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Abstract

Abstract of the thesis
Reservoir computing (RC) is a machine learning paradigm that exploits dy-

namical systems to solve temporal tasks. This technique finds applications in
very diverse fields such as weather forecasting, stock market predictions, and
communications. Similar to other unconventional computing paradigms inspired
by the capabilities of the human brain, RC deals with hardware implementa-
tions that aim at overcoming the challenges confronted by digital computation.
These challenges include the reduction of the energy budget of digital computa-
tion and the speedup of machine learning algorithms. This thesis explores the
emerging field of quantum RC. We studied, either by analytical or numerical
methods, which are the requirements of complex quantum systems to perform
as useful reservoirs, with special attention to quantum spin models. Useful reser-
voir systems will be defined as those that meet the fundamental requirements
that ensure a minimum level of performance from the reservoir. Our main find-
ings are the identification of the dynamical features and input injection favoring
quantum reservoirs, and the theoretical conditions for useful reservoirs. In par-
ticular, computational capabilities and input response of reservoirs displaying
many-body localization are totally degraded by the presence of local integrals
of motion while in thermal phases (or at the edge of transition) the operation is
optimal. These computational capabilities are characterized by means of the in-
formation processing capacity, obtained for the first time for quantum reservoirs,
and other benchmark tools such as the short-term memory and nonlinear autore-
gressive moving average tasks. Characterization of the performance through all
these tools allows one to assess the linear and nonlinear contributions of a specific
reservoir. Moreover, the input codification mechanism determines the nonlinear
response of the reservoir together with the dynamical regime and the election of
observable. We demonstrate this relation by showing explicit analytical formulas
of the input-output map of the studied reservoir models. Beyond ideal condi-
tions, we explore how all these factors can be affected by the implementation of a
quantum reservoir computing experiment with an online protocol, where the ex-
traction of information through measurements is accounted for. Weak measure-
ments are introduced as a possible route to achieve a competitive performance
for online temporal processing while keeping a high control over the required ex-
perimental resources. Finally, on a theoretical general side, all finite-dimensional
quantum reservoir computing models with classical inputs must fulfill the fol-
lowing condition to be, at least, operational: convergent dynamics towards input-
dependent fixed points.
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Resumen de la tesis
La computación de reservorio (CR) es un paradigma de aprendizaje automático

que explota los sistemas dinámicos para resolver tareas temporales. Esta técnica
encuentra aplicaciones en campos muy diversos, como la previsión meteorológ-
ica, las predicciones bursátiles y las comunicaciones. Al igual que otros paradig-
mas computacionales no convencionales inspirados en las capacidades del cere-
bro humano, la CR se ocupa de implementaciones de hardware que pretenden
superar los retos a los que se enfrenta la computación digital. Estos retos incluyen
la reducción del gasto energético de la computación digital y la aceleración de los
algoritmos de aprendizaje automático. Esta tesis explora el emergente campo del
CR cuántico. Aquí estudiamos mediante métodos analíticos o numéricos cuáles
son los requisitos de los sistemas cuánticos complejos para funcionar como reser-
vorios útiles, con especial atención a los modelos cuánticos de espín. Los sis-
temas reservorios útiles se definirán como aquellos que cumplen los requisitos
fundamentales que aseguran un nivel mínimo de rendimiento del reservorio.
Nuestros principales hallazgos son la identificación de las características dinámi-
cas y de la inyección de entrada que favorecen a los reservorios cuánticos, y las
condiciones teóricas para definir reservorios útiles. En particular, las capacidades
computacionales y la respuesta a la información de entrada de los reservorios
que muestran localización están totalmente degradadas por la presencia de in-
tegrales locales de movimiento, mientras que en fases térmicas (o al borde de la
transición) el funcionamiento es óptimo. Estas capacidades computacionales se
pueden caracterizar mediante la medida de la capacidad de procesamiento de
la información, obtenida por primera vez para los reservorios cuánticos, y otras
herramientas de referencia como las tareas de memoria a corto plazo y de media
móvil autorregresiva no lineal. La caracterización del rendimiento mediante to-
das estas herramientas permite evaluar las contribuciones lineales y no lineales
de un reservorio específico. Además, hemos identificado que el mecanismo de
codificación de la entrada determina la respuesta no lineal del reservorio junto
con el régimen dinámico y la elección del observable. Demostramos esta relación
mostrando fórmulas analíticas explícitas del mapa entrada-salida de los modelos
de reservorio estudiados. Más allá de las condiciones ideales, exploramos cómo
todos estos factores pueden verse afectados por la implementación de un experi-
mento de computación de reservorio cuántico con un protocolo en línea, donde la
extracción de información mediante mediciones se tiene en cuenta. Las medidas
débiles se presentan como una posible vía para lograr un rendimiento competi-
tivo para el procesamiento temporal en línea, manteniendo al mismo tiempo un
alto control sobre los recursos experimentales necesarios. Por último, desde un
punto de vista teórico general, todos los modelos de computación de reservo-
rio cuántico de dimensión finita con entradas clásicas deben cumplir la siguiente
condición para ser, al menos, operativos: dinámica convergente hacia puntos fijos
dependientes de la entrada.
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Resum de la tesi
La computació de reservori (CR) és un paradigma d’aprenentatge automàtic

