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Resum
Les ones gravitacionals contínues (CWs, per les sigles en anglès) són formes de radiació gravitacional de
llarga durada encara no detectades. S’espera que aquests senyals siguin emesos per estels de neutrons
(NSs, per les sigles en anglès) no axisimètrics en rotació a la nostra galàxia, si bé s’han proposat fonts
més exòtiques, com ara l’evaporació de núvols de bosons al voltant de forats negres en rotació.

Aquesta tesi presenta tres nous mètodes per post-processar i seguir els resultats de cerques de CW a
cegues, així com els resultats de dues cerques de CW a cegues utilitzant dades dels detectors Advanced
LIGO. Cadascun d’aquests capítols és una adaptació de dos articles que, respectivament, han estat
publicats a la revista Physical Review D. El capítol 2, que aport una descripció general del panorama
actual dels mètodes de cerca de CW, és una adaptació d’un article de revisió publicat a la revista
Universe. Durant el desenvolupament d’aquesta tesi he contribuït directament a un total de 15 articles,
els quals es troben publicats a les revistes Physical Review D, Monthly Notices of the Royal Astronomical
Society, Astrophysical Journal, i Astrophysical Journal Letters. A més, estic involucrat en tres paquets
de programari d’anàlisi:w de dades de codi obert: LALSuite, com a col·laborador; PyFstat, com a
desenvolupador principal tal com es reflecteix en la publicació corresponent al Journal of Open Source
Software; i distromax com a desenvolupador principal i mantenidor. L’impacte d’aquests nous tres
mètodes’ presentats en aquesta tesi es fa palès a en l’ús extensiu d’aquests mètodes en una fracció
significativa de les cerques de CW produïdes sobre les dades d’O3 dels detectors Advanced LIGO.

La detecció directa d’una CW ampliaria el nostre coneixement sobre la població de NS galàctica.
En primer lloc, les NS són alguns dels objectes observats més extrems de l’Univers perquè contenen
una massa entre una i dues vegades la del Sol dins d’un radi d’entre deu i quinze quilòmetres. En
conseqüència, són un laboratori ideal per entendre el comportament de la matèria en condicions extremes.
L’emissió de CW pot ser conseqüència de diferents processos físics, com per exemple una deformació a
les capes exteriors de l’estel o l’oscil·lació de modes inestables a la seva regió interna. La mesura d’aquest
senyal ens permetria entendre quin tipus de física nuclear es duu a terme dins aquests estels. En segon
lloc, la població d’NS coneguda comprèn aproximadament 3500 estels al moment d’escriure aquesta tesi;
la taxa de supernoves de la nostra galàxia, però, suggereix una població total d’entre 108 i 109 NS.
Aquesta encletxa demogràfica es podria explicar mitjançant diversos arguments, un dels quals advoca
per l’existència d’una població d’NS electromagnèticament inactiva, possiblement amb propietats molt
diferents respecte a la població de púlsars observada. Les CW, per tant, podrien ser crucials per a
comprendre la totalitat de la població de NS a la nostra galàxia.

Les estratègies de cerca de CW generalment es classifiquen d’acord amb la informació prèvia disponible
sobre el tipus de font que cal analitzar. Les cerques dirigides, per una banda, intenten detectar CW
de púlsars coneguts, per als quals se suposa que l’emissió de CW es troba en fase amb les observacions
electromagnètiques. Això produeix una cerca computacionalment barata, capaç d’extreure informació
astrofísicament rellevant d’objectes específics. La física d’aquests objectes, no obstant, és encara in-
certa. En consequència l’assumpció de sincronia entre els senyals electromagnètic i gravitacional podria
ser incorrecte amb escenaris realistas i, de forma última, podría impedir la detecció d’una CW.

Les cerques a cegues, per altra banda, no se centren en una font específica sinó que més aviat cerquen
un senyal gairebé monocromàtic modulat d’acord amb el corriment Doppler induït pel moviment del
detector. Conseqüentment, l’espai de paràmetres a cobrir s’incrementa enormement, tant és així que
les cerques han d’utilitzar mètodes subòptims, anomenats semicoherents, a fi de ser computacionalment
assequibles. Aquesta compensació s’analitza breument al capítol 1. Al capítol 2 es discuteix la imple-
mentació de diverses cerques semicoherents utilitzades en l’anàlisi de dades reals. La conclusió general
és que les cerques a cegues són les més cares en termes computacionals en el panorama actual a causa de
l’extensió de l’espai de paràmetres sota consideració. A causa d’això, aquestes cerques a cegues tendeixen
a produir un nombre elevat de candidats que han de ser degudament examinats amb mètodes més sen-
sibles per a descartar candidats d’origen no astrofísic i identificar adequadament candidats consistents
en un senyal CW astrofísic.

El primer dels nous mètodes proposats, introduït al capítol 3, se centra en la selecció de candidats
interessants produïts per l´etapa principal d’una cerca CW. Concretament, introdueix una nova noció
de distància entre senyals CW que és independent de la parametrització del model de senyal. Aquesta
distància és utilitzada per agrupar candidats produïts en una cerca CW amb un origen comú, i com-
primeix una gran quantitat de resultats en un nombre més petit de grups significatius als quals se’ls
pot fer un seguiment més fàcilment. En descriure adequadament l’estructura de l’espai de paràmetres
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subjacent, l’ús daquesta distància augmenta la sensibilitat d’una cerca pilot sobre dades d’O2 per a CW
procedents de NS desconeguts a sistemes binaris entre un 5 i un 15% respecte a l’ús d’una distància
euclidiana.

El capítol 4 analitza com avaluar el resultat d’un seguiment de diverses etapes d’un candidat CW
interessant produït per una cerca CW genèrica. En concret, proposa un nou factor de Bayes per establir
si el comportament d’un candidat de CW al llarg d’un seguiment per etapes és consistent amb el d’un
senyal astrofísic. Per això, es proposen distribucions de dades sota les hipòtesis de senyal i soroll: La
distribució sota la hipòtesi de senyal avalua la consistència de les amplituds del senyal al llarg de diferents
etapes. La distribució sota la hipòtesi de soroll, per altra banda, empra la teoria de valors extrems per
estimar la significança del candidat més significatiu produït per un procés de soroll. L’efectivitat d’aquest
nou factor de Bayes s’exemplifica amb l’anàlisi trenta candiats atípics produïts per diverses cerques a les
dades obertes del segon període d’observació dels detectors Advanced LIGO (O2). Cap d’aquests valors
atípics no resulta consistent amb un senyal astrofísic.

El capítol 5 presenta distromax, un nou mètode per estimar la significança del candidat més sig-
nificatiu produït pel soroll en una cerca d’ones gravitacionals. El mètode aplica resultats de teoria de
valors extrems presentats al Capítol 4, els quals es basen en el comportament de la cua de les distribu-
cions de probabilitat involucrades. Conseqüentment, aquest mètode permet la construcció de llindars
de detecció fins i tot si es desconeix la distribució subjacent de l’estadística de detecció en ús. Aquesta
propietat s’aprofita per avaluar el postprocessament d’una cerca en dades obertes d’O2 amb l’utilització
d’una estadística de detecció més robusta contra els artefactes instrumentals. Aquesta estadística no
es va utilitzar a la cerca original perquè la seva distribució sota la hipòtesi del soroll és desconeguda;
distromax, per altra banda, pot ser aplicat sense més problemes.

Aquests mètodes són aplicables a altres tipus de cerques, tal com es discuteix en els seus respectius
capítols, i s’han utilitzat de forma rutinària en cerques de CW realitzades per la col·laboració LIGO–
Virgo–KAGRA durant el seu tercer període d’observació.

Els capítols 6 i 7 presenten cerques CW a cegues sobre dades del tercer període d’observació dels
detectors LIGO-Virgo-KAGRA. El primer s’enfoca a NS en sistemes binaris, mentre que el segon cerca
NS aïllats. Aquestes cerques emplearen els mètodes d’anàlisi de dades discutides als capítols anteriors, i
obtingueren en conseqüència els resultats més sensibles fins ara als espais de paràmetres analitzats, així
com una precisió sense precedents a l’hora de recuperar els paràmetres de senyals generats artificialment.

Tot i la manca de detecció d’un senyal CW, els mètodes desenvolupats en aquesta tesi representen
un pas endavant cap a l’anàlisi eficient d’àmplies regions de l’espai de paràmetres. El postprocessament
i les estratègies de seguiment presentades serviran com a base per a definir les futures cerques a cegues
sobre dades del quart període d’observació de la xarxa avançada de detectors interferomètrics. Aquests
mètodes també seran rellevants a mesura que futurs detectors comencin a sondejar freqüències més baixes
de l’espectre d’ones gravitacionals, atès que llavors un major nombre de sistemes, com per exemple NS
en sistemes binaris o forats negres binaris, produiran senyals d’ones gravitacionals compatibles amb el
model CW.
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Resumen
Las ondas gravitacionales continuas (CWs, por sus siglas en inglés) son formas de radiación gravitacional
de larga duración aun no detectadas. Se espera que tales señales sean emitidas por estrellas de neutrones
(NSs, por sus siglas en inglés) no axisimétricas en nuestra galaxia girando a altas velocidades, si bien
fuentes más exóticas se han propuesto en la literatura, como por ejemplo la evaporación de nubes de
bosones alrededor de agujeros negros en rotación.

Esta tesis presenta tres nuevos métodos para post-procesar y dar seguimiento a los resultados de
búsquedas de CW a ciegas, así como los resultados de dos búsquedas de CW a ciegas utilizando datos
de los detectores Advanced LIGO. Cada uno de estos capítulos es una adaptación de un artículo corre-
spondiente publicado en la revista Physical Review D. El capítulo 2, que brinda una descripción general
del panorama actual de los métodos de búsqueda de CW, es una adaptación de un artículo de revisión
publicado en la revista Universe. Durante el desarrollo de esta tesis he contribuido directamente a
un total de 15 artículos, publicados en Physical Review D, Monthly Notices of the Royal Astronomical
Society, Astrophysical Journal, y Astrophysical Journal Letters. Además, estoy involucrado en tres pa-
quetes de software de análisis de datos de código abierto: LALSuite, como colaborador; PyFstat, como
desarrollador principal tal y como se refleja en la publicación correspondiente en el Journal of Open
Source Software; y distromax como principal desarrollador y mantenedor. El impacto de los nuevos
desarrollos presentados en esta tesis se hace patente en el uso extensivo de estos métodos en una fracción
significativa de las búsquedas de CW producidas en los datos de O3 de los detectores Advanced LIGO.

La detección directa de una CW ampliaría nuestro conocimiento sobre la población de NS galáctica.
En primer lugar, las NS son algunos de los objetos observados más extremos del Universo, pues contienen
una masa entre una y dos veces la del Sol dentro de un radio de entre diez y quince kilómetros. En
consecuencia, son un laboratorio ideal para entender el comportamiento de la materia en condiciones
extremas. La emisión de CWs sería consecuencia de diferentes procesos físicos, como por ejemplo una
deformación en las capas exteriores de la estrella o la oscilación de modos inestables en su región interna.
Medir tal señal nos permitiría entender qué tipo de física nuclear está ocurriendo dentro de estas estrellas.
En segundo lugar, la población de NS conocida comprende alrededor de 3500 estrellas en el momento
de escribir esta tesis; la tasa de supernovas de nuestra galaxia, sin embargo, sugiere una población total
de entre 108 y 109 NS. Esta brecha demográfica podría explicarse por varios argumentos, uno de los
cuales sostiene la existencia de una población de NS electromagnéticamente inactiva, posiblemente con
propiedades muy diferentes respecto a la población de púlsares observada. Las CW, por tanto, podrían
desempeñar un papel crucial para comprender la totalidad de la población de NS en nuestra galaxia.

Las estrategias de búsqueda de CW generalmente se clasifican de acuerdo a la información previa
disponible sobre el tipo de fuente a analizar. Las búsquedas dirigidas, por un lado, intentan detectar
CW de púlsares conocidos, para los cuales se supone que la emisión de CW está en fase con las ob-
servaciones electromagnéticas. Esto produce una búsqueda computacionalmente barata que es capaz
de extraer información astrofísicamente relevante de objetos específicos. No obstante, la física de estos
objetos es todavia incierta; en consequencia, es posible que la asunción de sincronía entre las señales
electromagnética y gravitacional sea incorrecta en una situación realista e impeda, en última instancia,
la detección de una CW.

Las búsquedas a ciegas, por otro lado, no se centran en una fuente específica; más bien, buscan una
señal casi monocromática modulada de acuerdo con el corrimiento Doppler inducido por el movimiento
del detector. En consecuencia, el espacio de parámetros a cubrir se incrementa enormemente, tanto
así que las búsquedas deben utilizar métodos subóptimos, denominados semicoherentes, a fin de ser
computacionalmente asequibles. Esta compensación se analiza brevemente en el capítulo 1. En el
capítulo 2 se discute la implementación de diversas búsquedas semicoherentes utilizadas en análisis
de datos reales. La conclusión general es que las búsquedas a ciegas son las más caras en términos
computacionales en el panorama actual debido a la extensión del espacio de parámetros en consideración;
en consequencia, estas búsquedas tienden a producir un número elevado de candidatos que deben ser
debidamente examinados utilizando métodos más sensibles a fin de descartar aquellos de origen no
astrofísico e identificar adecuadamente aquellos consistentes con una señal CW astrofísica.

El primero de los nuevos métodos propuestos, introducido en el capítulo 3, se centra en la selección
de candidatos interesantes producidos por la etapa principal de una búsqueda CW. En concreto, se
introduce una nueva noción de distancia entre señales CW que es independiente de la parametrización
del modelo de señal. Esta distancia es utilizada para agrupar candidatos producidos en una búsqueda
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CW con un origen común, y comprime una gran cantidad de resultados en un número más pequeño
de grupos significativos a los que se les puede hacer un un seguimiento más fácilmente. Al describir
adecuadamente la estructura del espacio de parámetros subyacente, el uso de esta distancia aumenta la
sensibilidad de una búsqueda piloto en datos de O2 para CW de NS desconocidas en sistemas binarios
entre un 5 y un 15 % con respecto al uso de una distancia euclidiana.

El capítulo 4 analiza cómo evaluar el resultado de un seguimiento de varias etapas de un candidato
CW interesante producido por una búsqueda CW genérica. En concreto, propone un nuevo factor de
Bayes para establecer si el comportamiento de un candidato de CW a lo largo de un seguimiento por
etapas es consistente con el de una señal astrofísica. Para ello, se proponen distribuciones de datos
bajo las hipótesis de señal y ruido: la distribución bajo la hipótesis de señal evalúa la consistencia de
las amplitudes de la señal a lo largo de diferentes etapas; la distribución bajo la hipótesis del ruido,
por otro lado, hace uso de la teoría de valores extremos para estimar la significancia del candidato
más significativo producido por un proceso de ruido. La efectividad de este nuevo factor de Bayes se
ejemplifica analizando treinta candiadtos atípicos producidos por varias búsquedas en los datos abiertos
del segundo periodo de observación de los detectores Advanced LIGO (O2). Ninguno de estos valores
atípicos resultó consistente con una señal astrofísica.

El capítulo 5 presenta distromax, un nuevo método para estimar la significancia del candidato más
significativo producido por el ruido en una búsqueda de ondas gravitacionales. El método aplica resulta-
dos de teoría de valores extremos presentados en el Capítulo 4, los cuales se basan en el comportamiento
de la cola de las distribuciones de probabilidad involucradas. Consecuentemente, este método permite la
construcción de umbrales de detección incluso si se desconoce la distribución subyacente de la estadística
de detección en uso. Esta propiedad se aprovecha para evaluar el posprocesamiento de una búsqueda en
datos abiertos de O2 utilizando una estadística de detección más robusta contra los artefactos instru-
mentales. Esta estadística no se utilizó en la búsqueda original ya que su distribución bajo la hipótesis
del ruido es desconocida; distromax, por otro lado, puede ser aplicado sin mayores problemas.

Estos métodos son aplicables a otros tipos de búsquedas, tal y como se discute en sus respectivos
capítulos, y se han utilizado de forma rutinaria en búsquedas de CW realizadas por la colaboración
LIGO–Virgo–KAGRA en el tercer periodo de observación.

Los capítulos 6 y 7 presentan búsquedas CW a ciegas utilizando datos del tercer periodo de ob-
servación de los detectores LIGO–Virgo–KAGRA. El primero se enfoca en NS en sistemas binarios,
mientras que el segundo busca NS aisladas. Estas búsquedas hicieron uso de los métodos de análisis de
datos discutidos en los capítulos anteriores, y obtuvieron en consecuencia los resultados más sensibles
hasta el momento en los espacios de parámetros analizados, así como una precisión sin precedentes a la
hora de recuperar los parámetros de señales generadas artificialmente.

Pese a la falta de detección de una señal CW, los métodos desarrollados en esta tesis representan
un paso adelante hacia el análisis eficiente de amplias regiones del espacio de parámetros. El post-
procesamiento y las estrategias de seguimiento aquí presentadas servirán como base para definir las
futuras búsquedas a ciegas en datos del cuarto periodo de observación de la red avanzada de detectores
interferométricos. Estos métodos también serán relevantes a medida que futuros detectores comiencen a
sondear frecuencias más bajas del espectro de ondas gravitacionales, ya que entonces un mayor número
de sistemas, como NS binarias o agujeros negros binarios, producirán señales de ondas gravitacionales
compatibles con el modelo CW.
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Summary
Continuous gravitational waves (CWs) are long-lasting forms of gravitational radiation whose detection is
yet to be achieved. The expected sources of such signals are rapidly-spinning non-axisymmetric neutron
stars (NSs) within our galaxy, even though more exotic sources, such the evaporation of boson clouds
around spinning black holes, have been also considered in the literature.

This thesis presents three new methods to post-process and follow-up the results of all-sky CW
searches. Two searches for CWs from isolated and binary unknown NSs conducted on Advanced LIGO
data are also presented. Each of these chapters is an adaptation of a corresponding paper published in
the journal Physical Review D. Chapter 2, which gives an overview of the current landscape of CW search
methods, is an adaptation of a review paper published in the journal Universe. During the development
of this thesis, I have directly contributed to a total of 15 papers, which include publications in Monthly
Notices of the Royal Astronomical Society, the Astrophysical Journal, and the Astrophysical Journal
Letters. Additionally, I am involved in three open source data-analysis software packages: LALSuite, as
a contributor; PyFstat, as a main developer as reflected in the corresponding publication in the Journal
of Open Source Software; and distromax as main developer and maintainer. The impact of the new
developments in this thesis is manifested by the extensive use of these methods in a significant fraction
of the CW searches produced in O3 Advanced LIGO data.

A direct detection of a CW would expand our knowledge of the galactic NS population. First, NSs
are some of the most extreme observed objects in the Universe, packing a mass one to two times that of
the Sun inside a radius of ten to fifteen kilometers. As such, they are an ideal laboratory to understand
the behaviour of matter in extreme conditions. The emission of CWs would be a consequence of different
physical processes, such as a sustained deformation in the outer layers of the star or the oscillation of
unstable modes in its inner region. Measuring such a signal would allow us to understand what sort of
nuclear physics are happening inside these stars. Second, the known NS population comprises about 3500
stars at the time of writing; the supernova rate of our galaxy, however, suggests a total population of
about 108 to 109 NSs. This demographic gap could be explained by several arguments one of which is the
existence of an electromagnetically quiet NS population, possibly with vastly different properties with
respect to the observed pulsar population. CW signals, thus, could play a crucial role in understanding
the entire population of NSs in our galaxy.

Search strategies for CWs are usually classified according to the available prior information on the
expected sources. Targeted searches, at one end, aim to detect CWs from known pulsars, for which CW
emission is assumed to be phase locked to electromagnetic observations. This yields a computationally
cheap search that is able to extract astrophysicaly relevant information from specific objects. Assuming
an exact phase lock between the CW and electromagnetic signals from a pulsar, however, may prevent
us from achieving a CW detection, as the physics of such objects are still uncertain and may well be in
conflict with such assumption.

Blind searches, more commonly referred to as all-sky searches, on the other hand, do not target a
specific source; rather, they look for a quasi-monochromatic signal modulated according to the Doppler-
shift induced by the detector’s movement. Thus, the parameter space to cover is vastly increased, so
much so that searches using optimal methods are computationally unaffordable. This is counterbalanced
by using non-optimal methods, called semicoherent, which reduce the computing cost of a search by using
less restrictive signal models. This tradeoff is briefly discussed in Chapter 1. The various implementations
of semicoherent searches used in real-data analyses are then discussed in Chapter 2. The overarching
conclusion is that all-sky searches are the most expensive kind of search in the current gravitational-
wave-search landscape due to the prior volume under consideration; this fact, in turn, tends to produce
an elevated number of resulting CW candidates that must be further scrutinized using more sensitive
methods in order to rule out non-astrophysical outliers and properly identify those consistent with an
astrophysical CW signal.

The first of the newly proposed methods, introduced in Chapter 3, is concerned with the selection
of interesting candidates resulting from the main stage of a CW search. Specifically, it introduces a
new notion of distance among CW signals that is independent of the chosen parameterisation of the
signal model. The distance is then used to cluster nearby candidates produced by a CW search. This
strategy compresses a large amount of candidates into a smaller number of meaningful groups that can
be more easily followed up. By appropriately capturing the structure of the underlying parameter space,
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it increases the sensitivity of a pilot search on O2 data for CWs from unknown NSs in binary systems
by about 5 to 15 % with respect to using an ad-hoc Euclidean distance.

Chapter 4 discusses how to evaluate the result of a multi-stage follow-up of an interesting CW
candidate produced by a generic CW search. Concretely, it proposes a new Bayes factor to establish
whether the behaviour of a CW candidate throughout a series of follow-up stages is consistent with that
of an astrophysical signal. To do so, we propose specific data distributions under the signal and noise
hypotheses: The distribution under the signal hypothesis follows from first principles, and evaluates
the consistency of signal amplitudes across different follow-up stages with different sensitivities; the
distribution under the noise hypothesis, on the other hand, makes use of extreme-value-theory results
to estimate the expected loudest candidate produced by a background. The effectiveness of this new
Bayes factor is demonstrated by analyzing thirty outliers produced by several open-data searches using
the second observing run of the Advanced LIGO detectors (O2). None of these outliers was deemed
consistent with an astrophysical source.

Chapter 5 presents distromax, a new method to estimate the loudest candidate produced by the
background in a gravitational-wave search. The method builds on the extreme-value-theory results
introduced in Chapter 4, which are based on the tail behaviour of probability distributions. Thus, it
allows for the construction of meaningful detection thresholds even if the underlying distribution of the
detection statistic at hand is unknown. This property is then exploited to re-evaluate the post-processing
of a search on O2 open data to use a detection statistic more robust to instrumental artifacts. This
statistic was not used in the original search as its distribution under the noise hypothesis is unknown;
distromax, on the other hand, can be applied without any major trouble.

These newly developed methods are applicable to other kinds of searches, as discussed in their
respective chapters, and have been routinely used in searches for CWs conducted by the LIGO–Virgo–
KAGRA collaboration in the third observing run.

Chapters 6 and 7 present blind CW searches for unknown NSs using data from the third observing
run of the LIGO–Virgo–KAGRA detectors. The former focuses on NSs in binary systems, while the
latter looks for isolated NSs. These searches made use of data-analysis strategies derived from previous
chapters to deliver the most sensitive results in the analyzed parameter spaces and an unprecedented
precision in the recovery of parameters from artificially-generated signals.

Despite the lack of CW signal detection, the methods developed in this thesis represent a step
forward towards the effective analysis of broad parameter-space regions. The post-processing and follow-
up strategies here presented will serve as a basis for searching wide parameter-space regions in the
forthcoming runs of the advanced network of interferometric detectors. These approaches may also
become relevant as future detectors start to probe lower frequencies of the gravitational-wave spectrum,
as then a higher number of systems, such as binary NSs or binary black holes, produce gravitational-wave
signals compatible with the CW model.
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Chapter 1

A brief introduction to continuous
gravitational-wave searches

Gravitational waves (GWs) are traveling perturbations of the spacetime metric predicted by General Rel-
ativity (GR) [1, 2] that were finally detected in 2015 by the LIGO Scientific Collaboration (LSC) [3]. The
implications of such an initial discovery and the following ones during the several observing runs of the
LIGO–Virgo–KAGRA Collaboration (LVK) are still lively discussed in the current scientific literature.

To date, the international network of interferometric GW detectors is composed of the two Advanced
LIGO detectors [4], located in the USA; the Advanced Virgo detector [5], located in Italy; the GEO600
detector [6], located in Germany; and the KAGRA detector [7], in Japan. Another interferometric
detector is currently under construction in India [8]. In conjunction, the detectors in this network have
been operative for a total of three observing runs, with an increasing sensitivity due to progressive
technological upgrades. After the first detection, and at the time of this writing, these detectors have
achieved about 100 confident detections of GW signals produced in the coalescence of compact binary
systems, such as those formed by black holes or neutron stars [9]. Among these events we can highlight
the first multi-messenger observation of the coalescence of a binary neutron star system [10], and the
first observation of of a neutron-star-black-hole coalescence [11].

At the time of writing, the LIGO–Virgo–KAGRA detector network is about to start the fourth
observing run, with a planned duration of about two years. This is projected to be the longest and most-
sensitive run every performed by the current generation of detectors. Upon completion, the advanced
detectors will undergo an upgrade process for two years in order to get ready for the fifth observing run,
which is currently projected for the end of this decade. In the new decade, the third generation of ground-
based detectors, the Einstein Telescope (ET) [12] and Cosmic Explorer (CE) [13], is expected to enter
in operation. The improvements in sensitivity will allow for significant increase in the number of GW
events, and will likely bring the detection of new GW signals, such as those produced by rapidly-spinning
neutrons stars.

This chapter introduces the search for continuous waves (CWs). These undetected signals are pro-
duced by long-duration quadrupolar variations, such as those produced by a non-axisymmetric spinning
body. As discussed in Sec. 1.1, the expected sources for such signals are non-axisymmetric rapidly-
spinning neutron stars (NSs), and their amplitude is expected to be several orders of magnitude weaker
than that of a binary-black-hole coalescence. Their duration, however, is such that they will be present
throughout the entire duration of an observing run (which tend to have a duration on the order of years).
These two properties complement each other, and allow for these signals to be detectable if enough data
is integrated.

1.1 Neutron stars as continuous-wave sources
Neutron stars (NSs) are one of the possible results of the core-collapse supernovae of stars with masses
between 8 to 30 times that of the Sun. They were theoretically predicted in the early twentieth century
by Walter Baade and Fritz Zwicky [14] (and, in a sense, by Lev Landau around the same period [15])
and finally discovered in the decade of the 60s, both as pulsating radio sources [16] and accreting from
a binary companion [17]. To date, about 3500 NSs have been discovered using electromagnetic means
(see [18, 19] for an updated catalogue).
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A significant fraction of the known NS population has been entirely observed by electromagnetic
means as pulsating stars denominated pulsars [20]. They typically have a mass of about 1.4 solar masses
and a radius of 10 to 15 kilometers. The origin of the observed pulsation is related to the strong dipolar
magnetic field sustained by these objects, which leads to the emission of radiation beams from their
magnetic poles that can be observed from the Earth if they are properly oriented. The observed spin
frequencies range from fractions of a hertz to about 700Hz, being some of the most stable emitters ever
observed.

The structure of NSs is still under discussion [21]. It is generally accepted that NSs are composed
of an outer crust of ordinary atomic nuclei, and a core of neutron-rich matter. The physics of the core
are currently poorly understood: plausible models include several phases of nuclear matter (typically
referred to as “nuclear pasta”), strange matter, or quark-degenerate matter among others.

NSs can emit GW signals through a variety of mechanisms [22]. In this thesis we shall focus on CW
emission due to the presence of “mountains”, which are parameterised by the equatorial ellipticity of the
star

ε =
I1 − I2
I3

. (1.1)

Here, I3 is the moment of inertia with respect to the spinning axis of the star and I1,2 are the moments
of inertia with respect to two orthogonal directions. This quantity is proportional to the quadrupolar
moment of the star, which, as we shall see later in this section, is the ultimate cause of gravitational
radiation. Two types of mountains are usually considered, namely magnetic mountains, sustained due
to magnetic fields [23, 24, 25], and thermal mountains, produced as a consequence of accretion from a
companion star [26, 27]. The former kind can take place in a general NS; the latter, however, is restricted
to those in a binary system, as it requires accretion for the build-up of a temperature anisotropy.
Specific values of ε are highly dependent on the specifics of the proposed mechanism. Latest results in
the literature, however, argue that the maximum sustainable ellipticity by a conventional NS is about
ε ≈ 7.4 × 10−6 [28, 29]. If exotic matter is included, this maximum ellipticity can reach values on the
order of 10−4 [30].

Detecting CW signals will lead to the understanding of different characteristics of the galactic NS
population. Aside from obtaining direct measurements of ε, which will allow to further probe the
structure of these objects, we will also be able to extend our knowledge in the demography of NSs.
First, estimations of the rate of core-collapse supernovae in our galaxy suggest it should contain about
108 NSs, 105 of which should be detectable as pulsars [31, 32, 33]; as previously mentioned, only about
3500 have been observed to date [19]. The new generation of radiotelescopes (e.g. [34]) is expected to
increase this number, but among the unknown NSs there is still the possibility to find a subpopulation
whose properties diverge from those of pulsars, such as gravitars [35], for which CWs may be the most
favorable channel to detect them. CW, thus, may be a required observational channel to observe the
complete population of galactic NS. A second issue is related to the spinning frequency of the observed
NS population, which is well below the Kepler limit beyond which NSs become structurally unstable [36].
The fastest-spinning observed NS are millisecond pulsars, which are believed to be the result of a slowly-
rotating NSs spinning up due the accretion of material from a companion star. It is argued that such
a spin-up process is counteracted by the emission of CW due to the formation of thermal mountains in
the NS, which yields binary NSs as plausible sources of CWs [37, 38, 39, 40, 41].

1.2 Continuous waves from spinning NSs
CW signals emitted from a NS can be described using linearized gravity [42], which treats GWs as
traveling linear perturbations of the metric in a flat spacetime. Despite its simplicity, this approximation
has proviced a convincing solution to a series of problems throughout twentieth-century physics, such
as the precession of Mercury’s perihelion [43]. Later in the century, the quadrupolar approximation was
used to obtain indirect evidence of GW emission by a binary system of compact objects [44].

The metric perturbation h due to a quadrupolar acceleration in a source located at a distance d from
an observer in the linearized theory of gravity is given by

h =
1

d

2G

c4
Q̈ , (1.2)
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where G is the gravitational constant, c is the speed of light in vacuum and Q̈ is the second time
derivative of the quadrupole moment of the source. The corresponding polarizations, for the case of CW
emission due to mountains, are given by [45]

h+ = h0
1 + cos2 ι

2
cos(2πfgwt) , (1.3)

h× = h0 cos ι sin(2πfgwt) , (1.4)

where cos ι is the angle between the star’s spinning axis and the line-of-sight,

h0 =
4π2G

c4
If2gw

ε

d
≈ 1.1× 10−24

( ε

10−6

)( I3
1038kgm2

)(
fgw
1 kHz

)2(
d

1 kpc

)−1

, (1.5)

and the GW frequency is twice the star’s rotational frequency fgw = 2frot. Other mechanisms, such as
mass-current quadrupoles or free precession, yield emission of CWs at other multiples of the rotational
frequency [46]. Hence, the frequency of a CW signal alone could already provide valuable information
about the physics of the source if the rotational frequency of the source is known [47].

Due to the emission of electromagnetic or gravitational radiation, a NS will tend to diminish its
rotational frequency. The specific rate at which this happens his characterized by the so-called braking
index n, defined such that ḟgw ∝ fngw. The value of n characterizes the dominant channel of emission
of a star (e.g. n = 3 for magnetic dipolar radiation, n = 5 for mass quadrupolar radiation) [48]. For
sufficiently old NSs in the LIGO detector band, however, it suffices to consider a Taylor-expansion model
for the frequency evolution

fgw = f0 + f1(t− t0) + . . . (1.6)

where the specific number of spin-down terms is dependent upon the age and spinning frequency of the
NS population being searched; usually, one or two spin-down terms are enough for most wide parameter-
space searches [49, 50].

1.3 Basics of detecting continuous waves
Searching for CW signals involves an intricate interplay amongst probability theory, the properties of
the signal itself upon its arrival to the detector, and the response of the detector itself to the signal. This
section intends to give a brief introduction to the search for CW from unknown sources from the practical
point of view. To do so, we shall simplify the general problem to that of detecting a monochromatic
signal in Gaussian noise. The problem itself is unchanged, as we will still be able to set up a template
bank, evaluate detection statistics and select interesting candidates in the same fashion as an actual CW
search1. The use of purely monochromatic signals allows us to postpone the discussion of the signal’s
properties upon its arrival to the detector (and the response of the detector itself) to Sec. 1.4.

1.3.1 Continuous-wave searches as Bayesian hypothesis testing
The analysis of a monochromatic signal in Gaussian noise using Bayesian probability is thoroughly
discussed in [51]. We shall follow some of the basic steps therein presented in order to draw a clear
picture of the sort of analyses performed in a CW search. Let us start describing a monochromatic
signal with a certain frequency f (in Hertz) as

h(t; f,A) = A0 cos(2πft+ φ0) = Ac cos(2πft) +As sin(2πft) . (1.7)

A0 refers to the signal’s amplitude and φ0 is the initial phase of the signal. It will be convenient to param-
eterise this signal in terms of zero-offset sinusoidal functions, for which we introduce the corresponding
cartesian variables Ac = A0 cosφ0 and As = −A0 sinφ0. Note that A0 =

√
A2

c +A2
s . Throughout this

discussion we will collectively refer to all amplitude-related quantities as A regardless of whether we use
(A0, φ0) or (Ac,As).

1In fact, the analysis here presented is equivalent to the first step of other, more complicated methods such as [49].
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The standard situation in CW searches describes a data stream x consisting of a signal such as the
one in Eq. (1.7) buried in zero-mean Gaussian noise

x(t) = n(t) + h(t; f,A) . (1.8)

We assume data is taken without interruption for a time T at discrete timestamps tj = j∆t, each labeled
by j = 0, . . . ,M − 1 (note that t0 = 0 without loss of generality.). Discretely-sampled quantities will be
labeled using subindices such that xj = x(tj). The collection of all quantities will be represented by an
index-less variable x = {xj , j = 0, . . . ,M − 1}.

The noise stream will be described as an uncorrelated and homoscedastic Gaussian process with
standard deviation σ:

p(nj |σ) =
1√
2πσ

exp

(
−1

2

(nj
σ

)2)
, (1.9)

p(n|σ) =
M−1∏

j=0

p(nj |σ) =
(

1√
2πσ

)M

exp


 1

2σ2

M−1∑

j=0

n2j


 . (1.10)

In a realistic situation, the detector’s noise would be non-stationary and non-Gaussian; within relatively
short timescales, however, it would be characterized by its Power Spectral Density (PSD) Sn and overall
results would be computed by weighing different time periods by their corresponding PSD. This quantity
is related to σ by the Wiener-Khinchin theorem [49, 52]

σ2 =
1

2∆t
Sn , (1.11)

which allows for the treatment of σ and Sn on equal grounds, so the derivation here presented can
trivially be re-stated using either of these quantities. It remains for us to appropriately deal with σ.
The Bayesian way of proceeding is to marginalize Eq. (1.10) with respect to σ using a certain prior
distribution p(σ). Ref. [53] approached the problem by splitting the overall datastream into segments
with similar data quality, so that segment-wise homoscedasticity could be assumed, and marginalizing
each segment separately using Jeffrey’s prior p(σ) ∼ σ−1, obtaining as a result a Student’s t distribution.
Similar distributions were obtained through a different reasoning in [54, 55]. Finally, [49, 52] assume σ to
be known (which corresponds to marginalizing with a delta prior), and rely on the use of ad-hoc weights
to compensate for the lack of homoscedasiticy. Since marginalizing approximately amounts to estimating
unknown quantities using the available data, these two approaches should behave similar given enough
data. We take this last stance, which amounts to considering σ as a known, fixed parameter; we keep σ
implicit in our notation from this point onwards for the sake of simplicity.

Since x(t)−h(t; f,A) = n(t), the distribution of the data under a specific signal hypothesis is simply

p(x|f,A) =

(
1√
2πσ

)N

exp


− 1

2σ2

M−1∑

j=0

(xj − sj(A, f))2

 . (1.12)

It will come in handy to define a scalar product in a similar manner to [56]2,

⟨a, b⟩ =
N∑

j=1

ajbj , (1.13)

so that

M−1∑

j=0

(xj − sj(A, f))2 = −2⟨x, s(A, f)⟩+ ⟨x, x⟩+ ⟨s(A, f), s(A, f)⟩ . (1.14)

2One could include σ or other quantities in this definition, as originally done in [56]; in this case, however, σ is simply
a constant overall factor and can be kept out of the definition.
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The signal model at hand [Eq. (1.7)] will lead to the manipulation of summations involving sines
and cosines. Let us open up that discussion by quoting the following result, which follows from the
summation of a convergent series:

M−1∑

j=0

eiAj =
sin( 12AM)

sin( 12A)
ei

1
2A(M−1) , (1.15)

In the case at hand, A = 2π∆tf . Now, if we introduce T = M∆t and apply some basic trigonometric
manipulation, we arrive at

M−1∑

j=0

cos(2πf∆tj) = R

M−1∑

j=0

ei2π∆tfj =
1

2
sin(2πTf) cot(π∆tf) +

1

2
[1− cos(2πTf)] ≤ 1

2
cot(π∆tf)

(1.16)
and

M−1∑

j=0

sin(2πf∆tj) = I

M−1∑

j=0

ei2π∆tfj =
1

2
[1− cos(2πTf)] cot(π∆tf) +

1

2
sin(2πTf) ≤ 1

2
cot(π∆tf) ,

(1.17)
where R and I denote the real and imaginary part of a complex number, respectively. The typical
regime of a CW search will be such that M ≫ 1; as a result, we will remain at O(M) and use Eq. (1.16)
and Eq. (1.17) to neglect lower-order terms. More specifically, we will be concerned with frequencies
1Hz ≲ f ≲ 1 kHz and sampling frequencies ∆t−1 ≃ 1 × 10−4 Hz (e. g. ∆t−1 ≈ 16 kHz for Advanced
LIGO [4]), which implies f∆t ≲ 1. Also, we will assume T to be long enough so all the frequencies
of interest are properly resolved, Tf ≫ 1 or, equivalently, M ≫ (∆tf)−1. Under these assumptions,
cotangents can be Laurent-expanded as

cot(x) =
1

x
−O(x) , x ≲ 1 , (1.18)

and the leading order in both Eq. (1.16) and Eq. (1.17) is (∆tf)−1 ≪ O(M); hence, sums over sines
or cosines alone can be neglected againsts O(M) terms. This results hold as well if we duplicated the
frequency, as both conditions 2f∆t ≲ 1 and 2fT ≫ 1 would still be fulfilled.

With these results in hand, the scalar product of sine and cosine functions can be easily expanded
using the half-angle formula:

⟨cos(2πft), cos(2πft)⟩ = M

2
+

1

2

M−1∑

j=0

cos(2π2f∆tj) ≃ M

2
, (1.19)

⟨sin(2πft), sin(2πft)⟩ = M

2
− 1

2

M−1∑

j=0

cos(2π2f∆tj) ≃ M

2
, (1.20)

⟨sin(2πft), cos(2πft)⟩ = 1

2

N∑

j=1

sin(2π2f∆tj) ≃ 0 . (1.21)

Thus,

⟨s(A, f), s(A, f)⟩ = M

2
A2

0 (1.22)

⟨x, s(A, f)⟩ = Acxc +Asxs (1.23)

where we defined

xc = ⟨x, cos(2πft)⟩ , (1.24)
xs = ⟨x, sin(2πft)⟩ . (1.25)

for later convenience.
The presence of a signal, in the context of Bayesian probability, is measured by a Bayes factor.
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This quantity weights the support of a given dataset for either of two hypotheses. For the case of pure
Gaussian noise versus a signal with amplitude A and frequency f being present in addition to the noise,
the Bayes factor is defined as

B(x;A, f) = p(x|A, f)
p(x|A0 = 0)

= exp

[
−1

2

M

2σ2
(A2

c +A2
s ) + (Acxc +Asxs)

]
, (1.26)

where we use the fact that the noise hypothesis [Eq. (1.10)] is equivalent to a signal with amplitude
A0 = 0. Note that Eq. (1.26) refers explicitly to a specific signal with amplitude parameters A and
frequency f . In a realistic situation, we rarely have access to the specific amplitude of the signal being
searched; rather, we are interested in a plausible range of amplitude values. In a Bayesian context, this
sort of information can be taken into account by marginalizing the signal hypothesis with respect to a
prior on A3

B(x; f) =
∫

dA p(A)B(x;A, f) . (1.27)

This integral can be analytically approximated by a Gaussian integral if a uniform prior on A is used,
following a similar motivation to that of CW searches [58, 59].

Choosing a uniform prior on A in this case, however, may be problematic, as the amplitude has
no obvious upper bound and thus the probability distribution cannot be properly normalized.4 This
problem can be circumvented at the expense of assuming an arbitrary upper bound A∗

p(A0, φ0) =
1

2π

1

πA2∗
, A0 ≤ A∗ , (1.28)

so that Eq. (1.29) is well approximated by a Gaussian integral

B(x; f) = 1

πA2∗

∫ A∗

0

dA0 B(x;A, f) ≈ σ

A2∗

√
8

M
exp

[
1

2

2σ2

M
(x2c + x2s )

]
(1.29)

The constant A∗ can be interpreted as an Occam factor (also known as a “trials factor”): Integrating a
higher prior volume considers a higher number of hypotheses (“trials”) which diminishes the “significance”
of a specific result with respect to using a smaller prior volume. This sort of constant, derived from the
use of improper priors, is innocuous as long as only two classes of hypotheses are considered [60].

It is instructive to realize that the only quantity dependent on the data in Eq. (1.29) is the quadrature
in the exponential term

x2c + x2s . (1.30)

Such a quantity corresponds to the squared modulus of the Fourier transform of the data [51] (for a
suitable definition of Fourier transform). For the sake of simplicity, we will work in terms of a re-scaled
quantity

s̃(f) =
2

Nσ2
(x2c + x2s ) . (1.31)

1.3.2 How to claim a detection
The conclusion of Sec. 1.3.1 is that Eq. (1.31) is the appropriate quantity to use in order to assess the
presence of a monochromatic signal with a certain frequency f in the data. We now tackle the problem
of deciding a minimum value of s̃ to justify such a claim, which can be formalized in terms of decision
theory [61]. Simply put, deciding on whether a signal is actually in the data or not based on the value
of a Bayes factor (or a monotonic function of it) incurs on a certain risk of committing a mistake. We
will mainly be concerned with two possible situations: either claiming the presence of a signal when the
data contains only noise (i.e. a “false alarm”), or failing to claim the presence of a signal (i.e. a “false
dismissal”). Both of these situations have an associated probability, pfa and pfd respectively, which allow
us to tune the performance of the decision.

3Note that, since the noise hypothesis is independent of the signal parameters, the marginalization integral can be
directly written as an integral over the Bayes factor. This is the reason the MCMC in [57] can be used in terms of Bayes
factors rather than likelihoods.

4This would also occur if we used the alternative parameterisation {Ac,As}, as discussed in [51].
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The standard procedure is to construct a threshold on the detection statistic s̃t so that the false alarm
probability is fixed at a specific value pfa. Any data scoring above that threshold is deemed inconsistent
with the noise hypothesis and subject to further analysis. This stems from the fact that a Bayes factor
is the optimal detection statistic (i.e. it minimizes pfd at a given pfa) provided that the amplitude prior
p(A) is consistent with the population of signals being searched for [62, 63]. Different populations would
be described by different priors and, in turn, would derive different optimal detection statistics.

A characterization of the statistical properties of s̃ is explicitly given in [64, 65]. In short, under
the noise hypothesis, xc and xs are the real and imaginary parts of a linear combination of Gaussian
random variables with zero mean and unit variance, and as a result have a variance of σ2M/2 each.
Consequently, s̃ is the sum of two squared Gaussian variables with zero mean and unitary variance,
which yields a chi-squared distribution with two degrees of freedom

s̃|Noise ∼ χ2
2 . (1.32)

Adding a signal with amplitude A0 and following the same argument implies both xc and xs pick up a
mean value of AcM/2 and AsM/2, respectively. As a result, s̃ is in this case a non-central chi-squared
distribution with two degrees of freedom

s̃|Signal ∼ χ2
2(ρ

2) , (1.33)

where the non-centrality parameter is given by

ρ2 =
M

2

(A0

σ

)2

. (1.34)

This quantity is referred to as the (squared) signal-to-noise ratio (SNR) in the context of a CW search.
The performance of a detection statistic can be stated in terms of the minimum amplitude that can

be distinguished at a certain false-alarm and false-dismissal level. Computing such a number involves
solving the following implicit equation in ρ

pfd = p
(
s̃ ≤ s̃t(pfa)|ρ2

)
, (1.35)

where
pfa = p (s̃ ≥ s̃t|Noise) . (1.36)

We postpone any discussion on the results of such an equation until Sec. 1.3.4, where an approximated
analytical expression is given for ρ.

1.3.3 Multi-hypothesis testing
After reviewing the basics of signal detection, we are in a good position to discuss one of the characteristic
difficulties of blind CW searches: to detect a monochromatic signal with an unknown frequency. The
Bayesian tenet in this case is no different than for the amplitude parameters A: Eq. (1.29) should
be marginalized over f to construct a global Bayes factor testing the presence of any signal within the
support of the priors. Such an integral cannot be usually expressed in closed form. Instead, the standard
approach is to place a grid along the considered range of f and set an appropriate threshold to select
those points scoring a high detection statistic value. We will use a simple criterion, based on estimating
the loudest noise candidate of a search, for the sake of simplifying our exposition. In Chapter 2 we will
review several of the approaches used in real-data searches.

Probing multiple frequencies is akin to generating several draws from the background. The higher
the number of draws, the more likely we are to obtain an extreme event, hence the less “surprised” we
should be by it5. This is related to the false-alarm probability of a search, which, for a given threshold
value, tends to increase as the number of probed frequencies increases. In order to maintain a reasonable
false-alarm probability, we ought to appropriately choose a threshold depending on the overall number
of trials of our analysis.

The first question we should be answering, thus, is “How many different trials are we doing?”. The
approach in the CW literature is to consider two frequencies as “different” if the loss in the detection

5Note that this is exactly the same interpretation we gave to the Occam factor A∗ in the previous subsection.
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statistic s̃ we incur in by mistakenly looking for one if the other one is present is sufficiently large. This
allows for the construction of a characteristic frequency resolution to count the number trials in a certain
frequency range.

Assume our data consists of a noiseless monochromatic signal with a certain frequency f0:

x(t) = Ac cos(2πf0t) +As sin(2πf0t) . (1.37)

We are interested in the behaviour of s̃(f ; f0), which corresponds to computing s̃ for a frequency f on
a datastream containing a signal with frequency f0. First, let us note that

s̃(f0; f0) =
2

Nσ2

(
A2

c⟨cos(2πf0t), cos(2πf0t)⟩2 +A2
s ⟨sin(2πf0t), sin(2πf0t)⟩2

)
=
M

2

(A0

σ

)2

(1.38)

by direct application of Eq. (1.21), which corresponds to the optimal SNR introduced in Eq. (1.34). A
convenient choice to quantify the loss of a detection statistic due to mismatching a parameter is to use
the relative loss, typically referred to as mismatch [66, 67, 68]

µ̃(f ; f0) = 1− s̃(f ; f0)

s̃(f0; f0)
. (1.39)

Let δf = f − f0. The relevant quantities in this case will be

⟨cos(2πft), cos(2πf0t)⟩ =
1

2

M−1∑

j=0

[cos(2πδf∆tj) + cos(2π(f + f0)∆tj)] ≃
1

2

M−1∑

j=0

cos(2πδf∆tj) (1.40)

and

⟨sin(2πft), sin(2πf0t)⟩ =
1

2

M−1∑

j=0

[cos(2πδf∆tj)− cos(2π(f + f0)∆tj)] ≃
1

2

M−1∑

j=0

cos(2πδf∆tj) , (1.41)

where δf is assumed to be small enough so that f+f0 behaves similarly to 2f and thus can be neglected
to order O(M). Specifically, we want to consider the case δfT ∼ 1 such that the frequency difference is
properly resolved throughout the observing run. Equation (1.16) still applies, but we need to reconsider
which terms can be neglected:

M−1∑

j=0

cos(2πδf∆tj) =
1

2
sin(2πTδf) cot(π∆tδf) + sin2(πTδf) . (1.42)

First, the squared sine is O(1), which can be neglected. The cotangent can still be Laurent-expanded
since ∆tδf ∼ O(M−1) and M ≫ 1, but cannot be neglected to order O(M), yielding a cardinal sine
function

M−1∑

j=0

cos(2πδf∆tj) ≃M sinc(2πTδf) . (1.43)

Therefore,

s̃(f ; f0) =
M

2

(A0

σ

)2

sinc2(2πTδf) , (1.44)

which is consistent with a similar calculation in [68]. The mismatch, thus, results in

µ̃(f ; f0) = 1− sinc2(2πTδf) =
4π2T 2δf2

3
+O(T 4δf4) (1.45)

where in the last Taylor expansion we assumed the probed frequency f was close to the signal’s value f0.
The lack of a linear term in δf implies that f = f0 corresponds to a minimum mismatch value; i. e. ρ2
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is the maximum value attainable by s̃. This last result also allows us to define a typical resolution

δf =

√
3µ̃

2πT
. (1.46)

If more parameters were considered, Eq. (1.45) would be a quadratic form in the parameters’ mismatch,
and the corresponding matrix would be the parameter-space metric. Diagonalizing and inverting such
a matrix would return the corresponding parameter resolutions. Note that Eq. (1.46) is independent of
the parameter f itself. Counting the number of templates is thus a trivial operation in this case

N =

⌈
∆f

δf

⌉
, (1.47)

where ∆f is the width of the frequency band to search over and ⌈·⌉ represents the ceiling function.
Once the number of indendent trials N is known, we are interested in estimating the probability

distribution of s̃∗ = maxN s̃ under the noise hypothesis. An in-depth discussion of such a topic is given
in Chapter 5, and we limit ourselves here to the final result

s̃∗|Noise ∼ Gumbel(µN , σN ) , (1.48)
µN = 2 lnN , (1.49)
σN = 2 , (1.50)

where the specific expressions for µN and σN follow from the fact that s̃ is a chi-squared distribution
with two degrees of freedom under the noise hypothesis. The expected value of s̃∗ is the expected value
of the aforementioned Gumbel distribution, which is given by

s̃t = 2(lnN + γ) , (1.51)

where γ ≈ 0.577 . . . is the Euler-Mascheroni constant. We will use this quantity as a threshold in order
to estimate the sensitivity of a broad parameter space search.

