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Abstract: Recognizing facial expressions has been a persistent goal in the scientific community. Since
the rise of artificial intelligence, convolutional neural networks (CNN) have become popular to
recognize facial expressions, as images can be directly used as input. Current CNN models can
achieve high recognition rates, but they give no clue about their reasoning process. Explainable
artificial intelligence (XAI) has been developed as a means to help to interpret the results obtained
by machine learning models. When dealing with images, one of the most-used XAI techniques is
LIME. LIME highlights the areas of the image that contribute to a classification. As an alternative
to LIME, the CEM method appeared, providing explanations in a way that is natural for human
classification: besides highlighting what is sufficient to justify a classification, it also identifies what
should be absent to maintain it and to distinguish it from another classification. This study presents
the results of comparing LIME and CEM applied over complex images such as facial expression
images. While CEM could be used to explain the results on images described with a reduced number
of features, LIME would be the method of choice when dealing with images described with a huge
number of features.

Keywords: facial expression recognition; emotion recognition; UIBVFED; machine learning; convolu-
tional neural networks; XAI; LIME; CEM

1. Introduction

To recognize facial expressions has been a persistent goal in the scientific image
analysis community, as it is highly related to the observable representation of human
emotions. Emotions are a means to understand human states through the huge amount of
information they provide. Therefore, this information should be recognized to be used to
improve the design of modern intelligent devices in order to increase their personalization
and engagement.

Traditionally, since the rise of artificial intelligence, deep neural networks have the
focus of the scientific community when dealing with the goal of recognizing facial expres-
sions, specifically convolutional neural networks (CNN), as they allow images to be directly
used as input. Although current CNN models can achieve high recognition rates, they
give no clue about the nature of the process they follow to identify an expression. To gain
confidence, there is an increasing need to be able to identify which factors are taken into
account when a neural network outputs a result.

To try to explain the results obtained by intelligent systems has been a recurrent
concern over the years. Late in the past century, symbolic reasoning systems such as
MYCIN [1], GUIDON [2], SOPHIE [3], and PROTOS [4] were investigated to present,
justify, and explain diagnostic reasoning. Developed in the early 1970s as a research
prototype for diagnosing bacteremic bloodstream infections, MYCIN was able to describe
hand-coded rules that aided in the diagnosis of specific cases. Research on intelligent
learning systems has led to the development of systems that act as articulated experts,
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explaining problem-solving strategies to students. Some examples are SOPHIE, which
was able to qualitatively justify solutions to electronic problems, and GUIDON, which
added tutorial rules to complement the MYCIN domain-level rules to help explain medical
diagnostic strategies.

Truth preservation systems were also developed to extend the capabilities of causal,
rule-based, and logic-based inference systems, working with reasoning from conclusion
to hypothesis by manipulating rules to provide an explanation. Such systems were able
to generate explanations from inference traces. Expert clinical researchers created neural
network-based decision supports for clinicians, attempting to develop dynamic expla-
nations in which these techniques could increase the trustworthiness and credibility of
patients.

As a result of these techniques and the rise of artificial intelligence in society, many
academics and organizations began developing tools to help identify bias in systems. In
2010, due to the generalized use of artificial intelligence, great concerns arose about the
search for a more transparent intelligence free of racial bias and gender discrimination.
Marvin Minsky [5] addressed the need to use a humanistic intelligence for AI in order to
achieve a much fairer intelligence.

Concerning neural networks, methods such as LRP [6] stand out. It searches an
input vector for the characteristics that most influence the output of the neural network.
Other well-known methods to explain the classification provided by a neural network are
SHAP [7], permutation feature importance [8], ALE [9], GIRP [10], LIME [11], CEM [12]
and anchor [13] methods.

