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Outline

The increasing pervasion of devices related to wireless networks, data pro-
cess and transport and in general the Internet of Things (IoT) has led to a
resultant rapid increase of edge devices. The numbers are enormous and the
predictions are wondrous [1]; in a few years (by 2025) 180 ZBytes will be
the amount of data to be handled (International Data Corporation - IDC).
In addition, IoT devices will exceed 150 billions and it is estimated that the
data produced by them will be about 70% of the data produced worldwide
(IDC) [1]. It is apparent that all the types of centralized processing, even
in the form of cloud, cannot properly and efficiently support this new com-
puting landscape; taking also into account the fact that IoT has to go hand
by hand with other technologies regarding artificial intelligence, big data,
mobile computing etc., which are being referred to as ubiquitous computing
platforms. Therefore, edge computing rises in the horizon, calling for data
processing at the edge of the network.

All these technologies call for innovative approaches [2, 3] and some
of those approaches are approximate computing [4–6], deep learning [7],
new post-CMOS devices and architectures [8], or advanced processing tech-
niques [9,10]. One of the fields where more computational power is required,
is communications, especially when data privacy protection and security are
included. Thus, data encryption emerges as a mandatory element. Nowa-
days, many techniques and approaches are proposed in the context of the
IoT, in all hierarchical levels of data communications, others for ensuring pri-
vacy [11] and others for practically ensuring security [12]. As a result, there
exist numerous proposals in this sense, usually ubiquitous ones; one such
promising option seems to lean towards using chaotic-based encoder-decoder
schemes to secure and/or authenticate data transmission in general [13].
There are examples of such secure-communication systems, analog [14, 15],
and digital [16,17] ones demonstrating merits like low-cost, circuit simplicity,
low-power operation etc. [9, 10,18,19].

On the other hand, it seems that approximate computing enables high
power savings [6], making this technique a viable candidate for IoT edge de-
vices. This framework offers energy savings by trading accuracy for energy.
There are a handful of methods that can successfully implement approxi-
mate computing: programming methods and algorithms, hardware imple-
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mentations and other ubiquitous solutions. As a curious note, this strongly
reminds of the way chaos was encountered by Lorenz, finding different so-
lutions of the homonym set of equations because of truncated number stor-
age [20].

An interesting approach had been already introduced by Von Neumann
in 1956 [21], based on a series of lectures given by R.S. Pierce in 1952
at California Institute of Technology. This approach, namely Stochastic
Computing (SC) or Stochastic Logic, makes a trade-off between calculation
time and accuracy. This approach has been successfully applied in fields as
diverse as neural network implementation [22, 23], data mining [24], data
compression [25], or mathematical calculations (FFT) [26], control [27], or
even A/D conversion [28], among others. An important advantage is that it
allows for a high reduction in the number of components, thus reducing the
power required to run the circuit. However, this comes to a price, since the
time required to perform the operation also increases exponentially with the
number of bits.

There are cases where this trade-off plays a crucial role, like in the case
of chaotic systems. It is known that key features of all nonlinear, chaotic
systems are: long-term bounded aperiodic behavior, enhanced sensitivity to
parameters and initial conditions, and fast de-correlation between past and
present [29]. These features, especially sensitivity to initial conditions and
parameter values, make proper implementation of chaotic systems within
approximate computing frameworks, difficult, not impossible though. A suc-
cessful example is the case of implementing a chaotic oscillator in a purely
digital environment [17], but with the cost of creating a much more compli-
cated (higher-dimensional) implementation.

In this thesis, we have focused on the use of Stochastic Computing (SC)
applied to the solution of several issues. As a first step, we’ve evaluated the
performance of SC when implementing nonlinear circuits with chaotic be-
havior. Specifically, in chapter 2 we have implemented the so-called Shimizu-
Morioka system in SC. The results, partially published in [30]) have shown
that this implementation can be useful, if it’s done with a limited number
of bits with parallel implementations.

In chapter 3, we present three different implementations of memristors
and memristor-based systems based on SC. The first one is a purely digi-
tal memristor based on a flux-charge model. This part of the chapter was
partially published in [31]. The second proposal, partially published in [32],
includes the implementation of a switched capacitor memristive emulator.
Finally, at the last part of the chapter regarding the third presented imple-
mentation, we propose an improvement to the previous emulator by adding
SC. This last part of the chapter was partially published in [33], [34] and [35].

In the next chapter, we propose a few applications developed with mem-
ristor emulators and SC. At the first part of the chapter 4, we design and
implement a system for solving mazes, using the memristive emulator as a

x



delay element. We initially checked the system’s operation in Matlab and
then we exported it to two different FPGAs. This part of the chapter was
partially published in [36]. The end of chapter 4 includes a proposal for
the use of SC in designing and implementing Cellular Nonlinear Networks
(CNN). By combining Matlab and a FPGA, we develop a CNN and apply
it to three real-time processes (Store, edge detection and image sharpen-
ing) for both grey and color images. This part of the chapter was partially
published in [37] and [38].

Finally, the thesis ends with a concluding chapter, where next to briefly
describing the presented work, we discuss about the value and The efficiency
of using SC in several cases, especially for edge computing applications.
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Resumen

La creciente penetración de los dispositivos relacionados con el procesamiento
y el transporte de datos, las redes inalámbricas, y, en general, el Internet de
las cosas (IoT) ha dado lugar a un rápido aumento de los dispositivos edge.
Los números son enormes y las predicciones maravillosas [1]; en unos años
(para el 2025) 180 ZBytes será la cantidad de datos a manejar (International
Data Corporation - IDC). Además, los dispositivos IoT superarán los 150
mil millones y se estima que los datos producidos por ellos serán alrededor
del 70% de los datos producidos a nivel mundial (IDC) [1]. Es evidente que
todos los tipos de procesamiento centralizado, incluso en forma de nube,
no pueden admitir de manera adecuada y eficiente este nuevo panorama in-
formático; teniendo también en cuenta que IoT tiene que ir de la mano de
otras tecnoloǵıas en materia de inteligencia artificial, big data, computación
móvil, etc., a las que se está denominando plataformas de computación
ubicua. Por lo tanto, la computación edge se eleva en el horizonte y exige
el procesamiento de datos en el peŕımetro de la red.

Todas estas tecnoloǵıas requieren enfoques innovadores [2,3] y algunos de
esos enfoques son computación aproximada [4–6], aprendizaje profundo [7],
nuevos dispositivos y arquitecturas post-CMOS [8], o técnicas de proce-
samiento avanzadas [9, 10]. Uno de los campos donde más potencia com-
putacional se requiere es el de las comunicaciones, especialmente cuando
se incluye la protección de la privacidad y la seguridad de los datos. Aśı,
el cifrado de datos surge como un elemento obligatorio. Hoy en d́ıa, se
proponen muchas técnicas y enfoques en el contexto del IoT, en todos los
niveles jerárquicos de las comunicaciones de datos, otros para garantizar la
privacidad [11] y otros para garantizar prácticamente la seguridad [12]. En
consecuencia, existen numerosas propuestas en este sentido, generalmente
ubicuas; una de esas opciones prometedoras parece inclinarse hacia el uso
de esquemas de codificador-decodificador basados en caos para asegurar y/o
autenticar la transmisión de datos en general [13]. Hay ejemplos de tales
sistemas de comunicación segura, analógicos [14, 15] y digitales [16, 17] que
demuestran méritos como bajo costo, simplicidad de circuitos, operación de
bajo consumo, etc. [9, 10,18,19].

Por otro lado, parece que la computación aproximada permite un alto
ahorro de enerǵıa [6], lo que convierte a esta técnica en un candidato viable
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para los dispositivos IoT edge. Este marco ofrece ahorros de enerǵıa al in-
tercambiar precisión por enerǵıa. Hay un puñado de métodos que pueden
implementar con éxito la computación aproximada: métodos y algoritmos
de programación, implementaciones de hardware y otras soluciones ubicuas.
Como nota curiosa, esto recuerda fuertemente la forma en que Lorenz en-
contró el caos, encontrando diferentes soluciones al conjunto homónimo de
ecuaciones debido al almacenamiento de números truncados [20].

Von Neumann ya hab́ıa introducido un enfoque interesante en 1956 [21],
basado en una serie de conferencias dadas por R.S. Pierce en 1952 en el
Instituto de Tecnoloǵıa de California. Este enfoque, a saber, Computación
estocástica (SC) o Lógica estocástica, hace un compromiso entre el tiempo
de cálculo y la precisión. Este enfoque se ha aplicado con éxito en campos
tan diversos como la implementación de redes neuronales [22, 23], mineŕıa
de datos [24], compresión de datos [25] o cálculos matemáticos (FFT) [26],
control [27], o incluso conversión A/D [28], entre otros. Indicativo de sus
ventajas, permite una gran reducción en el número de componentes, re-
duciendo aśı la potencia necesaria para hacer funcionar el circuito. Sin
embargo, esto tiene un precio, ya que el tiempo necesario para realizar la
operación también aumenta exponencialmente con el número de bits.

Hay casos en los que esta compensación juega un papel crucial, como en
el caso de los sistemas caóticos. Se sabe que las caracteŕısticas clave de todos
los sistemas caóticos no lineales son: comportamiento aperiódico acotado a
largo plazo, mayor sensibilidad a los parámetros y condiciones iniciales, y
rápida descorrelación entre el pasado y el presente [29]. Estas caracteŕısticas,
especialmente la sensibilidad a las condiciones iniciales y los valores de los
parámetros, hacen que la implementación adecuada de sistemas caóticos
dentro de marcos informáticos aproximados sea dif́ıcil, aunque no imposi-
ble. Un ejemplo exitoso es el caso de implementar un oscilador caótico en
un entorno puramente digital [17], pero con el costo de crear una imple-
mentación mucho más complicada (de mayor dimensión).

En esta tesis, nos hemos centrado en el uso de la computación estocástica
(CE) aplicada a la resolución de diferentes problemas. Como primer paso,
hemos evaluado la eficacia de la CE a la hora de implementar circuitos no lin-
eales con comportamiento caótico. Espećıficamente, en el caṕıtulo 2 hemos
implementado el llamado sistema de Shimizu-Morioka en CE. Los resultados
(publicados en parte en [30]) han mostrado que esta implementación puede
ser útil, si se hace usando un número limitado de bits, con implementaciones
en paralelo.

En el caṕıtulo 3, hemos presentado tres implementaciones de memristores
y sistemas memristivos basados en CE. El primero de los tres es un emulador
de memristor digital basado en el modelo de flujo-carga. Esta parte del
caṕıtulo se basa en el art́ıculo publicado en [31].

La segunda propuesta, publicada parcialmente en [32], incluye la imple-
mentación de un emulador de memristor utilizando capacidades conmutadas.
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Finalmente, en la última parte del caṕıtulo con respecto a la tercera
implementación presentada, proponemos una mejora al emulador anterior,
añadiéndole CE.

Esta última parte del caṕıtulo se publicó parcialmente en [33], [34] y [35].
En el siguiente caṕıtulo, proponemos algunas aplicaciones desarrolladas

con emuladores de memristores y CE. En la primera parte del caṕıtulo 4,
realizaremos el diseño e implementación de un sistema para resolver laber-
intos, utilizando el emulador memristivo como elemento de retardo.

Inicialmente comprobamos la operación del sistema en Matlab y a con-
tinuación lo exportamos a dos FPGAs diferentes. Esta parte del caṕıtulo fue
publicada parcialmente en [36]. El final del caṕıtulo 4 incluye una propuesta
para el uso de la CE en el diseño e implementación de Redes Celulares No-
Lineales (Cellular Nonlinear Networks - CNN). Combinando Matlab y una
FPGA, desarrollaremos una CNN para aplicar a tres procesos (Almacenado,
detección de bordes y definición de imagen) en tiempo real a imágenes en es-
cala de grises y en color. Esta parte del caṕıtulo fue publicada parcialmente
en [37] y [38].

Finalmente, acabamos la tesis con un caṕıtulo de conclusiones, en el cual
discutiremos sobre el valor y eficiencia de utilizar CE para diferentes casos,
especialmente para aplicaciones de computación en el peŕımetro de la red.
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Resum

La creixent penetració de dispositius relacionats amb les xarxes sense fils,
el processament i el transport de dades i, en general, l’Internet de les coses
(Internet of Things, IoT) ha donat lloc a un ràpid augment de la quantitat
de dispositius de computació en el llindar (edge computing). Els números
són enormes i les prediccions són espectaculars [1]; d’aqúı a uns anys (el
2025) 180 ZBytes serà la quantitat de dades que s’haurà de gestionar (Inter-
national Data Corporation - IDC). A més, els dispositius IoT superaran els
150.000 milions i s’estima que les dades prodüıdes per ells seran al voltant
del 70% de les dades prodüıdes a tot el món (IDC) [1]. És evident que
tots els tipus de processament centralitzat, fins i tot en forma de núvol,
no poden suportar de manera adequada i eficient aquest nou panorama in-
formàtic; tenint en compte també el fet que l’IoT ha d’anar de la mà d’altres
tecnologies en matèria d’intel·ligència artificial, big data, informàtica mòbil,
etc. que s’estan denominant plataformes d’informàtica ubiqua. Per tant, la
computació edge s’alça a l’horitzó, demanant el processament de dades a la
vora de la xarxa.

Totes aquestes tecnologies requereixen enfocaments innovadors [2,3] i al-
guns d’aquests enfocaments són computació aproximada [4–6], aprenentatge
profund [7], nous dispositius i arquitectures post-CMOS [8], o tècniques
avançades de processament [9, 10]. Un dels camps on es requereix més
potència computacional és el de les comunicacions, especialment quan s’han
d’incloure la protecció i la seguretat de la privacitat de les dades. Aix́ı, el
xifratge de dades sorgeix com un element obligatori. Actualment, en el con-
text de l’IoT es proposen moltes tècniques i enfocaments, en tots els nivells
jeràrquics de comunicacions de dades, d’altres per garantir la privacitat [11]
i d’altres per garantir pràcticament la seguretat [12]. En conseqüència, exis-
teixen nombroses propostes en aquest sentit, generalment omnipresents; una
d’aquestes opcions prometedores sembla inclinar-se cap a l’ús d’esquemes
de codificador-descodificador basats en caos per assegurar i/o autenticar la
transmissió de dades en general [13]. Hi ha exemples d’aquests sistemes
de comunicació segura, [14, 15] i digitals [16, 17] que demostren mèrits com
el baix cost, la simplicitat del circuit, el funcionament de baix consum,
etc. [9, 10,18,19].

D’altra banda, sembla que la informàtica aproximada permet un gran
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estalvi d’energia [6], fent d’aquesta tècnica un candidat viable per a disposi-
tius edge IoT. Aquest marc ofereix estalvi energètic mitjançant l’intercanvi
de precisió per energia. Hi ha un grapat de mètodes que poden implementar
amb èxit la informàtica aproximada: mètodes i algorismes de programació,
implementacions de hardware i altres solucions omnipresents. Com a nota
curiosa, això recorda fortament la manera com es va trobar el caos per
Lorenz, trobant diferents solucions al conjunt homònim d’equacions a causa
de l’emmagatzematge de nombres truncats [20].

Un enfocament interessant ja havia estat introdüıt per Von Neumann
el 1956 [21], basat en una sèrie de conferències impartides per R.S. Pierce
el 1952 a l’Institut Tecnològic de Califòrnia. Aquest enfocament, és a dir,
la informàtica estocàstica (SC) o la lògica estocàstica, fa una compensació
entre el temps de càlcul i la precisió. Aquest enfocament s’ha aplicat amb
èxit en camps tan diversos com la implementació de xarxes neuronals [22,23],
mineria de dades [24], compressió de dades [25] o càlculs matemàtics (FFT)
[26], control [27], o fins i tot conversió A/D [28], entre d’altres. Indicatiu
dels seus avantatges, permet una gran reducció del nombre de components,
reduint aix́ı la potència necessària per fer funcionar el circuit. Tanmateix,
això té un preu, ja que el temps necessari per realitzar l’operació també
augmenta exponencialment amb el nombre de bits.

Hi ha casos en què aquesta compensació juga un paper crucial, com en
el cas dels sistemes caòtics. Se sap que les caracteŕıstiques clau de tots els
sistemes no lineals i caòtics són: comportament aperiòdic limitat a llarg ter-
mini, sensibilitat millorada als paràmetres i condicions inicials i una ràpida
descorrelació entre el passat i el present [29]. Aquestes caracteŕıstiques, espe-
cialment la sensibilitat a les condicions inicials i els valors dels paràmetres,
fan que la implementació adequada de sistemes caòtics dins de marcs in-
formàtics aproximats sigui dif́ıcil, però no impossible. Un exemple d’èxit
és el cas d’implementar un oscil·lador caòtic en un entorn purament digi-
tal [17], però amb el cost de crear una implementació molt més complicada
(de dimensions superiors).

En aquesta tesi, ens hem centrat en l’ús de la computació estocàstica
(CE) a diferents problemes. Com a primer pas, hem avaluat l’eficàcia de la
CE a l’hora d’implementar circuits no lineals amb comportament caòtic. Es-
pećıficament, al caṕıtol 2 hem implementat l’anomenat sistema de Shimizu-
Morioka en CE. Els resultats (publicats en part a [30]) han mostrat que
aquesta implementació pot ser útil, si es fa usant un nombre limitat de bits,
amb implementacions en paral·lel.

Al caṕıtol 3, hem presentat tres implementacions de memristors i sis-
temes memristius basats en CE. El primer dels tres és un emulador de mem-
ristor digital basat en el model de fluxe-càrrega. Aquesta part del caṕıtol es
basa en l’article publicat a [31]. La segona proposta, publicada parcialment
a [32], inclou la implementació d’un emulador de memristor usant capacitats
commutades.
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Finalment, a la darrera part del caṕıtol pel que fa a la tercera imple-
mentació presentada, proposam una millora a l’emulador anterior, afegint-hi
CE. Aquesta darrera part del caṕıtol es va publicar parcialment a [33], [34]
i [35].

Al següent caṕıtol, proposam algunes aplicacions desenvolupades amb
emuladors de memristors i CE. A la primera part del caṕıtol 4, dissenyarem
i implementarem un sistema per resoldre laberints, fent servir l’emulador
memristiu com a element de retard. Vàrem començar comprovant l’operació
del sistema amb Matlab i a continuació el vàrem exportar a dues FPGAs
diferents. Aquesta part del caṕıtol va ser publicada parcialment a [36]. El
final del caṕıtol 4 inclou una proposta per l’ús de la CE per dissenyar i imple-
mentar Xarxes Cel·lulars No-lineals (Cellular Nonlinear Networks - CNN).
Combinant Matlab i una FPGA, desenvoluparem una CNN per aplicar a
tres processos (Enmagatzament, detecció de llindars i definició d’imatge) en
temps real a imatges en escala de grisos i en color. Aquesta part del caṕıtol
va ser publicada parcialment a [37] i [38].

Finalment, acabam la tesi amb un caṕıtol de conclusions, on discutim
sobre el valor i l’eficiència d’usar CE per diferents casos, especialment per
aplicacions de computació al peŕımetre de la xarxa.
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Acronyms

The following abbreviations are used in this thesis:

AI : Artificial Intelligence
B2S : Binary to Stochastic
BEN : Binary Encoded Number(s)
DRM : Dynamic Route Map
ENB : Effective Number of Bits
FFT : Fast Fourier Transform
FPGA : Field Programmable Gate Array
IoT : Internet of Things
JTAG : Joint Test Action Group
LSB : Least Significant Bit
LUT : Look Up Table
MSB : Most Significant Bit
NF : Noise Figure
ODE : Ordinary Differential Equation
PDF : Probability Density Function
RBG : Random Bit Generator
RNG : Random Number Generator
SC : Stochastic Computing
SCN : Stochastic Computing Number
SEN : Stochastic Encoded Number(s)
SL : Stochastic Logic
UDP : User Datagram Protocol
UM : Universal Machines
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Chapter 1

Introduction

1.1 Background

The increasing pervasion of devices related to wireless networks, data pro-
cess and transport and in general the Internet of Things (IoT) has led to a
resultant rapid increase of edge devices. The numbers are enormous and the
predictions are wondrous [1]; in a few years (by 2025) 180 ZBytes will be
the amount of data to be handled (International Data Corporation - IDC).
In addition, IoT devices will exceed 150 billions and it is estimated that the
data produced by them will be about 70% of the data produced worldwide
(IDC) [1]. It is apparent that all the types of centralized processing, even
in the form of cloud, cannot properly and efficiently support this new com-
puting landscape; taking also into account the fact that IoT has to go hand
by hand with other technologies regarding artificial intelligence, big data,
mobile computing etc. which are being referred to as ubiquitous computing
platforms. Therefore, edge computing rises in the horizon, calling for data
processing at the edge of the network.

All these technologies call for innovative approaches [2, 3] and some
of those approaches are approximate computing [4–6], deep learning [7],
new post-CMOS devices and architectures [8], or advanced processing tech-
niques [9,10]. One of the fields where more computational power is required,
is communications, especially when data privacy protection and security are
included. Thus, data encryption emerges as a mandatory element. Nowa-
days, many techniques and approaches are proposed in the context of the
IoT, in all hierarchical levels of data communications, others for ensuring
privacy [11] and others for practically ensuring security [12]. As a result,
there exist numerous proposals in this sense, usually ubiquitous ones; one
such promising option seems to lean towards using chaotic-based encoder-
decoder schemes to secure and/or authenticate data transmission in gen-
eral [13,39–41]. There are examples of such secure-communication systems,
analog [14, 15], and digital [16, 17] ones demonstrating merits like low-cost,
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circuit simplicity, low-power operation etc. [9, 10,18,19].
On the other hand, it seems that approximate computing enables high

power savings [6], making this technique a viable candidate for IoT edge de-
vices. This framework offers energy savings by trading accuracy for energy.
There are a handful of methods that can successfully implement approximate
computing: programming methods and algorithms, hardware implementa-
tions and other ubiquitous solutions. As a curious side note, this strongly
reminds of the way chaos was encountered by Lorenz, finding different so-
lutions of his equations because of truncated number storage [20]. In fact,
as the legend goes, Lorenz found that saving the state of a simulation and
using it as the new initial condition, resulted in a very different simulation
than simply continuing this without saving. After a lot of analysis effort,
it was found that results were stored with less resolution than was used
internally to perform the computations. This difference in the number of
bits caused minuscule differences that led to divergent simulations because
of the chaotic nature of the system. Thus, it is quite important to analyze
if the system to be implemented allows the use of approximate computing.

An interesting approach had been already introduced by Von Neumann
in 1956 [21], based on a series of lectures given by R.S. Pierce in 1952
at California Institute of Technology. This approach, namely Stochastic
Computing (SC) or Stochastic Logic, makes a trade off between calculation
time and accuracy. This approach has been successfully applied in fields as
diverse as neural network implementation [22, 23], data mining [24], data
compression [25], or mathematical calculations (FFT) [26], control [27], or
even A/D conversion [28], among others. Indicative of its advantages [42], it
allows for a high reduction in the number of components, thus reducing the
power required to run the circuit. However, this comes to a price, since the
time required to perform the operation also increases exponentially with the
number of bits. This, in turn, may increase the total energy consumption
when the number of bits exceeds 16-17 [43, 44]. There are, however, tech-
niques that allow this problem to be alleviated, and make this competitive
even for higher bit-numbers [44]. Notice, that stochasticity is entering only
in the proper (for calculation) number generation, and has nothing to do
with the systems implemented within this framework. In fact, it could be
considered as an equivalent of typical noisy system.