It is interesting to note that the concept of false-alarm probability does not explicitly appear in the
construction of (1.51). We can use such a threshold to account for the large trials factor of a search, yet
the specific false alarm at which a search operates is never explicitly stated. As explained in Chapter 2
and references therein, this is an ongoing trend whenever conducting a CW search; rarely, if ever at all,
the global false alarm at which a pipeline operates is stated.

1.3.4 Semicoherent searches
Suppose now that we had access to a datastream with a duration TNseg such that the number of
templates as computed by Eq. (1.47) was too big to be feasible to evaluate s̃ over the whole set. This
is the standard situation in CW searches, as in such a case the number of templates scales with a large
power of the run’s duration time.

The standard approach is a so called semicoherent search [69], which consists in splitting the data
into Nseg independent segments and computing s̃ in each of them, to then combine these values into a
new semicoherent statistic

ŝ =

Nseg−1∑

n=0

s̃(n) . (1.52)

From a Bayesian perspective, this corresponds to marginalizing with respect to A parameters in each of
the segments independently. As a result, the family of models considered by this detection statistic is less
restrictive than a coherent search, as amplitude needs not to be consistent across segments. One should
also note that this choice is not motivated by statistical optimality but, as we shall see, by computational
efficiency.
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Figure 1.1: Sensitivity estimates for different search setups. For all the cases in
these panels, ∆t = 10−4 s, , and pfd = 0.05. The coherent search uses T = Nseg ·
1000 s; the semicoherent search uses T = 1000 s and the number of segments specified
in the horizontal axis. Left panel: Single-template search using pfa = 10−3 to derive a
threshold. Scaling lines are only a visual aid. Right panel: Search over ∆f = 0.1Hz
using µ̃ = µ̂ = 1 to compute N . The threshold corresponds to the expected loudest
outlier over N . Dashed lines, corresponding to the results in the left panel, are shown

as a visual aid.

We proceed in the same manner as in Secs. 1.3.2 and 1.3.3. We start by studying the semicoherent
mismatch. It is easy to show that

ŝ(f ; f0) =

Nseg−1∑

n=0

s̃(n)(f ; f0) = Nsegs̃(f ; f0) , (1.53)

which implies, introducing a corresponding semicoherent mismatch,

µ̂(f ; f0) = 1− sinc2(2πTδf) . (1.54)

This means the number of templates required to run a semicoherent search is independent of the number
of segments used to run the search6. One can split the data into Nseg segments in such a way that the
resulting segment duration provides a manageable number of templates in order to tune the computing
cost of a search. The downside of this approach is related to the optimal squared SNR

ŝ(f0; f0) =

Nseg−1∑

n=0

s̃(n)(f0; f0) = Nsegρ
2 , (1.55)

which increases linearly with the number of segments, rather than quadratically, as it would be the case
in a coherent search. A semicoherent search is, thus, a tradeoff between constructing the most sensitive
search and being actually able to run it in an affordable time.

The statistics of ŝ are similar to those of s̃. Both in the noise and signal case ŝ is distributed as
a chi-squared distribution with 2Nseg degrees of freedom, as now Gaussian variables are summed in
quadrature for each data segment. Also, as shown in Eq. (1.55), the non-centrality parameter is linear
rather than quadratic in Nseg. If we follow the simple approach outlined in [70] and assume Nseg ≫ 1,
ŝ is distributed following a Gaussian distribution. As a result, we obtain the equivalent of Eq. (1.35)

pfd =
1

2
erfc

(
Nsegρ

2 − 2ẑt
√
Nseg

2
√

2Nseg(1 + ρ2)
.

)
(1.56)

6In a realistic CW search, the number of templates across other dimensions of the parameter space, such as sky position,
would depend on Nseg. The resulting number of templates, however, would be reduced with respect to a coherent search,
as such a dependency would scale with the length of the segments rather than the length of the datastream.
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where
ẑt =

ŝt − 2Nseg

2
√
Nseg

(1.57)

is a renormalization of the threshold ŝt and erfc is the complementary error function. Given a threshold
ŝt and a false dismissal probability pfd, Eq. (1.56) provides an estimate for the minimum detectable SNR
of a search

ρ =
2√

MN
1/4
seg

√√√√√ẑt +
2q2√
Nseg


1 +

√
1 +

Nseg + ẑt
√
Nseg

q2


 (1.58)

where for convenience q =
√
2erfc−1(2pfd). All the terms inside the square root are O(N

−1/2
seg ) at most.

This is the so called “fourth root law” of semicoherent searches, usually stated as ρ ∼ N
−1/4
seg ; it is clear

from this derivation that the origin of such a scaling is in Eq. (1.52) where the the number of segments
enters linearly rather than quadratically, and thus is a general consequence of combining data in terms
of power rather than complex amplitude. As pointed out in [70, 71], such a description is inaccurate
unless Nseg is at least between 100 to 1000.

Equation (1.58) is in fact valid for all values of Nseg provided that pfa is low enough [70]; we can thus
study the relatively performance of the several situations discussed in these past subsections in a “strong
signal” regime, i.e. assuming signals are strong enough not to be confused with background noise. Such
a comparison is shown in Fig. 1.1.

The left panel displays the performance of a coherent search versus a semicoherent search assuming
the frequency of the signal is known (that is, deriving the corresponding threshold from a chi-squared
distribution). The sensitivity of a semicoherent search scales at a slower rate with data duration than
a coherent one. This can be justified by considering the relative Occam factor between the amplitude
priors uses by each of the searches. Concretely, the family of signals considered by a semicoherent search
is broader than that of a coherent search, as amplitude consistency is only imposed within each segment
independently. The Occam factor in a semicoherent search is, thus, higher, and correspondingly the
required amplitude to distinguish a signal from the noise at a given false alarm is higher.

The right panel shows the equivalent result assuming the frequency of the signal is unknown. In
this case, we use the loudest expected candidate as a threshold in order to account for the increased
trials factor due to searching across a frequency band. For the coherent case, increasing the trials
factor has a negative impact on the sensitivity of the search compared to the single-frequency case, as
the expected loudest maximum value is higher than the single-template threshold at the specified false
alarm probability. This is untrue for the semicoherent search. The reason was already discussed in
Sec. 1.3.3: selecting the loudest candidate as a threshold comes at the cost of setting an unknown false
alarm probability. As a result, search results cannot be compared insofar that they would be assuming
different levels of significance. In this case, the resulting threshold on the search over the template bank
is lower than what was used in the single-template search (i.e. it corresponds to a higher false-alarm
probability), yielding overall a lower detectable amplitude.

The interplay between raising a threshold due to a high number of templates and diminishing the
sensitivity of a search due to an increase in the number of segments may produce a variety of different
situations in this type of searches. The specific example we show suggests coherent searches are the
most sensitive kind of search regardless of whether we evaluate one or many templates; in a general CW
search, however, where the number of templates is several orders of magnitude higher, it could well be
the case that beyond a certain parameter-space region a semicoherent search yields better results than
a coherent one, as in such case the lower number of templates would tend to produce lower detection
thresholds. Investigating such a statement is beyond the scope of this introduction.

1.4 Toward realistic continuous-wave searches
Throughout this chapter we have discussed the basic issues concerning a CW search. Sections 1.1 and 1.2
introduced the primary targets of these searches, namely rapidly-spinning NSs sustaining a quadrupolar
deformation, and briefly discussed the information we could derive from a CW detection. In Sec. 1.3, we
discussed the set up and sensitivity of a CW-like search for monochromatic signals in Gaussian noise;
therein we derived some of the basic properties of CW searches, such as the sensitivity and computing
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cost difference between coherent and semicoherent searches, or the derivation of a threshold based on
the loudest background event. In this last section, we briefly discuss the remaining traits of a CW search
not captured by the toy model in Sec. 1.3; these are related to both the CW signal model upon arrival
at the detector and the response of the detector itself to such a signal.

Approximating a CW signal by a monochromatic model is only valid for short time-scales compared
to the typical evolution time-scale of the source and the detector’s position in the Solar system. This is
due to two main reasons. First, the detector is moving with respect to the Solar system barycenter (SSB),
inducing a Doppler modulation on any CW signal emitted from a specific sky position. As a result, all-
sky searches need to resolve the sky position of the source in order to apply the methods outlined in
Sec. 1.3. Second, a CW may undergo intrinsic processes changing the frequency of the emitted signal;
these include a diminishment in frequency due to the emission of energy, which can be modelled by the
inclusion of spin-down terms [see Eq. (1.6)], or an extra Doppler modulation due to the presence of a
binary companion, which requires the inclusion of orbital parameters in the signal model. These effects
increase the number of parameters a CW search must consider to achieve a detection. As a result, the
number of required templates to cover a specific parameter-space region grows with a large power of
T [72, 73] [cf. the linear dependency on T for a single parameter in Eq. (1.39)], effectively bounding the
sensitivity of an all-sky search by the available computing resources. The overall arguments to setup a
search, however, remain unchanged: once a template bank is set, a detection statistic is evaluated in
each template and candidates are selected following a suitable criterion.

Regarding interferometric detectors, we are concerned with two main issues. First, the detector’s
noise is non-stationary and non-Gaussian due to instrumental and environmental causes [74, 75], which
increases the difficulty of the detection and characterization of weak monochromatic signals. Several ap-
proaches exists to deal with specific kinds of noise. Mild non-stationarities can be handled by estimating
the noise’s PSD and whitening the data [52]; more specific artifacts, such as narrow instrumental lines,
require post-hoc vetoes [76] and extended noise hypotheses to be appropriately dealt with [77]. Second,
by construction, the sensitivity of a detector is non-isotropic in the sky. Coupled with the movement
of the detector around the SSB, this induces an amplitude modulation on a CW signal coming from a
specific sky position. This modulation can be taken into account either by weighting the segment-wise
statistics in a semicoherent search [78, 79, 80], or by including the amplitude modulations into the signal
model, which leads to the definition of a more complicated detection statistic [58, 81].

In sum, all-sky CW searches consist of evaluating a detection statistic over a grid covering a specific
parameter-space region. The detection statistics are similar to Fourier transforms, albeit including extra
modulations due to the frequency and amplitude modulations affecting a CW signal. The required
integration time to accumulate enough significance to claim a detection leads to a fine discretization of
the parameter space, highly increasing the amount of templates to be analyzed in order not to miss a
detection. The sensitivity of a CW search, thus, is limited by the available computing power. Chapter 2
will be devoted to describing several of the trade-offs employed to conduct searches in Advanced LIGO
data.
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2.1 Introduction
The search for continuous gravitational-wave signals (CWs), long-duration forms of gravitational radi-
ation, is one of the endeavours of gravitational-wave astronomy. These signals are produced by long-
standing quadrupolar variations, such as rapidly-spinning neutron star (NSs) sustaining a crustal defor-
mation, undergoing an r-mode instability or in free precession [1, 2, 3, 4], as well as more exotic sources
such as the annihilation of ultra-light boson clouds around spinning black holes [5, 6, 7, 8] or compact
dark matter objects (CDOs) in the Solar System [9].

Detecting a CW signal could shed some light on NS physics, as well as open a new channel to test
general relativity (extra polarizations, Lorentz violations) or detect dark matter [10, 11, 12, 13, 14]. No
confident CW detection has been reported to date. The current product of CW searches are source-
agnostic upper limits on the nominal CW amplitude h0. These results can then be mapped into different
astrophysical scenarios, such as the ellipticity of nearby NSs, the mass of ultralight bosons around black
holes [15, 16], or the nearby population of planetary-mass primordial black hole binaries [17, 18].

The present document reviews search methods and pipelines employed to look for CW signals in the
observing runs performed by the second generation of ground-based interferometric detectors (advanced
detectors). Reviews on the physical mechanisms of CW emission by NSs can be found in [1, 2, 3, 4].
Basic data analysis techniques are discussed in [19]. Finally, [20] discusses the main results of previous
CW searches up to 2017.

The standard CW signal model consists of a quasi-monochromatic source emitting gravitational
waves at a certain frequency f0. For the case of a NS sustaining a certain ellipticity, f0 corresponds to
twice the spinning frequency of the star. Further time derivatives of the frequency arise due to different
physical mechanisms affecting the source, such as energy emission as gravitational or electromagnetic
radiation. In the case of sources in binary systems, the orbital motion induces a Doppler modulation.

Regardless of the specific intrinsic frequency modulation of the source, CW signals as seen from
Earth are Doppler-modulated due to the detector motion around the Solar System barycenter (SSB).
For a source with a given intrinsic frequency evolution f̂ , the detector-frame frequency is given by

f(t;λ) = f̂(t)

[
1 +

v⃗(t)

c
· n⃗
]
, (2.1)

https://doi.org/10.3390/universe7120474
https://arxiv.org/abs/2111.12575
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Figure 2.1: Data spectrogram showing the response of an Earth-bound detector to
a passing CW signal emitted by an isolated source. The left panel displays the one-
year evolution of the detector response, while the right panel zooms in on a month-long
period. Frequency modulations correspond to the yearly translation of Earth around
the SSB (the daily Doppler modulation is contained within a frequency bin). Amplitude
modulations correspond to the change in antenna-pattern functions throughout a day.

where the phase-evolution parameters λ include the CW frequency f0 and the sky position of the source
n⃗, as well as any other parameter describing the intrinsic frequency evolution of the signal. v⃗(t)/c
refers to the detector velocity expressed as a fraction of the speed of light, and contains both the daily
and yearly motion of Earth around the SSB, of orders O(10−6) and O(10−4), respectively. The yearly
modulations can be clearly seen in the left panel of Fig. 2.1; the daily modulation is contained within a
frequency bin.

The amplitude of a CW signal is described using four parameters, namely the initial CW phase ϕ0,
the spherical angles describing the orientation of the source {ψ, cos ι}, and the nominal gravitational
wave amplitude h0. The response of a ground-based detector to a passing CW is better described in
terms of the so called JKS representation [21]

h(t;λ,A) =

3∑

µ=0

Aµhµ(t;λ) , (2.2)

where the four time-independent Aµ depend on the four amplitude parameters A = {ϕ0, ψ, cos ι, h0}
and the antenna-pattern response of the detector is contained in the four quadratures hµ(t;λ), which
only depend on the phase-evolution parameters. The basic effect of the antenna-pattern response on a
CW signal is a daily amplitude modulation, clearly visible in Fig. 2.1.

As opposed to the short signals produced by compact binary coalescences (CBCs), with typical
durations between a few minutes and less than a second for current detectors, CW signals are expected
to last for years, spanning several observing runs of the current and future generation of ground-based
interferometric detectors [22, 23, 24, 25, 26]. This difference in duration is crucial in terms of detecting
and estimating the parameters of a CW signal.

Modelled searches are usually performed using matched filtering [27], comparing the datastream to a
set of templates in order to find a high correlation. Due to the typical duration of a CW signal (spanning
the entire observing run), the required number of templates to perform a blind search is prohibitively
high even for current computing standards [28, 29, 30].

The standard strategy, in a broad sense, is to reduce the effective length of the datastream by
performing matched filtering over shorter segments; the segment-wise results can then be combined
into a final statistic. These kind of schemes are usually referred to as semicoherent searches [19]:
the segment-wise analysis is typically referred to as coherent, as it compares the phase evolution of a
signal with the datastream throughout a coherence time Tcoh. The resulting coherent filters are then
combined incoherently (i. e. maintaining a consistent frequency evolution but allowing for deviations in
the amplitude parameters) into a final detection statistic. This incoherent combination allows to recover
part of the sensitivity lost due to the split of the initial datastream; the final sensitivity, however, is lower
than that of a fully coherent search. Figure 2.2 illustrates the principle of operation of semicoherent
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Figure 2.2: Effect of different values of Tcoh on one of the standard detection statistics
for CW searches, the F-statistic (see Sec. 2.2.1). Longer coherence times impose a
greater penalization to deviations with respect to the signal model; as a result, peaks

tend to become narrower around the true signal parameters.

searches. By comparing shorter streams of data, a looser constraint is imposed when comparing phase-
evolution templates. As a result, the characteristic width of detection-statistic peaks widens, reducing
the required number of templates to ensure a good covering of the parameter space. This strategy is at
the core of multi-stage approaches such as those discussed in Sec. 2.4.

Parameter estimation, on the other hand, is positively affected by the long signal durations. Typical
frequency resolutions are under a mHz for initial stages, achieving nHz resolution at fully-coherent
follow-ups using a year of data. Sky localization is also significantly improved. If we think of CBC sky
localization, neglecting contributions from anntenna-pattern amplitude modulations and higher GW
modes, the problem is basically that of determining the direction a GW pulse came from, which can be
solved by means of measuring the pulse from N detectors and finding the overlapping sky-positions [31].
The case of CW signals is much simpler, as they are not just single pulses, but continuously arrive at the
detector as it moves around the SSB. Due to this movement, a single interferometric detector receiving
a CW signal at different positions with respect to the SSB is essentially equivalent to an arbitrary large
set of different detectors reciving the same pulse from a source. Hence, for CW sources, sharp sky
localization can be achieved using a single detector by simply extending the duration of an observing
run.

CW searches require a very fine parameter-space resolution in order not to miss a signal, increasing
the computing cost of a matched-filtered search up to unaffordable figures [28]. As a result, searches
for CW signals from unknown sources tend to follow a hierarchical approach [32, 33, 34, 35, 36, 37, 38]:
wide parameter-space regions are analized using a less-constraining statistic so that a coarser template
bank can be used, see Fig. 2.2. Interesting regions are then typically small enough to follow up using a
more sensitive statistic. A quantitative description of this strategy can be found in [39].

The structure of this work goes as follow: in Sec. 2.2 we review the main search methods and
pipelines employed to search for CW signals from unknown sources during the era of the advanced
detectors. Section 2.3 discusses different post-processing stages employed by said searches; these include
both specific prescriptions to select interesting candidates (e.g. clusterings) and consistency arguments
to assess the overlap of a specific set of templates with instrumental disturbances. Section 2.4 reviews
follow-up strategies to further analyze interesting candiadtes. So far, no search has claimed a confident
CW detection, reporting instead constraints on the maximum detectable amplitude achieved. Different
approaches to construct said constraints are listed in Sec. 2.5. Finally, a summary of the reviewed
methods is presented in Sec. 2.6.

2.2 Wide parameter-space search pipelines
We present a review of methods and pipelines employed to date to search for CW signals from unknown
sources during the era of the advanced detectors. Specifically, we consider three kinds of searches for
unknown sources: (i) blind searches, with weak prior assumptions about possible source parameters [40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]; (ii) spot-light searches, focused at sky regions
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harbouring an interesing population of objects whose exact frequency is unknown, such as globular
clusters or the Galactic Center (GC) [55, 56]; and (iii) directed searches, targeting specific celestial
objects compatible with a CW source, such as supernova remnants (SNRs) or low-mass X-ray binaries
(LMXBs) [57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69].

2.2.1 F-statistic searches
The F-statistic is a standard detection statistic for CW signals. Initially derived as a maximum-likelihood
estimator with respect to amplitude parameters [21, 70], it was later rederived in a Bayesian context
as a Bayes factor, gauging the presence (or lack) of a signal in a Gaussian noise data stream, in which
amplitude parameters are marginalized using a rather unphysical set of amplitude priors [71, 72, 73,
74, 75, 76]. This detection statistic can be extended for more generic types of sources, such as binary
white-dwarf systems [77] or the inspiral phase of binary black-hole coalescenses [78].

Semicoherent searches balance sensitivity and computing cost by choosing a suitable number of
coherent segments whose combination into a semicoherent quantity can be performed in an efficient
manner. The basic “stack-slide” procedure used for many F-statistic semicoherent searches [79, 32, 33, 34]
is to set up a template bank in each coherent segment to compute the segment-wise coherent detection
statistic. Then, in the semicoherent stage, the semicoherent detection statistic is computed on a finer
template bank by combining results from the segment-wise coherent detection statistics. This template
bank refinement can be seen as a consequence of using multiple coherent segments: the higher the
number of coherent templates to be combined, the higher the resulting number of distinct semicoherent
templates.

We discuss three different implementations of semicoherent F-statistic searches, namely the Global
Correlation Transform hierarchical search (GCT), Weave and Time-domain F-statistic. They mainly
diverge in the manner of constructing semicoherent quantities, taking different trade-offs in terms of
computing cost, memory requirement and robustness to non-Gaussianities. We note, however, that
fully-coherent searches for targets at a specific sky position, such as supernova remnants [59, 66], are
still performed nowadays.

GCT hierarchical search

Detection statistics (and the F-statistic in particular) present a set of characteristic correlations across
the CW parameter-space due to some level of degeneracy present in CW signals [80]. Understanding
the structure of said correlations offers a simple method to reuse coherent F-statistic values to construct
a semicoherent statistic, reducing the overall computing cost of the search. The GCT introduces a set
of coordinates defined by the intersection of parameter-space correlation surfaces to identify nearby
parameter-space points where the F-statistic achieves a high value due to the presence of a signal [81,
82, 83].

Due to its interesting trade-off between sensitivity and computational cost [84], semicoherent GCT
searches have been used by the Einstein@Home project to perform deep searches throughout different
observing runs [40, 49, 61, 62, 69]. Einstein@Home searches distribute the computational load of a search
across a volunteer-computing network using BOINC [85] to analyze a high number of parameter-space
candidates.

At the core of the GCT search there are combinations of F-statistic values computed at different
coherent segments containing data from one or multiple detectors. These are combined into the semi-
coherent F-statistic using a finer template bank with refinement only on the spindown parameters [82].
This allows for the easy implementation of Bayesian extensions over the semicoherent F-statistic, such
as the “line-robust” BS/GL or BS/GLtL statistics [86, 87, 88, 89], which combine F-statistics from different
detectors to suppress single-detector artifacts.

No general computing model is available for the GCT search, requiring extensive software-injection
campaigns in order to numerically tune the sensitivity of a search to the available computing re-
sources [36]. As discussed in Sec. IV B of [90], this is due to a core assumption in [32, 82, 83] neglecting
refinements in the sky parameter-space. Further developments in the field, discussed in Sec. 2.2.1, pro-
posed a new strategy to solve this problem. For the case of directed searches, however, optimal setup
strategies are available [91].
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Weave

Local parameter-space structure can be understood in terms of the mismatch µ [92, 93]. Given a signal
parameterized by a set of parameters λ0, the parameter-space mismatch µ quantifies the fractional loss
of (squared) signal-to-noise ratio ρ2 produced by an arbitrary parameter-space off-set ∆λ with respect
to the true signal parameters:

µ(∆λ;λ0) = 1− ρ2(λ0 +∆λ)

ρ2(λ0)
. (2.3)

In a neighbourhood of λ0, the mismatch can be expressed in terms of a quadratic form as

µ(∆λ;λ0) ≃ ∆λ · g ·∆λ , (2.4)

where the symmetric 2-rank tensor g plays the role of a Riemannian metric in the parameter-space.
It was quickly realized that, for the case of flat parameter spaces, the metric g offers a complete

description of the parameter-space, allowing for the easy construction of optimal setups [29, 94]; alas, the
standard CW parameter-space (specifically, the sky-position subspace) presents a non-trivial structure
resulting in a curved parameter-space.

Weave [90] represents the coming together of a number of search strategies. It implements, for the
first time, a semicoherent search with a well-understood computational model based on a flat parameter-
space metric. The setup is capable of constructing template banks at the suitable resolution to achieve
an optimal computing cost [95, 30, 90, 96]. Setting up Weave requires only a list of time stamps delim-
iting semicoherent segments, a coherent mismatch µ̃, with which single-segment template banks will be
constructed, and a semicoherent mismatch µ̂, to setup the semicoherent template bank. The identifica-
tion of a template from the semicoherent bank to its corresponding ensemble of coherent templates is
handled by the Weave code using the coherent parameter-space metric to identify the nearest neighbor
in each segment. In a sense, Weave retains the general characteristics of the GCT search, mainly being
an engine to combine coherent F-statistics, but, as opposed to it, Weave requires no extensive numerical
calibration to be deployed using an optimal setup.

The success of Weave as an all-sky search, however, is related to the characteristics of the F-statistic’s
parameter-space structure. As discussed in depth in [96, 97], the optimal setup for a realistic computing
budget tends to yield semicoherent mismatch values well beyond the validity of the metric approximation
(i. e. µ ≫ 1). Nevertheless, empirical studies [96] show that in this regime the F-statistic actually falls
off more slowly than predicted by the metric, meaning the resulting template bank will contain more
templates than strictly required. An alternative approach circumventing the empirical characterization
of the µ≫ 1 regime is discussed in [98, 94, 99].

Despite achieving a better sensitivity than the GCT search at a fixed computing cost, the increased
memory requirements of Weave make it so far unsuitable for its deployment on Einstein@Home [84].
Nonetheless, its sensitivity and setup flexibility have already been proved in the implementation of a
novel CW search strategy [51].

Time-domain F-statistic

Both GCT and Weave searches rely on a common implementation of the F-statistic [100], publicly available
under LALSuite [101]. The Time-domain F-statistic pipeline [102] uses a different implementation,
based on the F-statistic’s time-dependent behavior throughout the observing run. Instead of comput-
ing semicoherent quantities, it focuses on significant parameter-space points at coherent-segment level,
looking for coincident candidates across different time segments and detectors. Using this coincidence
criterion (which we review in more depth in Sec. 2.3) the pipeline automatically becomes robust to strong
instrumental features, since they tend to overlap with different parameter-space regions as an observing
run progresses.

This particular implementation of the F-statistic uses its own template bank setup in order to
optimize the number of fast Fourier transform (FFT) computations [103, 104], which normally takes
a significant part of the overall computing cost of the search. Further improvements at parameter-
estimation level are optimization algorithms to resolve the characteristic frequency multi-modality of
the F-statistic [105] and the inclusion of machine-learning algorithms to filter out non-astrophysical
candidates [106].
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2.2.2 Fourier-transform-based searches
The efficiency of F-statistic searches stems from the marginalization with respect to amplitude parame-
ters, removing four parameter-space dimensions from the search [29]. Semicoherent pipelines, moreover,
assume amplitude parameters to be independent across different coherent segments. This approach
makes it difficult to search for amplitude parameters, such as specific CW polarizations.

An alternative family of methods use Fourier transforms of short data segments (Short Fourier
Transforms, SFTs) as the basic unit of operation. The duration of an SFT is typically such that
CW signals are contained within a single frequency bin. For an isolated NS, this length is about 30
minutes [107], although the exact value depends on the considered frequency range. We note that SFTs
themselves can, in some situations, corresponds to coherent segments of a semicoherent search; in such
cases, the effective coherent length is proportional to the SFT length.

In order to construct a detection statistic S, Fourier transform amplitudes x̃ are combined using a set
of weights (effectively a kernel) K taking into account source polarization, antenna-pattern amplitude
modulations, Doppler modulations and relative phase deviations across different detectors:

S =
∑

t,t′

x̃∗(t)x̃(t′)K(t, t′) , (2.5)

where parameters other than time dependency have been kept implicit for the sake of simplicity. Fre-
quency modulations are assumed to be contained within the specific set of Fourier amplitudes being
combined, although K can be configured to increase robustness against different kinds of spectral leak-
age by including neighboring frequency bins into the kernel [108, 39].

We review two families of searches stemming from Eq. (2.5), depending on whether their primary
target is to increase the robustness against deviations from the intended CW model (PowerFlux &
Falcon) or to improve sensitivity by increasing the effective amount of data used (Cross-Correlation).

PowerFlux & Falcon

The PowerFlux pipeline [109, 110, 111, 112] estimates power from a CW source depending on its sky
position. The basic implementation [41, 42, 54] uses a diagonal kernel K to combine Fourier power from
each SFT. In this case, the role of K is to diminish the contribution of unfavourable frequency bins (due
to high noise floors or a low antenna-pattern response) to the total weighted Fourier power. Since the
final statistic ignores relative phase shifts between SFTs, this corresponds to a semicoherent search for
a specific CW polarization.

Loosely coherent methods [39, 113, 114] exploit the flexibility of Eq. (2.5) to set up a kernel K to
account for unmodeled phase shifts, be it due to parameter-space mismatches or unaccounted physics
such as small binary orbital modulations [115]. To do so, phases are allowed to drift at most by a specific
amount δ across contiguous data segments, obtaining as a result [39]

K(t, t′; δ) =

(
sin δ

δ

)|t−t′|
, (2.6)

where data is assumed to come from a single detector for the sake of simplicity. (The framework presented
in [39] is flexible enough to treat data from multiple detectors.) This simple kernel illustrates the principle
of operation of loosely coherent searches: if δ = π, K behaves like a delta function and phases among
contiguous segments are uncorrelated, effectively performing a semicoherent search; if δ = 0, K = 1
and phases are correlated throughout the full data stream, performing a fully-coherent search. Tuning
δ to intermediate value allows to trade sensitivity and computing cost: low δ values involve simpler
kernels (less non-zero terms), easing the computing cost of Eq. (2.5) but imposing tighter constraints
with respect to the chosen CW model. A discussion on physically relevant δ values can be found in [39],
whereas an efficient implementation of low-δ kernels can be found in [113, 114].

Due to its high computing cost, the initial implementation of loosely coherent methods on PowerFlux
was mainly used on directed searches, such as spot-light surveys [55] or follow-up stages (see Sec. 2.4). An
efficient implementation, Falcon, was later developed to perform all-sky searches throughout O1 [43, 44]
and O2 [46, 47, 48], setting competitive constraints on the nearby population of Galactic neutron stars.
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Cross-Correlation

The Cross-Correlation search [116, 117, 118], implemented in the LALSuite library [101], closes the
sensitivity gap between semicoherent and coherent searches by increasing the effective amount of data
using the correlation of Fourier amplitudes at different times.

Although initially designed to look for stochastic GW backgrounds, CW signals are a perfect target
to be looked for using Cross-Correlation, as they are long-lasting and deterministic. This allows
to use not only the cross-correlation of different instruments during a certain period of time, but also
the cross-correlation of data segments at different periods of time. In the context of CW searches,
Cross-Correlation searches have been employed to look for specific high-priority targets, such as CW
emission from the LMXB system Scorpius X-1 [58, 67]. Complementarily, searches for stochastic GW
backgrounds, such as the Radiometer search [119, 120, 121], are able also to constrain CW ampli-
tudes from specific sky locations, such as those of SNRs, LMXBs such as Scorpius X-1 or the Galactic
Center [122, 123, 124].

To do so, the kernel K is constructed following the expected correlation of a signal across different
stretches of data at different times and detectors. Specifically, only amplitudes within a certain time
range Tmax are combined together. As opposed to PowerFlux and Falcon, however, polarization angles
are averaged out using uniform priors. The Tmax parameter plays a similar role to that of δ (see
Sec. 2.2.2) in terms of trading computing cost and sensitivity: longer Tmax increases the number of
cross-correlations to perform, but also imposes a tighter constraint with respect to the specified CW
model. Latest developments on this pipeline include the use of re-sampling techniques to accelerate its
evaluation [125] and the use of a shear parameter-space coordinate transform to optimize the setup of
template banks [118].

2.2.3 Hough-transform semicoherent searches
Loud instrumental features in the data tend to saturate detection statistics due to their strong resem-
blance to CW signals along short periods of time. This problem pushed forward the development of
methods capable of suppressing narrow-band features in the data, such as the application of the Hough
transform to the search for CW signals.

The basic idea is to limit the contribution of each semicoherent segment to a bounded quantity,
which contributes by a limited amount to the overall statistic. This is done by binarizing a power-like
quantity (whitened Fourier power formatted as SFTs, as discussed in Sec. 2.2.2, or the F-statistic)
into ones and zeroes using a predetermined threshold [107]. Such a binarization, however, comes at
the cost of ignoring noise-floor variations and antenna-pattern amplitude modulations, meaning highly-
contaminated frequency bands around low-sensitivity sky positions will contribute the same amount as
clean frequency bands at the most favored sky positions. This problem is usually solved introducing a
set of weights into the detection statistic [126, 127].

The Hough transform [128] can be used to identify shapes in binarized images. Given a parameter-
space parametrizing a family of curves, each set of parameters is assigned a score, the number count,
proportional to the number of pixels in the image consistent with the corresponding curve. In CW
searches, the parameter space is typically the set of phase-evolution parameters, according to which the
data spectrogram is traversed adding (weighted) ones and zeroes depending on whether each frequency
bin contains excess power or not.

Hough-transform based searches have been widely used during the latest all-sky searches [41, 42,
45, 50, 52, 53]. We discuss the two main implementations of the Hough transform for CW searches,
SkyHough and FrequencyHough.

SkyHough

The SkyHough pipeline was the initial implementation of the Hough transform to the search for CW
signals [107, 129]. Due to the Earth’s movement around the SSB, a CW signal arriving at the detector at
a certain time t with a given frequency f0 has a very specific set of sky positions from which it could have
originated. Said sky positions take the shape of thick annuli (“circles in the sky”) [107, 80, 130] which,
for consistency, can be described themselves as one/zero regions in the sky patch. The binarization of
the data spectrogram, thus, gets mapped into the selection and summation of sky patches containing
different selected annuli.
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The “circles in the sky” are weakly affected by local changes in f0; hence, once computed for a
specific frequency, these structures can be saved into a look-up table (LUT) to analyze several frequency
bins. The use of LUTs, on the other hand, affects the maximum sensitivity of SkyHough since only an
approximated frequency-evolution track is being used. Further developments on the pipeline include the
re-analysis of interesting candidates using the exact frequency-evolution track and using more sensitive
statistics in order to improve parameter estimation [131, 132]. Also, the combination of LUTs can be
easily accelerated using GPU parallelization [133].

The use of LUTs depends on a basic set of CW parameters, namely frequency and sky position,
meaning it can be arbitrarily extended to look for different types of CW signals as long as the source’s
intrinsic and extrinsic frequency evolutions are uncoupled from the Earth’s Doppler modulation. This
includes transient-like CW signals, such as those produced by newborn NSs [134], or NSs in binary
systems [133].

FrequencyHough

FrequencyHough is another pipeline based on the Hough transform [135, 136]. As opposed to SkyHough,
binarized spectrograms are mapped onto the frequency and spindown subspace (f0, f1). In this case,
sky position is fixed for all the analyzed templates. This presents two main advantages with respect to
SkyHough. First, it allows to increase frequency resolution independently of other parameters, resulting
in a better parameter recovery. Second, all candidates analyzed at once are related to the same sky
position. As a result, sky regions where templates tend to overlap with instrumental features can be
dealt with in a simpler manner [137, 138]. This different mapping, however, limits the generalization
possibilities of FrequencyHough to linear relations between parameters.

This search is usually combined with different data formats: wide parameter-space searches are
usually run using the so called Short Fourier Data Base (SFDB) [139], which includes time-domain
cleaning of raw data to reduce the effect of transient noise. For searches at a specific parameter-space
region at hand, such as supernova remnants, the Galactic center or a specific outlier from a wider
search, Band Sampled Data (BSD) [140, 141] is used to efficiently apply heterodyning filters, reducing
the computing cost of analyzing such a local parameter-space region.

Several generalizations of these methods have been developed in order to look for other kinds of source.
Power-law frequency evolution was covered using a generalization of FrequencyHough [142], allowing to
search for binary neutron star merger remnants [143]. A study on the suitability of FrequencyHough to
probe planitary-mass primordial black holes was presented in [17]. A method to conduct all-sky searches
for CWs from the evaporation of boson clouds around spinning black holes was developed in [144], using
the BSD framework [140, 141]. A related method to place constraints on dark-photon dark matter
interacting directly with GW interferometers was developed in [145] and applied in [146].

2.2.4 Viterbi searches
CW signals could contain stochastic contributions (spin wandering) whose behaviour would not be well
represented by the standard model introduced in Eq. (2.1). This could affect objects in both isolated
and binary systems [147, 148], and should be taken into account in order to describe the underlying
physics.

A simple approach is to describe the frequency-evolution model itself as a stochastic process, namely
a Markov Chain (MC), and infer the most likely instantaneous frequency of a signal from the data. This
is usually developed under the framework of Hidden Markov Models (HMM) [149, 150, 151, 152, 153],
but an equivalent description can be done using Bayesian probability [154]. As discussed in [12], the
search for ultralight boson-cloud evaporation around spinning black holes could also benefit from this
kind of approach. A specific example of such a search, directed toward Cygnus X-1 using Advanced
LIGO O2 data, was presented in [16].

Given a set of measurements at discrete times x = {xj , j = 0, . . . , N − 1}, we want to infer the
instantaneous frequency of a signal in the data f = {fj , j = 0, . . . , N − 1}. This problem can be readily
expressed as an inference one on f by means of Bayes theorem [155]

P(f |x) ∝ P(f)×
N−1∏

j=0

P(xj |fj) (2.7)
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Method ln P(xj |fj) Searches

Viterbi 1.0 [149] (Bessel-weighted) F-statistic [57, 16, 63, 156]
Viterbi 2.0 [150] J -statistic [60, 64, 157]
Viterbi SNR [151] F-statistic [65, 68]

Dual-harmonic Viterbi [152] F-statistic [68]
Transient Viterbi [158] Norm. Fourier power [143, 158]

SOAP [154] Line-aware statistic —
Viterbi 3.0 [153] B-statistic —

Table 2.1: Summary of CW searches based on a MC implemented via the Viterbi
algorithm. Transition probabilities (second column) and other details of each specific

pipeline are discussed in the text.

where the sampling distribution of different measurements has been (conservatively) factored assuming
logical independence. The prior probability distribution on the instantaneous frequency P(f) is usually
specified in terms of the initial frequency P(f0) and the transition probabilities of the MC P(fj |fj−1)

P(f) = P(f0)×
N−1∏

j=1

P(fj |fj−1) . (2.8)

P(f0) is generally taken as a uniform distribution over the searched frequency band; the choice of transi-
tion probabilities (thus prior probabilities) P(fj |fj−1) and sampling distribution P(xj |fj) is dependent
upon the method and source of interest, as summarized in Table 2.1. Regardless of the astrophysical
scope, searches using a MC evolution model [Eq. (2.7)] obtain the most likely (maximum-posterior)
frequency-evolution path f∗ using the Viterbi algorithm [159]

f∗ = argmax
f

P(f |x) . (2.9)

Two basic choices exist for transition probabilities [152], depending on whether the dominant frequency-
drift time-scale is given by the source’s spin wandering or secular spindown. The former allows transitions
to any neighbouring frequency bin at each time step. The latter uses a so-called biased HMM: given a
frequency at bin j, the following frequency bin must be equal or lower, fj+1 ≤ fj ; the specific number
of bins is usually between two and three [65, 156].

Since no template bank is involved, Viterbi searches are able to benefit from a wide variety of
detection statistics at a small tuning cost. Specifically, binary modulations can be easily folded in
using the J -statistic, which improves over the C-statistic [160] by combining frequency side-bands using
complex weights. In order to track phase information, Viterbi 3.0 uses an efficient implementation of
the B-statistic [71, 72] first proposed in [113].

Finally, the SOAP pipeline [154] uses Bayesian spectral analysis to avoid relying on the F-statistic,
looking for CW signals displaying a sinusoidal behaviour during short periods of time. To do so, the
sampling distribution is taken proportional to the data’s Schuster periodogram [161], adding an extra
hypothesis to increase the robustness against strong monochromatic features in the data.

2.2.5 Machine learning
The use of machine-learning (ML) techniques in the search for CW signals follows one of two trends:
either to classify and summarize the results of a search’s main stage, as discussed in Sec. 2.3.2, or to
substitute the search step itself, acting as a detection statistic. A recent review on ML applications to
GW data analysis in general can be found in [162].

A first approach is to train a classifier directly over Fourier-transformed raw time-series data to
distinguish the presence of a signal within background noise. The specific data format is dependant upon
the signals being looked for: for CW signals, which last for long periods of time over narrow frequency
bands. In [163, 164], a convolutional neural network (CNN) is trained on the real and imaginary parts of
short-time Fourier transforms. Slight variations on this proposal were employed to look for postmerger
signals. These signals, compared to CW signals, last a shorter period of time over a wider frequency
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band [165]. In order to reflect the non-trivial time dependency of the signal, Ref. [166] took Fourier
transforms using shorter time durations, finally using the data spectrogram as input for, again a CNN.

The second approach takes a less radical point of view. Instead of starting from raw data, machine
learning algorithms are applied on the output of a search pipeline to construct a new detection statis-
tic [167, 168]. This approach could be beneficial, as the output of search pipelines typically enhances
signal features across the output parameter space. The specific format with which the output data is
better represented, however, remains a point of discussion..

Further applications of ML to post-process the output of a search [106, 169, 170] will be covered in
Sec. 2.3.2.

2.3 Post-processing strategies
The main stage of a wide parameter-space search usually returns the loudest templates in terms of
a specific detection statistic. A good portion of these templates are correlated, either because their
corresponding time-frequency evolution tracks sweep over similar data or because of the presence of
non-Gaussianities in the data, producing broad parameter-space artifacts [88, 171, 172]. The idea behind
post-processing stages is to reduce the number of candidates into an affordable quantity to be followed
up.

Complementarily, veto strategies can be applied in order to reduce further the number of candidates
resulting from a search. A veto is a simple method to assess the consistency of a CW candidate with
respect to a signal hypothesis. The outcome is usually a boolean answer; as opposed to a post-processing
or follow-up stage, the primary objective is to quickly reject an inconsistent CW candidate at a low
computing cost.

The following subsections summarize common post-processing strategies employed in contemporary
CW searches. After a brief overview of coincidence and clustering steps, we review four families of
vetoes. Other techniques employed in previous searches can be found in [137].

2.3.1 Coincidences
In a network of gravitational-wave detectors with a comparable level of sensitivity, a CW signal is ex-
pected to produce significant candidates in the analysis of every detector’s data. Imposing a coincidence
criterion, that is, focusing on common parameter-space regions highlighted in every single dataset, re-
duces the false-alarm probability of the search, as noise fluctuations are less likely to be coincident across
different detectors than CW signals [102]. This approach obeys a robustness versus sensitivity trade-off,
as combining data from different detectors into a single analysis increases the sensitivity of a search
without increasing the required number of templates to be evaluated, keeping the computing budget
under control [93].

This approach has been widely employed in FrequencyHough and SkyHough searches. In both cases,
a parameter-space distance, based on an Euclidean ansatz, is used to identify closeby candidates in each
detector’s results. Other searches, such as Time-domain F-statistic, PowerFlux or Falcon, impose
coincidence criteria based on the overlap of enhanced parameter-space regions across both datasets,
rather than using a parameter-space distance.

In particular, as discussed in Sec. 2.2, Time-domain F-statistic is the most prominent user of this
strategy [102]. As opposed to other semicoherent searches, it does not combine coherent segments into a
semicoherent statistic, but looks for coincident candidates across multiple segments (including different
detectors), reducing the overall false-alarm probability of the search.

2.3.2 Parameter-space clustering
Another option is to group together nearby templates according to some notion of distance. This
process, usually referred to as clustering in the data analysis literature, has been extensively employed
by PowerFlux, Einstein@Home, FrequencyHough, and SkyHough using different implementations, both
in terms of clustering strategy and parameter-space distance [41, 42, 40, 45, 49, 50, 52]. Clustering is
typically implemented using an unsupervised approach [173, 130]: the parameter-space and the clustering
algorithm itself act as prior information to construct meaningful groupings of the resulting template bank.
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Supervised ML approaches [106, 169, 170], aimed at identifying specific parameter-space structures, have
also been proposed.

Unsupervised approaches try to unveil structure from a data set. Prior information is encoded both in
terms of the distance used to compare nearby candidates and the linkage criteria. The resulting clusters
are sieved through selection criteria which can take into account parameters like the maximum signifi-
cance in the cluster or its number of elements. We focus our exposition on the choice of parameter-space
distance; a complete description of the clustering algorithms themselves is given in the corresponding
references.

Initial implementations, used by FrequencyHough and SkyHough [41, 42, 50] assumed a Euclidean
parameter-space distance on the CW signal parameters λ = {f0, f1, . . . , n⃗, . . . }

d(λ, λ∗) =

√√√√∑

i

(
λ(i) − λ

(i)
∗

δλ(i)

)2

, (2.10)

pairing candidates within a certain distance threshold to form the final clusters. The exact parameters
λ(i) and parameter-space resolutions δλ(i) are search-dependent.

A more informative approach, still based on a Euclidean ansatz, was proposed in [173]. In this
case, clusters are classified according to topographic parameters by projecting detection statistics over
planes, namely over the frequency-spindown plane and the ecliptic plane. Instead of using the basic CW
parameters, distance was computed after projecting the sky position of the candidate onto the ecliptic
plane; thus allowing a greater variance around the ecliptic, where sky localization tends to become more
uncertain [107, 80].

These distance measures are effective for local analyses, but quickly become unrealiable whenever
more involved parameter-space structures such as correlated parameters with periodic boundaries come
into play, as is the case for signals from sources in binary systems [174]. A parameter-space distance for
a generic, quasi-monochromatic CW signal was proposed in [130] using the instantaneous detector-frame
frequency associated to a CW template f(t;λ). Concretely, the distance between two templates λ and
λ∗ can be defined as the average mismatch between their corresponding detector-frame frequency tracks
throughout an observing run

d(λ, λ∗) ∝
1

T

∫ T

dt |f(t;λ)− f(t;λ∗)| . (2.11)

This prescription is consistent with the F-statistic’s parameter-space correlations and can be simplified
into a discrete sum for a faster implementation [130, 52, 53].

Candidate post-processing, and clustering in specific, is also a suitable step in which machine learning
strategies are able to deliver an improvement of sensitivity. As opposed to raw data, on which CW signals
are typically a subdominant contribution, the structures produced by different features in the data on
the parameter space of a search are suitable to be classified using a supervised approach, as long as a
clear classification of the features at hand is available. To date, two approaches have been proposed.

The first one [106], framed within the Time-domain F-statistic pipeline, uses a convolutional
network to classify different representations of the main search’s output into three possible classes,
namely noisy bands containing Gaussian-like noise, narrow spectral artifacts, and CW signals. A similar
(albeit more manual) approach was reported in [40].

The second approach is developed as an alternative to Einstein@Home searches’ clustering algo-
rithm [169, 170]. In this case, a neural network is trained to recognize signal-induced patterns on a
certain projection of the parameter space in order to identify typical structures associated to CW sig-
nals. The training set is produced by manually identifying software-injected signals using an image
editing tool.

2.3.3 Detector-consistency vetoes
The first family of vetoes tests the consistency of a CW candidate across the network of GW detectors.
The basic implementation is formulated as follows: given a CW candidate with parameters p and N
detectors, a detection statistic S(p) is computed using data from each detector alone {S1(p), . . . ,SN (p)}
and combining the datasets from all detectors at once SM(p). Then, a function of single-detector statistics
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F{S1(p), . . . ,SN (p)} is compared to the multi-detector statistics in order to decide whether the candidate
behaves consistently with a CW signal or not. The decision boundary, usually expressed in terms of the
difference F{S1(p), . . . ,SN (p)} − SM(p), can be calibrated by means of a software-injection campaign.
As discussed in [86, 87, 88, 89], the BS/GL and BS/GLtL detection statistics are a Bayesian approach to
this implementation of the detector-consistency veto. In their implementation [175, 40, 49], however,
the information is processed during search-time, discarding inconsistent candidates at an earlier stage
and potentially improving the detection of marginally significant signals.

An example of detector-consistency vetoes can be found in the SkyHough contribution to [41], where
F was taken to be the expected multi-detector statistic computed from the single-detector statistics
including the varying noise floors but ignoring the antenna pattern modulations. Another example is
found in the Weave search [51], where F is simply the maximum detection statistic over all the involved
detectors. A slight variation was employed in the BinarySkyHough analysis of early O3 data [52, 53],
where the detection statistic of one of the LIGO detectors was compared against the other one. This
was motivated due to the asymmetric behaviour of said detectors during the third observing run, with
H1 more affected by noise disturbances than L1.