All of these techniques have been referred to by the term XAI, which stands for
explainable artificial intelligence [7,11]. XAI techniques have been introduced as a means to
help to interpret the results and to rationally explain the decisions in order to evaluate the
strengths and weaknesses of the model under study [14]. Of the aforementioned methods,
SHAP uses the Shapley value to interpret the learning model and can be used on any
predictive model. Its clear advantage is that it is straightforward to interpret, but in its pure
form, it quickly becomes computationally expensive. Permutation feature importance, ALE
and GIRP can only be applied globally, and cannot be used to explain specific predictions.
Anchor has the drawback that when the number of feature predicates increases, the ability
to explain more observations (coverage) highly decreases.

In the case of models dealing with images, one of the most-used XAI techniques
in the human-computer interaction field is LIME [15]. LIME highlights the areas of the
image that contribute to a classification. Recently, as an alternative to LIME, the contrastive
explanation method (CEM) appeared, providing explanations in a way that is natural for
human classification: besides highlighting what is sufficient to justify a classification, it
also identifies what should be absent to maintain it and to distinguish it from another one.
Therefore, in this work, we will focus on the analysis of LIME and CEM.

Although there have been attempts in the recent literature to compare the explanations
obtained from different systems [16] and in different fields, such as in the context of decision
support in diabetes self-management [17], we think that a close comparison of these two
methods when working with complex images such as facial expressions could be useful for
the scientific community as an aid to choose between these two XAI techniques in similar
scenarios.

We first train a simple CNN model that recognizes emotions from images of facial
expressions , and then we try to understand the behavior of our black-box model applying
LIME and CEM over some of the predictions obtained. The main goal of this work is
comparing the explanations provided by the two XAI techniques in the case study of
images described with a huge number of features. Therefore, as a final step, we analyze and
discuss the results regarding the pros and cons of each of these XAI methods when dealing
with complex images such as facial expressions. The contribution of this work is not the
trained CNN model but the understanding off how the two XAI techniques’ explanations
contribute to the human comprehension of the generated predictions.
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2. Materials and Methods

This section contains detailed description of data, data pre-processing, and the proce-
dure followed.

2.1. Data Description: The UIBVFED Dataset

Our CNN model was trained on the UIBVFED dataset [18]. UIBVFED is a database
made up of 20 synthetic avatars (10 men and 10 women, aged between 20 and 80, from
different ethnicities) performing 32 facial expressions. The expressions are classified based
on the six universal emotions according to the Gary Faigin classification (anger, disgust,
fear, joy, sadness, and surprise) [19], plus a neutral emotion (see Table 1). The dataset is
composed of 660 facial images from 20 virtual characters, each creating 32 facial expressions,
plus a neutral expression. Table 2 shows the number of images per emotion.

Table 1. Emotions associated with each facial expression according to Gary Faigin classification.

Emotion Facial Expression

Neutral Neutral

Anger Enraged compressed lips, enraged shouting, mad, sternness, anger

Disgust Disdain, disgust, physical repulsion

Fear Afraid, terror, very frightened, worried

Joy
False laughter 1, false smile, smiling closed mouth, smiling open-mouthed, stifled
smile, laughter, uproarious laughter, false laughter 2, abashed smile, eager smile,

ingratiating smile, sly smile, melancholy smile, debauched smile

Sadness Crying closed mouth, crying open-mouthed, miserable, nearly crying, sad,
suppressed sadness

Surprise Surprise

Table 2. Number of images per emotion of UIBVFED database.

Anger Disgust Fear Joy Neutral Sadness Surprise

Nº of
images 80 60 80 280 20 120 20

The images of the UIBVFED dataset were generated according to the Facial Action
Coding System (FACS) [20]. To generate the facial expressions, the deformations applied to
the avatars corresponded to the action units (AUs) associated with each expression (more
detailed information can be found in Mascaró Oliver and Amengual Alcover [18]). Hence,
it was assured that the automatic labelling of the images was objective.

Moreover, the use of synthetic datasets has proved to be a good substitution for
real-image datasets, as they obtain recognition rates similar to the real ones [21,22].