There are cases where this trade-off plays crucial role, like in the case
of chaotic systems. It is known that key features of all nonlinear, chaotic
systems are: long-term bounded aperiodic behavior, enhanced sensitivity to
parameters and initial conditions, and fast de-correlation between past and
present [29]. These features, especially sensitivity to initial conditions and
parameter values, make proper implementation of chaotic systems within
approximate computing frameworks, difficult, not impossible though. A suc-
cessful example is the case of implementing a chaotic oscillator in a purely
digital environment [17], but with the cost of creating a much more compli-
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cated (higher-dimensional) implementation.

In this chapter, we will rate the goodness of this trade off. In section 1.4
we will explain some fundamentals about errors calculations and propagation
of errors in stochastic computing. Later, in section 1.4.2 we will make an
approach to effective accuracy estimation. Finally, in section 1.4.3, we will
discuss about ways to reduce the error in stochastic computing.

1.2 Approximate computing

If we stop for a moment, we will realize that we are surrounded by approx-
imations in many fields. In engineering, we can find approximate signal
processing in audio and video. In communications systems, network proto-
cols like UDP over IP are based on a best effort policy. In mathematics, we
can usually find function approximations, and in computer science, we use
very often approximate string matching and approximation algorithms. The
two main motivations to bet for an AC are the power and the reliability,
and we can not ignore any of both. To be honest, most of the computation
we use nowadays are being performed either on portable devices (Mostly
mobile phones) or in massive data centers. In the case of mobile phones, it
would be interesting if we can make the battery last longer and, in the case
of data centers, power consumption is the main operational cost.

AC is really suitable when we can take advantage of applications with
high embedded error tolerance. This tolerance is really high in situations in
which users can accept a lack of accuracy, as the phone example mentioned
before, or in situations in which the average human senses are limited, as in
multimedia applications, like raw image format versus .jpg format, or flac
file sound format versus mp3 files. Finally, error tolerance is very high when
the golden result does not exist, it’s not possible, or it’s too expensive, like
in data mining.

And with respect to applications, AC is interesting for those iterative
and convergent ones that need to treat massive data and the number of
iterations marks the quality of the results. AC is also very effective for
applications with more than a right answer, like machine learning and web
search. Finally, we consider that AC is appropriated for the applications
that operate in noisy data with analog inputs and, as told, for applications
with analog outputs for human users.

1.3 Stochastic Computing

1.3.1 Basic operations

The SC approach adopts real number representation by strings of N random
binary numbers bi. The probability of ”1” bits to appear within the bit-
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string is proportional to the number to be operated [45]:

p =
1

N

N∑
i

bi (1.1)

These strings are called Stochastic Computing numbers (SCN) or Stochas-
tic Encoded Numbers (SEN). In this thesis, we will opt for the second, using
also the term Binary Encoded Numbers (BEN) for those encoded as classical
binary numbers. Notice that the number of bits that can be encoded in a
chain of length N is log2N , since the relevant information is just the number
of ”1”s . For instance, the chains1 ”0000 0000 0001 1111 0000 1100” and
”0100 0000 0111 1001 0000 0001” would both encode the information that
there are 7 ones in a chain which is 24 bits long.

There are two main ways to generate a map between a SCN and real
numbers: first, we can map the desired range of real numbers to the real
domain [0..1]; second, we can map them to the interval [-1..1]. Depend-
ing on which mapping is to be implemented, many different mathematical
operations can then be done using simple logic gates or simple sequential
circuits.

As an example, multiplication of SCN is performed using a simple AND
gate when using the [0..1] domain. Alternatively, considering the [-1..1]
domain, the same multiplicative operation requires the use of an XNOR
gate, as shown in Fig. 1.1(a).

Since we cannot represent any SC number as a probability higher than
one, the case of addition becomes slightly more complex, since 1+1=2. Thus,
the operation that should be implemented is (x+ y)/2, which would always
return a maximum value of 1. This operation is usually implemented using
a multiplexer, as shown in Fig. 1.1(b), where the p(0.5) means a signal
with a probability of 50% to be ’1’ or ’0’. This necessary input signal is
generated using one of the bits generated in the RNG, so no additional
circuitry is needed. It is worth pointing out that this gate is the same
in both the [0..1] and the [-1..1] domains. Other more complex operations
(division [27], square roots [27], reversible gates [46], etc...) are also discussed
in the literature, though not presented in this thesis.

Another important point is the conversion from BEN to SEN. This is
usually achieved by using a scheme similar to that in Fig. 1.2, where an N-bit
random number is generated by utilizing a random number generator (RNG)
and compared to the value of the N-bit BEN. If the output of the RNG is
below the BEN, the converter’s output would be bit ”1”, bit ”0” otherwise.
In the opposite operation, converting SEN back to its BEN representation,
the number of 1’s included in the signal needs to be calculated; something
that can be straightforwardly achieved by a simple counter.

1In the above chains, the spaces are added just to facilitate reading.
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((a))

((b))

Figure 1.1: Basic implementation of basic operation in SC. (a) Basic im-
plementation scheme of a SC multiplier in the (0..1) range (AND gate, left)
and in the (−1..1) range (XNOR gate, right). (b) Basic implementation
scheme of a SC adder using a multiplexer.

Figure 1.2: Basic implementation scheme of a Binary Encoded Number
(BEN) to a Stochastic Encoded Number (SEN), using a Random Number
Generator (RNG).

1.3.2 Division and Square Root Configurations

In this section we will discuss the implementation proposed by Gaines in
the 1960 [47], since it forms the basis for all the posterior proposals (for
instance, [48,49]).

In this approach, a single JK flip-flop is used to generate an approxima-
tion to the division result. As it is known, when the two inputs of the JK
are 01 or 10, the state of the flip-flop (Q+) is set to 0 and 1, respectively.
J=0 and K=0 doesn’t change the state (Q+ = Q) and J=1 and K=1 toggles
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the state of the JK (Q+ = Q̄). If we define pij as the probabilities of JK=ij,
we can see that the probability of the state pQ+ is:

pQ+ = p00 · pQ + p10 + p11 · (1− pQ) (1.2)

If the flip-flop is in steady-state, pZ = pQ+ = pQ, so pZ = p10+p11
1−p00+p11

.
Where

pX1 = pJ = p10 + p11

pX2 = pK = p01 + p11

p00 + p01 + p10 + p11 = 1

(1.3)

Thus, the probability of the output Z being 1 is: pZ =
pX1

pX1
+pX2

This way, if the dividend pX1 is small, we can approximate the division
operation pZ =

pX1
pX2

. If the divisor pX2 is small, the result becomes very

inaccurate. Gaines proposed adding a sequential component, called ADDIE
(ADaptative DIgital Element), in order to implement pZ =

pX1
pX2

. The AD-

DIE can be implemented by using an up-down counter with feedback and
makes an estimation of p̂Z in binary form. To generate the stochastic form
of p̂Z , it uses a SNG. As we know, p̂Z ∼= pZ =

pX1
pX2

, so pX1 = pX2 · p̂Z .
In Fig. 1.3 we show the scheme of divider based on ADDIE for the

[0..1] domain, which can also be named as the unipolar version. This one
calculates p̂Z in a dynamic way. If pX1 is lower than pX2 · p̂Z , then pz is
greater than p̂Z and the counter gets increased. If pX2 · p̂Z is greater than
pX1 , then

pX1
pX2

is lower than p̂Z and the counter gets decreased.

The output of the counter is connected to an AND gate in order to
perform pX2 · p̂Z . The result of this AND gate is connected to the Down
input of the counter, feeding it back. The binary form of pX2 (Dividend) is
connected to the Up input of the counter.

The division p̂Z =
px1
px2

is completed once the system is in equilibrium,

which is when the counter output pz is such that pX1 = pX2 · p̂Z , which
means that, in average, the output of the counter will not change.

The variance of the output of the counter (pz or, in its stochastic repre-
sentation, p̂z) was noted by Gaines to be inversely proportional to the the
number of possible states of the counter (2k). The reason for this is that
pZ changes value by ∆pz =

1
2k

when the Up and Down signals are different.
Thus, this ∆pz defines an error boundary for his proposed divider.

In addition, since the variance due to the stochastic noise in a combina-
tional SC circuits is σ = pZ ·(1−pZ)

N (where N is the bit-stream length [50]), Z
can present an arbitrarily small variance given an arbitrarily long bit-stream
and an arbitrary length counter.

In figure 1.4 we can see the design of the ADDIE-based divider for the
[-1..1] domain, also called the bipolar version. A few variations must be
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made to Fig. 1.3 to get 2pZ − 1 =
2pX1
2pX2

. We must note that the bipolar

stochastic numbers may be negative, so X1 > X2 · Ẑ does not guarantee
that Ẑ < X1/X2. The comparison between Ẑ X1/X2 is affected by the sign
of X2. On the same way, X1 < X2 · Ẑ does not imply that Ẑ > X1/X2. By
comparing X1 ·X2 and X2

2 · Ẑ instead of X1 and X2 · Ẑ, we can decrease the
uncertainty that is caused by the signed numbers. If X2 ̸= 0, → X2

2 > 0, so
X1 ·X2 > X2

2 · Ẑ → Ẑ < X1/X2 and Ẑ > X1/X2 if X1 ·X2 < X2
2 · Ẑ

Figure 1.3: Division scheme for the [0..1] domain, as in [47].

Figure 1.4: Division scheme for the [-1..1] domain, as in [47].

The information in this section has been gathered from [51], [48] and [49].

1.3.3 Arbitrary Function Implementation

A very interesting approach to approximate arbitrary functions using Stochas-
tic computing was proposed in [52]. To achieve this target, they propose the
use of the Taylor expansion, after dividing the function input range in a
series of segments.

A few previous assumptions are needed. The first one is that f(x) is a
function continuosly differentiable for an input range [a,b]. The range [a,b]
can be split into N sub-intervals of the same length. This way, every length
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of the sub-intervals will be h = |a− b|/N . Each interval can be denoted as
[ai−1, ai], with i = 1, ..., N as the index of each one of them.

When using the unipolar format, both the input and output range in
stochastic logic are [0,1]. The existing method only discuss functions with
these range’s conditions. The main issue in this method is to approach every
output segment as a linear function y = aix+ bi, with i as every segment’s
identifier.

By using the Taylor series expansion, f(x) can expanded at x = x0 this
way:

f(x) = f(x0) + f ′(x0)∆x+
f ′′(x0)

2
(∆x)2 +O((∆x)3) (1.4)

with ∆x = x− x0.
For an arbitrary input x, as long as the interval number (index i) is de-

termined, Eq. (1.4) with only the linear term can be used for approximating
f(x). The corresponding value of index i can be determined by (1.5)

i = ⌊x/h⌋+ 1 (1.5)

q =
x

h
− p (1.6)

where ⌊x/h⌋ is the integer part of x/h and is denoted by p.

1.3.3.1 Linear Approximation

The above Taylor approximation has been used in [52] by truncating it to
the first order, thus obtaining a linear approximation. This way, (1.4) can
be expressed by

f∗(x) = λi + µi · q (1.7)

where the values of λi, q and |µi| belong to [0, 1]. In addition, λi and
|µi| depend on the specific interval i. Eq. (1.7) is a basic approximation
equation that cannot be implemented with unipolar stochastic logic directly,
because the value of µ can be negative when f((p + 1)h) < f(ph). Thus,
the proposed method requires a specific study on the monotonicity of f(x)
in [0, 1] to determine whether the value of µ is positive or not. Thus, some
implementations of a full system according to the monotonicity of the target
function in [0, 1] are proposed by [52], and shown in Figures 1.5 and 1.6,
where λ−GU and ϕ−GU are the λ and ϕ generating unit, respectively.

1.3.3.2 Proposed Quadratic Approximation Scheme

The above system, though effective, seems to be fairly complex due to the
use of unipolar logic, which requires a quite large overhead in terms of control

8
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Figure 1.5: Existing scheme [52] for monotonically increasing functions.

Figure 1.6: Existing scheme [52] for monotonically decreasing functions.

logic. It also presents the additional problem of needing to find the points
where the function can change slope (minima and maxima), since there a
linear approximation is bound to be inaccurate.

Both these problems can be solved by using the bipolar representation
(x ∈ [-1,1]), and using a quadratic approximation, as in Eq. (1.4). Using
the same notation than before, we can write:

f∗(x) = a0 + a1 · q + a2 · q2 (1.8)

The overhead for this implementation is nearly null, since it requires only
a delay element (a D register, for instance), two additional multiplications
(AND gates), and an additional addition (OR gate plus a multiplexer).

In order to remove the selectors required to determine the current seg-
ment, we assume that we are using N = 2NS segments. This way, the values
of the different coefficients can be stored in a memory, which is addressed
using the NS most significant bits of the input x, which are also used to
calculate q.

The proposed scheme is shown in Fig. 1.7 where a0, a1 and a2 are the
corresponding values of λi, µi and ηi at each interval. The notation â is
used for the stochastic numbers representation, while a is the digital value
stored into the memory cells.

It has to be noted that the criterion to define the range’s approximation
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Figure 1.7: Proposed scheme with memory blocs. The actual implemen-
tation of the additions and multiplication inside the box is not explicitly
shown, since they are basic stochastic operations.

is that the slope of the first and second derivative must be between -1 and 1.
The method implementation is as follows. In an off-line, one-time process, we
split the interval [-1..1] in N segments, where N = 2NS as said above. Then,
we approach the arbitrary function to a quadratic function y = a0 + a1 ∗
x+ a2 ∗x2. The coefficients a0, a1, a2 may be different for each interval, and
they must be calculated beforehand and stored. Since N is a power of two,
these coefficient values are stored into a memory using the N most significant
bits of ’x’ as the address, thus significantly simplifying the recovery process
compared to previous proposals, since there is no need to make a comparison
to determine the corresponding segment. Notice that this forces the number
of bits B of the input to be higher than NS .

To estimate the error, we evaluate the difference between the approached
value and the real value and we perform the RMS on that difference. It is
clear that, depending on the specific function to be approximated, the num-
ber of segments, and the number of bits, the error will be dominated either
by the intrinsic stochastic error or by the goodness of the approximation
using a quadratic function inside the given segments.

To check the effectiveness of the proposed algorithm, we have tested it
with many different functions. In Table 1.1 we have calculated the RMS
error between the real function and the approximation made by using 32
segments and 20 bits for some of the proposed functions.

As an example, figure 1.9 shows function y = 0.1 · cos(6 · x) · log(x+ 2)
when using 20 and 22 bits for 32 segments. The RMS errors were 1.80E-10
and 1.79E-10, respectively.

10



1.3. STOCHASTIC COMPUTING

Function Error Figure
y = 0.1 · sin(18 · x) · x2 3.49E-09 Fig. 1.8(a)
y = exp(x) 3.44E-12 Fig. 1.8(b)
y = 0.1 · exp(x/4) · cos(12 · x) · x2 5.77E-09 Fig. 1.8(c)
y = −0.25 + 1/(6 + 4 · x) 2.48E-11 Fig. 1.8(d)
y = 0.1 · sin(π · x) 6.86E-12 Fig. 1.8(e)
y = 0.4 · x2 − 0.25 1.38E-12 Fig. 1.8(f)
y = 0.1 + 0.5/(2 + x)− 0.2 · x 2.01E-12 Fig. 1.8(g)
y = cos(x) 1.47E-12 Fig. 1.8(h)
y = 0.25 · (x− 0.2) · (x+ 0.5) · x 4.27E-12 Fig. 1.8(i)

Table 1.1: Arbitrary function examples and RMS error in the interval x ∈
[-1,1] using 20 bits and 32 segments.

Number of bits RMS error FNA RMS error FNB

8 2.08E-06 1.76E-06
10 1.28E-07 1.23E-07
12 8.57E-09 1.05E-08
14 9.93E-10 3.90E-09
18 5.33E-10 3.50E-09
20 5.30E-10 3.49E-09
22 5.30E-10 3.49E-09
24 5.30E-10 3.49E-09

Table 1.2: RMS errors for function FNA = 0.1 · exp(x/4) · cos(12 · x) · x2
and FNB = 0.1 · sin(18 · x) · x2 for several number of bits and 32 segments.
The symbols correspond to the calculated values of the function. Boundaries
between segments are marked in green.

Number of segments Error FNA Error FNB

8 8.85E-06 1.35E-04
16 3.64E-07 1.92E-06
32 5.77E-09 3.80E-08
64 9.16E-11 6.25E-10

Table 1.3: RMS errors for function FNA = 0.1 · exp(x/4) · cos(12 · x) · x2
and FNB = 0.1 · sin(18 · x) · x2 according to 20 bits and several number of
segments.

11



CHAPTER 1. INTRODUCTION

((a)) Y = 0.1 · sin(18 ·x) ·x2. ((b)) y = exp(x). ((c)) y = 0.1 · exp(x/4) ·
cos(12 · x) · x2.

((d)) y = −0.25+1/(6+4·x). ((e)) y = 0.1 · sin(π · x). ((f)) y = 0.4 · x2 − 0.25.

((g)) y = 0.1 + 0.5/(2 + x)−
0.2 · x.

((h)) y = cos(x). ((i)) y = 0.25 · (x−0.2) · (x+
0.5) · x.

Figure 1.8: Arbitrary functions with 32 segments and 20 bits. The
symbols correspond to the calculated values of the function. Boundaries

between segments are marked in green.
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((a)) 20 bits. ((b)) 22 bits.

Figure 1.9: Comparison between using 20 and 22 bits, respectively for
function y = 0.1 · cos(6 · x) · log(x+ 2) and 32 segments. The symbols

correspond to the calculated values of the function. Boundaries between
segments are marked in green.

((a)) 8 bits. ((b)) 10 bits. ((c)) 12 bits. ((d)) 14 bits.

((e)) 18 bits. ((f)) 20 bits. ((g)) 22 bits. ((h)) 24 bits.

Figure 1.10: Comparison of the effect of the used number of bits for
function y = 0.1 · exp(x/4) · cos(12 · x) · x2 for 32 segments. The symbols
correspond to the calculated values of the function. Boundaries between

segments are marked in green.
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((a)) 10 bits. ((b)) 14 bits. ((c)) 18 bits.

Figure 1.11: Comparison of the effect of changing the number of bits for
function Y = 0.1 · sin(18 · x) · x2 for 32 segments. The symbols correspond
to the calculated values of the function. Boundaries between segments are

marked in green.

((a)) 8 segments. ((b)) 16 segments.

((c)) 32 segments. ((d)) 64 segments.

Figure 1.12: Comparison of the effect of changing the number of
segments for function y = 0.1 · sin(18 · x) · x2 using N=20 bits. The

symbols correspond to the calculated values of the function. Boundaries
between segments are marked in green.

14
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A more extended example is shown in Figure 1.10, where y = 0.1 ·
exp(x/4) · cos(12 · x) · x2 is plot along its approximation by using several
number of bits (from 8 to 24 bits). Table 1.2 shows the corresponding RMS
errors according to each number of bits. The same evaluation is performed
for y = 0.1 ∗ sin(18 ∗ x) ∗ x2 in figure 1.11. Table 1.2 also shows the RMS
errors according to each number of bits. The behavior of the RMS error
for both function approximations is similar, decreasing exponentially with
an increasing number of bits, as expected, until a plateau is reached. This
plateau is related to the error intrinsic to the stochastic computing method.
It propagates to the final value in a way related to the specific function,
which can be calculated using standard error propagation techniques [53].

Those same two functions were also used to evaluate the effect of chang-
ing the number of segments. Figure 1.12 depicts the function y = 0.1·sin(18·
x) ·x2 along with the approximations using several number of segments. Ta-
ble 1.3 shows the RMS errors according to each number of segments. In this
case, the behavior is similar to the effect of the number of bits, in the sense
that the RMS error seems to decrease with the exponential of the logarithm
of the number of segments. In this case, and due to computational limita-
tions, we have not reached a plateau, even if we can theorize there may exist
one.

1.3.4 Intrinsic Noise Estimation

Another important point is the conversion from BEN to SEN. This is usually
achieved by using a scheme similar to that in Figure 1.2 (b), where an N-
bit random number is generated by utilizing a random number generator
(RNG) and compared to the value of the N-bit BEN. If the output of the
RNG is below the BEN, the converter’s output would be a 1-bit ”1”, or a
1-bit ”0” otherwise. In the opposite operation, converting SEN back to its
BEN representation, the number of 1’s included in the signal needs to be
calculated; something that can be achieved by a simple counter.

It is apparent that the error in the approximation of the SEN to its
actual value is equivalent to the error provided by a random walk process
of length n, and thus proportional to

√
n, as it has been discussed in the

literature [50]. Therefore, using N bits, we may consider that all the noise
caused by the process is included in the lowest N/2 bits. This way, the noise
figure NF for a signal of power Sp with noise power Np caused by the use
of the SCN is:

NF = 10log10

(
Sp

Np

)
= 10log10

(
2N

2N/2

)
≈ 3.01N/2 dB (1.9)

Notice that for this equation we have considered the maximum possible
amplitude for the input signal. In order to consider the minimum amplitude
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over the noise, we consider we are 1 bit over the noise (N/2 + 1). In this
case, we obtain:

NF = 10log10

(
Sp

Np

)
= 10log10

(
2N/2+1

2N/2

)
≈ 3.01 dB (1.10)

Thus, the system is expected to have a NF between 3dB and 3 (N/2 + 1)dB,
assuming as above that we use more than 1 bit. This NF sets the required
number of bits, which is related to the sensitivity of the equation system to
noise. Empirically, we have seen that linear equations allow for a low N ,
while nonlinear systems call for higher values. Notice that a value of the
NF = 20 dB calls for N=12 bits, while N=32 bits would provide NF = 54
dB.

1.4 Intrinsic Error in Stochastic Computing

As it is known, in digital logic there are only two different possible values
(zero and one), at any node, at any time. Thus, when one considers random
processes in digital logic, it’s only natural to use the Bernoulli formalism.
Considering the case of a random experiment/process with two possible
outputs α1 and α2, with respective probabilities p and q, belonging in (0,
1): the α1-result can be tagged as a success while the α2-result as a failure.
Then, a random variable X is defined as one:

X : Ω → R (1.11)

where Ω is the sample space, given as X(α1) = 1 and X(α1) = 0. In this
case, the probability function of X will be p(X = 1) = p, p(X = 0) = p,
and we can tag X as Bernoulli’s random variable with p-parameter. The
expected or mean value of X is:

E(X) = p (1.12)

and its variance σ(X) is:

σ(X) = p · q (1.13)

If one considers n-independent-repetitions of a Bernoulli’s type experi-
ment, then the random variable X will be called a Binomial Random Vari-
able with parameters n and p. In this case the expected or mean value
is:

E(X) = n · p (1.14)

and its variance :
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σ(X) = n · p · q (1.15)

1.4.1 Error Propagation

By utilizing the calculations in equations (1.14) and (1.15) the error intro-
duced by performing certain operations is discussed. It is apparent that
the intrinsic randomness of the representation method leads to a certain
numerical inaccuracy, that can be interpreted as noise. In specific, the error
performed when doing an addition and a multiplication will be estimated,
in the lines that follow.

1.4.1.1 Expected value and Variance of the sum

If X and Y are two uncorrelated random variables, then the expected value
of their summation Z = X + Y will be:

E(Z) = E(X + Y ) =

∫ ∫
(x′ + y′)fX,Y (x

′, y′)dx′dy′ =

=

∫
x′fX(x′)dx′ +

∫
y′fY (y

′)dy′ =

= E[X] + E[Y ]

(1.16)

Where function f is the Probability Density Function (PDF) of the ran-
dom variables.

