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ABSTRACT
In many fields of applied sciences the aggregation of numerical values, in order to
get a final one which allows to make a decision, plays a central role. Many times
these numerical values represent dissimilarities and the merged value can be in-
terpreted as a global dissimilarity. Inspired, on the one hand, by the interest that
causes the dissimilarities aggregation problem and, on the other hand, by the utility
of generalized dissimilarities in applied sciences, we focus our work on the problem
of merging the so-called partial quasi-metrics, which have been introduced in the
literature with the aim of developing a framework that allows to unify the notion of
metric, quasi-metric and partial metric under a unique one. Concretely, we charac-
terize those functions that merge a collection of partial quasi-metrics into a new one.
Moreover, a few relationships between this kind of functions and those that merge
(quasi-)metrics and partial metrics are discussed. Furthermore, a general fixed point
result for contractions obtained through aggregation functions is given.
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1. Introduction

In applied sciences, the problem of merging a collection of data (inputs) into a single
one datum (output), which contains information on each of the inputs, plays a central
role. Typical fields in which this kind of problem arises in a natural way are robotics,
decision making, image processing, medical diagnosis, machine learning, pattern recog-
nition, econometrics or business management. Most of the time, in the indicated fields,
the information is coded as numerical data and, therefore, such data must be fused
in order to obtain a unique numerical value that helps us make a working decision.
Many methods to merge these numerical inputs are based on the so-called aggregation
functions. For a deeper treatment of such class of functions see, for instance, (Beliakov
et al. 2016; Mesiar et al. 2018). Sometimes the nature of the problem imposes that
the aggregation method provides an output preserving the fundamental properties of
the inputs. This is the case when a collection of dissimilarities are merged in order

CONTACT Juan José Miñana. Email: jj.minana@uib.es



to obtain a new one which represents any type of global dissimilarity and whose dis-
similarity values allow us to make a decision. The utility of dissimilarities in modeling
problems in applied sciences has motivated the study of those functions that allow to
merge a collection of generalized dissimilarities into a new one. Thus, a characteriza-
tion of those functions that merge a collection of metrics into a new one was given
in (Borśık and Doboš 1981). A general solution to the problem of merging S-metrics
and pseudometrics was provided in (Pradera et al. 2000, 2002; Pradera and Trillas
2002). Several linkages between the aggregation operators theory and metric aggrega-
tion functions have been given in (Casasnovas and Rosselló 2005), (Mesiar and Pap
2008) and (Yager 2010). In (Mayor and Valero 2010), the original work of Borśık and
Doboš was extended to the framework of quasi-metrics (see also (Miñana and Valero
2019)). The aggregation problem for partial metrics and, in addition, relationships be-
tween this problem and the (quasi-)metric one were explored in (Massanet and Valero
2012). Recently, a refinement of the original Borśık and Doboš characterization has
been yielded in (Mayor and Valero 2019).

Inspired, on the one hand, by the interest that causes the dissimilarities aggregation
problem and, on the other hand, by the utility of generalized dissimilarities in applied
sciences, we focus our work in the problem of merging the so-called partial quasi-
metrics in the sense of (Künzi et al. 2006). This type of general dissimilarities have
been introduced in the literature with the aim of developing a framework that allows
to unify the metric, quasi-metric and partial metric approach. Concretely we provide a
characterization of functions that merge a collection of partial quasi-metrics into a new
one and a few relationships between this kind of functions and those that merge (quasi-
)metrics and partial metrics are discussed. Inspired by the fact that many applications
of quasi-metrics and partial metrics are obtained via fixed point methods, we prove a
general fixed point result for contractions obtained through aggregation functions in
such a way that the results given in (Mart́ın et al. 2013) and (Alghamdi et al. 2015)
are retrieved as a particular case.

2. Aggregation of partial quasi-metric spaces

In this section we motivate the problem of merging partial quasi-metrics and provide
a characterization of those functions which are useful for such a goal. Moreover, some
relationships between these functions and those that merge (quasi-)metrics and partial
metrics are exposed.

2.1. Basic notions and a motivation

In the last years quasi-metrics and partial metrics have been used successfully as
efficient tools in modeling some processes that arise in a natural way in Computer
Science.

A new dissimilarity notion was introduced in (Matthews 1994). Such a notion is
known as partial metric and it is useful to provide a quantitative mathematical frame-
work to model, among other, the meaning of recursive specifications in denotational
semantics for programming languages. It is recalled below.

Definition 2.1. A partial metric on a non-empty set X is a function p : X×X → R+

such that, for all x, y, z ∈ X, the following axioms are fulfilled:
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(P1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(P2) 0 ≤ p(x, x) ≤ p(x, y);
(P3) p(x, y) = p(y, x);
(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Notice that R+ denotes the set of non-negative real numbers in the preceding defi-
nition.

Later on, a new framework, known as complexity space, was introduced in order to
develop a quantitative mathematical foundation for the asymptotic complexity anal-
ysis of algorithms (see (Schellekens 1995)). This framework is based on the notion of
quasi-metric space which, according to (Deza and Deza 2009), is defined as follows.

Definition 2.2. A quasi-metric on a (nonempty) set X is a function q : X×X → R+

such that for all x, y, z ∈ X:

(Q1) q(x, y) = q(y, x) = 0⇔ x = y.
(Q2) q(x, z) ≤ q(x, y) + q(y, z).

Inspired, on the one hand, by the applicability of quasi-metrics and partial metrics
in the aforesaid fields of Computer Science and, on the other hand, by the fact that
both generalized dissimilarities have been explored independently, a new dissimilarity
notion called partial quasi-metric, which unifies under the same framework the quasi-
metric and partial metric one, was introduced in (Künzi et al. 2006). We recall such a
notion next.

Definition 2.3. A partial quasi-metric on a nonempty set X is a function pq : X ×
X → R+ such that for all x, y, z ∈ X :

(PQ1) pq(x, x) ≤ pq(x, y);
(PQ2) pq(x, x) ≤ pq(y, x);
(PQ3) pq(x, y) ≤ pq(x, z) + pq(z, y)− pq(z, z);
(PQ4) x = y ⇔ pq(x, x) = pq(x, y) and pq(y, y) = pq(y, x).

Observe that a partial metric on X is a partial quasi-metric pq on X such that,
for all x, y ∈ X, pq(x, y) = pq(y, x). Moreover, a quasi-metric on X is a partial quasi-
metric pq on X such that, for all x ∈ X, pq(x, x) = 0. Furthermore, a metric on X is
a partial quasi-metric pq on X such that, for all x, y ∈ X, pq(x, y) = 0 ⇔ x = y and
pq(x, y) = pq(y, x).