2.2. The Convolutional Neural Network

In this work, we used a convolutional neural network that obtains a grayscale image
with a resolution of 128 × 128. The network applies three combinations of convolution,
ReLu and max-pooling, and ends with two fully-connected layers. The convolutional layers
extract characteristic treats of the image, the ReLu layer applies a max activation function,
and the last fully connected layer computes the class scores resulting in one of our seven
emotion classes. Zero padding and a stride of one pixel were used in the CNN. To reduce
overfitting, we used a dropout layer between the two dense layers of our model. The CNN
follows the scheme shown in Figure 1.
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Figure 1. The convolutional neural network.

2.3. Data Pre-Processing

The pre-processing steps include the cropping of the face to reduce the influence of
the background in the learning process, the conversion of the image to grayscale, and its
resizing to fit the 128 × 128 pixel size of the input data in the CNN.

2.4. Procedure

After completing the pre-processing step over all the images of the UIBVFED dataset,
we prepared the training and testing datasets. For the training dataset, we collected 80% of
the data, and we took the remaining 20% for the testing dataset: to prevent information
leakage, the dataset was split by selecting a random set of 16 avatars to construct the
training dataset, leaving the remaining 4 characters for testing. Both datasets contained a
class distribution that was representative of the complete UIBVFED dataset (see Table 3).

Table 3. Class distribution of the UIBVFED, training and testing datasets.

Dataset Anger Disgust Fear Joy Neutral Sadness Surprise Total

UIBVFED 80 60 80 280 20 120 20 660
Training 64 48 64 224 16 96 16 528
Testing 16 12 16 56 4 24 4 132
Proportion 0.12 0.09 0.12 0.42 0.03 0.18 0.03 1

We trained the previously described CNN model with the training dataset. Then, the
model was tested with the testing dataset, and the evaluation metrics in terms of global
accuracy and a confusion matrix were computed.

As a final step, and to try to obtain an explanation of the model’s outcome, we applied
two XAI approaches over the predictions: LIME and CEM.

2.5. XAI Approach

The output of a neural network is the result of applying complex mathematical de-
cisions. This level of mathematical abstraction can diminish the user’s confidence in the
decisions of a particular model. This means that although our model may obtain the correct
decision, we cannot really assert with certainty its validity, as we have no clue of the process
behind the model’s reasoning. Explainable artificial intelligence (XAI) tries to fulfil this
gap, somehow interpreting the decision-making process of a given artificial intelligence
(AI) model. Two of the more famous XAI techniques when dealing with images are LIME
and CEM. We will use both of them to see how they perform in our recognition model.

2.5.1. LIME

The local interpretable model-agnostic explanations (LIME) [11] is one of the most
popular and commonly used XAI methods due to its simplicity and intuitiveness. It is
agnostic because it can explain any model, treating it as a black box.

LIME depicts the main parts of the input that contribute to the prediction using a
simple approach: it perturbs the inputs of the model and observes how the new predictions
behave, and then, it learns how the model works using a linear model through the weighting
of the perturbations. The obtained explanation is not globally valid, but it is accurate locally
around the perturbed inputs. To explain an image classifier, LIME highlights the super-
pixels, or collection of pixels that covers a connected area of the image (see Figure 2),
which most justify the election of a given class. The super-pixels should correspond to
specific patterns of the image, but normally, the user can only specify the resolution of
the considered areas. This poses an additional difficulty, as significant features may lay in
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different super-pixels. However, we may have some kind of control if we know the relative
size of the affected areas, as we can adjust the number of super-pixels and thus its size.

Nº super-pixels = 25 Nº super-pixels = 50

Figure 2. Example of the configuration of the number of super-pixels to segment into.

In this study, we used the number of super-pixels of 50. In Figure 3, we can observed
the areas in which our facial expression images are divided with that configuration of
super-pixels.

Figure 3. A facial expression image of the UIBVFED dataset showing the areas divided by super-pixels
(nº super-pixels = 50).