According to equation (1.16), if Z = X+Y then E[Z] = E[X+Y ])E[X]+
E[Y ] and the corresponding variance σ of Z is calculated according to (1.17):

σ(Z) = E[(Z − E[Z])2] = E[(X + Y − E[X]− E[Y ])2] =

= E[
{
(X − E[X])2 + (Y − E[Y ])2

}
] =

= σ[X] + σ[Y ]

(1.17)

1.4.1.2 Expected value and Variance of the product

If X and Y are two independent random variables, the expected value of
their product E[Z] = E[X · Y ] will be:

E[Z] = E[X · Y ] =

∫ ∫
x′y′fX(x′)fY (y

′)dx′dy′ =

=

{∫
x′fX(x′)dx′

}
·
{∫

y′fY (y
′)dy′

}
=

= E[X] · E[Y ]

(1.18)
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Like in the case of addition, according to equation (1.18), if Z = X ∗ Y
then E[Z] = E[X · Y ] = E[X] ·E[Y ] and the corresponding variance σ of Z
is calculated according to (1.19):

σ(Z) = E[X]2 · σ[Y ] + E[Y ]2 · σ[X] + σ[X] · σ[Y ] =

= E[X2] · E[Y 2]− E[X]2 · E[Y ]2
(1.19)

Details on how to calculate the above derivations can be found in [47],
[54] and [55].

1.4.2 Effective accuracy estimation

To calculate the expected results of these operations and the expected devia-
tion, we can assume that we are operating with a binomial distribution. For
such a distribution, the probability of an ’1s’ is considered to be p, and the
probability of ’0s’ is considered to be q (q = 1− p). Then we can calculate
the mean (µ) and the standard deviation (σ) as:

µ = n · p (1.20)

σ =
√
n · p · (1− p) (1.21)

According to the definition of relative error ϵ (epsilon), this is equal to
the ratio between the error of the actual value, and the expected value. If
one wishes to have a probability of being correct higher than a 99.99%, then
the error could be bounded by 4σ; thus the relative error is:

ϵ(%) =
4σ

µ
=

4
√
n · p · (1− p)

n · p
=

√
1

p
− 1 · 4√

n
(1.22)

And by assuming that p=0.5, then this relative error could be written
as:

ϵ(%) ≃ 4√
n

(1.23)

Defining the Effective Number of Bits (ENB) as the number of the bi-
nary digits demanded for the representation of a binary number, whose Less
Significant Bit (LSB) is above the value of 4σ then the representation er-
ror of the number is below the quantification error (p > 0.9999) using the
number of bits defined by the ENB. If we want to calculate the ENB b of a
Stochastic Computing Number (SCN) of a length of n bits, we can say that:

n = 2x+b (1.24)

where x is the number of bits needed to represent the error:
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2−x = ϵ =
4σ

µ
=

4
√

n · p · (1− p)

n · p
=

√
1

p
− 1 · 4√

n
(1.25)

Assuming again that that p=0.5, we end to the following:

2−x =
4√
n

(1.26)

and then, simple arithmetic operations lead to fact that:

b = x+ 2 (1.27)

Thus, the number of the needed bits to represent a SCN number with a
resolution better than b bits is b+ x = 2b− 2. As a result, according to the
number of digits needed to represent the error, the ENB can vary accord-
ingly, leading to reduced number of digits needed for the specific accuracy.
For instance, according to the empirical rule described above, if an error less
than 1% is demanded, then:

ϵ = 0.01 = 2−x =
4√
n
→ n = 400 < 512 = 29 → x = 9 (1.28)

According to equation (1.27) and in order to get this accuracy (< 1%),
the ENB demanded is calculated to be 20 bits, thus we would need a SCN
with a length of 220 bits.

1.4.3 Reducing error in stochastic number representation

It is imperative that the numbers used when applying the scheme of stochas-
tic computing, must be uncorrelated one to the other. To comply with this
demand, random bit generators (RBG) are utilized both in the initial stage
of any mathematical chain process and the intermediate stages of stochastic
computing function processes. In this chapter, partially published on [50],
we propose a new method for implementing a RBG with improved charac-
teristics, in terms of error suppression. The idea behind this new method is
based on the principal of feedback. In specific, we add a feedback path on
the sequence of bits, produced in the RBGs output. This feedback consid-
ers the average of the probabilities obtained until the present instance and
properly applies it to the input, practically leading to an improved error
performance. In 1.13, we show the block diagram of the proposed method.

Comparative simulations of the operation of a classic (RBG) and one uti-
lizing this new method (Improved RBG), for producing uncorrelated num-
bers, suitable for stochastic computing operations, were run in Matlab envi-
ronment. Since in stochastic computing all numbers represent probabilities,
a sweep for two different probabilities (namely p=0.15 and p=0.50) was exe-
cuted and the Probability Density Function (PDF) was calculated; providing

19



CHAPTER 1. INTRODUCTION

us with a measure of the error suppression achieved in the case of the Im-
proved RGB. The results appear in figure 1.14, where the blue line (lower)
distributions regard the case of a typical RBG and the red line (upper) dis-
tributions the case of the Improved RBG utilizing the principle feedback.
In the cases of both probabilities the calculated PDF peak appeared to be
significantly higher, when the proposed hereby new method was used. In
1.4, the calculated mean value in these cases appear, further confirming the
Improved RBG’s performance.

We ran another comparative test, aiming to provide with clues of the
proposed RBG’s operational capabilities, according to the number of bits
of the input number in the simulation environment. In specific, we fed the
generator with samples of binary words comprising of 26, 28, 210, 212 and
214 bits, all of them representing an expected value (mean value) of p=0.35.
The corresponding results appear in figure 1.15 and in table 1.5. We can
easily observe that it comes a time in which the peak grows slowly until no
significant increase is observed.

Table 1.4: Calculated means in the case presented in fig 1.14

Mean Without feedback With feedback

p = 0.15 0.1562 0.1550

p = 0.50 0.4981 0.4969

Table 1.5: Calculated means in the case presented in fig 1.15 (Proposed
method)

Samples Mean With feedback Color

26 p = 0.35 0.3521 red

28 p = 0.35 0.3505 green

210 p = 0.35 0.3505 blue

212 p = 0.35 0.3498 black

214 p = 0.35 0.3502 yellow

1.5 Objectives and Outline

The main objective of the thesis is to study the possible application of
stochastic computing (SC) to different problems, including chaotic equations
and memristive systems.

Toward this, we have evaluated the performance of SC when implement-
ing nonlinear circuits with chaotic behavior. Thus, we have started by an-
alyzing a simple (chapter 2) , showing that it may behave correctly. After
that, we have used the same circuit to create an oscillator and we have
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Figure 1.13: The proposed, feedback-based Improved Random Bit Gener-
ator, with reduced error representation.

Figure 1.14: PDFs for several probabilities using the standard method
without feedback (blue line) and the proposed method with feedback (red
line).
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Figure 1.15: PDFs for one probability using the proposed method (with
feedback) for several number of samples: 26, 28, 210, 212 and 214.

checked that it also works as expected. Finally, we have implemented the
so-called Shimizu-Morioka nonlinear system in SC. The results, partially
published in [30]) have shown that this implementation can be useful, if it’s
done with a limited number of bits and a parallel implementation.

In chapter 3, we present three different implementations of memristors
and memristor-based systems based on SC. The first one is a purely digital
memristor based on a flux-charge model. Then, we present the implemen-
tation of a switched capacitor memristive emulator; and finally, we present
the third implementation, as we propose an improvement to the previous
emulator, by adding SC.

At the next chapter 4, we’ve treated a few applications to be developed
with memristors within a SC environment. Initially, we designed and imple-
mented a system to solve mazes, using the memristive emulator as a delay
element. Before the FPGA implementation the system was checked in Mat-
lab. Concluding chapter 4, we propose the use of SC for the design and
implementation of Cellular Nonlinear Networks (CNN). By combining Mat-
lab and a FPGA, we developed a CNN and utilized it (as a proof of concept)
to three real-time processes (Store, edge detection and image sharpening)
for gray and color images.
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Chapter 2

Implementation of
Differential Equation
Systems

2.1 Introduction

In this chapter, having in focus possible utilization of chaotic systems for
edge computing applications, like the IoT, an unconventional approach to
the computation of nonlinear dynamical systems is investigated. In spe-
cific, we show how the stochastic computing (SC) framework, an option
for approximate computing, can be utilized to properly implement nonlin-
ear, chaotic operating systems. It is apparent that approximate computing
methods for implementing systems sensitive to initial conditions and system
parameters is an important issue that needs thorough investigation.

In Section 2.2 an introduction to Stochastic Computing is apposed, pre-
senting some very basic examples; Section 2.3 presents a method in the
form of an example, on how to implement a nonlinear system using both
this framework and a classical integration, as well. Then, established non-
linear dynamics tools and metrics like fractal dimension, Kolmogorov-Sinai
entropy etc. are utilized to estimate how well the described SC implementa-
tion behaves, compared to the conventional approach. Finally, Section 2.4
concludes the chapter.

2.2 Stochastic Computing Implementation of Ana-
log Systems

2.2.1 Implementation of basic differential equations

Implementation of differential equations using SC is similar to the case of
implementing them in discrete form. The process involves, mainly, rewriting
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the equation in a specific way so they can be integrated using SC. This
requires three different transformations:

1. Rewriting the equation in a form suited to SC. In the most basic
case, this implies replacing all the additions by half additions: a +
b → 2(a/2 + b/2). Other, more complex operations may require a
harder reworking of the equations to ensure all the operations can be
implemented in SC in the [-1,1] or [0,1] range. For instance, in the
case of implementing a division, one has to ensure that the result is
always going to be in range, which may require an additional scaling
and shifting of the variables involved.

2. Scaling all the variables into the [-1..1] or [0..1] domains, since those
are the values that can be dealt with in SC.

3. Then, a final transformation ensures that all the modules of the coef-
ficients in the equations are lower than 1. This is equivalent to a time
scaling.

Once these three transformations are performed, the equations may be
processed as a SC system. It is apparent that in this procedure multiplica-
tions are implemented by the gates appearing in Figure 1.1(a), and additions
by the half-additions implemented by the gate in Figure 1.1(b).

In order to implement the integrator the scheme appearing in Figure 2.1
is utilized. This figure shows the symbol to be used in (a), while the scheme
is shown in (b). It performs a continuous integration, by counting up or
down depending on whether the input is 1 or 0 and comparing the output of
the counter with a random number generator RNG to create a SCN . The
implementation of the integrator and the RNG implies making a decision
on the effective number of bits demanded in order to define the size of the
counter. Notice that this is equivalent to determining the precision of the
integrator, since numbers are represented between [0..1] (or [-1..1]) with N
bits of resolution and a noise figure provided by Eq. (1.9). Related to the
number of RNG needed to implement this scheme, it has been shown in [56]
that using the same RNG in both inputs actually improves the accuracy,
thus simplifying the design.

Related to this number of bits is the issue of way time is mapped to the
number of iterations, in the relevant SC equations. This is an issue strongly
dependent on the integration method; assuming that a simple first order
rectangular integration, with no explicit time dependence is utilized, then,
it is apparent that the following equation ((2.1)) holds valid:

ẋ = f(x)

ẋ ≈ ∆x

∆t
= f(x) → ∆x = f(x)∆t

(2.1)
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(a) (b)

Figure 2.1: (a) Symbol for the integrator block; (b) Basic implementation
scheme of a SC integrator. Notice that both the input ẋ(t) and the output
x(t) are SEN numbers.

Using the integrator scheme presented in Figure 2.1, we see that allowing
for a high enough number of Nacc iterations, the output at the counter
Int(x(t)) would be:

Int(x) =
Nacc · p(1)

2N
(2.2)

where p(1) is the probability of having a 1 at the input. It has to be noted
that p(1) corresponds to the actual value to be represented in the SCN, and
Nacc is the number of ”ones” the accumulator has counted. Thus, equating
Eq. (2.1) with Eq. (2.2), we find that the effective time step is given in Eq.
(2.3).

∆t =
Nacc

2N
(2.3)

Notice that the integrator depicted in Figure 2.1 also includes a binary
to stochastic (B2S) converter, which is simply a random number generator
(RNG), plus a comparator. This way, the output of the integrator is already
also a SC number that can be used further in the circuit.

2.2.2 Basic examples

As a proof of concept two basic examples are presented: a system that inte-
grates twice a constant, and a simple oscillator. We have implemented these
systems into a DE2-70 FPGA by Altera, using Quartus-II to compile it. The
resulting circuits were implemented using less than 500 gates, or less than
a 2% of the available number of gates. Communication with the computer
was implemented using the JTAG interface, controlled within Matlab.

2.2.2.1 Integrating a constant (twice)

As a first example, we have designed the system shown in Figure 2.2 and
Eq. (2.4) and initial conditions (ẍ, ẋ, x) = (k2, k1, k0). The system then
integrates the equations over time.
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Figure 2.2: Basic implementation scheme of a second order ODE with
constant input and initial conditions (ẍ, ẋ, x) = (k2, k1, k0). The analytical
solution is also provided at the end of each stage.

ẋ = y (x(t = 0) = k0)

ẏ = z (y(t = 0) = k1)

ż = 0 (z(t = 0) = k2)

(2.4)

The analytical solution of the system above, is provided in Figure 2.2
and the results for a specific set of initial conditions are depicted in Figure
2.3 (for initial conditions k0 = k1 = 0, and k2 = 0.08). In this figure,
we have used Nacc = 5000 iterations and N = 21 bits, resulting into a
time-step ∆t = 5000

221
≈ 2.384 ms. Using this relation, we expect the line

corresponding to ẋ reaching ẍ (k2) at the 420th iteration, and crossing the
parabola generated by x at the 839th iteration. The parabola is expected
to cross k2 at iteration 593. Actually, all these crossings emerged exactly at
the expected points, as shown in Figure 2.3.

Figure 2.3: Output of the scheme in Figure 2.2, showing x, ẋ and ẍ.
The values of the initial conditions are k2 = 0.08, k1 = 0.0, k0 = 0.0, and
Nacc = 5000, N = 21 bits, providing a timestep ∆t ≈ 2.384 ms.
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2.2.2.2 A Simple Oscillator

The simplest possible autonomous system to be implemented was that of a
self-oscillating system; this is a simple coupled system described in Eq.((2.5))
implementing a simple oscillator of frequency one (ω = 1), corresponding to
the system illustrated in Figure 2.4.

ẋ = y

ẏ = −x
(2.5)

Figure 2.4: Basic implementation scheme of a coupled second order ODE,
as in Eq. (2.5).

In this case, the implementation is direct, by simply replacing the blocks
in Figure 2.4, with those discussed above. The resulting waveforms of both x
and y variables are shown in Figure 2.5. In this figure, we have used Nacc =
24 = 16 iterations and N = 18 bits. This provides a ∆t = 24

218
= 1

8192 s.
Using this relation, the period is expected to be 2π/∆t ≈ 51497 iterations,
as it actually happens in Figure 2.5.

2.3 Implementing Chaotic Systems in SC

Implementation of chaotic systems using stochastic computing can be achieved
by using the same three step process presented above. The main issue in
this case regards the sensitivity to noise, for such systems. Thus, an ade-
quate NF will require a high number of bits. To compare the results coming
from integrating within the proposed SC environment, to those utilizing the
conventional methods, the Shimizu-Morioka system [57] was utilized as a
paradigm. Therefore, a comparison between these two implementations of
some typical nonlinear time series analysis estimators (Kolmogorov entropy,
correlation dimension etc.) were performed; documenting an evaluation of
the effectiveness of the SC implementation. It should be mentioned that
the classical integration was performed using Matlab, while the SCN was
performed using the same FPGA than in the previous section.

Regarding the RNG, we have used a single 64-bit implementation of the
Mersenne algorithm, which provides a period long enough for our purposes.
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Figure 2.5: Output of the scheme in Figure 2.4, showing both x and ẋ. In
this case, Nacc = 16, N = 18 bits, resulting in a ∆t = 1/8192 s.

Notice that most of the RNG we need are only 1-bit long, so we can extract
all of them from the same RNG. In addition, we have used the technique
proposed in [58], which allows using a single generator to create different
random numbers to the integrators and constants to the generators. The
scaling constants are stored as fixed registers, which are then used to gen-
erate the random sequence through a B2S converter. It is worth noticing
that the RNG is actually responsible of a large part of the total energy
consumption, due to the large number of computations needed by the algo-
rithm. This energy consumption could be addressed in the future by using
memristors to generate the random bits, as proposed in [59–61].

2.3.1 The Shimizu-Morioka System

A system algebraically simpler than the Lorenz system has been proposed
by Shimizu and Morioka [57] in 1980. The original equation formulation
appears below:

ẋ = y

ẏ = x− µ · y − x · z
ż = −α · z − x2

 Shimizu Morioka System (2.6)

A usual set of parameter values, leading to the emergence of chaos in
this system, is µ = 0.81 and α = 0.375. By applying this set, the system is
operating in a deterministic chaotic mode, demonstrating an elegant chaotic
attractor in the corresponding 3D phase space. As expected for determin-

28



2.3. IMPLEMENTING CHAOTIC SYSTEMS IN SC

istic chaotic systems, the trajectories comprising this strange attractor are
bounded, while the whole system behavior appears to be bounded within a
box (the phase space), the limits of which are explicitly presented in relations
((2.7)).

x ϵ (−1.5, 1.5)

y ϵ (−1, 1)

z ϵ (−2.5, 2.5)

 Variable Boundaries (2.7)

2.3.2 Equation preparation

It is apparent that the next step in implementing equation set ((2.6)) in SC
environment, is to get through a normalization procedure, as this has been
discussed above. This would ensure that all three variables (x, y, z), would
be within the SC working interval. In our case, we opted for normalizing
all the variables to be within the [0,1] range. In order to achieve this, the
following variable transform ((2.8)) was applied, as a first step:

X = −x+ 2

4
→ x = 4X − 2

Y = −y + 2

4
→ y = 4Y − 2

Z = −z + 3

6
→ z = 6Z − 3

(2.8)

It is apparent that the proposed change of variables, transformed equation
set ((2.6)) into the form appearing in equation set ((2.10)), after getting
through the relations in ((2.9)).

ẋ = 4Ẋ = y

ẏ = 4Ẏ = x− µy − xz

ż = 6Ż = −αz + x2

(2.9)

Ẋ = Y − 1

2

Ẏ = 4X − 2 +
1

2
µ− µY + 3Z − 6XZ

Ż = −αZ +
α

2
+

8

3
X2 +

2

3
+

8

3
X

(2.10)

Thus, the resulting equation system in ((2.10)) has all its (X,Y, Z) vari-
ables oscillating within the proper range for stochastic logic, but the equa-
tions are not yet ready to be implemented in a SC environment, This is due
to the fact that some of the system-parameters are outside the SC range
(in this case higher than one). To solve this, we divided all the terms by
a number cr higher than the highest coefficient appearing in the equations.
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Notice that this is equivalent to a scaling of time of a magnitude t′ = crt,
thus no qualitative change emerges. In this specific case, using the value
cr = 32, the equation set ((2.10)) became as follows:

Ẋ =
Y

32
− 1

64

Ẏ =
X

8
− 1

16
+

µ

64
+

3Z

32
− 3XZ

16
− µY

32

Ż = −2X

24
− αZ

32
+

α

64
+

2X2

24
+

1

48

(2.11)

However, it has to be noted that, even if all the parameters and variables
are within the proper range, the operations are not in a form ensuring that
their results would fall within the SC range. In specific, the additions must
be in the form suggested in Eq. ((2.12)).

a+ b =
1

2
(2a+ 2b) (2.12)

Rewriting all the equations according to this requirement, the equation set
((2.11)) transforms into in the one appearing in ((2.13)), which is the final
form of the equations to be implemented in the SC environment.
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)
+

1

2

[
α

8
+

2X2

3

]]
+

1

24

] (2.13)

2.3.3 Implementation

The equation set ((2.13)) was implemented in a Matlab environment, being
integrated in a conventional way by utilizing its built-in functions and the
ode45 solver with variable time step. The solution of the system for all
three system-variables in the time domain appears in Figure 2.6 (a), for
specific initial conditions. In Figure 2.6 (b) the corresponding attractor of
the system, in its 3-dimensional phase space, is apposed.

The same system (beginning from the same initial conditions) has also
been implemented in a SC environment using the previously discussed ba-
sic gates and it is presented in Figure 2.7. In this figure, the xi variable
corresponds to any of the signals x, delayed by i clock cycles, an essential
approach that improves decorrelation. Note that the delay element is not
shown, but it is simply implemented by a shift register, taking into account
that the variables are only 1 bit long. The number of bits used in this
implementation was N = 22, with Nacc = 212 iterations. This would be
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Figure 2.6: For the normalized Shimizu-Morioka system, beginning from
initial conditions (x, y, z)=(0.51,0.51,0.51), (a) the nonlinear time series of
the normalized Shimizu-Morioka system and (b) the corresponding attractor
in a 3D phase space, are presented.
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equivalent to a conventional system using 17-bit binary arithmetic, once the
noise has been taken into account.

Figure 2.7: Implementation of the Shimizu-Morioka equations using SC.
The sub-index in the variables means a delay equivalent to the number
used to decorrelate them. The constants ci are those corresponding to Eq.
((2.13)).

The results corresponding to this integration are presented in the form
of time series (in the time-domain) in Figure 2.8 (a), where all three vari-
ables X,Y, Z appear. The corresponding attractor, embedded in a 3D phase
space, appears in Figure 2.8 (b). Comparing these two figures to the cor-
responding Figs. 2.6 (a) and 2.6 (b) of the classical implementation, one
gets the subjective perception that the two implementations evolve in time
in a quite similar way, not the same though. Indeed, although in both
implementations the systems begin evolving in time from the same initial
conditions, their evolution is not identical, due to the approximate com-
puting approach implemented in SC environment. However, the emerging
attractors are in both cases demonstrating almost identical structure in their
embedding phase space (3D in this case). A very draft remark is that the
time series and the resulting attractor appears to be slightly more noisy, in
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the case of SC implementation, something expected because of the approx-
imate nature of calculations in the case of SL.

2.3.4 Chaotic Evaluation

Due to the nature of deterministic chaotic systems and in order to perform
a more objective investigation of the fidelity of the dynamics demonstrated
by the Shimizu-Morioka equation system, in the stochastic computing envi-
ronment, a procedure including a variety of relevant metrics was applied.

Initially, the power spectrum of one of the state variables, namely Z(t),
was calculated in both cases. It is presented in Figure 2.9, where the red line
regards the classical integration method and the green line the SC method.
The similarity between them is obvious, including the minimum at around
3.5e-4 Hz and the maximum at 5e-3 Hz. The most apparent difference ap-
pears in the higher frequencies, which can be attributed to both the error in
number quantization [62] and the noise from a random walk [50] as expressed
in equations ((1.9)) and ((1.10)).

Further investigation and analysis of the demonstrated chaotic behavior
included calculation of correlation dimension, Kolmogorov entropy, as well
as Lyapunov exponents. To this direction, the z(t) and Z(t) variable from
the three time series appearing in Figure 2.6 (a) and 2.8 (a) correspondingly,
were considered.