2.3.4 χ2 vetoes
The second family of vetoes considers the behaviour of a putative CW signal within a particular dataset,
namely, whether the detection statistic accumulates throughout the observing run in a way which is
more consistent with an instrumental artifact than an astrophysical signal. This is the idea behind
the χ2 veto, initially proposed in [176] for CBC signals and later implemented for CW signals in [177].
In this case, the dataset is partitioned into p segments over which a detection statistic is computed
{S1, . . . ,Sp}. These segment-wise statistics are then compared to the expected segment-wise statistics
under the presence of a signal in Gaussian noise, usually characterized by a mean and standard deviation
µ and σ, and combined into a chi-squared discriminant

χ2{S1, . . . ,Sp} =

p∑

i=1

(Si − µi

σi

)2

. (2.12)

Under the assumption of Gaussian noise, this discriminant follows a χ2 distribution with p−1 degrees of
freedom; real-data applications, however, must calibrate this test using a suitable injection campaign [41].
In [52, 53], extreme deviations of the segment-wise detection statistic were used to identify stretches of
data in which the CW template showed a high degree of overlap with an instrumental feature; this
approach is equivalent to using a χ2 discriminant in the limit of a very strong sample Sj − µj ≫ σj .

2.3.5 Vetoing narrow spectral features
The third family of vetoes relies on detector characterization to identify frequency bands in which
an instrumental feature is present. CW searches integrate long periods of time looking for quasi-
monochromatic signals concentrated around a fraction of a Hertz. Quite often, those narrow bands
are populated by narrow spectral features (lines) due to instrumental or environmental disturbances
(defective power supplies, blinking LEDs, wind blowing, local fauna interacting with the detector. . . )
which, under very general conditions, are able to mimic the effect produced by a CW signal in the detec-
tor, usually producing a high number of candidates in a search [178, 171, 179]. Catalogs listing narrow
spectral features and their cause (if known) for the latest runs of the advanced detectors are publicly
available [180, 181, 182, 183, 184, 185, 186]. This kind of features are generally not a problem for CBC
searches, as those signals sweep wide frequency bands in a relatively short time duration, although noise
subtraction techniques are applied in severe cases [187, 188].

A common approach, usually referred to as the (known) line veto (see e.g. [41, 42, 45, 52]), is to check
whether the frequency evolution of a CW candidate overlaps with any frequency band containing such
instrumental features, in which case the candidate is discarded. This requires a high degree of manual
intervention, as line catalogs must be created and properly understood, and incurs the risk of removing
a genuine signal candidate due to an unfortunate line crossing at a potentially insignificant period of the
run.
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The DM-off veto was proposed in [189] as a hypothesis-test version of the line veto: it compares
the significance of a CW candidate, which includes Doppler modulations due to the Earth’s movement
around the SSB, versus the significance obtained after analyzing its surrounding frequency band using
an unmodulated template bank (i.e. without Doppler Modulation, hence DM-off). This veto was applied
with great success in [40]. As happens with the detector-consistency veto and the BS/GL statistic [88],
the DM-off veto can be refactored as a detection statistic in a Bayesian framework to construct a
proper line-robust statistic: instead of testing against a single-detector artifact, the hypothetical BS/GMU
statistic would test against an ensemble of monochromatic and unmodulated signals in any number of
detectors [178].

Alternatively, as performed in [40, 190, 49], frequency bins in the data containing lines can be
replaced by Gaussian noise drawn from the distribution of neighboring bins to suppress the presence
of candidates, preventing any candidate of instrumental origin from polluting the search results. This
process is generally performed on SFT data before starting a search.

Short-duration loud instrumental glitches also present a problem to CW searches, as they tend to
degrade the noise floor across a wide frequency band. This sort of artifacts, however, are typically dealt
with before starting a search using a cleaning procedure such as gating [139, 191, 179, 192].

2.3.6 Null-hypothesis vetoes
The fourth family of vetoes are essentially a reformulation of the standard null-hypothesis test, in which
a CW candidate is deemed as uninteresting if it is consistent enough with respect to the background
noise distribution. A simple proposal, usually referred to as off-sourcing [64, 193], is to evaluate a CW
candidate on nearly independent noise realizations by shifting its sky position away. This is based on
the fact that detector artifacts tend to imprint wider parameter-space regions with significant templates
than CW signals. Off-sourced time-frequency tracks are able to break signal-induced correlations while
still being affected by instrumental disturbances. The resulting distribution is a proxy of the noise
hypothesis’ sampling distribution and can be used to construct significance arguments about the CW
candidate of interest.

This veto was adapted by [51] to evaluate the final surviving candidate of a search. In their use case,
however, they considered the distribution of the loudest candidate from a CW search, that is, considering
the number of trials performed by evaluating a template bank on a data stream. Such a distribution
has been previously studied in the CW literature [194, 195], but it was not until recently that a method
applicable to a generic CW search based on extreme value theory was proposed [172].

Steps towards a fully Bayesian treatment of loudest-candidate null-hypothesis vetoes were taken
in [38], which proposed a Bayes factor to evaluate the loudest candidate of a CW search, B∗

S/G, whose
noise-hypothesis component was constructed fitting a Gumbel distribution to the loudest outliers of off-
sourced template banks. This approach was used to develop a complete hierarchical follow-up framework,
discussed in Sec. 2.4.2.

2.4 Follow-up
Follow-up stages are contextualized within a hierarchical search, as discussed in the introduction. They
improve the parameter estimation of a CW candidate by imposing tighter constrains on its expected
behaviour. This leads to the factual use of simple follow-up stages as signal-consistency veto strategies.
Base search stages construct less-sensitive detection statistics by effectually using less-constraining CW
signal models. For example, a semicoherent search, in which phase information is contained in discrete,
non-overlapping segments, is insensitive to arbitrary phase jumps between coherence segments. In this
sense, the sensitivity loss with respect to a fully-coherent search is due to the increased trials factor of
this looser family of signal models [43].

There are two ways in which follow-ups may be performed. Following the notation established in [33],
we refer to them as fresh data mode (FDM) and recycling data mode (RDM). As their names suggest,
FDM looks for a CW candidate in a new dataset containing brand new information; RDM, on the
other hand, re-analyzes the same dataset using a different method. The typical example of FDM is
to look for a CW candidate obtained in a certain observing run using data from subsequent observing
runs [40, 62, 54]. Examples of RMD include, for example, multi-stage semicoherent or loosely-coherent
searches aiming towards a fully-coherent search in a restricted parameter space region [39, 36, 37, 38].
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Most CW searches are conducted focusing on a single dataset, usually the latest available observing
run of the advanced detectors. Hence, follow-up strategies operate on RDM (even though sometimes
FDM assumptions are used for simplicity, as they turn out more conservative and simpler to imple-
ment [195, 196]). Nevertheless, this sort of strategies could be detrimental towards detecting a CW
signal, as standard RDM operations leading to effectively longer coherence time may lose candidates
affected by some form of unmodelled behaviour, such as glitches [197, 198] or accretion-induced spin
wandering [148]. Strict FDM must be used in order for a search to follow up a CW candidate with a
consistent signal model. Looking into previous observing runs, on the other hand, runs into a sensitivity
problem, as marginal candidates may end up completely lost due to the lower quality of the detectors.
Examples of searches in which a FDM follow-up looked into a posterior observing run include [40, 55].

2.4.1 Single-stage follow-up
The simplest follow-up strategy calibrates a threshold on a different (more sensitive) detection statistic
according to some prescription and compares it to the score returned by reanalyzing the CW candidate.
As opposed to a veto, this approach points towards evaluating the consistency (or discrepancy) of the
CW candidate with respect to a certain population of signals.

The standard FrequencyHough follow-up as employed in [41, 45] belongs to this category: baseline
Fourier transform length is increased, imposing tighter constraints on the signal model and discarding
short-duration candidates. Later searches also make use of the BSD framework [140, 141]. Similar
strategies, in this case using the fully-coherent F-statistic, were proposed in [199, 200].

In order to overcome the curse of dimensionality, BinarySkyHough searches [50, 52, 53] employ an
MCMC-based follow-up implemented in PyFstat [201, 37, 38]. The multi-detector F-statistic [21, 70]
is used to allow for arbitrarily long coherence times. In this sense, following up a CW candidate is
equivalent to sampling the posterior probability distribution of the phase-evolution parameters λ given
a data stream [37]

P(λ|x) ∝ eF(λ;x) · P(λ) , (2.13)

where the prior probability distribution P(λ) represents the parameter-space region of interest identified
by a search. The result of this grid-less approach is the F-statistic evaluated at the loudest candidate
of the parameter space at a negligible mismatch. This approach generalizes that of [199, 200], which
specializes in the single-stage fully-coherent follow-up of CW candidates.

As discussed in Sec. 2.4.2, the use of MCMC methods simplifies the setup of a generic multi-stage
follow-up, as no calibration of parameter-space grids are required. The onus in this case is on the
search pipeline to deliver a small-enough prior support for the MCMC to converge. This can always
be achieved by starting from a shorter coherence time [37], at the expense of increasing the number of
follow-up stages.

A similar strategy is used by the Time-domain F-statistic follow-up, focusing on the optimization
aspect of the procedure. In this case, a max-finding algorithm such as [202] is employed to travel around
the parameter space. The result, as with PyFstat, are the most favored signal parameters, corresponding
to the ones reporting the loudest F-statistic value.

2.4.2 Multi-stage follow-up
As discussed during Sec. 2.1, multi-stage follow-ups are the natural continuation to a wide parameter-
space search after identifying interesting parameter-space regions. Given a data stream, each subsequent
follow-up stage operates in RDM, gradually increasing the coherence time with respect to previous stages
and, as a consequence, imposing a tighter version of the selected signal model. The effect on a CW
candidate is twofold: first, non-astrophysical CW-like artifacts tend to get rejected as coherence time
increases (though, as earlier discussed, this could have detrimental effects on more complex CW signals
too); second, increasing coherence time results in a refinement in parameter-space resolution, improving
the parameter estimation of the candidate at hand. This last effect must be considered carefully, as it also
implies an increased number of templates to analyze, quickly becoming unaffordable if parameter-space
regions are not gradually narrowed down.

We start by discussing the follow-up strategy introduced in [36], which was applied as a generic follow-
up to multiple CW searches with minor modifications [41, 42, 40, 49]. This example is paradigmatic
in the sense that it fully exposes the two main challenges of a multi-stage setup. A similar approach,
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albeit at much smaller scale, was employed to follow-up SkyHough results in [45]. First, one must set up
a proper set of parameter-space grids such that CW signals are not lost due to a bad parameter-space
covering. If an analytical model of the follow-up method at hand is not available, as is the case in [36],
one must resort to an extensive software injection campaign to construct a suitable setup. Second, a
criterion must be set up to select/reject CW candidates after performing different stages. If the detection
statistic’s behaviour across different stages is well understood (see e.g. [196]), an analytical criterion can
be derived from first principles; otherwise, a software injection campaign must be used to calibrate a
rejection criterion.

Latest developments on the follow-up of CW candidates [37, 38] are able to simplify the setup for
the F-statistic, although further work is required for its application to generic detection statistics. As
discussed in Sec. 2.4.1, the use of MCMC samplers simplifies the setup due to their lack of grids:
if a CW signal is within the prior support, parameter-space samplers can get arbitrarily close to the
injection parameters given enough time to wander around the prior volume. This argument can be posed
quantitatively in terms of the so-called coherence time ladder [37], which make use of the parameter-
space metric to increase the parameter-space resolution in a controlled manner. Since the follow-up is
typically a local analysis, rough estimates of the number of templates using typical parameter-space
resolutions are usually a valid approximation [198].

Proper comparison of detection statistics from different stages in a Bayesian framework is currently
restricted to the F-statistic [196], as the sampling distribution under a signal hypothesis must be known
given a (squared) signal-to-noise ratio ρ2. This result was used in [38] to propose B∗

S/N, a (meta) Bayes
factor (as the F-statistic itself is a Bayes factor) evaluating the result of a multi-stage follow-up, pushing
forward the development of a fully-Bayesian follow-up of CW candidates. In this case, the probability
under the noise hypothesis was derived from a combination of off-sourcing and extreme value theory [172].
The use of detection statistics (Bayes factors) as data proxies to construct Bayesian arguments is also
discussed in [203, 195].

An alternative family of follow-up methods were developed under the name of loose coherence [39, 113,
114], already introduced in Sec. 2.2.2. In this case, instead of following the ad hoc recipe of increasing
coherence time until a fully-coherent search is achieved, phase information across neighbouring time
segments is gradually correlated in a controlled manner by combining (complex) Fourier amplitudes. As
opposed to semicoherent methods, which allow for arbitrary phase jumps at the border of a segment,
loosely coherent methods allow for phase shifts within pre-specified ranges, depending on the required
robustness of the method. Under this framework, semicoherent methods are rediscovered imposing delta-
correlation between phases at consecutive time segments. This follow-up approach is fully integrated
within the PowerFlux and Falcon searches [41, 42, 55, 43, 44, 46, 47]

2.5 Upper bounds on h0

Since no CW detection has been reported to date, the main data product of CW searches are bounds
on the nominal gravitational-wave amplitude h0 produced by a population of sources consistent with
the target signal model. As discussed in Sec. 2.1, astrophysical information can be extracted from
this quantity by taking different assumptions, such as the maximum allowed ellipticity from a galactic
neutron star at a certain distance from the detector.

Two basic approaches are pursued at production level to derive said upper bounds, depending on
whether the aim is for a strict frequentist upper limit or population-based sensitivity estimations. The
calibration and establishment of upper bounds of any kind usually involves an extensive software injection
campaign in real data with a non-negligible computing cost; due to this, a common approach lies in
between both extrema, quoting a proper estimation at a definite set of representative frequency bands
and interpolating the results across the rest of the spectrum.

Population-based sensitivity estimations are based on estimating the false-dismissal probability of a
search given a certain setup (be it a threshold at a fixed false-alarm probability or a more intricate proce-
dure). The p% detection probability amplitude hp%0 corresponds then to the amplitude h0 associated to
a false dismissal of (100− p)% after properly marginalizing with respect to other amplitude parameters
using a set of priors reflecting the studied source distribution [194]. In practise [41, 42, 40, 45, 49, 52, 50],
detection probabilities are usually estimated numerically by means of an injection recovery campaign.
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Strict frequentist upper limits, on the other hand, return a conservative estimate of the upper bound,
in the sense that false-dismissal probability is at most (100− p)%. An example of this kind is the uni-
versal statistic procedure [204], which is able to construct strict frequentist upper limits regardless of
the underlying noise distribution. This procedure has been extensively combined with the PowerFlux
and Falcon pipelines to efficiently produce robust upper limits under different GW polarization assump-
tions [41, 42, 55, 43, 44, 46, 47].

To date, all wide parameter-space searches have made use of one of these two upper bounds to
report on their results. These upper bounds, however, describe the probability of detecting a signal
given an ensemble of equivalent noise realizations, rather than the range where a signal could be found
given the data stream at hand. Work towards reporting the latter, Bayesian upper bounds, for wide
parameter-space searches was developed in [203, 195].

2.6 Summary
We reviewed the methods employed by current wide parameter-space searches for continuous grav-
itational waves from unknown sources conducted on advanced-detector data. The most widespread
approach consists of a hierarchical setup in which parameter-space regions are analyzed using more
sensitive (and consequently more expensive) methods as they are gradually narrowed-down. Detect-
ing a CW signal requires both an instrumental and computational effort to confidently unveil such a
weak signal using the current generation of gravitational-wave detectors. The use of multiple methods
taking different tradeoffs in sensitivity and robustness against instrumental artifacts provides an ideal
environment to pursue new strategies towards CW detection and parameter estimation. For the sake of
completeness, Table 2.2 provides a comprehensive summary of the search methods reviewed during the
present work.
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Search Pipeline References

All-sky O1 Einstein@Home [40]
Falcon [43, 44]
FrequencyHough [41]
PowerFlux [41, 42]
SkyHough [41, 42]
Time-domain F-statistic [41, 42]

All-sky O2 BinarySkyHough [50]
Einstein@Home [49]
Falcon [46, 47, 48]
FrequencyHough [45]
SkyHough [45]
Time-domain F-statistic [45]

All-sky O3a BinarySkyHough [52]
PowerFlux [54]

Deep exploration O2 Weave [51]

GC O1 PowerFlux [55]
GC O2 FrequencyHough + BSD [56]

SNR O1 Einstein@Home [61]
Fully-coherent F-statistic [59]

SNR O2 Einstein@Home [62, 69]
Fully-coherent F-statistic [66]
Viterbi 1.0 [63]
Viterbi SNR [65]

SNR O3a FrequencyHough + BSD [68]
Dual-harmonic Viterbi [68]
Viterbi SNR [68]

CDOs in the Solar System O2 Excess power [9]

Cygnus X-1 O2 Viterbi 1.0 [16]

Scorpius X-1 O1 Cross-Correlation [58]
Viterbi 1.0 [57]

Scorpius X-1 O2 Cross-Correlation [67]
Viterbi 2.0 [60]

LMXBs O2 Viterbi 2.0 [64]

Table 2.2: Summary of CW search methods covered by the present review, grouped
by scope and observing run.
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Chapter 3

Time-frequency track distance for
comparing continuous gravitational
wave signals

This chapter is an adaptation of the material presented in

Time-frequency track distance for comparing continuous gravitational wave signals
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3.1 Introduction
Continuous gravitational waves (CWs) are long-lasting, quasi-monochromatic, gravitational wave (GW)
signals emitted by sustained quadrupolar variations of a mass distribution. As opposed to GWs from
compact binary coalescences [1], CWs require long periods of data to be integrated in order to accumulate
a significant signal-to-noise ratio (SNR), as expected signals are very faint. Focusing on current ground-
based detectors like Advanced LIGO [2] and Advanced Virgo [3], possible sources include rapidly-spinning
non-axisymmetric neutron stars, which could emit GW radiation through a variety of mechanisms (see [4]
for a recent review), as well as more exotic alternatives such as ultralight boson clouds around spinning
black holes (see [5] and references therein).

Several methods have been proposed to search for CWs, depending on the available information
about the targeted sources. On one end, targeted searches aim at known pulsars, assuming a tight phase
locking between electromagnetic and gravitational radiation; on the other end, all-sky searches try to
uncover unknown sources, imposing fewer constraints on possible signals.

Narrow parameter-space regions, as considered by targeted and other well-constrained searches, can
be effectively analyzed using coherent methods which compare the full data stream to a bank of phase-
evolution templates. The number of templates to be considered in a coherent search scales with a
strong power of the observing time [6]. As a result, these methods can not be directly applied to wider
parameter-space surveys, such as all-sky searches.

Semicoherent methods (e.g. [7, 8, 9, 10, 11]), on the other hand, divide the data stream into a
discrete set of segments, each delivering a coherent statistic taking the full phase evolution into account.
The final detection statistic is then computed incoherently from these coherent statistics by following the
frequency-evolution track associated to each parameter-space candidate across segments. Since phase and
frequency evolution are related by time differentiation, a single frequency-evolution template is related
to an ensemble of phase-evolution templates, effectively reducing the number of required templates to
cover a parameter space region (see e.g. [12, 13]). Also, this renders semicoherent methods insensitive to
discrete phase jumps between coherent segments. Consequently, these types of searches are susceptible
to deliver more spurious candidates than coherent searches, which then require further investigation [14].

Typical semicoherent searches follow a hierarchical scheme, applying increasingly more sensitive (and
more computationally expensive) stages as interesting parameter-space regions are narrowed down [15].
Both the setup of such hierarchical searches and the post processing of any outlier candidates depend on
an understanding of the parameter-space structure. For example, many searches [16, 17, 18, 19, 20, 21]

https://doi.org/10.1103/PhysRevD.103.064053
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use clustering algorithms to reduce the number of correlated candidates that proceed from one stage to
the next. Most clustering algorithms depend on a meaningful measure of parameter-space distance to
represent said correlations within the algorithm.

Much of the understanding about CW parameter-space correlations has been built upon the F-
statistic, a maximum likelihood estimator accounting for the SNR in a coherent CW search [22, 23].
For a signal present in some data, the best-matching template will return a high F-statistic value.
Neighboring templates, however, will also show enhanced (albeit smaller) F-statistic values. The relative
loss due to mismatched templates was used to propose a family of local parameter-space metrics [6].
These metrics can be used to set up optimal parameter-space grids, placing templates in such a way
that any signal within the considered parameter space is not mismatched by more than a certain fixed
amount [24, 25, 26].

Optimal template-placement methods have been successfully generalized to semicoherent methods
[12, 27, 28], improving the overall effectiveness of hierarchical schemes. However, there is currently still
a lack of literature on the definition of distance measures for the post-processing of candidates from
semicoherent search stages.

In this paper we propose a new parameter-space distance suited for the post-processing of semicoher-
ent CW searches by comparing the average mismatch along the frequency evolution tracks associated to a
pair of parameter-space points. This novel approach can be applied to any kind of quasi-monochromatic
CW signal as long as a model of its frequency evolution is available. We provide a theoretical justifica-
tion for this proposal by relating it to the F-statistic. As a demonstration of its usefulness, we apply it
to a clustering algorithm, comparing its effectiveness with respect to the results obtained in a previous
semicoherent search.

In Sec. 3.2 we review how parameter-space structure is taken into account in current post-processing
approaches. We introduce and discuss the properties of our proposal in Sec. 3.3. In Sec. 3.4 we discuss
a clustering algorithm as a first application of the new distance and give a numerical assessment of its
effectiveness in Sec. 3.5 by improving the sensitivity of an all-sky search using open data from the second
observing run of the Advanced LIGO detectors. We summarize our proposal and conclusions in Sec. 3.6.

3.2 Parameter-space distances and clustering algorithms
The main application of parameter-space distances in the context of semicoherent searches is to reduce
the number of outliers by grouping them into clusters, thus reducing the computational cost and human
effort of additional follow-up stages. This can also shift the focus from individual candidates to corre-
lated parameter-space regions, and help associate these to specific origins such as instrumental noise or
astrophysical signals.

To understand the potential benefits of our new proposed distance measure, here we briefly review
the ways in which parameter-space structure is taken into account by clustering algorithms currently in
practical use for CW all-sky searches. Those can be divided into two families according to the way in
which they take parameter-space information into account, either based on fixed grids or on machine
learning.

3.2.1 Grid-based clustering methods
The first family of methods relies on the definition of a distance in terms of a parameter-space grid. This
approach measures how many grid steps away two given parameter-space points are from each other,
making it well suited to estimate the computing costs of further follow-up stages.

Examples of this approach are the all-sky searches for CWs from isolated neutron stars in LIGO O1
and O2 data [17, 18, 19]. The signals covered by these searches can be described by four parameters,
namely initial frequency, spin-down and sky position: λ = {f0, f1, n⃗}.

The Euclidean parameter-space distance is defined as

d(λ, λ∗) =

√(
∆f0
δf0

)2

+

(
∆f1
δf1

)2

+

(
∆θ

δθ

)2

, (3.1)

where ∆ quantities represent one-dimensional differences between parameter-space points and δ quan-
tities represent grid resolutions, which are constructed according to the criteria of each search pipeline.
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While the frequency and spin-down contributions are treated rather consistently, different pipelines
have opted for different prescriptions for the sky contribution θ. A common characteristic amongst O1
searches was the choice of the great circle distance to account for the sky contribution in Eq. (3.1).

As discussed in [7], the structure of the sky subspace is highly anisotropic, as CW signals located
close to the ecliptic plane tend to be more delocalized than those coming from the ecliptic poles. This
is due to the Doppler modulation induced by the Earth’s motion, the dominant component of which is
given by the yearly motion around the Solar System Barycenter (SSB). Thus, an alternative ansatz was
proposed in [29] by projecting sky positions onto the ecliptic plane

∆θ2 = ∆x2 +∆y2 , (3.2)

where ∆x,∆y represent the difference in Cartesian ecliptic coordinates. A convenient anisotropic sky
grid is implicitly set up after neglecting contributions from the third Cartesian component ∆z: The sky
grid around the poles remains untouched, while the region around the ecliptic plane becomes wider along
the polar direction, in qualitative agreement with the described sky structure. This idea was applied
to the SkyHoughpipeline during the LIGO O2 all-sky search [19]. However the great circle distance was
still used to estimate local sky distances for the setup of follow-up stages [19, 20].

Extensions to Eq. (3.1) to account for the additional modulations experienced by signals from sources
in circular binary orbits were proposed in [20], adapting this type of methods to the search for CWs from
neutron stars in binary systems. The proposal considered the three parameters required to describe a
circular binary orbit, namely the projected semi-major axis ap, orbital frequency Ω, and time of passage
through the ascending node tasc, adding them in quadrature as an extra term to Eq. (3.1):

dBinary(λ, λ∗) =

√(
∆ap
δap

)2

+

(
∆Ω

δΩ

)2

+

(
∆tasc
δtasc

)2

. (3.3)

Current clustering applications to CW searches then typically group candidates located within a
certain distance dth of each other, with dth calibrated to maximize the detection efficiency for a population
of artificial signals injected into the data. For the searches referenced above, this was chosen as dth ∈
[3, 4] parameter-space bins.

The effectiveness of these clustering methods has been demonstrated by application in the cited
searches. It is unclear, however, how to extend them towards a more general description of the parameter
space. So far, distance proposals have assumed parameters to be uncorrelated. But this is generally
not true, with correlations highly dependent on the parameter space under analysis [12, 13, 27]. Also
regarding the actual functional form in which each parameter-space dimension enters into the equation,
existing grid-based proposals turned out to be effective for “simple” cases, such as isolated sources (e.g.
Eq. (3.2)). However, more complex types of signals, such as those modulated by binary orbits, pose a
challenge to this approach.

3.2.2 Machine Learning-based clustering
The second family of clustering methods uses machine learning (ML) techniques to classify parameter-
space regions and identify those potentially containing CW signals [30, 31, 32]. The input is usually
a graphical representation of the search outputs over the parameter space, e.g. the detection statistic
values obtained during the main stage of the search. Algorithms then learn to classify these through the
usual train-test-validate ML workflow (see e.g. [33]).

This approach presents several advantages with respect to methods from Sec. 3.2.1, as ML classifiers
are able to learn parameter-space correlations through the provision of representative realizations of
parameter-space regions during the training stage of the algorithm. These training examples are rel-
atively easy to produce, making it computationally feasible to train ML classifiers using a rich set of
correlation examples. In this sense, the parameter-space structure is no longer described by an explicit
distance function. Still, one has to carefully consider the way in which search results are represented in
order to properly train the algorithm and hence to fully exploit the potential of ML techniques.
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3.3 A new parameter space distance
We introduce a new parameter space distance with the intent of overcoming the limitations identified
during the previous section. We employ the usual description of CWs in terms of the instantaneous
frequency evolution of a signal, which is in turn described in terms of the physical parameters of the
source. By considering frequency evolution tracks rather than a particular choice of parameters, we are
able to describe a general distance that relates directly to the same information content exploited by
semicoherent CW searches.

3.3.1 Deriving a distance from the F-statistic
CWs can be characterized by two sets of parameters, namely the phase parameters λ and the amplitude
parameters A. The former contain information about the phase and frequency evolution of a signal,
which is due to both physical mechanisms intrinsic to the source (e.g. binary orbital motions) and
relative motions of a GW detector with respect to the SSB; the latter describe the amplitude of a signal,
encoding information about the GW polarization, as well as the antenna response of the detector.

The detector response to a CW can be expressed as a linear superposition of four filters, obtained
by projecting each GW polarization onto both detector response functions:

hA,λ(t) =

3∑

µ=0

Aµhµ(t;λ) (3.4)

where each component Aµ is a time-independent expression depending only on the amplitude parameters
and hµ depends on the phase parameters only [22, 34].

Let us now assume a time series x(t) consisting of additive Gaussian noise and a CW signal hA,λ(t).
Then, following the Neyman-Pearson criterion [22, 35], the optimal detection statistic would be given
by the likelihood ratio

log Λ (A, λ) ∝ ⟨x, hA,λ⟩ , (3.5)

where ⟨·, ·⟩ represents a noise-weighted scalar product comparing data to CW templates (high values
corresponding to good alignment between data stream and the proposed template). Since amplitude
parameters enter as linear coefficients in Eq. (3.4), analytic maximization can be performed in Eq. (3.5),
obtaining the so-called F-statistic [22, 23]

F(λ) ≡ max
A

log Λ (A, λ) . (3.6)

However, as first pointed out in [36], this statistic presents a certain degeneracy with respect to phase
parameters; in other words, the locus of phase parameters for which Eq. (3.6) attains (close to) a
maximum value is not simply a point, but a finite parameter-space region.

A study of this property was done in [37] using a simplified version of Eq. (3.4) by neglecting amplitude
modulations and solely focusing on the phase parameter dependency

h⋆A,λ(t) = A sinΦλ(t) +B cosΦλ(t) , (3.7)

where Φλ is the phase evolution associated to λ. The validity of this model and its agreement with
Eq. (3.6) was justified in [38]; in turn, it implies a corresponding F⋆ statistic by maximizing with
respect to the (now constant) amplitude parameters:

F⋆(λ) ≡ max
A,B

log Λ⋆ ∝ |X (λ)|2 , (3.8)

where the following notation for the simplified filter was introduced:

X (λ) = ⟨x, e−iΦλ⟩ . (3.9)

Let us now assume a CW signal described by a set of parameters λ∗ is present in our data. If we
neglect rapidly oscillating terms in Eq. (3.9), we can express the F⋆ statistic in terms of the phase
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difference between the template parameters λ and those of the signal, ∆Φ(t) = Φλ∗(t)− Φλ(t), namely

X (λ) ∝
∫ T

0

dt ei∆Φ(t) . (3.10)

As discussed in [37], regions where F⋆ attains a maximum value will approximately correspond to those
for F . It is clear from Eq. (3.8) that a maximum value of F⋆ corresponds to a maximum value of |X |,
which is achieved whenever

∆Φ(t) = 0 ∀t . (3.11)

We can re-state this condition in terms of the instantaneous frequency of said pair of templates fλ(t)

∂∆Φ

∂t
= 0 → fλ∗(t)− fλ(t) = 0 ∀t , (3.12)

which is to say the statistic will be maximal for those pairs of templates whose frequency evolution
coincides over the observing time. We also refer to the frequency evolution of a candidate or template
as its time-frequency track, or simply track.

With Eq. (3.12) we start our new proposal: the information a search recovers is best described not
just by the parameter-space point corresponding to a candidate, but by its actual frequency evolution.
As a result, we can relate different parameter-space points by comparing their frequency evolution tracks
using an arbitrary functional distance

d(λ∗, λ) ≡ D [fλ∗ − fλ] . (3.13)

This means the distance amongst parameter-space candidates is measured in a consistent way with
semicoherent searches, where the statistical significance is defined as an integral along a time-frequency
track. In the same sense a frequency-evolution mismatch would produce a loss in significance, it accounts
for the amount of distance from one candidate to another.

For the remainder of this work we choose to focus on the L1 distance in order to reduce the amount
of implicit weights involved in our analysis, noting that any other proposal from the Lp family should
yield similar results.

Before concluding this exposition, it is worth noticing there were no assumptions on the actual form
of fλ except for the fact it had to be a CW signal (i.e. long-lasting and quasi-monochromatic). This
means that Eq. (3.13) could be used for any kind of quasi-monochromatic CW signal regardless of its
parametrization as long as we are able to describe the frequency evolution of the source in terms of a
set of parameters λ ∈ P.

3.3.2 Distance implementation
We proceed to explain how to adapt this newly introduced idea to the particularities of practical CW
searches, reserving a discussion on the actual effect of this distance as well as a comparison to previous
approaches for sections 3.4 and 3.5.

As already discussed, a first proposal of parameter-space distance can be constructed by comparing
the time-frequency tracks of a pair of candidates through the L1 distance

d(λ, λ∗) ∝
∫
dt |fλ(t)− fλ∗(t)| . (3.14)

While useful on its own, it can be improved by taking the following considerations into account.
First, the data products which all-sky CW searches deal with are discretized in a specific way.

For instance, most all-sky semicoherent searches work on Fourier-transformed data segments (so-called
Short Fourier Transforms, SFTs) with a time baseline TSFT, which in turn imposes a natural frequency
discretization δf = T−1

SFT. Each TSFT-long segment α is labeled by a starting timestamp tα, meaning we
can get a discretized version of Eq. (3.14) by introducing the substitution

∫
dt→ 1

δf

∑

α

, (3.15)
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Figure 3.1: Evaluation of the distance from Eq. (3.16) across the sky with respect to
a reference sky position (α, δ) = (4.27,−0.27) rad for different observing times.

where the multiplying factors are kept in such a way that the distance stays dimensionless, i.e. the
distance is measured in the corresponding (fractional) number of frequency bins δf .

Second, consider two templates λ, λ∗ ∈ P such that their time-frequency tracks are, on average, ∆̃
bins apart. If we assume a set of N SFTs, then from Eqs. (3.14) and (3.15) the distance is given by

d(λ, λ∗) ∝
N−1∑

α=0

|fλ(tα)− fλ∗(tα)| ≃
N−1∑

α=0

∆̃ = N∆̃ ,

i.e. longer observing times would be able to build up higher distance values. We can factor this
dependency out by choosing a proper normalization, effectively constructing a parameter-space distance
whose properties will be maintained across different observing runs:

d(λ, λ∗) ≡
1

Nδf

∑

α

|fλ(tα)− fλ∗(tα)| . (3.16)

This last expression can be interpreted as the average mismatch among the time-frequency tracks asso-
ciated to a pair of templates.

Also, in the same way as search methods are able to produce sound results for data streams containing
gaps due to down time of the detectors, Eq. (3.16) can be computed using a sub-set of timestamps ᾱ,
reducing the amount of required computations

d(λ, λ∗) ≡ TSFT · ⟨|fλ − fλ∗ |⟩ , (3.17)

where ⟨·⟩ represents an average over a certain set of timestamps α ∈ ᾱ.
The following subsection introduces the main properties of Eq. (3.16) and compares them to those

of Eq. (3.17). After showing their quantitative equivalence, we will simply refer to Eq. (3.17) as the
Time-frequency Track Distance (TTD).

3.3.3 Discussion
To illustrate the properties of our new distance proposal from Eq. (3.16), we first consider the simplest
case of a CW signal, consisting of a source emitting GWs at a certain fixed frequency f0. Neglecting
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any proper motion of the source, the detected signal only experiences the Doppler modulation from the
detector’s movement with respect to the solar system barycenter [7]:

fλ(t) = f0 ·
(
1 +

v⃗(t)

c
· n⃗
)
, (3.18)

where v/c ≃ 10−4 is the detector velocity expressed in natural units and n⃗ represents the sky position
of the source. Focusing on sky position effects will deliver useful results for a general discussion of the
implications of our distance, since this is the only common contribution to every kind of CW search (as
long as considering ground-based detectors).

We will make use of open data from the O2 observing run of the Advanced LIGO detectors [39, 40] to
extract timestamps and detector velocity vectors using [41]. Both LIGO detectors are taken into account
by extending Eq. (3.16) to a multi-detector setup: track mismatches are computed for each detector,
computing an overall average over the timestamps of all used SFTs. This approach is possible due to
the usage of track mismatch rather than SNR loss to compare parameter-space points, as the former is
unaffected by amplitude modulations due to the different antenna pattern functions of each detector.

The parameter-space structure of this model is highly dependent on the length of the data stream
under study. As first pointed out in [7], if we measured the frequency of a CW signal only at a certain
moment in time, we would not be able to fully locate its corresponding sky position, since the Earth-
induced Doppler shift would point us to a circle on the celestial sphere. It is through the integration
over multiple timestamps that the sky position of the source becomes well resolved.

This type of structure is well captured by Eq. (3.16), as shown in Fig. 3.1: For short observing times,
not being able to resolve sky position corresponds to the locus of close parameter-space points (as mea-
sured by the distance) being broadly extended along a circle on the celestial sphere. As observing time
increases, this degeneracy starts to break down, with the set of close templates finally narrowing down to
a compact neighborhood around the actual sky position of the source. This example demonstrates how
our proposal is able to automatically capture an underlying parameter-space structure. We note that
the improved sky localization with increasing observing times is a generic feature of CW searches, as it
is the result of identifying sky regions consistent with the long-term Doppler modulation induced by the
Earth’s movement with respect to the SSB [7]. Longer observing times also increase search sensitivity
by increasing the amount of SNR that can be accumulated by candidates.

The behavior of Eq. (3.16) should be compared to those used in previous searches, as discussed in
section 3.2. In particular, we compare to the great circle distance to provide us with an estimation of
the typical numerical scale of the new distance. We express the great circle distance according to the
natural sky resolution induced by the Doppler modulation (so called sky bins) [7]:

δθ =
[v
c
· TSFT · f0

]−1

. (3.19)

Both distances are compared in Fig. 3.2, using the same reference sky position as in Fig. 3.1 (the actual
choice of sky position plays a minor role, as we are focusing on close neighborhoods in terms of the great
circle distance). Given a certain distance value, higher frequencies tend to correspond to longer circle
lengths, as the bin resolution from Eq. (3.19) becomes thinner.

We note a distance of O(1) is enough to cover arc lengths corresponding to less than 4 parameter-
space bins. This will allow us to compare the performance of this distance to that of the Euclidean
ansatz in the context of a clustering algorithm in section 3.5.

Next we test the validity of the reduced Eq. (3.17) with respect to Eq. (3.16) by computing the
absolute deviation produced by computing the distance using a subset of the available timestamps.
Concretely, we select 500 timestamps along the O2 observing run data out of the initial O(104). In
Fig. 3.3 we show the distribution of absolute deviations between Eq. (3.17) and Eq. (3.16), using CW
signals with binary modulations as in [20]. Absolute deviations are two orders of magnitude smaller
than the exact distance value within the useful regime; hence we can safely use this approach to save
on computing cost. This is consistent with the expected behavior of time-frequency tracks: sufficiently
close parameter-space points would produce similar time-frequency evolutions, meaning their mismatch
during a particular time span would be similar to the average value across the whole run; hence, only
a small fraction of the timestamps are required to be taken into account. This discussion is easily
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Figure 3.2: Distance comparison with respect to the great circle distance using 105

neighbouring sky positions, at two representative signal frequencies. Markers represent
the average distance value for sky positions located at the specified number of bins
±0.25, and envelopes represent the maximum and minimum values within each bracket.
The vertical dashed line marks a value of

√
14 bins, the reference value employed by

[20] to cluster parameter-space points.
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Figure 3.3: Distance comparison between Eqs. (3.16) and (3.17) using 3 × 105 pairs
of parameter-space points corresponding to the binary parameter space of [20]. Vertical
lines show the median of the distribution of values bracketed by the specified interval;
boxes mark the first and third quartiles of the distribution; whiskers denote the minimum

and maximum values within each of the brackets.
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extendible to different types of sources, and can be taken at face value if relative motion effects are
smaller than Earth-induced Doppler effects (which correspond to a relative frequency variation of 10−4).

3.4 Application to clustering for an all-sky binary CW search
We now apply TTD to improve the clustering of candidates from CW searches. This first example
application will prove the benefits of using track-based parameter-space distances in CW searches. Other
possible uses of this proposal, such as the setup of parameter-space grids for the initial search stage, or
for the follow-up of candidates, are left for future work.

For the rest of this work, we will focus on the semicoherent BinarySkyHoughpipeline [19, 20], which
is able to perform all-sky searches for CWs from unknown neutron stars in binary systems. The pipeline
selects a narrow frequency band (typically on the order of 0.1 Hz) and a certain binary parameter-space
region, performing an all-sky search and returning the most significant candidates according to a set of
statistics.

We use the new distance in a clustering algorithm that is functionally equivalent to the one in [19, 20],
which originally used the distance from Eq. (3.2); from now on we refer to that reference algorithm as
“the O2 clustering”. We comment on minor implementation differences in subsection 3.4.1, ensuring the
fairness of the comparison; a numerical assessment is postponed to Sec. 3.5.

The general starting point for clustering is a toplist T containing the most significant candidates of
a certain parameter-space region according to a search algorithm. We define a candidate as the pair
c(i) = (λ(i),S(i)), where λ(i) ∈ P represents the parameters associated to said candidate and S(i) ∈ R is
the significance, represented by some statistic.

3.4.1 Algorithm overview
The clustering algorithm consists of these steps:

1. Construct reachable sets: select candidates located in neighboring frequency bins to avoid having
to compute irrelevant comparisons later on.

2. Construct coincidental sets: compute TTD from Eq. (3.17) among the selected set of candidates
and pair them according to a coincidence threshold dth.1

3. Construct clusters: group coincidental pairs into connected components. Each connected compo-
nent represents a cluster.

4. Identify cluster centers: retrieve the loudest candidate from each cluster according to a ranking
statistic S.

5. Select clusters to follow up: rank the clusters according to the statistic of their centers, selecting
a certain number Nc to follow up using a more sensitive method.

The first conceptual difference with respect to the O2 clustering is in step 1: While we focus on the
neighboring frequency bins of a candidate, the O2 clustering chains together neighboring candidates
until a frequency gap wider than a certain threshold is encountered. The main effect of such a strategy
is to create wider reachable sets than strictly required, meaning the expected results are consistent with
our proposal.

The second difference is related to the ranking criterion in step 5, as the O2 clustering ranks clusters
according to the sum of the individual statistics of their elements. In the presence of strong instrumental
disturbances, individual candidates in the cluster are strong enough to be selected regardless of the exact
criterion; in the case of signals (expected to be weak), however, there is an explicit dependence on the
number of toplist elements used, as selecting more candidates could lead to an inflation of the cluster
population due to the presence of candidates produced by pure noise. Selecting the loudest candidate
is safer in this regard, as the number of toplist elements plays no role. As discussed in [11], the effect

1Unlike in many other contexts of gravitational-wave data analysis, by “coincidence” here we are not referring to a
comparison between data from different detectors. Instead, the point is whether two candidates coincide in their time-
frequency evolution sufficiently closely.
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of this difference will be negligible in our comparison as we will be focusing on estimating a sensitivity
corresponding to the 95% detection efficiency level.

Finally, the O2 clustering adds a minimum population to the selection criteria in step 5: clusters
must contain at least 3 elements, being discarded otherwise. We comment on the effects of this criterion
in Sec. 3.5.

The following subsections cover implementation details of each step of the algorithm.

3.4.2 Reachable sets
We start by defining an auxiliary distance based only on the frequency difference (measured in bins)
between two candidates

df0(c, c∗) = TSFT · |f c0 − f c∗0 | , (3.20)

where f c0 represents the frequency associated to candidate c. For each candidate c ∈ T we define its
reachable set as those candidates closer than a certain threshold dth

f0
according to Eq. (3.20):

R[c] =
{
c∗ ∈ T | f c0 ≤ f c∗0 and df0(c, c∗) ≤ dth

f0

}
. (3.21)

This construction is motivated by the expected way a CW signal creates candidates across the parameter
space, as the usual conventions taken by CW searches (and by BinarySkyHough [11] in particular) aim
to reduce its wandering to less than one frequency bin over a coherent segment; hence, we can focus on a
neighborhood of each candidate rather than the whole toplist. As a result, in order to group candidates
it is enough to focus on reachable sets. Note that the reachable set only needs to include candidates
with a higher frequency than the selected one, as lower frequencies are already considered by previous
candidates due to the symmetry of the distance function.

3.4.3 Coincidental sets
Pair-wise distances using TTD are computed within each reachable set. Then, we impose a coincidence
threshold dth to define the coincidental set of a candidate c ∈ T as those candidates within the reachable
set whose distance to the reference candidate is lower than the specified threshold:

C[c] =
{
c∗ ∈ R[c] | d(c, c∗) ≤ dth} . (3.22)

Clusters are then constructed by computing the greatest groups of candidates such that any given
candidate within a group is closer than a distance of dth to at least one other candidate within the same
group. This concludes the clustering procedure.

Each cluster possesses two attributes, namely a center and a value of significance. The center of a
cluster is defined as the loudest point belonging to it, i.e., the one with the highest detection statistic.
Consequently, the significance of a cluster is defined as that of the loudest point.

The resulting clusters are then selected according to their significance, using the cluster center as the
representative point to be furthered followed up using a more sensitive algorithm [42, 43, 44, 45, 19, 21,
46, 47].

3.5 Improving the sensitivity of all-sky searches
We assess the sensitivity improvement for an all-sky search due to applying our new distance in the
previously described clustering algorithm, using a set of Monte-Carlo injections. This software injection
campaign was performed using data from the Advanced LIGO O2 run so as to be comparable to the
results obtained in the O2 open data all-sky search for CWs from neutron stars in binary systems [20].
Clustering algorithms are functionally equivalent in both cases, meaning sensitivity improvements can be
attributed to the change of parameter-space distance. We also discuss the choice of clustering parameters
in detail in order to understand these improvements.
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Frequency Band [Hz] ⟨D95%⟩ ± 1σ

[100, 125) 21.0± 0.7
[125, 150) 19.9± 0.8
[150, 200) 19.1± 1.0
[200, 250) 18.0± 0.8
[250, 300) 18.0± 0.8

Table 3.1: Summary of the average 95% efficiency sensitivity depths obtained by the
O2 open data all- sky search [19].

3.5.1 The O2 data software injection campaign
We reproduced the setup employed in [20] to obtain a faithful comparison to their results. We used
the full O2 Advanced LIGO run, spanning nine months of data taken by the two LIGO detectors H1
(Hanford) and L1 (Louisiana) [2, 39, 40]. The employed time segments are those with the “all” tag in
[48]. The data stream was divided into segments of duration TSFT = 900 s which were used to compute
50% overlapping Fourier transforms (the previously introduced SFTs), as discussed in [19]; data from
both detectors was analyzed together. This yields a set of 14788 SFTs from H1 and 14384 SFTs from
L1.

Injections were performed at different sensitivity depth values [49, 50]

D =

√
Sn

h0
, (3.23)

where h0 represents the CW amplitude and
√
Sn refers to an estimation of the amplitude spectral density

of the detector noise; in essence, injecting at constant depth values allows us to produce consistent
injection sets with respect to the underlying noise floor, allowing for comparisons at different frequency
bands.

We analyzed two different sets of injections. The first set aimed to understand the general behavior
of our proposal when used together with a clustering algorithm; the second one allowed us to assess the
effectiveness of our proposal by obtaining an improvement in sensitivity.

The generating procedure was the same for both sets. We first selected a set of representative
frequency bands and injected a certain number of CW signals into the data at different depths, drawing
their parameters from uniform distributions across the analyzed parameter space. Then, we used the
BinarySkyHoughsearch to obtain a list of the most significant candidates to be clustered. Following the
criteria specified in [19], we counted an injection as detected if any of the Nc = 3 most significant clusters
containing at least three candidates was significant enough so as to appear in the all-sky search toplist
and each of its parameters were no further than five parameter-space bins from the injection point.

Table 3.1 summarizes the sensitivity obtained by the O2 all-sky BinarySkyHoughsearch [20]. The
quoted uncertainties correspond to the overall depth variance across the quoted frequency bands; these
are consistent with (if not wider than) individual uncertainties obtained through the fitting procedure,
meaning the comparisons we are about to carry out do not overestimate the effectiveness of the new
distance.

For the first set of injections we selected two 0.1 Hz frequency bands, namely [150.1, 294.7]Hz, and
two sensitivity depth values, [17.5, 21.5]Hz−1/2. For each pair we injected 100 artificial CW signals.
Comparing with the 95% efficiency obtained by [20], a depth of 21.5 Hz−1/2 corresponds to a set of
weak injections, while 17.5 Hz−1/2 corresponds to a set of strong injections. Lower frequencies tend to
deliver greater 95% efficiency depth values: the required parameter space resolution becomes finer as we
approach greater frequencies, as smaller Doppler modulations become resolvable by the method; but in
order to keep computing cost under control, coarser resolutions are used in practice, reducing the density
of the grid and, in turn, the effective parameter-space fraction under analysis. This is a well-known fact
affecting CW searches [24].

For the second set we used six different frequency bands, [123.2, 129.8, 146.9, 165.2, 234.0, 262.7] Hz,
selecting six different depths ranging from 14 Hz−1/2 to 29 Hz−1/2 (including a value of 32 Hz−1/2 for
frequencies below 200Hz). Here we injected 300 artificial signals at each sensitivity depth.
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Figure 3.4: Performance comparison for different parameter choices, in two example
frequency bands. Solid lines represent the strong set of injections; dashed lines represent
the weak set of injections. Horizontal lines show the efficiency results obtained by
the O2 clustering. Markers represent the efficiency results obtained by using TTD.
Square markers represent the results obtained by our proposal for different coincidence
thresholds. Triangular markers show the results imposing a minimum cluster population

of 3. Diamond markers show the results imposing a minimum population of 5.

The clustering efficiency is given by the fraction of detected injections at each sensitivity depth. We
will use the sensitivity depth corresponding to the 95% efficiency, obtained through an interpolation
procedure, as a figure of merit for comparison purposes. A thorough exposition of this procedure can
be found in [17].

3.5.2 TTD: Clustering performance
First we discuss the clustering results obtained from the first set of injections. The O2 clustering
employed a distance threshold of dth

O2 =
√
14 ≃ 3.7 parameter-space bins, optimized through the use of

Monte-Carlo injections [20]; efficiencies are reported using horizontal lines in Fig. 3.4.
A fair comparison requires us to understand how each of the clustering parameters, namely the

thresholds to construct reachable and coincidental sets and the minimum population threshold, interact
with our proposal.

First, let us focus on the impact of changing the reachability threshold dth
f0

. This parameter controls
the number of neighboring frequency bins taken into account to compute distances between pairs of
candidates: as previously discussed, a CW candidate would tend to spread only across a small set
of neighboring frequency bins, either due to spectral leakage (if the CW parameters fell close to the
border of a frequency bin) or parameter-space correlations; hence dth

f0
could be kept at low values,

incidentally reducing the computing cost of the overall algorithm. Indeed, running the same setup
for three reachability thresholds dth

f0
= (1, 2, 3) [T−1

SFT] showed no preferred value in terms of detection
efficiency. As a result, it is feasible to work with dth

f0
= 1 [T−1

SFT], reducing the computational cost by
neglecting redundant parameter-space relations.