In order to study those functions that allow to merge an arbitrary collection of
partial quasi-metrics into a new one, let us introduce the notion of partial quasi-
metric aggregation function. To this end, let us denote by N the set of positive integer
numbers.

Definition 2.4. Given n ∈ N, we will say that a function Φ : Rn+ → R+ is a partial
quasi-metric aggregation function provided that the function PQΦ : X × X −→ R+

is a partial quasi-metric for every arbitrary collection of partial quasi-metric spaces

{(Xi, pqi)}ni=1, where for all x, y ∈
n∏
i=1

Xi, the function PQΦ is defined by PQΦ(x, y) =

Φ (pq1(x1, y1), . . . , pqn(xn, yn)).
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Observe that Rn+ = {(a1, . . . , an) : ai ∈ R+ for all i = 1, . . . , n} and

n∏
i=1

Xi =

X1 × · · · ×Xn.
Clearly, when we replace the term partial quasi-metric by metric, quasi-metric or

partial metric, we retrieve the notion of metric aggregation function, quasi-metric
aggregation function and partial metric aggregation function given in (Borśık and
Doboš 1981), (Mayor and Valero 2010) and (Massanet and Valero 2012), respectively.

We end this section providing a motivation for the study of partial quasi-metric
aggregation functions.

As exposed before, partial metrics and quasi-metrics have shown to be useful in
the study of recursive denotational specifications for programming languages and to
discuss the complexity analysis of algorithms, respectively.

In denotational semantics one of the targets is to verify the correctness of recursive
algorithms through mathematical models. With this aim, Matthews introduced the
Baire partial metric space which consists of the pair (Σ∞, pB), where Σ∞ is the set
of finite and infinite sequences over a non-empty alphabet Σ and the partial metric
pB is given by pB(v, w) = 2−l(v,w) for all x, y ∈ Σ∞ with l(v, w) denoting the longest
common prefix of the words v and w when it exists and l(v, w) = 0 otherwise. Of
course the convention that 2−∞ = 0 is adopted (see (Matthews 1994)).

Usually the running time of computing of recursive algorithms is analyzed in con-
junction with the correctness. In order to discuss by means of a mathematical model
the running time of computing, Schellekens introduced the so-called complexity space,
which consists of the pair (C, qC), where

C = {f : N −→ (0,∞] :

∞∑
n=1

2−n
1

f(n)
<∞}

and qC is the quasi-metric on C defined by

qC(f, g) =

∞∑
n=1

2−n max

(
1

g(n)
− 1

f(n)
, 0

)
.

Clearly the convention that 1
∞ = 0 is adopted (see Schellekens (1995)).

The running time of computing of an algorithm can be associated to a function
belonging to C. In addition, the numerical value qC(f, g) (the complexity distance from
f to g) can be interpreted as the relative progress made in lowering the complexity
by replacing any program P with complexity function f by any program Q with
complexity function g. Moreover, the condition qC(f, g) = 0 can be understood as
f is “at least as efficient” as g on all inputs. Notice that qC(f, g) = 0 implies that
f(n) ≤ g(n) for all n ∈ N. The last fact is crucial when the asymptotic upper bound
of the complexity of an algorithm wants to be specified. In fact, qC(f, g) = 0 implies
that f ∈ O(g), where f ∈ O(g) means that there exist n0 ∈ N and c ∈ R+ such that
f(n) ≤ cg(n) for all n ∈ N with n ≥ n0. Furthermore, it must be pointed out that
the asymmetry of dissimilarity qC is key when one wants to give information about
the growth in complexity when a program is replaced by another one. A metric would
be able to be used in order to provide information on the growth but, nevertheless, it
could not yield which program is more efficient.

The exposed mathematical structures were developed and applied separately with-
out any relationship between them. In fact, at first glance, it seems difficult to combine

4



two approaches so that we can build a unique framework which allows us to carry out
formally the study simultaneously, on the one hand, of the correctness of a recursive
algorithm and, on the other hand, the running time of computing of such an algorithm.
However, partial quasi-metric aggregation functions could be useful for such a target.
Hence, we could consider a new structure which arise merging the both original ones
in such a way that the main properties coming from both different nature inputs are
kept and the original dissimilarities (a partial metric and a quasi-metric) are fused in a
global dissimilarity. Thus, we could consider the pair (N∞×C, PQΦ), where Φ is a par-
tial quasi-metric aggregation function and PQΦ((v, f), (w, g)) = Φ(pB(v, w), qC(f, g))
for all v, w ∈ N∞ and f, g ∈ C.

Observe that the fact that one input is a partial metric and the other one is a
quasi-metric, both are particular cases of partial quasi-metrics, forces us to consider
partial quasi-metric aggregation functions because of PQΦ is not, in general, either a
partial metric or a quasi-metric.

On the one hand, every partial quasi-metric aggregation function Φ satisfies that
Φ(a1, a2) = 0 implies a1 = a2 = 0 (as we will show in Proposition 3.5 in Section 3)
and, thus, we have that PQΦ((v, f), (v, f)) = Φ(pB(v, v), qC(f, f)) = Φ(2−l(v,v), 0) > 0
for all finite word v ∈ N∞. It follows that PQΦ cannot be a quasi-metric.

On the other hand, Φ(0, 0) < Φ(0, 1
2f(1)) (as shown, again, in Proposition 3.5

later on). Whence we have that PQΦ((v, f), (w, g)) = Φ(0, 0) < Φ(0, 1
2f(1)) =

PQΦ((w, g), (v, f)) when f, g ∈ C such that qC(f, g) = 0, qC(g, f) = 1
2f(1) and

v, w ∈ N∞ are infinite words with v = w. It follows that PQΦ is not, in general,
a partial metric. Notice that f, g ∈ C with f(1) <∞ = g(1) and g(n) = f(n) =∞ for
all n ∈ N with n > 1 provides that qC(f, g) = 0, qC(g, f) 6= 0.

The preceding reasoning shows that pB + qC , the most natural generalized dissimi-
larity for this objective, is neither a partial metric nor a quasi-metric on N∞ ×C such
as it was proved in (Miñana and Valero 2018).

2.2. A characterization of partial quasi-metric aggregation functions

Taking into account the interest aroused by the aggregation of dissimilarities and its
potential applicability to many fields, we provide the promised characterization of
those functions that are useful for merging a collection of partial quasi-metrics into a
new one and, in addition, we provide a few relationships between this type of functions
and those that merge (quasi-)metrics and partial metrics.