Applying the Takens theory [63] to the Z(t) time series, the topologically
equivalent attractor was reconstructed, in the proper phase space. It is noted
that according to this theory, the technique of displaced vectors is applied.
So initially, the appropriate time delay τ , needed for the reconstruction of
the phase space, was calculated by both the mutual information’s first local
minimum and the autocorrelation function’s first zero. In both cases, the
conventional and the SC solution, the value emerging for τ appeared to have
a significantly lower value when calculated through the mutual information,
and therefore this was the one adopted [20]; for the specific set of parameters
and initial conditions: τ=16 for the conventionally calculated solution and
τ=8 for the SC solution (in both cases we refer to measurement points).

The correlation integrals C(2, ℓ) , for different embedding dimensions,
have been numerically calculated, according to the Grassberger-Procaccia
method [64–66], Eq. ((2.14)):

Cm(2, ℓ) =
∑

p2i = lim
N→∞

1

N2

N∑
i,j=1
i ̸= j

Θ

ℓ−

√√√√ m∑
k=1

|Xj+k −Xi+k|2
 (2.14)

where parameter ℓ is the hyper-cube dimension in the hyper-phase space for
a series of specific embedding dimensions m, and Θ the Heaviside function.

33



CHAPTER 2. IMPLEMENTATION OF DIFF. EQ. SYSTEMS

0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

x(
t),

y(
t),

z(
t)

t(s)

 x(t)
 y(t)
 z(t)

(a)

(b)

Figure 2.8: (a) The nonlinear time series of the Shimizu-Morioka sys-
tem, as this was calculated using SC, beginning from initial conditions
(X,Y, Z)=(0.51,0.51,0.51) and N = 22 bits, Nacc = 212 iterations. (b)
The corresponding attractor.
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Figure 2.9: Power Spectra obtained from the Z(t) time series using the SC
(green) and classical (red) integration methods.

These integrals provided information characterizing the attractor and were
calculated for embedding dimension up to m = 6, for both the conventional
and the SC solutions of Z(t). In both cases, the integrals appeared to almost
parallelize for embedding dimensions m = 3 and above. The slopes of the
linear parts of the correlation integrals (in a double logarithmic scaling) were
determined for each embedding dimension (v vs m) and their values appear
in Figure 2.10. In this plot, the black line refers to conventional solution,
while the red one to SC. In both cases a saturation plateau appears for
m ≥ 3, thus, this is the sufficient phase space dimension, necessary to host
the system’s global dynamics under any circumstances [20].

In the case of the conventional solution (black line in Figure 2.10), the
saturation tends to the non-integer value of v = 2.10, which is the correla-
tion dimension of the attractor under these circumstances, further proving
the deterministic chaotic nature of the studied time series (and the corre-
sponding system). The closest (to the correlation dimension) higher, in-
teger value defines the minimum embedding dimension, which in this case
appears to be mmin = 3, as expected for a three state-variable system. It
is apparent that for the Shimizu Morioka system, the calculated minimum
embedding dimension coincides with the minimum sufficient phase space
dimension mmin = msuff = 3.

In the case of the SC solution (red line in Figure 2.10) the relation of the
correlation integral slope, for all the embedding dimensions (v vs m) is again
saturated after m = 3, but this time to a slightly higher non-integer value;
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thus the correlation dimension in this case is v = 2.30. This difference is
something expected and fully explainable, since the approximate computing
nature of SC is introducing a specific level of noise, which is expected (and
hereby verified) to increase the attractor’s dimensionality. However, this
increase is within the system’s minimum dimensions mmin = msuff = 3.

In order to investigate the global chaotic dynamics, the Kolmogorov-
Sinai Entropy and the Lyapunov exponents were calculated. The Kol-
mogorov Entropy appears in Figure 2.11, in both cases. It clearly possesses
positive value, K2 = 0.44 bits/τ for the conventional solution, andK2 = 0.54
bits/τ for the SC solution. These values are almost the same depicting sim-
ilar rate of loss of information of the past state of the system, therefore a
similar deterministic chaotic nature for both implementations.

Table 2.1: Values of the first three Lyapunov exponents for the ’Z’ variable
in the cases of classical integration and SC integration.

Order Classical SC

λ1 0.02112 0.03774
λ2 -0.00487 -0.00462
λ3 -0.31142 -0.29139

Finally, the three (as expected for a 3-dimensional system) corresponding
average local Lyapunov exponents, as they were calculated by the observed
Z(t) time series [67], are presented in Table 2.1. The maximal exponent
provides with a measure of the predictability of system producing the stud-
ied time series [67, 68]. If at least one of them is positive then the system
is chaotic. In both investigated cases, the system demonstrates one positive
exponent, one nearly zero (due to the finite time series and the approxima-
tion introduced by the calculating method) and one negative, hinting for a
simple chaotic system. Moreover, in both implementations the values were
close one to the other. The higher value of λ1 in the case of the SC solu-
tions, is again expected and due to the noise introduced by the approximate
calculations taking place in the case of the SC implementation [20], [29].
Additionally, the second exponent λ2 is zero in both cases as expected, and
the third ones λ3 are also close in value. It is noted that in this case the
value of the maximal exponent (the only positive) also provides the lower
bound of the Kolmogorov-Sinai entropy.

All the above calculations of nonlinear dynamics established metrics,
prove and confirm the ability to implement the chaotic dynamics of Shimizu-
Morioka system in SC, indifferent to the approximate nature of this kind of
calculations.
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Z(t) time series (black line) and the one calculated in the SC environment
(red line).
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2.4 Discussion

Having in focus edge computing and data trafficking in the frame of the IoT,
approximate computing emerges as an essential technological option, being
able to provide low cost in both area and energy for (relatively) low precision
calculations. To this direction, in this work we have presented a detailed
procedure to implement nonlinear equations using stochastic computing (a
kind of an approximate computing method). This procedure involves a re-
normalization of the equations in three phases: first, it sets the possible
values of the variables inside the values [-1,1]; secondly, all the constants
inside the equations are recalculated so that they would also lay within the
same range, which is equivalent to a scaling of the time variable; finally, all
the operations are rewritten in a form compatible to the available operations
in stochastic computing.

We have also discussed the effect of changing the number of bits used to
represent the variables, showing that this number is related to the signal-to-
noise ratio that the system can withstand. Specifically, since the process is a
random walk, the noise figure is expected to grow according to the bit-string
length, as

√
N .

The main advantage of the presented approach is the low number of
components needed to implement the equations, which is far below the re-
quired number demanded in the classical approach, due to the method of
implementing SC calculations. This makes the specific approach useful for
small (lightweight) systems that require to make complex calculations with
a low energy consumption, mainly if the needed number of bits is not large.
In addition, the robustness of nonlinear systems in the frame of SC was
also shown. This is specially relevant, since nonlinear systems are highly
sensitive to initial conditions and parameter variations, which may greatly
change their long-term behaviour. In our case, we have shown that this
long-term behaviour is kept, even when all the constants and parameters
have been defined as SCN .

As examples of application, we have implemented three different systems
representing as many differential equation systems: a double integrator, a
simple oscillator, and a nonlinear system. As already discussed above, the
results from the first two cases appear to be exactly the same than the
conventional system implementations. In the case of the Shimizu-Morioka
system, which has been used as the toy model for nonlinear system imple-
mentation, the results obtained using SC are consistent with a conventional
implementation. The metrics used for comparing the implementation in
the SC versus the conventional one were three: the correlation dimension
(2.10 for the conventional case, 2.30 for the SC); the Kolmogorov entropy
(0.44 bits/τ for the conventional, 0.54 bits/τ for the SC); and the Lyapunov
exponents, which were also found to be very similar.

Related to the performance of the system in stochastic computing, it is
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clear that its worse aspect is the time needed to perform the calculations.
In the proposed FPGA implementation, the throughput of the system is one
bit per clock cycle, and it needs 2N cycles to perform a single δt iteration.
This total time can be reduced by parallelization. Thus, using M identical
blocks in parallel as proposed in [44], the total time needed to perform the
iteration is reduced accordingly to be tSC =2N/M clock cycles. On the
other hand, when considering conventional binary operations implemented
sequentially, the total time would be given by:

tconv =
∑
x

Nxτx (2.15)

where τx is the number of cycles needed to implement the arithmetic oper-
ation x, which appears Nx times in the circuit. In our case, we only have
used multiplication (mul), addition (add), subtraction (sub), and integration
(int). Of those, multiplication needs usually between 3 and 7 clock cycles,
and the others only 1, since the integral is just another addition. Thus,
for our system, we need a total of clock cycles between 40 and 76, with an
expected value around 67 cycles. Thus, for a 16 bit implementation with M
parallel SC branches, the ratio between tconv and tSC is:

tconv
tSC

= M

∑
xNxτx
2N

= M
67

65536
≈ M/1000 (2.16)

Thus, for a simple implementation with 32 parallel branches, the con-
ventional arithmetic would be 32 times faster than a Stochastic Computing
equivalent. This, as has been discussed above, leads to a trade-off between
speed, precision, and power consumption. Notice, however, that for an ap-
plication requiring a lower number of bits (as, for instance, in [38], where
only 10 bits are needed), this is changed to ≈ M/16 and an SC implemen-
tation could be actually faster and simpler than a conventional one.

Related to the other performance parameters of the system, we have
to note that in this thesis we are focusing only on the possibility of im-
plementing such systems, with no emphasis on the energy consumption or
area optimization. These two aspects are still under consideration for our
proposal, since the literature seems to be unclear in this aspect. However,
as an example, related to the area optimization, we can compare the differ-
ence between the number of logic elements needed to implement a stochastic
computing (always a simple gate) against a usual digital implementation of
a vedic multiplication [69] into a certain FPGA, as in [70]. These results are
compiled in Table 2.2, and show a clear advantage of SC over conventional
implementation. Related to energy consumption, it is known [44] that for
short bit-streams (less than 16-17 bits) SC performs better than conven-
tional. Notice, in any case, that the energy consumption needed to generate
the random bits is not taken into account, since they can be generated in
multiple ways. For instance, a 64-bit Mersenne RNG needs a lot of power to
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Table 2.2: Comparison of the number of FPGA parts used for implemen-
tation of the vedic multiplication algorithm [70] and the SC multiplication.
(*)The number of LUTs used in SC is considered to be 1/3 of a 6-input
LUT, as those in the FPGA used in [70].

Algorithm bits Slices LUTs

Vedic 4 19 33
SC 6 1 1/3*

Vedic 16 346 622
SC 22 1 1/3*

Vedic 32 1427 2566
SC 32 1 1/3*

perform all the calculations that lead to the pseudo-random sequence of bits,
but if we can use memristors for this task [59–61] this energy is drastically
reduced, as well as the needed area. Additionally, a final ASIC implementa-
tion of the design could utilize some improvements, as extensively discussed
in [44], that allow for exponential improvement of consumption.

The results emerging from the SC implementation are thus showing that
this technique is capable to implement complex nonlinear systems, in an
area-efficient way, and with small loss of precision, equivalent to an analog
circuit implementation. Taking into account their possible application for
secure data transmission, they are one possible alternative to be considered
in IoT, or Edge computing systems, paving the way for an even wider spread
of IoT.

It has to be noted that parts of this chapter were published in [30].
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Chapter 3

Implementation of
Memristive Systems
Emulators

3.1 Introduction

Memristors are the latest fundamental breakthrough in circuit theory and
their applications are going to be an important, key-factor in electronic cir-
cuit design. They already appear in many forms, like PCA, ReRAM, etc.,
to mention just a few. However, due to the fact that memristors have ap-
peared quite recently, technology is not mature enough to provide with read-
ily available, off-the-shelf components. As a result, developing and testing
new concepts or design architectures based on memristors, are accomplished
mainly by using numerical simulation.

To this direction, many good memristor-models have been proposed,
either using the classical approach, which utilizes current and voltage [71–
73], or the alternative approach that studies and models memristors withing
the charge and flux domain [74–76]. However, most of these models appear
to demonstrate drawbacks in terms of simulation effectiveness, something
that makes simulation of large circuits rather difficult or even impractical
[77].

Emulators reproduce the operating characteristics of the memristor by
eliminating the aforementioned problems, therefore allowing for the devel-
opment of more complex and reliable systems [78]. The memristor behavior
which is imitated can be an ideal memristor or actual device, depending on
the implementation. If we are focused on their field of application, emulators
have different characteristics, although there are two main lines of study:
analog emulators and digital emulators. The first approach regards ana-
log circuits mimicking this behavior, and a variety of such circuit topologies
have been proposed ( [79–84], etc...). Most of them ( [82–84] etc.), use active
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analog blocks (op-amps, OTAs, or advanced elements as current conveyors),
resulting into complex and power consuming implementations. Some others
use passive electronic elements [79–81], but then they are usually limited to
short-term memory (volatility). A second quite important approach pursues
the implementation of memristor models onto FPGAs (or ASICs) [85–87].
These are digital circuits providing with good simulation times. This ap-
proach is bulky and requires complex implementations, notably in designs
with a high number of digital elements. An advantage is the exact control of
the emulator behavior, since all the equations are user-defined and explicit.

Many works develop fully analog emulators; for example, in [79], a mem-
ristive system was implemented and results demonstrated that it was very
easy to fabricate in academic laboratories through classical electrical compo-
nents from circuit theory. In [81], an emulator is implemented with transis-
tors, resistors and diodes, and it operates in passive mode. Other examples
like [88, 89] use amplifiers in their models. In general, analog systems need
more power consumption. The volatility of the system is worse than in
the digital case, but they present a good implementation of the variable
resistance with which the emulator memristance is described.

On the other hand, digital memristor systems emulators can be imple-
mented in FPGAs (or ASICS) [85–87]. Their main advantages are that they
present short simulation times and better control of the behaviour of the em-
ulator. However, their variable resistance implementation poses a problem.
In digital emulators, it is much easier to define the model, but precision is lost
(limited number of bits), and there is usually a need for more computational
power than the analog equivalent. For a review of different state-of-the-art
emulators, the interested reader can see, for instance, [78] or [90].

In this chapter, we present different implementations of memristors and
memristor-based systems based on stochastic computing. Specifically, we
present three different implementations, based on part of our published work:

1. Purely digital memristor emulator based on a flux-charge model [31].

2. Switched capacitor memristive emulator [32].

3. Stochastic switched capacitor memristor emulator [30].

3.2 Memristor Modelling Framework

A memristor is a two-terminal device whose resistance (conductance) can
change its value when a voltage or current signal is applied. In addition,
the value of the resistance (conductance) of the device also depends on
its past history and is named memristance (M) (memconductance (G)).
The concept of the memristor was extended by Chua in 1976 to memristive
systems to explain the behavior of observed systems [91], for instance, in
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nature. Nowadays the classification of memristors includes ideal, generic
and extended memristor [92].

The most general class is the extended memristor, which includes the
others. The dynamic of this class is described using internal variables that
determine the internal state of the memristor; these variables, can be for
example, temperature or geometrical parameters, depending on the system.
The memristor can be voltage- or current-controlled, depending on the input
source. On the other hand, in [93], Corinto et al. proposed a mathematical
description in the charge flux domain instead of the voltage and current do-
main. We use for our emulator the equations describing a voltage-controlled
extended memristor in the charge flux domain. These are:

i = G(φ, v,x) · v (3.1)

dx

dt
= g(φ, v,x) (3.2)

dφ

dt
= v (3.3)

The memconductance (G), which can be nonlinear, is the inverse of the
memristance of the device M , v is the voltage between its terminals, i is the
current, ϕ is the flux (i.e. the first momentum of voltage), and x represents
other possible state variables.

Finally, it is also important to mention that the memristors present some
characteristic fingerprints distinguishing those of other dynamic systems [93,
94]:

1. As Leon Chua noted in [95]: ”If it’s NOT pinched, it’s NOT a mem-
ristor”. The i-v curve obtained when a periodic signal with zero DC
component (voltage or current) is applied to the memristor shows a
pinched (at the (v=0,i=0) point) hysteresis loop;

2. The area of the hysteresis loop should tend to zero for higher frequen-
cies, as noted in [93]. The behavior at low frequencies depends on the
specifics of the memristor, and there may even exist a frequency where
the loop area is maximum [78].

On the other hand, the emulator function must be to mimic the mem-
ristor behavior; this is to show its fingerprints. The emulator can be im-
plemented in analog, digital or mixed formats. It is crucial that the circuit
implements, among others, the internal state variables, (vector x) in Equa-
tions (3.1) and (3.2). These internal variables must be included as electrical
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variables in the emulator and are assumed to be isolated from a direct inter-
action with the outside. They are used, together with the electrical variables
(i.e. voltage and flux), to calculate the value of the equivalent memconduc-
tance (G) or memristance (M).

Notice that we have implemented the ideal definition of a memristor,
with a simple relationship between memristance and flux. Other models,
even those oriented to the simulation of actual physical systems as, for in-
stance, in [96–98], could also be implemented. The main difference of this
case with the one presented here would be the implementation of the non-
basic mathematical operations. This could be done using, for instance, the
different circuits proposed in [48,49,51] for division and the associated square
root calculation, or in [52] for arbitrary function approximation.

3.3 AMemristor Emulator based on a Flux-Charge
Model

In this section, we propose an alternative approach to emulate a memristive
system. We propound the design of a purely digital system, using stochastic
computing. The advantages of such an approach for memristor emulation are
evident: it allows all the possibilities of a digital system to be implemented
in FPGAs, while at the same time conserving the properties that make
memristors useful.

The emulator is based on a flux-charge description of the memristor,
as proposed in the literature. It has been implemented in a commercial
FPGA, and it has been shown that its behaviour mimics that of a circuit
using memristors. Specifically, we show that it reproduces the fingerprints
of a memristor, both in frequency and memory capability. Finally, we also
reproduce an IMPLY gate, showing that the behaviour is correctly repro-
duced.

3.3.1 Digital Implementation of a Memristor Model

A very good theoretical description of memristors has been given by Corinto
et al. in [93]. This framework has been already used to successfully model
different kinds of memristive systems. For instance, in [74] which presented
a semi-empirical model for unipolar ReRAMs as memristors, or [75] where
a model for phase change memories is presented.

As we have discussed in the above references, describing a memristor
using charge or flux as the electrical variables may be advantageous over
using voltage or current. In the case where we wish to implement a digital-
only model for a memristor, we have to decide which are our variables, and
how are we observing them. First of all, we settle for an ideal memristor.
That is, we will have a relation between the flux and the charge, with no
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state variables, simplifying the previously mentioned equations, as shown in
Eq. ((3.4)) and Eq. ((3.5)):

ϕ = f(Q) (3.4)

Q =

∫
i(t)dt (3.5)

In a similar way as was done in [99], we can approximate the conductivity
to two different states: high resistance (RH) and low resistance (RL) (usually
called HRS and LRS, respectively).

ϕ =


RL ·Q, Q > Qth

RH ·Q, Q < Qth

(3.6)

where Qth denotes a prescribed threshold. Notice that we can rewrite Eq.
(3.6) as an equation for R plus another equation similar to Ohm’s law for
the charge and flux:

R(Q) =


RL Q > Qth

RH Q < Qth

(3.7)

ϕ = R(Q) ·Q (3.8)

We can implement the above equations in a purely digital circuit using
some approximations. First, we calculate the current flowing through the
device as:

i(t) =
V + − V −

R(Q)
(3.9)

Thus the charge can be calculated as:

Q(t) =

∫
i(t)dt =

∫
V + − V −

R(Q(t))
dt (3.10)

If we approximate the integral by a summation, Eq. (3.10) converts to:

Q(t)

∆t
=
∑ V + − V −

R(Q(t))
=
∑ ∆V

R(Q(t))
(3.11)

Assuming, without loose of generality, that ∆t = 1, we can approximate
Eq. (3.11) as:
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Q(t) = Q(t− 1) +

(
1 +

(
RH

RL
− 1

)
g(Q(t− 1))

)
∆V

RH
(3.12)

where g(Q) is defined as:

g(Q) =


0, Q < Qth

1, Q > Qth

(3.13)

Notice that RH/RL is usually a fairly big number, and can be considered
to be an integer. Thus, Eq. (3.12) can be easily implemented using a
digital circuit, if we assume, again ,without lose of generality, for a digital
implementation, that we choose a reference system where the value of RH

is taken as 1 and V is either 0 or 1. An implementation of such a circuit is
proposed in Fig. 3.1. For this implementation, we assume that the counter
has a maximum value and a minimum value, and, for simplicity, that its
initial value is zero.

We have implemented this emulator into a DE2-70 FPGA by Altera,
using QuartusII-32bits to compile it. The resulting circuit is implemented
using less than 100 gates, or less than a 1% of the available number of gates.
More modern FPGAs, with up to 5.5 million gates, could then possibly
implement complex circuits with more than 50k memristors.

Figure 3.1: Schematic implementation of the digital memristor. (a) Symbol
for a memristor. (b) Proposed implementation. The inputs a = V + and
b = V − can be only 0 or 1, since this is a pure digital circuit. We also
assume that the counter has a maximum and a minimum. The initial state
is chosen to be zero.
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3.3.2 Results and Discussion

In this section we first test the proposed circuit to check that it behaves like
a memristor. Once this is established, we apply the emulator to a classical
memristor circuit: an IMPLY logic gate. Notice that, as it will be discussed
later, the IMPLY logic gate is the structure we get when connecting in
parallel two memristors. From these basic blocs, more complex structures
can be constructed.

3.3.2.1 Memristive Behavior of the Emulator

As has been stated extensively in the literature (see, for instance, [94]), ideal
memristors have two very well defined fingerprints: (1) at zero volts, there
is no current, and (2) at high frequencies the hysteresis loop tends to be a
straight line through the origin.

In the flux-charge space, these conditions translate into: (1) at constant
flux, charge is constant. This condition is the equivalent to condition (1)
for the voltage and current, while its second condition naturally arises from
Eq. (3.6), but would arise also from any similar description [93]. This last
paper demonstrates this rigorously, but the intuition behind is that it is so
because for high frequencies there is not time enough for the charge to reach
Qth and, thus, remains in its original state.

In order to test that the proposed circuit behaves as expected, we force
it with a pulse series at the positive and negative terminals and we monitor
the resistance state (HRS or LRS), as well as the internal counter we are
using as the charge.

We have tested two different frequencies: low and high, defined as those
that allow reaching or not the charge threshold, respectively. The result
from low frequency is shown in Fig. 3.2. In this picture, we can see clearly
that, when a is higher than b, the charge is increasing slowly until it reaches
the threshold value (Qth). Then, the state changes (from HRS to LRS), and
the charge increases faster, as defined in Eq. (3.12). Notice that when both
inputs are zero, the charge is kept constant, thus obtaining one of the two
desired fingerprints. For b higher than a, the charge decreases with the same
kind of dual behaviour.

On the other hand, Fig. 3.3 shows the results at high frequency. In
this figure it is clear that the charge does not reach the threshold and, as
a consequence, the state remains also unchanged. Then, considering both
examples at low and high frequency, it is also clear that this circuit presents
memristive behavior, since it positively shows the two basic fingerprints
of a memristor. It is worth mentioning that even if the memristor state
change can be emulated with simpler circuits, emulating the behaviour with
frequency requires this kind of digital architecture.
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Figure 3.2: Simulation of the behavior at low frequency. The upper graph
shows the digital inputs a and b (positive and negative, respectively). The
middle section shows the charge, as counted by the emulator. The bottom
graph shows the resistance state, where 0 corresponds to the HRS and 1 to
the LRS.
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Figure 3.3: Simulation of the behavior at high frequency. The upper graph
shows the digital inputs a and b (positive and negative, respectively). The
middle section shows the charge, as counted by the emulator. The bottom
graph shows the resistance state, where 0 corresponds to the HRS and 1 to
the LRS.
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3.3.2.2 IMPLY Logic Gate

The most natural way to implement logic functions using memristors seems
to be the use of IMPLY logic (see [100] or [101] for instance). We show
a classical implementation of a two-inputs IMPLY gate in Fig. 3.4, and
its truth table is shown in table 3.1. The operation is based on a two-
step process. In the first step, we set the corresponding input state to the
memristors. The second step is where the calculation is performed, and uses
two different voltage levels into P and Q, with VP not higher than VQ. If P
is in LRS, then the voltage at node z will be, approximately, VP . Thus, a
voltage across Q is created, but is not sufficient to change the state during
its application. In the case of P and Q being both in HRS, thanks to RG,
the voltage at z will be, approximately, VQ and Q will go to LRS. In the
case of P in HRS and Q in LRS, the output is dominated by Q which will
not change its state.