que explota els sistemes dinàmics per resoldre tasques temporals. Aquesta tèc-
nica troba aplicacions en camps molt diversos, com la previsió meteorològica,
les prediccions borsàries i les comunicacions. Com altres paradigmes computa-
cionals no convencionals inspirats en les capacitats del cervell humà, la CR s’ocupa
d’implementacions de hardware que pretenen superar els reptes a què s’enfronta
la computació digital. Aquests reptes inclouen la reducció de la despesa en-
ergètica de la computació digital i l’acceleració dels algorismes d’aprenentatge
automàtic. Aquesta tesi explora el camp emergent del CR quàntic. Aquí es-
tudiem mitjançant mètodes analítics o numèrics quins són els requisits dels sis-
temes quàntics complexos per funcionar com reservoris útils, amb una atenció
especial als models quàntics d’espín. Els sistemes reservoris útils es definiran
com aquells que compleixen els requisits fonamentals que asseguren un nivell
mínim de rendiment del reservori. Les nostres principals troballes són la iden-
tificació de les característiques dinàmiques i de la injecció d’entrada que afavor-
eixen els reservoris quàntics i de les condicions teòriques per definir reservoris
útils. En particular, les capacitats computacionals i la resposta d’entrada dels
reservoris que mostren localització estan totalment degradades per la presència
d’integrals locals de moviment, mentre que en fases tèrmiques (o vora la tran-
sició) el funcionament és òptim. Aquestes capacitats computacionals es carac-
teritzen mitjançant la capacitat de processament de la informació, obtinguda per
primera vegada per als reservoris quàntics, i altres eines de referència com les
tasques de memòria a curt termini i de mitjana mòbil autoregressiva no lineal. La
caracterització del rendiment mitjançant totes aquestes eines permet avaluar les
contribucions lineals i no lineals d’un reservori específic. A més, el mecanisme de
codificació de l’entrada determina la resposta no lineal del reservori juntament
amb el règim dinàmic i l’elecció de l’observable. Demostrem aquesta relació
mostrant fórmules analítiques explícites del mapa entrada-sortida dels models
de reservori estudiats. Més enllà de les condicions ideals, explorem com tots
aquests factors es poden veure afectats per la implementació d’un experiment de
computació de reservori quàntic amb un protocol en línia, on es té en compte
l’extracció d’informació mitjançant mesuraments. Les mesures febles es presen-
ten com una possible via per assolir un rendiment competitiu per al processament
temporal en línia, mantenint alhora un alt control sobre els recursos experimen-
tals necessaris. Per acabar, des d’un punt de vista teòric general, tots els models
de computació de reservori quàntic de dimensió finita amb entrades clàssiques
han de complir la condició següent per ser, almenys, operatius: dinàmica conver-
gent cap a punts fixos dependents de l’entrada.
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Chapter 1

Introduction

1.1 Context

Over the last decades, different computational visions have emerged as alterna-
tives to the conventional digital paradigm. In particular, quantum and neuromor-
phic computing are two of the leading approaches that promise to revolutionize
this field. On the one hand, quantum computation harnesses unique features
such as superposition and entanglement in view of an advantage over classical
algorithms [1]. The current development of quantum technologies has achieved
noisy intermediate-scale quantum devices [2]. These systems, composed of tens
or hundreds of noisy elements, enable us to perform imperfect operations only
for a short time, while coherences are still preserved. Even if current systems
are noisy, recent advancements like the demonstration of quantum advantage
[3–5], the development of quantum simulations [6], and quantum communica-
tions [7] demonstrate that quantum technologies are here to stay. Indeed, they
already find applications in diverse fields like physics, chemistry, and optimiza-
tion [2]. Machine learning (ML) is among these possible applications, where the
specific features of quantum mechanical systems are exploited to obtain an ad-
vantage over their classical counterparts, both with classical and quantum data
[8]. On the other hand, neuromorphic computing is a biology-inspired comput-
ing paradigm where physical substrates are designed to mimic the brain, calcu-
lating faster with low energy consumption. ML and artificial neural networks
(ANNs) have demonstrated that they are one of the main pillars of computation
nowadays [9, 10]. However, these algorithms usually run on large computing
infrastructures, separating processing and memory, slowing them down, and in-
creasing the energy consumption. Neuromorphic computing responds to these
demands and ML and ANNs benefit from this progress [11–13].

This thesis is devoted to the analysis and development of a popular neuro-
morphic computing technique in its quantum version. Quantum reservoir com-
puting (QRC), as an extension of classical reservoir computing (RC), aims to ex-
ploit quantum systems as physical substrates to solve ML tasks. The interest in
such implementations stems from the possible advantages that QRC platforms
could bring over their classical counterparts. Indeed, the number of degrees of
freedom that quantum systems possess could boost the information processing
performance. Furthermore, available experimental platforms, such as trapped-
ion simulators [14, 15], nuclear magnetic resonance (NMR) devices [16], and pho-
tonic networks [17] could allow testing this paradigm in the short-medium term.
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Finally, QRC would enable the processing of quantum data embedded in fully
quantum architectures.