First, recall the next notions on functions Φ : Rn+ → R+.

Definition 2.5. A function Φ : Rn+ → R+ is said to be:

(i) amenable provided that Φ(x) = 0⇔ x = 0̄, where 0̄ ∈ Rn+ with 0̄ = (0, . . . , 0).
(ii) non-decreasing provided that Φ(x) ≤ Φ(y) for all x, y ∈ Rn+ with x � y, where

x � y ⇔ xi ≤ yi for all i = 1, . . . , n.
(iii) subadditive provided that Φ(x+ y) ≤ Φ(x) + Φ(y) for all for all x, y ∈ Rn+.

The next result will be helpful to prove the aforementioned characterization.

Lemma 2.6. Let Φ : Rn+ → R+ be a partial quasi-metric aggregation function. Then,
Φ is non-decreasing.

Proof. Let Φ : Rn+ → R+ be a partial quasi-metric aggregation function and let
a, b ∈ Rn+ such that a � b, where a = (a1, . . . , an) and b = (b1, . . . , bn).
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Consider, for each i ∈ {1, . . . , n}, the partial (quasi-)metric space (R+, pmax), where
pmax(x, y) = max{x, y} for each x, y ∈ R+. Then,

Φ(a) = Φ(pmax(a1, a1), . . . , pmax(an, an)) = PQΦ(a, a) ≤ PQΦ(a, b) =

= Φ(pmax(a1, b1), . . . , pmax(an, bn)) = Φ(b).

Thus, Φ is non-decreasing.

In the next result we characterize the partial quasi-metric aggregation functions.

Theorem 2.7. Let Φ : Rn+ → R+ and let x, y, w, z ∈ Rn+. The following assertions
are equivalent:

1) Φ is a partial quasi-metric aggregation function.
2) Φ satisfies the following conditions:

(2.1) Φ(x) + Φ(y) ≤ Φ(z) + Φ(w), whenever x+ y � z + w, y � z and y � w.
(2.2) x = y whenever Φ(x) = Φ(y) with y � x.

3) Φ satisfies condition (2.1) and the following one:
x = y and z = w, whenever Φ(x) = Φ(y) and Φ(z) = Φ(w) with y � x, y � w,

z � x and z � w.

Proof. Let Φ : Rn+ → R+ and let x, y, w, z ∈ Rn+.

1)⇒ 2) Suppose that Φ is a partial quasi-metric aggregation function.
(2.1) Suppose that x + y � z + w, y � z and y � w. For each i ∈ {1, . . . , n},

consider the set Xi = {yi, zi, wi} and define pi on Xi ×Xi as follows:

pi(yi, yi) = yi; pi(zi, zi) = zi; pi(wi, wi) = wi;

pi(zi, wi) = pi(wi, zi) = zi + wi − yi;

pi(zi, yi) = pi(yi, zi) = zi; pi(wi, yi) = pi(yi, wi) = wi.

It is not hard to check that pi is a partial (quasi-)metric on Xi, for each
i ∈ {1, . . . , n}. Then,

Φ(z+w−y)+Φ(y) = Φ(p1(z1, w1), . . . , pn(zn, wn))+Φ(p1(y1, y1), . . . , pn(yn, yn)) =

= PQΦ(z, w) + PQΦ(y, y) ≤ PQΦ(z, y) + PQΦ(y, w) =

= Φ(p1(z1, y1), . . . , pn(zn, yn))+Φ(p1(y1, w1), . . . , pn(yn, wn)) = Φ(z)+Φ(w).

In addition, by our assumption x � z+w− y and so, using Lemma 2.6, we
obtain

Φ(x) + Φ(y) ≤ Φ(z + w − y) + Φ(y) ≤ Φ(z) + Φ(w).
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(2.2) Suppose that y � x and Φ(x) = Φ(y). For each i ∈ {1, . . . , n}, consider the
set Xi = {xi, yi} and define pi on Xi ×Xi as follows:

pi(xi, xi) = xi; pi(yi, yi) = yi; pi(xi, yi) = pi(yi, xi) = xi.

One can verify that, for each i ∈ {1, . . . , n}, (Xi, pi) is a partial (quasi-
)metric space. Then,

PQΦ(x, y) = Φ(x) = PQΦ(x, x)

and

PQΦ(y, x) = Φ(x) = Φ(y) = PQΦ(y, y).

So, since Φ is a partial quasi-metric aggregation function then PQΦ is a
partial quasi-metric and so, we deduce that x = y.

2)⇒ 3) We just need to check that (2.2) implies (3.2). So, suppose that (2.2) is sat-
isfied by Φ and suppose y � x, y � w, z � x, z � w, Φ(x) = Φ(y) and
Φ(z) = Φ(w).

On the one hand, let x′ = x and y′ = y. Then, by our assumption, y′ � x′ and
Φ(x′) = Φ(y′). Thus, since Φ fulfills (2.2) we have that x′ = y′ and so x = y.

On the other hand, let x′′ = w and y′′ = z. By our assumption again, y′′ � x′′
and Φ(x′′) = Φ(y′′). Thus, since Φ fulfills (2.2) we have that x′′ = y′′ and so
z = w.

3)⇒ 1) Suppose that Φ satisfies (3.1) and (3.2) and let {(Xi, pqi)}ni=1 be an arbitrary
collection of partial quasi-metric spaces. We will see that PQΦ is partial quasi-

metric on X =

n∏
i=1

Xi.

First of all, we claim that if Φ satisfies (3.1), then Φ is non-decreasing. Indeed,
let a, b ∈ Rn+ with a � b. Then, a + a � a + b, a � a and a � b. Then, if Φ
satisfies (3.1) then Φ(a) + Φ(a) ≤ Φ(a) + Φ(b) and so Φ(a) ≤ Φ(b).

Let x, y ∈ X. Since, pqi is a partial quasi-metric on Xi, for each i ∈
{1, . . . , n}, we have that pqi(xi, xi) ≤ pqi(xi, yi), for each i ∈ {1, . . . , n}. So,
(pq1(x1, x1), . . . , pqn(xn, xn)) � (pq1(x1, y1), . . . , pqn(xn, yn)). Since Φ is non-
decreasing, we conclude that PQΦ(x, x) = Φ(pq1(x1, x1), . . . , pqn(xn, xn)) ≤
Φ(pq1(x1, y1), . . . , pqn(xn, yn)) = PQΦ(x, y). Thus, PQΦ satisfies (PQ1). Analo-
gously, it is proved that PQΦ satisfies (PQ2).