Figure 3.4: IMPLY gate. A classical two-inputs IMPLY gate.

Table 3.1: Truth table of imply function.

Case p q p → q

1 0 0 1

2 0 1 1

3 1 0 0

4 1 1 1

The problem of using our emulator to implement this kind of scheme
is that we have to devise some way to combine two emulators to conform
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Table 3.2: Sequence for setting up the input values of the memristors. No-
tice that we are using two clock cycles for the process, so AB means applying
A during the first cycle and B during the second one. During this process,
the reset signal is high and the output z follows a ’10’ sequence, forced by
signal b. The set process is selected by signal s = 0, while calculation is
performed at s = 1.

Case VP ,VQ rp,rq
1 00 1

2 11 0

the circuit. Conceptually, this is solved by stating that the output will be
dominated by the input corresponding to the memristor with the lowest
resistance. This being said, we can then calculate the output (z) of the gate
in terms of the inputs (Vp = b1 and Vq = b2) and the memristor states (r1
and r2, respectively, where rx = 0 is the HRS).

z = b1 · r1 + b2 · r2 (3.14)

In this Eq. (3.14), the multiplications and the additions are AND and
OR operators, respectively. Notice that z corresponds to the value of the
positive terminal of the memristor. This equation can, in general, be used
also whenever two memristors are connected through a common terminal
(z). As said above, it is a winner-takes-all equation that states that the
common node follows the signal connected to the memristor with the lowest
resistance. It is important to point out that the case where p and q are equal
makes this case equivalent to two memristors in parallel.

In order to allow the first step of setting up the initial values of the
memristors we need to define a new signal v (a RESET signal) that will
force the required values. For the sake of simplicity, we have chosen the
combination of values shown in Table 3.2. Notice that it takes two clock
steps to set up the process, but it allows us to use the same signal for both
memristors. In addition, we define a signal s that determines the state of
calculation (s=0) or value setting (s=1). Thus, we get the final equation we
use for our gate:

z = (b1 · r1 + b2 · r2) · s+ s · v (3.15)

Using the simple operation in Eq.(3.15), we can combine two of our
memristor emulators and make an IMPLY gate. Results are shown in Fig.
3.5. In order to interpret the results, the variable we are considering as
the output is the state of memristor Q during the evaluation part of the
calculation. This figure shows the four possible combinations of inputs, each
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one with a duration of 3000 (arbitrary) time units. The input part of the
process is performed between the first 2000 time units, and the evaluation
is done in the last 1000 time units. The behaviour is as described above,
and fits Table 3.1 exactly.
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Figure 3.5: IMPLY gate simulation. Results from the simulation of a two-
inputs IMPLY gate.

3.4 A switched capacitor memristor emulator

In this section, based on our work [32], we propose a novel, mixed-signal
circuit for emulating memristive behaviors. The well-known switched ca-
pacitor (SwC) technique is utilized in order to implement a variable driven
resistor, necessary for the implementation of the emulators memristance.
We perform the control of this circuit using pulse width modulation, which
can be adapted very fast to changes in the values, and is much simpler than
a controlled pure resistance. This way the problems described above are
indeed alleviated. Additionally, the proposed novel emulator provides with
a higher linearity than that of a CMOS equivalent, and a fine control that
depends only on clock cycle and not on any analog voltage value.

3.4.1 Switched Capacitor emulator

A block diagram describing the proposed mixed-signal memristor emulating
system, appears in Fig. 3.6. The illustrated emulator implements the eqs.
((3.1)) to ((3.3)). As already mentioned above, the option of utilizing a
switched capacitor module as the controlled resistance, is evident.

In Fig 3.7 we present the circuit of the SwC module (a typical one).
Assuming that the two control signals Φ1 and Φ2 are equal, but with a 180
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Figure 3.6: Block diagram of the switched capacitor circuit.

Figure 3.7: Schematic of the used switched capacitor circuit. Resistor R
includes the shunt and parasitic resistances. Signals Φ1 and Φ2 must not
overlap.

deg. lag, then the equivalent resistance Req of such a circuit is described
by [102]:

Req = R0 +
1

fSC

1 + exp
(
D T
τ

)
1− exp

(
D T
τ

) (3.16)

In the previous equation, D stands for the duty cycle (0 < D < 1),
T = 1/fS is the control signal period, fC is the input signal frequency, C
is the value of the used capacitor, and τ is the time constant, obtained by
τ = C Rtotal. In the later expression, Rtotal also includes the contribution
from all the existent parasitic resistances.
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3.4.2 Implementation and Results

The proposed emulator has been tested against the well-known signatures
of memristor [94], as these were presented above. The main fingerprints are
the pinched (zero voltage for zero current and vice verso), a hysteresis i-v
loop, the area of which tends to zero (it becomes a simple line, without any
hysteresis) at higher driving frequencies, tending to an ohmic behavior.

The system proposed in Fig. 3.6 was implemented using a DE0-Nano
FPGA running at 25Mhz, with an internal clock divider to get the program
running at 12.5 MHz. We used two of its 10-bit ADC to read the input
voltage, and two of its output digital ports to drive the control signals of the
analog switch that was used to implement the SC resistor. The integrator
was implemented as an accumulator. At each clock loop, the accumulator
incremented by the difference of the positive input (defined in Fig. 3.6 as
the port where the current enters) minus the negative input.

The governing equation was a simple relation between charge and flux:

Q = Mϕ2 (3.17)

where M is a constant. Thus, the resistance can be calculated as:

i = 2Mϕv =⇒ R =
1

2Mϕ
(3.18)

This resistance was then mapped linearly to a value between 0 and 1023,
which was considered as the duty cycle D of the PWM. We designed the
PWM using a cyclic counter T from 0 to 1023 and a comparator, according
to the following:

PWM =

{
0, if T ≥ D

1, otherwise
(3.19)

The SwC circuit in Fig. 3.7 was implemented on a prototyping board
(Fig. 3.8) using the analog switch HCF4066FE, with a working voltage
between -0.5 V to 22 V, and a maximum frequency switch-response of 25
kHz at 3.3V. The control signals Φ1 and Φ2 were generated by the DE0-
Nano through two 3.3V digital output pins. We used a 1kΩ shunt resistor,
and a 15µF capacitor. The value of the equivalent resistance of this system
as a function of the input frequency and the duty cycle, was experimentally
characterized, and is presented in Fig. 3.9.

We produced the input signal using an AFG320 arbitrary signal gen-
erator, and the system was monitored using two oscilloscopes. The first
oscilloscope was used to monitor the control signals of the HCF4066FE, as
seen in Fig. 3.10. In this figure, it can be clearly seen that both signals
are complementary. A second oscilloscope was used to monitor the current,
using the shunt resistance of 1kΩ, as well as the input voltage. Fig. 3.11
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Figure 3.8: Physical implementation of the circuit on a prototyping board.

Figure 3.9: Equivalent resistance for various frequencies of the input signal,
for fS = 12MHz.
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Figure 3.10: Snapshot of the oscilloscope showing the control signals of the
analog switch. The upper signal is Φ1, while Φ2 is the lower signal. Notice
that both signals are complementary and non-overlapping.

Figure 3.11: Snapshot of the oscilloscope showing system’s I-V response
to a 50 Hz input signal. The current was calculated as the voltage drop in
a 1kΩ shunt resistor.
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Figure 3.12: Response of the oscilloscope showing the I-V response to three
different frequencies input signals.

shows an example of a low frequency input signal (50 Hz) response of the
system.

The response of the system to three different frequency sinusoidal input
signals is plotted in Fig. 3.12. From this figure becomes apparent that
all three curves are passing through the origin (0 V , 0 A), thus they are
being pinched. Also, the lobes become narrower with higher driving signal
frequency, as expected for memristors [93,94]. As a comment, it can be seen
that the signal at 1kHz already shows a lot of noise, which is caused by the
closeness of the signal to the switching frequency.

Thus, this emulator exhibits a frequency-span up to some hundreds of
Hz. This span is due to both the resolution of the PWM signal (set for this
experiment at 10 bits) and the clock frequency of the FPGA (set at 12.5
MHz). Using 10 bits for the PWM signal means needing 1024 clock cycles
for each PWM pulse, for a commutation frequency of 12 kHZ, which is a
half to the maximum of the used switched. Thus, using a frequency of the
input signal of 1 kHz is already too close to the limit.
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3.5 A Stochastic Switched Capacitor Memristor
Emulator

In this section, partially published in [35], we design, simulate and imple-
ment a mixed-signal memristor emulator, improving the versions presented
in the previous section and in [33] and [34]. The proposed emulator consists
of two blocks, taking advantage of the best features of each design part.
In the analog block, a switched capacitor is used to implement a variable
resistor, and in the digital one, that is, the control block, we use stochastic
computation. The simulation is done with Matlab to implement the func-
tionality of both the analog block, similar to that used in [32], and of the
control block. For the experimental implementation, we have reused the one
in the previous section, with the quadruple analog switch HCF4066FE and
a DE0-Nano FPGA.

3.5.1 Theoretical Design

As mentioned above, our system has been implemented in two parts [32,34].
First, we implemented an analog system including the switched capacitor
module (SC), as shown in Figure 3.7, whose equivalent resistance Req is
described by Equation (3.16). In this case, both control external signals
S1 and S2 are equal, with a lag of 180 deg. [103]. The second part is a
digital module implementing the control part in stochastic logic, as will be
discussed below.

For our design, in the charge flux domain, it is necessary to calculate the
flux from the voltage of the terminals of the SC as a first step. Once this is
done, then the relationships between flux and charge are used to obtain the
duty cycle (D) that varies the equivalent resistance of the SC. The digital
block is the responsible for all these steps.

For this purpose, a series of approximations shall be done to Equa-
tion (3.16). The conductance (G) (G = 1/Req) can be rewritten as:

G = fSC
e(−

x
2
) − e(

x
2
)

e(−
x
2
) + e(

x
2
)
= fS · C · tanh(x

2
) (3.20)

where x=DT/τ .
The use of a first order Taylor expansion of tanh(x/2) allows us to get

a simpler expression. For this, it is necessary to take into account that
the decay time of the system is much longer than the control signal period.
Thus, we can obtain a simpler equation describing the conductance G:

G = fSC
DT

2τ
(3.21)

It is important to notice that this last equation implies that conductance
is linearly dependent on the duty cycle D.
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To calculate the flux, the digital block converts each voltage terminal of
the SC (va and vb in Figure 3.7) to non-correlated random values. Then,
the corresponding value va − vb is accumulated into a counter, which acts
as the integrator. Notice that since we are using stochastic computing, this
up/down counter needs to count only one up (va > vb), one down (va < vb),
or remain the same (va = vb). To implement the memristor device, it is
necessary to use an equation to describe the relationship between flux and
charge. In this section, we use again the simplest relation proposed in Section
3.4:

Q = Mϕ2 (3.22)

whereM is a constant. This equation does not include any internal variables.
Applying the fourth derivative of the equation, the conductance is:

i = 2Mϕ
dϕ

dt
= 2Mϕv =⇒ G = 2Mϕ (3.23)

Matching Eq. ((3.21)) and Eq. ((3.23)), the relation between the duty
cycle and flux is:

D =
4Mτ

fSCT
ϕ = Kϕ (3.24)

where K is therefore a constant value, depending on the specific system
used.

To control the analog block, we use the switched capacitors; therefore,
the duty cycle (D) must be used. The duty cycle is calculated by the digital
block from ϕ according to Equation (3.24) as a stochastic value. To use it,
the average value of D is calculated to determine Req with Equation (3.16).

The emulator block design scheme including the two parts of the design,
analog and digital, is shown in Figure 3.13. The part corresponding to the
digital block implemented in stochastic computing is shown as a circuit in
Figure 3.14.

3.5.2 Simulation Results

In order to be considered as a memristor, the emulator must present two
characteristic fingerprints [78, 94, 95]: (1) a pinched loop (2) whose area
changes with frequency.

Figure 3.15 presents the i − v curve of the emulator under inputs of
different frequency using 16 bits for the stochastic representation. It is
apparent from this figure that the curves are pinched at the origin and that
the loop area changes with frequency. Thus, we can consider that the two
fingerprints are present.

Because of the way it is constructed, the emulator reaches a saturation
for the conductance. This is due to the maximum value of D = 1, and
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Figure 3.13: Swiched capacitor memristor emulator (SCME) block dia-
gram.

Figure 3.14: Control block implementation using stochastic computing.
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Figure 3.15: Simulated i− v characteristic curves of the memristor imple-
mented using Figure 3.13. Three different frequencies are shown in different
colors.

Figure 3.16: Q − ϕ characteristics of the memristor implemented using
Figure 3.13. The different frequencies (in arbitrary units) are shown in
different colors.
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can be clearly seen at low frequencies, where the maximum value of flux is
reached faster. This may also be seen in Figure 3.16, where the behavior of
the Q versus ϕ near the origin is quadratic, as can be expected from (3.22),
but it is also seen that its behavior changes to linear after a maximum value
for D = 1 is reached.

It has to be noted that there is a small noise present caused by the
stochastic nature of the system, as discussed above. This noise nearly dis-
appears in the saturation, since the counter is practically constant, even
though a small ripple is present caused by the stochastic internal behavior.
This noise is greatly reduced in the charge and flux domain (Figure 3.16,
because of the integration.

Finally, the current signal for different frequencies is shown in Fig-
ure 3.17. As can be seen there, the maximum conductance (related to the
maximum value of the current) is lower for higher values of frequency, as
expected.

Figure 3.17: Current signal (response) for different frequencies, as obtained
from the simulation. The three different frequencies are shown in different
colors and correspond to the ones shown in Figure 3.15.

3.5.3 Experimental Setup

The implemented circuit is the same shown in Figure 3.8, reprogramming
the FPGA used in Section 3.4. The conversion from analog to stochastic
was performed by first converting from analog to digital using two of the on-
board available A/D and then converting this digital value into stochastic,
as described above. We have used 16 bits for the stochastic representation,
and the needed random numbers were created using a public implementation
of the Mersenne twister algorithm [104].
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An AFG320 arbitrary signal generator was used to generate the input
signal, while two oscilloscopes were used to monitor the full system. An os-
cilloscope monitored the control signals of the HCF4066FE, while the other
oscilloscope was used to monitor the voltage through the shunt resistance
of 1kΩ to obtain the current and also the input voltage, defined as the
difference between the two input terminals.

3.5.4 Experimental Results

We have reused the same experimental system than in section 3.4. The
system has been tested using different input frequencies: 100, 200 and 400
Hz. The internal behaviour of the circuit is depicted in Figures 3.18 and
3.19, which depict, respectively, the control signals S1 and S2 in one of these
cases and the waveform corresponding to the three least significant bits of
the counter.

Figure 3.18: Stochastic signals S1 and S2 generated by the control circuit.

Figure 3.19: Three least significant bits of the counter (b0 is the least
significant bit) at a specific time.
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Figure 3.20: Measured I-V signals at different frequencies.

The experimental I-V loops are depicted in Figure 3.20. On the left
figure, the three experimental I-V curves for the corresponding frequencies
in Figure 3.15 (simulations) appear.

The temporal behavior of the current in these three cases is shown in
Figure 3.21. The currents are clearly nonlinear because of memory: if they
were nonlinear due to other effects, then they would be symmetrical, which
they are not. In addition, they are showing a dependence on the frequency,
as expected for a memristor.

It is apparent that, in all cases, the experimental fingerprint of a memris-
tor, i.e., the pinched loop [95], is clearly demonstrated. This means that the
device has a resistive behavior (it is pinched, which means no current when
no voltage is applied), and that this resistance has a memory effect (there
is a loop, which means that there are two possible values of the resistance
and, hence, the current, for each voltage input value).

Finally, it has to be noted that the area of the loop changes with fre-
quency, with the higher area corresponding to higher frequencies. This is
caused by the saturation of the internal counter that corresponds to the flux
integral (Equation (3.3) and Figure 3.14), which leads to a linear behaviour
once the maximum value is reached.

3.5.5 Discussion

As discussed above, the design and implementation of memristor emulators
is an active research field. In this thesis, we have made a contribution to this
area by presenting the design, simulation, and experimental implementation
of such an emulator. Our proposal is based on using switched capacitors
to implement the variable resistor and on using stochastic computing to
implement the control part.

63



CHAPTER 3. IMPLEMENTATIONOFMEMRISTIVE SYSTEMS EMULATORS

(a) 100Hz

(b) 200Hz

(c) 400Hz

Figure 3.21: Temporal graphs of the measured response (current signals)
of the realized memristor at 3 different frequencies corresponding to the
simulated frequencies for driving sine voltage of (a) 100 Hz, (b) 200 Hz, and
(c) 400 Hz.
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The switched capacitor block has been implemented using standard off-
the-shelf components with a maximum switching frequency of 25kHz. The
control signals at this frequency are generated inside the control block, which
has been implemented into a DE0-nano FPGA. The FPGA reads the analog
inputs (the input voltage of the analog block) using its built-in AD convert-
ers.

As a first step, we have shown using MATLAB simulation that the design
is sound and can implement a system showing the expected fingerprints
of a memristor: a closed loop, pinched at the origin. Finally, we have
experimentally implemented the design. This actual implementation has
been tested using sinusoidal waveforms of different frequencies, and it has
behaved as expected. The system shows the memristor fingerprints with
noise induced by the switching, as expected.

Thus, the proposed emulator has been shown to perform with its ex-
pected behavior, being a promising alternative to be implemented as an
IP block into IC designs, since it is a very simple design requiring a lower
number of digital gates than similar designs using conventional arithmetic
implementations. This implementation would allow the increase of the limit-
ing factor of the switching frequency at 25kHz caused by the use of a discrete
component, and would also proportionally increase the working frequency
of the emulator.
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Chapter 4

Applications

4.1 Introduction

In this chapter, we will treat some of the applications we have considered
useful for being developed with memristors, within a stochastic computing
environment. Specifically, the applications developed and we will present in
this chapter are:

• Resolution of digital mazes using a memristor emulator.

• Real time Cellular Nonlinear Networks (CNNs).

Before a detailed presentation these two application paradigms a brief
presentation of them is apposed.

4.1.1 Maze solver

Along the first part of the chapter, we develop the design and implement a
system capable of searching for optimal paths using a FPGA. This FPGA
implementation is based on a memristor emulator which is used as a delay
element. The idea is implemented within a stochastic computing environ-
ment, by configuring the test graph as a memristor network and applying a
parallel algorithm to reduce computing time and increase efficiency.

Beforehand we check the operation of the algorithm in Matlab and then
we export it into two different Intel FPGAs: a DE0-Nano board and an Arria
10GX. In both cases we obtain reliable results quickly and conveniently, even
for the case of a 300x300 nodes maze. This part of the chapter was partially
published in [36].

4.1.2 Stochastic CNN

In the second and last part of this chapter, we propose the utilization of
SC in designing and implementing a memristor-based Cellular Nonlinear
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Network (CNN). This kind of networks are a concept introduced in 1988 by
Leon Chua and Lin Yang as a bio-inspired architecture, capable of massive
parallel computation. Later on, CNNs have been enhanced by incorporating
designs that incorporate memristors, thus profiting from their processing and
memory capabilities. In addition, SC can be used to optimize the quantity
of required processing elements; thus providing a lightweight approximate
computing framework, quite accurate and effective, though.

As a proof of the proposed concept, we present an example of application
that combines the Matlab environment and a FPGA in order to create the
CNN implementation. We have used the implemented CNN to perform
three different real-time applications on a 512x512 gray-scale and a 768x512
color image: storage of the image, edge detection, and image sharpening.

Finally, it has to be pointed out that the same CNN has been used
for the three different tasks, with the sole change of some programmable
parameters. Results show an excellent capability with significant accompa-
nying advantages, like the low number of needed elements further allowing
for a low cost FPGA-based system implementation, something confirming
the system’s ability for real time operation. This part of the chapter was
partially published in [38] and in [37].

4.2 Maze solver

Since ancient times humankind has tried to solve labyrinths or mazes. The
paradigm of maze solving is found in the Greek myth of Ariadne who used
a thread to help Theseus getting out of Minotaur’s labyrinth. Today, maze
resolution can have multiple applications, as in robotics, topology and many
areas of science and technology [105–107].

Graph theory is used as an element to define the maze problem, where
optimized path solving algorithms could then be applied. Some algorithms
simply obtain an exit path, while others optimize it by finding the shortest
one. One of the latter is the Dijkstra algorithm [108] that calculates all
possible paths to reach a final node beginning from an initial one, and then
compares the total cost of all of them, eventually keeping with the shortest.
Notice that this algorithm is considered as good and efficient as all of its
alternatives, quantum computing excluded [109], and requires a long com-
putation time when dealing with complex graphs. To overcome this, parallel
computing becomes a very good alternative in reducing computing time and
further improve efficiency [110–112].

One of the trends in high performance computing is the use of arrays of
memristors or memristive grid performing parallel computing. Memristors
are resistive devices whose resistance depends on their dynamical history
[113]. In fact, they can be thought of as variable resistances capable to
remember their past; this is: memristors can be used as a memories [114], as
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well as computation elements. One of the applications they have been used
in is modelling the distance between nodes in a maze. In this approach, the
shortest path between two points is corresponded to the current path with
the minimum resistance [112], converting the problem to one determining
the maximum current path.

Implementation and design of circuits with memristors requires extensive
simulations when the number of devices involved is large like in memories or
bio-inspired circuits [115]. Even though there are SPICE implementations of
different models [116–120], in order to speed up simulations some researchers
use digital, analog, or mixed-signal emulators, [32, 38, 78, 85, 121–124]. The
use of these emulators can improve the simulation time, allowing the physical
implementation of memristive circuits, while eliminating some undesired
effects like the cycle to cycle variability appearing in ReRAMs [125,126].

As mentioned above, in this first part of the chapter, we implement a fully
digital system (under the acronym GERARD: GEneral RApid Resolution
of Digital mazes) that solves mazes in a digital environment by implement-
ing the topology of those mazes as a grid of nodes in a programmable device
(FPGA), which allows for parallel computing. In this proposal, the inter-
connections between the nodes of the grid are implemented using memristor
emulators that are purely digital, as in [31]. Determining the minimum
current path is achieved by mapping the distance between nodes to a mem-
ristance, which charges a fixed capacitor with a fixed voltage. This way, the
time needed for charging the capacitor up to a given voltage provides with
an estimation of the value of the memristance, thus the length of the path.
In section 4.2.1 the general method is described, section 4.2.2 explains the
algorithm implementation, section 4.2.3 presents the results, and finally the
section 4.2.4 discusses the work.

