceptual approach 

has also been applied for controlling pedestrian infrastructures considering walking 

speed [23]. Analyzing walkability in an urban space is challenging because it presents 

high spatial and temporal fluctuations. Therefore, it is not desirable to assume uniform 

density or speed. Consequently, high-frequency data combined with detailed walkability 

analysis are gaining attention for their potential to provide LoS indicators. LoS conceptu-

alization regards considerations such as being able to walk at the desired speed, stopping, 

changing direction, crossing the space, etc. 

Henson’s study [22] defines six LoS indicators based on the available square meters 

(m2) per person in a specific city area. Henson’s classification is an easily understandable 

mobility indicator based on m2 available per person (resources approach) or the number 

of people per available m2 (congestion approach). 

Considering previous studies and considering the new needs for high-frequency in-

dicators, we define a new social distance indicator that can be used in monitoring and 

managing public spaces (parks, gardens, commercial streets, tourism spots, beaches, 

transport nodes, etc.) that have available public Wi-Fi infrastructures. 

Additionally, we extend our analysis to consider the challenges imposed by COVID-

19. To guarantee pedestrians’ social distancing, each of them should have a minimum 

available space. Our proposal defines a hypothetical circle around the individual with a 

radius corresponding to half of the social distance set by health authorities. Following 
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conventional health authorities’ recommendations of maintaining social distancing above 

1.5 m [24], a minimum area per pedestrian of 1.767 m2 must be allowed for safe walkabil-

ity. Based on the aforementioned LoS concept, we calculated that this minimum area cor-

responds to 0.566 pedestrians per available m2. Any higher value implies a lower social 

distance, and therefore reduces safety. Following the same logic, we considered it an ac-

ceptable level of safety walkability if there was enough walkable area to maintain a pe-

destrian distance between 1.5 m and 2.5 m. This corresponds to a density approach set 

between 0.566 and 0.204 pedestrians per available m2. Finally, the urban space can be cat-

egorized as very safe when the number of pedestrians per square meter is below 0.204. 

Therefore, we propose a new indicator. The level of social distance (LoSD) set out in 

Table 2 combines COVID-19 protocols and the LoS concept. 

Table 2. Definition of the Level of Social Distance. 

LoSD 
Resources Approach  

m2/Pedestrian 

Congestion Approach  

Pedestrian/m2 

COVID-19  

Safety Level 

High ≥ 4.9 ≤ 0.2 Secure 

Medium Between 1.77 and 4.9 Between 0.57 and 0.2 Accepted 

Low ≤ 1.77 ≥ 0.57 Insecure 

This new indicator follows the same logic as the mobility studies, but it incorporates 

social distancing measures required by health authorities’ recommendations, at a tim 

whene everyone has a need of free space. Of course, the specific thresholds can be adjusted 

to each country’s specific requirements or to the conditions of the space. For example, in 

closed spaces (such as transport hubs), prescriptions can be stricter than in open spaces. 

The application of LoSD requires a precise quantification of available urban space for 

pedestrians. This calculation must consider spaces occupied by street furniture, terraces, 

trees, or reserved for other methods of transport (cars, bikes, scooters, etc.). In this sense, 

in a defined geographical area, and only a limited number of pedestrians will be possible 

to maintain enough minimum available space between them. Monitoring the social dis-

tance in a defined area depends on the walkable area available and the number of pedes-

trians detected inside the area. 

Therefore, we applied advanced spatial analysis techniques that considered cities’ 

uses. Specifically, we used geographical information systems (GISs) to characterize the 

urban space of the areas under study. As seen in the results section, these techniques en-

abled us to estimate the available square meters for pedestrians in each of the areas. 

To provide usable information for decision making relating to pedestrian mobility, it 

is necessary to obtain a high-frequency quantification of the number of pedestrians that 

are using the space. As described, we propose measuring this through the number of de-

vices detected by a public Wi-Fi infrastructure. However, it remains necessary to deter-

mine the number of pedestrians based on the number of devices detected by the network. 