2.5.2. CEM

The contrastive explanation method (CEM) [12] is an XAI system that tries to go
beyond the correlations of input variables with the output, as LIME does. It works with
the minimum and sufficient characteristics capable of justifying a solution (referred to as
pertinent positives or PP), and the minimum characteristics that can change the result if
they are present in the image (referred to as the pertinent negatives or PN). This way of
working by locating missing or present features is totally cognitive and very similar to how
the human brain performs to recognize and identify objects.

CEM has been traditionally validated in the literature for the MNIST dataset [12]. For
instance, applying CEM to the MNIST dataset (see Figure 4), the explanations obtained for
an image of the number four (see Figure 5) were shown in the pertinent positives for the
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characteristics that have to be present to compose the silhouette of the number four: one
vertical small arm at the left side and one vertical long arm on the right side joined by a
horizontal line. The pertinent negatives showed characteristics that, when added to the
original image, would change the image to be the number 9: a path that joins the upper
side of the left small arm with the upper side of the right long arm.

Figure 4. Sample images of the MNIST dataset. The MNIST dataset [23] is a large database of
handwritten digits that is commonly used for training machine learning models, and it is composed
of black and white images containing simple patterns.

Original Pertinent Positives Pertinent Negatives

Prediction 4 4 9

Figure 5. Results of applying CEM to one image of the number four in the MNIST dataset.

3. Results and Discussion

The convolutional neural network, when tested, had a global accuracy of 0.88, and the
resulting class classification is enumerated in Figure 6. Joy, anger and fear obtained the best
results (ranging from 88% to 100%), whereas the worst-identified emotion was neutral (0%).
It is also interesting to review the information of the most misleading emotions: neutral
was confused with sadness in 75% of the images, and surprise was confused with fear in
50% of the cases.
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Figure 6. Confusion matrix of the emotions’ classification performed by the CNN model (darker
colors correspond to higher accuracy).

3.1. Understanding the Behavior of the Model with LIME

To try to understand the behaviour of the model, we first applied LIME to obtain an
explanation for some of the predictions generated by the model.

In Figure 7, the results of applying LIME to the predictions of the two images cor-
rectly labelled as the surprised emotion can be observed. In both cases, the super-pixels
highlighted of the images coincide with the area of the mouth, and they depicted an open
mouth with an oval shape and without any muscle tension (corresponding to the action
units AU25—lips part and AU26—jaw drop).

Figure 7. Results of applying LIME to the images of surprise correctly labelled as the emotion of
surprise.

In accordance with Faigin [19], facial expression recognition depends on the role of
the face muscles. In his work, the author focuses on the action of muscles in three key areas
of the face: (1) the forehead and brows, (2) the eyes, and (3) the mouth and chin. The facial
features of the mouth highlighted in Figure 7 are in line with the facial features of the facial



Sensors 2023, 23, 131 8 of 13

expression associated with the emotion of surprise in the Gary Faigin work (see first row in
Table 4).

Table 4. Summary of the main facial features of the facial expressions associated with the emo-
tions of suprise and fear extracted from Faigin conclusions (more detailed information can be
found in Faigin [19]) and their corresponding action units (AUs).

Emotion Facial
Expression Eyebrows Action Units Eye Action Units Mouth Action Units