4.2.1 General method

The proposed method for the maze solver is based on representing the maze
as a matrix of nodes connected through memristors (Fig. 4.1) to its four
nearest neighbors, forming a memristive grid as in the original work of Per-
shin et al. [112]. The main idea in that paper was measuring the current
through the interconnecting memristors, getting this way the minimum cur-
rent path. That method was based on the capability of memristors to be
programmed to a given resistance value using a (relatively) high voltage,
while during its normal operation it could be considered to hold its pro-
grammed resistance value.

That method had the problem of determining which was the minimum
current path, which is a rather complex experimental problem. In our ap-
proach to this problem, we propose another novel method, based on mea-
suring the time demanded for a grounded capacitor to be charged through a
memristor, as in Fig. 4.1. This time obviously depends on the memristance
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Figure 4.1: Scheme of the general interconnection pattern between two
arbitrary adjacent nodes (x,y) and (x+1) of a NxM grid. Notice that for
the sake of clarity only one of the four connections of each node is shown.

value (in fact, this is a dynamically changing resistance). Since the input
is considered to be a constant current IC fed through the memristor, its
voltage VC will be:

VC =
IC
C

· t (4.1)

where C is the value of the capacitor, and t is the time since the capacitor has
started to charge, assuming an initial value for VC(t = 0) = 0. The voltage
drop through the memristor is VM = ICM , with M being the programmed
resistance value of the memristor. The time tC needed for these two voltages
to equate is just:

tC = MC (4.2)

Thus, for a constant value of C, measuring tC allows for directly estimating
the value of M . This way the minimum time is used to calculate the min-
imum resistance current-path, instead of the maximum current. As a side
comment, it is worth noticing that a similar effect could be achieved by using
a complementary configuration with fixed resistors and memcapacitances.

The flow diagram of the algorithm is presented in Fig. 4.2. The time
t(x,y;x+1,y) needed for a signal to propagate from an initial node (x, y) to a
destination node (x + 1, y) (Fig. 4.1), is calculated by Eq. (4.2). Once the
signal propagates, the destination node is activated and performs a series of
actions:

1. It stops listening to any other input, so no other signal can trigger it.

2. It identifies and stores the triggering input port.

3. It propagates the signal to all its non-activated ports.

When the final target node is reached, it sends a signal to the controller,
which in turn, recovers the path. This is simply achieved by recovering the
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Figure 4.2: The flow diagram of the proposed shortest path algorithm.

activated input from each node, and working the way back from the final
node to reconstruct the actual path.

Consequently, the time the algorithm needs to reach the solution is de-
termined by the length of the path and the cost between the nodes in the
path, as described in Eq. (4.3):

ttotal =
∑

t(x,y;x′,y′) = C
∑

M(x,y;x′,y′) (4.3)

where the summation is performed over the nodes (x, y) and (x′, y′) in the
shortest path and M(x,y;x′,y′) is the resistance between them.

4.2.2 Algorithm Implementation

4.2.2.1 Memristor Model Implementation

There are many models proposed in the literature that reproduce the elec-
trical behavior of memristors. Just for historical reasons, it is worth men-
tioning that the very first model was proposed in [127], in the same paper
that revealed the discovery of actual memristors. It was based on ionic diffu-
sion, and received many posterior improvements (see, for instance, [128–131],
among others). Another approach is using charge and flux, as proposed
in [93]. Following this approach, some models have also been proposed
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[75, 76, 132, 133]. In any case, there are many models to be found in the
literature (for a review, see [134], [135] or [136]).

Following the charge and flux paradigm, we have implemented a memris-
tor model based on a purely digital emulator [31]. This emulator implements
a simple relation between charge Q and flux ϕ:

Q = M(ϕ)ϕ (4.4)

Memresistance M(ϕ) is also calculated with the simplest relation:

M(ϕ) = M0ϕ (4.5)

Full details of the implementation are provided in [31].
Note that only a minor modification was needed to fulfill the require-

ments for this application. This was adding a switch keeping constant the
value of the memresistance, or allowing it to be programmed, as discussed
in the section above. With this modification, once the memristor is pro-
grammed, it behaves as an element with a constant resistance.

4.2.2.2 Matlab Implementation

The operation of the system developed in Matlab implements the flow dia-
gram appearing in Fig. 4.2, and performs the following operations:

1. Program all memristors with a memristance value M corresponding
to the distance between nodes;

2. Set the starting point, taking into account that the bottom right ele-
ment is the end by default (without any loss of generality);

3. Start counting with the first node and propagate the signal to its
neighbours with a delay given by Eq. (4.2);

4. When a node receives an input signal, it is marked as active and treated
as a new starting point;

5. Repeat from step no. 3 until the final node is reached;

6. If the end node is reached, a signal that the process is finished is sent
to the control unit, and the shortest path is then retrieved.

It is noted that the Matlab implementation of the designed algorithm
has been validated against the Dijkstra algorithm [108] up to an 8x8 matrix,
providing exactly the same results. An example is shown in Fig. 4.3 for a
simple 3x3 matrix, where the numbers between the nodes correspond to the
distance between them. The green color defines the calculated shortest path
(which is the same both by Dijkstra and the proposed algorithm).
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Figure 4.3: The solution in the case of a 3x3 example. Notice that the
numbers between the nodes represent the resistance. The shortest path is
the one passing through the green nodes. The initial node is node 1, and
the final node is 9.

4.2.2.3 Programmable Device Implementation

The FPGA implementation of this novel maze solver is divided into three
different parts, namely: the control system, an interconnection element in-
cluding the memristor emulator, and the nodes themselves. It is illustrated
in Fig. 4.4, while the set of instructions implemented to control the system is
shown in Table 4.1. Note that the number of cells and memristor-blocks de-
pends on the grid size, since there is an one-to-one correspondence between
the physical modules and the maze net.

Figure 4.4: Illustration of the system, including the PC running the exter-
nal software, the USB-to-JTAG interface on the electronic board, and the
FPGA, where the general controller and the maze solver are located.
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Table 4.1: Set of instructions for the control system. Notice that instruc-
tions 010 and 011 need additional arguments (target row and column) to
function.

Code Description Parameters

001 Reset all the internal registers –

010 Program the value of a memristor Row, column

011 Set the starting point Row, column

100 Start the process –

101 Get the calculated path –

4.2.2.3.1 Communications Block
This block is responsible for the communication between the programmable
device and the external systems, in this case a PC. The communications part
between the computer (Matlab) and the FPGA was implemented using a
JTAG interface, as in [137], where a full description of the procedure is pro-
vided. This part consisted of two standard blocks: the vJTAG component
and the vJTAG-interface, as shown in Fig. 4.5.

The vJTAG component is responsible for receiving the information and
injecting it into the vJTAG-interface. The later saves the data received in a
register and then sends its contents to the other components of the system
through a dedicated bus. In addition, these components were responsible
for sending the result back to the user. The interface between the user
and the maze solver in the FPGA was implemented in Matlab. This uses
TCP/IP with a dedicated socket [137], and was responsible for converting

Figure 4.5: The connection between the vJTAG blocks in the communica-
tion module, as discussed in [137] and [138]

.
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user-commands to binary code. It was also receiving back data from the
FPGA, displaying it accordingly.

4.2.2.3.2 Interconnection Block

This block implements a delay equivalent to the cost needed to traverse
it. As mentioned above, this delay module (shown in Fig. 4.6) implements
a memristor-capacitor emulator, as in Fig. 4.1. The system can be pro-
grammed to a given delay by setting the memristor to an equivalent value
provided by Eq. (4.1) and the actual cost of the maze.

Once the memristor is programmed, and one of the input ports of the
memristor has been activated, the capacitors are charged using a constant
voltage input Vs until a threshold value is reached. For a known value of
the capacitor and the memristor, this would be equivalent to determining
the value of the current used to reach the threshold value.

We have used the memristor emulator implemented in [31] as described
above, and considered it to be connected to a capacitor at each end, which
was initially connected to ground. The capacitor has been implemented as
an accumulator with input iC and output vCo. Moreover, the equations have
been simplified by setting all the constants of the system to 1, without any
loss of generality. At each clock cycle, vCo(t) would be updated as:

vCo(t+ 1) = vCo(t) + iCC∆t (4.6)

This block will then propagate the signal to the other end by activating the
out terminal, when t = M , as determined by Eq. (4.2). Notice that the

Figure 4.6: The equivalent FPGA implementation of Fig. 4.1, with the
nodes and their interconnection. The block labelled DELAY is the equiva-
lent of the memristor-capacitor elements, while theNODE block corresponds
to the (x,y) node elements. All these blocks also show the additional inputs
that allow external programming and data recovering, as discussed in the
text.
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block must only accept the first input that reaches it (either in1 or in2 ),
and any subsequent input signal has to be disregarded. In this module, the
numbered inputs and the output are connected to the nodes, while all other
entries follow the same logic as the Node. This module uses the clk fall edge
to create a small delay between the components, allowing the Node to update
its signals before the Delay starts to work. In addition, inside each node
and memristor there was also a control unit connected to the vjtag[N..0] bus
input, implemented as a state machine, with the corresponding part of the
set of instructions shown in Table 4.1 that allows it to be programmed to
the initial value. In order to use a single template component, we have also
added two inputs setting the block row and column that identifies the block
for programming purposes.

4.2.2.3.3 The Node Element

The Node components represent each of the network-nodes and are con-
nected according to the pattern established previously in Matlab. These
interconnections were made using the intermediate components that gener-
ate the signal delay, i.e. the memristor and capacitor emulator described
above. Notice that each block has four in and four out terminals, numbered
clockwise from the top, that connect to the delay block as shown in Fig. 4.6.

The numbered inputs and outputs of the Node block are used to form an
(NxM) graph, corresponding to the actual maze, and are connected to the
delay modules. We repeat that the maze path is defined by the interconnec-
tions between these nodes. The vJTAG entry is the input for the data sent
by the communications module through a shared, read-only bus, whereas
the row and column entries mark the position of the component within the
system for programming purposes. The modules accepts the corresponding
programming instructions appearing in Table 4.1. These instructions allow
the user to use the communications block to set the starting point at a spe-
cific node, defined by its position, and, once it is set, to start the process
of finding the shortest path between this node and the (N,M) node. Fi-
nally, the busin input and busout outputs are connected between each pair
of nodes to return the path through the JTAG interface.

4.2.3 Results

Having in mind the global operation that has been described, this was im-
plemented as follows: when the initial Node gets activated by the user, it
activates its four outputs in order to start the counter of all four Delays
connected to it; then, when the assigned weight value has been reached, the
Delay activates its output, resulting in turning on the Node on the opposite
side.
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Figure 4.7: The FPGA returned result in the case of a 4x4 maze. The
corresponding recovered shortest path (nodes in green) appears, showing
the directions in Fig. 4.8, according to Table 4.2 .

Table 4.2: Incoming signal direction codes.

Code Description Code Description

000 Initial node 111 Final node

001 Above 011 Below

010 Right 100 Left

An activated Node saves in its internal register the one out of the four
entries that launched the activation, stopping at the same time to listen to
the other entries, which are now transformed into outputs. Then, the node
sends a pulse through these new outputs, that propagates in the same fashion
until the end node is reached. Applying this approach, there are several
counters running in parallel, achieving the goal of reducing calculation time,
thus, improving the overall efficiency. As has been explained above, then
each node stores the information of the direction from where the first pulse
reached it. This information is sent through a bus connecting each and every
node up to the communications module. The later concatenates each of the
bits it receives, forming a N-bit vector that is sent to the user via the vJTAG
interface (path[N..0] input).

Initially, we checked the proof of concept of the proposed algorithm using
the implementation of a 4x4 maze-example, as shown in Fig. 4.7. In this
case the system needed 16 Node and 24 Delay modules, to implement the
desired grid into the DE0-Nano FPGA board, using a 49-bit vJTAG vector
and 3-bit row and columns vectors.
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”000” ”100” ”100” ”011”
”001” ”001” ”100” ”100”
”001” ”001” ”001” ”001”
”010” ”001” ”100” ”100”

Figure 4.8: Array obtained from FPGA for the example graph, indicating
the first activating input for each node.

In this example, the memristive grid defining the maze was initially
described in Matlab, and then programmed into GERARD through the
dedicated interface. As described above, once the solver was programmed,
the signal propagated to the end node and the system returned a signal,
which in our case was a 49-bit vector containing the direction of the incoming
signal for each node according to the Table 4.2 code. Notice that each node
used three bits and these were reorganized in a 4x4 array as shown in Fig.
4.8. Once the result vector was obtained, the user interface decoded it by
working its way backwards, from the end node back to the initial node,
obtaining the result shown in Fig. 4.7. In this specific case (a 4x4 matrix),
the design required a total of 6142 elements (28 % of the total), with 6033
combinational functions (27 %) and 3274 dedicated logic registers (15 %),
using a clock frequency of 50 MHz.

Finally, another example was implemented into an Arria 10 GX 220
FPGA card at 200 MHz using the Matlab FPGA-in-the-loop (FIL) method-
ology. In this example the FPGA has been used to speed-up the parallel
calculations, and a 300x300 maze was generated, using a total of 196840
logic elements (89 %), 68654 ALM (85 %), 301368 registers (93 %), 10442
Kb of M20K memory (88 %) and 1612 Kb (95 %) of the MLAB memory.
The resistance between the nodes was generated using 150 2D-Gaussian dis-
tributions with random position, dispersion and height, as shown in Fig.
4.9, where the colors represent the cost. In this same Figure, the red line
depicts the shortest path, as returned by the algorithm between the start
(left, bottom) and the end points (top, right). The time needed for a full
Matlab implementation (with no FPGA) to solve the circuit was around
1900 s, while the FIL version needed only 82ms to solve the maze, for a
total cost of 81630 (the total resistance, in arbitrary units) for a path length
of 608 cells. Retrieving of the shortest path required thus 1800 bits. A
comparison with the Dijkstra algorithm was not possible using the Matlab
built-in algorithm, since it ran out of memory.

4.2.4 Concluding Remarks

In this part of the chapter an inherently parallel computation algorithm has
been described and demonstrated. It was initially designed in Matlab, then
implemented in a FPGA using a memristor emulator and returned reliable
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Figure 4.9: An illustration of the results returned in the case of a 300x300
maze, used for testing the implementation of the solver, appears. The colors
represent the cost, which is the resistance between paths, as indicated in the
right bar in arbitrary units, while the red line shows the returned shortest
path.

results, equivalent to those obtained using Dijkstra’s algorithm. It took
profit of the study of multiple paths in parallel, showing how GERARD
helps Ariadne to determine the way out of a maze. Two different examples
were demonstrated, one with a 4x4 matrix, and another using a 300x300
matrix, both working in a very straightforward way.

The proposed design is simple and easy to scale up for implementing
different graph configurations and has been checked with many other exam-
ples and using Dijkstra’s algorithm [108]. Scalability of the system is limited
only by the size of the FPGA. Overcoming this, a proper partitioning scheme
could be also utilized. Finally, once actual memristor devices are finally out
as a mainstream technology, they could be actually used to implement the
proposed maze solver, paving the way for their use in autonomous robotics,
among other possible fields.

4.3 Stochastic Computing-based Cellular Nonlin-
ear Networks

Cellular Nonlinear Networks (CNN) were introduced by Chua and Yang
[139] in 1988, and can be described as a mixture between Cellular Networks
and Artificial Neural Networks that can implement a parallel processing
universal computer machine. This bio-inspired architecture is able to pro-
cess in parallel massive amounts of data, thus becoming suitable for image
processing, with single ASIC CMOS prototypes already implemented being
able to deal with rates up to 3 · 104 frames per second [140].

On the other hand, memristors have been proposed as a device that may
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Figure 4.10: Conceptual depiction of the system, showing the tasks as-
signed to Matlab and those performed by the FPGA. The FPGA and Mat-
lab are used jointly by using the FPGA-in-the-loop tool from Matlab, where
the VHDL code is automatically generated, uploaded, and integrated with
the main script at the computer.

help to implement this kind of circuits ( [141,142]), but experimental imple-
mentations are still lacking. These devices, memristors, are passive, two-pole
elements also introduced by Chua in 1971 [113], as a theoretically possible
basic circuit element. In 2008, Strukov et al. [127] realized their ReRAM
devices were, actually, a kind of memristor. There have been many groups
dedicated to create either devices or emulators, ever since. One of the more
classical mathematical memristor description, including memconductance G
can be written as:

i(t) = G(Q) · v(t) (4.7)

where Q (also known as charge) is the integral over time of the current i:

Q(t) =

∫ t

i(t)dt (4.8)

Notice that the requirement for the device to be a memristor is mapped
to the requirement for the characteristics of the device to be dependent
on some internal variables, as will be further discussed below, plus some
fingerprints [92,94].

One of the main problems for using memristors into circuits is that they
are not yet readily available for implementation in usual technologies. In this
thesis we use Stochastic Computing to implement a fully digital realization
of a CNN using memristors. To do so, we have used a memristor emulator
presented in [33], as well as a Stochastic Computing implementation of a
CNN using it, as in our previous work [38], where a simpler implementation
was presented operating exclusively on gray images.

The full system we have implemented is depicted in Fig. 4.10. The first
part is processed in the computer, where the images are read using a Matlab
script and converted to gray scale if needed. The resulting image is then sent
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to the FPGA board, which is used as an accelerator and connected using the
FPGA-in-the-loop methodology that allows to integrate it in a seamless way.
The FPGA does the processing using a massively parallel implementation
of the proposed Stochastic Memristive Cellular Nonlinear Network, and the
result is then read back into the computer and represented to the user, along
with the entropy of the image and the rms error if needed.

This part of the thesis is structured as follows: after this introduction,
the basics of memristors and Cellular Nonlinear Networks are presented in
section 4.3.1, which is being used in section 4.3.2 to implement the basic
CNN cell in Stochastic Computing. Section 4 presents the results obtained
using three different pictures (two gray, one color) with three different sets
of parameters. These three sets of parameters allow the CNN to perform
three different operations on the images: storing, edge detection, and image
improvement. Finally, section 4.3.3 concludes the chapter.

4.3.1 Memristive Cellular Nonlinear Networks

4.3.1.1 Memristors and memristive systems modeling

Among the possible theoretical descriptions of memristive systems, Corinto
et al. present in [93] a very complete framework to study memristors and, in
general, systems that may demontrtate memristive behavior. They utilize
both the classical description, using voltage and current, and the flux–charge
(φ-q) approach.

The memristive systems can be classified according to how far they are
from ideality. Following the taxonomy proposed in [92], there are three
distinct possibilities: the ideal, the generic, and the extended memristor.
This extended categorization was a theory requirement, needed to cover the
description of pinched, hysteretic behaviours found in numerous new various
elements.

The most general class of memristors are the extended memristors. The
memristors belonging to this class are described by extra internal state vari-
ables (in addition either to current and voltage, or to φ and q). As has
been discussed before, we repeat here the next equations ((4.9)) to ((4.11))
which implement the case of flux-controlled memristors, in order to make
the reading of this thesis easier :

i = G(φ, v,x) · v (4.9)

ẋ = gφ(φ, v,x) (4.10)

φ̇ = v (4.11)
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This way, an extended memristor has a memristance M represented by
the nonlinear memconductance G (or, more accurately, its inverse) in Eq.
((3.1)), where φ is the flux, and v is the voltage between the terminals
of the memristive device. The extra variables are grouped into the vec-
tor x, and they may comprise different physical magnitudes depending on
the specific memristive system; as examples, we can mention the radius of
a conducting filament, the internal temperature of the system, as well as
other non-electrical variables that may be used to describe the state of the
memristor. These state variables x present a dynamic behavior described
by gφ and Eq. (3.2). As a side comment, it is worthy noticing that all the
devices described as being memristors are indeed extended memristors.

When no parasitic effects are present, those extended memristors are
better described as generic memristors (or, simply, memristors), since func-
tion gφ depends only on the state variables x and φ. Ideal memristors,
finally, are those corresponding to the original definition [113], and can be
considered in this framework as generic memristors with no state variable
dependence other than charge or flux.

As an example, let’s consider the simplest memristor model that can be
devised, similar to those discussed in [93] or, for real devices, in [74,143–145].
In this case, the model of an ideal memristor where the memresistance or
the memconductance depends only on the charge or the flux can be written
as:

G = G0

(
1 +

ϕ

ϕ0

)
(4.12)

where G0 is the unperturbed conductance, and ϕ0 includes the importance
of the memristive effect. Notice that for ϕ0 → ∞, the behavior tends to be
similar to that of an ideal resistor. The behavior of the device is represented
in Fig. 4.11, for G0 = 0.1 mS, ϕ0 = 10, and three different frequencies.
Notice how the device reproduces the two fingerprints of a memristor [92,94]:
it presents a pinched loop whose area tends to zero at high frequency (green
line, ’x’ symbol).

4.3.1.2 Cellular Nonlinear Networks

The systems discussed in this thesis, Celullar Nonlinear Networks (CNNs)
[139], are not to be confounded with Convolutional Neural Networks (also
CNN), even if they share the same acronym. The CNNs discussed here repre-
sent a powerful massively parallel, multivariate signal processing paradigm.
In their most basic description, they are made of independent processing
units, called cells, where each cell has an input, an output that is fed back
as another input, and also feels the effect of the inputs and outputs of its
nearest neighbors. These effects are then processed internally into a state
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Figure 4.11: Representation of the I-V characteristics of the memristor
defined by Equations (4.7) and (4.12) for G0 = 0.1 mS, ϕ0 = 10, and three
different frequencies (ω(red ⋄) < ω(blue o) < ω(green x)).

variable, and the output is linearly dependent on the result of this process-
ing, with a positive and negative saturation.

As an example of hardware implementation of a CNN, we find [140],
where each processing element typically accommodates additional data stor-
age units, which allow the CNNs to store the programming parameters at
the cell level. As a result, these Universal Machines (UMs) can be considered
as one of the earliest examples of a non-von Neumann computer. Unfortu-
nately, these memory blocks need a large integrated circuit (IC) area to be
implemented, which increases significantly the size of each cell. As a con-
sequence, the spatial resolution is quite poor compared with simple image
sensors, which is a common problem that CNN-UMs and, as a inherited
problem, arrays comprising sensor-processor cells based upon them, suffer
from.

Mathematically, the behavior of the i, j cell can be described by a dif-
ferential equation as:

dxij
dt

=− xij + a0,0f(xij) + zij + b00uij

+
∑

k,i∈Ni,j ,k ̸=i,l ̸=j

ak−i,l−jykl

+
∑

k,i∈Ni,j ,k ̸=i,l ̸=j

bk−i,l−jukl

(4.13)

where xij is the state variable, uij and yij are the inputs and outputs,
respectively, and aij and bij are the feedback and feed forward coefficients.
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The stability of the system can be controlled by setting the value zij to an
appropriate value [142], and is equivalent to a constant bias in the electrical
equivalent. Function f(x) is a nonlinear function, saturating to a minimum
and a maximum value (vmin and vmax). In this sense, it is similar to the
output function of a neuron. However, the most usual shape for it is a
piecewise linear function, defined as:

f(v) =
1

2
(|v + vsat| − |v − vsat|) (4.14)

Equation (4.13) is usually rearranged as:

dxij
dt

=g(xij) + zij + b00uij

+
∑

k,l∈Ni,j ,k ̸=i,l ̸=j

(ak−i,l−jykl + bk−i,l−jukl)
(4.15)

g(xij) = −xij + a0,0f(xij) (4.16)

Notice that, even if the sum is made over the whole set of integers, we
usually restrict ourselves to just the nearest neighbors. This Eq. (4.16)
can be implemented with a single element thanks to the unique non linear
behavior of memristors. Thanks to this capability, to process or store data
within a common physical nanoscale medium, their use in future CNN cell
designs may allow to remove the burden of extra memory blocks within each
processing element, allowing the development of co-located sensor-processor
arrays with enormous high resolution levels, specially suited for the Internet-
of-Things (IoT) industry.