In other words, a homogeneous density value is obtained from heterogeneous available 

data. This challenge is discussed in the next subsection. 

4.3. Estimating Near Real-Time Pedestrian Flows 

As described in Section 3, Wi-Fi infrastructures passively detect mobile devices 

within their service area that have their Wi-Fi transmitters activated. This detection does 

not require that the mobile device is connected to the network; the device’s presence is 

detected from probe request packages that the devices continuously emit to discover 

nearby Wi-Fi networks. This method can precisely determine the number of mobile de-

vices within the coverage area. 

However, we cannot directly assume that this estimated value is equal to the number 

of pedestrians, since (i) some pedestrians might not be carrying device, or they might have 

deactivated their Wi-Fi transmitter; (ii) one individual may be carrying several mobile 
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phones (personal and/or for work) or tablets; (iii) although each probe request includes a 

unique identifier, this identifier may be randomly masked; (iv) the frequency of probe 

requests emitted by each device is not constant. Therefore, a device may escape detection 

due to different reasons, such as its position in the service area, variations in radio signal 

quality, or the speed at which the device is traveling (e.g., the person is on a bicycle). 

Due to all the above factors, estimating the number of pedestrians based on the num-

ber of communication devices is a challenge. The relation between devices and pedestri-

ans might be affected by factors including the main use of the street (commercial, tourist, 

transit, leisure, etc.), the time of day, and the temporal aggregation used for analyzing the 

detected devices. 

With all the above considerations in mind, and in line with [25], we propose to define 

a specific calibrating area for each different typology of urban space use. These categories 

are based on the factors described in the previous paragraph. In subsequent applications, 

researchers should evaluate the specific characteristics of the overall spatial context cov-

ered by the network. 

Previous studies [25] suggested that an accurate formulation for estimating pedestri-

ans should define a people-mobile factor (Fpm). This coefficient relates the number of peo-

ple to the number of devices detected by the network within a given monitoring time 

period (ti) and space typology (j). This factor is calculated as per Equation (1). The total 

number of pedestrians is experimentally obtained and could be appropriately calibrated 

over time as follows: 

���
� (��) =

����� ������ �� �����������(��)

�������� �������(��)
 (1)

There are two main ways to obtain a characterization of the equivalent total number 

of pedestrians in the sampling zones. The first methodology requires the installation of 

cameras in strategic areas to apply automatic density estimation [26]. The second strategy 

consists of traditional empirical sampling in the area. The camera-based solution could, 

over time, provide an automatic calibration process for the Fpm parameter. However, in-

stalling city cameras is not always easy, due to costs or administrative reasons. However, 

trending smart city strategies [27] may boost their introduction. This stury opted for em-

pirical sampling at the defined zones as a cost-effective solution for the initial Fpm value 

estimation. The counting campaign was performed at the calibration areas on several days 

and at different hours during the day. 

It is important to note that the Fpm value should be estimated using the time duration 

included in the classification algorithms described in 1 and 2 (parameter range_monitor). 

Therefore, the random nature of device detection using discovered packet emissions was 

included in the Fpm estimation methodology, to obtain a level of social distance according 

to the time period of the Wi-Fi monitoring data. In other words, the calibration factor was 

dependent on the monitoring period used to count the number of devices. 

Regarding the specific calibrating areas, we established that they need to comply 

with the following criteria: (i) homogeneous size; (ii) space and walkability features that 

characterize the network’s coverage area; (iii) good Wi-Fi coverage; and (iv) representa-

tiveness of urban space typologies. Finally, to improve estimation, as many internal sam-

pling zones as necessary could be set per coverage area to obtain an estimate of the num-

ber of people. 

Figure 2 shows two of these calibrating areas in a major square in Palma. PA1 is an 

entry and an exit street to the square, with urban furniture and other elements that curtail 

walkable space. PA2 represents a section of the same square with very few obstacles hin-

dering mobility. 
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Figure 2. Example of two different calibrated areas in the same area of study in Palma. 