We focus now in showing that PQΦ satisfies (PQ3). Let x, y, z ∈ X.
Let a = (pq1(x1, z1), . . . , pqn(xn, zn)), b = (pq1(y1, y1), . . . , pqn(yn, yn)), c =
(pq1(xi, yi), . . . , pqn(xn, yn)) and d = (pq1(y1, z1), . . . , pqn(yn, zn)). Since pqi is
a partial quasi-metric on Xi, for each i ∈ {1, . . . , n}, then a + b � c + d, b � c
and b � d. Thus, since Φ satisfies (3.1) we have that Φ(a) + Φ(b) ≤ Φ(c) + Φ(d)
and so

PQΦ(x, z) + PQΦ(y, y) = Φ(a) + Φ(b) ≤ Φ(c) + Φ(d) = PQΦ(x, y) + PQΦ(y, z).

Finally, we will see that PQΦ fulfils (PQ4).
Obviously, if x = y then PQΦ(x, x) = PQΦ(x, y) and PQΦ(y, y) = PQΦ(y, x).

Conversely, let x, y ∈ X such that PQΦ(x, x) = PQΦ(x, y) and PQΦ(y, y) =
PQΦ(y, x).
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Let a = (pq1(x1, x1), . . . , pqn(xn, xn)), b = (pq1(x1, y1), . . . , pqn(xn, yn)), c =
(pq1(y1, y1), . . . , pqn(yn, yn)) and d = (pq1(y1, x1), . . . , pqn(yn, xn)). Due to pqi is
a partial quasi-metric on Xi, for each i ∈ {1, . . . , n}, we have that a � b, a � d,
c � b and c � d. Besides, by our assumption, Φ(a) = PQΦ(x, x) = PQΦ(x, y) =
Φ(b) and Φ(c) = PQΦ(y, y) = PQΦ(y, x) = Φ(d). Since Φ fulfills (3.2) we obtain
that a = b and c = d. Thus, for each i ∈ {1, . . . , n}, pqi(xi, xi) = pqi(xi, yi) and
pqi(yi, yi) = pqi(yi, xi). The fact that pqi is a partial quasi-metric on Xi, for each
i ∈ {1, . . . , n}, ensures that xi = yi, for each i ∈ {1, . . . , n}, and so, x = y.

Let us stress that the problem of how to induce partial quasi-metrics merging just
a partial metric and a quasi-metric was posed in (Miñana and Valero 2018). In order
to solve such a problem, the notion of partial quasi-metric generating function was
introduced. Let us recall that a function Φ : R2

+ → R+ is a partial quasi-metric
generating function provided that for each partial metric space (X, p) and each quasi-
metric space (Y, q), the function Φp,q : (X × Y ) × (X × Y ) → R+ is a partial quasi-
metric on X ×Y , where Φp,q((x, y), (u, v)) = Φ(p(x, u), q(y, v)) for each (x, y), (u, v) ∈
X×Y . In the light of Theorem 2.7 we immediately get that every partial quasi-metric
aggregation function is a partial quasi-metric generating function.

According to Theorem 2.7, the following example provides a technique for generating
new partial quasi-metrics from older ones.

Example 2.8. Consider the functions fi : R+ → R+, with i = 1, . . . , 7, given by:

f1(x) = (x+ α)β with β ∈]0, 1],
f2(x) = αx+ β with α, β ∈]0,∞[,
f3(x) = αx

1+x with α ∈]0,∞[,

f4(x) = 1+αx
2+αx with α ∈]0,∞[,

f5(x) = logβ(α+ x) with α, β ∈]1,∞[,
f6(x) = 1− e−αx with α ∈]0,∞[,
f7(x) =

√
x2 + αx with α ∈ [0,∞[.

It is not hard to check that the preceding functions transform a partial quasi-metric
into a new one (we refer the reader to Theorem 1 in Miñana and Valero (2020) for a
fuller treatment). Then the function PQ+ : X × X −→ R+ is a partial quasi-metric
for every arbitrary collection of partial quasi-metric spaces {(Xi, pqi)}ni=1 with

PQ+(x, y) = α1g1(pq1(x1, y1)) + . . .+ αngn(pqn(xn, yn))

for all x, y ∈
n∏
i=1

Xi and where αi ∈]0,∞[ and gi ∈ {f1, . . . , f7} for all i = 1, . . . , n.

Taking into account the information yielded by Theorem 2.7 we are able to state the
relationship with those functions that merge partial metrics, quasi-metrics and metrics.
Before, we recall the next results, which can be found in (Borśık and Doboš 1981),
(Mayor and Valero 2010) and (Massanet and Valero 2012). They yield a description
of metric, quasi-metric and partial metric aggregation functions.

Proposition 2.9. Let Φ : Rn+ −→ R+ be a metric aggregation function. Then Φ is
amenable.
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Proposition 2.10. Let Φ : Rn+ → R+ be a function. If Φ is non-decreasing, subaddi-
tive and amenable, then Φ is a metric aggregation function.

Theorem 2.11. Let Φ : Rn+ → R+ be a function. Then the below assertions are
equivalent:

1) Φ is a quasi-metric aggregation function.
2) Φ is subadditive, non-decreasing and amenable.

Theorem 2.12. Let Φ : Rn+ → R+ and let x, y, w, z ∈ Rn+. The following assertions
are equivalent:

1) Φ is a partial metric aggregation function.
2) Φ satisfies condition (2.1) in Theorem 2.7 and the following one:

x = y = z whenever Φ(x) = Φ(y) = Φ(z) with y � x, z � x.

Theorem 2.11 states that every quasi-metric aggregation function is a metric aggre-
gation function. Of course the converse is not true such as it was proved in (Mayor and
Valero 2010). Moreover, several examples were given in (Massanet and Valero 2012)
with the aim of showing that there are partial metric aggregation functions that are
not either metric aggregation functions or quasi-metric aggregation functions and vice
versa. Theorems 2.7 and 2.12 warranty that the class of partial quasi-metric aggrega-
tion functions matches up with the class of partial metric aggregation functions.

The next example shows that there exist partial quasi-metric aggregation functions
that are neither quasi-metric aggregation functions nor metric aggregation functions.