Referring to the determination of the coefficients, some methods have
been published [146,147] for the traditional CNN, and , more recently, using
the so-called Dynamic Route Map (DRM) [141, 142, 148, 149], to the first-
order approximate model of each cell of a Memristor CNN (M-CNN). Such
an approximation is depicted as a circuit in Fig. 4.12, and the evolution of
the state variable (xij) is described by an equation equivalent to Eq. (4.15):

dxij
dt

= k(xij) [ θ(vx;i,jf
p
+(xm;i,j)

+θ(−vx;i,jf
p
−(xm;i,j)

] (4.17)

where i ∈ 1,..., M, j ∈ 1,..., N, θ(x) is the unit step function, vxi,j stands for
the voltage across the capacitor Cx, whereas xmi,j , and vmi,j ≡ vxi,j denote,
respectively, the state and voltage of memristor mx, whose current is de-
scribed via the generalized Ohm’s law from Eq. (3.1): imi,j = G(xmi,j )vmi,j ,
with the memductance given by G(xmi,j ) = x−1

mi,j
. The nonlinear function

proposed in [149] to characterize the memristive CNNs are:
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k(vxi,j ) = −βvxi,j +
β − α

2
(
∣∣vxi,j + Vt

∣∣− ∣∣vxi,j − Vt

∣∣) (4.18)

with β > α ∈ ℜ+, featuring units ΩV −1s−1, and Vt ∈ ℜ+ denoting the
minimum voltage needed by the memristor for switching. In addition, there
are two different window functions, to ensure that the memristor stays in
between the two possible states [xon, xoff ]. These two window functions can
be written in a compact way [149] as:

fp
r (x) = 1−

(
ξ +

x− xon

xoff − xon

)2p

(4.19)

where ξ = −1 when r = ” + ” (the upper boundary), and ξ = 0 in the
opposite case; p can be any integer (p ∈ Z). In addition, the dynamical
evolution of the voltage vxi,j of each cell in system presented in Fig. 4.12 is:

Cx
dvxi,j

dt
= −(

1

R
+G(xmi,j )) · vxi,j + a0,0fout(vxi,j )

+ ibias + b0,0vinj,k

+
∑

k,l∈[−1,1]

(
bk,lvini+k,j+l

+ ak,lvouti+k,k+l

) (4.20)

fout(v) =
Ryglin

2
(|v + vsat| − |v − vsat|) (4.21)

Notice the equivalence of Eq. (4.20) with Eq. (4.15): the last line of
both equations is equivalent, while the first line of Eq. (4.15) corresponds
to the first two lines of Eq. (4.20). Thus, we can conclude that the circuit
in Fig. 4.12 accurately represents a possible implementation of a CNN cell,
and it is the circuit we will implement in the next section as a SC module.

4.3.2 M-CNN Stochastic Computing

4.3.2.1 Stochastic Computing Implementation of a Memristor
Emulator

The described advantages of SC framework were used by a stochastic com-
puting implementation of a memristor emulator [33], which describes the
memristor using equation (4.12), and was written in the form of equations
(4.22)-(4.24), so that it could be implemented in a discrete way. The math-
ematical operations eqs. (4.22)-(4.24) were carried out by simple digital
gates. A simple manner to model memristors is using a linear relation of
the charge Q with the memconductance G(Q), with an upper and a lower
value, Gmax and Gmin, correspondingly. Then according to this approach:
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Figure 4.12: Schematics and Stochastic implementation of a CNN cell, the
processing element in cell C(i,j) (i∈{1,. . . ,M} , j∈{1,. . . ,N} ). The other
elements (resistor, memristor, and capacitor), present the same values from
cell to cell, i.e. Cxi,j=Cx , mxi,j=mx , and Ryi,j=Ry . Adapted from [141].

G1(Q) = G0 +G1 ·Q (4.22)

G2(Q) = min(Gmax, G1(Q)) (4.23)

G(Q) = max(Gmin, G2(Q)) (4.24)

It is apparent that now Stochastic Computing can be used to implement
such a model within a digital environment (an FPGA, or an ASIC). Other
complex, physically-based models simulating memristive behavior in FPGAs
can be found in the literature [85, 86], but they are very mathematically
complex models, requiring a very large number of gates.

The emulator discussed above presents all the standard fingerprints of
a memristor as required by the theory [94]. This implementation appears
as a block diagram in Fig. 4.13, where vx and GND are the SCN values
of the positive and negative terminals of the memristor, respectively, while
the calculated current is represented by the stochastic value iM . The SCN
value of GND has to be represented by a probability of 0.5 for an ”1”, since
we are mapping the interval [0..1] to an interval that includes negative and
positive values. In our case, we have used a public version of the Mersenne
twister algorithm, available from GitHub [104].

Rewriting equations (4.22)-(4.24) to allow them to be implemented in
discrete time results in:

Q =

∫ t

i(t) ≈ ∆t ·
∑
j

i(t = j ·∆t) (4.25)
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Figure 4.13: The proposed Stochastic Computing memristor implementa-
tion. Inputs vx and GND are the SCN values of the positive and negative
inputs of the memristor respectively, and iM is the calculated SCN value of
the current.

where the integration step is ∆t. Using Eq. (4.25), we can rewrite (4.22) as:

G1(Q) = G0 +G1 ·∆t ·
∑
j

i(t = j ·∆t)S (4.26)

The adder needs to increase or decrease its output by a unit, depending
on the inputs, since i and GND are both SEN. An increasing is performed
when vx = 1, while when GND = 1 the output is reduced. A single constant
is used to groupe M1 and ∆t, and the max and min functions are built
into the adder by establishing a maximum and a minimum values. A SEN
output is generated from the adder’s output by comparing the it to a random
number spanning [0..(2NB − 1)]. An AND gate is then used to obtain the
current as per Eq. (4.7), as in Fig. 4.13.

4.3.2.2 Stochastic Computing implementation of a M-CNN

As discussed above, a very compact implementation of a single cell of a
Cellular Nonlinear Network single cells can be performed as in Fig. 4.12
[141]. The output voltage vy;i,j presents a nonlinear dependence on the
internal voltage vx;i,j . The dynamic behavior of this vx is governed by a
differential equation:
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Figure 4.14: Stochastic Computing Circuit implementation of the M-CNN
processing element C(i,j) as in Fig. 4.12.

dvx
dt

=
1

C

∑
i,j

(Bi,jii,j +Ai,joi,j)− iM

 (4.27)

where ii are the input currents caused by the inputs of the nearest cells.
The currents oi correspond to the outputs of those cells, while the current
iM is that flowing through the memristor. As proposed in [141,142], we only
consider the 8 closest neighbors. This way, Stochastic Computing can be
used to make an implementation of this equation. As an initial step, we do
a first order integration of equation (4.27):

∆vx =
∆t

C

(∑
i

(Biii +Aioi)− iM

)
(4.28)

The above Eq. (4.28) has been implemented in Fig. 4.14 as a stochas-
tic equivalent circuit, where all data circulation correspond to 1-bit lines.
Thus, implementation of Eq. (4.28) has been performed with 16 adders
each implemented using 1 OR gate with a 1-bit multiplexers, 2 multipliers
implemented as AND gates, 1 inverter, and 1 accumulator. Additionally, a
random number generator is also needed (note that it may be shared between
different cells) along with the memristor emulator previously presented.

The speed of the system can be estimated with the length of the chain
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Table 4.3: Parameter values for the elements of the circuit in Fig. 4.12,
where the memristor is defined by Eq. (4.7)

Parameter Value

R 100 kΩ

C 50 µF

G0 100 kΩ

ϕ0 10 V·s

needed to implement the SCN representation of the numbers to be used.
These numbers are determined considering the input images. In our case,
we are using both gray images and color images, all of them downloaded
from http://www.hpca.ual.es/~vruiz/images. The gray images use a 8-
bit single plane to store it, while the color images use three different 8-bit
planes. Thus, at least 8 bits need to be recovered faithfully. As has been
discussed above [50], the use of 14 bits corresponds to a chain length of
214 = 16384 bits and can represent values with to an error confined in the
last 6 bits, with more than a 95% probability. Following this reasoning, we
choose these 14 bits for both the length of the chain and the accumulators.

4.3.3 Image Processing Results

The CNN described above was simulated using Matlab, with the circuit
parameters equivalent to those appearing in Table 4.3. Parameter values
have been chosen to be similar to those proposed in [33], to optimize the
emulator behavior. Another option would have been using the process de-
scribed in [141, 149] or [150], but then scaling of the values was differing
significantly to allow the emulator performing efficiently. The FPGA-in-
the-loop methodology, as shown in Fig. 4.10, was implemented to speed up
the simulation, using an Arria V development kit. This FPGA system was
connected to the computer running the Matlab code via a cabled network.

The A and B matrices were changed to three different sets, corresponding
to three different cases: store, edge, sharpening, as discussed below. The
notation to represent the coefficients in the matrices is shown in Table 4.4.

Table 4.4: Coefficient notation for M = A,B (m = a, b). Notice that the
coefficient for the current node is (0, 0).

M

m−1,−1 m0,−1 m1,−1

m−1,0 m0,0 m1,0

m−1,1 m0,1 m1,1



The images have all different size (notated as NxM), as reported in Ta-
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ble 4.5, and they were all initially color images with 8-bit color resolution
at each RGB plane. We have processed these figures by performing two
different experiments, both of them using three different (A,B) sets of pa-
rameters: first, we used a color-to-gray conversion, and we processed the
images through the three different CNN. In a second step, we used a color
image, and we processed each color plane independently to finally recon-
struct a color image from these three planes.

In order to keep a good NF during the stochastic processing, and ac-
cording to Eq. (1.9) and the discussion in the previous section, each pixel
was converted from 8 to 14-bits by padding the least significant positions
with zeros. After the processing, the stochastic images to normal images
were converted back by disregarding the 6 least significant bits of the corre-
sponding accumulator in Fig. 4.13.

The results are shown in two different ways: as pictures, and also using
the RMS error and the entropy of the image. The RMS error erms is de-
fined in Eq. (4.29), where pi;i,j and po;i,j are the values of the pixel (i, j)
for the input and the processed image, respectively. The entropy H is cal-
culated using the Matlab implementation of Eq. (4.30), where pi contains
the normalized histogram counts for each gray level. The entropy of the un-
processed images is reported in Table 4.6. Notice that for the color images
we report the values of the entropy for each channel, while for the rest we
report only the entropy of the gray image.

erms =
1

N ·M
∑
i,j

(po;i,j − pp;i,j)
2 (4.29)

H = −
∑
i

pilog2(pi) (4.30)

4.3.3.1 Store image

As a first example, we show the results of storing the image into the CNN.
That is, the values of internal voltage are evolved until the output becomes
equal to the input. As a comment, this is the easiest ”program” that can
be implemented into the SM-CNN, and can be used as a first step for more

Table 4.5: Picture size in pixels. The color depth is 8 bits per channel.

Figure Size (M x N ) pixels2

Fig. 4.15 512 x 512

Fig. 4.16 768 x 512

Fig. 4.18 768 x 512
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Table 4.6: Calculated values of entropy of the images. The results for the
color image show the three color planes separately.

Figure Original Store Edge Enhance

Fig. 4.15 6.70 6.71 4.03 6.90

Fig. 4.16 7.18 7.20 3.87 7.45

Fig. 4.18 (R) 7.15 7.07 4.04 7.38

Fig. 4.18 (G) 7.16 7.27 4.19 7.88

Fig. 4.18 (B) 7.16 7.28 4.26 7.76

Table 4.7: Coefficients for the input and output weights in Eq. (4.27) for
the case of the image store setup.

A

 0.0 0.0 0.0
0.0 0.9 0.0
0.0 0.0 0.0



B

 0.0 0.0 0.0
0.0 0.1 0.0
0.0 0.0 0.0



complex algorithms as can be, for instance, a background removal or a mo-
tion detection algorithms. The coefficients of the matrices are provided in
Table 4.7.

We have represented both the input and output images for two different
cases input gray images (Figures 4.15(a) and 4.16(a) ) and a color image (Fig.
4.18(a)). The results for the store process are shown in Figures 4.15(b) and
4.16(b) for the gray images, while the stored color image is presented in Fig.
4.18(b). Visually, it can be seen there that the algorithm performs correctly.

Additionally, we have calculated the entropy of the images and the RMS
error, as shown in Tables 4.6 and 4.8. The entropy of the images is nearly
the same, and the rms error is kept, at most, below 1.3%.

Table 4.8: Calculated RMS of the stored images, referred to the original
image. The results for the color image show the three color planes separately.

Figure RMS

Fig. 4.15(b) 1.29%

Fig. 4.16(b) 0.57%

Fig. 4.18(b) (R) 1.13%

Fig. 4.18(b) (G) 0.58%

Fig. 4.18(b) (B) 0.61%
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((a)) Original image. ((b)) Stored image.

((c)) Edge detection result. ((d)) Sharpened image.

Figure 4.15: Example 1: results obtained using the three proposed
stochastic computing CNN with different gene values.

4.3.3.2 EDGE detection using SM-CNN

The proposed SM-CNN was further checked using an implementation of one
of the stochastic systems proposed in [142]. Specifically, we have improved
the EDGE routine presented in [38]. This routine performs a border de-
tection algorithm in the image using the coefficients in Table 4.9. In the
previous work, the routine was fixed, and no quantitative analysis was per-
formed. The edge algorithm aims to detect changes between adjacent pixels,
so the output value will evolve to a 1 or 0, depending on the change of color.
The evolution will depend on the threshold of the output function and can
thus be changed.

We have used the same images as in the previous example, where two of
the images were gray 8-bit images and another one was a 24-bit color image
(3x8 bits planes). They were processed as in the previous case to 14-bits by
padding, and back to 8-bits by truncation. We have represented both the
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((a)) Original image. ((b)) Stored image.

((c)) Edge detection result. ((d)) Sharpened image.

Figure 4.16: Example 2: results obtained using the three proposed
stochastic computing CNN with different gene values.

((a)) Zoom of the original image. ((b)) Zoom of the sharpened image.

Figure 4.17: Example 2: zoom in of Fig 4.16(a) and 4.16(d), showing
a detail of the sharpening results obtained using the proposed stochastic
computing CNN.

input and output images for two different gray images in Fig. 4.15(c) and
Fig. 4.16(c), while the result for the color image is shown in Fig. 4.18(c).
It can be seen there that the algorithm performs as expected, showing also
the corresponding decreasing in the values of the entropy in Table 4.6.

4.3.3.3 Sharpening

The sharpening algorithm is a variation of the EDGE detection, combined
with the STORE genii. In fact, we have calculated a new coefficient set as

93



CHAPTER 4. APPLICATIONS

((a)) Original image. ((b)) Stored image.

((c)) Edge detection result. ((d)) Sharpened image.

Figure 4.18: Example 3: Color figure, showing the sharpening results
obtained using the proposed stochastic computing CNN.

((a)) Zoom of the original image. ((b)) Zoom of the sharpened image.

Figure 4.19: Example 3: zoom in of Fig 4.18(a) and 4.18(d), showing
a detail of the sharpening results obtained using the proposed stochastic
computing CNN.
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Table 4.9: Coefficients for the input and output weights in Eq. (4.27) for
the case of the edge detection setup.

A


0.0 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.0



B


−1/8 −1/8 −1/8

−1/8 1.0 −1/8

−1/8 −1/8 −1/8



a linear combination of the two previous sets: As, Bs for the store matrices,
and Ae, Be for the edge detection. The new set Ai, Bi is calculated as:

Mi = λ1Ms + λ2Mi (4.31)

where M stands for both A and B. In this case, λ1 = 1/3 and λ2 = 2/5,
and the corresponding matrix coefficients are provided in Table 4.10.

Table 4.10: Coefficients for the input and output weights in Eq. (4.27) for
the case of the image enhancement setup.

A

 0.0 0.0 0.0
0.0 0.3 0.0
0.0 0.0 0.0



B

−0.05 −0.05 −0.05
−0.05 0.43 −0.05
−0.05 −0.05 −0.05



We have used the same images as in the previous example, where two of
the images were gray 8-bit images and another one was a 24-bit color image
(3x8 bits planes). They were processed as in the previous case to 14-bits
by padding, and back to 8-bits by truncation. Results of applying this set
of coefficients to gray images are shown in Fig. 4.15(d), 4.16(d) (with a
zoom comparing original in Fig. 4.17(a) against the processed output in
4.17(b)). The results for a color image are depicted in Fig. 4.18(d), with
a zoom in shown in Fig. 4.19(a) and 4.19(b) for the original and processed
images, respectively. Visually, the images seem to be improved, with less
fuzzy edges. This is further corroborated by the increase in the entropy
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shown in Table 4.6.

4.3.4 Concluding remarks

A fully digital implementation of a Memristive Cellular Nonlinear Network
profiting from the Stochastic Computing paradigm, has been performed.
The basic unitary cell of the proposed CNN features a digital memristor
emulator, plus several arithmetic units that are implemented as very sim-
ple gates, allowing for an enormous number of cells in parallel, which can
translate into a very fast image processor.

We have implemented this full CNN structure into an ARRIA V FPGA,
and we have tested it along with Matlab by implementing three different
procedures: a image store, an edge detection, and, finally, an image sharp-
ening process. Notice that these three procedures involve only the change
of the matrix coefficients, that are common to all the cells. As has been
discussed, the results imply that the system performs smoothly, with errors
lower than 1.3% in the storage, an excellent edge detection capability, and
a very good detail sharpening. A full FPGA implementation of images with
lower number of pixels would allow for a very high image processing speed,
adequate for real time needs, and well inside the capabilities and require-
ments of edge computing. In addition, as shown in [150], the proposed kind
of memristive CNNs are resilient to individual ”pixel” failures.

As an example, in this thesis we have used 14-bits stochastic numbers,
which translates into a chain length of 214 = 16384. An entry-level FPGA
can run at 80MHz, so it could operate around 4800 operations per second.
Since all the operations in the circuit are sequential, this is also the speed
at which each step of the numerical integration is performed. Assuming
that you need around 10-20 steps to reach the stable point, we could be
processing more than 200 points per second. Then, the full resolution would
be a matter of how many parallel threads can be implemented into an FPGA
or an ASIC, but the numbers show that it seems to be adequate for real-time
processing, even using low-speed systems.

Notice that in this chapter only the proof of concept for the SC Memris-
tive CNN has been discussed, not comparing it against any other improving
algorithm using, for instance, a hard-wired algorithm implementation or
Neural Networks, which may show much better image improvement. It has
to be noted, however, that the method presented here is training-free, which
simplifies the design when compared against NNs and also removes any pos-
sible bias introduced by the training. In addition, the facility to change the
algorithm is also worth to mention, since it reduces to changing the val-
ues of the coefficients in the the cells. This makes this approach specially
suited over a hard implementation of specific algorithms in, for instance,
multi-purpose systems that can need to be swapping functions on the fly.
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Conclusion

In this thesis we have studied different applications of Stochastic Comput-
ing (SC) to nonlinear systems. Specifically, we have first studied the error
propagation in this kind of architecture, seeing how it can be controlled.

As a second step, we have presented a new scheme to implement arbi-
trary functions using a quadratic approach, instead of the linear approach
normally used. Our scheme clearly improves the use of memory and com-
putational resources, with a very small overhead, while also increasing the
obtained precision.

The third step involved studying the implementation of nonlinear differ-
ential equation systems. In order to proceed, we have first studied how to
implement an integrator, and we have seen how our proposal integrates a
constant and also how it can be used in a feedback loop to provide an oscil-
lator by implementing the classical equation ẍ = −x. Afterwards, we have
implemented a Shimizu-Morioka system, which uses only three dynamical
variables. Results show that the implementation using SC may need mas-
sive parallelization to be effective, but it reproduces fairly well the results
obtained by integrating the system using Matlab.

Another part of the thesis is devoted to the implementation of memris-
tor emulators. As is known, memristors are nonlinear systems, and there
is also a great deal of effort involved in creating emulators. We have first
proposed a simple digital emulator, showing that it reproduces the expected
results when using, for instance, imply gates. Afterwards, we have also
implemented a physical emulator using physical elements and switched ca-
pacitors. We have presented two different emulators: the first one [32] was
a proof of concept using a only switched capacitors controlled by a lin-
ear relation between duty cycle and flux, while the second emulator [34]
implemented all the operations (including switch control) using stochastic
computing.

Finally, we have used the digital emulator to implement some more ap-
plications, all of them also published. First, we have implemented a maze
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solver [36] into a FPGA. This maze solver implements a version of the Di-
jkstra algorithm, and it works well with grids up to 300 x 300 elements. As
a second application, we have implemented a Cellular Nonlinear Network
(CNN) [30], with application to image processing. The results obtained
using this emulator show that they work very well, with less energy con-
sumption that comparable implementations using other techniques, if we
keep below 16 bits, while providing a great capability for changing on the
fly the image processing algorithm.