Second, consider the interplay between a minimum population threshold (i.e. a minimum number of
candidates to define a cluster as such) and the coincidence threshold. In Fig. 3.4 we show the efficiency
achieved by different combinations of these two parameters. Two main features are worth of comment:

First, the impact of a minimum population threshold is noticeable when combined with low coinci-
dence thresholds: Significant candidates are unable to group with their neighbors and, consequently, get
removed due to the lack of population in the cluster. As a result, potentially detectable signals (in the
sense that the main stage of the algorithm did not reject them) are completely discarded. This effect is
more noticeable for a set of weak injections, as they are less prone to enhance detection statistics across
a wide region of parameter space; higher frequencies are also affected by this more, since the density of
parameter-space templates at those regions tends to be lower than at low frequencies.

Secondly, increasing the coincidence threshold partially mitigates this effect, as stand-alone significant
parameter-space points are able to group together with their less significant neighbors. Low-frequency
results, however, suggest a limiting factor to this strategy, as this increase could also lead to neighboring
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Figure 3.5: Example of 95% efficiency depth interpolation at 165.2Hz. Points repre-
sent the detected fraction of 300 software injections after running a clustering using TTD
with dth

f0
= 1 [T−1

SFT] and dth = 1.0; the error bar on each point represents a binomial
uncertainty. No minimum population is imposed. The vertical line shows the average
sensitivity depth obtained by the O2 open data search at this frequency band. Shaded
regions represent 1σ and 2σ uncertainties. The 95% efficiency depth interpolated from

a sigmoid fit is represented by a star marker.

clusters merging together; given that the algorithm focuses on the center of a cluster only, this means a
signal could be discarded if its cluster gets merged with an instrumental disturbance. This phenomenon is
highly dependent on the data under analysis, as well as the properties of the CW signal in it. In particular
highly disturbed bands tend to deliver highly significant clusters corresponding to instrumental artifacts,
as observed in previous all-sky searches [17, 18, 19, 51]. Nevertheless, these clusters could also be isolated
enough from the rest of interesting local maxima so as to avoid any mergers.

Let us impose a minimum population of three elements per cluster akin to the O2 clustering. Fig. 3.4
shows how TTD obtains improved results with respect to the Euclidean ansatz used in the original O2
algorithm, provided we select a suitable coincidence threshold. We devote the following subsection to
expose the soundness of this improvement.

3.5.3 TTD: Sensitivity improvement
With the second set of injections we provide an assessment of the effectiveness of our proposal in terms
of search sensitivity. We recall this set consisted of five frequency bands, selecting six sensitivity depths
for each of them, at which we injected 300 CW signals each. We use these injections to interpolate the
sensitivity depth corresponding to 95% detection efficiency, D95%. This is a commonly used figure of
merit in CW searches. A higher depth values means being able to detect weaker signals, as they are
buried deeper in the noise. This procedure is customarily employed in CW searches in order to assess
their sensitivity [52, 17, 18, 19, 20]. An example of the interpolation procedure for one band is provided
in Fig. 3.5.

Our previous discussion on the implications of a population threshold can be extended using the 95%
detection efficiency depth. In Fig. 3.6 we compare the relative improvement obtained with respect to
the O2 clustering by simply using TTD from Eq. (3.17) rather than Eqs. (3.1), (3.2) and (3.3).

By properly tuning the coincidence threshold, the usage of our proposal under the same conditions
as the O2 clustering achieves a better sensitivity. As already discussed, the application of a population
threshold can be compensated by a higher coincidence threshold. The specific increase notably depends
on the frequency band (and more concretely, on the template density of the parameter-space region)
under study.

We summarize the improvement in sensitivity in Fig. 3.7, comparing our 95% efficiency sensitivity
depth estimates against the results reported in Table 3.1. Results using TTD are maximized with respect
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to the employed coincidence threshold, deeming them to be insensitive to the imposition of a minimum
population threshold. We report a 5−15% improvement by the sole use TTD of instead of an Euclidean
ansatz.

3.6 Conclusion
We have introduced a new parameter-space distance for continuous gravitational-wave searches by re-
lating parameter-space points to their corresponding instantaneous frequency evolution. As opposed to
previous approaches, this proposal provides a simple way of comparing candidates from CW semicoher-
ent searches in a consistent fashion with respect to the underlying parameter-space structure to which
the searches themselves are sensitive.

We have demonstrated this consistency of the new distance with the well-known behavior of semi-
coherent searches by reproducing a well-understood parameter-space structure related to the Earth-
induced Doppler modulation of ground-based detectors, the “circles in the sky”. The new distance can
be computed as an average over a subset of timestamps from a given data set, significantly reducing its
computational cost at negligible numerical accuracy loss.

Our proposal is effective in improving practical CW searches, as we have demonstrated by using it
to improve the candidate clustering procedure from the O2 open data search for CWs in binary systems
of [20] and reproducing their sensitivity estimation procedure. After illustrating the role played by
different parameters in the procedure, with the best settings we have obtained a 5 − 15% sensitivity
improvement from using the new distance in the clustering step.

This distance definition can be seamlessly extended to any kind of quasi-monochromatic CW signal,
provided we are able to describe its associated frequency evolution, as the main operational quantity is
not provided by parameter-space points, but by their embedding into the time-frequency plane according
to the CW model under consideration. This makes it a valuable tool to develop new post-processing
stages and improve the sensitivity of wide parameter-space searches.





63

Bibliography

[1] R. Abbott et al., “GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During
the First Half of the Third Observing Run.” arXiv:2010.14527 [gr-qc].

[2] J. Aasi et al., “Advanced LIGO,” Classical and Quantum Gravity, vol. 32, p. 074001, mar 2015.

[3] F. Acernese et al., “Advanced virgo: a second-generation interferometric gravitational wave detec-
tor,” Classical and Quantum Gravity, vol. 32, p. 024001, dec 2014.

[4] M. Sieniawska and M. Bejger, “Continuous gravitational waves from neutron stars: current status
and prospects,” Universe, vol. 5, no. 11, p. 217, 2019.

[5] S. J. Zhu, M. Baryakhtar, M. A. Papa, D. Tsuna, N. Kawanaka, and H.-B. Eggenstein, “Charac-
terizing the continuous gravitational-wave signal from boson clouds around galactic isolated black
holes,” Physical Review D, vol. 102, p. 063020, Sep 2020.

[6] R. Prix, “Search for continuous gravitational waves: Metric of the multi-detector F-statistic,” Phys-
ical Review D, vol. 75, p. 023004, 2007. [Erratum: Physical Review D 75, 069901 (2007)].

[7] B. Krishnan, A. M. Sintes, M. A. Papa, B. F. Schutz, S. Frasca, and C. Palomba, “Hough transform
search for continuous gravitational waves,” Physical Review D, vol. 70, p. 082001, Oct 2004.

[8] C. Cutler, I. Gholami, and B. Krishnan, “Improved stack-slide searches for gravitational-wave pul-
sars,” Physical Review D, vol. 72, p. 042004, 2005.

[9] P. Astone, A. Colla, S. D’Antonio, S. Frasca, and C. Palomba, “Method for all-sky searches of
continuous gravitational wave signals using the frequency-Hough transform,” Physical Review D,
vol. 90, p. 042002, Aug. 2014.

[10] S. D’Antonio et al., “Semicoherent analysis method to search for continuous gravitational waves
emitted by ultralight boson clouds around spinning black holes,” Physical Review D, vol. 98, no. 10,
p. 103017, 2018.

[11] P. B. Covas and A. M. Sintes, “New method to search for continuous gravitational waves from
unknown neutron stars in binary systems,” Physical Review D, vol. 99, p. 124019, Jun 2019.

[12] H. J. Pletsch, “Parameter-space metric of semicoherent searches for continuous gravitational waves,”
Physical Review D, vol. 82, p. 042002, 2010.

[13] P. Leaci and R. Prix, “Directed searches for continuous gravitational waves from binary systems:
parameter-space metrics and optimal Scorpius X-1 sensitivity,” Physical Review D, vol. 91, no. 10,
p. 102003, 2015.

[14] V. Dergachev and M. A. Papa, “Sensitivity improvements in the search for periodic gravitational
waves using O1 LIGO data,” Physical Review Letters, vol. 123, no. 10, p. 101101, 2019.

[15] R. Prix and M. Shaltev, “Search for Continuous Gravitational Waves: Optimal StackSlide method
at fixed computing cost,” Physical Review D, vol. 85, p. 084010, 2012.

[16] B. P. Abbott et al., “First low-frequency einstein@home all-sky search for continuous gravitational
waves in advanced ligo data,” Physical Review D, vol. 96, p. 122004, Dec 2017.

[17] B. P. Abbott et al., “All-sky search for periodic gravitational waves in the o1 ligo data,” Physical
Review D, vol. 96, p. 062002, Sep 2017.



64 BIBLIOGRAPHY

[18] B. P. Abbot et al., “Full band all-sky search for periodic gravitational waves in the O1 LIGO data,”
Physical Review D, vol. 97, p. 102003, May 2018.

[19] B. P. Abbott et al., “All-sky search for continuous gravitational waves from isolated neutron stars
using Advanced LIGO O2 data,” Physical Review D, vol. 100, p. 024004, Jul 2019.

[20] P. B. Covas and A. M. Sintes, “First all-sky search for continuous gravitational-wave signals from un-
known neutron stars in binary systems using advanced ligo data,” Physical Review Letters, vol. 124,
p. 191102, May 2020.

[21] B. Steltner, M. A. Papa, H.-B. Eggenstein, B. Allen, V. Dergachev, R. Prix, B. Machenschalk,
S. Walsh, S. Zhu, and S. Kwang, 9 2020.

[22] P. Jaranowski, A. Królak, and B. F. Schutz, “Data analysis of gravitational-wave signals from
spinning neutron stars: The signal and its detection,” Physical Review D, vol. 58, p. 063001, Aug
1998.

[23] C. Cutler and B. F. Schutz, “Generalized F-statistic: Multiple detectors and multiple gravitational
wave pulsars,” Physical Review D, vol. 72, p. 063006, Sep 2005.

[24] K. Wette and R. Prix, “Flat parameter-space metric for all-sky searches for gravitational-wave
pulsars,” Physical Review D, vol. 88, no. 12, p. 123005, 2013.

[25] K. Wette, “Lattice template placement for coherent all-sky searches for gravitational-wave pulsars,”
Physical Review D, vol. 90, no. 12, p. 122010, 2014.

[26] B. Allen, “Spherical ansatz for parameter-space metrics,” Physical Review D, vol. 100, no. 12,
p. 124004, 2019.

[27] K. Wette, “Parameter-space metric for all-sky semicoherent searches for gravitational-wave pulsars,”
Physical Review D, vol. 92, no. 8, p. 082003, 2015.

[28] K. Wette, S. Walsh, R. Prix, and M. A. Papa, “Implementing a semicoherent search for continuous
gravitational waves using optimally-constructed template banks,” Physical Review D, vol. 97, no. 12,
p. 123016, 2018.

[29] A. Singh, M. A. Papa, H.-B. Eggenstein, and S. Walsh, “Adaptive clustering procedure for contin-
uous gravitational wave searches,” Physical Review D, vol. 96, p. 082003, Oct 2017.

[30] F. Morawski, M. Bejger, and P. Ciecieląg, “Convolutional neural network classifier for the output
of the time-domain f-statistic all-sky search for continuous gravitational waves,” Machine Learning:
Science and Technology, vol. 1, p. arXiv:1907.06917, jun 2020.

[31] B. Beheshtipour and M. A. Papa, “Deep learning for clustering of continuous gravitational wave
candidates,” Physical Review D, vol. 101, p. 064009, Mar 2020.

[32] B. Beheshtipour and M. A. Papa, “Deep learning for clustering of continuous gravitational wave
candidates II: identification of low-SNR candidates,” arXiv e-prints, 12 2020.

[33] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[34] J. T. Whelan, R. Prix, C. J. Cutler, and J. L. Willis, “New Coordinates for the Amplitude Parameter
Space of Continuous Gravitational Waves,” Classical and Quantum Gravity, vol. 31, p. 065002, 2014.

[35] J. Neyman, E. S. Pearson, and K. Pearson, “Ix. on the problem of the most efficient tests of statistical
hypotheses,” Philosophical Transactions of the Royal Society of London A, vol. 231, no. 694-706,
pp. 289–337, 1933.

[36] R. Prix and Y. Itoh, “Global parameter-space correlations of coherent searches for continuous grav-
itational waves,” Classical and Quantum Gravity, vol. 22, pp. S1003–S1012, sep 2005.

http://www.deeplearningbook.org
http://www.deeplearningbook.org


BIBLIOGRAPHY 65

[37] H. J. Pletsch, “Parameter-space correlations of the optimal statistic for continuous gravitational-
wave detection,” Physical Review D, vol. 78, p. 102005, Nov 2008.

[38] P. Jaranowski and A. Królak, “Data analysis of gravitational-wave signals from spinning neutron
stars. ii. accuracy of estimation of parameters,” Physical Review D, vol. 59, p. 063003, Feb 1999.

[39] R. Abbott et al., “Open data from the first and second observing runs of advanced ligo and advanced
virgo,” SoftwareX, vol. 13, p. 100658, 2021.

[40] LIGO Scientic Collaboration and Virgo Collaboration, “Gravitational Wave Open Science Center -
Advanced LIGO O2 Data Release.” https://www.gw-openscience.org, 2019.

[41] LIGO Scientific Collaboration, “LIGO Algorithm Library - LALSuite.” free software (GPL), 2018.

[42] M. Shaltev, P. Leaci, M. A. Papa, and R. Prix, “Fully coherent follow-up of continuous gravitational-
wave candidates: an application to Einstein@Home results,” Physical Review D, vol. 89, no. 12,
p. 124030, 2014.

[43] J. Aasi et al., “First low frequency all-sky search for continuous gravitational wave signals,” Physical
Review D, vol. 93, no. 4, p. 042007, 2016.

[44] M. A. Papa et al., “Hierarchical follow-up of subthreshold candidates of an all-sky Einstein@Home
search for continuous gravitational waves on LIGO sixth science run data,” Physical Review D,
vol. 94, no. 12, p. 122006, 2016.

[45] M. Sieniawska, M. Bejger, P. Ciecieląg, and A. Królak, “Followup procedure in time-domain F-
statistic searches for continuous gravitational waves,” in XXXVIII Polish Astronomical Society
Meeting (A. Różańska, ed.), vol. 7, pp. 37–40, Aug. 2018.

[46] G. Ashton and R. Prix, “Hierarchical multistage MCMC follow-up of continuous gravitational wave
candidates,” Physical Review D, vol. 97, no. 10, p. 103020, 2018.

[47] D. Keitel, R. Tenorio, G. Ashton, and R. Prix, “PyFstat: a Python package for continuous
gravitational-wave data analysis.” arXiv:2101.10915 [gr-qc].

[48] E. Goetz, “Segments used for creating standard SFTs in O2 data.” https://dcc.ligo.org/
LIGO-T1900085/public.

[49] B. Behnke, M. A. Papa, and R. Prix, “Postprocessing methods used in the search for continuous
gravitational-wave signals from the galactic center,” Physical Review D, vol. 91, p. 064007, Mar
2015.

[50] C. Dreissigacker, R. Prix, and K. Wette, “Fast and Accurate Sensitivity Estimation for Continuous-
Gravitational-Wave Searches,” Physical Review D, vol. 98, no. 8, p. 084058, 2018.

[51] P. B. Covas et al., “Identification and mitigation of narrow spectral artifacts that degrade searches
for persistent gravitational waves in the first two observing runs of Advanced LIGO,” Physical
Review D, vol. 97, p. 082002, Apr. 2018.

[52] S. Walsh, M. Pitkin, M. Oliver, S. D’Antonio, V. Dergachev, A. Królak, et al., “Comparison of
methods for the detection of gravitational waves from unknown neutron stars,” Physical Review D,
vol. 94, no. 12, p. 124010, 2016.

https://www.gw-openscience.org
https://dcc.ligo.org/LIGO-T1900085/public
https://dcc.ligo.org/LIGO-T1900085/public




67

Chapter 4

Application of a hierarchical MCMC
follow-up to Advanced LIGO
continuous gravitational-wave
candidates

This chapter is an adaptation of the material presented in
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DOI: 10.1103/PhysRevD.104.084012

4.1 Introduction
Continuous gravitational waves (CWs) are persistent forms of gravitational radiation. These yet-to-be
detected signals are orders of magnitude weaker than compact binary coalescenses [1], requiring long
integration times (months to years) to differentiate them from noise. Potentially detectable sources using
the current generation of ground-based interferometric detectors, Advanced LIGO [2] and Advanced
Virgo [3], are neutron stars (NSs) presenting some non-axisymmetry such as crustal deformations, r-
mode instabilities or free precession [4], or the annihilation of ultralight boson clouds around spinning
black holes [5].

Searching for a CW consists in filtering a data stream against a set of signal templates, each of which
is related to a certain set of parameters describing the CW model being searched for. The number of
templates required to properly cover a certain parameter space region, however, scales as a large power
of observing time [6]. At a fixed computing cost, the optimal strategy is to split the data stream into
segments on which the filtering is performed, and then combine the resulting statistics [7, 8]. Since
phase information is only fully preserved within each of these segments, they are usually referred to as
coherent segments spanning a certain coherence time.

The approach taken by current implementations of wide parameter space searches such as [9, 10, 11,
12, 13, 14] lies in the middle ground. Wide parameter space regions are analyzed using a relatively low
coherence time, ranging from half an hour to a few weeks. Surviving outliers are then sieved through a
suite of vetoes testing their (in)consistency with a CW signal; this includes studying their persistence
over the data stream, comparing their significance in different detectors or checking whether they cross
a frequency band containing known instrumental artifacts [15, 16, 17, 18, 19, 20, 21]. Other common
strategies are coincidence analyses between detectors or clustering neighbouring outliers in order to
relate them to a common cause [22, 23, 24, 25]. Finally, if there are any surviving outliers, various
follow-up strategies use longer coherence times [26, 27, 28, 29, 30, 31, 21], either in a single stage or in
a hierarchical scheme where candidates are narrowed down over a “ladder” of coherence times.

Large-scale CW searches would benefit from a simple, general hierarchical setup, as it would allow
for the systematic follow-up of CW outliers using longer coherence times, imposing tighter constraints
and reducing the presence of outliers due to background noise.

https://doi.org/10.1103/PhysRevD.104.084012
https://arxiv.org/abs/2105.13860
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Here we present the first complete framework to conduct hierarchical Markov Chain Monte Carlo
(MCMC) follow-ups and its application to a set of outliers obtained by different CW search pipelines
on Advanced LIGO O2 data. Our work builds on top of [32], which introduced the MCMC follow-up
of CW outliers and studied its performance on simulated signals in pure Gaussian noise. We propose
a new hypothesis test for the presence of a signal in the data after the full follow-up procedure. The
probability of the signal hypothesis is derived from first principles as proposed in [33]; the probability
of the noise hypothesis is derived from the application of extreme value theory. We demonstrate the
general applicability of this follow-up strategy by analyzing outliers stemming from different analysis
pipelines.

Although we restrict ourselves to outliers from CW searches for unknown isolated sources, this
framework and the corresponding software [34] can also be applied to outliers from searches for sources
in binary systems [30, 21], glitching NSs [35] and long-duration gravitational-wave transients [36, 37].

The paper is organized as follows: Section 4.2 describes the basic tools of CW data analysis and
overviews the application of MCMC samplers to the follow-up problem; Sec. 4.3 introduces a new
statistic in terms of hypothesis testing; Sec. 4.4 introduces the O2 outliers to be analyzed and the follow-
up setup. The results are presented in Sec. 4.5, concluding in Sec. 4.6. We briefly comment on the
statistical properties of the maximum F-statistic over correlated templates in appendix 4.A.

4.2 Continuous-wave data analysis: Search and follow up
A CW signal can be parametrized in terms of two families of parameters, namely the phase-evolution
parameters λ and the amplitude parameters A. This separation is motivated by the response of a GW
detector to such signals

h(t;λ,A) =

3∑

µ=0

Aµ hµ(t;λ) , (4.1)

where the functions Aµ are independent of time [38].
The search for a CW signal can be stated in a Bayesian framework as a hypothesis test between the

noise hypothesis HG, under which the data consists of Gaussian noise n(t), and the signal hypothesis
HS(λ,A), supporting the presence of a CW signal with a defined set of parameters within said noise
n(t) + h(t;λ,A). The support of a stream of data x for either of these hypotheses is quantified by the
Bayes factor [39]

BS/G(x;λ,A) =
P(x|HS(λ,A))

P(x|HG)
. (4.2)

Following [40, 41], and motivated by the linear dependency of Eq. (4.1) on the amplitude functions Aµ,
one can choose an appropiate set of priors P(A) such that Eq. (4.2) can be analytically marginalized:

BS/G(x;λ) =

∫
dA BS/G(x;λ,A) P(A) ∝ eF(x;λ) . (4.3)

The F-statistic, which depends only on the data and the phase parameters, was originally derived as
the maximum-likelihood estimator with respect to A [38, 42]. This is a general detection statistic which
only relies on the waveform decomposition presented in Eq. (4.1) and hence can be applied also to
variations of the CW signal model such as sources in binaries [43] and transients [36]. Furthermore,
the methods developed in this work can also be applied to CW outliers from any kind of search using
a different detection statistic, as long as they can be associated with a parameter-space point with a
certain uncertainty.

The role of Eq. (4.3) is to update the prior probability on the phase evolution parameters P(λ) by
means of the information conveyed by the data stream x. This can be stated in terms of Bayes’ theorem
as

P(λ|x,HS) ∝ BS/G(x;λ) P(λ) . (4.4)

We note that BS/G and F have the same statistical power as they are related by a strictly monotonic
function. For the sake of later consistency, we will focus on F from now on. We refer the reader to
[40, 36, 44, 45] for a more in-depth analysis of these statistics.
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The detection problem is now stated in terms of a maximization: Given a stream of data x, we are
interested in finding the phase-evolution parameters λ (also referred to as templates) which maximize
Eq. (4.4) or, equivalently, F(x;λ).

4.2.1 Coherent and semicoherent searches
The fully-coherent F-statistic can be expressed in terms of a linear filter between the data stream and
a signal template,

F̃(λ) ∝ |⟨x, h(λ)⟩|2 , (4.5)

where ⟨·⟩ represents a functional scalar product. Throughout this work, and following the convention
of [46], fully-coherent quantities will be represented with a tilde; semicoherent quantities, introduced in
Eq. (4.7), will be represented with a caret. The response of F̃ to an offset ∆λ in the phase-evolution
parameters λ is quantified using the mismatch [47], which can be defined in terms of a local quadratic
approximation around the true signal parameters λ where the mismatch has a minimum:

m(∆λ;λ) =
F̃(λ)− F̃(λ+∆λ)

F̃(λ)
≃ ∆λT · ¯̄g ·∆λ+O(∆λ3) . (4.6)

The symmetric tensor ¯̄g is referred to as the parameter-space metric, and can be used to set up parameter-
space coverings, also known as template banks, at a certain mismatch level. This quadratic approxima-
tion is known to be valid up to m ≲ 0.3 − 0.5, although latest developments on this subject suggest to
further extend the approximation up to m ∼ 1 [48, 49, 50].

Maximizing Eq. (4.5) poses a computational challenge, as the number of templates to be considered
in the optimization scales with a large power of the total length of the data stream [51, 6], while the
sensitivity only scales as the square root of it [52, 53]. As discussed in [54, 13], such a strong scaling stems
from the tight restrictions imposed by the F-statistic on the signal model, requiring phase coherence
over the whole duration of the data stream. A looser statistic can be constructed by imposing said
coherence in a segment-wise manner. To do so, the data stream, spanning a time of Tobs, is divided into
Nseg segments, each of them with a duration of Tcoh. The semicoherent F-statistic is then constructed
by adding the coherent F-statistics computed in each segment

F̂(λ) =

Nseg−1∑

n=0

F̃n(λ) , (4.7)

where F̃n refers to the coherent F-statistic computed using only data within segment n. This approach
uncorrelates the template’s phase-evolution between consecutive coherent segments, loosening the con-
straints imposed on the data and widening F-statistic peaks in the parameter space [54, 32]. In other
words, given a parameter-space coordinate volume, the number of templates required to cover it at a
given mismatch decreases with lower Tcoh. This implies a dependency of the parameter space metric ¯̄g
on Tcoh.

The optimal strategy to sweep a wide parameter-space region under a controlled computational
budget is then to use a hierarchical scheme with a varying Tcoh: The first stage surveys a parameter-space
region with Tcoh ≪ Tobs, using an affordable number of templates. F-statistic outliers are then analyzed
with an increased coherence time, further narrowing down the parameter-space region of interest. This
process continues either until Tcoh = Tobs or the candidate is vetoed by a complementary procedure
[8, 46, 28, 32].

4.2.2 MCMC-based follow-ups
The follow-up of CW outliers requires to set up a template bank across the parameter-space region
of interest. Typical gridded approaches use a parameter-space metric to cover the parameter space at
fixed maximum mismatch [28, 27, 55]. This approach usually requires an extensive campaign of software
injections to be performed in order to calibrate the optimal set up in terms of sensitivity and computing
cost [28].

Alternatively, one could view the problem from the point of view of Bayesian inference. Eq. (4.4)
relates the F-statistic to a posterior probability distribution. This distribution can be sampled using a
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MCMC method, effectively constructing an adaptative random template bank in the parameter space
in which F-statistic values will be more densely evaluated around high posterior probability regions. As
first discussed in [32], this approach achieves close to the theoretical optimal sensitivity for signals in
Gaussian noise as long as the parameter space region is small enough to ensure a good convergence of
the MCMC.

For the purpose of estimating the effectiveness of an MCMC, as discussed in [32], the effective size
of a parameter-space region can be computed in terms of the number of templates N required to cover
it at a mismatch of unity using a lattice with unit normalized thickness [56, 51]

N (Tcoh,∆λ) =

∫

∆λ

dλ
√
g(Tcoh) , (4.8)

where g(Tcoh) is the determinant of the parameter-space metric, which depends on Tcoh as explained in
Sec. 4.2.1, and ∆λ represents the region being followed up. The integral in Eq. (4.8) must be computed
along the resolved parameter-space dimensions only; i.e., one should not include fractional templates,
as doing so would underestimate the actual number of templates [46, 8, 43]. For a follow-up search, the
parameter-space region under analysis is typically smaller than the scale of parameter-space correlations,
meaning √

g can be taken out of the integral as a constant and Eq. (4.8) simplifies to

N (Tcoh,∆λ) ≃
√
g(Tcoh) Vol (∆λ) (4.9)

where Vol (∆λ) is the coordinate volume of the region being followed up. Seminal analyses in [32] and
follow-up searches performed in [30, 21] suggest that values up to N ≃ 103−4 are compatible with
effective MCMC runs in terms of convergence.

CW outliers are identified as a parameter-space point carrying an uncertainty which depends on
the pipeline used to conduct the search. Upon entering the follow-up pipeline, these uncertainties are
converted into prior probability distributions to start the MCMC sampling. Ref. [32] proposed the use
of bounded uniform priors in order to restrict the surveyed parameter-space region; however, such hard
boundaries may prevent the successful follow-up of CW candidates whose parameters are shifted due
to the presence of parameter-space correlations. We propose the use of uncorrelated Gaussian priors,
which concentrate their probability density around a characteristic region while being unbounded. See
Sec. 4.5 for details on the choice of Gaussian priors.

An MCMC-based follow-up is implemented in the PyFstat package [34] using the parallel-tempered
ensemble MCMC sampler ptemcee [57, 58] to sample the posterior distribution Eq. (4.4) using either
the coherent (Eq. 4.5) or semicoherent (Eq. 4.7) F-statistic. We refer the reader to [32] for an extended
discussion on the characteristics of this particular MCMC implementation. The analyses presented in
this work were performed using PyFstat version 1.11.3 [59].

4.2.3 A coherence-time ladder
Early setups of hierarchical schemes were based on the optimization of computing resources in order
to achieve a prescribed level of sensitivity [7, 8]. Alternatively, if no computational cost model was
available, software injection campaigns were used to calibrate the number of stages [28]. For the case
of an MCMC-based follow-up, one can use the quantity N (Tcoh,∆λ) to design a hierarchical scheme by
imposing the proper convergence of the MCMC run at each stage [32].

Suppose a wide parameter-space semicoherent search produces an interesting outlier in the parameter-
space region ∆λ(0), where the exact shape is entirely dependent on the pipeline. Round-bracketed
superindices denote different stages of the follow-up. To set up a first follow-up stage, we choose a
coherence time T (0)

coh such that N (T
(0)
coh,∆λ

(0)) ≲ N ∗, ensuring the effective parameter-space resolution is
coarse enough for the MCMC algorithm to properly converge towards the region of interest. If successful,
the resulting parameter-space region will be narrower, ∆λ(1) ≤ ∆λ(0), and a second MCMC stage using
a new coherence time T (1)

coh will be applied. This procedure is repeated until Tcoh = Tobs and a final
fully-coherent follow-up is performed.

In [32], a simple method was proposed to find the coherence time for a stage j given the previous
stage’s results. The idea is to increase the coherence time as much as possible such that the MCMC
is able to converge to the target distribution. Since this convergence can be quantified in terms of a
maximum number of templates within a region N ∗, the new coherence time T (j)

coh can be obtained by
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solving
N
(
T

(j)
coh,∆λ

(j)
)
= N ∗ . (4.10)

This choice minimizes the number of stages in the scheme, reducing the overall computing cost, while en-
suring the effectiveness of the MCMC approach. The explicit dependency of Eq. (4.10) on the parameter-
space region under analysis ∆λ(j), however, hinders the construction of a complete hierarchical scheme.

This dependency can be removed by noticing the inherent self-similarity of MCMC stages: A suc-
cessful MCMC follow-up stage ends up with a set of samples around a prominent global maximum, the
fine structure of which is underresolved because of the chosen coherence time. By progressing to the
next stage, this fine structure gets resolved and the MCMC zooms in further towards the parameter-
space maximum. The setup of a coherence-time ladder is simply a problem of minimizing the num-
ber of stages to reduce computing cost while maintaining sufficiently big underresolved regions for the
MCMC follow-up to properly sample the region of interest. This condition can be simply expressed as
N (T

(j)
coh,∆λ

(j+1)) ≃ 1; hence, comparing consecutive stages factors out the problematic dependency and
the hierarchical scheme can be constructed by solving the recurrence

N ∗ ≃
N
(
T

(j+1)
coh ,∆λ(j+1)

)

N
(
T

(j)
coh,∆λ

(j+1)
) =

√
g(T

(j+1)
coh )

√
g(T

(j)
coh)

(4.11)

given T (0)
coh and N ∗. A numerical solver for Eq. (4.11) is included in the PyFstat package [34]. Construct-

ing the coherence-time ladder as proposed by [32] makes use of the so-called SuperSky metric [60, 61] to
compute the parameter-space volume element. This metric is numerically well-conditioned, but requires
Tcoh ≳ 1 day.

Alternatively, we derive an equivalent coherence-time ladder by considering the parameter-space
volume reduction from one stage to the next. Let us define

γ(j+1) =
Vol

(
∆λ(j)

)

Vol
(
∆λ(j+1)

) (4.12)

as the parameter-space volume shrinkage from stage j to stage j + 1. In a practical application, this
quantity can be computed by comparing the volume containing a certain amount of posterior probability
from two consecutive stages.

Eq. (4.10) can now be re-expressed as

1 =
N (T

(j+1)
coh ,∆λ(j+1))

N (T
(j)
coh,∆λ

(j))
, (4.13)

and Eq. (4.11) is generalized by including Eq. (4.12)

γ(j+1) =

√
g(T

(j+1)
coh )

√
g(T

(j)
coh)

, (4.14)

where we can recognize γ(j+1) as a generalized version of the refinement factor γ introduced in Eq. (73)
of [62] to account for the template bank refinement from a semicoherent stage to a fully-coherent one.
To fully recover Eq. (4.11), we simply set γ(j+1) = N ∗ in every stage j.

According to this derivation, constructing a coherence ladder is equivalent to imposing a ratio of
posterior volume shrinkage. For example, choosing N ∗ ≃ 104 is equivalent to imposing an overall
volume shrinkage of γ ≃ 104 (i.e. posterior volume is a ten-thousandth fraction of the prior volume) at
each step of the ladder. As a result, the behaviour of an MCMC stage is dependent upon its capability
to fulfill the required shrinkage rate.
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4.3 Evaluating the hierarchical follow-up with a Bayes factor
A multi-stage MCMC follow-up analyzes CW outliers by converging towards parameter-space regions
with a high posterior probability. After each stage, coherence time is increased, breaking up under-
resolved regions into smaller ones and allowing the MCMC to further narrow down the parameters
associated to the loudest outlier. We are interested in evaluating the significance of the loudest tem-
plate resulting from the multi-stage follow-up by comparing its actual fully-coherent F-statistic to the
expected value predicted by a previous stage of the ladder.

We construct a new Bayes factor for this comparison, using the fully-coherent F-statistic of the
loudest candidate of the MCMC, 2F̃∗, in order to quantify the support for the presence or lack of a CW
signal in the data. Following the definition in Eq. (4.2),

lnB∗
S/N = ln

P(2F̃∗|HS)

P(2F̃∗|HN)
, (4.15)

where the hypotheses HS and HN correspond to the presence or lack of a signal, respectively. As
discussed in Sec. 4.3.1, the use of extreme value theory allows us to formulate HN such that it is
not restricted to Gaussian noise, but includes any exponentially-bounded distributions with unbounded
domain. The following subsections are devoted to deriving the probability distributions under each of
these hypotheses.

4.3.1 Noise hypothesis
The noise hypothesis HN ascribes the obtained value of 2F̃∗ to pure noise. Under the presence of
Gaussian noise, the coherent F-statistic follows a chi-squared distribution with 4 degrees of freedom1,
2F̃ ∼ χ2

4. If we consider the resulting MCMC samples as a template bank {λ}, it is clear that 2F̃∗ =
maxλ∈{λ} 2F̃(λ) and the corresponding probability distribution is that of the maximum over a certain
number of templates n [63]:

P(max 2F̃) = n · χ2
4(max 2F̃) ·

[∫ max 2F̃

0

dξ χ2
4(ξ)

]n−1

, (4.16)

where χ2
4 denotes the probability density function. The argument equally holds for the case of the

semicoherent F-statistic; in that case, however, the number of degrees of freedom of the chi-squared
distribution would be 4Nseg.

By construction, the effective number of templates in a CW template bank is different from the
actual number of templates. This is because template banks are set up such that no parameter-space
point is further than a certain mismatch m from a template in the bank, implying a certain degree
of correlation among neighbouring templates [56]. The problem of estimating the effective number of
templates in a template bank has not found a definitive solution in the CW literature.

A common approach, see e.g. [64], is to evaluate the template bank on several realizations of Gaussian
noise to numerically sample the probability distribution of the loudest outlier; the effective number
of templates is then obtained by fitting n from Eq. (4.16) to the data. Another approach, firstly
proposed in [65], splits the results of a wide parameter-space search into disjoint partitions such that
they are equivalent to different realizations of a smaller search. The fraction of effective templates can be
fitted using Eq. (4.16) to the loudest outlier per partition, obtaining n through extrapolation. Further
developments on this method proposed a non-parametric ansatz to directly estimate the distribution of
the loudest candidate of a search [66].

Here we will use a solution based on extreme value theory, which describes the three possible asymp-
totic distributions followed by the maximum of n independent trials according to the tail of their indi-
vidual probability distribution. Short-scale correlated variables, such as the ones arising in the search
for CW signals, are also covered by the theory [67]. The family of three distributions, usually referred
to as the generalized extreme value distribution, is parametrized by a single parameter c ∈ R (aside
from the location and scale parameters), and encompasses every possible max-stable distribution: the

1We recall for the sake of consistency with the statistics literature that a chi-squared distribution with ν degrees of
freedom corresponds to a Gamma distribution with shape parameter k = ν/2 and scale parameter θ = 2.
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Figure 4.1: Distribution of the maximum 2F value of a template bank obtained from
its evaluation at No = 600 different off-sourced right ascensions, excluding 90◦ around
the sky position of the outlier of interest. The template bank corresponds to MCMC
samples from the fully-coherent stage follow-up of a simulated signal in Gaussian noise.

The solid line represents the fit of a Gumbel distribution.

maximum value of a set of random variables following a generalized extreme value distribution follows
itself a generalized extreme value distribution of the same class, albeit with different parameters. Each
of the three possible distributions is related to c being positive, null or negative, and encloses a different
set of probability distributions in its domain of attraction [68, 69, 70].

For our CW application, we focus on the case c = 0, also known as the Gumbel distribution

Gumbel(ξ;µ, σ) =
1

σ
exp

[
−
(
ξ − µ

σ

)
− e−(

ξ−µ
σ )
]
, (4.17)

where µ and σ are its location and scale parameters, respectively. The domain of attraction of this
distribution comprises a variety of exponentially bounded distributions, including the chi-squared distri-
bution. A similar procedure could be carried out for the other two families c ̸= 0, including power-law
and finite tails, if the behavior of the background noise required so. This argument is consistent with
the empirical proposal of [71].

As noted in Appendix D of [53], the presence of correlated templates renders Eq. (4.16) unsuitable
to describe the background noise distribution of CW searches. This is because the family of Gumbel
distributions spanned by Eq. (4.16) as n → ∞ has a fixed scale parameter σ = 2. The inclusion of
correlated templates makes the underlying distribution deviate from a chi-squared [72], but exponential
tails still allow the distribution of the maxima to be described by a Gumbel distribution but with σ ̸= 2.
Further discussion on this topic is presented in Appendix 4.A.

As a result, we construct P(2F̃∗|HN) by fitting both the location and scale parameters of a Gumbel
distribution to the background distribution associated to 2F̃∗

P(2F̃∗|HN) =
1

σN
exp

[
−
(
2F̃∗ − µN

σN

)
− e

−
(

2F̃∗−µN
σN

)]
. (4.18)

This approach has the advantage of circumventing the computation of an effective number of templates
by directly using the asymptotic distribution, the functional form of which is robust as long as the
individual distribution tails fall off exponentially. The typical number of templates evaluated in an
MCMC follow-up is consistent with a good convergence of the maximum distribution towards a Gumbel
[73]. Further discussion on the suitable application of extreme value theory to evaluate the loudest
outlier of a gravitational-wave search will be presented elsewhere [74].

To estimate the scale and location parameters of the background distribution µN, σN, we apply the
off-sourcing procedure, the effectiveness of which was studied in [75]. Off-sourcing consists in evaluating
the F-statistic on a template bank whose sky positions have been purposely shifted with respect to
that of the outlier of interest. This blinds the detection statistic to the outlier under analysis while
still sampling the same background distribution from the dataset. Incidentally, this takes into account
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template-bank correlations induced by non-Gaussian noise components. These correlations do not arise
due to different templates sampling the same spectrogram data (i. e. overlapping frequency-evolution
tracks) [65, 25], but due to the presence of correlated spectrogram data spanning different iso-mismatch
ellipsoids in the parameter space. The former kind is fundamental in the sense that it is independent
of the background; the latter is entirely dependent upon the observed data: the wider the bandwidth of
the disturbance, the lower the number of effective independent templates.

In our concrete application, we produce No = 600 off-sourced template banks by randomly shifting
the template’s right ascension (azimuthal spherical angle), excluding a 90◦ region around the sky position
of interest. The declination (polar spherical angle) is unchanged in order to maintain a constant level of
sensitivity in terms of F-statistic values. Fig. 4.1 shows an example of a background noise distribution
obtained through this procedure.

The evaluation of off-sourced template banks represents the main contribution to the computing cost
of the follow-up. The small number of outliers evaluated in this work allowed us to evaluate a set of
off-sourced samples for each of them. For the case of a large-scale follow-up, however, one could benefit
from the general properties of the Gumbel distribution to re-use a set of Gumbel parameters for different
parameter-space regions, lowering the overall computing cost.

4.3.2 Signal hypothesis
The presence of a signal is characterized by its (squared) signal-to-noise ratio (SNR) ρ2, which gauges the
(squared) amplitude of a signal against that of the background noise [38, 42, 9, 47]. Exact expressions for
ρ2, which include amplitude-modulation effects due to the antenna pattern of the detectors, are available
in [38, 52, 53]. The effect of this parameter on the probability distribution of the F-statistic is to shift
the chi-squared distribution towards a non-central chi-squared distribution, 2F ∼ χ2

4Nseg
(ρ2), were the

fully-coherent case corresponds to Nseg = 1.
As previously discussed, we are interested in comparing the consistency of 2F̃∗ to the values 2F̂∗

obtained in a previous stage of the ladder. Any semicoherent stage of the ladder can be used to construct
a signal hypothesis; as discussed in more detail in Sec. 4.5.1, we select the second-to-last stage in order
to benefit from the tighter constraints imposed by the signal model. For the remainder of this section
we simplify our notation by removing the asterisks, assuming every F-statistic value refers to that of
the loudest candidate from the fully-coherent stage.

We construct P(2F̃ |HS) following the developments of [33]. The basic idea goes as follows: Assume
a single-template search perfectly matching a signal is performed. The presence of a signal in the data,
characterized by ρ2, produces an F-statistic value which depends only on ρ2 and the number of coherent
segments Nseg. More specifically, obtaining a value of 2F̂ on Nseg segments automatically produces
an estimate on ρ2, which, in turn, yields an estimation of the expected 2F̃ that will be retrieved after
performing a fully-coherent search.

The exact flow of information from the semicoherent to the coherent statistic can be readily expressed
by marginalizing over the unknown non-centrality parameter ρ2

P(2F̃ |HS) =

∫ ∞

0

dρ2 P(2F̃ |ρ2, 2F̂ , Nseg) P(ρ
2|2F̂ , Nseg) ∝

∫ ∞

0

dρ2 P(2F̃ |ρ2) P(2F̂ |ρ2, Nseg) P(ρ
2) ,

(4.19)

where constant factors with respect to 2F̂ and Nseg were omitted and the same data is being used to
compute both statistics.2 The choice of a prior distribution on ρ2 depends on the type of search carried
out; for a wide parameter-space search such as the ones in which we are interested it is enough to consider
an improper uniform prior.

In going to the second line in Eq. (4.19) we have assumed no dependency between 2F̂ and 2F̃ in the
sense of P(2F̃ |ρ2, 2F̂ , Nseg) = P(2F̃ |ρ2). This relation holds exactly if one computes each statistic on
a different dataset, corresponding to the fresh data mode in [8]. On the other hand, if both statistics
are evaluated on the same data, it represents a conservative choice in the sense of producing a wider
distribution. This is because it neglects any correlations between 2F̂ and 2F̃ . The lack of a simple way
of quantifying correlations amongst said statistics in a general case justifies the safe approach of fresh
data mode even though the same data is actually being used [33].

2This corresponds to κ = 1 in the notation of [33].
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Parameters in Gaussian noise

µS (3− 10)× 103

µN 10− 20
σS 30− 80
σN 2− 3

Table 4.1: Typical location and scale parameters obtained from an injection campaign
on Gaussian noise with an observing time of Tobs = 9 months. Signal location and scale
parameters where computed using the second-to-last stage of the coherence-time ladder.

See Sec. 4.5 for further details.

The functional forms of the distributions in Eq. (4.19) have already been discussed in this subsection:

P(2F̃ |ρ2) = χ2
4(2F̃ ; ρ2) , (4.20)

P(2F̂ |ρ2, Nseg) = χ2
4Nseg

(2F̂ ; ρ2) . (4.21)

It is useful to further simplify Eq. (4.19) to a closed analytical form. A proxy value for ρ2 can be obtained
by simply subtracting the expected noise-only value of a chi-squared distribution with 4Nseg degrees of
freedom, namely ρ20 = 2F̂ − 4Nseg. Assuming ρ20 ≫ 1, chi-squared distributions can be replaced by
Gaussian distributions [76, 77] and Eq. (4.19) can be further replaced by a Gaussian, the peak of which
corresponds to µS = ρ20. We refer to [33] for further details on this derivation and simply quote the final
result

P(2F̃ |2F̂ , Nseg) = Gauss(2F̃ ;µS, σS) , (4.22)

where
µS = ρ20 ,

σ2
S = 8 · (1 +Nseg + ρ20) .

(4.23)

These expressions are useful to discuss the qualitative behavior of our newly proposed Bayes factor in
different signal regimes. It will also be applicable in the analysis of software-injected signals in Sec. 4.5.1.
However, due to the regime in which real-data outliers are typically found, we do not apply this Gaussian
approximation to their analysis; instead, we numerically evaluate the full version of Eq. (4.19).

4.3.3 Bayes factor
We will now construct an overall Bayes factor to compare the two hypotheses supporting the presence
or lack of a signal in a given stream of data. The distribution associated to the noise hypothesis, given
in Eq. (4.18), is constructed by fitting the location and scale parameters of a Gumbel distribution to
background data samples obtained through off-sourcing. The noise hypothesis can be defined in terms
of said parameters, namely HN = {µN, σN}, and the resulting distribution is

ln P(2F̃∗|HN) = −
(
2F̃∗ − µN

σN
+ e

−
(

2F̃∗−µN
σN

)
+ lnσN

)
. (4.24)

The signal hypothesis compares the statistical behavior of the loudest candidate across different stages
of the coherence-time ladder. We state the signal hypothesis as HS = {µS, σS} and, to simplify the
following discussion, we write everything in this section using the Gaussian approximation given in
Eq. (4.22):

ln P(2F̃∗|HS) = −1

2



(
2F̃∗ − µS

σS

)2

+ ln 2πσS


 . (4.25)

We note again that this approximated formula will not be applied to real-data candidates, as they are
not located within the strong signal regime. Instead, we will then numerically evaluate Eq. (4.19).
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Figure 4.2: Illustration of different regimes in which an outlier could be located.
Shaded regions represent probability distributions associated to the indicated hypothe-

sis. Dashed vertical lines refer to the enumerated labels in the text.

It is useful to introduce the following auxiliary variables

ξS =
2F̃∗ − µS

σS
, ξN =

2F̃∗ − µN

σN
, (4.26)

which measure the discrepancy of the retrieved 2F̃∗ value with respect to the most probable values under
the signal and noise hypothesis, respectively.

Combining Eqs. (4.24) and (4.25) we obtain an explicit expression for Eq. (4.15)

lnB∗
S/N = −1

2
ξ2S + ξN + e−ξN + ln

σN√
2πσS

. (4.27)

Example values of the involved quantities for the use case later in this paper are summarized in Table
4.1. We proceed to analyze the general behavior of this new statistic under different conditions.

The operating point of wide parameter-space searches is generally such that outliers being followed
up are significant enough so that ξN > 0, in the sense that a more sensitive method can be applied once
the parameter-space region has been narrowed down. It is also reasonable to expect µS > µN, although
this assumption may not be valid in case of very deep searches.

We distinguish three interesting regimes of behavior of Eq. (4.27), labeled in Fig. 4.2 using dashed
vertical lines:

a) The candidate is consistent with a noise fluctuation, returning ξN < ξS, hence lnB∗
S/N < 0 and the

signal hypothesis is disfavored.

b) The candidate is consistent with the signal hypothesis ξS ∼ 0; hence, the dominant contribution
to the Bayes factor is given by the discrepancy with respect to the noise hypothesis lnB∗

S/N ∼ ξN.
This is the expected behavior of a detection statistic: the favoring towards the signal hypothesis
is directly proportional to the discrepancy with respect to background noise.

c) The candidate is beyond the region expected by the signal hypothesis, meaning lnB∗
S/N ≃ − 1

2ξ
2
S +

ξN. This novel behavior is due to the chosen signal hypothesis: As opposed to the F-statistic’s
signal hypothesis, which results in a monotonic function of SNR, Eq. (4.19) establishes a particular
region of interest centered at ξS = 0, penalizing deviations towards both sides of it.

A complementary description of Eq. (4.27) is shown in Fig. 4.3, where lnB∗
S/N is shown on the (ξN, ξS)

plane. These two variables, which represent the discrepancy of 2F̃∗ with respect to the noise and signal
hypothesis, are related by

ξN =
σS

σN
ξS +

µS − µN

σN
, (4.28)

meaning that once {µS, σS} and {µN, σN} are determined, the detection statistic is restricted to a straight
line in (ξN, ξS). This description also clarifies the behavior of lnB∗

S/N in case b) of Fig. 4.2. In said case,



4.4. Follow-up of outliers in LIGO O2 data 77

−2 0 2 4 6 8 10
ξN

−4

−2

0

2

4

ξ S
−15

−12

−9

−6

−3

0

3

6

9

lo
g
B∗ S

/N

Figure 4.3: Bayes factor in terms of the discrepancy of an outlier with respect to the
noise and signal hypothesis as described in Eq. (4.27). Numerical values are computed
using σN = 3 and σS = 30, consistent with Table 4.1. This representation will be

referred to as the (ξN, ξS) plane.

ξS ∼ 0 and then lnB∗
S/N ∼ (µS − µN)/σN, so that it is the combined action of a high SNR (µS > µN)

and a low discrepancy with respect to the expected value according to previous stages (ξS ∼ 0) what
decides on the consistency of a CW candidate with respect to the signal or noise hypothesis.

A summary of the construction and practical computation of lnB∗
S/N is shown as a flowchart in

Fig. 4.4.

4.4 Follow-up of outliers in LIGO O2 data
We now present the first application of a multi-stage MCMC-based hierarchical follow-up on real data
by studying a set of 30 outliers obtained by different CW searches on Advanced LIGO O2 data. These
are final-stage outliers resulting from the application of a complete search pipeline, including a set of
vetoes depending upon the particularities of each search.

Section 4.4.1 briefly describes the main traits of the searches from which outliers are collected. The
complete set of outliers to be followed up is reported in Table 4.2. The follow-up setup is described in
Sec. 4.4.2.