1.1.1 Thesis structure

The aim of this thesis is to tackle questions related to the construction and im-
plementation of useful quantum reservoir computers. We will consider useful
reservoir systems to be those that fulfill the basic conditions that guarantee a
minimum performance from the reservoir. We will test the performance of the
quantum reservoir for selected benchmark tasks, which can be seen as a proof of
concept validation of the potential of these systems.

This thesis is based on the results of Refs. [18–23]. In Chapter 1 we introduce
the fields of classical machine learning and artificial neural networks, to later
approach the main topic of this thesis, reservoir computing, and its quantum ver-
sion. The second part of this chapter introduces the required concepts to under-
stand the context of the publications, such as a brief introduction to many-body
localization or quantum measurements. We finish the chapter with a summary
of the main contributions of this PhD work. Chapters 2 to 7 reproduce each one
of the articles that compose this thesis. Each article is preceded by a short in-
troduction where motivation and personal contributions to the paper in question
are presented. Finally, Chapter 8 summarizes the conclusions of the whole thesis,
including an outlook on the possibilities that the field of QRC offers in the next
few years.

1.2 Machine learning

There has been an unprecedented revolution in the processing of information
during the last decades. Originally, data have been a precious treasure, hard
to generate, analyze, store, and use. But the development of information and
communication technologies has created the opportunity to produce, access, and
interpret a vast amount of data, known as big data [24]. The technological de-
velopment that has allowed this expansion has been specifically carried out on
digital platforms, where data are easily stored and analyzed. From the hard-
ware point of view, digital computers have experienced an exponential increase
of computational power and memory (as indicated by Moore’s law) [25], and
specialized hardware has been developed for the demands of the big data era,
such as supercomputers or the graphical processing units (GPUs) [26]. From the
software point of view, new techniques have been developed to generate, ana-
lyze and learn from large data sets. Machine learning (ML) is halfway between a
promoter and a beneficiary of this big data revolution, becoming one of the main
research fields of our era on its own and being ubiquitous in practically any other
research field. ML can be defined as a set of techniques and algorithms to learn
from and make predictions about data, without the need for a precise set of in-
structions [27, 28]. This rather compact definition does not make justice to the
whole spectrum of problems that ML can tackle and currently solve. Just a re-
cent example: Alphafold, a deep learning algorithm developed by the company
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Deepmind, is able to predict the 3D structure that proteins will form based only
on the amino acid sequence, largely outperforming the previous methods in the
field and becoming one of the new cornerstones of bioinformatics [29].

The ML research field represents a broad family of possible implementations,
where frontiers between different techniques are becoming more and more blur-
red by emerging hybrid proposals. Still, three basic types of learning can be
distinguished depending on the problem and type of data we are dealing with.
Supervised learning is the case where we feed inputs with the corresponding
correct outputs (or labels) in order to tune the parameters of the algorithm, i.e.
to train from examples [30]. In this way, we prepare the machine to make pre-
dictions of unseen data. The most common tasks for supervised learning are
regression and classification problems. In unsupervised learning, instead, the
algorithm has to find structure and patterns in the input data without any prior
information about the output [31]. The most common example of unsupervised
learning is clustering, where inputs are gathered into different groups and data
from each group share some properties. Finally, in reinforcement learning an
agent learns by interacting with its environment while adapting its behavior to
maximize a reward [32]. In this thesis, we are interested in supervised training,
where reservoir computing has been mostly developed. We introduce next the
field of artificial neural networks, which constitutes one of the precedents of RC.

1.2.1 Artificial neural networks

Artificial neural networks (ANNs) are powerful and widely-used supervised
models. These brain-inspired techniques are able to solve a large variety of dif-
ferent problems while being only composed of two constituents: neurons and
links. The neuron is the basic unit of the ANN. Inputs are fed into it and a non-
linear function (a.k.a. activation function) processes the information to produce
an output. Neurons are connected between them by links whose weights can be
adjusted. The network is structured by layers and their connections define the
architecture of the ANN. The brain-inspired construction of ANNs allows to pro-
cess information in an unprecedented way, exploiting the correlations of different
neurons at different layers of the network. Then, the architecture of the ANNs is
so important that it mainly determines the type of problems that one can solve,
becoming its design a craft by itself [33].

A common architecture is represented by feed-forward neural networks
(FFNNs) [9, 10, 30], which provide good performance for a wide range of prob-
lems. FFNNs, as illustrated in Fig. 1.1 (a), can be defined as a series of layers
of neurons where information always flows towards the output (or forward di-
rection). The layers can be separated into three categories: input layer, hidden
layers, and output layer. The input of the problem (data to be processed) is fed
into the input layer and the information is processed at each step by a different
hidden layer until it reaches the output layer, where information is read out. The
output yl

i ∈ R of a FFNN neuron with index i at a given layer l defines a layer
vector yl = (yl

1, yl
2, . . . ). Neurons of different layers are related by:

yl
i = σ(wl

i · yl−1 + bl
i), (1.1)
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FIGURE 1.1: (a) Scheme of a feed-forward neural network (FFNN). From left
to right: input layer, where inputs are codified and might be preprocessed;
hidden layers, where neurons process information in parallel at each layer;
and output layer, where information is finally extracted. (b) Scheme of a
recurrent neural network (RNN). It follows a similar structure to the FFNN,
but in its most basic conception we only find a single hidden layer, that allows
recurrent connections between the neurons, providing memory to the system.