Surprise Surprise Highly raised
or relaxed

AU1—inner
brow raiser,
AU2—outer
brow raiser

Widely
opened with

lower lid
relaxed

AU5—upper
lid raiser

Dropped
open. Oval in

shape

AU25—lips
part,

AU26—jaw
drop

Fear Terror
Lifted up,

more straight
than arched

AU1—inner
brow raiser,
AU2—outer
brow raiser

Widely
opened with
raised lower

lid

AU5—upper
lid raiser,

AU6—cheek
raiser,

AU7—lid
tightener

Opened and
widened

AU11—
nasolabial
deepener,

AU25—lips
part,

AU26—jaw
drop

Fear Very
frightened

Lifted up,
more straight
than arched

AU1—inner
brow raiser,
AU2—outer
brow raiser

Very widely
opened

AU5—upper
lid raiser

Opened and
widened

AU11—
nasolabial
deepener,

AU25—lips
part,

AU26—jaw
drop

Fear Afraid
Lifted up,

more straight
than arched

AU1—inner
brow raiser,
AU2—outer
brow raiser

Not opened
much wider
than usual

AU5—upper
lid raiser

Slightly
dropped open

AU22—lip
funneler

Fear Worried
Lifted up,

more straight
than arched

AU1—inner
brow raiser,
AU2—outer
brow raiser

Not widened AU5—upper
lid raiser

Squeezed
tight

AU15—lip
corner

depressor,
AU17—chin

raiser,
AU18—lip
puckerer

In Figure 8, we can observe the results of applying LIME to the predictions of two
images correctly labelled as the fear emotion. In both cases, the super-pixels highlighted on
the images correspond to the areas of the mouth and the eyebrows. They depict an open and
widened mouth (corresponding to the action units AU25—lips part and AU26—jaw drop)
with the eyebrows lifted straight up and pulled closed together (corresponding to the action
units AU1—inner brow raiser and AU2—outer brow raiser in the left image and to the
action unit AU2—outer brow raiser in the right image). In the left image (corresponding to
the facial expression very frightened), we can see the super-pixels highlighted that correspond
to the action unit AU5—upper lid raiser, and, in the right image (corresponding to the
facial expression terror ), we can see the super-pixels highlighted that correspond to the
action units AU6—cheek raiser and AU7—lid tightener. All of these facial features are in
line with the facial features expected for those facial expressions in the Gary Faigin work
(see the second and third rows in Table 4).
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Figure 8. Results of applying LIME to images of fear correctly labelled as the emotion of fear. The left
one corresponds to the facial expression very frightened, and the right one corresponds to the facial
expression terror.

In Figure 9, we can observe the results of applying LIME to the predictions of two
images of the facial expression associated with the emotion of surprise incorrectly labelled
as fear. As expected, the super-pixels highlighted in the images correspond to the areas of
the mouth and the eyes and eyebrows. They depicted an open mouth (corresponding to
the action units AU25—lips part and AU26—jaw drop) and open eyes with the eyebrows
straight up (corresponding to the action units AU1—inner brow raiser, AU2—outer brow
raiser and AU5—upper lid raiser. These facial features corresponding to the facial expres-
sion associated with the emotion of surprise (the correct emotion) are also present in the
facial expressions of terror and very frightened, associated with the emotion of fear (the
incorrect prediction returned by the model). Hence, according to the explanation provided
by LIME, the results returned by the model could be coherent with the information that it
extracted from the images.

Figure 9. Results of applying LIME to the images of surprise incorrectly labelled as the emotion
of fear.

These last explanations are also coherent with Gary Faigin’s work: in accordance
with Faigin [19], there are facial expressions that share facial features or very similar
facial features; therefore, there exist facial expressions that could be easily misled, and
consequently, their associated emotions could also be misled. Table 5 details the similar
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facial expressions (and, consequently, the similar emotions associated) to the emotions of
surprise and fear, according to their facial features.

Table 5. Similar facial expressions associated with the emotions of surprise and fear, according to
their facial features (more detailed information can be found in Faigin [19]).

Emotion Facial Expression Similar to

Surprise Surprise Fear

Fear Terror Surprise

Fear Very frightened Surprise

Fear Afraid Sadness

Fear Worried Suppressed sadness

As a summary of the application of LIME over the predictions of our model to classify
facial expression images into emotions, observing the explanations provided by LIME, it is
feasible to understand why the model returns a prediction. Specifically, it can be inferred
that the model focuses on the regions of the images corresponding to the areas where the
facial features of the facial expressions occur to classify an image: the areas of the mouth,
eyes and eyebrows. Furthermore, we have also been able to prove that the behaviour of
our model is coherent with the theory of Faigin with the correct classifications and also
with the misled classifications.