4.4.1 Continuous-wave search outliers from O2 data
All-sky Falcon search

The Falcon pipeline [13] is designed to survey wide parameter-space regions using a so-called loosely
coherent approach [54, 78, 79], increasing its robustness against small deviations from the standard CW
signal model [54].

We are interested in 18 outliers reported in two all-sky searches targeting two different frequency
bands of the Advanced LIGO O2 dataset: mid frequency (500 − 1700 Hz) [80] and high frequency
(1700 − 2000 Hz) [81]. These searches intended to unveil unknown low-ellipticity sources by analyzing
a restricted set of spindown rates (|f1| ≲ 3 · 10−12 Hz/s). These outliers are the result of a four-stage
search using four different coherent times, namely 12, 24, 48 and 144 hours. After each stage, only those
templates over a specified threshold were further followed up.

An additional low-frequency Falcon search was recently reported in [82]. As will be shown in Sec. 4.5.2
regarding low-frequency outliers from the other searches discussed below, the greater number and variety
of instrumental artifacts in the low-frequency data somewhat hinder the effectiveness of this first incar-
nation of our follow-up method, as they are not directly addressed by the noise hypothesis. Therefore,
we leave a re-analysis of the new low-frequency Falcon outliers for future work.
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Figure 4.4: Flowchart ilustrating the computation of lnB∗
S/N for a CW outlier.
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Directed Einstein@Home search

Einstein@Home is a large-scale computing framework based on the volunteer-computing platform BOINC
[83] on which the Global Correlations Transform pipeline [84, 85, 86], intended to perform deep (very
sensitive) searches across wide parameter-space regions, is deployed. This pipeline is flexible enough so as
to be reconfigured into a directed pipeline, using astrophysical information obtained by electromagnetic
means to restrict the sky positions to search on.

We are interested in the surviving outlier from a directed search for CWs from central compact
objects in three supernova remnants [64]. Said outlier is associated to the central compact object known
as 1 WGA J1713.4-949 [87] and located in SNR G347.3-05; for consistency with [64], we will simply refer
to it as J1713.

This outlier is a sub-threshold candidate from an earlier Einstein@Home search on O1 data directed
towards the same supernova remnants [29], which was then re-analyzed using O2 data. The statistical
basis of the re-analysis was similar to the techniques explained in Sec. 4.3.2, comparing the significance
of a candidate on different data streams with respect to the expected significance deduced from the
initial analysis. As reported in [64], the outlier under analysis is inconsistent with Gaussian noise, but
cannot be associated to the signal hypothesis either.

Fomalhaut b Viterbi search

The Viterbi method spans a family of search pipelines which use a Hidden Markov model (HHM)
to describe the frequency evolution of a CW signal [88, 71, 89, 90]. Such a signal model is able to
incorporate stochastic contributions into the analysis (e.g. timing noise or spin-wandering due to the
presence of an accreting companion [91]).

Ref. [92] reports on a Viterbi search for CWs directed at Fomalhaut b, an astrophysical object
whose exact nature is still surrounded by debate [93, 94, 95, 96]. This search complements a previous one
performed on Advanced LIGO O1 data using an F-statistic search assuming the standard deterministic
evolution of a CW [97].

The search setup assumes spindown to be the main contribution to the frequency evolution, consid-
ering timing noise as a sub-dominant component. This is done by imposing a biased random walk as a
HMM, in the sense that evolution towards higher frequencies is forbidden3. The search was performed
using Tcoh = 5 days and surviving candidates were sieved though a set of consistency vetoes. In the end,
a single outlier was reported for further exploration.

H.E.S.S. Viterbi search

Another implementation of the Viterbi pipeline, similar in scope and assumptions to that mentioned
above, was used to perform a search on a set of ten pulsars observed by very high-energy γ-ray surveys
in [98].

The search looks for CW emission at once, twice and 4/3 of the rotational frequency of the targeted
pulsars in order to address several emission mechanisms [4]. After assessing the sub-dominant role of
spin-wandering on frequency evolution, a biased random walk is implemented in a similar manner to
[92], selecting the maximum Tcoh allowed by the spindown rate of each pulsar so that the frequency
evolution is within the range of the HMM.

After applying a set of consistency vetoes, twelve outliers are reported for further exploration; we only
considered ten of them as independent follow-up targets since for two pairs of outliers, the corresponding
prior parameter-space regions significantly overlap.

4.4.2 Follow-up setup
We demonstrate the general application of an MCMC-based multi-stage follow-up to a set of real-data
outliers regardless of the pipeline producing them. To do so, outliers will be analyzed ignoring any
information gathered from any of the vetoes or follow-up stages reported in their respective searches.

The second Advanced LIGO observing run [99, 100] comprises nine months of data taken by the two
Advanced LIGO detectors H1 (Hanford) and L1 (Louisiana) [2]. The employed time segments are those

3This condition drastically reduces the space of possible frequency evolutions contemplated by the HMM model, easing
the application of a model-based pipeline to follow up or estimate the exact parameters of any resulting candidates.
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Outlier ID Search f0 [Hz] f1 [Hz/s] f2 [Hz/s2] α [rad] δ [rad] tref [GPS] Ref.

Falcon 4 High-frequency Falcon 1891.756740 −8.22 · 10−12 — 2.986956 1.005798 1183375935 [81]
Falcon 5 High-frequency Falcon 1892.991060 −1.08 · 10−12 — 3.779161 -0.816273 1183375935 [81]
Falcon 15 Mid-frequency Falcon 900.218805 −2.20 · 10−12 — 2.084418 -0.102264 1183375935 [80]
Falcon 19 Mid-frequency Falcon 514.148927 1.60 · 10−12 — 2.170421 0.092501 1183375935 [80]
Falcon 23 Mid-frequency Falcon 1001.366228 4.30 · 10−12 — 1.355837 -0.770266 1183375935 [80]
Falcon 24 Mid-frequency Falcon 676.195421 2.80 · 10−12 — 3.847021 -0.101619 1183375935 [80]
Falcon 25 Mid-frequency Falcon 744.219166 2.40 · 10−12 — 3.344985 0.612566 1183375935 [80]
Falcon 29 Mid-frequency Falcon 512.490814 1.20 · 10−12 — 2.468975 -0.043050 1183375935 [80]
Falcon 31 Mid-frequency Falcon 983.151889 2.20 · 10−12 — 3.561119 0.017979 1183375935 [80]
Falcon 34 Mid-frequency Falcon 886.880087 −1.60 · 10−12 — 4.912788 -0.703498 1183375935 [80]
Falcon 35 Mid-frequency Falcon 988.373199 1.20 · 10−12 — 0.981835 0.778338 1183375935 [80]
Falcon 39 Mid-frequency Falcon 514.291681 3.20 · 10−12 — 0.569033 -0.128357 1183375935 [80]
Falcon 40 Mid-frequency Falcon 831.988473 4.00 · 10−13 — 4.917347 1.160537 1183375935 [80]
Falcon 41 Mid-frequency Falcon 873.524608 4.00 · 10−13 — 0.618991 -0.189450 1183375935 [80]
Falcon 42 Mid-frequency Falcon 895.421949 3.60 · 10−12 — 5.105590 0.249163 1183375935 [80]
Falcon 43 Mid-frequency Falcon 1224.745666 −2.16 · 10−12 — 1.715268 0.196184 1183375935 [80]
Falcon 45 Mid-frequency Falcon 698.728032 −2.00 · 10−13 — 4.557347 -0.724141 1183375935 [80]
Falcon 46 Mid-frequency Falcon 1095.557400 −1.08 · 10−12 — 4.354664 -0.260254 1183375935 [80]
J1713 Einstein@Home 368.801379 −4.37 · 10−9 5.9 · 10−19 4.509371 -0.695189 1131943508 [64]
Fomalhaut b Fomalhaut b Viterbi 876.503400 −1.00 · 10−12 — 6.011130 0.517000 1167545066 [92]
J0534+2200 H.E.S.S. Viterbi 29.813738 −3.77 · 10−10 — 1.459675 0.384225 1164556817 [98]
J1420–6048 H.E.S.S. Viterbi 14.511294 −1.70 · 10−11 — 3.753057 -1.061240 1164556817 [98]
J1420–6048 H.E.S.S. Viterbi 19.515033 −2.30 · 10−11 — 3.753057 -1.061240 1164556817 [98]
J1420–6048 H.E.S.S. Viterbi 29.522611 −3.50 · 10−11 — 3.753057 -1.061240 1164556817 [98]
J1718–3825 H.E.S.S. Viterbi 17.503470 −3.00 · 10−12 — 4.530116 -0.670585 1164556817 [98]
J1831–0952 H.E.S.S. Viterbi 14.501823 −1.00 · 10−12 — 4.850147 -0.172213 1164556817 [98]
J1831–0952 H.E.S.S. Viterbi 15.401223 −1.00 · 10−12 — 4.850147 -0.172213 1164556817 [98]
J1831–0952 H.E.S.S. Viterbi 19.999146 −2.00 · 10−12 — 4.850147 -0.172213 1164556817 [98]
J1849–0001 H.E.S.S. Viterbi 26.308209 −9.00 · 10−12 — 4.850147 -0.000375 1164556817 [98]
J1849–0001 H.E.S.S. Viterbi 26.341209 −9.00 · 10−12 — 4.850147 -0.000375 1164556817 [98]

Table 4.2: CW search outliers of interest as reported by their original searches.
H.E.S.S. Viterbi outliers will be further referred to by including their corresponding

frequency.

Search Estimated D95%
[
Hz−1/2

]

High-frequency Falcon 55 — 65
Mid-frequency Falcon 45 — 55
Directed Einstein@Home∗ 80 — 90 (75 — 85)
Fomalhaut b Viterbi 45 — 55
H.E.S.S. Viterbi 45 — 55

Table 4.3: Estimated ranges of 95% efficiency sensitivity depths achieved by each of
the searches according to their reported results. The depth marked with an asterisk
corresponds to a 90% efficiency instead. Values in parentheses refer to the sensitivity

depth achieved by the original search producing the outlier [29].
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Stage 0 1 2 3 4

Nseg 500 250 55 5 1
Tcoh [days] 0.5 1 5 55 270

Table 4.4: Coherence-time ladder constructed using N ∗ = 104 and including an initial
stage of Tcoh = 0.5 days before imposing Tcoh = 1 days and applying the SuperSky met-
ric. The results are independent of the parameter-space region at which the SuperSky

metric was evaluated.

Hyperparameter Value

Parallel chains 3
Walkers per chain 100
Burn-in & Production steps 250 + 250

Table 4.5: MCMC hyperparameter choices for each stage of the follow-up. The number
of parallel chains equals the number of temperatures at which the likelihood is being

sampled, following the recommendations in [58, 32].

with the “all” tag in [101]. The dataset was divided into segments with a duration of TSFT = 1800 s
in which Fourier transforms were computed as explained in [20]. We take the observing time to be
Tobs = 270 days in order to convert the number of segments of a stage Nseg to a coherence time as
Tcoh = Tobs/Nseg.

Our follow-ups are conducted assuming a CW signal model with two spindown components. Since
the second spindown component is only reported by the Einstein@Home search, we assume it to be
compatible with a null value for the other outliers and apply a canonical uncertainty of δf2 = 2 ·(
Tcoh · T 2

obs
)−1 [9]. As discussed in [102], this increases the robustness of a search method against

unmodeled physics, such as neutron star glitches, due to an increase of the available parameter-space
correlations.

Table 4.3 collects the approximated sensitivity depth achieved by each search according to their
reported results. A comparison to the results in Figs. 8 and 9 of [32], which compute the detection
efficiency of a four-stage MCMC follow-up starting at Tcoh = 1 day, places the outliers within the
effective region of the follow-up procedure.

Most wide parameter-space searches currently operate at Tcoh ∼ O(hours). As demonstrated in
[30, 21], CW candidates with uncertainties at such short coherence times can be successfully recovered
by an MCMC follow-up at Tcoh = 0.5 days.

We construct a hierarchical follow-up by imposing a first stage using Tcoh = 0.5 days followed by a
second stage using Tcoh = 1 day. Further stages are constructed by means of Eq. (4.14) using N ∗ = 104.
The resulting coherence-time ladder, which is independent of the parameter-space region and the prior
specification due to the locality of the analysis, is collected in Table 4.4. As per the previous discussion
on the sensitivity of the considered searches, this ladder can be seamlessly applied to every one of the
outliers under analysis.

Table 6.7 specifies the hyperparameter setup of every MCMC stage, following the setups employed
in [30, 21]. As demonstrated in Sec. 4.5.1, this setup suffices to successfully follow up CW candidates
within the probed sensitivity range.

The choice of initial priors is directly related to the outlier’s uncertainty returned by each of the
analysis pipelines. Pipelines like Falcon or Einstein@Home return a well-determined parameter-space
region in which the outlier was found. The Viterbi pipelines, on the other hand, return only the
frequency-evolution track of each candidate, which can then be related to a certain parameter-space
region if the stochastic contributions are sub-dominant. The scope of a search also affects the prior
setup, as searches directed towards a particular sky position (such as the ones performed using Viterbi)
allow us to place a narrower prior on the sky position of the outlier. It is recommended in [32] to choose
a flat prior with fixed bounds containing the outlier’s parameters. Instead, we use a set of Gaussian
priors centered at the outlier’s parameters with scale parameters corresponding to the uncertainty in
each dimension. After each MCMC step, we re-center the priors on the median value of the resulting
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posterior distribution, taking half of the (centered) 90% credible interval as the new scale parameter,
and re-sample the initial state of the MCMC ensemble. This particular setup ensures a fresh start-up at
each stage of the ladder, preventing spurious samples dissociated from the ensemble to pollute the final
results. Moreover, the use of unbounded priors prevents the follow-up from missing the true parameters
of an outlier due to the presence of parameter-space correlations [103, 47].

The uncertainty associated to Falcon outliers is specified in [80] as

δf0 = 5× 10−5 Hz ,

δf1 = 1× 10−12 Hz/s ,
δθ = 0.06 Hz/f0 rad ,

(4.29)

where δθ refers to the sky position of an outlier projected onto the ecliptic plane. These uncertainties are
conservatively lower than the canonical parameter-space resolution defined in [9] for a coherence time of
Tcoh = 0.5 days, meaning their corresponding parameter-space size is within acceptable values to ensure
an effective MCMC stage [21, 30]. The Einstein@Home search reports uncertainties corresponding to a
coherence time of several months; since we start our follow-up at a lower coherence time, we used the
same set of uncertainties as for the Falcon follow-up Eq. (4.29). Viterbi outliers were not reported
as a parameter-space point, but as a frequency band on which a significant frequency-evolution track
was found; since both searches were targeted at a particular sky position, we reduced the sky position
uncertainty and increased the frequency uncertainty by the same factor in order to cover all possible
frequencies at a similar parameter-space size.

4.5 Results
Before presenting results on the O2 outliers in Sec. 4.5.2, here we first describe an injection campaign in
simulated Gaussian noise to demonstrate the efficacy of the follow-up procedure and calibrate a threshold
on the newly introduced Bayes factor.

4.5.1 Injections in Gaussian noise
We characterize the behavior of lnB∗

S/N using three sets of 100 artificial signals at different signal
strengths. These are injected into Gaussian noise data compatible with the O2 observing run character-
istics, i.e. simulating data for both Advanced LIGO detectors and with a duration of Tobs = 9 months,
using lalapps_Makefakedata_v5 [104]. The actual O2 data stream covers 60% of the duration of the
run Tobs due to down time in the detectors (actual fractions are 65.3% and 61.8% for the H1 and L1,
respectively) [99]. Since SNR scales as the square root of observing time, this would reduce the actual
SNR of a signal to a fraction of 77%. For the simulated Gaussian noise, we set the average amplitude
spectral density to a fiducial value of

√
Sn = 10−23 Hz−1/2. We injected the artificial signals at a fiducial

frequency of 100 Hz, uniformly spread across the whole sky and log-uniformly distributed in spindown
parameter f1 within [−10−8,−10−11] Hz/s. The particular choice of a frequency band does not affect
the results of this analysis, since its effects are automatically taken into account by parameter-space
resolutions.

The CW amplitude h0 is fixed in terms of the sensitivity depth [16, 53]

D =

√
Sn

h0
. (4.30)

Additionally, we define an effective sensitivity depth by explicitly including the effects of the cosine of
the inclination angle ι [105]:

DEff =
D√

cos4 ι+ 6 cos2 ι+ 1
. (4.31)

We selected three depth values, enumerated in Table 4.6, bracketing the estimated 95% efficiency depth
of the analyzed pipelines. The rest of the amplitude parameters were randomly drawn from uniform
distributions [106].
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Depth
[
Hz−1/2

]
Efficiency (%)

40 97± 2
60 98± 1
80 96± 2

Overall 97± 1

Table 4.6: Detection efficiencies for each set of 100 injections. An injection was labeled
as detected if the final-stage posterior probability contained the injection parameters in

its support. Error bars correspond to binomial errors.
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Figure 4.5: Distribution of |ξS| for the complete set of detected injections using differ-
ent semicoherent stages, namely Nseg = 500 and Nseg = 5, as the reference to compute

µS and σS.

We start by estimating the detection efficiency of the follow-up. To do so, we run the full hierarchical
follow-up as specified in the previous section and count an injection as “detected” if the injection param-
eters are within the final-stage posterior probability support. This criterion ensures the CW signals are
strong enough to guide the MCMC ensemble towards the relevant parameter space region, preventing a
signal from being lost. Results are reported in Table 4.6. As expected from previous analyses in [32], we
obtain a detection efficiency above 95% across the sensitivity range, meaning the follow-up is a suitable
tool to further analyze the selected set of outliers.

The computation of lnB∗
S/N requires a particular semicoherent step from the ladder to be selected

as the one from which the expected fully-coherent distribution will be propagated. As discussed in
Sec. 4.3.2, using longer coherence times imposes a more restrictive signal model, reducing the number
of outliers due to the presence of detector artifacts and increasing the significance of signal candidates
(see e.g. Figure 6 of [32]). Fig. 4.5 shows the obtained distribution of signal-hypothesis discrepancies
|ξS| for the complete set of detected injections with respect to two different stages. The use of a lower
number of segments (i.e. a longer coherence time) yields a tighter consistency with respect to the
expected distribution. We decide to carry out the analysis by taking the second-to-last stage of the
ladder (Nseg = 5) as the reference from which the expected fully-coherent F-statistic distribution will
be computed.

Figure 4.6 displays the distribution of injection results on the (ξN, ξS) plane, showing the discrepancy
of an outlier with respect to the noise and signal hypotheses, respectively. The configuration is such
that ξS ∼ 0 and ξN ≫ ξS, corresponding to case b) in Sec. 4.3. This means that the computation of the
signal contribution to lnB∗

S/N can be assumed to follow a Gaussian distribution and, correspondingly,
Eq. (4.27) applies. Figure 4.7 shows the Bayes factor lnB∗

S/N computed by comparing the last two stages
of the semicoherent ladder. The observed behavior lnB∗

S/N ∝ D−1
Eff can be simply explained by noting

that DEff is inversely proportional to SNR by definition [53].
This injection campaign covers the sensitivity ranges reported in Table 4.3 for all searches except one.

The Einstein@Home search differs in that it was built as a subthreshold search: the reported outlier was
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Figure 4.6: (ξS, ξN) plane for the complete set of detected injections using Nseg = 5 as
the reference stage to compute µS and σS. The horizontal axis represents the discrepancy
with respect to the noise hypothesis, while the vertical axis represents the discrepancy

with respect to the signal hypothesis.
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Figure 4.7: lnB∗
S/N computed by applying the multi-stage MCMC follow up on the

three sets of software injections. Reference values were computed with respect to the
Nseg = 5 stage and the Gaussian approximation was used to compute the signal contri-
bution. Outliers marked by a star did not display an ensemble-level volume shrinkage,

as explained in the text.
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Figure 4.8: Estimation of 90% detection-probability threshold on lnB∗
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sensitivity depths beyond the injections shown in Fig. 4.7. Each dot represents an em-
pirical estimate of the 90% detection-probability threshold using 100 simulated signals
at a fixed depth value. Error bars correspond to the bootstrap standard deviation using
200 resamples of 50 samples each. The solid line and the associated envelopes represent
a linear fit using scipy.optimize.curve_fit [107] with 1, 2, and 3 sigma uncertainties.

thoroughly scrutinized using a variety of tools, including a fully-coherent analysis on O2 data, following
a similar scheme as the one presented in this work. In order to assess the follow-up capabilities of our
proposed method, we perform a second injection campaign akin to the previous one, covering the deepest
Einstein@Home search sensitivity range. Results are reported as 90% detection-probability thresholds
in Fig. 4.8, following the approach proposed in [53]. Were any of the considered outliers due to a genuine
CW signal, the corresponding lnB∗

S/N should lie within the shaded region or higher. Based on this
argument, we set a safe decision threshold at lnB∗

S/N = 30, also accounting for the reduced SNR in the
real dataset due to detector downtime.

Lastly, we comment on the behavior of the multi-stage MCMC itself in terms of the volume shrinkage
rate introduced in Sec. 4.2.3. Figure 4.9 shows the behavior of the posterior volume of a successfully
detected injection. The quantities V(0)

prior and Vpost represent approximations to the initial prior volume
at the first stage of the ladder and the posterior volume after each of the MCMC stages. These quantities
are computed by taking the product of parameter-wise central 90% credible intervals, since we are only
interested in the overall scaling along the coherence-time ladder. The volume shrinkage shows a power-
law behavior, the exponent of which (i.e. the slope in log-log scale) should be approximately given by
log10 γ

(j+1) ∼ 4 from Eq. (4.12). The same procedure is performed on the complete set of detected
injections, collecting the power-law indices into a histogram in Fig. 4.10. The rate of volume shrinkage
accumulates a prominent peak within the order of magnitude of the expected result.

Figure 4.10 also displays a small set of injections for which the MCMC ensemble did not produce
a clear shrinkage of the (approximated) central 90% credible region, even though the true injection
parameters are contained within said region. Their corresponding lnB∗

S/N values are marked using stars
in Fig. 4.7, belonging to the weakest set of performed injections. This is a consequence of the parameter-
space structure in the vicinity of a signal [47]: The effective (squared) SNR recovered by a template falls
off as a linear function of the mismatch with respect to the true signal parameters. Strong injections,
associated to higher SNR values, are able to sustain an F-statistic above background throughout a
wider parameter-space region than weak injections. Weak injections, as a result, require tighter priors
to display a similar behavior to that of stronger injections. The fact that the ensemble is unable to focus
into a particular parameter-space region, however, is still compatible with a good recovery of lnB∗

S/N,
as for that it is only required to sample the region of interest during the production stage. This is in
fact the principle upon which the application of a single-stage MCMC follow-up as a simple veto was
based in [30, 21], and can be justified by interpreting the MCMC follow-up as being equivalent to a
search starting from a random template bank at higher mismatches than traditionally suggested in CW
searches [108, 109].
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Figure 4.9: Posterior volume shrinkage of a successfully detected software injection.
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discussed in the text.
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Figure 4.11: (ξN, ξS) plane associated to the outliers found in O2 data by the specified
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4.5.2 Follow-up of CW outliers from Advanced LIGO O2 data
We now report the results of the multi-stage MCMC-based follow-up on the set of outliers described in
Sec. 4.4.1 in terms of the obtained (ξN, ξS) values and the corresponding lnB∗

S/N.
Figure 4.11 shows each pipeline’s outliers across the (ξN, ξS) plane, quantifying their discrepancy

with respect to the noise and signal hypotheses. The bulk of outliers show discrepancies with respect to
the signal hypothesis, quantified by |ξS|, an order of magnitude larger than those displayed by software
injections in Fig. 4.6. Discrepancies with respect to background noise, quantified by ξN, are more than
an order of magnitude lower. The retrieved values of µN and σN are within the brackets obtained
in Gaussian noise, suggesting these results are not because of an elevated background noise but rather
a low SNR associated to the outliers. We note the presence of three Viterbi outliers at high values
of ξN, namely J1831-0952@19.9991Hz, J1849-0001@26.3410Hz and J1831-0952@15.4012Hz; and another
marginal pair stemming from the same pipeline in the middle ground, namely J1718-3825@17.5034Hz
and J1831-0952@14.5018Hz.

We compute lnB∗
S/N by numerically integrating Eq. (4.19) due to the regime in which outliers are

placed. Results are listed in Table 4.7 and displayed in Fig. 4.12. Five outliers score over the decision
threshold lnB∗

S/N = 30, all of them related to the H.E.S.S. Viterbi pipeline.
The first set of outliers, J1831-0952@15.4012Hz, J1831-0952@19.9991Hz, and J1849-0001@26.3410Hz,

is highlighted using circular markers in Fig. 4.12. The original search [98] ascribed them to instrumental
artifacts in the L1 detector. We confirm that to be the case for the outlier J1831-0952@19.9991Hz: the
loudest fully-coherent F-statistic recovered by our follow-up is located at f0 ≃ 20.0011 Hz, crossing
a well-known instrumental comb at both LIGO detectors [110]. For outlier J1849-0001@26.3410Hz,
we note the presence of a hardware injection (a CW-like signal simulated by direct actuation of the
interferometer mirrors, used to test calibration and analysis pipelines) at f0 ≃ 26.3396 Hz with an
amplitude corresponding to D ∼ O(1 Hz−1/2) [111, 100]. Even though the spindown and sky positions
are completely mismatched, such strong artificial signals are known to produce loud candidates across
wide parameter space regions [112, 28, 113, 114, 30]. We are unable to relate J1831-0952@15.4012Hz to
any of the listed narrow spectral artifacts in [110, 100].

A manual check of the segment-wise semicoherent F-statistic values of J1831-0952@15.4012Hz reveals
a rapid accumulation of F-statistic as the frequency evolution crosses a narrow sub-band. This kind of
behavior, shown in Fig. 4.13, is inconsistent with a CW signal and usually can be related to instrumental
artifacts, but said identification becomes more difficult at low frequencies as they are populated by a
wider variety of noise sources. As a result, outlier J1831-0952@15.4012Hz is also likely related to an
instrumental artifact.

The second group of outliers is enclosed by diamonds in Fig. 4.12. Outlier J1831-0952@14.5018Hz’s
loudest candidate is recovered at f0 ≃ 14.4953 Hz. This is consistent with a 1 Hz comb with an offset of
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Figure 4.12: lnB∗
S/N values obtained after the hierarchical MCMC follow-up of O2

outliers. Relative outlier positions in this figure are consistent with Fig. 4.11. Outliers
enclosed by circles and diamonds score a lnB∗

S/N value above 30. The outlier enclosed
by a square returns a negative value of lnB∗

S/N and is displayed as white due to the
logarithmic color scale.

0.5 Hz.4 Another harmonic of the same comb can be related to outlier J1718-3825@17.5034Hz, whose
loudest candidate is located at f0 ≃ 17.5005 Hz.

The remaining outliers from all searches return a lnB∗
S/N value below the decision threshold lnB∗

S/N =
30. For completeness, we list the parameters recovered by the final follow-up stage in Table 4.7. We
highlight outlier J1713, initially found by the Einstein@Home search and scoring below our decision
threshold. This result is consistent with the latest Einstein@Home search for J1713 reported in [115],
covering up to 400 Hz in O2 data, not finding any significant outliers.

4.6 Conclusion
We have introduced the first complete framework to analyze outliers from arbitrary CW searches using
a multi-stage MCMC-based follow-up. After demonstrating its general behavior on Gaussian noise, we
applied it to a set of 30 outliers obtained by different CW search pipelines on O2 Advanced LIGO data
[80, 81, 92, 98, 64].

The procedure constructs a Bayes factor comparing whether the behavior of the F-statistic across
different stages of the analysis is more consistent with the presence of a signal rather than with pure
noise. The expected evolution of this detection statistic as the follow-up progresses can be derived from
first principles. The noise contribution is described by applying extreme value theory to samples of
background noise data. These samples can be obtained by sampling shifted sky positions with respect
to the outliers, blinding the analysis from the presence of a signal.

The application of a multi-stage MCMC follow-up deemed 25 of the analyzed outliers as less consistent
with a standard CW signal than with background noise. The remaining five outliers passed the specified
threshold and were manually inspected. Four of them were successfully associated to known instrumental
artifacts in the Advanced LIGO detectors. The fifth outlier displays a behavior inconsistent with a CW
signal but consistent with an instrumental artifact; the exact instrumental cause, however, could not be
identified.

Although the outliers were analyzed assuming a standard signal model corresponding to an isolated
CW source, the framework presented here (and the PyFstat software used [32, 34, 59]) can be seamlessly
applied to more general models, such as sources in binary systems [30, 21], sources producing glitches
[35], and long gravitational-wave transient signals [36, 37].

4The spindown value reported by the original search is such that also positive values are covered by the initial prior
volume, and indeed our followup recovered the loudest candidate at positive spindown.
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Figure 4.13: Segment-wise 2F̂ accumulation of the loudest template associated to
the outlier J1831-0952@15.4012Hz throughout the observing run using 500 coherent
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only, while the dashed blue line shows the results using the LIGO Livingston detector
(L1). The upper panel shows the 2F̂ accumulation throughout the duration of the run.
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Outlier ID f0 [Hz] f1 [Hz/s] f2 [Hz/s2] α [rad] δ [rad] lnB∗
S/N

Falcon 4 1891.756615 −6 · 10−12 1 · 10−20 2.987285 1.005941 2.10
Falcon 5 1892.991046 −2 · 10−12 −1.8 · 10−19 3.778973 −0.816265 6.46
Falcon 15 900.218764 -1 · 10−12 7 · 10−20 2.084412 −0.102330 10.49
Falcon 19 514.148984 6 · 10−12 3.7 · 10−19 2.170669 0.092978 9.04
Falcon 23 1001.366278 2 · 10−12 4.9 · 10−19 1.355553 −0.769952 5.88
Falcon 24 676.195493 3 · 10−12 −2.6 · 10−19 3.846438 −0.102138 5.80
Falcon 25 744.219196 2 · 10−12 0.4 · 10−20 3.344781 0.612270 7.42
Falcon 29 512.490782 −8 · 10−12 −2 · 10−20 2.468688 −0.041880 3.37
Falcon 31 983.151151 −1 · 10−12 −7.0 · 10−19 3.562362 0.018926 3.06
Falcon 34 886.880063 −2 · 10−12 −2.1 · 10−19 4.912748 −0.703663 10.85
Falcon 35 988.373241 2 · 10−12 −1.3 · 10−19 0.982043 0.778393 6.48
Falcon 39 514.291753 3 · 10−12 −3.5 · 10−19 0.569150 −0.128791 5.47
Falcon 40 831.988457 −3 · 10−12 −1 · 10−20 4.917884 1.160566 5.48
Falcon 41 873.524663 3 · 10−12 4 · 10−20 0.619107 −0.189295 5.77
Falcon 42 895.421995 1 · 10−12 −1.9 · 10−19 5.105728 0.249030 5.37
Falcon 43 1224.745693 1 · 10−12 −1.2 · 10−19 1.715372 0.196097 5.70
Falcon 45 698.728033 1 · 10−12 1.6 · 10−19 4.557448 −0.723930 12.69
Falcon 46 1095.557373 −4 · 10−12 −5.7 · 10−19 4.354405 −0.260292 9.60
J1713 368.801590 −4.380 · 10−9 1.18 · 10−18 4.511570 −0.694137 3.21
Fomalhaut b 876.517914 −4.2979 · 10−10 −5.67 · 10−18 6.011153 0.516952 2.96
J0534+2200 29.813469 −2.3430 · 10−10 1.158 · 10−17 1.461040 0.385286 −0.16
J1420–6048 14.511112 −2.5 · 10−11 1.364 · 10−17 3.750570 −1.061001 1.46
J1420–6048 19.512364 −4.4 · 10−11 9.80 · 10−18 3.753242 −1.061227 1.12
J1420–6048 29.526774 3.9 · 10−11 5.30 · 10−18 3.753011 −1.060915 4.46
J1718–3825 17.500500 −4.0 · 10−11 7.58 · 10−18 4.528719 −0.670563 33.45
J1831–0952 14.495361 2.95 · 10−10 −3.89 · 10−18 4.848071 −0.172356 65.64
J1831–0952 15.389002 8.72 · 10−10 −2.980 · 10−17 4.853052 −0.165697 203.35
J1831–0952 20.0016854 −7.13 · 10−10 7.017 · 10−17 4.859380 −0.179332 633.204
J1849–0001 26.3062476 −6.4 · 10−11 1.101 · 10−17 4.850380 −0.000331 14.71
J1849–0001 26.333433 −7.1 · 10−11 2.297 · 10−17 4.850122 0.003055 192.71

Table 4.7: Loudest template recovered by the multi-stage MCMC follow up for each
of the analyzed outliers. Boldface and italic lnB∗

S/N values correspond to the two sets
of outliers highlighted with circles and diamonds in Fig 4.12, respectively.
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This represents the first application of a multi-stage MCMC-based follow-up to CW outliers from real
data. The scalability of this development is such that it can be taken as a default follow-up strategy to
outliers produced by virtually any CW search, as long as they can be related to a well-defined parameter
space region. This allows for the general application of long-coherence follow-ups, massively reducing
the complexity associated with the setup and calibration of ad hoc vetoes in CW searches.

4.A On the distribution of the maximum F-statistic and the ef-
fective number of templates

The validity of using an effective number of templates to fit Eq. (4.16) for the expected maximum F-
statistic from a search over a certain actual number of templates, in the presence of non-independent
templates, has been discussed in the CW literature [52, 53]. We attempt to shed some light on the topic
using extreme value theory. Concretely, we analyze the toy model posed in Appendix D of [53].

The basic point in [53] is that the presence of correlated templates not only changes the effective
number of templates, but also the “functional form” of the resulting distribution, rendering Eq. (4.16)
inaccurate. As an example, a toy model is constructed by generating a time series of zero-mean unit-
variance Gaussian noise and computing the power of its Fourier transform. By choosing a suitable
normalization, said power is the squared sum of two identical zero-mean Gaussian variables, following
a chi-squared distribution with two degrees of freedom. This distribution can be properly fitted using
Eq. (4.16), and the effective number of templates N ′ is consistent with the number of frequency samples
N = N/2−1, where N is the number of elements from the original time series. Correlated templates are
then introduced by over-resolving the Fourier transform applying zero-padding to the time series. The
resulting distribution cannot be properly fitted using Eq. (4.16). The effective number of independent
templates N ′ is found to increase with the length of zero-padding, but it remains bounded by the actual
number of power samples N .

We provide an explanation for the two main issues raised in [53], namely what is the actual “functional
form” of the target distribution and why the effective number of templates seems to increase as more
correlated templates are included.

Let xn=1,...,N be a zero-mean unit-variance Gaussian process. We define its Fourier transform as

x̃k =

N−1∑

n=0

xne
−2πi n k

N (4.32)

where k = 0, . . . N − 1. Since xn ∈ R, the real and imaginary parts of Eq. (4.32) follow a zero-mean
Gaussian distribution

Rx̃k ∼ Gauss(0,
√
N/2)

Ix̃k ∼ Gauss(0,
√
N/2)

. (4.33)

We then define power as

ρ̃ =

(√
2

N
Rx̃k

)2

+

(√
2

N
Ix̃k

)2

(4.34)

which, by definition, follows a chi-squared distribution with two degrees of freedom ρ̃ ∼ χ2
2. This same

quantity is referred to as 2F2 in [53].
The case of a chi-squared distribution with two degrees of freedom is degenerate with an exponential

distribution. For the sake of clarity, we re-express it as a gamma distribution with shape parameter
k = 1 and scale parameter θ = 2, i.e. ρ̃ ∼ Γ(1, 2). We note that chi-squared distributions correspond
to the locus θ = 2 in the parameter space of Gamma distributions, with k equal to half the degrees of
freedom; exponential distributions correspond to the locus k = 1, with θ equal to the inverse of the rate
parameter.

Let us now define xpn as the zero-padded time series containing Np elements, the last N(p − 1) of
which are purposely zero. This padding re-scales the variance of the original distribution by a factor



92 Chapter 4. Application of a hierarchical MCMC follow-up to Advanced LIGO CW candidates

1/p and the resulting power can be expressed as

ρ̃p =

(√
2p

N
Rx̃pk

)2

+

(√
2p

N
Ix̃pk

)2

= pρ̃ . (4.35)

Then, by the properties of the Gamma function, ρ̃p ∼ Γ(1, 2p), which is not a chi-squared distribution
for p > 1, but an exponential distribution with rate parameter λ = (2p)−1.

Finally, we discuss the asymptotics of the distribution followed by the maximum of a Γ-distributed
random variable. As explained in Sec. 4.3.1, such light-tailed distributions fall under the domain of
attraction of the Gumbel distribution, meaning

max
N

Γ(k, θ)
N→∞−−−−→ Gumbel(µ, σ) , (4.36)

where the location and scale parameters (µ, σ) are given by [70]

µ = θ [lnN + (k − 1) ln lnN − ln Γ(k)] , (4.37)

σ = θ . (4.38)

In particular, the case of maxN ρ̃p results in

µp(N ) = 2p lnN , σp = 2p . (4.39)

It is clear from Eq. (4.38) that the asymptotic distribution described by Eq. (4.16) is a Gumbel
distribution with a scale parameter σ = 2. On the other hand, the asymptotic distribution followed
by zero-padded Gaussian noise (p > 1) follows a Gumbel distribution with a scale factor σp = 2p > 2.
Since the scale parameter is independent of N , Eq. (4.16) fails to describe the asymptotic distribution
stemming from correlated templates. In other words, parameter-space correlations shift the distribution
followed by the power statistic away from the locus of chi-squared distributions; since these correlations
are generally contained in a certain characteristic length, the resulting light tails are still, however, within
the Gumbel distribution’s domain of attraction [67].

This result is consistent with the findings reported in Fig. 11 of [53], which we reproduce in Fig. 4.14.
As the zero-padding increases, σp increases and the resulting distribution, which is well described by a
Gumbel distribution, spreads beyond the fit provided by Eq. (4.16).

The location parameter µ, on the other hand, does depend on the number of templates. Indeed,
if one tries to compute the required effective number of templates N ′ so that µp=1(N ′) coincides with
µp(N ),

µp=1(N ′) = 2 lnN ′ = 2p lnN = µp(N ) , (4.40)

the result is
N ′ = N p , (4.41)

which is a monotonic function of p. As a result, the effective number of templates increases with the
zero-padding factor, again in agreement with [53]. We note, however, that this is just a consequence of
the chosen Fourier normalization. If the normalized power was constructed using Np as a normalization
(the actual number of samples) rather than N (the number of non-zero-padded samples), then Eq. (4.35)
would be re-written as

ρ̂p =
1

p
ρ̃ . (4.42)

Consequently ρ̂p ∼ Γ(1, 2/p) and the effects on the standard deviation would be exactly the opposite,
as shown in Fig. 4.15. Indeed, in such a case the effective number of templates would be N ′ = N 1/p,
which decreases as the zero-padding increases.

Our proposed solution to the problem of estimating the effective number of templates is then not
to do so, as it depends strongly on the specific distribution followed by the noise, which is generally
unknown in a real case. Instead, we propose to describe the background noise distribution by fitting an
extreme value distribution to a set of samples (see e.g. Section 4.3.1). For light-tailed noise, the proper
distribution is Gumbel; other distributions are available for noise falling off as a power law or presenting
an upper cut-off.
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Figure 4.14: Maximum Fourier power over N = 200 samples of zero-mean unit-
variance zero-padded Gaussian noise. In each panel, the stair-case line represents a his-
togram over 106 repeated trials of maxN ρ̃p. The dashed line is the best fit of Eq. (4.16)
on the effective number of templates N ′, and the solid line is the best fit of a Gumbel
distribution on the location and scale parameters. Zero-padding is indicated by p, where

p = 1 represents no zero-padding, as explained in the text.
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Figure 4.15: Equivalent figure to Fig. 4.14 using the alternative normalization of
Fourier power ρ̂p. In this case, increasing the number of correlated templates narrows

the resulting distribution with respect to Eq. (4.16).
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Chapter 5

Empirically estimating the distribution
of the loudest candidate from a
gravitational-wave search

This chapter is an adaptation of the material presented in

Empirically estimating the distribution of the loudest candidate from a gravitational-wave search
Rodrigo Tenorio, Luana M. Modafferi David Keitel, Alicia M. Sintes
Phys. Rev. D 105, 044029 (2022) – arXiv:2111.12032 [gr-qc]
DOI: 10.1103/PhysRevD.105.044029

5.1 Introduction
The search for gravitational-wave (GW) signals can be formulated as a multi-hypothesis test between
a background-noise hypothesis and a set of signal hypotheses, each asserting the presence of a signal
with a specific set of parameters [1]. Actual search implementations, however, usually split this process
into three stages: a detection stage, which simply assesses the presence of a feature in the datastream
unlikely to be caused by noise (null-hypothesis test); a validation stage, in which candidates are sieved
through a set of vetoes to discard any instrumental causes; and a parameter-estimation stage, in which a
proper Bayesian hypothesis test is carried out to infer the actual parameters of any detected signal. This
division is motivated by the increasing computing cost of each stage [2, 3], as a simple null-hypothesis
test (usually assuming Gaussian noise) is orders of magnitude more affordable than a single parameter-
estimation stage.

The standard detection stage consists in performing a finite number of detection statistic evaluations
over the parameter-space region of interest, usually using matched-filtering against a bank of waveform
templates [4, 2, 5, 6, 7, 8, 9, 10, 11]. Loud templates, i.e. those scoring a high detection statistic, are
deemed “signal candidates” and selected for the validation stage. The detection statistic can be usually
interpreted as a Bayes factor, assessing the preference of the data for a particular signal hypothesis
(represented by the template at hand) versus the background-noise hypothesis. Thus, the detection stage
is a multi-hypothesis test in disguise in which parameter-space marginalization has been approximated
to zeroth-order by maximization [12].

Loudest candidates from a template bank fall generally into one of two categories: The strongest
excursions away from the background, such as an instrumental feature [13, 14] or a very clear GW
signal (such as GW150914 [15]), are usually comparatively simple to deal with, as strong candidates
tend to show characteristic signatures according to their cause. But weaker outliers that are in principle
compatible with both a weak signal or an extreme event of the general noise background require a more
careful analysis.

While much of the statistical framework used in this work is generally applicable, we mainly focus on
the search for continuous gravitational-wave signals (CWs) [16], produced by long-standing quadrupolar
deformations, such as in the case of non-axisymmetric spinning neutron stars (NS) [17]. From the point
of view of the current generation of advanced detectors (Advanced LIGO [18], Advanced Virgo [19],
and KAGRA [20]), they belong in the weak-signal regime, meaning they are expected to blend into the

https://doi.org/10.1103/PhysRevD.105.044029
https://arxiv.org/abs/2111.12032
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background distribution. Characterizing the expected distribution of extreme background candidates is,
thus, a simple approach to identify interesting outliers in a search and quantify their significance.

Pioneering work on describing the distribution of the loudest candidate from a CW search using the
F-statistic [21, 22] was presented in [23] and later extended in [24, 25]. Despite its wide applicability
in the CW literature (see e.g. [26, 27, 28, 29, 30, 31, 32]), basic assumptions of the method make
it insufficient for realistic template banks with a certain degree of correlation between neighbouring
templates [33]. Latest developments on the subject used extreme value theory (EVT) to propose a
suitable ansatz to circumvent the problems posed by template-bank correlations [34]; but the concrete
method requires re-evaluating full template banks many times (similar in spirit to that in [24]) and is
thus computationally unsuitable for wide parameter-space searches.

This work proposes distromax, a new method to describe the distribution of the loudest candidate
stemming from a generic GW search. The method generalizes with respect to previous approaches
presented in [23, 25] in two main aspects. First, the method is robust to typical degrees of template-
bank correlations arising either due to the overlap of nearby templates or mild non-Gaussianities in the
data. Second, the method is applicable to a wider class of detection statistics, including other F-statistic-
based detection statistics such as line-robust statistics [35, 36] or transient CW search statistics [37], as
well as detection statistics from other search approaches. An implementation of distromax is publicly
available as a homonymous Python package [38].

The paper is structured as follows: Section 5.2 introduces basic data-analysis tools for CW searches
and discusses the origin of parameter-space correlations. Section 5.3 describes the quantitative effect
of parameter-space correlations on the distribution of the loudest candidate, comparing standard ap-
proaches in the field to extreme value theory results. Section 5.4 introduces distromax to estimate
the distribution of the loudest outlier of a search and discusses its basic phenomenology on synthetic
data. In Section 5.5, we apply distromax to the results of a search on O2 Advanced LIGO data for
(transient) CW signals. Appendix 5.A collects basic results in extreme value theory and provides further
references for the interested reader. Appendix 5.B proposes a simple method to deal with narrow-band
noise disturbances, common in realistic CW searches. The robustness of distromax to the presence of
weak CW signals is discussed in Appendix 5.C.

5.2 Continuous wave searches
In this section, we revisit the basics of CW searches to frame our discussion of distromax. Sec-
tion 5.2.1 reintroduces the F-statistic and explicitly constructs its distribution under the noise hy-
pothesis; Sec. 5.2.2 uses the explicit construction to discuss the two possible origins of parameter-space
correlations affecting a template bank; Sec. 5.2.3 completes the analysis deriving the standard result for
the distribution of the F-statistic under the signal hypothesis.

The response of a ground-based GW detector to a passing CW or long-duration CW-like transient
(tCW) is given by the linear combination of four linear filters [21, 37]

s(t;A, λ, T ) = w(t; T )

3∑

µ=0

Aµ hµ(t;λ) , (5.1)

where A represents the source’s amplitude parameters, namely GW amplitude h0, inclination angle ι,
polarization angle ψ, and initial phase ϕ0, which can be combined into the so-called JKS decomposition
{Aµ, µ = 0, 1, 2, 3}; and λ describes the phase-evolution parameters, namely the GW frequency and
spindown {f0, f1, f2, . . . }, the sky position n⃗, and possibly binary orbital parameters if the source orbits
a companion. The time-dependent quadratures hµ(t;λ) encompass the detector’s antenna pattern effects
on the signal. The window function w(t; T ) is a time-dependent amplitude modulation parametrized by
the transient parameters T to account for tCW signals [37]. The standard CW signal model is recovered
for w(t; T ) = 1 ∀t.

Given a datastream x, the detection problem consists in deciding between the background noise hy-
pothesis HN, under which the data stream contains only Gaussian noise x = n, and the signal hypothesis
HS, according to which there is a (t)CW signal with a defined set of parameters x = n + s(λ,A, T ).
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Further hypotheses accounting for different non-Gaussian populations, such as narrow instrumental ar-
tifacts in the data [13], can be also included in the analysis [35, 36], although the usual approach is to
apply post-processing veto strategies targeting specific types of disturbances [39, 40, 28, 41].

5.2.1 F-statistic under the noise hypothesis
A basic tool to conduct CW searches is the F-statistic, first introduced in [21, 22] as a maximum-
likelihood estimator with respect to amplitude parameters A, and later re-introduced in a Bayesian
context [12, 42, 43, 44]. The basic idea is to exploit the linear dependency of Eq. (5.1) on A to analytically
marginalize the matched-filtering likelihood using a suitable set of priors. The result can be readily
expressed as a quadratic form [45]

2F(λ) =

3∑

µ,ν=0

xµ(λ) M−1
µν (λ) xν(λ) , (5.2)

where xµ are the projections of the data stream x onto the four quadrature functions

xµ(λ) = ⟨hµ(λ), x⟩ (5.3)

and M−1(λ) is the inverse Gram matrix associated to the four quadrature functions

Mµν(λ) = ⟨hµ(λ), hν(λ)⟩ . (5.4)

The functional scalar product [46]

⟨x, y⟩ = 4 R

∫ ∞

0

df
x(f) y∗(f)
Sn(f)

(5.5)

accounts for the presence of correlated noise in the data stream through the single-sided power spectral
density (PSD) Sn. Current implementations of Eq. (5.5) make use of the so called F-statistic atoms [45],
evaluated over individual Short Fourier Transforms (SFTs) of the data. These could be simply described
as a set of complex-valued spectrograms (from now on atomic spectrograms) containing both phase and
amplitude information, whose proper combination results in an efficient computation of Eq. (5.2).

Under the noise hypothesis HN, the data stream is composed of zero-mean Gaussian noise and
Eq. (5.3) implies the four projections {nµ(λ)} are drawn from a 4-dimensional Gaussian distribution
with covariance matrix M(λ). Hence,

{nµ(λ)} ∼ Gauss(0,M(λ)) , (5.6)

and nµ(λ) values can be constructed as a linear combination of four zero-mean unit-variance Gaussian
random variables

nµ(λ) =

3∑

ν=0

Lµν(λ)gν [λ] , (5.7)

where gν [λ] ∼ Gauss(0, 1) and L is a 4× 4 matrix such that LLT = M (e.g. Cholesky decomposition).
Here the square brackets indicate that Gaussian numbers are to be drawn independently for each tem-
plate λ, but their distribution does not depend on λ; as opposed to round brackets, which represent
deterministic relations.

Introducing these results into Eq. (5.2),

2F(λ) =

3∑

µ=0

gν [λ]
2 , (5.8)

we obtain 2F(λ) as the Euclidean norm of a 4-dimensional Gaussian vector. Consequently, the proba-
bility distribution associated to 2F under the noise hypothesis HN for a fixed template λ is given by a
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χ2 distribution with four degrees of freedom

p(2F|HN) = χ2
4(2F) . (5.9)

5.2.2 Template-bank correlations
The statistical properties of the right-hand side of Eq. (5.14) are independent of the specific phase-
evolution template λ under consideration. This suggests that evaluating 2F over a template bank using
a single noise realization could, under suitable conditions, be equivalent to evaluating 2F for a single
template over an ensemble of noise realizations.