The LoSD indicator was obtained from the number of devices detected by Wi-Fi in-

frastructure using Equation (2) as follows: 

�����(��) =  
��������(��)  ∗  ���

� (��)

��
 (2)

where Devicesj(ti) accounts for the number of unique devices detected in zone j during the 

monitoring period; Aj is the walkable area of zone j. The people-mobile factor (Fpm) was 

obtained during the empirical measurement of the calibration zones using the same 

range_period values as Algorithms 1 and 2. A specific value can be used for each zone if 

there are several differences between city areas, mainly in terms of urban uses or available 

area. 

5. Empirical Applications 

The Palma City Council promoted a public–private partnership to commission the 

SmartWifi network in the city. SmartWifi is the commercial name that was chosen by the 

city council of Palma to identify the project providing Wi-Fi connectivity in all the most 

popular tourist areas of the city. This telecommunications infrastructure provides free in-

ternet access to the most relevant areas of Palma. The coverage areas are shown in Figure 

3, based on the distribution of the 114 available access points highlighted in the figure 

with yellow markers. The network services urban spaces and areas of the port where pas-

sengers and goods disembark. 

 

Figure 3. Distribution of Wi-Fi antennas in Palma. 

Device location data obtained through presence detection mechanisms were gener-

ated from the built-in capacities of the installed Cisco Meraki infrastructure [19]. This en-

abled presence to be recorded when devices generated probe requests. The uneven distri-

bution of the antennas in the city partly determined the selection of study areas. 
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5.1. Areas of Study 

In this paper, the specific empirical analysis was tested in two main squares of the 

city (Plaza de España, ZA; and Plaza Mayor, ZB). For each zone (ZA and ZB), two cali-

brating areas were defined (PA1 and PA2, PB1 and PB2). Figure 4 shows the geographic 

location of the large zones and the corresponding calibrating areas, within the map of 

Palma. 

 

Figure 4. The distribution of studied areas Za with calibration zones PA1 and PA2, ZB with calibra-

tion zones PB1 and PB2. 

A geographical information system (GIS) was implemented to define the different 

urban uses of all the areas under study, obtained from the city’s information system. These 

uses included walkable space, buildings, terraces, trees, bicycle lanes, etc. When the areas 

had been completely mapped, the real available pedestrian surfaces were precisely com-

puted. The m2 are shown in Table 3. 

Table 3. Available Pedestrian Space. 

ZONE 
Walkable Area  

m2 

PA1 346.1 

PA2 394.8 

PB1 318.2 

PB2 306.7 

The following paragraphs present two examples of the methodology described in the 

current paper, that can be used to transform WiFi data into information useful for urban 

planning and management. We use the network data to present an urban monitoring anal-

ysis, then describe its application to COVID-19 policies. 

5.2. Urban Mobility Monitoring 

In this section, we show the technical architecture described in Section 3.1, and the 

apply data analyses explained in Section 4 to transform raw data into urban information 

that can be used for urban planning and management. The first application uses all the 

areas monitored by the network to represent the classification of unique devices between 
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habitual and sporadic, considering a 5 min monitoring interval. Figure 5 illustrates usage 

during a summer week, from Monday 29 July to Sunday 4 August 2019. 

 

Figure 5. Temporal distribution by device type, from 29 July to 4 August. 

This figure shows that habitual devices appeared in a highly similar pattern on week-

days and their numbers dropped on weekends (3 and 4 August 2019), particularly for 

Sundays. It is worth mentioning that some habitual devices were systematically detected 

during the late-night period. Those probably corresponded to static Wi-Fi-based devices 

located in the coverage area. Additionally, the illustration indicates a reduction in pedes-

trian movement during the central hours of the day, probably related to lunchtime. In 

contrast, we see that visitors tended to gather more in the mornings than in the afternoons. 