3.2. Understanding the Behavior of the Model with CEM

When we apply the contrastive explanation method (CEM) to the same dataset using
as input a grayscale image (see Figure 10a), we obtain as output the images corresponding
to both the pertinent positives, i.e., the minimal set of features that lead to a given prediction
P (see Figure 10c), and the pertinent negatives, i.e., the minimal set of features that should
be absent to maintain a decision P instead of changing the decision to a closest class Q (see
Figure 10b).

The first row in Figure 10 shows the explanation obtained by the CEM method with
an input image corresponding to a surprise emotion, predicted as surprise by pertinent
positives and as fear by pertinent negatives. The second row in Figure 10 shows the
explanation obtained with an input image corresponding to the emotion of anger, predicted
as anger by pertinent positives and as sadness by pertinent negatives. Finally, the third row
in Figure 10 shows the explanation for an input image corresponding to sadness, predicted
as sadness by pertinent positives and as fear by pertinent negatives. As we can see, in all
the results, the pertinent negatives somehow show areas that could help in understanding
the prediction, but they are not even close to how the LIME method shows it. The pertinent
positives, composed mainly of isolated pixels, give no clear clues regarding the explanation.

In the generated explanations with CEM, we can see that the results, unlike what
happens in LIME, are not very intuitive. The pertinent negatives might give us insight into
which areas of the input image are most influential to induce change in the classification of
the input image, but the explanations obtained through the pertinent positives are difficult
to interpret as they are related to the pixel level, and no homogeneous connected areas
can be really perceived. LIME uses super-pixels (areas of connected pixels) to divide the
original image and extracts its conclusions based on how these super-pixels influence the
results. However, CEM uses individual pixels that do not need to be related to a specific
region of the image, and this does not help human comprehension.
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(a) (b) (c)

Figure 10. Results of applying CEM to a grayscale input image (a) showing the (b) explanation of the
pertinent negatives and the (c) explanation of the pertinent positives.

4. Conclusions

The recognition of facial expressions is a topic frequently addressed in the field of
human–computer interactions since the emotions conveyed through expressions provide a
huge amount of information. Traditionally, convolutional neural networks (CNN) have
been one of the most-used computational learning systems to recognize and analyze human
expression, as images can be directly used as input to the training process. Although current
CNN models can achieve high recognition rates, as black-box models, they give no clue
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regarding the nature of the process they follow to identify an expression, leading to trust
issues on the predictions returned by the models. Explainable artificial intelligence (XAI)
has been developed as a means to help interpret the results obtained by models.

In this work, we have compared LIME and CEM to provide explanations for the case
study of images of facial expressions . For this purpose, we have used the UIBVFED dataset,
which contains facial expressions of virtual avatars of different ages, sexes and ethnicities.

Results show evidence that, in this case study, while LIME generates explanations
that can be easily understandable by human beings and that follow the guidelines extracted
from the Faigin studies, CEM does not provide satisfactory answers in this regard. Probably,
the huge amount of characteristics present in the images limit the effectiveness of CEM,
which shows much more convincing results with images of lower complexity, such as the
images of the MNIST dataset. In fact, in the examples that we have used, the explanations
resulting from the CEM method do not facilitate human understanding.

A plausible explanation would be that whilst LIME uses super-pixels to divide the
original image and extracts its conclusions based on how these super-pixels influence the
results, CEM uses individual pixels that do not need to be related to a specific region of the
image, and this does not help human comprehension.

To conclude, in a scenario where we must choose between LIME and CEM, we
propose the use of LIME to understand the predictions in the case of dealing with complex
images (with huge amount of characteristics) such as facial expression images, as the
organization of the image in super-pixels could assist the inference of meaning to the
clustered features. On the other hand, CEM could be used to explain the results on images
that can be described with a reduced number of features, which also provide valuable
information through the pertinent negatives.
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