Gaussian vectors {gν [λ]} are constructed from a noise stream as follows:

gν [λ] =

3∑

ν=0

L−1
νµ (λ) ⟨hµ(λ), n⟩ . (5.10)

The noise stream is projected onto four different deterministic functions of λ, {hµ(λ)}, and combined
using a set of weights L−1

νµ (λ), also dependent on λ. Such a projection is a weighted average of the
atomic spectrogram bins visited by the frequency-evolution track associated to λ. Since the atomic
spectrograms are constructed using finite time and frequency resolutions, the number of independent
Gaussian vectors constructible out of them is equivalent to the number of templates with non-overlapping
frequency tracks over the spectrograms (i.e. crossing different spectrogram bins). This result was stated
in a simpler fashion in [23] by arguing that the typical number of bins in a narrow-banded atomic
spectrogram is orders of magnitude smaller than the number of templates in a typical CW search
crossing said spectrogram.

As discussed in [47], the average dissimilarity in frequency-evolution tracks of nearby parameter-space
points is related to the fractional loss in detection statistic, usually referred to as mismatch [48]

m = 1− 2F(λ+∆λ)

2F(λ)
≃
∑

i,j

∆λi∆λjgij +O(∆λ3) , (5.11)

where ∆λi represents an offset in an arbitrary parameter-space dimension and gij is the parameter-space
metric [48, 49, 50, 51, 52, 53]. In the context of a grid-based CW search, the parameter-space metric
can be employed to set up a template bank at a pre-specified maximum mismatch value [7, 54, 55]: the
higher the mismatch, the coarser the template bank. An ensemble of templates with non-overlapping
frequency-evolution tracks, then, corresponds to a coarse-enough template bank in the sense of large
parameter-space mismatch.

In a real search, template banks tend to be set up using a moderate mismatch (e. g. m ∼ 0.2) in
order to produce dense-enough parameter-space coverings [7]. A first kind of template-bank correlation
arises, then, as a result of the template-bank construction strategy. Latest developments on the subject
[56, 53, 10, 55], however, suggest higher mismatch values (m ∼ 1) could actually be compatible with a
successful CW search, potentially suppressing the effect of these correlations.

A second kind of template-bank correlations, briefly discussed in [34], arises due to non-Gaussianities
in the data (e.g. narrow instrumental features [13] or transient “pizza-slice” disturbances [57, 36, 29]). In
this case, it is not a matter of re-using the same data on different templates; rather, a region of a priori
independent spectrogram bins gets correlated due to the presence of a strong disturbance. As a result,
non-overlapping templates crossing said correlated spectrogram region become correlated as well.

This same formalism applies to the search for tCWs, as the standard strategy in such cases is either
to maximize or marginalize out any dependency on the transient parameters [37], obtaining in the end
a detection statistic over an equivalent template bank to that of CW searches. Discussion on specific
tCW detection statistics is postponed to Sec. 5.5.

The presence of correlations in a template bank, thus, is a generic property of (t)CW searches,
and their effects on any newly proposed method should be properly understood before attempting to
interpret results on a real setup.
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5.2.3 F-statistic under the signal hypothesis
We conclude this summary of standard CW search methods by considering the distribution of the
F-statistic when there is a signal in the data. To derive its probability distribution under the signal
hypothesis HS, we simply apply n = x−s(λ,A) and repeat the same reasoning up to Eq. (5.7), obtaining

xµ(λ) =

3∑

ν=0

Lµν(λ) (gν [λ] +mν(λ,A)) , (5.12)

where

mν(λ,A) =

3∑

κ=0

L−1
νκ (λ)sκ(λ,A) (5.13)

and, consequently, gν [λ] +mν(λ,A) is a Gaussian random number with mean mν and unit variance.
Introducing these results in Eq. (5.2),

2F(λ) =

3∑

ν=0

(gν [λ] +mν(λ,A))
2
, (5.14)

the 2F under the signal hypothesis corresponds to the norm of a four-dimensional uncorrelated Gaus-
sian vector with identity covariance matrix and mean vector equal to {mν(λ,A)}. The probability
distribution is, as a result, a non-central chi-squared distribution with four degrees of freedom

p(2F|ρ2HS) = χ2
4(2F ; ρ2) , (5.15)

where the non-centrality parameter ρ2 is defined as

ρ2 =

3∑

ν=0

m2
ν =

3∑

µ,ν=0

AµMµνAν = ⟨s, s⟩ . (5.16)

This quantity is referred to as the (squared) signal-to-noise ratio (SNR) in the literature. Concretely,
ρ2 is the maximum attainable SNR corresponding to the case where signal parameters are perfectly
matched by a phase-evolution template [45].

5.3 Loudest candidates, the “effective number of templates”, and
extreme value theory

The standard problem of estimating the distribution of the loudest candidate in a search is posed as
follows: Let ξ = {ξi, i = 1, . . . ,N} be a set of detection statistic values obtained by evaluating a
template bank with N templates in a noise-only data stream. Let f be the probability distribution of
such a detection statistic under the noise hypothesis. Describe the probability distribution of the loudest
candidate maxi=1,...,N ξi.

We can easily construct said distribution using the joint cumulative density function (CDF) of the
entire template bank

P(max
i
ξi ≤ ξ∗|N ) = P (ξ1 ≤ ξ∗ and . . . and ξN ≤ ξ∗) . (5.17)

For the case of an uncorrelated template bank, each template is independent and the joint CDF factors
into the product of individual CDFs:

P(max
i
ξi ≤ ξ∗|N ) =

N∏

i=1

P(ξi ≤ ξ∗) =

[∫ ξ∗

dξf(ξ)

]N
. (5.18)
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Figure 5.1: Distribution of the loudest 2F values produced by the evaluation of a
template bank on a Gaussian-noise data stream lasting for 7 days. The template bank
was set up using the gridType=8 option of ComputeFstatistic_v2 [59] with mismatch
m = 0.2, f0 = 49.5Hz and f1 = −10 nHz/s covering bands of ∆f0 = 0.22Hz and
∆f1 = 45pHz/s. The sky position was fixed to a fiducial value (α, δ) = (0, 0) in
equatorial coordinates. Loudest values were obtained by selecting the loudest 2F over
different segmentations of the template bank. The left panel corresponds to selecting
the loudest value within every 5mHz subband. The right panel corresponds to shuffling
the results and taking the loudest values from batches of the same size as the subbands.
The stepped line is the histogram of the data; the dashed line is the best fit value N ′

for N in Eq. (5.19); and the solid line is the best fit of a Gumbel distribution.

Consequently, the probability density function associated to ξ∗ = maxi=1,...,N ξi is simply

p(ξ∗|N ) = N f(ξ∗)

[∫ ξ∗

dξf(ξ)

]N−1

. (5.19)

Template-bank correlations imply that we sample fewer independent combinations of the data than
with an uncorrelated bank of the same N . In other words, they reduce the “trials factor” of a search,
diminishing the expected detection statistic of the loudest candidate in a similar fashion to evaluating a
smaller template bank. Given a fixed false-alarm probability, neglecting template-bank correlations and
naively using Eq. (5.19) would overestimate the corresponding threshold, potentially leading to missing
interesting candidates.

Extensive analyses in [23, 58] concluded the effect of template-bank correlations on Eq. (5.19) could be
reproduced to an acceptable level by adjusting N to the “effective number of templates” in the template
bank at hand. Although in some cases an empirical estimate was possible [26], most applications obtained
an effective number N ′ via numerical fits to search results [28, 27, 30, 31, 32, 24]. Further studies on
this topic [33], however, exposed a systematic discrepancy between the family of distributions spanned
by Eq. (5.19) and the actual distributions obtained due to template-bank correlations.

An example of this discrepancy is illustrated in Fig. 5.1. We evaluated a template bank containing
2.23 × 106 CW templates over frequency and spindown parameters (f0, f1) with a realistic mismatch
of m = 0.2 on 7 days of simulated Gaussian noise. We grouped the resulting 2F-statistic values into
batches containing 223 templates each, from which the loudest 2F-statistic value was retrieved. The
effect of parameter-space correlations was tested by either grouping templates within contiguous 5mHz
frequency bands or pooling an equivalent number of templates after randomly shuffling the results.

Shuffling the results before retrieving the loudest value tends to break any contribution from parameter-
space correlations, as nearby templates are likely to end up in different batches. The resulting distribu-
tion can be properly fitted assuming an uncorrelated template bank. The apparent mismatch between
the obtained effective number of templates N ′ = 218 and the actual number of independent templates
N = 223 is consistent with the basic claim in [26] about the robustness of Eq. (5.19) with respect to
small changes in N .

Grouping contiguous frequency bins, on the other hand, produces a distribution out of the scope of
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Figure 5.2: Distribution of the loudest 2F of a template bank obtained using 600
off-sourcing evaluations. The template bank corresponds to MCMC samples from a
fully-coherent follow-up of a simulated signal in Gaussian noise, in a similar manner to
Fig. 1 in [34]. Each histogram entry corresponds to the loudest 2F retrieved from the
template bank evaluated at a different right ascension. The solid line represents the fit

of a Gumbel distribution using scipy.stats.gumbel_r.fit [77].

Eq. (5.19). This was understood in [34] using extreme value theory (EVT).1 In the limit of N → ∞,
Eq. (5.19) converges to a max-stable distribution [62, 63, 64, 65, 66], whose functional form is determined
by the behaviour of the tail of the distribution f of the detection statistic. We are primarily interested
in the cases when f is a χ2, Γ or Gaussian distribution, for all of which p(ξ∗|N ) converges to a Gumbel
distribution

Gumbel(x;µ, σ) =
1

σ
exp

[
−
(
x− µ

σ

)
− e−(

x−µ
σ )
]

(5.20)

where µ and σ refer to the location and scale parameters, respectively. Analytical expressions for µ(N )
and σ(N ) for different distributions f are widely available in the literature [66, 67, 68]. As discussed
in Sec. 5.2, the individual 2F follow a χ2

4 distribution on Gaussian noise; the scale parameter of the
associated Gumbel distribution is, consequently, fixed to σ = 2 regardless of the value of N [68]. Naively
fitting Eq. (5.19) corresponds then to simply adjusting the location of the Gumbel distribution’s peak,
as clearly seen in the top panel of Fig. 5.1. The apparent mismatch is resolved if one instead tries to fit
both the location and scale parameters of the Gumbel distribution to the data.

This solution can be directly applied to computationally cheap searches, such as narrow-band searches [69,
70], directed searches using the Viterbi method [71, 72, 73], or the follow-up of particular outliers [34],
using the “off-sourcing” method [74]. The basic idea is that evaluating the same template bank while
shifting the sky position away from the outlier will sample a subset of templates uncorrelated to the
outlier but with a consistent noise background. Each off-sourced template bank is thus equivalent to a
different noise realization. To describe the distribution of the loudest outlier, then, it suffices to evaluate
102 − 103 off-sourced template banks retrieving the loudest outlier of each. A Gumbel distribution can
then be fitted to the resulting distribution [34].

Figure 5.2 exemplifies this procedure using a template bank constructed by MCMC sampling as
implemented in PyFstat [75, 76]. The template bank, containing 2.5× 105 highly correlated templates
across frequency, spindown and sky positions, was shifted to 600 different sky positions excluding a
90◦ wedge around the outlier’s position. The resulting distribution is well described by a Gumbel
distribution, with parameters fitted using a standard maximum-likelihood estimation.

Extreme value theory thus allows directly tackling the actual problem posed at the start of this
section, namely estimating the distribution of the loudest candidate under the noise hypothesis. The
“effective number of independent templates” does not play any major role, as the parameters being fitted
are the location and scale of a well-described probability distribution.

1We acknowledge previous attempts to apply EVT to the search for CWs [60, 61]. Ref. [34] is the first work presenting
a practical application of an EVT result improving over previous methods.
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5.4 How to estimate the distribution of the loudest outlier: an
empirical approach

Estimating the loudest candidate’s distribution typically entails fitting an ansatz to a set of samples
generated using a numerical procedure. As briefly demonstrated in Sec. 5.3, EVT provides sensible
ansätze for this purpose; generating samples, however, quickly becomes a burden for wide parameter-
space searches, as template banks are orders of magnitude larger. In such cases, the distribution of
the loudest outlier can be estimated using the search results themselves as a proxy for background
samples [23, 24, 25].

In this section, we combine the EVT ansatz described in Sec. 5.3 [Eq. (5.20)] with the proposal
from [25]. Our new generalized method, distromax, covers any sort of detection statistic whose noise-
hypothesis distribution falls into one of the three possible max-stable domains of attraction, i.e. not
only the standard F-statistic, but also “line-robust” statistics [35, 36], generalizations of the F-statistic
to look for tCW [37]. Other detection statistics used in the CW literature [16], such as Hough number-
count [78, 79, 80, 81, 82], cross-correlation [83], or power-based statistics [84, 85, 86], could potentially
benefit from distromax as well.

5.4.1 Basic formulation
We are interested in describing p(ξ∗|HN) solely using the available detection statistic samples from the
search ξ, that is, without any further evaluation of the template bank (e.g. off-sourcing). Following
the argument in Sec. 5.3, the evaluation of a detection statistic over a generic template bank can be
interpreted as equivalent to the evaluation of said detection statistic over different realizations of noise
with a certain (and unknown) degree of correlation. If correlations were negligible, a direct application
of Eq. (5.19) would give us the desired answer.

The key realization of [23, 25] is that the loudest outlier from a template bank ξ∗ can be obtained in
two steps: estimate the distribution of the loudest candidate of a smaller template bank, then extrapolate
such distribution to account for the template bank reduction. Dividing the initial template bank into
smaller subsets makes multiple loudest candidates available to properly fit a distribution.

For the first step, one splits the dataset ξ, containing N (possibly correlated) values, into B batches,
each of them with n = N/B elements. This partition can be done such that each batch contains a similar
subset of the overall population so that the per-batch maxima (batchmax samples) {ξ∗b , b = 1, . . . , B}
are independent draws from the same unknown distribution: ξ∗b ∼ pn. If we choose a sufficiently high
number of batches B, the batchmax distribution pn can be obtained by fitting a suitable ansatz to the
data.

As the second step, the overall loudest value ξ∗ is then

ξ∗ = max
b=1,...,B

ξ∗b , (5.21)

which corresponds to the loudest of B pn-distributed random variables. This operation was already
described in Eq. (5.19), which here we recast as an operator in the space of probability distributions for
later convenience: given a probability distribution f , MaxPropBf corresponds to the distribution of the
loudest candidate over a set of B independent samples of f :

MaxPropBf(x) = Bf(x)

[∫ x

dx′f(x′)

]B−1

. (5.22)

The distribution of the overall loudest value ξ∗ is then simply2

p(ξ∗|HN) = MaxPropBpn(ξ
∗) . (5.23)

The initial proposal in [25] described the batchmax distribution pn using a Gaussian Kernel Density
Estimation (KDE) over the set of batchmax samples {ξ∗b }. Eq. (5.23) was then implemented as a
numerical integration. The final decision threshold was based on the support of the resulting distribution.

2Note that [23], inserting an empirical histogram as the f in Eq. (5.22) (to account for a bias due to implementation
details in the F-statistic, see also Sec. 5.5), constitutes an earlier application of this principle.
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Figure 5.3: Upper panel: KDE fit to a set of B = 104 samples drawn from the
theoretical Gumbel distribution [68] of the loudest sample out of an ensemble of n = 104

χ2
4 random variables. The stepped line corresponds to the histogram of samples. The

blue dashed line corresponds to the Gaussian KDE. The red solid line corresponds to
the theoretical distribution. Lower panel: Application of the numerical MaxPropB

operator with B = 104 to the KDE computed from the upper panel (blue dashed line).
We compare the result to the theoretical distribution of the maximum sample over
N = n × B = 108 χ2

4 samples (red solid line). Shaded regions correspond to the 68%,
95%, and 99% probability intervals. KDE bandwidths are estimated using the default

method (“scott”) implemented in [77].

We find that the use of Gaussian KDEs introduces inaccuracies into the estimation of p(ξ∗|HN). The
reason is twofold. First, KDEs are prone to overfitting histogram artifacts which arise due to finite sample
sizes. This is illustrated in the upper panel of Fig. 5.3. As a result, the propagated distribution in this
case displays an unintended bimodality, as shown in the lower panel of Fig. 5.3. Second, for the detection
statistics we consider here, the batchmax distribution falls off exponentially (see Appendix 5.A), at a
much slower pace than a Gaussian tail. This tends to cause MaxPropB to underestimate the variance
of the resulting distribution, as shown in the lower panel of Fig. 5.3.

Our main innovation with distromax is to propose a cogent ansatz to circumvent the non-parametric
description of the batchmax distribution. Our specific proposal, a max-stable distribution, corresponds
to the asymptotic behaviour of the batchmax distribution in the limit of n → ∞. The max-stable
property also simplifies the MaxPropB operator into a simple algebraic operation.

5.4.2 Introducing distromax

Batchmax samples in Eq. (5.21) are constructed so that they correspond to independent and identically
distributed random variables from a certain underlying distribution pn. In the case of a data stream
free of loud disturbances, this can be simply achieved by randomly shuffling the results of a search
before grouping them into batches. (A discussion of the effects of shuffling data with loud disturbances
is deferred to Secs. 5.4.5 and 5.4.6 and Appendix 5.B.) The batchmax distribution then corresponds
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to that of the loudest candidate over n templates, which, as discussed in Sec. 5.3, tends to a Gumbel
distribution as n→ ∞. Hence, we propose the following ansatz for the batchmax distribution:

pn(x) = Gumbel(x;µn, σn) , (5.24)

where µn, σn are obtained by direct fit to the batchmax samples. This choice is similar to that of [87],
which directly fitted an exponential tail (upper tail of a Gumbel distribution) to the batchmax distribu-
tion.

EVT distributions, such as Gumbel, are max-stable distributions: the distribution of the loudest
outlier from a set of EVT distributions is itself an EVT distribution of the same kind, albeit with
different parameter values. As a result, the MaxProp operator can be re-expressed in a closed form in
terms of the location and scale parameters of the distribution. Concretely, it is straightforward to show
that

MaxPropBGumbel(x;µn, σn) = Gumbel(x;µ∗, σ∗) (5.25)

where
µ∗ = µn + σn lnB , (5.26)

σ∗ = σn . (5.27)

Thus, the target distribution is readily obtainable through a simple algebraic calculation after performing
a fit to the batch-max samples:

p(ξ∗|HN) = Gumbel(ξ∗;µ∗, σ∗) . (5.28)

Summarizing, distromax exploits the max-stability of the Gumbel distribution to estimate the dis-
tribution of the loudest candidate of a search, p(ξ∗|HN). To do so, search results are shuffled into B
disjoint batches from which the loudest candidates are retrieved. These B batchmax candidates, by con-
struction, can be interpreted as draws from an EVT distribution pn whose parameters can be estimated
using a standard maximum-likelihood fit such as scipy.rv_continuous.fit [77].

In broad terms, the batch size n determines how close the batchmax distribution is to an EVT one,
whereas the number of batches B determines how sharply the parameters of pn can be determined. Real
searches usually contain a fixed number of templates N = nB, meaning a trade-off is required: On the
one hand, choosing a large n (hence a small B) produces a small number of samples, each well consistent
with an EVT distribution, but increases the variance of the pn fit. On the other hand, a large B (hence
a small n) produces a big number of samples drawn from a distribution which has not fully converged
to an EVT distribution, meaning the estimated parameters may be biased with respect to the actual
distribution. We devote the following subsections to further discuss the role played by each of these
parameters.

5.4.3 The MaxProp operator
We now characterize the phenomenology of the MaxProp operator on a Gumbel distribution, which
corresponds to the asymptotic distribution followed by standard (t)CW detection statistics.

Let us consider a template bank with N = 106 templates. Given a batch size n, we model a batchmax
distribution as a Gumbel distribution with σn = 2 and µn = σn lnn. This is equivalent to considering
a detection statistic following a χ2

4 distribution which has already converged to its corresponding EVT
distribution, preventing finite sample-size effects from polluting the analysis. The ground truth distri-
bution of the loudest candidate from the template bank then corresponds to the propagation of said
Gumbel distribution over B = 106/n batches, i.e. a Gumbel distribution with σ = σn and µ = σ lnN .

Batch sizes B ∈ [1, 106] are analyzed by drawing B batchmax samples from the aforementioned
batchmax distribution with n = 106/B; µn and σn are fitted using scipy.stats.gumbel_r.fit and
propagated using Eq. (5.25). The resulting CDF is compared against the ground truth CDF, shown in
Figure 5.4. The relative error in the estimated location and scale parameters is shown in Fig. 5.5.

As previously anticipated, a low number of batches B ≲ 103 results in a greater dispersion of the
estimated parameters. As the number of batches reach the 103 ≲ B ≲ 104 range, batchmax histograms
become more robust and relative parameter deviations achieve sub-percent levels.
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5.4.4 Characterizing the batchmax distribution
On the other hand, to test convergence of batchmax distributions, we take as an example the case
of a χ2 distribution with 4 degrees of freedom (Γ distribution with shape parameter k = 2 and scale
parameter θ = 2), deferring to Appendix 5.A other generic distributions and further references. For a
χ2
4 distribution, the limit n→ ∞ corresponds to a Gumbel distribution [66], as shown in Fig. 5.6.

Given a set of random variables following a specific distribution f , the convergence of the loudest
draw towards an EVT distribution is driven by the behaviour of f ’s tail (tail-equivalence [66]). More
specifically, the role of the batch size n is related to how likely it is to draw a sample within the tail
of the distribution: the higher the number of samples n, the more likely it is to retrieve a value from
the upper tail, hence the lower the dependency on other details of the distribution’s shape. Using a
low batch size causes batchmax samples to be dominated by the bulk instead of the tail, keeping the
resulting distribution from properly converging to an EVT distribution.

χ2 random variables are non-negative, as they are the sum of the squares of standard Gaussian
random variables. Gumbel distributions, on the other hand, present a double exponential decay in their
lower tail [Eq. (5.20)]. Consequently, as shown in the case n = 1 in Fig. 5.6, batchmax distributions with
low n tend not to follow a Gumbel distribution. As the number of samples n increases, the effects due
to the distribution’s bulk become milder and we find a better agreement to the expected distribution.

5.4.5 Parameter estimation accuracy and comparison to previous approaches
Finally, we present a more realistic set of results evaluating the F-statistic over an actual template bank
on 7 days of Gaussian noise using ComputeFstatistic_v2 [59]. The template bank is constructed using
the gridType=8 option with maximum mismatch m = 0.2, for a fixed sky position (0, 0) in equatorial
coordinates around f0 = 50Hz and f1 = −10−8 Hz/s, containing N ≃ 8×106 templates. A ground truth
distribution is numerically constructed by evaluating this template bank on 900 realizations of Gaussian
noise and retrieving the loudest 2F value from each. distromax is then applied to the individual
realizations in order to test its accuracy.

We compare two different batching approaches: batching contiguous frequency bins and shuffling
the results into random batches. To produce comparable results, the shuffled batches contain the same
number of templates n as each contiguous batch. The motivation behind these two approaches is related
to the potential presence of correlated outliers in real detector data: instrumental artifacts tend to
affect relatively well-localized frequency bands [13]. Frequency-wise batching could thus prevent very
loud outliers from polluting a high number of batches and overestimating the expected loudest outlier.
Not shuffling the template bank, however, could require an increase in the batch size to obtain proper
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Figure 5.7: Comparison of methods to estimate the distribution of the loudest F-
statistic outlier from a template bank. The data stream and template bank are con-
structed as explained in the main text. In this figure, the N ≃ 8 × 106 templates are
grouped together by joining 25 consecutive frequency bins or shuffled into B = 7236
batches with a batch size of n = 1105. Red circles and orange triangles represent
distromax results with and without shuffling, while blue crosses and light blue plus
signs represent the results obtained using a Gaussian KDE again with and without
shuffling. Solid lines show the mean and standard deviation of the ground truth distri-
bution. Dotted lines represent one, two and three standard deviations with respect to

the ground truth mean.

convergence to a Gumbel distribution, but then the reduced number of batches would imply an increase
in the variance of the estimate.

Results are shown in Figs. 5.7, 5.8, and 5.9 in terms of the estimated mean and standard deviation
from each method against those of the ground-truth distribution. We also compare to the original
proposal of [25] by using a Gaussian KDE to approximate pn in Eq. (5.24).

We start by discussing the performance of the Gaussian KDE. The first significant feature is the
lack in precision of the estimated parameters, which are over-dispersed regardless of the choice of B
and n. We also note that the bulk of these results tend to underestimate both the location and scale
parameters of the Gumbel distribution with respect to the ground truth. This is related to the shape of
the kernel function being used, as previously discussed in Sec. 5.4.1: the tails of a Gaussian distribution
fall off more rapidly than those of a Gumbel distribution, yielding a lower mean and standard deviation.
The insensitivity of these results to the choice of B and n and to shuffling suggests that this particular
KDE-based ansatz does not return a reliable estimate of the batchmax distribution.

distromax results, on the other hand, return a more consistent picture. Sample variance increases
as the number of batches goes down both with and without shuffling. Complementarily, the bias in the
estimated parameters reduces as n increases (B decreases), although this effect is only significant for the
method without shuffling.

We observe a significant bias reduction by shuffling. Randomly shuffling samples results in more
homogeneous batches with weaker inner correlations; as a result, batchmax samples are closer to the
expected Gumbel distribution, improving the accuracy of the recovered parameters. Also, as previously
anticipated, using bigger batches in the non-shuffling case does improve accuracy, although with a
significant increment in variance due to the correspondingly lower number of batches.

These features are consistent with the basic phenomenology discussed in Secs. 5.4.3 and 5.4.4. The
different regimes in which distromax operates depending on N , n, and B are summarized in Fig. 5.10.
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Figure 5.8: Comparison of methods to estimate the distribution of the loudest F-
statistic outlier from a template bank using the same dataset as in Fig. 5.7. In this
figure, the N ≃ 8 × 106 templates are grouped together by joining 100 consecutive

frequency bins or shuffled into B = 1801 batches with a batch size of n = 4419.
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Figure 5.9: Comparison of methods to estimate the distribution of the loudest F-
statistic outlier from a template bank using the same dataset as in Fig. 5.7. In this
figure, the N ≃ 8 × 106 templates are grouped together by joining 3000 consecutive

frequency bins or shuffled into B = 60 batches with a batch size of n = 132540.
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Figure 5.10: Summary of regimes in which distromax operates. Shaded regions repre-
sent combinations of n and B for which the distromax results suffer from low precision
(high variance) due to a low number of batches (Sec. 5.4.3) or low accuracy (high bias)

due to a low batch size (Sec. 5.4.4).

These values are extracted from the general behaviour of distromax observed throughout the tests
performed in this section. As a general working principle, distromax requires at least N ≃ 106 in order
to return a cogent answer; for smaller template banks, on the other hand, off-sourcing as described in
Sec. 5.3 requires little computational effort.

5.4.6 Discussion
The results above on simulated data demonstrate the overall performance of distromax under Gaussian-
noise conditions. The concrete output of distromax is a simple estimation on the probability of the
loudest candidate of a search under the noise hypothesis p(ξ∗|HN). However, the specific statement to be
drawn from p(ξ∗|HN), such as a threshold choice, is entirely dependent upon the scope of the analysis at
hand. For the sake of completeness, we briefly review the assumptions on which the distromax method
relies, as well as possible consequences of violating them.

First, the distribution of the detection statistic at hand must belong to the domain of attraction
of the Gumbel distribution; roughly, this means its probability distribution should be unbounded and
decay at a slower rate than a power-law [66]. Nonetheless, as discussed in Appendix 5.A, this method
could be easily adapted to detection statistics within a different domain of attraction; in such cases,
Eqs. (5.26) and (5.27) would have to be adapted to the corresponding EVT distribution.

Second, the data at hand must be free of strong disturbances. As discussed in Sec. 5.2.2, loud distur-
bances in a data stream typically translate into parameter-space regions returning enhanced detection
statistics with respect to a non-disturbed data stream. The width of the affected region will depend on
the characteristics of the disturbance and the template bank, but in general there can be an extended
set of templates with correlated response to the disturbance. Attempting to construct a batchmax dis-
tribution by shuffling the samples into different batches would result in a distribution shifted towards
the right-hand side of the expected Gumbel distribution. Not using shuffling would suppress the effect
of disturbances if the resulting associated population of templates was well localized in frequency; the
resulting distribution, however, would be less accurate and in particular could still overestimate the
Gumbel parameters, as discussed in Figs. 5.7, 5.8, and 5.9. The robustness of distromax results to the
effect of mild disturbances on the data can also be tested by generating several sets of batchmax samples
and comparing the location and scale parameters of the corresponding Gumbel distributions. The wider
the distribution over shuffling realizations, the bigger the effect of noise disturbances.

Narrow spectral features (“lines”), in particular, are common noise disturbances affecting (t)CW
searches, with excess power typically concentrated within a few frequency bins [13]. CW signals them-
selves are another typical example of well-localized “disturbances”: should a (strong) CW signal be
present in a datastream, a blind application of distromax could result in overestimation of the loud-
est candidate’s distribution, potentially flagging the CW signal itself as a background-noise fluctuation.
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The sensitivity of current interferometric detectors, however, makes CW searches to operate in the weak-
signal regime (see Appendix 5.C). As a result, CW signals are unlikely to actually affect the estimations
provided by distromax.

Due to their crucial role in CW searches, we discuss in Appendix 5.B a simple proposal to reduce
the effect of narrow-band disturbances so that distromax results can still provide a cogent answer.
Whenever possible, we recommend the application of informed veto strategies against instrumental
artifacts (see [16] and references therein) before attempting to process the results using distromax.
The method discussed in Appendix 5.B is just a complementary algorithm to prevent a specific type
of strong disturbances from invalidating an analysis. The characterization and improvement of this or
similar algorithms to deal with more generic disturbances is left for future work.

Third, in principle distromax assumes the complete set of detection statistic values from the full tem-
plate bank is available. Several wide parameter-space searches, however, use toplists [78, 88, 89], meaning
they only keep a small fraction of detection statistic values corresponding to the louder templates. The
basic requirement is to use a toplist such that the tail of the distribution is properly represented. Falling
short (i. e. not reaching the bulk of the distribution) could result in inaccurate fits to batchmax samples.
Incidentally, the results discussed in Appendix 5.B clarify the suitability of distromax to these searches.

Fourth, and closely related to the second point, template banks must not be too strongly correlated.
EVT ensures distromax is robust to a certain degree of template-bank correlations; more specifically,
answers provided by distromax will be cogent as long as the dominant contribution to batchmax samples
comes from the tails of the involved distributions. As discussed in e.g. [48], template bank setups using a
small mismatch return highly correlated samples in the vicinity of local parameter-space maxima, adding
additional features to the results distribution (see e. g. Fig. 2 in [33]). This may have similar effects
to the presence of loud disturbances, as a significant fraction of the resulting batchmax samples would
come from samples around a few local maxima and not be representative of the tail of the background
distribution. Consequently, the corresponding batchmax distribution will not be fully converged to an
EVT distribution and the final Gumbel parameter estimation will be affected. No simple amendment,
other than using a higher mismatch [53, 10], is currently available to obtain robust results with distromax
in this situation.

This phenomenon was observed in [90, 91], where distromax was applied to process the result of both
a search for CW signals and a search for long-duration transient GWs from glitching pulsars. The CW
search used a mismatch of m ≃ 0.02 combined with a toplist, which reduced the effect of such a dense
parameter-space converging on the batchmax distribution. Preliminary studies for the long-duration
transient GW search using m = 0.02 without a toplist, on the other hand, revealed a poor performance
of distromax; in that case, the solution was to increase the mismatch to m = 0.2, using a similar setup
as in [32].

As we will discuss during Sec. 5.5, distromax is suitable to be applied in real-data searches with
typical mismatch setups. Moreover, further detection statistics beyond 2F , such as “line-robust” ’ statis-
tics [35, 36] or tCW search statistics [37], can be processed using the same method. This has the effect
of improving the quality of distromax results, as these statistics are designed to diminish the effect of
noise disturbances on (t)CW searches, providing a cleaner set of batchmax samples.

5.5 Application to O2 data
As a demonstration, we apply distromax to data of the two advanced LIGO detectors [18] from the
O2 observing run [92] in Hanford and Livingston. We study the statistics of results obtained in [32] for
narrow-band searches targeting the Vela and Crab pulsars, which experienced glitches on 12th December
2016 and on 27th March 2017 respectively. The template bank for each target was a grid in λ = (f0, f1)
of size Nλ ≈ 1.15×107. This template bank was not constructed with a fixed mismatch but an estimate
of m ≈ 0.2 was given in [32]. Here we consider the results using various F-statistic based detection
statistics for both CWs and tCWs. For both cases we choose a batch size n = 1000, and the number
of batches as B = Nλ/n. Since this is a narrow-band search, the low number of templates places this
particular application of distromax at the border of the suitable regime described in Fig. 5.10; the
obtained results, however, are not negatively affected by this.
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Figure 5.11: 2F values obtained in [32] analysing LIGO O2 data after glitches in
the Vela (left panel) and Crab (right panel) pulsars. In each panel, the gray dotted
line is the histogram of the samples obtained by the search. The blue dotted line is
the expected χ2

4 distribution for independent samples. This is propagated using the
total number of templates Nλ ≈ 1.15 × 107 as B in Eq. (5.22), yielding an estimated
distribution for the maximum of 2F shown by the dashed-dotted blue line. On the
other hand using distromax we plot the batchmax histogram (using n = 1000, black
solid line) and we fit it with a Gumbel distribution (dashed red line). The propagated

distribution is obtained by applying Eq. (5.25) with B = Nλ/n (solid red line).

5.5.1 CW detection statistics
We first consider results for CWs of duration four months corresponding to the maximum observation
time in [32]. We begin with the standard 2F as its distribution is well known. As we see from Fig. 5.11,
the histogram of the full 2F results matches well with a standard χ2

4 distribution. One can also fit
Eq. (5.19) treating N as a free parameter, obtaining N ′ ≈ 1. This is equivalent to considering each 2F
sample as the trivial maximum of a single draw from a χ2

4 distribution. This χ2
4 distribution can then be

propagated using the total number of templates Nλ as B in Eq. (5.22), yielding an estimated distribution
for the maximum of 2F , which assumes that the template bank correlations are negligible.3 We then
compare the resulting distribution with the one obtained by the distromax method in Fig. 5.11. The
two resulting distributions for the maximum agree well.

We also apply the distromax method on a different statistic for the CW search, namely the line-
robust statistic BS/GL [35]. This is a Bayes factor derived from the likelihood ratio between the signal
hypothesis and the combined hypothesis noise hypothesis of Gaussian noise and lines. The lines are
modelled based on the assumption that they look exactly line a signal, but are present in only one
detector. The results are shown in Fig. 5.12. Since the underlying distribution of BS/GL is unknown,
one cannot do the equivalent of fitting Eq. (5.19). Nevertheless, we can still apply the distromax
method, for which the only constraint is that said distribution falls off faster than a power-law (for
the case here discussed involving a Gumbel distribution). The details of the exact distribution are not
needed. Indeed, the batchmax distribution is well-fitted by a Gumbel distribution. In previous studies
using BS/GL on real data [94, 24, 95, 31, 30, 96, 29, 97], it was used only to improve the robustness
of the search against disturbances by using it as the toplist ranking statistic, but the final significance
statements were made returning to 2F because no closed-form distribution was known for BS/GL. Now
with distromax we can directly estimate thresholds from the samples allowing for end-to-end analysis
using BS/GL.

5.5.2 tCW detection statistics
We now investigate the case of tCWs, which was the main focus of [32]. As briefly mentioned in Sec. 5.2,
such signals can be modelled as CWs modulated by a window function dependent on the transient
parameters T , namely the start time of the transient signal t0 and its duration τ . For this analysis a

3As discussed in detail in Sec. 8.7.1 of [23], the result of any fit of Eq. (5.19) to F-statistic-based detection statistic
samples cannot be directly interpreted as an “effective number of templates” even in the absence of template-bank corre-
lations. This is due to a small upwards implementation bias in the F-statistic computation [45, 93]. For the N ′ ≈ 1 fit to
the F-statistic samples, this seems to approximately cancel with the effect of template bank correlations.
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Figure 5.12: Values of the log10 BS/GL statistic obtained in the same analysis [32]
as in Fig. 5.11. Vela results are on the left panel, Crab results are on the right panel.
No closed-form expression for the distribution of BS/GL is known, so only the search
samples (dotted gray line), the batchmax histogram (black solid line), the Gumbel fit to
it (dashed red line), and the propagated final distribution (solid red line) from distromax

are shown.

rectangular window function was used. As a detection statistic for tCWs, the F-statistic at fixed λ can
be maximized over transient parameters [37], thus obtaining 2Fmax = maxT 2F . (We use this notation
instead of simply max 2F to avoid confusion with the maximum CW detection statistic 2F over a full
template bank.) We expect local correlations to have a more severe impact when using this statistic
because it can pick up short-duration non-Gaussianities or simple fluctuations that the CW F-statistic
would not be susceptible to.

When the distromax package shuffles the dataset in the batchmax stage, several batches can be
contaminated by the same noise fluctuation, and therefore the batchmax distribution reflects this con-
tamination. The result is a more ragged distribution with peak-like features, as one can see in Fig. 5.13.

To estimate the distribution of the loudest candidate for this dataset, [32] made several simplifying
assumptions. While there is no known distribution for 2Fmax that could be directly inserted into
Eq. (5.19), its value at each template λ is the maximum of 2F values over the transient parameters
T , which individually follow a χ2

4 distribution. However, there is a high degree of correlations in the
transient parameter space. Hence, fitting Eq. (5.19) to the 2Fmax samples, the result is an “effective
number of transient templates” N ′ ≈ 55 (compared to a nominal number of NT ≈ 2 × 106 transient
templates at each λ).4 It was then assumed that Nλ ×N ′ could be interpreted as an “effective number
of templates” over the full, non-maximized, parameter space (λ, T ). Consequently, the distribution of
the overall loudest was obtained by propagating a χ2

4 distribution using B = Nλ ×N ′ in Eq. (5.22).
The fits to the 2Fmax sample histograms approximately catch the peak of the distribution, but fail to

correctly recover the overall shape. On the other hand, with distromax, the Gumbel fits to the batchmax
samples are noticeably better aligned to both the peaks and the tails of the batchmax histograms than
the N ′ based fits are to the full samples histograms. The propagated distributions from both methods
still overlap, but their differences are larger than in the CW case.

Again, we apply distromax also on an alternative detection statistic for the tCW search, namely
the BtS/G statistic, also derived in [37]. This statistic does not deal with the transient parameters by
maximizing over the T space, but rather marginalizes over it using a uniform prior. This results in less
contamination from disturbances and noise fluctuations. Despite its known better detection efficiency
[37], one reason why this detection statistic has not been used in [32] is that its distribution is not
analytically known, hence no simple fit of Eq. (5.19) could be done. With the distromax method [38],
this is no longer a problem. The results are shown in Fig. 5.14. Using the same data sets as before,
the batchmax histograms are much smoother and better fit by a Gumbel distribution than their 2Fmax

counterparts. This indicates that BtS/G is a more robust detection statistic than 2Fmax on real data.
As for BS/GL for CWs, with distromax it can now also be used as an end-to-end detection statistic.

4Here the difference between the fitted “effective” and nominal number of templates is much larger than for the CW
F-statistic and hence the previously discussed bias is small enough to be ignored.
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Figure 5.13: Values of 2Fmax obtained in the tCW analysis of [32] on LIGO O2 data
after glitches in the Vela (left panel) and Crab (right panel) pulsars. The gray dotted line
is the histogram of the samples obtained by the search. There is no known distribution
for 2Fmax, but it is a maximum over F-statistics over the transient parameters which
individually follow a χ2

4 distribution. Due to the high degree of correlations in the
transient parameter space, in [32] the “effective number of transient templates” was
obtained by fitting Eq. (5.19) to the 2Fmax samples, obtaining N ′ ≈ 55 (dotted blue
line). The distribution of the overall loudest was then obtained by propagating the χ2

4

distribution using B = Nλ ×N ′ in Eq. (5.22) (dash-dotted blue line). This corresponds
to treating each sample as a batch with a single element. On the other hand using
distromax we plot the batchmax histogram (n = 1000, black solid line) and we fit it
with a Gumbel distribution (dashed red line). The propagated distribution is obtained

by applying Eq. (5.25) with B = Nλ/n (solid red line).

5.6 Conclusion
We have introduced distromax, a new method to estimate the distribution of the loudest candidate
in a gravitational-wave search. This method culminates a series of developments in the continuous
gravitational-wave literature aimed at re-cycling wide parameter-space search results into a proxy dis-
tribution for the expectation over different background noise realizations. An implementation of the
method is freely available as a Python package [38].

Our specific proposal uses max-stable distributions from extreme value theory to provide a generic
approach, applicable to any detection statistic displaying a light-tailed distribution under the noise hy-
pothesis (that is, unbounded and decaying faster than a power-law). This is in contrast with previous
approaches based on the F-statistic, whose very specific assumptions prevented a successful generaliza-
tion.

Although we have focused on the case of detection statistics with light-tailed distributions, as that
is the standard encountered in CW searches, extensions to other kinds of distributions are possible by
using a different family of max-stable distributions.

We have demonstrated the general applicability of distromax using both synthetic Gaussian-noise
data and the results of a real search on Advanced LIGO O2 data for (transient) continuous gravitational-
wave signals from the Vela and Crab pulsars. Results show a significant improvement with respect to
previous estimation methods due to the robustness of distromax to realistic template-bank correlations.

Additionally, the possibility of using further detection statistics suppressing the effect of lines (BS/GL,
BS/GLtL) or transient instrumental artifacts (BtS/G) presents two further advantages for (transient)
continuous gravitational-wave searches: first, distromax allows us to process the results directly in
terms of these more informative statistics; second, the built-in suppression of instrumental features
in these statistics itself improves the convergence of batchmax samples to a max-stable distribution,
improving the quality of the results provided by distromax. This last point also makes plots of the
batchmax distribution a useful tool to diagnose the data quality of a specific frequency band using its
deviation with respect to the expected max-stable distribution.
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Figure 5.14: Values of log10 BtS/G obtained in the same [32] tCW analysis as in
Fig. 5.13. Vela results are on the left panel, Crab results are on the right panel. Here
there is no direct fit of Eq. (5.19) because no closed-form expression for the distribution
of BtS/G is known, and it cannot be easily related to the original F-statistic, so only
the search samples (dotted gray line), the batchmax histogram (black solid line), the
Gumbel fit to it (dashed red line), and the propagated final distribution (solid red line)

from distromax are shown.

5.A Basic results of extreme value theory
Let us consider a set of n independent and identically distributed random variables {x1, . . . , xn} each
following a probability distribution f . These variables can be identified with a detection statistic evalu-
ated on a set of parameter-space templates, with f corresponding to the detection statistic’s distribution
under the noise hypothesis. We are interested in describing the probability distribution of the highest
detection statistic value (usually referred to as the largest order statistic [62]) x∗ = max{x1, . . . , xn},
denoted as f∗, in order to evaluate the significance of outliers resulting from a CW search.

A first ansatz for f∗ can be constructed by considering the probability of drawing xi = x∗ for a single
i ∈ [1, n] and xi < x∗ for the remaining n− 1 values, taking into account all possible sortings:

f∗n(x) = n f(x)

[∫ x

dx′ f(x′)

]n−1

. (5.29)

(An alternative derivation of this results is presented in Sec. 5.3.) This approach is sufficient if the
probability distribution f is well understood and different random variables xi are independent from one
another so that the joint distribution factors into the product of individual distributions. In the case
of searches on real data, however, parameter-space correlations cause f∗n to deviate from Eq. (5.29) [58,
33, 34].

Extreme Value Theory (EVT) provides asymptotic closed forms for Eq. (5.29) in the limit of n→ ∞

f∗n
n→∞−−−−→ GEV(γ) , (5.30)

where GEV refers to the generalized extreme value distribution and γ ∈ R is referred to as the extreme
value index [62, 63, 65, 66]. According to the specific properties of the random variables at hand, GEV
distributions can be shifted and rescaled by location and scale parameters, µn and σn. The general
dependency on the number of random variables being drawn n is due to the increased chances of drawing
an extreme value as the number of independent trials increases. This is usually referred to as the trials
factor.

In a practical case, assuming n so that the convergence is suitable for the application at hand,
Eq. (5.31) can be recast into a closed form

f∗n(x) = GEV(µn + x σn; γ) . (5.31)

Typical prescriptions for µn and σn [67, 68] tend to be valid for n ≳ 104. The GEV distribution has the
specific property of being max-stable, meaning that the distribution of the maximum sample out of n
draws from a GEV distribution is again a GEV of the same kind (same γ).
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Figure 5.15: CDF comparison of the loudest sample out of n draws from a uniform
(upper panel), exponential (middle panel), and Cauchy (lower panel) distribution to
their corresponding generalized extreme value distribution. Different line colors repre-

sent different numbers of draws n over which the maximization was performed.
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Figure 5.16: Comparison of the speed of convergence of the distribution of the loudest
sample out of n draws from a standard Gaussian distribution. The upper panel shows the
classical result, derived in [98]. The lower panel shows an improvement later presented
in [67], which achieves a lower level of discrepancy than the previous one at the same
number of draws. Different line colors represent different numbers of draws n over which

the maximization was performed.
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Figure 5.17: CDF comparison of the maximum sample out of n draws from a χ2
k-

distributed random variable with different number of degrees of freedom k to their
asymptotic Gumbel distribution. Different line colors represent different numbers of

draws n over which the maximization was performed.
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The value of γ depends on the right-hand tail behaviour of f , and determines the functional form of
f∗ out of three possibilities. We follow the definitions given in [66] (where γ is referred to as ξ): finite
tails with power-law behaviour correspond to γ < 0 (Weibull distribution), light tails correspond to
γ = 0 (Gumbel distribution), and power-law tails correspond to γ > 0 (Fréchet distribution)5. Fig. 5.15
illustrates the convergence towards each of these families using paradigmatic probability distributions,
namely a uniform distribution in [0, 1], a standard exponential distribution, and a standard Cauchy
distribution.

We focus our attention on the location and scale parameters, as they are relevant in terms of con-
vergence speed. EVT imposes very loose conditions on them, so the choice of µn and σn as functions
of n is not unique for a given distribution, and the main difference across different choices is the speed
with which the resulting distribution will approach the GEV one. We illustrate this using a Gaussian
distribution, which is in the domain of attraction of the Gumbel distribution and is famous for being
quite slow to converge. Figure 5.16 compares the prescription of location and scale parameters originally
proposed by Hall [98] to the improvement proposed by Gasull [67].

However, in this paper we are mainly interested in χ2
k distributions, where k ∈ N denotes the

degrees of freedom of the distribution, as CW statistics are quite frequently constructed as the norm
of a Gaussian vector and hence follow χ2

k distributions. A significant improvement over the classical
literature was presented in [68], where closed expressions for µ and σ for a generic Γ distribution were
obtained. Figure 5.17 shows the convergence of different χ2

k distributions towards a Gumbel distribution.
We provide an implementation of the corresponding expressions discussed in [68] within the distromax

Python package [38]: Although the distromax method itself does not use any of these results (since µ
and σ are estimated from the data), they can still be used to produce theoretical estimates.

5.B Addressing disturbed data
The intended output of distromax is an empirical estimation of the distribution of the loudest candidate
produced by noise-only data in a CW search p(ξ∗|HN). To do so, the basic assumption is that the
output of a search ξ corresponds mostly to samples of the detection statistic from a single well-behaved
distribution. In practice, this generally means Gaussian noise, plus only a small number of samples
coming from another population such as a non-Gaussianity in the data or a CW signal. If the number
of such samples is negligible compared to the number of batches used in distromax, so would be their
effect in the batchmax distribution.

CW searches in real data, however, are populated by various kinds of noise disturbances. Concretely,
a prominent type are narrow-band instrumental features (“lines”), which tend to concentrate their effect
within a few frequency bins, but especially for higher-dimensional searches (several spin-down terms
and/or all-sky searches) can still affect a large number of templates. Probability theory provides the
right tools to deal with this situation. Specifically, as discussed in Chapter 21 of [1], one should describe
the results of a search ξ as a mixture of two populations, namely a population of samples belonging
to the background and another one belonging to the noise disturbance. Further populations describing
additional effects, such as the presence of a CW signal, can also be included in the analysis. The
distribution of the loudest candidate produced by the background, p(ξ∗|HN), would then be obtained by
marginalizing out all but the background component of the mixture. Part of the idea of using multiple
candidate populations was implemented in [99]. In this Appendix, however, we concentrate on the
typical case of loud noise disturbances polluting a small number of frequency bins, for which the ad
hoc approach of excising or notching the disturbed frequency band returns a similar result to a proper
Bayesian analysis. A full treatment of the mixture model problem is left for future work.

As previously discussed in Sec. 5.4, this approach is conceived to deal with a specific set of common
noise disturbances so that distromax can be applied on a larger range of real-data results. However,
users are encouraged to understand and curate their search results using standard CW vetoes (see [16]
and references therein) before falling back to this specific notching algorithm.