Example 2.13. Consider the partial quasi-metric space ([0, 1], pmax), where
pmax(x, y) = max{x, y} for all x, y ∈ [0, 1]. Consider the family of partial metric
spaces {([0, 1], pi)}i=1,2 such that p1 = p2 = pmax. Define the function Φ2 : R2

+ −→ R+

by Φ2(x) = x1+x2

4 + 1
2 for all x ∈ R2

+. It is not hard to see that the function Φ2

holds assertions (2.1) and (2.2) in statement of Theorem 2.7 and, thus, it is a partial
quasi-metric aggregation function. Moreover, it is clear that Φ2 is not amenable and,
thus, by Theorem 2.11 and Proposition 2.9, Φ is neither a quasi-metric aggregation
function nor a metric aggregation function.

Since every partial quasi-metric aggregation function is exactly a partial metric
aggregation function the next result, given in (Massanet and Valero 2012), is crucial
in order to state the relationship between partial quasi-metric aggregation functions
and (quasi-)metric aggregation functions.

Proposition 2.14. Let Φ : Rn+ → R+ be a partial metric aggregation function. Then
Φ is non-decreasing and subadditive.

From the preceding result we obtain immediately that every partial quasi-metric
aggregation function is always non-decreasing and subadditive. Taking into account
the exposed information we can state exactly the desired relationship.

Corollary 2.15. Let Φ : Rn+ −→ R+ be a partial quasi-metric aggregation function.
Then the following assertions are equivalent:

1) Φ is amenable.
2) Φ is a quasi-metric aggregation function.
3) Φ is a metric aggregation function.
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3. A fixed point theorem via aggregation

The contributions of partial metrics and quasi-metrics to the study of correctness of
recursive algorithms and to discuss the complexity analysis of algorithms were possible
thanks to fixed point methods for such dissimilarities.

In the case of partial metrics, the aforesaid fixed point methods were based on the so-
called Matthews fixed point theorem. In order to recall such a fixed point theorem, let
us introduce a few pertinent notions. According to (Matthews 1994), a mapping from a
partial metric space (X, p) into itself is said to be a contraction if there exists c ∈ [0, 1[
such that p(f(x), f(y)) ≤ cp(x, y) for all x, y ∈ X. The preceding constant c is said to
be the contractive constant of the contraction f . Moreover, a sequence (xn)n∈N in a
partial metric space (X, p) is said to be a Cauchy sequence if limn,m→∞ p(xn, xm) exists
in R+. Thus, a partial metric space (X, p) is called complete provided that for every
Cauchy sequence (xn)n∈N in X there exists a point x ∈ X such that limn→∞ xn = x
in (X, p), i.e., p(x, x) = limn,m→∞ p(xn, xm) = limn→∞ p(x, xn).

In the light of the above notions, the Matthews fixed point theorem can be stated
as follows:

Theorem 3.1. Let (X, p) be a complete partial metric space and let f : X → X. If f
is a contraction from (X, p) into itself, then f has a unique fixed point x0. Moreover,
p(x0, x0) = 0 and limn→∞ p(x0, f

n(x)) = 0, for each x ∈ X.

A subclass of Cauchy sequences in a partial metric space (X, p) are the so-called
0-Cauchy sequences (see Romaguera (2010)). Recall that, a sequence (xn)n∈N is 0-
Cauchy if limn,m→∞ p(xn, xm) = 0. As is usual, a partial metric space is called 0-
complete if every 0-Cauchy sequence is convergent. Obviously, every complete partial
metric is 0-complete but the converse is not true as it was observed in (Romaguera
2010). Nevertheless, following the same arguments used by Matthews one can extend
Theorem 3.1 to 0-complete partial metric spaces.

Regarding to quasi-metrics, the aforementioned fixed point methods were based on
the next fixed point theorem. In order to state it, let us recall the next concepts.
Following (Schellekens 1995), a mapping from a (quasi-)metric space (X, q) into itself
is said to be a contraction if there exists c ∈ [0, 1[ such that q(f(x), f(y)) ≤ cq(x, y) for
all x, y ∈ X. As in the partial metric case, the preceding constant c is said to be the
contractive constant of the contraction f . Besides, a quasi-metric space (X, d) is said
to be bicomplete if the associated metric space (X, dq) is complete, where the metric
dq on X is defined by dq(x, y) = max{q(x, y), q(y, x)} for all x, y ∈ X. We refer the
reader to (Deza and Deza 2009) for the fundamentals of metric spaces.

Theorem 3.2. Let (X, q) be a bicomplete quasi-metric space and let f : X → X. If
f is a contraction from (X, q) into itself, then f has a unique fixed point x0.

Notice that the preceding result is known as Banach’s fixed point theorem when the
quasi-metric is replaced by a metric in its statement.

Theorems 3.1 and 3.2 were extended to the case of complete partial quasi-metric
spaces in (Künzi et al. 2006). Following the same arguments given in (Matthews 1994)
(see also (Künzi et al. 2006)), one can also prove the following result for 0-complete
partial quasi-metric spaces.

Theorem 3.3. Let (X, pq) be a 0-complete partial quasi-metric space and let f : X →
X. If f is a contraction from (X, pq) into itself, then f has a unique fixed point x0.
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Moreover, pq(x0, x0) = 0 and limn→∞ pq(x0, f
n(x)) = 0, for each x ∈ X.

Of course a contraction from a partial quasi-metric space into itself is defined in
the same terms like in the exposed cases above. The notion of 0-completeness is de-
fined, on account of Mohammadi and Valero (2016) (see also (Romaguera 2011)),
in the following way: a partial quasi-metric space (X, pq) is said to be 0-complete
provided that for each 0-Cauchy sequence (xn)n∈N there exists x0 ∈ X such that
limn→∞ pq(xn, x0) = limn→∞ pq(x0, xn) = 0, where a sequence (xn)n∈N is called 0-
Cauchy if it satisfies that limn,m→∞ pq(xn, xm) = 0.

Observe that Theorem 3.3 retrieves Theorems 3.1 and 3.2 when the partial quasi-
metric is exactly a partial metric and a quasi-metric, respectively.

Inspired by the fact that many applications of quasi-metrics and partial metrics
are obtained via the exposed fixed point results (as the analysis of algorithms case),
we prove a general fixed point result for contractions obtained through aggregation
functions. Thus we extend Theorem 3.3 to the case in which the contractions are
defined between partial quasi-metric spaces obtained through the aggregation of a
collection of partial quasi-metrics. To this end, let us introduce the appropriate notion
of contraction.