where σ is the activation function and yl−1 ∈ Rnl−1 is the output vector of the
previous layer, that comes as input at layer l. nl−1 is the number of neurons of
layer l − 1. The vector wl

i ∈ Rnl−1 represents the weighted connections between
all neurons of layer l − 1 and neuron i of layer l, and bl

i ∈ R is a bias term [30].
There are many options for the choice of the activation function, being the sig-
moid curve one of the most common ones, and not all neurons need to have the
same one. A sigmoid function is an increasing, differentiable, and monotonic
nonlinear function whose amplitude ranges are constrained. Two of the most
representative sigmoid functions are the hyperbolic tangent σ(x) = tanh(x) and
the logistic function σ(x) = (1 + e−x)−1, see Fig. 1.2 for an illustration.

FIGURE 1.2: Two examples of sigmoid functions.

In supervised learning approaches, a part of labeled data are used during
training, defining a target to approximate. The goal is to tune all the weights
W = {wl

j} and biases B = {bl
j} with input-output examples to obtain the clos-

est approximation to these targets. Let us define a set of nsample training samples
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{sj, ȳj}, where sj ∈ Rm and ȳj ∈ Rd are given as input and target output sam-
ples for training respectively, and y(sj) ∈ Rd will denote the corresponding final
output generated by the ANN for the same input sample. The dimension m cor-
responds to the dimension of the input and the dimension d denotes both the
dimension of the targets and the number of neurons of the last layer. In order
to characterize the performance of the setup, a cost function C(W, B) is defined
in terms of these variables to measure how good the approximation is. A usual
example is the mean square error (MSE):

C(W, B) =
1

2nsample

nsample

∑
j=1
||ȳj − y(sj)||2, (1.2)

where || · || denotes the usual euclidean norm. To find the optimal set of param-
eters W and B one must optimize C(W, B) with respect to the training sample.
We note that optimization is generally not trivial and time-consuming due to the
presence of local minima or slow convergence. Multivariate optimization is usu-
ally performed through gradient descent and its variations, such as stochastic
gradient descent (SGD) [9, 30]. SGD consists in computing the gradients over
small subsets of the total sample set, changing the subset at each iteration of the
training process. This allows us to reduce the number of computations per iter-
ation and circumvent local minima. The general approach to compute the gra-
dients is backpropagation [34], which allows us to compute the gradients with
respect to all weights and biases in an efficient way since it is entirely based on
linear algebra operations [30].

Multilayer FFNNs, commonly known as deep neural networks, find a mul-
titude of applications due to their ability to learn representations of data with
multiple levels of abstraction. To name just a few, FFNNs have been a major
breakthrough in very distinct areas like speech recognition [35], analyzing data
from particle physics [36] or content-based recommendations [37]. A particular
type of deep FFNN is convolutional neural networks (CNNs), which do not dis-
play full connectivity between adjacent layers in favor of a better trainability and
generalization capability for some specific tasks [38]. CNNs have been also a rev-
olution in areas such as image classification [39], face recognition [40] and natural
language processing [41]. Most of the current deep learning approaches mix dif-
ferent learning techniques and architectures to tackle more complex problems.
We can find striking examples like AI beating best world players in chess and Go
[42], art generation from text [43] or human-like text generation for coding [44].

In contrast to FFNNs, recurrent neural networks (RNNs) exhibit an architec-
ture that allows information to remain in the network for several input injections
[45, 46]. RNNs were designed to deal with tasks where memory is required,
i.e., tasks where the input is fed as a sequence. As shown in the schematic rep-
resentation of Fig. 1.1 (b), this memory effect is obtained by allowing recurrent
connections between the nodes of the hidden layers, that is, information can flow
back and forth between them. This creates a single hidden layer where connec-
tions represent toward which neuron information is sent at the next time step.
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The most basic dynamics of RNNs is usually described by a set of two equations:

xk = σ(Wxk−1 + Winsk + b),
yk = o(xk),

(1.3)

where xk ∈ Rn is the state of the n-neurons hidden layer at time step k, sk ∈ Rm is
the input vector of dimension m, W ∈ Rn×n is the matrix of recurrent connections,
Win ∈ Rn×m is the weight matrix between neurons and input layer and b ∈ Rn

is the bias vector. The function o reads out the neurons’ information and vector
yk ∈ Rd represents its d-dimensional output.

RNNs are very powerful ML techniques but they are also really hard to train.
The problem arises during gradient descent training and backpropagation through
time [47]. If we unfold an RNN in time, it can be seen as a very deep feedfor-
ward network in which all the layers share the same weights. Backpropagated
gradients either grow or shrink at each time step, so over long sequences, they
usually vanish or explode [48, 49], forbidding optimization. Alternatives have
been proposed to circumvent this problem. New training methods [50–52] and
different architectures, such as long short-term memories (LSTMs) [53] or gated
recurrent units [54] (GRUs), have allowed these techniques to grow over the last
years. Examples of groundbreaking applications are language translation [55,
56], text generation [57], and speech recognition [58]. As previously mentioned,
current approaches to deep learning do not employ a single basic architecture
to address complex problems. Instead, multilayer FFNNs can be combined with
other specific-purpose network architectures, such as RNNs. A representative
example of this is the application of LSTM networks for playing real-time video
games such as Starcraft II [59], where memory is required to deal with the se-
quence of observations of the AI player.