Note that the figure corresponds to the last week of July, a hot period for the city of Palma, 

when afternoons might not be very appealing for city walks. 

The coverage of vast city areas also enabled us to focus on specific areas of the city. 

Figure 6 considers the areas described in the previous section with a more detailed tem-

poral analysis. In this case, we show only one day, 31 July, which was the day in July with 

the highest number of visitors. 

  
(a) (b) 

Figure 6. Temporal distribution by device type for 31 July 31, (a) Zone A and (b) Zone B. 

Again, several conclusions can be drawn from the graph. The pattern in the area ZA 

is strongly linked to the evolution of resident devices. In contrast, area ZB became 

crowded, basically due to visitors gathering there in the central hours of the day. Interest-

ingly, in both cases, the remarkable sudden increases were related to peaks of visitors. 

We present here only the information for short time periods (one week and one day). 

However, this paper’s proposal allows continuous evaluation of the urban space in near 

real-time. Therefore, it provides an analysis that goes far beyond what can be achieved 

with other traditional techniques, such as samples or direct observation. 
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Importantly, we show how raw technical data can be transformed into knowledge 

that can be incorporated into urban planning and management. Some of the easily observ-

able information derived from this section is as follows: (i) The city’s use by residents and 

visitors presented remarkably different temporal patterns. (ii) High urban overcrowding 

was mainly due to occasional peaks in the number of visitors. (iii) Different areas present 

specific patterns of use related to their characteristics. 

A corollary of the lessons described above is that distinct urban policies should be 

designed for specific groups and areas. The technical procedure presented in the paper 

can be used to inform those specificities. 

5.3. Monitoring Urban Congestion: An Application in the Times of COVID-19 

In this section, we implement the concepts and parameters explained in Sections 4.2 

and 4.3 to analyze urban congestion. More specifically, we used SmartWifi for monitoring 

near real-time urban congestion related to COVID-19 physical distance measures. The 

proposed methodology was used to assess compliance with social distancing recommen-

dations. The application of the definition showed in Equation (2) does not requires the 

estimation of distance between each device, because the indication is based on the density 

of devices detected in each area of study, see Table 3. Therefore, using the real-time num-

ber of devices obtained from Wi-Fi network is sufficient to detect higher densities of per-

sons, where it is not possible to ensure the compliance with social distance. Of course, 

there might be exceptional cases in which there is a low density of individuals in a given 

space, who nevertheless decide to gather and do not fulfil safe social distanciing. 

Additionally, we illustrate the impact on urban mobility of the lockdown imposed in 

Spain on 14 March 2020. The empirical application compares the evolution of pedestrian 

flows in 2019 and 2020, a few days before and after the lockdown date. Figure 7 shows the 

evolution of the number of different devices detected during each period. The effect of the 

COVID-19 lockdown on pedestrian mobility is evident in all areas. 

(a) (b) 

Figure 7. Time evolution of the number of devices, in 2019 and 2020, in sampling zones (a) PA1 and 

(b) PB1, during the week that included the start date of the lockdown in Spain (14 March 2020). 

The percentage decrease in mobility was between 60% and 80% throughout the city. 

Figure 8 shows the percentage comparison of March 2020 and March 2019 in the areas 

described above (ZSA and ZB). We can see that Area ZA, more related to residents’ mo-

bility, began the period with a similar number of detected devices. However, area ZB, 

more related to tourism mobility, was already experiencing a decrease of approximately 

20%. It is worth mentioning that COVID-19 had already been impacting tourism flows 

since late February. After the lockdown, mobility in both areas was consistently reduced 

by approximately 70%. 
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Figure 8. Time evolution of the percentage drop for the number of devices in study areas during the 

week that includes the start date of the lockdown in Spain (14 March 2020), compared to 2019. 