Definition 3.4. Let (Xi, pqi)
n
i=1 be a family of arbitrary partial quasi-metric spaces,

X =

n∏
i=1

Xi and let Φ : Rn+ → R+ be a partial quasi-metric aggregation function. A

mapping F : X −→ X will be said to be a projective Φ-contraction from (X,PQΦ)
into itself, provided the existence of (contractive) constants c1, . . . , cn ∈ [0, 1] such that

pqi(Fi(x), Fi(y)) ≤ ciΦ (pq1(x1, y1), . . . , pqn(xn, yn))

for all x, y ∈ X and for all i = 1, . . . , n.

It must be stressed that Definition 3.4 retrieves the notion of Φ-contraction, when
the contractive constants belong to [0, 1[, introduced in the context of partial metric
spaces and quasi-metric spaces given in (Alghamdi et al. 2015) and (Mart́ın et al.
2013), respectively. Of course when n = 1 and Φ is the identity function in Definition
3.4, then the contraction notion for self-mappings in partial quasi-metric spaces is
retrieved as a particular case when the contractive constant belong to [0, 1[.

Since Theorem 3.3 (see also Theorems 3.1 and 3.2) needs an appropriate notion of
completeness in order to guarantee the existence and uniqueness of fixed point the
next result makes sure such a demand for the partial quasi-metric space obtained via
aggregation. Before stating such a result, let us recall that, according to (Herburt
and Moszyńska 1995), a function Φ : Rn+ → R+ is called homogeneous provided
that Φ(αx) = αΦ(x) for all x ∈ Rn+ and α ∈ R+. From now on, we will set 1i =

(0, . . . , 0,

i︷︸︸︷
1 , 0, . . . , 0) for all i = 1, . . . , n.

The next result will be crucial for our proposal.

Proposition 3.5. Let Φ : Rn+ −→ R+ be a partial quasi-metric aggregation function.
Then the following assertions are hold:

1) Φ(a) < Φ(b) whenever a � b with a 6= b.
2) Φ(a) = 0 implies a = (0, . . . , 0).

11



Proof. 1). For the purpose of contradiction we suppose that Φ(a) ≥ Φ(b) for some
a � b with a 6= b. The monotony of Φ ensures that Φ(a) = Φ(b). So, Φ(b) =
Φ(a) with a � b. By assertion (2.2) in Theorem 2.7 we obtain that a = b, a
contradiction.

2). Again, for the purpose of contradiction, assume that Φ(a) = 0 for some a 6=
(0, . . . , 0). Then 1) provides that Φ(0, . . . , 0) < Φ(a) = 0, a contradiction.

With the aim of introducing the new fixed point result we will say that a function
Φ : Rn+ → R+ belongs to the class PQA provided that it fulfils for all x ∈ R+ the
following two properties:

PQA1. xΦ(1i) ≤ Φ(x · 1i) for all i = 1, . . . , n.
PQA2. Φ(x, . . . , x) ≤ xΦ(1, . . . , 1).

Observe that, by Proposition 2.14, those partial quasi-metric aggregation functions
belonging to PQA for which the inequalities in conditions PQA1 and PQA2 can be
replaced by equalities and, in addition, Φ(1, . . . , 1) = Φ(1i) = 1 for all i = 1, . . . , n are
instances of Aumann functions (see, for instance, (Pokorný 1986)).

The next result provides us the necessary completeness for a fixed point result.

Lemma 3.6. Let Φ : Rn+ → R+ be a partial quasi-metric aggregation function be-
longing to PQA. Let {(Xi, pqi)}ni=1 be a family of arbitrary partial quasi-metric spaces

and X =

n∏
i=1

Xi. Assume that, for each i = 1, . . . , n, the partial quasi-metric space

(Xi, pqi) is 0-complete. Then the partial quasi-metric space (X,PQΦ) is 0-complete,
where PQΦ is the partial quasi-metric induced by aggregation of the family of partial
quasi-metric spaces {(Xi, pqi)}ni=1 through Φ.

Proof. Let (xk)k∈N be a 0-Cauchy sequence in (X,PQΦ). Then, for each ε > 0, there
exists k0 ∈ N such that PQΦ(xk, xm) < ε for each k,m ≥ k0.

Fix i ∈ {1, . . . , n}. We will see that the sequence (xki )k∈N is 0-Cauchy in (Xi, pqi).
Let ε > 0 and consider ε · Φ(1i) > 0 (assertion 2) in Proposition 3.5 ensures that

Φ(1i) > 0). Since (xk)k∈N is 0-Cauchy sequence in (X,PQΦ), there exists k0 ∈ N such
that PQΦ(xk, xm) < ε ·Φ(1i), for each k,m ≥ k0. Now, by monotony of Φ, we obtain,
for each k,m ≥ k0, the next inequality

Φ(0, . . . , 0, pqi(x
k
i , x

m
i ), 0, . . . , 0) ≤ Φ(pq1(xk1, x

m
1 ), . . . , pqn(xkn, x

m
n ))

= PQΦ(xk, xm)
< ε · Φ(1i).

Moreover, the fact that Φ belongs to PQA provides that

pqi(x
k
i , x

m
i ) · Φ(1i) ≤ Φ(0, . . . , 0, pqi(x

k
i , x

m
i ), 0, . . . , 0) < ε · Φ(1i),

for each k,m ≥ k0. Thus, pqi(x
k
i , x

m
i ) < ε, for each k,m ≥ k0 and so (xki )k∈N is

0-Cauchy in (Xi, pqi).
Hence, since i ∈ {1, . . . , n} is arbitrary, we deduce that, for each i ∈ {1, . . . , n},

the sequence (xki )k∈N is 0-Cauchy in (Xi, pqi). Besides, since (Xi, pqi) is 0-complete,
for each i ∈ {1, . . . , n}, there exists xi ∈ Xi such that limk→∞ pqi(xi, x

k
i ) =

limk→∞ pqi(x
k
i , xi) = 0, for each i ∈ {1, . . . , n}. Then, given ε

Φ(1,...,1) > 0 there ex-
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ists k0 ∈ N such that, for each i ∈ {1, . . . , n}, we have that pqi(x
k
i , xi) <

ε
Φ(1,...,1) and

pqi(xi, x
k
i ) <

ε
Φ(1,...,1) for each k ≥ k0. Therefore, by the last inequalities, the fact that

Φ belongs to PQA and by assertion 1) in Proposition 3.5, we have the following

PQΦ(xk, x) = Φ(pq1(xk1, x1), . . . , pqn(xkn, xn)) < Φ

(
ε

Φ(1, . . . , 1)
, . . . ,

ε

Φ(1, . . . , 1)

)
≤

=
ε

Φ(1, . . . , 1)
· Φ(1, . . . , 1) = ε

and

PQΦ(x, xk) = Φ(pq1(x1, x
k
1), . . . , pqn(xn, x

k
n)) < Φ

(
ε

Φ(1, . . . , 1)
, . . . ,

ε

Φ(1, . . . , 1)

)
≤

ε

Φ(1, . . . , 1)
· Φ(1, . . . , 1) = ε,

for each k ≥ k0, where x = (x1, . . . , xn) ∈ X. Hence, (xk)k∈N converges to x and so
(PQΦ, X) is 0-complete.