Besides the usual applications in the area of speech and text processing, RNNs
are often considered the first choice for time-series tasks. Very diverse problems
can be successfully solved in this line, such as weather forecasting [60], music
generation [61], or even reconstructing the quantum dynamics of superconduct-
ing qubits [62]. This last example is one of a long list of classical machine learning
applications to physics and in particular quantum problems, see [63–65] and ref-
erences therein for further examples.

However, conventional RNNs and their variations are not the most efficient
options for time-series processing. It has been confirmed by numerical experi-
ments that reservoir computing architectures can obtain similar or better perfor-
mance with fewer resources [66–68]. To better understand these results, the next
section introduces the reservoir computing formalism, where we will explain the
nuances of this ML technique.

1.3 Reservoir computing

1.3.1 From digital to analog computing

Most of the ML techniques have been developed for digital computers due to
their accessibility [69]: they are easy to exploit for all levels of expertise, there
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is a unified theory that is taught in all universities in the same way, and digital
computation is universal (in the sense it can emulate Turing machines). However,
digital computation also has some associated problems. In 2015, it was estimated
that 10% of the global energy consumption was due to digital computation, and it
was (and it is) increasing [70]. In particular, the computational cost of deep learn-
ing is becoming more and more economically and environmentally unsustainable
[71, 72]. On another side, miniaturization is limited by Moore’s Law due to ther-
mal and quantum fluctuations in the development of smaller microprocessors
[25]. We also find that the life of electronic hardware components is shortening,
speeding up their replacement cycles and producing a vast amount of wasted
resources every year [73]. Finally, the von Neumann Bottleneck hinders the per-
formance of digital computers. This refers to the time delay spent in transferring
data between processor and memory in platforms with a von Neumann architec-
ture [74]. In principle, there are some ways of alleviating this problem, such as
adding hierarchical memory structures inside the CPUs to cache frequently used
data. However, if one takes into account energy consumption, these options do
not constitute a long-term solution [13].

Different strategies are proposed in the literature to tackle these problems.
Here we are concerned with the alternative offered by neuromorphic computing
[69]. This non-conventional proposal is a brain-inspired computing paradigm
where computation and physical substrate go hand by hand. The main charac-
teristics of neuromorphic computing, as a brain-inspired paradigm for both soft-
ware and hardware, are energy efficiency, parallel computation, and co-location
of processing and memory. Currently, the research field of ML is already taking
advantage of this progress, and we find reservoir computing as the confluence of
both fields [75].

1.3.2 Classical reservoir computing

Reservoir computing (RC) is a broad sub-field of ML where dynamical systems
are exploited to solve temporal tasks [76]. We will start by introducing classical
RC and move to quantum proposals in Sect. 1.4. As commented before, RNNs
are paradigmatic examples of ANNs that are used for solving ML tasks where
time series are involved. And since an RNN is a dynamical system in itself, one
can try to use it for RC.

Indeed, one of the main routes towards the inception of RC came from RNNs
[77], simplifying the training of these ANNs but trying to keep a good perfor-
mance. This idea is condensed in what is known as echo state networks (ESNs).
An ESN is similarly defined as in Eq. (1.3):

xk = tanh(Wxk−1 + Winsk + b),
yk = Woutxk,

(1.4)

where now W and Win are random matrices that are not optimized, and the out-
put function is linear with weights Wout ∈ Rd×n. Usually, a constant bias is in-
troduced for optimal performance by adding an extra column to matrix Wout and
adding a constant term to vector xk. The most common activation function is the
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hyperbolic tangent, but different variations have been proposed in the literature
over these years, see [78] for a review. While RNNs require a more cumbersome
training like backpropagation through time [47] or Atiya-Parlos recurrent learn-
ing [50], the election of a linear output layer in the model of Eq. (1.3) is what
brings a significantly simplified training, as we will show below.

FIGURE 1.3: Scheme of a reservoir computing (RC) system based either on
classical or quantum reservoirs. As in the RNN architecture, we find three
main components: input layer, reservoir, and output layer. The main differ-
ence with RNNs is that the reservoir is a fixed dynamical system that is not
tuned, training only the output layer. Different dynamical systems can fulfill
the role of the reservoir, such as quantum circuits [79], electronic devices [80],

soft robotic arms [81] and quantum spin systems [19].

In a different context, liquid state machines (LSMs) were proposed almost at
the same time as ESNs to model neural microcircuits [82], introducing a biological
perspective. The state equation of an LSM is represented in continuous time as

x(t) = (Ls)(t),
y(t) = o(x(t)),

(1.5)

where L, the “liquid", transforms input information s into the liquid state x(t)
and o is again the memoryless readout. Both approaches, ESN and LSM, share
the basic idea of avoiding a fine-tuning of the parameters of the dynamical system
(known as reservoir). This tuning of parameters (or training) is usually only ap-
plied to the weights of an output layer, constructed from the readout information
of the reservoir.