Moreover, based on health recommendations and using the zone sampling method-

ology described in the paper, we applied the level of social distance (LoSD) to generate 

warnings where appropriate social distancing could not be ensured. This tool used the 

four areas (PA1, PA1, PB1, PB2) displayed in Figure 4. The near real-time data was aggre-

gated in five minutes and was transformed by the estimated Fpm. The available walkable 

space is indicated in Table 3, and the LoSD limits areedefined in Table 2. With all these 

considerations, Figure 9 presents the social distance level evaluation obtained by applying 

Equation (2) for each calibrated area during the week, which includes the beginning of the 

lockdown in Spain. The limits for each level of social distance defined in Table 2 are high-

lighted. The effect of the lockdown during the first days is clear as the figure illustrates a 

transition from detecting risky episodes to a secure spatial mobility after the confinement 

commenced.  

 

Figure 9. LoSD evolution in study areas during the week that includes the start date of lockdown in 

Spain (14/03/2020). 
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Afterwards, the tool continued to be operational and provided information for alerts, 

as well as being useful for analysis and modelling of urban mobility patterns. 

Let us conclude the presentation of the results by summarizing the contribution and 

significance of the methodology described in the paper. We have proven than the raw 

technical data generated by public Wi-Fi networks can be transformed into usable infor-

mation, with public and private applications. In this sense, a technical infrastructure be-

comes essential to the provision of support for decision-making. Moreover, the proposed 

architecture is easily replicable, so those smart cities that activate adequate modifications 

in their Wi-Fi networks become themselves a source of usable information for planning 

and management. In terms of applicability, the social distance levels can be used to deter-

mine thresholds’ safety levels. Then, the proposed technical architecture can incorporate 

automatic alerts to detect when those levels are reached. This information can be supplied 

to urban mobility administrators or can be directly given to pedestrians so that they can 

implement self-behavior modifications. Additionally, the monitoring data can be used to 

forecast numbers of pedestrians in subsequent periods [28].The real-time frequency and 

the precise geolocation offer the possibility for city councils to activate different policies 

at specific locations. 

6. Conclusions 

This study is a response to the need to monitor urban mobility, to contribute to sus-

tainability and improve the quality of information available to urban planners in cities. 

The main contribution outlines a methodology to define indicators based on the level of 

service available to pedestrians in urban spaces, including GIS information for the city 

and obtaining a calibration factor for human presence based on the number of detected 

devices. The proposal is based on empirical measurements and could be improved further 

if automated counting systems are available to enhance the precision of the Fpm factor. 

We defined a new level of social distance indicator (LoSD), which is based on the 

relationship between health recommendations regarding interpersonal distance, the geo-

physical capacity of streets for pedestrian use, and the real-time monitoring of the number 

of devices detected by the SmartWifi network in Palma. We have shown how the proposal 

is applicable and extremely effective for analyzing risky situations and generating warn-

ings. 

The proposed differentiation of habitual and sporadic users of the city enables us to 

extend the analysis to the field of tourist destination management, and to apply mitigating 

actions aimed at each user type. 

This study was initially based on data recorded during the 2019 summer high tour-

ism season. However, it was applied in near real time (five-minute intervals) during the 

initial period of the pandemic, which demonstrates that high-frequency city mobility 

monitoring opens the possibility of substantial applications in the fields of safety, citizen 

participation, and other city management areas. 

The proposed methodology combines high time-frequency and spatial precision to 

provide accurate characterization of how the analyzed areas of a city are used, with dif-

ferent time frequencies and geographical spread; the study results show its application in 

Palma. Weekly, daily, and five-minute time aggregations can be performed to extract 

models of pedestrian behavior. Furthermore, large areas and calibration-based zones were 

included. These results show notable spatial and temporal patterns in pedestrians’ mobil-

ity and density in Palma. 

In short, the use of public Wi-Fi infrastructures in cities should be seen not as a service 

but as a tool for urban planning that could contribute to improving urban sustainability, 

if methodologies such as those set out above are employed to translate detected devices 

into useful indicators for decision-making by public administrators. 
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