Taking into account that every homogeneous function Φ fulfills the requirements in
the statement of Lemma 3.6, we obtain the following.

Corollary 3.7. Let Φ : Rn+ → R+ be an homogeneous partial quasi-metric aggregation
function. Let {(Xi, pqi)}ni=1 be a family of arbitrary partial quasi-metric spaces and

X =

n∏
i=1

Xi. Assume that, for each i = 1, . . . , n, the partial quasi-metric space (Xi, pqi)

is 0-complete. Then the partial quasi-metric space (X,PQΦ) is 0-complete, where PQΦ

is the partial quasi-metric induced by aggregation of the family of partial quasi-metric
spaces {(Xi, pqi)}ni=1 through Φ.

With the help of Lemma 3.6 we can prove that every projective Φ-contraction is
a contraction from the partial quasi-metric space obtained through aggregation into
itself.

Theorem 3.8. Let {(Xi, pqi)}ni=1 be a family of arbitrary partial quasi-metric spaces

and X =

n∏
i=1

Xi. If Φ is a partial quasi-metric aggregation function satisfying PQA2

and F is a Φ-projective contraction with contractive constants c1, . . . , cn ∈ [0, 1] such
that cΦ(1, . . . , 1) < 1 with c = max{c1, . . . , cn}, then F is a contraction from the partial
quasi-metric space (X,PQΦ) into itself where PQΦ is the partial quasi-metric induced
by aggregation of the family of partial quasi-metric spaces {(Xi, pqi)}ni=1 through Φ.

Proof. Let x, y ∈ X. Since Φ is non-decreasing and F is a projective Φ-contraction
we have the following inequalities

PQΦ(F (x), F (y)) = Φ(pq1(F1(x), F1(y)), . . . , pqn(Fn(x), Fn(y))) ≤
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Φ(c1Φ(pq1(x1, y1)), . . . , pqn(xn, yn)), . . . , cnΦ(pq1(x1, y1)), . . . , pqn(xn, yn))) ≤

Φ(cΦ(pq1(x1, y1)), . . . , pqn(xn, yn)), . . . , cΦ(pq1(x1, y1)), . . . , pqn(xn, yn))).

Besides, the fact that Φ satisfies PQA2 ensures the next inequality

Φ(cΦ(pq1(x1, y1)), . . . , pqn(xn, yn)), . . . , cΦ(pq1(x1, y1)), . . . , pqn(xn, yn))) ≤

cΦ(1, . . . , 1)Φ((pq1(x1, y1)), . . . , pqn(xn, yn))).

Therefore we have that

PQΦ(F (x), F (y)) ≤ cΦ(1, . . . , 1)Φ((pq1(x1, y1)), . . . , pqn(xn, yn)))
= cΦ(1, . . . , 1)PQΦ(x, y).

Since cΦ(1, . . . , 1) < 1 we conclude that F is a contraction from the partial quasi-
metric space (X,PQΦ) into itself.

The next example shows that the hypothesis “Φ satisfies PQA2” cannot be deleted
in the statement of Theorem 3.8 in order to warranty that a projective Φ-contraction
is also a contraction from (X,PQΦ) into itself.

Example 3.9. Let ([0, 1], pmax) be the partial quasi-metric space introduced in Ex-
ample 2.13. Consider the family of partial quasi-metric spaces {([0, 1], pqi)}i=1,2 such
that pq1 = pq2 = pmax. Define the function Φ2 : R2

+ −→ R+ by Φ2(x) = x1+x2

4 + 1
2 for

all x ∈ R2
+. It is not hard to verify that the function Φ2 fulfills assertions (2.1) and

(2.2) in statement of Theorem 2.7 and, hence, it is a partial quasi-metric aggregation
function. Clearly, Φ2 does not satisfy condition PQA2. Indeed, Φ2(x, x) ≤ xΦ(1, 1)⇔
x ∈ [1,∞[.

Next, consider the mapping F : [0, 1]2 −→ [0, 1]2 defined by F (x) = (0, 0) for all
x ∈ [0, 1]2. It is clear that F is a projective Φ-contraction. Nevertheless F is not a
contraction from ([0, 1]2, PQΦ2

) into itself, where PQΦ2
is the partial quasi-metric in-

duced by the aggregation of the family of partial quasi-metric spaces {([0, 1], pqi)}i=1,2

through Φ2. Indeed, PQΦ2
(F (0, 0), F (0, 0)) = PQΦ2

((0, 0), (0, 0)) = Φ2(0, 0) = 1
2 .

Therefore does not exist c ∈ [0, 1[ such that

PQΦ2
(F (0, 0), F (0, 0)) ≤ cPQΦ2

((0, 0), (0, 0)).

In the next example we show that the hypothesis “cΦ(1, . . . , 1) < 1” cannot be
also deleted in the statement of Theorem 3.8 in order to warranty that a projective
Φ-contraction is also a contraction from (X,PQΦ) into itself.

Example 3.10. Consider again the collection of complete partial quasi-metric spaces
([0, 1], pqi)i=1,2 introduced in Example 3.9. Define the function Φ+ : R2

+ −→ R+

by Φ+(x) = x1 + x2 for all x ∈ R2
+. Obviously the function Φ+ is an ho-

mogeneous partial quasi-metric aggregation function and, thus, Φ satisfies PQA2.
Moreover, Φ+(1, 1) = 2. Consider the mapping F : [0, 1]2 −→ [0, 1]2 defined
by F (x) = (x1+x2

2 , x1+x2

2 ) for all x ∈ [0, 1]2. Then we have pmax(Fi(x), Fi(y)) =
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pmax(x1+x2

2 , y1+y2
2 ) ≤ 1

2Φ+(pmax(x1, y1), pmax(x2, y2)) for all x, y ∈ [0, 1]2 and for

i = 1, 2. So, F is a projective Φ+-contraction with contractive constants c1 = c2 = 1
2 .