As in the RNNs case, we can identify three basic layers in the RC scheme: an
input layer, where information is codified into some of the degrees of freedom
of the reservoir; the reservoir layer (or hidden layer), where information is pro-
cessed via the natural dynamics of the classical or quantum (see Sect. 1.4) system;
and output layer, which is usually constructed as a linear combination of some
(or all) the degrees of freedom of the reservoir. Figure 1.3 depicts a scheme with
the most basic conception.

Let us now introduce the basic mathematical framework for RC. Inputs are
defined as infinite discrete-time sequences, given as s = (. . . , s−1, s0, s1, . . . ) ∈



1.3. Reservoir computing 9

(Rm)Z where m is the vector dimension of the data to be processed at each time
step. Outputs are also sequences denoted as y ∈ (Rd)Z, being d the vector di-
mension of the output at each time step. Let T : Rn ×Rm → Rn be the reservoir
map, where input codification and reservoir dynamics are condensed in T. The
update equation at each time step k is written as

xk = T(xk−1, sk), (1.6)

and the output vector is obtained from a readout function of the reservoir states,

yk = o(xk). (1.7)

The most common and simplest approach is to take a linear combination of some
of (or all) the elements of vector xk:

yj
k =

M

∑
i=1

wj
i x

i
k + wj

0, (1.8)

with M ≤ n the number of vector elements for the output layer, while the set
{wj

i} represents the weights of the output element j. Notice that we added the
bias term wj

0 mentioned after Eq. (1.4).
Let us consider temporal input sequences of length L. Since we are dealing

with a supervised learning scheme, training a linear output reduces to simply
perform a linear regression between a target sequence ȳ and the output sequence
y of the reservoir, where a target sequence represents known examples of the
solution of the task at hand. The problem to solve is ȳ = Xw, where X is the
L× (M + 1) reservoir matrix (we added a column of ones for the offsets wj

0) and
w is the (M + 1)× d weights matrix. A direct solution can be written as

w = X+ȳ, (1.9)

where X+ is the Moore-Penrose pseudoinverse of matrix X [76]. While the com-
putation of X+ shows high numerical stability, it could become memory-expensive
for large matrices. The usual approach is to compute the least square solution
minimizing the deviation between output y and target ȳ, given by the euclidean
norm ||ȳk − (Xw)k||. For example, the LAPACK library uses the singular value
decomposition for that purpose [83]. Different strategies to perform the linear re-
gression could bring some numerical instabilities, but regularization techniques
can always be adopted, such as ridge regression [76]. In this case, the solution is
expressed as

w = (X⊤X + αI)−1X⊤ȳ, (1.10)

where the ridge parameter α ≥ 0 is tuned as another hyperparameter of the sys-
tem.

The simplification of the training brings very important consequences, which
are the essence of RC: first, the training is faster compared with the case of con-
ventional RNNs, providing a comparable performance with a more efficient com-
putation [66, 67]. Second, it allows us to solve several tasks in parallel for a given
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input sequence: since we do not tune the reservoir parameters during training,
we can construct an output layer for each task that we want to solve and use
them in parallel. On the contrary, if we train an RNN for a given specific task, the
training of the network for a second task would interfere with the first one, prob-
ably forgetting the former. Finally, not tuning the reservoir layer implies that it
can be directly implemented in hardware [84], such as in electronic circuits [80],
photonics [85], optoelectronics [86], with soft robotics [81], with origami [87], or
even with a bucket of water [88]. More details about physical implementations
will be provided in Sect. 1.3.5.

RC is not the only ML field that exploits dynamical systems to process input
information without fine-tuning of the hidden layer. An extreme learning ma-
chine (ELM) is the approach where the target task is non-temporal, not requiring
the memory of the dynamical system [89]. The input and target are not sequences
in time but just static collections of data. An ELM is distinct from RC in that the
state of the substrate is solely determined by its corresponding input. We can
represent this with the following map:

xl = T(sl), (1.11)

where T represents here the substrate dynamical map and the index l denotes
different instances of the input. Chapter 2 contains a more detailed exposition
of RC and ELM approaches and deals with the particularities of their quantum
version.

1.3.3 Information processing capacity

In order to compare different unconventional computing approaches, high-level
information processing metrics are needed. In particular, dynamical systems, ei-
ther classical or quantum, can be driven by external temporal signals while they
process the input information. Benchmark temporal tasks are usually employed
as a test bed to compare the performance of different RC implementations. These
tasks can either be reproducing functions of past inputs, such as the short-term
memory (STM) [90] and nonlinear autoregressive moving average (NARMA) [50]
tasks, or predicting the future values of an input sequence, as for chaotic time se-
ries [68] and stochastic processes [91].

Ways in which temporal information is processed can be estimated, and in
fact, a task-independent characterization of the linear and nonlinear memory ca-
pabilities of an RC system can be carried out. In 2012, Dambre et. al [92] intro-
duced the information processing capacity (IPC) with this purpose. The original
theory guarantees that the total computational capability of a dynamical system
is bounded by the number of linear independent variables that we use for the out-
put layer. Besides, this bound can be only saturated when the system has fading
memory.