Leveraging thresholding algorithms from the image-processing literature [100] we propose a simple
algorithm capable of notching frequency bands containing prominent disturbances. Since we focus

5The scipy Python package [77] implements these three distributions under the stats module, although it uses a
different sign criterion for the extreme value index, therein referred to as c. Setting c = γ, the Gumbel distribution
is gumbel_r, the Fréchet distribution is invweibull, and the Weibull distribution is weibull_max.
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Figure 5.18: Simulated samples corresponding to 106 templates in a square grid
across (f0, f1). 2F background samples correspond to draws from a χ2

4 distribution.
2F outlier samples are drawn from a non-central χ2

4 distribution with non-centrality
parameter ρ2 = 25. This figure shows the third notching iteration. Orange dia-
monds correspond to the loudest outlier per frequency bin ξ∗(f0). Cyan dots mark
samples notched in a previous iteration. Red crosses and the corresponding vertical
lines denote the frequency bins being notched in the present iteration. The solid hor-
izontal line corresponds to the threshold computed on the maximum samples using

skimage.filters.threshold_minimum.

on noise disturbances within well-localized frequency bands, we attempt to flag their corresponding
candidates focusing on the loudest detection statistic in each frequency bin f0

ξ∗(f0) = max
/λ

ξ(f0, /λ) , (5.32)

where /λ contains any other relevant parameter-space dimension. The resulting envelope can be thought
of as a one-dimensional gray-scale image in which we are interested to discern the background from an
object (the polluted band); the distinction is made by properly selecting a gray-value (detection-statistic)
threshold such that object pixels (polluted-band samples) lie above it, leaving nothing but background
below.

We illustrate the effects of our notching algorithm using a synthetic template bank containing a
narrow-band disturbance. The template bank contains 1000 × 1000 templates spanning the (f0, f1)
parameter space over the [100, 100.1] Hz frequency band. The corresponding 2F is drawn from a χ2

4

distribution for each template in the bank. We refer to this χ2
4-drawn set of samples as the ground truth.

An outlier is introduced by replacing samples in the [100.04, 100.05] Hz sub-band with an equal amount
of samples drawn from a non-central χ2

4 distribution with non-centrality parameter ρ2 = 25. The sample
projection over the f0 subspace is shown in Fig. 5.18.

We tested different thresholding techniques, including standard approaches such as the Otsu thresh-
old [101], the minimum cross-entropy threshold [102, 103], and the minimum method threshold [104],
using the implementations available in the skimage package [105]. We find the minimum method thresh-
old skimage.filters.threshold_minimum performs best in our specific study, noting that the imple-
mentation of the notching procedure in [38] allows for a flexible selection of thresholding strategies.

Once an appropriate threshold ξT has been established, we proceed to notch any frequency bin con-
taining at least one sample above threshold. Specifically, we remove all the samples from the frequency
bins f0 where ξ∗(f0) > ξT. This step can be applied multiple times in order to take care of multiple lines
in a band with very different amplitudes, “shoulders” of broad lines, or features such as spectral leakage.
The specific implementation provided in [38] implements a simple stopping criterion: notching iterations
stop whenever the threshold ξT falls below a pre-specified quantile of ξ∗(f0). The default value, which
performs well for our specific example, stops whenever ξT is lower than the top 20% values of ξ∗(f0).

The result of notching, as opposed to simply removing samples over threshold, is illustrated in
Fig. 5.19, where the distribution being notched is shown as a blue histogram. Simply removing samples
above threshold would be equivalent to cutting the tail of the histogram while leaving the bulk untouched.
While such an approach would be relatively harmless in the case of a disturbance strong enough to be
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cleanly separated from the background, it is rendered ineffective in the case of a relatively mild distur-
bance, as the polluted-band samples tend to overpopulate the tail of the distribution itself. Completely
notching the band, on the other hand (red histogram), properly deals with the overpopulation of outliers
and returns a distribution consistent with an undisturbed background.

After notching disturbed bands, we can simply apply the shuffling and batching procedure described
in Sec. 5.4.2. The resulting batchmax distributions, including the unnotched and ground truth distri-
butions, are shown in Fig. 5.20. Location and scale parameters of the best fitting Gumbel distributions
are shown in the legend and compared to the ground truth distribution in Fig. 5.21.

In this example, the estimated parameters using notching show only 1% relative difference with
respect to ground truth parameters, as opposed to the strong bias suffered by the unnotched estimates.
Moreover, we remark the robustness of the method to a mild overnotching of non-polluted frequency
bins: the convergence to a Gumbel distribution is mainly related to the properties of the “bulk of the
tail”; trimming the most extreme events from the background distribution does not affect significantly the
fitting of a Gumbel distribution. This is clearly seen in Fig. 5.19, where the notched distribution differs
from the ground truth by a few samples. These samples correspond to the background samples over
threshold in Fig. 5.18, which belong to the tail of the non-disturbed distribution. As briefly commented
in Sec. 5.4.6, this result justifies the extent up to which distromax is applicable to toplist-based searches:
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so long as the toplist reaches the bulk of the distribution, distromax should be capable of returning a
cogent answer.

The application of more notching iterations than strictly required, however, could result in an un-
derestimation of the Gumbel parameters due to the removal of too many samples in the tail of the
distribution. This is particularly important for the scale parameter: underestimations around 5% are
often obtained across several realizations of the example setup discussed here when using the notching
procedure with the stopping criterion as described above. For a typical batch size of B ≃ 103 − 104

(lnB ≃ 10) and fiducial values of µ∗ = 50 and σn = 2 [Eq. (5.26)] (similar to the values encountered in
a CW search using the 2F statistic), a 5% underestimation in σn implies about 20% of underestimation
in µ∗. The main consequence of this is a shift of the resulting p(ξ∗|HN) towards lower values, potentially
resulting in an increased number of candidates scoring over the specified threshold.

5.C Robustness against injections
As discussed in Sec. 5.4.6, (t)CW signals themselves can be considered as disturbances when trying to
estimate a background distribution. We therefore need to test that the distromax method is robust to
the presence of (t)CW signals and will not be biased upwards, which would lead to picking too high a
threshold and missing those signal-related candidates. Such a bias is not entirely avoidable, but should
ideally only appear for signals stronger than expected in any practical real-data search situation.

To test this, we re-use the upper limits injections in O2 data from the same analysis [32] as in
Sec. 5.5. Simulated signals of increasing amplitude h0 were added to the original short Fourier Trans-
form (SFT) data (“injections”). For each chosen h0, there are 50 data sets with parameters {f0, f1, t0}
uniformly distributed over their respective search ranges (see [32]) and the remaining amplitude pa-
rameters {cos ι, ψ, ϕ0} randomized over their natural ranges. ComputeFstatistic_v2 [59] was used to
reanalyze a small range around the injection point and we combine these results with the original detec-
tion statistic samples for the rest of the search band. We then apply distromax as in Sec. 5.5, checking
the resulting propagated distribution for the maximum of each detection statistic. We also test the
notching procedure introduced in Appendix 5.B by gradually increasing the num_iterations option,
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Figure 5.22: Results of testing distromax on 2F values from simulated signal in-
jections for the Vela (left) and Crab (right) O2 search parameter spaces, matching the
setup from [32], plotted as a function of injected amplitude h0. The black data points
corresponding to h0 = 0 are the means of the estimated Gumbel distribution on the
original data without injected signals and their dashed vertical lines correspond to the
standard deviation of the same distribution. The different markers correspond to differ-
ent choices of notching iterations. For each injected amplitude, the colored data points
with different markers are the average distribution means over 50 injected signals. Their
error bars show the standard deviations of these 50 means. A small horizontal shift be-
tween the data points belonging to the same h0 has been inserted for readability. The
gray highlight areas are the 90% upper limits taken from [32] for Vela and Crab, con-

sidering their uncertainty.

from 0 to 5. The means and standard deviations of the propagated distributions for the four statistics
discussed in Sec. 5.5 are shown in Fig. 5.22, Fig. 5.23, Fig. 5.24 and Fig. 5.25.

As one increases the amplitude h0 of the injected signal, an increasing number of templates will
produce elevated values of the detection statistic. In Sec. 5.4.5, we found that shuffling of batches in
the batchmax step is generally preferred. However, with a strong signal present that affects multiple
templates, the shuffled batchmax distribution will inevitably become contaminated, leading to an overes-
timation of the final distribution parameters. Such a trend is indeed visible in the results for all detection
statistics, more clearly for the Vela analyses (left-side panels). However, the effect is small compared
to the actual increase of the detection statistic at the templates with injections. For the highest ampli-
tudes tested, the detection statistic can reach values ∼ 20 times above the expected loudest background
sample. Furthermore, the upwards shift in the estimated distribution is generally mild, with the mean
shifting by less than one standard deviation of the original injection-free mean, at least as long as h0
does not reach significantly above the 90% upper limits set in [32].

In addition, the notching feature can be useful in limiting the rise of the estimated means in the pres-
ence of signals with large h0, by treating the templates with elevated detection statistic as disturbances
for the purpose of background estimation and removing them before applying the batchmax procedure.
Generally 1–2 iterations of notching have little influence on the estimated Gumbel distribution mean
of the original data without injections while helping to reduce the rise of the estimated distribution
mean with injection h0. With more iterations of notching, results become more robust towards strong
injections, while for the original data the means in some cases are estimated lower. This would always be
conservative in the sense that one would retain more candidates for follow-up even when “over-notching”
clean data, however it would lead to additional human and computing effort to follow up candidates
that are clearly noise fluctuations.

Hence, as already discussed in Appendix 5.B, we recommend using the notching feature only if
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Figure 5.23: Results of testing distromax on log10 BS/GL values from simulated
signal injections for the Vela (left) and Crab (right) O2 search parameter spaces, with

all details as in Fig. 5.22.

required. If data is clean – i.e. no unusual features in the batchmax histograms – notching is not
necessary, and more likely leads to underestimated distribution parameters which would correspond to
an overly conservative threshold choice. If, on the other hand, data exhibits strong and numerous spikes
in the statistic, the plain distromax method may lead to overestimated distribution parameters, and
notching can be a useful tool in such situations. Regarding the potential presence of (t)CW signals in
the data, distromax seems robust to these, with or even without notching, for the typical target signals
of current (t)CW searches (not standing out far above the noise background); and if in doubt, notching
can still help to provide more conservative thresholds.
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Figure 5.24: Results of testing distromax on 2Fmax values from simulated signal
injections for the Vela (left) and Crab (right) O2 search parameter spaces, with all

details as in Fig. 5.22.
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Chapter 6

All-sky search in early O3 LIGO data
for continuous gravitational-wave
signals from unknown neutron stars in
binary systems

This chapter is an adaptation of the material presented in

All-sky search in early O3 LIGO data for continuous gravitational-wave signals from unknown neutron
stars in binary systems
R. Abbott et al. (LIGO–Virgo Collaboration)
Phys. Rev. D 103, 064017 (2021) – arXiv:2012.12128 [gr-qc]
DOI: 10.1103/PhysRevD.103.064017

6.1 Introduction
Continuous gravitational waves (CWs) are a long-lasting form of gravitational radiation. For ground-
based interferometric detectors the canonical sources are rapidly spinning neutron stars (NSs) sustaining
a quadrupolar deformation. Several emission mechanisms have been proposed, such as crustal deforma-
tions, r-modes, or free precession (see [1] for a recent review). Detecting CWs would probe the physics
of such compact objects, leading us to a better understanding of the equation of state of matter under
extreme conditions. More exotic types of CW sources are also theorized, such as boson clouds around
spinning black holes [2].

Every CW search method assumes certain information about the intended sources. All-sky searches,
such as the one reported in this paper, impose the least constraints on the CW emission. The latest
results obtained by the LIGO–Virgo collaboration using Advanced LIGO [3] and Advanced Virgo [4]
data, covering targeted (known pulsars), directed (known sky locations), and all-sky searches, can be
found in [5, 6, 7, 8, 9, 10].

All-sky searches require highly efficient analysis methods because they must account for a Doppler
modulation due to the Earth’s movement with respect to the Solar System Barycenter (SSB), an effect
that depends on sky position. In principle, one can construct a search pipeline using fully coherent
matched filtering; for wide parameter space searches, however, such an approach quickly becomes com-
putationally unaffordable [11]. As a result, semicoherent methods are used, splitting the data stream
into smaller time segments that can be coherently analyzed. Then, per-segment results are combined
according to the expected frequency evolution of the template under analysis. This method reduces the
computational cost of a search while achieving a reasonable sensitivity.

Only a small fraction of the expected population of galactic NSs has been detected electromagnetically
[12]. Through gravitational waves we could access these unknown populations of NSs. About half of the
NSs detected using electromagnetic means within the most sensitive frequency band of current ground-
based detectors are part of a binary system [13, 14]. Searches for CWs from this class of NSs pose
an additional, substantial computational challenge compared to standard all-sky searches that target
isolated NSs because additional unknown binary orbital parameters increase the search parameter space
dimensionality. As a result, one must use specialized methods in order to search for this type of signal.

https://doi.org/10.1103/PhysRevD.103.064017
https://arxiv.org/abs/2012.12128
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We present an all-sky search for CWs produced by NSs in binary systems using the semicoherent
BinarySkyHough pipeline [13]. It builds upon SkyHough [15], inheriting its characteristic noise robustness
and computational efficiency, and uses Graphics Processing Units (GPUs) to speed up the core part of
the search. The concept of BinarySkyHough is to compute search statistics over the parameter space
and to use those statistics to rank the interesting regions for subsequent follow up using more sensitive,
computationally demanding techniques. This balance between sensitivity and computational cost has
proven effective in previous searches of the LIGO O2 observing run data using both the isolated SkyHough
[8] and BinarySkyHough [16] flavors of this pipeline.

In Sec. 6.2 we introduce the signal model; Sec. 6.3 describes the early third observing run of the
Advanced LIGO and Advanced Virgo detectors; Sec. 6.4 briefly describes the main analysis pipeline;
Sec. 6.5 introduces the first post processing stage; and in Sec. 6.6 we estimate the sensitivity of this
search. In Sec. 6.7 we further analyze the most significant outliers and rule them out as non-astrophysical
candidates. We present our conclusions in Sec. 6.8.

6.2 Signal Model
A non-axisymmetric neutron star spinning about one of its principal axes is expected to emit gravitational
waves at twice its rotation frequency f0 = 2frot with a strain amplitude given by [17]

h(t) = h0 [F+(t;ψ, n̂)
1 + cos ι

2
cosϕ(t) + F×(t;ψ, n̂) cos ι sinϕ(t)] , (6.1)

where F+,× are the antenna patterns of the interferometric detectors, depending on the polarization
angle ψ and the sky position n̂ of the source; h0 and cos ι are the characteristic CW amplitude and the
cosine of the inclination of the source with respect to the line of sight, respectively; ϕ(t) represents the
phase of the gravitational wave signal.

The CW amplitude h0 can be expressed in terms of the physical properties of the source once an
emission mechanism has been assumed. The three principal moments of inertia of a non-axisymmetric
NS are given by Ix, Iy, Iz, and the equatorial ellipticity is given by ϵ = |Ix − Iy| /Iz, assuming the spin
axis is aligned with Iz. The gravitational wave amplitude can be expressed as

h0 =
4π2G

c4
Izϵ

d
f20 , (6.2)

where d denotes the distance to the source from the detector, f0 the gravitational wave frequency, and
G and c respectively refer to the gravitational constant and the speed of light. We can further relate
this quantity to the mass quadrupole Q22 of the star through the equatorial ellipticity

ϵ =

√
8π

15

Q22

Iz
. (6.3)

We can describe the signal phase via Taylor expansion with respect to a fiducial starting time τ0 in
the source frame

ϕ(τ) = ϕ0 + 2π [f0 · (τ − τ0) + . . . ] , (6.4)

where τ is the proper source frame time and ϕ0 represents the initial phase at τ0. The number of higher
order terms to include in this expansion depends on the population of NSs under consideration. After
analyzing the ATNF pulsar catalog [14], it was argued in [13] that searching for NSs in binary systems
need not take into account any spindown parameters when using datasets lasting for less than a few
years. As we will discuss in Sec. 6.8, this search remains sensitive to signals up to a certain spindown
value, but there is an implicit limit on the astrophysical reach.

Because of the relative motion of the detector around the SSB and the relative motion of the source
around the Binary System Barycenter (BSB), the phase as measured by the detector at time t is Doppler-
modulated according to the timing relation

τ + ap sin [Ω (τ − τasc)] = t+
r⃗(t) · n̂
c

− d

c
, (6.5)
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where ap represents the semi-major axis of the binary orbit projected onto the line of sight (measured
in light-seconds), Ω represents the orbital frequency of the source, τasc represents the time of passage
through the ascending node as measured from the source frame and r⃗ represents the position of the
detector in the SSB. In order to derive this expression, we assumed circular, Keplerian orbits; the search
remains sensitive, however, to signals from sources in binary systems up to a certain eccentricity as
discussed in Section 6.7.1 and [13].

We define a template as λ = {f0, n̂, ap,Ω, tasc}. The parameter space (i.e. the set of all templates
searched) will be denoted as P. The orbital period is related to the orbital angular frequency by P =
2π/Ω.

We refer the reader to [18] for a complete derivation of Eq. (6.5) and a discussion about how to
express Eq. (6.4) in the detector frame. The gravitational wave frequency evolution associated to a
template λ as measured from the detector frame is thus

fλ(t) = f0 ·
(
1 +

v⃗(t) · n̂
c

− apΩcos [Ω(t− tasc)]

)
, (6.6)

where v⃗(t) refers to the detector velocity and tasc is akin to τasc measured from the detector frame.
Equation (6.6) assumes a projected semi-major axis of about O(1−−10) s and orbital period of at least
a few hours so that the change in radial position of the source is negligible compared to the wave’s
travelling time. We choose the initial phase tasc to be located within the range

[
tmid − P

2 , tmid + P
2

]
,

where tmid represents the mean time between the start and the end of the run measured in GPS seconds.

6.3 Data used
The first part of the third observing run of the Advanced LIGO and Advanced Virgo detectors (O3a)
comprises six months of data collected from the 1st of April 2019 at 15:00 UTC to the 1st of October
2019 at 15:00 UTC. Data was taken by the Advanced LIGO detectors, located in Hanford (Washington,
USA, designated H1) and Livingston (Lousiana, USA, designated L1), together with the Advanced Virgo
detector, located in Cascina (Pisa, Italy). We did not make use of Advanced Virgo data because of an
unfavorable trade-off between computing cost and expected sensitivity improvement of the search. The
detector duty factor (the fraction of the run when the detector is collecting observational-quality data)
was 71.2% for H1 and 75.8% for L1. The implementation of instrumental upgrades has allowed the
detectors to improve their overall sensitivities with respect to the previous observing run (O2) [19].

For the duration of the run, several artificial signals were injected into both detectors in order
to calibrate and monitor their performance. Calibration lines are artificial monochromatic signals,
injected at different frequencies in each detector to avoid coherent artifacts. They are used to monitor
time-varying detector operating parameters. Hardware injections, on the other hand, are artificial quasi-
monochromatic signals consistently injected into both detectors in order to mimic the effects of an actual
CW signal present in both detectors. They are used to verify expected detector response and characterize
calibrated data [20]. Both of these artificial signals may interfere with CW searches in general, showing
up as significant candidates due to their high strength in the detector spectrum. Spectral artifacts
in detector data can be produced by environmental or instrumental noise and also interfere with CW
searches [21].

The search was performed using Short Fourier Transforms (SFTs) created from the C00 (initial
calibration version) time-domain observing-quality strain data [22]. These SFTs were extracted from
SFDB (Short Fourier Data Base) data [23], which incorporates a time-domain cleaning procedure to avoid
noise-floor degradation due to glitches and other forms of transient noise. Every SFT lies completely
within observing-quality data. Fourier transforms were computed using a Tukey-windowed baseline of
TSFT = 1024 s with tapering parameter βTukey = 0.5 and a 50% overlap. These values are collected in
table 6.1.

Following the same procedure used in the O2 SkyHough search [8], SFT data are split into two
datasets to be used in two different stages of the search. The first dataset, which we refer to as non-
overlapping, leaves out overlapping SFTs (i.e. every SFT starts at the end of the previous one). The
second dataset, which we refer to as overlapping, contains all of the SFTs. Using the non-overlapping
set for the first stage of the analysis reduces the computational cost of the search at a manageable loss
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Search setup parameter Value

TSFT 1024 s
βTukey 0.5
Tobs 14832675 s
tmid 1245582821.5 s
∆f 0.125 Hz

Table 6.1: Miscellaneous parameters used in the search. TSFT denotes the time span
employed to compute Short Fourier Transforms (SFTs). βTukey refers to the tapering
parameter of the Tukey window, denoting the fractional length of the window’s central
unitary plateau. Tobs is the observing time of the run. tmid represents the mean time
between the start and the end of the run measured in GPS seconds. ∆f refers to the

bandwidth of the individual sub-bands analyzed by each computing job.

Non-overlapping Overlapping

H1 10172 20577
L1 10962 22049
Total 21234 42626

Table 6.2: Number of Short Fourier Transforms (SFTs) in each of the datasets. Char-
acteristics of these SFTs are summarized in table 6.1 and section 6.3.

in sensitivity. Table 6.2 lists the number of SFTs in each of the datasets. Datasets contain SFTs from
both LIGO detectors (i.e. we perform a multi-detector search [13]).

6.4 The Search Pipeline
We split the search into two main frequency bands: the low-frequency band, from 50 Hz to 100 Hz, and
the high-frequency band, from 100 Hz to 300 Hz. These bands are further divided into ∆f = 0.125 Hz
sub-bands, which constitute the basic working unit of our setup: each computing job performs an all-sky
search over one such sub-band, searching for binary modulated signals within a certain region of the
binary parameter space among the ones specified in Fig. 6.1 and Table 6.3. Because of the limited
computing power available, the high-frequency search focuses on a single binary parameter space region,
denoted as B in Table 6.3; the low-frequency search is performed in all four binary parameter space
regions.

The search parameter space is gridded with templates as described in [13]:

δf0 =
1

TSFT
, δθ =

c/v

TSFT f0 Pf
, δap =

√
6m

πTSFTf0Ω
,

δΩ =

√
72m

πTSFTf0apΩTobs
, δtasc =

√
6m

πTSFTf0apΩ2
,

(6.7)

where δθ refers to the angular sky position resolution, v = |v⃗| and v/c ∼ 10−4. Tobs denotes the
observing time of the search, quoted in Table 6.1. The variables Pf and m are the so-called pixel factor
and mismatch parameters, which can be used to manually control the parameter space template density.
In this search, we tune them in order to adjust the computing cost as we reach higher frequencies,
where template spacing naturally becomes finer. Table 6.4 summarizes the choices made for each of the
frequency bands.

The pipeline uses the Hough transform to relate tracks in the digitized spectrogram, as explained
below, to points in the parameter space. For each point in the parameter space λ ∈ P there is a
corresponding track [see Eq. (6.6)] of the time-frequency evolution, which denotes the instantaneous
frequency of the signal as observed by the detector.
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Figure 6.1: Binary orbital parameters considered by the present search. Solid color
regions denote parameter space regions in which a search was performed; blue dots
mark binary orbital parameters corresponding to the known binary pulsar population.
Regions A, B, C and D were covered by the low-frequency analysis, while region B
was covered by the high-frequency analysis as well. Time of ascending node passage is
taken into account according to the orbital frequency, as explained in Sec. 6.2. Pulsar

population data was taken from [14] using [24].

6.4.1 Ranking statistics
Let us assume the data can be described as a noise background plus a CW signal

x(t;λ) = n(t) + h(t;λ) . (6.8)

We start by computing the normalized power of SFT data

ραk =
|x̃αk |

2

⟨|ñαk |
2⟩
, (6.9)

where tildes represents a Fourier transformed quantity, k indexes frequency bins, α indexes SFTs and
⟨·⟩ denotes a running median average using 101 frequency bins, as explained in [13]. Each SFT α
can be related to a certain starting time tα, effectively obtaining a spectrogram where each bin (α, k)
corresponds to the normalized power ραk present at a certain frequency bin k in a certain SFT α. Then,
we impose a normalized power threshold ρth = 1.6 to digitize the spectrogram, obtaining a discrete
spectrogram populated by ones and zeros.

For each template, we follow the corresponding track and define the first ranking statistic, the number
count, as the weighted sum of ones and zeroes

n(λ) =
∑

(α,k)∈fλ

wα
k H (ραk − ρth) , (6.10)

where H denotes the Heaviside step function and the weights wα
k account for varying noise floor and

antenna response effects [25].
The number count statistic can be efficiently computed by means of the Look Up Table (LUT)

approach described in [15]. Incidentally, this strategy simplifies the cost by analyzing multiple sky
positions (called sky patches) together. The approach applies the Doppler modulation used to analyze
a particular frequency bin to a neighborhood of frequency bins. The sensitivity loss introduced by this
approximation is later compensated by re-analyzing the most significant candidates using their exact
time-frequency tracks [26].
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Binary Region P [days] ap [s]

A [15, 45] [10, 40]
B [7, 15] [5, 15]
C [5, 7] [2, 10]
D [3, 5] [2, 5]

Table 6.3: Binary parameter space regions analyzed by the search, corresponding to
the four colored regions in Fig. 6.1. Time of passage through the ascending node tasc is

searched along the interval specified in Sec. 6.2.

Label Frequency [Hz] m Pf

L [50, 100) 0.4 1
H1 [100, 125) 0.4 1
H2 [125, 150) 0.6 1
H3 [150, 200) 0.9 0.8
H4 [200, 250) 1.6 0.75
H5 [250, 300) 2 0.7

Table 6.4: Mismatch and pixel factor configurations for the different frequency bands
of the search. L refers to the low-frequency band; H1-5 refer to each of the five sub-
bands into which the high-frequency band was partitioned: 1 and 2 span 25Hz each,

while 3 to 5 span 50 Hz each.

The re-analysis uses the weighted normalized power statistic,

ρ(λ) =
∑

(α,k)∈fλ

wα
k ρ

α
k . (6.11)

Using this new ranking statistic instead of simply re-computing Eq. (6.10) along the exact track yields a
10−20% improvement in detection efficiency for the toplists (ranking of the most significant candidates)
based on the number-count statistic used here and discussed below [8].

In order to further select candidates across different sky patches, we compute a significance statistic
by normalizing Eq. (6.11) to the expected noise values derived in [15]:

sρ (λ) =
ρ(λ)− ρ̄

σρ̄
, (6.12)

where ρ̄ and σρ̄ represent the expected value and standard deviation of weighted normalized power in
pure Gaussian noise. This statistic removes any dependency on the sky position of the source due to
the weights, being well suited for comparisons across different sky patches.

6.4.2 Toplist construction
Toplists are constructed frequency-bin wise across sky patches, as shown schematically in Fig. 6.2. For
a given sky patch and frequency bin, the top 5% of parameter space candidates are selected according
to the number count statistic Eq. (6.10) using the LUT approach and the non-overlapping set of SFTs.
Then, they are re-analyzed computing their corresponding normalized power Eq. (6.11) along the exact
time-frequency evolution given by Eq. (6.6) using the overlapping set of SFTs. Finally, top candidates
according to Eq. (6.12) are collected into a final toplist. We collect the top 80000 candidates from each
0.125 Hz sub-band.

This approach optimizes the GPU usage in the number count stage (preventing loud spectral artifacts
from saturating the toplist) as each frequency bin provides a controlled number of candidates.
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Result: Toplist per 0.125 Hz sub-band
Select 0.125 Hz sub-band;
for SkyPatchIndex p do

Initialize per-patch toplist p;
for FrequencyBinIndex k do

Rank candidates by number count (10);
Select top 5 candidates;
Rank candidates by norm. power (11);
Select top 0.1 candidates;
Write candidates into per-patch toplist p;

end
end
Initialize sub-band toplist;
Collect all per-patch toplists into sub-band toplist;
Rank sub-band toplist by significance (12);
Select top 80000 candidates.

Figure 6.2: Explicit description of the BinarySkyHough toplist construction process.

6.5 Post Processing
Similar to previous searches [8, 16], we apply a clustering algorithm to the resulting candidates in
order to look for particularly interesting candidates. Clustering candidates reduces the total number of
candidates to follow up since typically many candidates are found to be produced by a single source
(either a CW signal or an instance of instrumental noise).

We implement a new clustering algorithm using the frequency evolution of a candidate to define
a parameter space distance [27]. This choice allows the algorithm to naturally take into account the
parameter space structure, avoiding the usage of ad hoc sky projections or mishandling periodic boundary
conditions.

After the cluster selection, we apply the well-known line veto, used in previous searches (e.g. [28, 29,
8, 16]) in order to rule out non-astrophysical candidates.

6.5.1 Clustering
The clustering algorithm is summarized below; see [27] for further details. Given two candidates with
template values λ, λ∗ ∈ P, we define the parameter space distance as

d(λ∗, λ) =
TSFT

Nα

∑

tα

|fλ∗(tα)− fλ(tα)| , (6.13)

where fλ(tα) represents the instantaneous frequency of a CW produced by a source with parameters λ as
measured by the detector at time tα and Nα denotes the number of SFT timestamps used. Essentially,
Eq. (6.13) is the average mismatch among time-frequency tracks.

Clusters are formed by grouping together candidates from connected components, i.e. each candidate
in a cluster is closer than a maximum distance dth = 1 to at least one other candidate in the same cluster.
Final clusters are ranked according to the significance of their loudest candidate, which we will refer to
as the cluster center.

For each 0.125 Hz toplist, the top 5 clusters according to their significance are selected. This leaves
us with a total of 16000 clusters: 8000 for the high-frequency search and 2000 for each region of the
low-frequency search.

6.5.2 Line Veto
Before the outlier follow up, we apply the line veto to the obtained cluster centers. Using the list of
identified narrow spectral artifacts [30], the veto discards any candidate whose time-frequency track
crosses an instrumental line, since such a candidate would likely become significant not because of
astrophysical reasons but rather instrumental ones.

For every cluster center with parameters λ, we compute its bandwidth

BW(λ) = [min
tα

fλ(tα),max
tα

fλ(tα)] . (6.14)
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Regions LA LB LC LD H1B H2B H3B H4B H5B

Initial Clusters 2000 2000 2000 2000 1000 1000 2000 2000 2000
Vetoed by Identified Line 366 359 359 373 44 0 32 30 30

Surviving Clusters 1634 1641 1641 1627 956 1000 1968 1970 1970
Fraction (%) 81.7 82.05 82.05 81.35 95.6 100 98.4 98.5 98.5

Surviving Outliers after 2F̂th veto 73 72 71 71 7 6 8 3 0

Table 6.5: Numbers of cluster centers discarded by the line veto using lines present
in [30]. The number of surviving outliers after the follow-up stage (see Sec. 6.7) is here
specified for the sake of completeness. Five clusters were collected from each 0.125 Hz
band: regions H1B and H2B, being the only ones spanning 25 Hz, yield a lower number

of clusters.

If the bandwidth of a candidate contains or overlaps with any of the lines present in [30], then the
candidate is discarded because of its likely non-astrophysical origin. This veto reduces the number of
clustered candidates by ∼ 20% in the low-frequency search and by a few percent in the high-frequency
search (see Table 6.5). This difference is to be expected, considering the greater amount of instrumental
lines present at lower frequencies.

Other narrow spectral artifacts have not yet been identified as clearly non-astrophysical in origin in
an unidentified list [31]. Although this list has not been used to veto clustered candidates, some of them
are consistent with artifacts in the unidentified list (see appendix 6.A).

6.6 Sensitivity
The sensitivity of the search is determined using a similar procedure as for previous all-sky searches
[28, 29, 8, 16]. A campaign of adding software-simulated signals to the data in order to estimate the
h0 that corresponds to a 95% average detection rate was carried out. We quantify sensitivity using the
sensitivity depth [32, 33]

D =

√
Sn

h0
(6.15)

where Sn represents the single-sided Power Spectral Density of the data (PSD),
√
Sn is referred to as the

Amplitude Spectral Density (ASD) and h0 is the previously defined CW amplitude. This figure of merit
characterizes the sensitivity of the search to putative signals and accounts for the detector sensitivity
as a function of frequency. The actual single-sided PSD in Eq. (6.15) depends on the analysis method
being used. BinarySkyHough sensitivity is dominated by the first stage using the weighted number count
statistic meaning one should use the inverse squared averaged PSD as shown in equations (42) to (44)
of [34]

Sn(f) =

√
Nα∑

α [Sα(f)]
−2 , (6.16)

where Sα(f) represents the running-median noise floor estimation using 101 bins corresponding to the
SFT labeled by starting time tα at frequency f . The goal is to characterize the average detection rate by
numerically computing the efficiency distribution with respect to the depth. The result is interpolated
to find the estimated sensitivity depth that corresponds to 95% detection efficiency. Using Eq. (6.15)
the sensitivity depth is converted to the sensitivity amplitude. It is in this last step where the systematic
error of the calibration is potentially relevant.

Systematic error in the amplitude of calibration of C01 data (final calibration version) is estimated
to be lower than 7% (68% confidence interval) for both detectors over all frequencies throughout O3a
[20]. Relative deviations of ASDs computed using C00 data with respect to ASDs computed using C01
data (used as a proxy for an estimate of systematic error in C00 data calibration which otherwise does
not exist for all time or frequencies) are below 7% for all frequency bands except in the [59, 61] Hz sub-
band, where the relative deviation is 10%. Assuming the proxy for C00 systematic error is complete,
the impact of such 10%-level of systematic error is negligible to the conclusions of this analysis.
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Five representative frequency bands are selected across each 25 Hz band and binary parameter space
region, and five sensitivity depth values used, namely [18, 20, 22, 24, 26] Hz−1/2. Two hundred signals
drawn from uniform distributions in phase and amplitude parameters are added to the data at each depth,
band and binary parameter space region. For each simulated signal, BinarySkyHough analyzes the data
again in order to evaluate how many of them are detected. Sensitivity depth values are selected such
that the 95% efficiency depth was properly bracketed; regions H4B and H5B required two extra depth
values [14, 16] Hz−1/2 to ensure this. Using a small number of frequency bands drastically reduces the
computing cost of the sensitivity estimation procedure while yielding consistent results when compared
to an exhaustive injection campaign, as justified in [16].

Three criteria must be fulfilled in order to label a simulated signal as “detected”. First, the toplist
obtained from the injection search should contain at least one candidate whose significance Eq. (6.12)
is greater than the minimum significance present in the corresponding all-sky toplist. Second, after
clustering the injection toplist, at least one cluster with a significance greater than the lowest significance
recovered by the corresponding all-sky clustering must be obtained. These two criteria ensure the
injection is prominent enough so as not to be discarded by the first stage of the search. Lastly, we
require at least one of the top five clusters from the injection toplist to be located closer than two
parameter space bins in each of the parameters with respect to the injection parameters. This last
criterion takes into account the fact that, in the actual search, a follow up will be done in corresponding
regions around each significant cluster center.

After separating detected from non-detected simulated signals, we construct efficiency curves akin to
the example shown in Fig. 6.3. Each point is the fraction of simulated signals detected (i.e. detection
efficiency) as a function of the sensitivity depth. For each sensitivity depth set of NI = 200 simulated
signals, the uncertainty on detection efficiency E is given by

δE =

√
E · (1− E)

NI
. (6.17)

Then, using SciPy’s curve_fit function [35], we fit a sigmoid curve to the data given by

S(D; p⃗ ) = 1− 1

1 + e−p0(D−p1)
, (6.18)

with fitted parameters p⃗ = (p0, p1). This expression can be inverted in order to find the 95% sensitivity
depth.

The interpolations are accompanied by a corresponding uncertainty, obtained through the covariance
matrix of the fit C(D) as

δD95% =
√

∇p⃗S(D; p⃗)T · C(D) · ∇p⃗S(D; p⃗)

∣∣∣∣
D=D95%

, (6.19)

where
∇p⃗S(D; p⃗)T =

(
∂S(D; p⃗)

∂p0
,
∂S(D; p⃗)

∂p1

)
(6.20)

and the superscript T denotes matrix transposition. The resulting interpolated depths per frequency
band are shown in Fig. 6.4. The high-frequency search shows a clear degradation of depth values as
frequency increases. This is related to the decaying density of parameter space templates: the higher
the frequency, the finer one must construct a template bank in order to achieve a comparable level of
sensitivity.

Finally, we compute an average 95% sensitivity depth for each of the regions quoted in Table 6.6. We
also quote a corresponding 3σ uncertainty, which previous studies have proven to deliver a good coverage
of the actual 95% efficiency sensitivity depth [16]. These values are translated to CW amplitude h0 via
Eq. (6.15) and shown in Fig. 6.5.
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Figure 6.3: Example of 95% sensitivity depth interpolation. Five sensitivity depths
were selected at 124.625 Hz in region H1B. 200 injections were injected at each of these
depths, applying the criteria exposed in the text in order to label injections as de-
tected/not detected. Blue dots represent the fraction of detected injections; the sigmoid
fit is represented by a blue line; fit uncertainties at one, two and three sigmas are repre-
sented by pale yellow shades. The interpolated 95% sensitivity depth D95% = 21± 0.4

is marked using a star.
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Figure 6.4: Average 95% sensitivity depths obtained in the low-frequency (top panel)
and high-frequency (bottom panel) bands. Data points correspond to the interpolated
results obtained through the sigmoid fit of the efficiencies at the selected frequency bands
(5 bands randomly selected in each 25 Hz). Error bars correspond to 95% efficiency
uncertainties towards low depth values. Shaded regions show the averaged results with
their uncertainties, as summarized in Table 6.6. In the top panel, shading is only shown

for the results obtained for the binary parameter space region B.
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Region ⟨D95%⟩ ± 3σ [Hz−1/2]

LA 22.9± 2.5
LB 22.8± 2.1
LC 23.0± 2.5
LD 23.0± 2.5
H1B 21.8± 1.2
H2B 21.1± 1.0
H3B 20.1± 2.0
H4B 18.7± 1.2
H5B 19.3± 2.0

Table 6.6: Average 95% sensitivity depths for the parameter space regions analyzed
in this search. Region labels are defined in Tables 6.3 and 6.4.
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Figure 6.5: Implied 95% efficiency amplitude from the obtained sensitivity depth
values. The h95%

0 amplitude estimates are obtained from the 95% efficiency depth values
shown in Table 6.6 and the inverse squared averaged PSD using Eq. (6.15). Low-

frequency results are shown for binary parameter space region B.
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Hyperparameter Value

Parallel chains 3
Walkers per chain 100
Burn-in & Production steps 100 + 100

Table 6.7: MCMC hyperparameter choice for the first stage of the follow up. Each
of the parallel chains sample the likelihood at a different temperature, as explained in

[41].

6.7 Follow Up
Remaining candidates from the main search are followed up applying a more sensitive method to the
data. Longer coherence times constrain the phase evolution of the candidate under consideration and
would yield higher significance for a true continuous wave signal. A potential downside remains that
a true signal could be discarded if it is not well modeled by the assumed phase evolution. Moreover,
increasing the coherence time also requires increasing the density of templates so as not to overlook a
putative signal.

An effective way to cover small parameter regions is through Markov Chain Monte Carlo (MCMC)
methods, which, rather than following a prescribed parameter space grid, sample the parameter space
following a certain probability density function. Reference [36] describes how this can be implemented
in a search for continuous waves by using the so-called F-statistic, a well-established CW analysis
technique, as a likelihood function. We refer to [36] and references therein for an in-depth explanation
of this method.

The F-statistic is a coherent statistic, usually referred to as 2F̃ , which compares data against tem-
plates by matched filtering. A semicoherent F-statistic 2F̂ can be defined by adding individual 2F̃
values computed over Nseg segments spanning Tcoh each, in the same way as weighted normalized power
was computed from weighted power in Eq. (6.11):

2F̂(λ) =

Nseg−1∑

s=0

2F̃s(λ) , (6.21)

where the index s indicates the coherent quantity has been computed for a certain segment spanning
Tcoh.

We use software injections in order to calibrate a threshold 2F̂th. Candidates such that 2F̂(λ) < 2F̂th
will be deemed as non-significant and consequently discarded.

This algorithm is implemented in PyFstat [37, 38]. It builds on top of LALSuite [39], which provides
the CW data analysis functionality, and ptemcee [40, 41], which implements the MCMC algorithms.

6.7.1 MCMC follow-up configuration
The MCMC follow up employed is not intended to describe the posterior distribution of parameters
defining a candidate. Rather, we only require enough convergence such that the sampled F-statistic
values are close enough to the local maximum to establish a reliable veto threshold.

Sampler configuration

The ptemcee package implements an ensemble-based sampler that uses several walker chains to sample
multimodal distributions. Expensive setups are not required in order to perform a first-stage follow up
using a threshold-based approach. The reason for this is two-fold: we are increasing the coherence time
with respect to the search, and we do not require extensive convergence to be achieved. No second-stage
follow up was required because all of the first-stage outliers were attributed to instrumental causes. If
this was not the case, we would have applied a second follow-up stage using a more expensive setup. The
number of parallel chains, walkers per chain, and number of steps to take are summarized in Table 6.7.

We choose to use Nseg = 260, which corresponds to Tcoh ≃ 17 h. This is a longer coherence time with
respect to that of the initial stage of the search, and a choice used in previous searches [16].
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Figure 6.6: Recovered 2F̂ values using a set of injections labeled as detected by the
sensitivity estimation criteria. The amplitudes of these injections were distributed using
the five sensitivity depth values explained in Sec. 6.6. The top panel shows the results
for the four regions of the low-frequency search, involving 33757 injections; the bottom
panel shows the same result for the high-frequency search, using 37549 injections. The

horizontal orange line marks the threshold 2F̂th = 2500.

Prior choice

Following a similar prescription as the one given in [36], we set up uniform priors in each parameter space
dimension, forming a box centered on each cluster center. Each edge of this box spans two parameter
space bins according to the spacing given in Eq. (6.7), where the parameter-space-dependent quantities
are computed at the center of the cluster. This is in agreement with the detection criteria imposed to
perform the sensitivity estimation.

Although BinarySkyHough targets CW sources in circular orbits, it is still sensitive to signals with
eccentricities up to a certain value, as long as the Doppler modulation derived from eccentricity is smaller
than half a frequency bin. The upper bound for the maximum allowable eccentricity according to this
argument was derived in [13]

em.a. = [2TSFT f0 ap Ω]
−1

. (6.22)

Therefore, uniform priors on eccentricity, [0, em.a.], and argument of periastron, [0, 2π] are included as
MCMC parameters. Maximum eccentricities range from 0.2− 0.5 at 50 Hz to less than 0.1 at 300 Hz.

6.7.2 Setting up a threshold
We use the BinarySkyHough and the MCMC follow up on a total of 71306 software injections in order
to calibrate a significance threshold. The employed injections are consistent with the ones used for
the sensitivity estimation, focusing on those detected according to the three criteria (see Sec. VI).
This implies a significant fraction of the injections will possess an amplitude below the obtained 95%
sensitivity amplitude, as they will be distributed according to the five original depths. The threshold
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Figure 6.7: MCMC follow-up results. Dots represent cluster centers not vetoed by the
identified line veto, and a horizontal line represents the imposed threshold 2F̂th = 2500,
calibrated by software injections (see Fig. 6.6). The horizontal axis represents the
frequency value associated to each cluster center, and the vertical axis represents the

maximum 2F̂ value sampled by the MCMC run.

obtained using this calibration strategy will have a low false-dismissal rate (≲ 1/71306 ≃ 1.5 × 10−5)
against signals detectable by this pipeline.

We run the MCMC algorithm in order to sample 2F̂ values, retrieving the maximum value for each
of the injections. Resulting 2F̂ values for these simulations are plotted in Fig. 6.6. These results support
the choice of 2F̂th = 2500 as the threshold value, with all detected injections above this threshold.

6.7.3 Surviving Outliers
After executing the MCMC follow up and imposing the 2F̂th = 2500 threshold, 287 outliers remain in
the low-frequency band and 24 outliers remain in the high-frequency band, as shown in Fig. 6.7. It is
clear from the figure that low-frequency outliers mostly belong to the same frequency bands across the
four binary parameter space regions. We next analyze each candidate using a cumulative semicoherent
F-statistic, defined as

2F̂(λ; t) =
∑

α:tα<t

2F̃α(λ) , (6.23)

in order to discern those candidates originating from instrumental noise.
We use three flavors of Eq. (6.23), one for each of the detectors (H1 and L1) and another one using

a multi-detector approach (H1 + L1). These statistics lead to the rejection of the remaining outliers, as
described below.

Line-crossing outliers

CWs are expected to accumulate a 2F̂ value linearly with respect to the observing time. We find that
263 outliers surpass the 2F̂th = 2500 threshold due to the presence of prominent values of segment-wise
F-statistic at certain times of the run in one of the detectors (260 in H1 and 3 in L1), as exemplified
in Fig. 6.8. The higher number of outliers in H1 arise from the greater number of instrumental lines
present in that detector [30, 31].

This behavior would be expected from a candidate whose frequency evolution track crosses a narrow
instrumental artifact (line) for a limited duration, either because of the frequency track drifting away
from the line or the transient nature of the line itself. Most strong persistent instrumental disturbances
are already discarded using the known lines list [30], but weaker lines or transient disturbances (lasting
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Figure 6.8: Example of outliers produced by instrumental noise in one of the Advanced
LIGO detectors. Each pair of panels corresponds to a different outlier; the segment-
wise 2F̃α statistic is shown at the top of each pair; the cumulative semicoherent 2F̂ as
described in Eq. (6.23) is shown at the bottom of each pair. Dashed lines denote an
H1-only analysis, dotted blue lines an L1-only analysis, and solid black lines a multi-

detector analysis. The 2F̂th = 2500 threshold is shown as a horizontal line.

0 25 50 75 100 125 150 175
Days since the start of O3a

0

1000

2000

C
u

m
u

la
ti

ve
2F̂

Figure 6.9: Example of an outlier vetoed by the multi-detector consistency veto.
Dashed lines denote an H1-only analysis, dotted blue lines an L1-only analysis, and
solid black lines a multi-detector analysis. The 2F̂th = 2500 threshold is shown as a

horizontal line.

hours to days), which are more difficult to identify in the run-averaged spectra, could still affect our
searches [42, 21].

In Table 6.8 in Appendix 6.A, we present a list of frequency bands containing these 263 candidates
whose behavior suggests a brief line crossing or the presence of a transient instrumental disturbance.
Outliers were selected as belonging to this category if they have at least one per-segment F-statistic
value greater than 100, and for each frequency band listed in the table, the first/last timestamps bracket
the data segments where F-statistic values greater than 50 were observed for at least one of those
candidates. Overlapping frequency bands were merged together for the sake of clarity.

Detector consistency veto

A second set of 28 outliers is discarded by the detector consistency veto (see e.g. [28]). During O3a,
the L1 detector presents a better sensitivity than H1 at low frequencies [19]. A CW candidate would
be expected to behave consistently, i.e. 2F̂L1 > 2F̂H1 for most signals. We calibrate this veto using
the aforementioned set of software injections in order to take detector sensitivity anisotropies due to the
antenna pattern functions into account, obtaining a maximum relative 5% excess of 2F̂H1 with respect
to 2F̂L1.

The 28 outliers rejected with this veto show more than a 30% relative excess of 2F̂H1 with respect
to 2F̂L1. Hence, we discard them as being inconsistent with an astrophysical signal. Figure 6.9 shows
an example of these outliers. After computing the bandwidth covered by each of these candidates, we
obtain seven distinct frequency bands affected by instrumental disturbances of this type, summarized in
Table 6.9 in appendix 6.A.
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Figure 6.10: Example of an outlier surpassing the 2F̂th = 2500 threshold later vetoed
by inspection of the detector spectra. The combined ASD of both detectors around
the frequency of this group of outliers is shown in Fig. 6.11. Candidates related to this
signal saturated the toplist in the four regions LA, LB, LC, LD. Dashed lines denote an
H1-only analysis, dotted blue lines an L1-only analysis, and solid black lines a multi-

detector analysis. The 2F̂th = 2500 threshold is shown as a horizontal line.
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Figure 6.11: Location of the manually inspected outliers (vertical dashed line) with
respect to the amplitude spectral density of the detector, here represented as a multi-
detector inverse squared average (orange line). A diamond and a square mark the twin

peaks’ frequency, 59.53Hz and 60.47Hz respectively.

Powerline sidebands

The last 20 outliers were consistently present in each one of the four parameter space regions within the
[60.46, 60.48] Hz sub-band. These outliers were not vetoed by any of the previous stages. As shown in
Fig. 6.10, 2F̂ was accumulated in a fairly linear fashion, achieving greater values in L1 than H1. The
detector ASD (Fig. 6.11), however, shows that these candidates were caused by sidebands of the 60 Hz
power supply artifact. These sidebands can be explained by a non-linear coupling between the main
power supply frequency and a low-frequency noise. They do not appear in the line lists [30, 31] as they
do not correspond to narrow spectral artifacts and their effect on CW searches is highly dependent on
the search method. Due to the presence of said artifact in the data and the wide spread of the candidates
obtained by our search across these bands, we deem this final set of candidates as non-astrophysical.

6.8 Conclusion
We report on a search for continuous gravitational wave signals from unknown sources in binary systems
using LIGO data from the first six months of the third Advanced LIGO and Advanced Virgo observing
run. Four different binary parameter space regions, spanning orbital periods of 3−45 days and projected
semimajor axes of 2− 40 light-seconds, are searched across the 50− 300 Hz frequency band. We claim
no detections and estimate the sensitivity of the search in terms of the gravitational wave amplitude
corresponding to the interpolated 95% detection efficiency using a simulated population of signals.

The minimum amplitude sensitivity attains an average value of h95%0 = (2.4 ± 0.1) × 10−25 in the
f0 = 149.5 Hz sub-band. This is a factor of ∼1.6 lower than the lowest amplitude sensitivity obtained by
a previous search performed on data from the second Advanced LIGO observing run [16]. The estimated
amplitude sensitivity can be interpreted in terms of astrophysical reach and equatorial ellipticity by
means of equation Eq. (6.2), as shown in Fig. 6.12.
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Figure 6.12: Astrophysical reach (left) and equatorial ellipticity (right) implied by the
search sensitivity h95%

0 . These results were obtained assuming a canonical neutron star
moment of inertia Iz = 1038kg · m2. Shaded areas denote regions excluded due to the

spindown limit implied by the maximum spindown value considered in this search.