Moreover 1
2Φ+(1, 1) = 1.

Nevertheless, F is not a contraction from the partial quasi-metric space
([0, 1]2, PQΦ+

) into itself, where PQΦ+
is the partial quasi-metric induced by the

aggregation of the family of partial quasi-metric spaces {([0, 1], pqi)}i=1,2 through
Φ+. Indeed, take x, y ∈ [0, 1]2 given by x = (0, 0) and y = (1, 1). Then there does
not exist c ∈ [0, 1[ such that PQΦ+

(F (0, 0), F (1, 1)) ≤ cPQΦ+
((0, 0), (1, 1)), since

PQΦ+
(F (0, 0), F (1, 1)) = PQΦ+

((0, 0), (1, 1)) = 2.

From Theorem 3.8 we obtain the next result.

Corollary 3.11. Let {(Xi, pqi)}ni=1 be a family of arbitrary partial quasi-metric spaces

and X =

n∏
i=1

Xi. If Φ is an homogeneus partial quasi-metric aggregation function and

F is a Φ-projective contraction with contractive constants c1, . . . , cn ∈ [0, 1] such that
cΦ(1, . . . , 1) < 1 with c = max{c1, . . . , cn}, then F is a contraction from the partial
quasi-metric space (X,PQΦ) into itself, where PQΦ is the partial quasi-metric induced
by aggregation of the family of partial quasi-metric spaces {(Xi, pqi)}ni=1 through Φ.

The existence and uniqueness of fixed point for Φ-projective contractions is provided
by the next result.

Theorem 3.12. Let {(Xi, pqi)}ni=1 be a family of arbitrary 0-complete partial quasi-

metric spaces and X =

n∏
i=1

Xi. If Φ is a partial quasi-metric aggregation function

which belongs to PQA and F is a projective Φ-contraction with contractive con-
stants c1, . . . , cn ∈ [0, 1] such that cΦ(1, . . . , 1) < 1 with c = max{c1, . . . , cn}, then
F has a unique fixed point x0. Moreover, PQΦ(x0, x0) = 0 and, for each x ∈ X,
limn→∞ F

n(x) = x0 in (X,PQΦ), where PQΦ is the partial quasi-metric induced by
the aggregation of the family of partial quasi-metric spaces {(Xi, pqi)}ni=1 through Φ.

Proof. On the one hand, Φ and F satisfy conditions in Theorem 3.8 and so, such a the-
orem guarantees that F is a contraction from the partial quasi-metric space (X,PQΦ)
into itself. On the other hand, {(Xi, pqi)}ni=1 is a family of arbitrary 0-complete par-
tial quasi-metric spaces and Φ belongs to PQA. Then, by Lemma 3.6, we have that
(X,PQΦ) is 0-complete. Thus, Theorem 3.3 provides the existence and uniqueness of
fixed point x0 ∈ X for F such that, PQΦ(x0, x0) = 0 and limn→∞ F

n(x) = x0 in
(X,PQΦ), for each x ∈ X.

Notice that in the above fixed point result the collection of partial quasi-metrics
{(Xi, pqi)}ni=1 can be mixed, that is, it can be formed by a subcollection of partial
metrics {(Xi, pi)}ki=1, a subcollection of (quasi-)metrics {(Xi, qi)}mi=k and a subcollec-
tion of partial quasi-metrics {(Xi, pqi)}ni=m which are neither a partial metric nor a
quasi-metric. In addition, we want to point out that every partial quasi-metric aggre-
gation function belonging to PQA is also amenable and, thus, it is a (quasi-)metric
aggregation function. So Theorem 3.8 retrieves the fixed point theorems, when the
contractive constants belongs to [0, 1[, for projective Φ-contractions given in the frame-
work of partial metric spaces and quasi-metric spaces in Alghamdi et al. (2015) and
Mart́ın et al. (2013), respectively.
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We end the paper with an example that shows that there are contractions from the
partial quasi-metric space (X,PQΦ) into itself which are not projective Φ-contraction
even when the partial quasi-metric aggregation function Φ is in the PQA class. This
last fact shows that Theorem 3.12 is not a direct consequence of Theorem 3.3.

Example 3.13. Consider, one more time, the collection of complete partial quasi-
metric spaces ([0, 1], pqi)i=1,2 introduced in Example 3.9. Define the function Φ 1

2
:

R2
+ −→ R+ by Φ 1

2
(x) = x1+x2

2 for all x ∈ R2
+. Clearly Φ 1

2
is an homogeneous partial

quasi-metric aggregation function and, thus, it belongs to the PQA class. Consider
the mapping F : [0, 1]2 −→ [0, 1]2 defined by F (x) = (x1+x2

2 , 0) for all x ∈ [0, 1]2. Then

one can verify easily that PQΦ 1
2

(F (x), F (y)) ≤ 1
2PQΦ 1

2

(x, y) for all x, y ∈ [0, 1]2,

where PQΦ 1
2

is the partial quasi-metric induced by the aggregation of the family

{([0, 1], pi)}i=1,2 through Φ 1

2
. Then F is a contraction from the partial quasi-metric

space ([0, 1]2, PQΦ 1
2

) into itself. However, F is not a projective Φ 1

2
-contraction. Indeed,

take x, y ∈ [0, 1]2 such that x = (0, 0) and y = (1, 1). Hence pmax(F1(x), F1(y)) =
pmax(0, 1) = 1 and pmax(x1, y1) = pmax(x2, y2) = pmax(1, 0) = 1. Consequently there
does not exist c ∈ [0, 1[ such that

pmax(F1(x), F1(y)) ≤ cΦ 1

2
(pmax(x1, y1), pmax(x2, y2)),

since Φ 1

2
(pmax(x1, y1), pmax(x2, y2)) = Φ 1

2
(1, 1) = 1.

4. Conclusions

We have characterized those functions that merge a collection of partial quasi-metrics
into a new one and, in addition, we have given a few relationships between this kind
of functions and those that merge (quasi-)metrics and partial metrics. Moreover, a
general fixed point result for contractions obtained through aggregation functions has
also been provided.
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Miñana, J.J. and Valero, O. 2018. “What is the aggregation of a partial metric and a quasi-
metric?” In Proc. of Information Processing and Management of Uncertainty in Knowledge-
Based Systems. Theory and Foundations. IPMU 2018. Communications in Computer and
Information Science, edited by Medina J. et al., 231–243. Cádiz: Springer.
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