Let us define the necessary steps to arrive at the mentioned result. The dynam-
ical systems that are considered are in discrete time, such that xk represents the
degrees of freedom of a dynamical system at time step k. The dynamical system
is driven by an external input signal sk ∈ Dm, which in principle can have any
dimensionality. In general, Dm will be a compact subset of Rm. We consider that
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we can access only a finite number M of degrees of freedom from the dynamical
system, keeping a resemblance with real experiments.

The dynamical system equation will be of the RC type as in Eq. (1.6) and the
input sequence is generated from a uniform distribution. The latter simplifies the
mathematical setting but also brings an important point: any measured structure
during the characterization will be only due to the dynamical system, the inputs
will not have any correlation structure. Then, the measurement protocol is the
following. The system is initialized and a number of washout steps τwo is waited
to erase the initial condition information. Then, the input sequence and the M
degrees of freedom are recorded for L time steps, and we denote X as the ma-
trix that will contain the M dynamical variables at each time, as defined in the
previous section.

To later introduce the IPC, we define the coefficient that characterizes the ca-
pabilities of a system to reproduce a target sequence, known as capacity:

CL(X, y) = 1− minwMSEL(y, ȳ)
⟨ȳ2⟩L

, (1.12)

where y and ȳ are the prediction and target sequences, and w is the weight vector
of the output layer. The output layer is a linear function, as it is usually done in
RC. The MSE of Eq. (1.2) is now redefined as the cost function MSEL(y, ȳ) =
1
L ∑L

k=1(yk − ȳk)
2 and the bracket ⟨⟩L denotes the temporal average for sequences

of length L. The correlation coefficient of Eq. (1.12) measures how good is the
estimation of our dynamical system to approximate a target. The performance
is bounded between 0 and 1 indicating either a null or a perfect approximation
(Proposition 3 in [92]).

The main theorem of [92] states that the maximum capacity of a dynamical
system, i.e. the sum of contributions for a given set of target functions, is bounded
by the number of degrees of freedom:

lim
L→∞

S

∑
s=1

CL(X, ȳ) ≤ M, (1.13)

where we require an infinite-length input sequence and S target functions. The
target functions are here defined as a set of orthogonal functions in a Hilbert space
of functions of the input. A crucial consequence of the results is that the bound of
Eq. (1.13) can be saturated under the conditions of linear independent degrees of
freedom and fading memory (plus other mathematical assumptions like infinite
initialization time τwo, the evaluation over a complete set of orthogonal target
functions and finite fourth-order moments for both the dynamical system vari-
ables and the target functions). For more details about the demonstration, see
Theorem 7 in the original reference [92] and the supplementary material.

In practice, the total computational capacity of a system, the IPC, can be com-
puted as follows. First, you choose a set of orthogonal functions for the targets. In
our case, we always took Legendre polynomials as we consider unidimensional
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uniformly distributed inputs. The targets are constructed as

ȳk = ∏
i
Pdi [sk−i]. (1.14)

The functions Pdi are the Legendre polynomials of degree di, whose arguments
are the inputs with delay i. In this way, we evaluate a set of linear and non-
linear temporal functions of the input. The product of polynomials is further
constrained by the condition ∑i di = d, i.e. we define all possible targets up to a
maximum delay of polynomials equal to d. In general, this maximum delay does
not need to be a large number, and in all our numerical experiments the maxi-
mum degree ever taken was d = 9 [19, 20]. Then, we evaluate all the possible
target functions up to delay d fixing the maximum delay imax that we want to ex-
plore. Setting this value is based on overestimating individual capacities: a finite
input sequence does not allow obtaining the exact theoretical value of Eq. (1.12).
Then we impose a threshold that allows us to cut off the maximum delay imax.
More details about the numerical implementation can be found in Chapter 3.

As we said, the appeal of the IPC is that it quantifies the linear and nonlinear
memory of a reservoir in a rather task-independent manner. However, it is true
that it might not be straightforward to establish a direct connection between the
IPC of the reservoir and the performance on specific tasks. An approach to es-
tablishing this connection is to compute the IPC of the task itself, identifying the
required capabilities. Some examples can be found for the NARMA2, NARMA10,
and PAM tasks [93, 94]. Recently, a different method has been proposed to tackle
this problem [95]. In this approach, the normalized mean-square error (NMSE) of
time-invariant and fading memory target tasks is predicted based on the differ-
ent contributions to the IPC. The main assumption is that the input for a specific
task follows the same probability distribution that is used to evaluate the IPC (as
the uniform distribution we use), something that might not hold for most of real
tasks. But the motivation of this work is clear: instead of doing a hyperparameter
optimization for each specific task, it can be carried out only once for the IPC con-
tributions. This is in fact the main motivation of the work presented in Chapter
3. We computed the IPC for the first time in a QRC system, finding the linear
and nonlinear contributions that characterize the performance of a quantum spin
model in terms of the different hyperparameters.

More extensions of the IPC formalism have been carried out. In [93], the IPC
has been generalized to systems that are not time-invariant. The temporal infor-
mation processing capacity (TIPC) allows the computation of linear and nonlin-
ear processing contributions of systems that do not forget their initial conditions.
This quantity has been already studied in the QRC context with quantum circuits
[94]. In an even more recent work [96], the IPC framework is generalized to ac-
count for the statistics of a finite number of measurements in the computation of
output observables.