In brief, we have shown how Stochastic Computing can occupy some
niches, mainly for edge computing, or for low-precission, low-power sys-
tems. Extensions of the present work should include ASIC implementations
of the proposed blocks, maybe with applications in robotic navigation or as
a first layer in image processing. Further improvements could also include
using memristors to implement all the operations with in-memory comput-
ing, since these elements seem to have intrinsic randomness, which could be
harnessed using SC.
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this case, Nacc = 16, N = 18 bits, resulting in a ∆t = 1/8192 s. 28

2.6 For the normalized Shimizu-Morioka system, beginning from
initial conditions (x, y, z)=(0.51,0.51,0.51), (a) the nonlinear
time series of the normalized Shimizu-Morioka system and (b)
the corresponding attractor in a 3D phase space, are presented. 31

2.7 Implementation of the Shimizu-Morioka equations using SC.
The sub-index in the variables means a delay equivalent to
the number used to decorrelate them. The constants ci are
those corresponding to Eq. ((2.13)). . . . . . . . . . . . . . . 32

2.8 (a) The nonlinear time series of the Shimizu-Morioka system,
as this was calculated using SC, beginning from initial condi-
tions (X,Y, Z)=(0.51,0.51,0.51) and N = 22 bits, Nacc = 212

iterations. (b) The corresponding attractor. . . . . . . . . . . 34

2.9 Power Spectra obtained from the Z(t) time series using the
SC (green) and classical (red) integration methods. . . . . . . 35

2.10 Correlation Dimension for the conventionally calculated Z(t)
time series (black line) and the one calculated in the SC en-
vironment (red line). . . . . . . . . . . . . . . . . . . . . . . . 37

100



LIST OF FIGURES

2.11 Kolmogorov-Sinai Entropy for the conventionally calculated
Z(t) time series (black line) and the one calculated in the SC
environment (red line). . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Schematic implementation of the digital memristor. (a) Sym-
bol for a memristor. (b) Proposed implementation. The in-
puts a = V + and b = V − can be only 0 or 1, since this is a
pure digital circuit. We also assume that the counter has a
maximum and a minimum. The initial state is chosen to be
zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Simulation of the behavior at low frequency. The upper graph
shows the digital inputs a and b (positive and negative, re-
spectively). The middle section shows the charge, as counted
by the emulator. The bottom graph shows the resistance
state, where 0 corresponds to the HRS and 1 to the LRS. . . 48

3.3 Simulation of the behavior at high frequency. The upper
graph shows the digital inputs a and b (positive and nega-
tive, respectively). The middle section shows the charge, as
counted by the emulator. The bottom graph shows the re-
sistance state, where 0 corresponds to the HRS and 1 to the
LRS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 IMPLY gate. A classical two-inputs IMPLY gate. . . . . . . . 49

3.5 IMPLY gate simulation. Results from the simulation of a
two-inputs IMPLY gate. . . . . . . . . . . . . . . . . . . . . 51

3.6 Block diagram of the switched capacitor circuit. . . . . . . . . 52

3.7 Schematic of the used switched capacitor circuit. Resistor R
includes the shunt and parasitic resistances. Signals Φ1 and
Φ2 must not overlap. . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Physical implementation of the circuit on a prototyping board. 54

3.9 Equivalent resistance for various frequencies of the input sig-
nal, for fS = 12MHz. . . . . . . . . . . . . . . . . . . . . . . 54

3.10 Snapshot of the oscilloscope showing the control signals of the
analog switch. The upper signal is Φ1, while Φ2 is the lower
signal. Notice that both signals are complementary and non-
overlapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 Snapshot of the oscilloscope showing system’s I-V response
to a 50 Hz input signal. The current was calculated as the
voltage drop in a 1kΩ shunt resistor. . . . . . . . . . . . . . 55

3.12 Response of the oscilloscope showing the I-V response to three
different frequencies input signals. . . . . . . . . . . . . . . . 56

3.13 Swiched capacitor memristor emulator (SCME) block diagram. 59

3.14 Control block implementation using stochastic computing. . . 59

101



LIST OF FIGURES

3.15 Simulated i − v characteristic curves of the memristor im-
plemented using Figure 3.13. Three different frequencies are
shown in different colors. . . . . . . . . . . . . . . . . . . . . . 60

3.16 Q − ϕ characteristics of the memristor implemented using
Figure 3.13. The different frequencies (in arbitrary units) are
shown in different colors. . . . . . . . . . . . . . . . . . . . . 60

3.17 Current signal (response) for different frequencies, as obtained
from the simulation. The three different frequencies are shown
in different colors and correspond to the ones shown in Fig-
ure 3.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.18 Stochastic signals S1 and S2 generated by the control circuit. 62

3.19 Three least significant bits of the counter (b0 is the least sig-
nificant bit) at a specific time. . . . . . . . . . . . . . . . . . 62

3.20 Measured I-V signals at different frequencies. . . . . . . . . . 63

3.21 Temporal graphs of the measured response (current signals) of
the realized memristor at 3 different frequencies correspond-
ing to the simulated frequencies for driving sine voltage of (a)
100 Hz, (b) 200 Hz, and (c) 400 Hz. . . . . . . . . . . . . . . 64

4.1 Scheme of the general interconnection pattern between two
arbitrary adjacent nodes (x,y) and (x+1) of a NxM grid. No-
tice that for the sake of clarity only one of the four connections
of each node is shown. . . . . . . . . . . . . . . . . . . . . . . 70

4.2 The flow diagram of the proposed shortest path algorithm. . 71

4.3 The solution in the case of a 3x3 example. Notice that the
numbers between the nodes represent the resistance. The
shortest path is the one passing through the green nodes.
The initial node is node 1, and the final node is 9. . . . . . . 73

4.4 Illustration of the system, including the PC running the ex-
ternal software, the USB-to-JTAG interface on the electronic
board, and the FPGA, where the general controller and the
maze solver are located. . . . . . . . . . . . . . . . . . . . . . 73

4.5 The connection between the vJTAG blocks in the communi-
cation module, as discussed in [137] and [138] . . . . . . . . . 74

4.6 The equivalent FPGA implementation of Fig. 4.1, with the
nodes and their interconnection. The block labelled DELAY
is the equivalent of the memristor-capacitor elements, while
the NODE block corresponds to the (x,y) node elements. All
these blocks also show the additional inputs that allow ex-
ternal programming and data recovering, as discussed in the
text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

102



LIST OF FIGURES

4.7 The FPGA returned result in the case of a 4x4 maze. The
corresponding recovered shortest path (nodes in green) ap-
pears, showing the directions in Fig. 4.8, according to Table
4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Array obtained from FPGA for the example graph, indicating
the first activating input for each node. . . . . . . . . . . . . 78

4.9 An illustration of the results returned in the case of a 300x300
maze, used for testing the implementation of the solver, ap-
pears. The colors represent the cost, which is the resistance
between paths, as indicated in the right bar in arbitrary units,
while the red line shows the returned shortest path. . . . . . 79

4.10 Conceptual depiction of the system, showing the tasks as-
signed to Matlab and those performed by the FPGA. The
FPGA and Matlab are used jointly by using the FPGA-in-
the-loop tool from Matlab, where the VHDL code is auto-
matically generated, uploaded, and integrated with the main
script at the computer. . . . . . . . . . . . . . . . . . . . . . 80

4.11 Representation of the I-V characteristics of the memristor
defined by Equations (4.7) and (4.12) for G0 = 0.1 mS, ϕ0 =
10, and three different frequencies (ω(red ⋄) < ω(blue o) <
ω(green x)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Schematics and Stochastic implementation of a CNN cell, the
processing element in cell C(i,j) (i∈{1,. . . ,M} , j∈{1,. . . ,N}
). The other elements (resistor, memristor, and capacitor),
present the same values from cell to cell, i.e. Cxi,j=Cx ,
mxi,j=mx , and Ryi,j=Ry . Adapted from [141]. . . . . . . . 86

4.13 The proposed Stochastic Computing memristor implementa-
tion. Inputs vx and GND are the SCN values of the positive
and negative inputs of the memristor respectively, and iM is
the calculated SCN value of the current. . . . . . . . . . . . . 87

4.14 Stochastic Computing Circuit implementation of the M-CNN
processing element C(i,j) as in Fig. 4.12. . . . . . . . . . . . 88

4.15 Example 1: results obtained using the three proposed stochas-
tic computing CNN with different gene values. . . . . . . . . 92

4.16 Example 2: results obtained using the three proposed stochas-
tic computing CNN with different gene values. . . . . . . . . 93

4.17 Example 2: zoom in of Fig 4.16(a) and 4.16(d), showing a
detail of the sharpening results obtained using the proposed
stochastic computing CNN. . . . . . . . . . . . . . . . . . . . 93

4.18 Example 3: Color figure, showing the sharpening results ob-
tained using the proposed stochastic computing CNN. . . . . 94

4.19 Example 3: zoom in of Fig 4.18(a) and 4.18(d), showing a
detail of the sharpening results obtained using the proposed
stochastic computing CNN. . . . . . . . . . . . . . . . . . . . 94

103



LIST OF FIGURES

104



List of Tables

1.1 Arbitrary function examples and RMS error in the interval x
∈ [-1,1] using 20 bits and 32 segments. . . . . . . . . . . . . . 11

1.2 RMS errors for function FNA = 0.1 · exp(x/4) · cos(12 ·x) ·x2
and FNB = 0.1 · sin(18 ·x) ·x2 for several number of bits and
32 segments. The symbols correspond to the calculated values
of the function. Boundaries between segments are marked in
green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 RMS errors for function FNA = 0.1 · exp(x/4) · cos(12 ·x) ·x2
and FNB = 0.1·sin(18·x)·x2 according to 20 bits and several
number of segments. . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Calculated means in the case presented in fig 1.14 . . . . . . 20

1.5 Calculated means in the case presented in fig 1.15 (Proposed
method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Values of the first three Lyapunov exponents for the ’Z’ vari-
able in the cases of classical integration and SC integration. . 36

2.2 Comparison of the number of FPGA parts used for imple-
mentation of the vedic multiplication algorithm [70] and the
SC multiplication. (*)The number of LUTs used in SC is
considered to be 1/3 of a 6-input LUT, as those in the FPGA
used in [70]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Truth table of imply function. . . . . . . . . . . . . . . . . . . 49

3.2 Sequence for setting up the input values of the memristors.
Notice that we are using two clock cycles for the process, so
AB means applying A during the first cycle and B during
the second one. During this process, the reset signal is high
and the output z follows a ’10’ sequence, forced by signal b.
The set process is selected by signal s = 0, while calculation
is performed at s = 1. . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Set of instructions for the control system. Notice that instruc-
tions 010 and 011 need additional arguments (target row and
column) to function. . . . . . . . . . . . . . . . . . . . . . . . 74

105



LIST OF TABLES

4.2 Incoming signal direction codes. . . . . . . . . . . . . . . . . . 77
4.3 Parameter values for the elements of the circuit in Fig. 4.12,

where the memristor is defined by Eq. (4.7) . . . . . . . . . . 89
4.4 Coefficient notation for M = A,B (m = a, b). Notice that

the coefficient for the current node is (0, 0). . . . . . . . . . . 89
4.5 Picture size in pixels. The color depth is 8 bits per channel. . 90
4.6 Calculated values of entropy of the images. The results for

the color image show the three color planes separately. . . . . 91
4.7 Coefficients for the input and output weights in Eq. (4.27)

for the case of the image store setup. . . . . . . . . . . . . . . 91
4.8 Calculated RMS of the stored images, referred to the original

image. The results for the color image show the three color
planes separately. . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9 Coefficients for the input and output weights in Eq. (4.27)
for the case of the edge detection setup. . . . . . . . . . . . . 95

4.10 Coefficients for the input and output weights in Eq. (4.27)
for the case of the image enhancement setup. . . . . . . . . . 95

106



Bibliography

[1] W. Shi, G. Pallis, and Z. Xu, “Edge computing [scanning the issue],”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1474–1481, 2019.

[2] S. Venkataramani, K. Roy, and A. Raghunathan, “Efficient embedded
learning for IoT devices,” in 2016 21st Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2016, pp. 308–311.

[3] M. Shafique, T. Theocharides, C.-S. Bouganis, M. A. Hanif, F. Khalid,
R. Hafız, and S. Rehman, “An overview of next-generation architec-
tures for machine learning: Roadmap, opportunities and challenges in
the IOT era,” in 2018 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE). IEEE, 2018, pp. 827–832.

[4] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2015.

[5] H. Jayakumar, A. Raha, Y. Kim, S. Sutar, W. S. Lee, and V. Raghu-
nathan, “Energy-efficient system design for IoT devices,” in 21st Asia
and South Pacific Design Automation Conf (ASP-DAC). IEEE, 2016,
pp. 298–301.

[6] M. Gao, Q. Wang, M. T. Arafin, Y. Lyu, and G. Qu, “Approximate
computing for low power and security in the internet of things,” Com-
puter, vol. 50, no. 6, pp. 27–34, 2017.

[7] L. Du, Y. Du, Y. Li, J. Su, Y.-C. Kuan, C.-C. Liu, and M.-C. F.
Chang, “A reconfigurable streaming deep convolutional neural net-
work accelerator for internet of things,” IEEE Trans on Circuits and
Systems I: Reg. Papers, vol. 65, no. 1, pp. 198–208, 2017.

[8] E. Ipek, “Memristive accelerators for dense and sparse linear alge-
bra: From machine learning to high-performance scientific comput-
ing,” IEEE Micro, vol. 39, no. 1, pp. 58–61, 2019.

[9] F. Yu, Z. Zhang, L. Liu, H. Shen, Y. Huang, C. Shi, S. Cai, Y. Song,
S. Du, and Q. Xu, “Secure communication scheme based on a new

107



BIBLIOGRAPHY

5d multistable four-wing memristive hyperchaotic system with distur-
bance inputs,” Complexity, vol. 2020, 2020.

[10] A. Dukhan, D. Jayalath, P. van Heijster, B. Senadji, and J. Banks, “A
generalized multilevel-hybrid chaotic oscillator for low-cost and power-
efficient short-range chaotic communication systems,” EURASIP
Journal on Wireless Communications and Networking, vol. 2020, no. 1,
p. 23, 2020.

[11] F.-Y. Rao and E. Bertino, “Privacy techniques for edge computing
systems,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1632–1654,
2019.

[12] Y. Xiao, Y. Jia, C. Liu, X. Cheng, J. Yu, and W. Lv, “Edge computing
security: State of the art and challenges,” Proceedings of the IEEE,
vol. 107, no. 8, pp. 1608–1631, 2019.

[13] G. Alvarez and S. Li, “Some basic cryptographic requirements for
chaos-based cryptosystems,” International journal of bifurcation and
chaos, vol. 16, no. 08, pp. 2129–2151, 2006.

[14] A. N. Miliou, I. P. Antoniades, S. G. Stavrinides, and A. N. Anag-
nostopoulos, “Secure communication by chaotic synchronization: Ro-
bustness under noisy conditions,” Nonlinear analysis: real world ap-
plications, vol. 8, no. 3, pp. 1003–1012, 2007.

[15] A. Anagnostopoulos, A. Miliou, S. Stavrinides, A. Dmitriev, and
E. Efremova, “Digital information transmission using discrete chaotic
signal,” in Chaos Synchronization and Cryptography for Secure Com-
munications: Applications for Encryption. IGI Global, 2011, pp.
439–462.

[16] S. Stavrinides, A. Anagnostopoulos, A. Miliou, A. Valaristos, L. Maga-
fas, K. Kosmatopoulos, and S. Papaioannou, “Digital chaotic synchro-
nized communication system,” Journal of Engineering Science and
Technology Review, vol. 2, no. 1, pp. 82–86, 2009.

[17] S. Stavrinides, N. Karagiorgos, K. Papathanasiou, S. Nikolaidis, and
A. Anagnostopoulos, “A digital nonautonomous chaotic oscillator suit-
able for information transmission,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 60, no. 12, pp. 887–891, 2013.

[18] A. Miliou, A. Valaristos, S. Stavrinides, K. Kyritsi, and A. Anagnos-
topoulos, “Characterization of a non-autonomous second-order non-
linear circuit for secure data transmission,” Chaos, Solitons & Frac-
tals, vol. 33, no. 4, pp. 1248–1255, 2007.

108



BIBLIOGRAPHY

[19] A. Miliou, S. Stavrinides, A. Valaristos, and A. Anagnostopoulos,
“Nonlinear electronic circuit, part ii: synchronization in a chaotic mo-
dem scheme,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 71, no. 12, pp. e21–e31, 2009.

[20] J. C. Sprott, Chaos and Time-Series Analysis. USA: Oxford Univer-
sity Press, Inc., 2003.

[21] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata studies, vol. 34,
pp. 43–98, 1956.

[22] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J.
Gross, “VLSI implementation of deep neural network using integral
stochastic computing,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 25, no. 10, pp. 2688–2699, 2017.

[23] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic
energy-accuracy trade-off using stochastic computing in deep neural
networks,” in Proceedings of the 53rd Annual Design Automation Con-
ference, 2016, pp. 1–6.

[24] A. Morro, V. Canals, A. Oliver, M. L. Alomar, and J. L. Rossello,
“Ultra-fast data-mining hardware architecture based on stochastic
computing,” PloS one, vol. 10, no. 5, p. e0124176, 2015.

[25] R. Wang, J. Han, B. Cockburn, and D. Elliott, “Stochastic cir-
cuit design and performance evaluation of vector quantization,” in
Application-specific Systems, Architectures and Processors (ASAP)
IEEE 26th Int. Conf. on. IEEE, 2015, pp. 111–115.

[26] B. Yuan, Y. Wang, and Z. Wang, “Area-efficient scaling-free
DFT/FFT design using stochastic computing,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 63, no. 12, pp. 1131–1135,
2016.

[27] S. T. Marin, J. Q. Reboul, and L. G. Franquelo, “Digital stochas-
tic realization of complex analog controllers,” IEEE Transactions on
Industrial Electronics, vol. 49, no. 5, pp. 1101–1109, 2002.

[28] S. Toral, J. Quero, J. Ortega, and L. Franquelo, “Stochastic A/D
sigma-delta converter on FPGA,” in Circuits and Systems, 1999. 42nd
Midwest Symposium on, vol. 1. IEEE, 1999, pp. 35–38.

[29] H. Schuster and W. Just, Deterministic Chaos: An Introduction.
Wiley, 2006. [Online]. Available: https://books.google.de/books?id=
-14Y2WPfYgsC

109



BIBLIOGRAPHY

[30] O. Camps, S. G. Stavrinides, and R. Picos, “Stochastic computing
implementation of chaotic systems,” Mathematics, vol. 9, no. 4, 2021.
[Online]. Available: https://www.mdpi.com/2227-7390/9/4/375

[31] O. Camps, M. M. Al Chawa, C. de Benito, M. Roca, S. G. Stavrinides,
R. Picos, and L. O. Chua, “A purely digital memristor emulator based
on a flux-charge model,” in 2018 25th IEEE International Conference
on Electronics, Circuits and Systems (ICECS). IEEE, 2018, pp. 565–
568.

[32] G. Svetoslavov, O. Camps, S. G. Stavrinides, and R. Picos, “A
switched capacitor memristive emulator,” IEEE Transactions on Cir-
cuits and Systems II: Express Briefs, 2020.

[33] O. Camps, R. Picos, C. de Benito, M. M. Al Chawa, and S. G.
Stavrinides, “Emulating memristors in a digital environment using
stochastic logic,” in 2018 7th International Conference on Modern
Circuits and Systems Technologies (MOCAST). IEEE, 2018, pp.
1–4.

[34] C. de Benito, O. Camps, M. Al Chawa, S. Stavrinides, and R. Picos,
“A stochastic switched capacitor memristor emulator,” in 2021 10th
International Conference on Modern Circuits and Systems Technolo-
gies (MOCAST). IEEE, 2021, pp. 1–4.

[35] C. de Benito, O. Camps, M. M. Al Chawa, S. G. Stavrinides, and
R. Picos, “A switched capacitor memristor emulator using stochastic
computing,” Technologies, vol. 10, no. 2, p. 39, 2022.

[36] P. Dopazo, C. de Benito, O. Camps, S. G. Stavrinides, and R. Picos,
“Gerard: General rapid resolution of digital mazes using a memristor
emulator,” Physics, vol. 4, no. 1, pp. 1–11, 2021.

[37] O. Camps, M. M. Al Chawa, S. G. Stavrinides, and R. Picos,
“Stochastic computing emulation of memristor cellular nonlinear
networks,” Micromachines, vol. 13, no. 1, 2022. [Online]. Available:
https://www.mdpi.com/2072-666X/13/1/67

[38] O. Camps, S. G. Stavrinides, and R. Picos, “Efficient implementa-
tion of memristor cellular nonlinear networks using stochastic com-
puting,” in 2020 European Conference on Circuit Theory and Design
(ECCTD). IEEE, 2020, pp. 1–4.

[39] H. Hui, C. Zhou, S. Xu, and F. Lin, “A novel secure data transmis-
sion scheme in industrial internet of things,” China Communications,
vol. 17, no. 1, pp. 73–88, 2020.

110



BIBLIOGRAPHY

[40] A. Voronova, P. Tsareva, and A. Zhilenkov, “The synthesis problem
of a chaotic signal computer system for secure data transmission,” in
2020 IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus). IEEE, 2020, pp. 551–555.

[41] H. Peng, Y. Tian, J. Kurths, L. Li, Y. Yang, and D. Wang, “Secure and
energy-efficient data transmission system based on chaotic compressive
sensing in body-to-body networks,” IEEE transactions on biomedical
circuits and systems, vol. 11, no. 3, pp. 558–573, 2017.

[42] M. R. Alam, M. H. Najafi, N. T. Nejad, M. Imani, and R. Got-
tumukkala, “Stochastic computing in beyond von-neumann era: Pro-
cessing bit-streams in memristive memory,” IEEE Transactions on
Circuits and Systems II: Express Briefs, pp. 1–1, 2022.

[43] B. Moons and M. Verhelst, “Energy-efficiency and accuracy of stochas-
tic computing circuits in emerging technologies,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 4, no. 4,
pp. 475–486, 2014.

[44] S. Li, A. O. Glova, X. Hu, P. Gu, D. Niu, K. T. Malladi, H. Zheng,
B. Brennan, and Y. Xie, “SCOPE: A stochastic computing engine for
dram-based in-situ accelerator.” in MICRO, 2018, pp. 696–709.

[45] S. Toral, J. Quero, and L. Franquelo, “Stochastic pulse coded arith-
metic,” in Circuits and Systems, 2000. Proceedings. ISCAS 2000
Geneva. The 2000 IEEE International Symposium on, vol. 1. IEEE,
2000, pp. 599–602.

[46] F. A. Khanday and R. Akhtar, “Reversible stochastic computing,”
International Journal of Numerical Modelling: Electronic Networks,
Devices and Fields, vol. n/a, no. n/a, p. e2711, 2020. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/jnm.2711

[47] B. R. Gaines, “Stochastic computing,” in Proceedings of the April 18-
20, 1967, spring joint computer conference. ACM, 1967, pp. 149–156.

[48] S. Mitra, D. Banerjee, and M. K. Naskar, “A low latency stochastic
square root circuit,” in 2021 34th International Conference on VLSI
Design and 2021 20th International Conference on Embedded Systems
(VLSID), 2021, pp. 7–12.

[49] D. Wu and J. S. Miguel, “In-stream stochastic division and square
root via correlation,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–6.

111



BIBLIOGRAPHY

[50] O. Camps, R. Picos, C. de Benito, M. M. Al Chawa, and S. G.
Stavrinides, “Effective accuracy estimation and representation error
reduction for stochastic logic operations,” in 2018 7th Int. Conf. on
Modern Circuits and Systems Technologies (MOCAST). IEEE, 2018.

[51] T.-H. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in 2016 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI), 2016, pp. 116–121.

[52] Z. Qin, Y. Qiu, M. Zheng, H. Dong, Z. Lu, Z. Wang, and H. Pan,
“A universal approximation method and optimized hardware architec-
tures for arithmetic functions based on stochastic computing,” IEEE
Access, vol. 8, pp. 46 229–46 241, 2020.

[53] J. Tellinghuisen, “Statistical error propagation,” The Journal of Phys-
ical Chemistry A, vol. 105, no. 15, pp. 3917–3921, 2001.

[54] L. A. Goodman, “On the exact variance of products,” Journal of the
American Statistical Association, vol. 55, no. 292, pp. 708–713, 1960.
[Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/
01621459.1960.10483369

[55] M. Loeve, “Elementary probability theory,” in Probability theory i.
Springer, 1977, pp. 1–52.

[56] S. Liu, W. J. Gross, and J. Han, “Introduction to dynamic stochastic
computing,” IEEE Circuits and Systems Magazine, vol. 20, no. 3, pp.
19–33, 2020.

[57] T. Shimizu and N. Morioka, “On the bifurcation of a symmetric limit
cycle to an asymmetric one in a simple model,” Physics Letters A,
vol. 76, no. 3-4, pp. 201–204, 1980.

[58] F. Neugebauer, I. Polian, and J. P. Hayes, “S-box-based random num-
ber generation for stochastic computing,” Microprocessors and Mi-
crosystems, vol. 61, pp. 316–326, 2018.

[59] V. K. Rai, S. Tripathy, and J. Mathew, “Memristor based random
number generator: Architectures and evaluation,” Procedia Computer
Science, vol. 125, pp. 576–583, 2018.

[60] B.-B. Yang, N. Xu, E.-R. Zhou, Z.-W. Li, C. Li, P.-Y. Yi, and L. Fang,
“A method of generating random bits by using electronic bipolar mem-
ristor,” Chinese Physics B, vol. 29, no. 4, p. 048505, 2020.
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