The validity of this estimation must be discussed in terms of the spindown limit, which corresponds to
the maximum gravitational wave amplitude achievable by a neutron star assuming its rotational energy
is solely lost via gravitational waves. We refer the reader to Appendix A of [6] for its definition and the
relevant conversion equations.

The maximum spindown value probed by our search is |ḟ0| ≡ (TSFT · Tobs)
−1 ≃ 6.5 × 10−11Hz/s

[13], meaning sources braking at higher rates would not be detected by our pipeline (see Table 6.1
for the definition of TSFT and Tobs). Assuming the canonical emission model of a deformed NS as
in Eq. (6.2), this implies the existence of a distance beyond which the required ellipticity to emit a
detectable amplitude would imply a greater spindown than the one probed by the search, as long as no
processes balancing the rotational energy loss are in place1. Regions excluded by the spindown limit
correspond to shaded areas in Fig. 6.12.

Equatorial ellipticity values can be constrained below ϵ = 10−5 for sources in binary systems such as
the ones analyzed by this search located at 1 kpc emitting within the 150 − 300 Hz band. Constraints
below ϵ = 10−4 can be set for sources located at 2 kpc emitting within the 75 − 150 Hz band. These
sensitivities approach the expected allowed maximum ellipticities of relativisitic stars, which range from
the order of 10−6 − 10−7 to values around 10−5 for more exotic equations of state [47].

Future enhancements of the terrestrial gravitational wave detector network will improve our sensitiv-
ity to fainter gravitational wave signals, providing a valuable tool to prospect the expected population
of galactic NSs in binary systems [48, 49, 50, 51, 52].

6.A Frequency bands containing outliers
We provide a list of frequency bands in which outliers surviving the follow up were found. These
outliers were discarded due to their inconsistent behavior with respect to an astrophysical signal, as
discussed in Sec. 6.7. Table 6.8 lists frequency bands where line-crossing outliers were found. Table 6.9
corresponds to frequency bands presenting outliers discarded by the detector consistency veto. In both
tables, overlapping frequency bands are merged together for the sake of compactness.

1An accretion-driven torque balance [43] could be subject to fluctuating accretion [44], leading to long-term phase
wandering. This effect is unlikely to affect a semicoherent search like the one here reported, but it could have a significant
impact during the follow-up stage, where longer coherence times are used [45, 46].
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Min. frequency [Hz] Max. frequency [Hz] First timestamp [GPS] Last timestamp [GPS] Duration [days] Detector Listed

55.605 55.606 1239194624 1253831680 169 H1 Yes
57.588 57.592 1243670016 1253770240 116 H1 Yes
59.501 59.513 1238290944 1253831680 179 H1 Yes
62.474 62.478 1244523008 1251895296 85 H1 Yes
64.257 64.266 1241190400 1252681728 133 H1 No
64.284 64.291 1238955520 1253831680 172 H1 Yes
64.470 64.475 1239557632 1253770240 164 H1 Yes
64.403 64.408 1240341504 1253588992 153 H1 Yes
64.364 64.375 1238529536 1253831680 177 H1 Yes
64.415 64.417 1239375872 1253831680 167 H1 Yes
70.124 70.128 1238408192 1245484544 81 H1 Yes
80.067 80.070 1238351360 1238351360 0 H1 No
83.307 83.316 1238351360 1253831680 179 H1 Yes
83.446 83.448 1238831616 1253831680 173 H1 Yes
85.712 85.715 1239194624 1253831680 169 H1 Yes
85.964 85.965 1239738880 1253165568 155 H1 Yes
99.966 99.979 1238290944 1253831680 179 H1 Yes
107.113 107.119 1241129984 1253709824 145 H1 Yes
140.253 140.254 1238955520 1245424128 74 H1 Yes
151.800 151.800 1253105152 1253105152 0 H1 Yes
199.946 199.955 1242149888 1253770240 134 H1 Yes
213.301 213.301 1242339840 1242339840 0 L1 Yes

Table 6.8: Frequency bands containing line-crossing outliers. As described in
Sec. 6.7.3, these could be produced because of the presence of a transient instrumen-
tal artifact or the frequency evolution of a candidate drifting away from the spectral
disturbance. Overlapping frequency bands were grouped together for the sake of simplic-
ity. Outliers belonging to this category show at least one per-segment F-statistic value
greater than 100. Timestamps refer to the first and last coherent segments (Tcoh ≃ 17h)
for which at least one of those candidates showed an F-statistic value over 50. The last

column relates these bands to the list of unidentified lines [31].

Min. frequency [Hz] Max. frequency [Hz] Listed

53.709 53.721 No
55.603 55.609 Yes
57.583 57.600 Yes
62.823 62.828 Yes
64.400 64.411 Yes
83.442 83.453 Yes
85.815 85.824 No

Table 6.9: Frequency bands containing outliers discarded by the detector consistency
veto as described in Sec. 6.7.3. Overlapping frequency bands were grouped together for
the sake of simplicity. The last column relates these bands to the list of unidentified

lines of the H1 detector [31].
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Chapter 7

All-sky search for continuous
gravitational waves from isolated
neutron stars using Advanced LIGO
and Advanced Virgo O3 data

This chapter is an adaptation of the material presented in

All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and
Advanced Virgo O3 data
R. Abbott et al. (LIGO–Virgo–KAGRA Collaboration)
Phys. Rev. D 106, 102008 (2022) – arXiv:2201.00697 [gr-qc]
DOI: 10.1103/PhysRevD.106.102008

where details about search pipelines other than SkyHough and the interpretation of upper limits in
terms of primordial-black-hole abundances have been removed as they were produced by other authors
and thus are not part of this thesis. The text has been adapted to focus the discussion of the setup on
the SkyHough pipeline but include all the involved searches whenever introducing the topic and discussing
the results.

7.1 Introduction
The Advanced LIGO [1] and Advanced Virgo [2] detectors have made numerous detections of gravita-
tional waves (GW), to date consisting of short-duration (transient) GW emitted during the inspirals and
mergers of compact binary systems of black holes (BH), neutron stars (NS), [3, 4], as well as mixed NS-
BH binaries [5]. Among still undiscovered types of GW radiation are long-lasting, almost-monochromatic
continuous waves (CW), whose amplitudes and frequencies change much more slowly compared to those
of transient sources (on the timescale of years rather than seconds). Astrophysically, promising sources
of CW are rotating, non-axisymmetric NS, emitting GW at a frequency close to, or related to, their
spin frequency. Deviations from the symmetry (a NS ‘deformation’) may be caused by fluid instabilities,
such as in the case of r-modes, or by elastic, thermal or magnetic stresses in the crust and/or core of
NS, and may be acquired at various stages of stars’ isolated evolution, or during an interaction with a
companion in a binary system (for recent reviews on sources of CW, see e.g., [6, 7, 8]). Discovery of CW
emitted by NS would allow to probe their still mysterious interiors, study properties of dense matter in
conditions distinct from those occurring in inspirals and mergers of binary NS systems, as well as carry
out additional tests of the theory of gravity [9]. Due to intrinsically smaller GW amplitude of CW in
comparison to the already-detected transient sources, searches for CW from rotating non-axisymmetric
NS are essentially limited to the Galaxy.

Searches for continuous waves are usually split in three different domains: targeted searches look for
signals from known pulsars; directed searches look for signals from known sky locations; all-sky searches
look for signals from unknown sources. All-sky searches for a priori unknown CW sources have been
carried out in the Advanced LIGO and Advanced Virgo data previously [10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22]. A recent review on pipelines for wide parameter-space searches can be found in [23].

https://doi.org/10.1103/PhysRevD.106.102008
https://arxiv.org/abs/2201.00697
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Here we report on results from an all-sky, broad frequency range search by the LIGO–Virgo–KAGRA
collaboration using the most-sensitive data to date, the LIGO–Virgo O3 observing run, employing four
different search pipelines: the FrequencyHough [24], SkyHough [25], Time-domain F-statistic [26, 27],
and SOAP [28]. The main contribution of this thesis is the setup and production of the results obtained
by the SkyHough pipeline. Each pipeline uses different data analysis methods and covers different regions
of the frequency and frequency time derivative parameter space, although there exist overlaps between
them (see Table 7.1 and Fig. 7.1 for details). The search is performed for frequencies between 10 Hz
and 2048 Hz and for a range of frequency time derivative between -10−8 Hz/s and 10−9 Hz/s, covering
the whole sky. We note here that the search is generally-agnostic to the type of the GW source, so
the results are not actually limited to signals from non-axisymmetric rotating NS in our Galaxy. A
comprehensive multi-stage analysis of the signal outliers obtained by the four pipelines has not revealed
any viable candidate for a continuous GW signal. However we improve the broad-range frequency upper
limits with respect to previous O1 and O2 observing run and also with respect to the recent analysis
of the first half of the O3 run [18]. This is also the first all-sky search for CW sources that uses the
Advanced Virgo detector’s data.

The article is organized as follows: in Section 7.2 we describe the O3 observing run and provide
details about the data used. Section 7.3 we present an overview of common aspects among the different
pipelines used in this search. Section 7.4, details and results of the SkyHough pipeline are discussed.
Section 7.5 contains a discussion of the astrophysical implications of our results.

7.2 Data sets used
The data set used in this analysis was the third observing run (O3) of the Advanced LIGO and Advanced
Virgo GW detectors [1, 2]. LIGO is made up of two laser interferometers, both with 4 km long arms.
One is at the LIGO Livingston Observatory (L1) in Louisiana, USA and the other is at the LIGO
Hanford Observatory (H1) in Washington, USA. Virgo (V1) consists of one interferometer with 3 km
arms located at European Gravitational Observatory (EGO) in Cascina, Italy. The O3 run took place
between the 2019 April 1 and the 2020 March 27. The run was divided into two parts, O3a and O3b,
separated by one month commissioning break that took place in October 2019. The duty factors for
this run were ∼ 76%, ∼ 71%, ∼ 76% for L1, H1, V1 respectively. The maximum uncertainties (68%
confidence interval) on the calibration of the LIGO data were of 7%/11% in magnitude and 4 deg/9 deg
in phase for O3a/O3b data ([29, 30]). For Virgo, it amounted to 5% in amplitude and 2 deg in phase,
with the exception of the band 46 - 51 Hz, for which the maximum uncertainty was estimated as 40%
in amplitude and 34 deg in phase during O3b. For the smaller range 49.5 - 50.5 Hz, the calibration was
unreliable during the whole run [31].

7.3 Common Aspects of Search Pipelines

7.3.1 Signal model
The GW signal in the detector frame from an isolated, asymmetric NS spinning around one of its
principal axis of inertia is given by [26]:

h(t) = h0[F+(t, α, δ, ψ)
1 + cos2 ι

2
cosϕ(t) + F×(t, α, δ, ψ) cos ι sinϕ(t)], (7.1)

where F+ and F× are the antenna patterns of the detectors dependent on right ascension α, declination
δ of the source and polarization angle ψ, h0 is the amplitude of the signal, ι is the angle between the
total angular momentum vector of the star and the direction from the star to the Earth, and ϕ(t) is the
phase of the signal. The amplitude of the signal is given by:

h0 =
4π2G
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where d is the distance from the detector to the source, f is the GW frequency (assumed to be twice the
rotation frequency of the NS), ϵ is the ellipticity or asymmetry of the star, given by (Ixx− Iyy)/Izz, and
Izz is the moment of inertia of the star with respect to the principal axis aligned with the rotation axis.

We assume that the phase evolution of the GW signal can be approximated with a second order
Taylor expansion around a fiducial reference time τr:

ϕ(τ) = ϕo + 2π[f(τ − τr) +
ḟ

2!
(τ − τr)

2], (7.3)

where ϕo is an initial phase and f and ḟ are the frequency and first frequency derivative at the reference
time. The relation between the time at the source τ and the time at the detector t is given by:

τ(t) = t+
r⃗(t) · n⃗
c

+∆E⊙ −∆S⊙ , (7.4)

where r⃗(t) is the position vector of the detector in the Solar System Barycenter (SSB) frame, and n⃗ is the
unit vector pointing to the NS; ∆E⊙ and ∆S⊙ are respectively the relativistic Einstein and Shapiro time
delays. In standard equatorial coordinates with right ascension α and declination δ, the components of
the unit vector n⃗ are given by (cosα cos δ, sinα cos δ, sin δ).

7.3.2 Parameter space analyzed
All the pipelines involved in this analysis perform an all-sky search, however the frequency and frequency
derivative ranges analyzed are different for each pipeline. The detailed ranges analyzed by the four
pipelines are summarized in Table 7.1 and presented in Fig. 7.1. The FrequencyHough pipeline analyzes
a broad frequency range between 10 Hz and 2048 Hz and a broad frequency time derivative range
between -10−8 Hz/s and 10−9 Hz/s. A very similar range of f and ḟ is analyzed by SOAP pipeline.
The SkyHough pipeline analyzes a narrower frequency range where the detectors are most sensitive
whereas Time-domain F-statistic pipeline analyzes f and ḟ ranges of the bulk of the observed pulsar
population.

7.3.3 Detection statistics
As all-sky searches cover a large parameter space they are computationally very expensive and it is
computationally prohibitive to analyze coherently the data from the full observing run using optimal
matched-filtering. As a result each of the pipelines developed for the analysis uses a semi-coherent
method. Moreover to reduce the computer memory and to parallelize the searches the data are divided
into narrow bands. Each analysis begins with sets of short Fourier transforms (SFTs) that span the
observation period, with coherence times ranging from 1024s to 8192s. The FrequencyHough, SkyHough
and SOAP pipelines compute measures of strain power directly from the SFTs and create detection statis-
tics by stacking those powers with corrections for frequency evolution applied. The FrequencyHough
and SkyHough pipelines use Hough transform to do the stacking whereas SOAP pipeline uses the Viterbi
algorithm. The Time-domain F-statistic pipeline extracts band-limited 6-day long time-domain
data segments from the SFT sets and applies frequency evolution corrections coherently to obtain the
F-statistic [26]. Coincidences are then required among multiple data segments with no stacking.

7.3.4 Outlier follow-up
All four pipelines perform a follow-up analysis of the statistically significant candidates (outliers) ob-
tained during the search. All pipelines perform vetoing of the outliers corresponding to narrow, in-
strumental artifacts (lines) in the advanced LIGO detectors [32]. Several other consistency vetoes are
also applied to eliminate outliers. The FrequencyHough, SkyHough, and Time-domain F-statistic
pipelines perform follow-up of the candidates by processing the data with increasing long coherence
times whereas SOAP pipeline use convolutional neural networks to do the post processing.



164 Chapter 7. All-sky search for CWs from isolated NSs using aLIGO and aVirgo O3 data

10 16

5×10 122×10 1110 10
10 9
10 8

FrequencyHough SkyHough TD Fstat SOAP

10 20 65 100 200 350 750 1000 2048
fGW [Hz]

10 8
10 92×10 10

10 11

10 16

0

f G
W

[H
z/
s]

Figure 7.1: Frequency and frequency derivative search ranges of the four pipelines:
the FrequencyHough pipeline ranges marked in grey, SkyHough in red, Time-domain

F-statistic in blue, and SOAP in magenta. See Table 7.1 for details.

Pipeline f [Hz] ḟ [Hz/s]
FrequencyHough 10− 2048 -10−8 − 10−9

SkyHough 65− 350 -10−9 − 5× 10−12

SOAP 40− 1000 -10−9 − 10−9

1000− 2000 -10−8 − 10−8

Time-domain 20− 200 -3.2× 10−9f/100− 0
F-statistic 200− 750 -2× 10−10 − 2× 10−11

Table 7.1: Frequency and frequency derivative search ranges of the four pipelines.
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Parameter Resolution

δf 1.4× 10−4 Hz
δḟ 5× 10−12 Hz/s
δθ 0.69 Hz/f

Table 7.2: Parameter-space resolutions employed by the SkyHough pipeline.

7.3.5 Upper limits
No periodic gravitational wave signals were observed by any of the four pipelines and and all the pipelines
obtain upper limits on their strength. The three pipelines SkyHough, Time-domain F-statistic and
SOAP obtain the upper limits by injections of the signals according to the model given in Section 7.3.1
above for an array of signal amplitudes h0 and randomly choosing the remaining parameters. The
FrequencyHough pipeline obtains upper limits using an analytic formula that depends on the spectral
density of the noise of the detector. The formula was validated by a number of tests consisting of
injecting signals to the data.

7.4 The SkyHough search
SkyHough [25, 33] is a semicoherent pipeline based on the Hough transform to look for CW signals from
isolated neutron stars. Several versions of this pipeline have been used throughout the initial [34, 35] and
advanced [10, 11] detector era, as well as to look for different kinds of signals such as CW from neutron
stars in binary systems [36, 19, 20] or long-duration GW transients [37]. The current implementation
of SkyHough closely follows that of [11] and includes an improved suite of post-processing and follow-up
stages [38, 39, 40].

7.4.1 Parameter space
The SkyHough pipeline searches over the standard four parameters describing a CW signal from isolated
NS: frequency f , spin-down ḟ and sky position, parametrized using equatorial coordinates α, δ.

Parameter-space resolutions are given in [25]

δf =
1

TSFT
, δḟ =

δf

Tobs
, δθ =

c/v

TSFT Pf f
, (7.5)

where θ represents either of the sky angles, v/c ≃ 10−4 represents the average detector velocity as a
fraction of the speed of light, and the pixel factor Pf = 2 is a tunable overresolution parameter. Table 7.2
summarizes the numerical values employed in this search.

The SkyHough all-sky search covers the most sensitive frequency band of the advanced LIGO de-
tectors, between 65 Hz and 350 Hz. This band is further sub-divided into ∆f = 0.025 Hz sub-bands,
resulting in a total of 11400 frequency bands. Spin-down values are covered from −1 × 10−9 Hz/s to
5 × 10−12 Hz/s, which include typical spin-up values associated to CW emission from the evaporation
of boson clouds around black holes [41].

7.4.2 Description of the search
The first stage of the SkyHough pipeline performs a multi-detector search using H1 and L1 SFTs with
TSFT = 7200s1. Each 0.025 Hz sub-band is analyzed separately using the same two step strategy as
in [11, 20]: parameter-space is efficiently analyzed using SkyHough’s look-up table approach; the top
0.1% most significant candidates are further analyzed using a more sensitive statistic. The result for
each frequency sub-band is a toplist containing the 105 most significant candidates across the sky and
spin-down parameter-space.

1This choice of TSFT is beyond the standard prescription proposed in [25], which however uses rather conservative
arguments to establish a safe bound.
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Stage 0 1 2 3 4 5

Nseg 660 330 92 24 4 1

Tcoh 0.5 day 1 day 4 days 15 days 90 days 360 days

Table 7.3: Coherence-time configuration of the multi-stage follow-up employed by the
SkyHough pipeline. The data stream is divided into a fix number of segments of the
same length; the reported coherence time is an approximate value obtained by dividing

the observation time by the number of segments at each stage.

Each toplist is then clustered using a novel approach presented in [38] and firstly applied in [20].
A parameter-space distance is defined using the average mismatch in frequency evolution between two
different parameter-space templates

d(λ⃗, λ⃗∗) =
TSFT

NSFT

NSFT∑

α=0

∣∣∣f(tα; λ⃗)− f(tα; λ⃗∗)
∣∣∣ , (7.6)

where f(t; λ⃗) is defined as

f(t; λ⃗) =
[
f + (t− tref) · ḟ

]
·
[
1 +

v⃗(t) · n⃗
c

]
(7.7)

and λ⃗ = {f, ḟ , α, δ} refers to the phase-evolution parameters of the template.
Clusters are constructed by pairing together templates in consecutive frequency bins such that

d(λ⃗, λ⃗∗) ≤ 1. Each cluster is characterized by its most significant element (the loudest element). From
each 0.025 Hz sub-band, we retrieve the forty most significant clusters for further analysis. This results
in a total of 456000 candidates to follow-up.

The loudest cluster elements are first sieved through the line veto, a standard tool to discard clear
instrumental artifacts using the list of known, narrow, instrumental artifacts (lines) in the advanced
LIGO detectors [32]: If the instantaneous frequency of a candidate overlaps with a frequency band
containing an instrumental line of known origin, the candidate is ascribed an instrumental origin and
consequently ruled out.

Surviving candidates are then followed-up using PyFstat, a Python package implementing a Markov-
chain Monte Carlo (MCMC) search for CW signals [42, 39]. The follow-up uses the F-statistic as a (log)
Bayes factor to sample the posterior probability distribution of the phase-evolution parameters around
a certain parameter-space region

P(λ⃗|x) ∝ eF(λ⃗;x) · P(λ⃗) , (7.8)

where P(λ⃗) represents the prior probability distribution of the phase-evolution parameters. The F-
statistic, as opposed to the SkyHough number count, allows us to use longer coherence times, increasing
the sensitivity of the follow-up with respect to the main search stage.

As initially described in [42], the effectiveness of an MCMC follow-up is tied to the number of
templates covered by the initial prior volume, suggesting a hierarchical approach: coherence time should
be increased following a ladder so that the follow-up is able to converge to the true signal parameters
at each stage. We follow the proposal in [40] and compute a coherence-time ladder using N ∗ = 103 (see
Eq. (31) of [42]) starting from Tcoh = 1 day including an initial stage of Tcoh = 0.5 days. The resulting
configuration is collected in Table 7.3.

The first follow-up stage is similar to that employed in [19, 20]: an MCMC search around the loudest
candidate of the selected clusters is performed using a coherence time of Tcoh = 0.5 days. Uniform
priors containing 4 parameter-space bins in each dimension are centered around the loudest candidate.
A threshold is calibrated using an injection campaign: any candidate whose loudest 2F value over the
MCMC run is lower than 2F = 3450 is deemed inconsistent with CW signal.

The second follow-up stage is a variation of the method described in [40], previously applied to
[43, 44]. For each outlier surviving the initial follow-up stage (stage 0 in Table 7.3), we construct a
Gaussian prior using the median and inter-quartile range of the posterior samples and run the next-
stage MCMC follow-up. The resulting maximum 2F is then compared to the expected 2F inferred from
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Comparing stages (2F − µ)/σ bracket

Stage 0 vs. Stage 1 (-1.79, 1.69)
Stage 1 vs. Stage 2 (-1.47, 1.35)
Stage 2 vs. Stage 3 (-0.94, 0.80)
Stage 3 vs. Stage 4 (-0.63, 0.42)
Stage 4 vs. Stage 5 (-0.34, 0.11)

Table 7.4: 2F consistency brackets employed in the multi-stage follow-up of the
SkyHough pipeline. Brackets were computed using a campaign of 500 software-injected
signals representing an isotropic population of uniformly sky-distributed NS at 150 rep-
resentative frequency bands with an amplitude corresponding to the h95%

0 sensitivity
estimation. The implied false dismissal probability is ≲ 1/(150 × 500) ≃ 1.3 × 10−5.

Stages correspond to those described in Table 7.3.

the previous MCMC follow-up stage. Highly-discrepant candidates are deemed inconsistent with a CW
signal and hence discarded.

Given an MCMC stage using N̂ segments from which a value of 2F̂ is recovered, the distribution of
2F values using N segments is well approximated by

P(2F|N, 2F̂ , N̂) =
1√
2πσ2

e−
1
2 (

2F−µ
σ )

2

, (7.9)

where
µ = ρ20 + 4N , (7.10)

σ2 = 8 · (N + N̂ + ρ20) , (7.11)

and ρ20 = 2F̂ −4N̂ is a proxy for the (squared) SNR [45]. Equation (7.9) is exact in the limit of N, N̂ ≫ 1
or ρ20 ≫ 1. In this search, however, we calibrate a bracket on (2F − µ)/σ for each follow-up stage using
an injection campaign, shown in Table 7.4. Candidates outside of the bracket are deemed inconsistent
with a CW signal.

Any surviving candidates are subject to manual inspection in search for obvious instrumental causes
such as hardware-injected artificial signals or narrow instrumental artifacts.

7.4.3 Candidate follow-up
Table 7.5 summarizes the number of outliers discarded by each of the veto and follow-up stages employed
in this search. A total of 36 candidates survive the complete suite of veto and follow-up stages of the
SkyHough pipeline. Candidates can be grouped into two sets according to their corresponding F-statistic
value: 31 candidates present a value of 2F̃ ∼ O(103), while the remaining 5 candidate only achieve
2F̃ ∼ O(30). Their corresponding parameters are collected in Table 7.6.

The 31 strong candidates present consistent values with the only two hardware injections within the
SkyHough search range: 24 candidates are ascribed to the hardware injection ip0, while 7 candidates are
ascribed to the hardware injection ip3. Parameter deviation of the loudest candidate associated to each
injection are reported in Table 7.7.

The five weaker candidates are manually inspected using the segment-wise F-statistic on 660 coherent
segments, in a similar manner to that in [18, 40].

The first pair of candidates is found around 85.850 Hz, where the H1 detector presents a broad spectral
feature. As shown in Fig 7.2, their single-detector F-statistic is more prominent in the H1 detector rather
than the L1 detector, and scores over the multi-detector F-statistic. These characteristics point towards
an instrumental, rather than astrophysical, origin.

A second pair of candidates is found around 95.7 Hz. This frequency band is populated by narrow
spectral artifacts of unknown origin in the H1 detector. Correspondingly, as shown in Fig. 7.3, the
single-detector F statistic is prominent in the H1 detector rather than the L1 detector. Due to the
narrowness of the feature, in this case the accumulation is better localized around a fraction of the run.
As in the previous case, the single-detector F-statistic scores over the multi-detector F-statistic. These
characteristics point towards an instrumental origin.
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Search stage Candidates % removed

Clustering 456000
Line veto 414459 9%
2F threshold 3767 99%
Stage 0 v.s. Stage 1 697 18%
Stage 1 v.s. Stage 2 172 75%
Stage 3 v.s. Stage 3 90 48%
Stage 3 v.s. Stage 4 48 47%
Stage 4 v.s. Stage 5 36 25%

Table 7.5: Summary of candidates processed by each of the veto and follow-up stages
of the SkyHough search.

Band Candidate f [Hz] ḟ [nHz/s] α [rad] δ [rad] 2F̃ Comment

834 4 85.872761414 2.41584·10−3 3.143782737 1.165116066 30.54 Broad spectral feature in H1
834 9 85.873653124 -9.35774·10−2 3.409549407 1.385107830 36.25 Broad spectral feature in H1
1227 35 95.697667346 -4.89489·10−2 1.593327050 -1.292111453 31.53 Narrow spectral feature in H1
1229 5 95.725474979 -9.63949·10−1 0.260240661 -1.008336167 30.87 Narrow spectral feature in H1
1754 1 108.857159405 -8.04825·10−7 3.113189707 -0.583577133 1055.70 Hardware injection ip3
1754 2 108.857159406 -8.29209·10−7 3.113189734 -0.583577139 1055.69 Hardware injection ip3
1754 5 108.857159404 -7.43862·10−7 3.113189647 -0.583577277 1055.71 Hardware injection ip3
1754 10 108.857159405 -7.92726·10−7 3.113189663 -0.583577189 1055.71 Hardware injection ip3
1754 13 108.857159406 -8.38377·10−7 3.113189745 -0.583577097 1055.69 Hardware injection ip3
1754 14 108.857159405 -8.14434·10−7 3.113189656 -0.583577155 1055.69 Hardware injection ip3
1754 34 108.857159404 -7.09929·10−7 3.113189613 -0.583577327 1055.69 Hardware injection ip3
7251 10 246.297680589 -2.24806·10−2 1.425124776 -1.242786654 35.79 Narrow spectral feature in H1
8022 0 265.575086278 -4.14962·10−3 1.248816426 -0.981180252 1543.70 Hardware injection ip0
8022 1 265.575086279 -4.14969·10−3 1.248816468 -0.981180265 1543.68 Hardware injection ip0
8022 2 265.575086278 -4.14961·10−3 1.248816419 -0.981180239 1543.69 Hardware injection ip0
8022 3 265.575086278 -4.14964·10−3 1.248816434 -0.981180252 1543.69 Hardware injection ip0
8022 4 265.575086278 -4.14964·10−3 1.248816444 -0.981180252 1543.70 Hardware injection ip0
8022 5 265.575086277 -4.14958·10−3 1.248816405 -0.981180243 1543.70 Hardware injection ip0
8022 7 265.575086279 -4.14968·10−3 1.248816456 -0.981180263 1543.69 Hardware injection ip0
8022 28 265.575086278 -4.14965·10−3 1.248816441 -0.981180257 1543.69 Hardware injection ip0
8023 0 265.575086278 -4.14964·10−3 1.248816439 -0.981180255 1543.70 Hardware injection ip0
8023 1 265.575086278 -4.14961·10−3 1.248816417 -0.981180250 1543.70 Hardware injection ip0
8023 3 265.575086278 -4.14966·10−3 1.248816464 -0.981180249 1543.68 Hardware injection ip0
8023 4 265.575086279 -4.14969·10−3 1.248816466 -0.981180264 1543.68 Hardware injection ip0
8023 7 265.575086279 -4.14967·10−3 1.248816448 -0.981180256 1543.69 Hardware injection ip0
8023 8 265.575086279 -4.14966·10−3 1.248816453 -0.981180260 1543.71 Hardware injection ip0
8023 9 265.575086278 -4.14963·10−3 1.248816431 -0.981180254 1543.70 Hardware injection ip0
8023 10 265.575086275 -4.14945·10−3 1.248816284 -0.981180203 1543.26 Hardware injection ip0
8023 11 265.575086278 -4.14962·10−3 1.248816419 -0.981180255 1543.69 Hardware injection ip0
8023 12 265.575086278 -4.14963·10−3 1.248816435 -0.981180249 1543.70 Hardware injection ip0
8023 13 265.575086277 -4.14956·10−3 1.248816392 -0.981180234 1543.66 Hardware injection ip0
8023 14 265.575086278 -4.14966·10−3 1.248816450 -0.981180252 1543.70 Hardware injection ip0
8023 16 265.575086278 -4.14962·10−3 1.248816403 -0.981180252 1543.65 Hardware injection ip0
8023 18 265.575086278 -4.14962·10−3 1.248816430 -0.981180248 1543.66 Hardware injection ip0
8023 19 265.575086278 -4.14963·10−3 1.248816436 -0.981180254 1543.72 Hardware injection ip0
8023 34 265.575086278 -4.14965·10−3 1.248816452 -0.981180250 1543.72 Hardware injection ip0

Table 7.6: Surviving candidates of the SkyHough multi-stage MCMC follow-up using
PyFstat. 2F̃ corresponds to the loudest fully-coherent F-statistic value of the MCMC
run. Band index corresponds to a frequency of (65+ 0.025×Band) Hz. Reference time

is GPS 1238166018.
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Injection 2F̃ ∆f [Hz] ∆ḟ [nHz/s] ∆α [rad] ∆δ [rad] ∆α [deg] ∆δ [deg]

ip0 1543.72 −4.80× 10−9 3.52× 10−7 −2.82× 10−7 −2.49× 10−8 −1.62× 10−5 −1.43× 10−6

ip3 1055.71 1.16× 10−8 −7.29× 10−7 9.35× 10−7 1.53× 10−6 5.35× 10−5 8.74× 10−5

Table 7.7: Hardware injection recovery by the SkyHough pipeline. For each hardware
injection within search range we report the dimension-wise errors with respect to loudest

surviving candidate of the follow-up.

0 50 100 150 200 250 300
0

2000

2F

85.850 Hz - Band 834 - Candidate 4

0 50 100 150 200 250 300
Days since the start of O3

0

50

100

S
eg

m
en

t-
w

is
e

2F

0 50 100 150 200 250 300
0

2000

2F

85.850 Hz - Band 834 - Candidate 9

0 50 100 150 200 250 300
Days since the start of O3

0

20

40

S
eg

m
en

t-
w

is
e

2F

Figure 7.2: SkyHough candidates consistent with a broad spectral artifact in the H1
detector. Upper panel shows the cumulative semicoherent F-statistic using 660 coherent
segments (Tcoh = 0.5 days). Lower panel shows the segment-wise F-statistic. Dashed
red line represents the single-detector F-statistic using H1-only data; dot-dashed blue
line represents the single-detector F-statistic using L1-only data. Solid gray line repre-
sents the multi-detector F-statistic. Dotted horizontal line represents the threshold of

2F = 3450 set at the initial follow-up stage.
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Figure 7.3: SkyHough candidates consistent with two narrow spectral artifacts of un-
known origin in the H1 detector. The legend is equivalent to that of Fig. 7.2.
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Figure 7.4: SkyHough candidates consistent with a narrow spectral artifact of unknown
origin in the H1 detector. The legend is equivalent to that of Fig. 7.2.

The last weak candidate in the vicinity of 246.275 Hz, where the H1 detector presents another
narrow spectral artifact of unknown origin, is shown in Fig. 7.4. The single-detector F-statistic is more
prominent in the H1 detector than in the L1 detector, and accumulates rapidly at the beginning of the
run. As in the previous cases, this behavior is consistent with that of an instrumental artifact.

This concludes the analysis of surviving candidates of the SkyHough pipeline. Every single one of
them could be related to an instrumental feature.

7.4.4 Sensitivity estimation
We estimate the search sensitivity following the same procedure as previous searches [10, 11, 13, 19, 20].
Search sensitivity is quantified using the sensitivity depth [46, 47]

D =

√
Sn

h0
, (7.12)

where Sn represents the power spectral density (PSD) of the data, computed as the inverse squared
average of the individual SFT’s running-median PSD [34, 20]

Sn(f) =

√
Nα∑

α [Sα(f)]
−2 . (7.13)

where Sα represents the running-median noise floor estimation using 101 bins from the SFT labeled
by starting time tα (including SFTs from both the H1 and L1 detectors) and Nα represents the total
number of SFTs. The resulting amplitude spectral density (ASD)

√
Sn is shown in Fig. 7.5.

The sensitivity depth D95% corresponding to a 95% average detection rate is characterized by adding a
campaign of software-simulated signals into the data. Simulated signals are added into 150 representative
frequency bands at several sensitivity depth values bracketing the D95% value in each band, as represented
in Fig. 7.6. For each sensitivity depth, 200 simulated signals drawn from uniform distribution in phase
and amplitude parameters are added into the data. The SkyHough pipeline is run on each of these signals
in order to evaluate how many of them are detected, and the resulting toplists are clustered using the
same configuration as in the main stage of the search.

For each simulated signal, we retrieve the best forty resulting clusters. The following two criteria
must be fulfilled in order to label a simulated signal as “detected”. First, the loudest significance of
at least one of the selected clusters must be higher than the minimum significance recovered by the
corresponding all-sky clustering; this ensures the signal is significant enough to be selected for a follow-
up stage. Second, the parameters of the loudest candidate in said clusters must be closer than two
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Figure 7.5: ASD employed by the SkyHough pipeline to estimate the sensitivity of the
search. ASD is computed as the square root of the single-sided inverse-square averaged
PSD using data from both the H1 and L1 advanced LIGO detectors, as explained in

the text surrounding Eq. (7.13).

parameter-space bins (see Eq. (7.5) and Table 7.2) from the simulated-signal’s parameter, as otherwise
the follow-up would have missed the signal.

The efficiency associated to each sensitivity depth E is computed as the fraction of simulated signals
labeled as detected. A binomial uncertainty δE is associated to each efficiency

δE =

√
E · (1− E)

NI
, (7.14)

where NI = 200 represents the number of signals. Then, we use scipy’s curve_fit function [48] to fit
a sigmoid curve to the data given by

S(D; a, b) = 1− 1

1 + exp (−aD + b)
(7.15)

where a, b represent the parameters to adjust. After fitting, this expression can be numerically inverted
to obtain D95%. The uncertainty associated to the fit is compute through the covariance matrix C as2

δD95% =

√(
∂S

∂a

)2

Caa + 2

(
∂S

∂a

)(
∂S

∂b

)
Cab +

(
∂S

∂b

)2

Cbb (7.16)

This procedure is exemplified in Fig. 7.6.
We compute the average wide-band D95%(f) value using Gaussian process regression, as shown in

Fig. 7.7. We fit a Gaussian process using to the ensemble of D95% obtained from the injection campaign
using scikit-learn’s GaussianProcessRegressor with an RBF kernel [49]. The uncertainty associated
to the fit is computed as the 98% credible region of the deviations with respect to the Gaussian process
regression, which corresponds to a 3% relative uncertainty. Equation (7.12) allows us to translate
D95%(f) into a corresonding CW amplitude h95%0 (f), shown in Fig. 7.8.

2This method is akin to that employed by the SkyHough search in [13]. We note that Eq. (19) in [20] is incorrect and
should be equivalent to Eq. (7.16) in this document. This is just a typographical error, as the analysis was performed
using the correct formulae.
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Figure 7.6: Example computation of D95% (white star) at a frequency band by fitting
a sigmoid function (blue solid line) to a set of efficiencies (blue dots) computed using 200
injections at each sensitivity depth for the SkyHough search. Shaded regions represent
1, 2, and 3 sigma envelopes of the sigmoid fit. Error bars are computed as discussed in

the main text.
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Figure 7.7: Wide-band interpolation D95%(f) of the results obtained by the SkyHough
pipeline. Each dot represents a D95% at a particular frequency band computed using
the procedure exemplified in Fig. 7.6. The red solid line represents a non-parametric
interpolation using a Gaussian process regression, as discussed in the main text. The
shaded region represents a 3% relative error with respect to the interpolation and cor-

responds to the 98% credible interval.
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Figure 7.8: CW amplitude h95%
0 corresponding to the 95% detection efficiency depth

along the frequency band analyzed by the SkyHough pipeline. Solid line represents the
implied h95%

0 from the wide-band D95% interpolation shown in Fig. 7.7. Shaded region
corresponds to the 3% relative error with respect to the interpolation.
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Figure 7.9: Comparison of broadband search sensitivities obtained by the
FrequencyHough pipeline (black triangles), the SkyHough pipeline (red squares), the
Time-domain F-statistic pipeline (blue circles), and the SOAP pipeline (magenta dia-
monds). Vertical bars mark errors of h0 obtained in the procedures used by the different
search pipelines. Population-averaged upper limits obtained in [50] using the O3a data

are marked with dark-green crosses.



7.5. Conclusions 175

20 200 350 500 750 1000 1200 1400 1600 1800 2048
GW frequency [Hz]

10-9

10-8

10-7

10-6

10-5

10-4

10-3

Fi
du

cia
l e

llip
tic

ity
 ε

d=10 kpc

d=1 kpc

d=100 pc

d=10 pc

FrequencyHough
SkyHough
TD Fstat

20 200 350 500 750 1000 1200 1400 1600 1800 2048
GW frequency [Hz]

10-16

10-14

10-12

10-10

10-8

10-6

|ḟ
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Figure 7.10: Left panel: detectable ellipticity, given by Eq. (7.17), as a function of the
GW frequency for neutron stars with the ‘canonical’ moment of inertia Izz = 1038 kg m2

at a distance of 10 kpc, 1 kpc, 100 pc, and 10 pc (from top to bottom). Results for
the FrequencyHough pipeline are marked in black, SkyHough in red and for Time-domain
F-statistic in blue. The right panel shows the relation between the absolute value of
the first GW frequency derivative ḟ = 2ḟrot and the GW frequency f = 2frot (with frot
the rotational frequency) of detectable sources as a function of the distance, assuming
their spin-down is due solely to the emission of GWs. Constant spin-down ellipticities
ϵsd, corresponding to this condition, are denoted by dashed green curves. The magenta

horizontal line marks the maximum spin down searched.

7.5 Conclusions
In Fig. 7.9 we summarize 95% confidence-level upper limits on strain amplitude h0 for the SkyHough
pipeline, compared to the rest of the pipelines used in this search. The upper limits obtained improve
on those obtained using the PowerFlux method in early O3 LIGO data [18]. These results constitute the
most sensitive all-sky search to date for continuous GWs in the range 20-2000 Hz while probing spin-
down magnitudes as high as 1 × 10−8 Hz/s. Only the O2 Falcon search [17, 16, 51] provides a better
sensitivity in the frequency range 20-2000 Hz; however it does so with a dramatically reduced frequency
derivative range. In the frequency range of [20, 500] Hz Falcon searches a ḟ range from −3×10−13 Hz/s
to 3× 10−13 Hz/s and ḟ range up to [−7.5× 10−12, 3× 10−12] Hz/s for frequencies above 500 Hz. Thus
the Falcon search parameter space is smaller than ours by factor of ∼ 1.8× 104 below 500 Hz and factor
of 103 above 500 Hz. A recent search for persistent narrowband gravitational waves using radiometer
analysis of combined O1, O2, and O3 LIGO and Virgo data in the frequency range of 20 - 1726 Hz [52]
has not revealed any significant signals and has reported upper limits on an equivalent strain amplitude
in the range of (0.030− 9.6)× 10−24. As briefly discussed in [52], the radiometer search is expected to
be significantly less sensitive than the CW searches here discussed for two reasons. First, the former
uses frequency bins much larger than the latter (1/32 Hz vs O(mHz)), thus collecting more noise in each
bin. Second, it does not take into account the Doppler effect due to the Earth motion, which causes a
spread of the signal power over several bins (especially at higher frequencies), thus producing a further
sensitivity loss.

We can use the amplitude h0 given by Eq. (7.2) to calculate star’s ellipticity ϵ,

ϵ =
c4

4π2G

h0d

Izzf2
≈ 9.46×10−6

(
h0

10−25

)
×
(
1038 kg m2

Izz

)(
100Hz
f

)2(
d

1 kpc

)
. (7.17)

Using the above equation the upper limits on the GW strain amplitude h0 can be converted to upper
limits on the ellipticity ϵ. The results are plotted in Fig. 7.10 (left panel) for four representative values
of the distance d and they provide astrophysically interesting results. The NSs with ellipticities above
a given trace and distance value corresponding to the trace in the left panel of Fig. 7.10 would be
detectable by our searches. For instance, at frequency 200 Hz we would be able to detect a CW signal
from a NS within a distance of 100 pc if its ellipticity were at least 3× 10−7. These levels of ellipticity
are below the maximum value of the ellipticity that may be supported by the crust of a NS described by
a standard equation of state reported in [53, 54, 55]. However they are above the most recent estimates
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in general relativity by [56, 57]. The latter do not, however, exclude larger values of ellipticity when
additional physical processes, such as plastic flow in the crust, are taken into account. Our upper limits
are starting to probe the range predicted for pulsars by the models of [58], which predict ellipticities up
to ϵ ≈ 10−7 − 10−6 for younger stars in which the deformation is not supported by crustal rigidity, but
by a non-axisymmetric magnetic field at the end of its Hall driven evolution in the crust. Note however
that for known pulsars at a distance of a few kpc, such as the Crab, the signal would be at frequencies
f ≲ 100 Hz, so still beyond the reach of our searches.

Another way of representing limits on ellipticity is shown in the right panel of Fig. 7.10. Assuming
that the emission of gravitational radiation is the sole energy loss mechanism for a rotating NS, we
obtain the so-called spin-down limit hsd

0 on the amplitude h0, see Eqs. (7)–(9) of [59]:

hsd
0 =

1

d

(
5

2

GIzz
c3

|ḟ |
f

)1/2

≈ 2.55×10−25

(
1 kpc
d

)(
Izz

1038 kg m2

)1/2(
100Hz
f

)1/2
(

|ḟ |
10−11 Hz s−1

)1/2

.

(7.18)

Inverting the above equation and replacing the spin-down limit amplitude hsd
0 with upper limit ampli-

tudes h95%0 we have the following relation between the frequency derivative and frequency:

|ḟ | = 2c3

5G

(h95%0 d)2f

Izz
≈ 1.54×10−10

(
h95%0

10−24

)2(
1038 kg m2

Izz

)(
f

100Hz

)(
d

1 kpc

)2

. (7.19)

In the right panel of Fig. 7.10 we have plotted |ḟ | as a function of frequency f for several representative
values of the distance d and for a canonical value of the moment of inertia. The NSs with |ḟ | above
a given trace and distance value corresponding to the trace in the right panel of Fig. 7.10 would be
detectable by our searches.

By equating Eq. (7.2) for the amplitude h0 and Eq. (7.18) for the spin-down limit, we obtain the
following equation for ḟ :

|ḟ | = 32π4G

5c5
ϵ2Izzf

5 ≈ 1.72×10−14
( ϵ

10−6

)2( Izz
1038 kg m2

)(
f

100Hz

)5

. (7.20)

The dashed lines in the right panel of Fig. 7.10 are constant ellipticity curves from Eq. (7.20) above.
These lines are independent of the distance d.
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Chapter 8

Conclusion and future developments

This thesis presents three new developments to post-process and follow-up the results of a CW search
and two searches for CWs from unknown sources in O3 Advanced LIGO data. Taken together, these
results demonstrate a new approach for conducting broad parameter-space searches in which candidates
are systematically followed-up using increasingly sensitive methods, rather than simply being reported
as “interesting outliers” whenever they cannot be ascribed to a known instrumental artifact.

The impact of the new developments in this thesis is manifested by the extensive use of these methods
in a significant fraction of the CW searches produced in O3 Advanced LIGO and Advanced Virgo data.
Clusterings based on the distance proposed in Chapter 3 have been used in two all-sky searches [1, 2, 3].
The follow-up strategy proposed in Chapter 4 has been used in three all-sky searches [1, 2, 4, 3], as well
as a narrow-band search [5] and three directed searches [6, 7, 8]. distromax, presented in Chatper 5,
has been applied in a narrow-band [9] and directed [10] search. Also, it has been employed to estimate
detection thresholds in theoretical sensitivity estimates for the detection of post-glitch emission from
known neutron stars [11].

At the time of writing, the Advanced LIGO, Advanced Virgo, and KAGRA detectors are about to
start the fourth observing run, O4, which is expected to last for approximately two years, achieving an
unprecedented sensitivity that may start to unveil the first signatures of a CW signal [12]. Research in
the search for CW signals, however, is far from being complete, as there are still a few open problem
to be solved in order to ensure a first detection is achieved and the maximum information is obtained
out of it. We shall devote the remainder of this chapter to briefly discuss three of the possible avenues
where a significant improvement may be achieved in the forthcoming years.

First, in the most general case, a CW signal is defined essentially by its presence in the detector data
for the full duration of an observing run. Even though NSs are considered as the primary source of this
sort of signals, other physical systems, such as boson clouds around spinning black holes [13] may produce
genuine CW signals. These signals can be searched for either using all-sky searches [14] or targeting
specific known black holes [15]; in certain cases, these signals may be even produced by newly formed
black holes after the coalescence of a compact binary system [16]. Extending this definition, the search
for CWs has proven to be suitable to search for the presence of a galactic dark-matter halo [17, 18, 19, 20],
as such a system would produce a monochromatic signal in the detector due to the effect of such a halo
on the properties of the detector’s mirrors. Finally, binary systems of compact objects may also be
interesting sources of CWs in the appropriate parameter space. A first example are binary systems with
low-mass components, such as those composed by planetary-mass primordial black holes [21, 22] or “mini
extreme-mass-ratio inspirals” [23], which may allow us to detect exotic compact objects in our galaxy. As
we progress into space-borne detectors, such as LISA [24], binary systems’ gravitational-wave emission
tends to behave like a CW signal [25], lasting for long periods of time. This is true, for example, for the
case of binary-white-dwarf systems, to which CW search techniques have already been applied [26, 27].

The second avenue for improvement is, paradoxically, to increase the amount of prior information
used in a blind search. Initial steps in this direction were taken by so-called “spotlight searches” [28, 29],
which applied the same modus operandi of an all-sky search to a specific region of the sky. This reduces
the number of templates to be analyzed by a search and allows for the use of more sensitive methods as
a first stage, increasing the resulting sensitivity. In parallel, a rich body of literature on simulating the
galactic population of NSs and their detectability as CW sources has been developed during the past two
decades (see [12] and references therein). The analyses therein presented tend to consider electromagnetic
emission to dominate the spin frequency evolution of a NS, similarly to what happens in pulsars; there
is no strong evidence, however, against the existence of a NS population whose main emission channel
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is given by gravitational radiation. Indeed, the properties and detectability of a theoretical galactic
population of gravitars are studied in [30]. Moreover, as pointed out by [31] the conditions for the
existence of a gravitar population are astrophysically plausible. This information, combined with some
basic estimations of the sensitivity of CW searches [32], can reduce the standard parameter-space of
an all-sky search [3] by an order of magnitude. Furthermore, another reduction of about an order of
magnitude in computing cost can be obtained by focusing on the nearby population of gravitars [33].
Nevertheless, the dominating factor will be the specific distance to nearby sources: for ellipticities of
10−7, gravitars within 100 pc may be discovered using the current advanced detectors; beyond that, and
up to 1 kpc at 1 kHz, gravitars fall into the third generation’s territory [34].

Finally, once a CW detection is achieved, the problem of parameter estimation will become a real
one. Most of the approaches for the detection of CW signals, as discussed in Chapter 2, focus on esti-
mating the frequency and Doppler modulation parameters, marginalizing out the amplitude parameters.
As discussed in [35, 36, 37], the amount of information we can extract from such a result is highly
dependent on the availability of a distance measurement to the source. This can be easily achieved for
galactic sources with an electromagnetic counterpart, and for nearby sources using gravitational-wave
parallax [38].

This brief exposition suggests that, for a first CW signal to be scientifically exploited at its fullest, it
would be desirable to come from a nearby source so that there is a smaller dependency on complementary
electromagnetic emission. As we progress into a state of routinary detection and follow-up of new CW
sources, population studies such as the ones nowadays performed in compact binary coalescences [39]
will likely relax such a stringent constraint.
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