1.3.4 Universal approximation property for reservoir computing

In order to establish the quality of a family of reservoirs, it is helpful to introduce
the universal approximation property (UAP). The UAP implies the existence of a
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member of our family of functions that can approximate, with arbitrary precision,
the target we intend to reproduce. More formally, UAP means that a proposed
family of functions is dense in the space of target functions. This question has re-
sulted in well-known findings for classical machine learning paradigms such as
FFNNs, indicating that they can be viewed as universal approximators [97–99].
In the RC context, UAP has been demonstrated for fading memory functionals (a
concept that we will introduce later) in different setups with either continuous-
time [82, 100–102] or discrete-time [91, 103, 104] dynamics. The requirements that
guarantee the UAP are a good road map to understand the mathematical back-
ground of many ML techniques, but notice that they do not answer the practical
question of which is the set of hyperparameters that solve a given task.

In the case of RC, the main conditions for UAP are usually summarized in
the echo state [77] and fading memory properties [105]. The echo state property
(ESP) means that the recurrent relation Eq. (1.6) has a unique solution for each in-
put sequence, and it is only determined by the input history, discarding any pos-
sible dependence on the initial condition. To be more precise, given an input se-
quence space subset Vm ⊂ (Rm)Z, a reservoir state-space subset Vn ⊂ (Rn)Z and
a reservoir map T, we say that T has the (Vm, Vn)-ESP if for each input sequence
s ∈ Vm there exists a unique sequence x ∈ Vn such that Eq. (1.6) holds. Then, a
reservoir map with the (Vm, Vn)-ESP defines an input-output filter UT : Vm → Vn
that maps each input sequence to its corresponding state-space solution:

UT(s)k = xk. (1.15)

From now on we will simply refer to the ESP instead of the (Vm, Vn)-ESP, and the
subsets (Vm, Vn) will be clear from the context. Similarly, the reservoir filter can
be defined for left-infinite sequences, where s = (. . . , s−1, s0) ∈ Vm ⊂ (Rm)Z−

and x = (. . . , x−1, x0) ∈ Vn ⊂ (Rn)Z− . Reservoir filters with ESP are causal and
time-invariant (Proposition 2.1 in [103]), and as such, a bijection with functionals
can be established [103, 104]: let Vm ⊂ (Rm)Z and V−m ⊂ (Rm)Z− , a functional
H : V−m → Rn defined as H(s) := U(s)0 fully determines the filter U : Vm →
(Rn)Z. The functionals will define the elements of the RC families that we use
for the study of the UAP.

The fading memory property (FMP) is closely connected to the ESP. It is
present when two input sequences that are close in the recent past produce out-
puts that are close in the present. This is a stronger condition than the usual
definition of continuity and, as we will see below, it also implies the erasure of
initial conditions from the system. Let us recall the definition of continuity in
metric spaces. A function between metric spaces f : X → Y is continuous if for
any x ∈ X and any ϵ > 0 there exists a δ(x, ϵ) > 0 such that for any x′ ∈ X it
holds that

d(x, x′) < δ(x, ϵ)⇒ d( f (x), f (x′)) < ϵ, (1.16)

where d(·, ·) is the metric. The FMP extends this notion of continuity to a met-
ric sequence space with a weighted norm. A weighted norm is a decreasing se-
quence w : N → (0, 1] with w0 = 1 and limk→∞ wk = 0. The weighted norm
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|| · ||w on (Rm)Z− is defined as

||s||w := sup
k∈Z−

{w−k||sk||}. (1.17)

We define the spaces lw
−(R

m) and lw
−(R

n) as the Banach spaces formed by the ele-
ments of Rm and Rn respectively with finite weighted norm || · ||w (see Appendix
A.2 in [103]) . Now we can apply the continuity condition. Let w being a weight-
ing sequence, Vm ⊂ lw

−(R
m) and Vn ⊂ lw

−(R
n), a filter U has the FMP with respect

to w if the map U : (Vm, || · ||w) → (Vm, || · ||w) is continuous. That is, for any
s ∈ Vm and any ϵ > 0 there exists a δ(s, ϵ) > 0 such that for any s′ ∈ Vm it holds
that

||s− s′||w < δ(s, ϵ)⇒ ||U(s)−U(s′)||w < ϵ. (1.18)

Equations (1.15) and (1.18) define in a rigorous way the key features of a RC sys-
tem. Furthermore, the ESP and FMP definitions can be extended to the entire
reservoir system with an output layer. Let us define yk = o(xk) ∈ Rd as a contin-
uous function of the reservoir variables. We call UT

o (s)k := o(UT((s)k) = yk the
entire reservoir filter, and since it is causal and time-invariant by construction, it
has an associated functional HT

o := o(UT((s)0) = y0.
A convenient sufficient condition that simultaneously provides the ESP and

the FMP can be expressed in terms of contractivity of the RC map, and it holds
for any weighting sequence w when considering compact subsets Dn ∈ Rn and
Dm ∈ Rm as state and input spaces respectively (Theorem 3.1 and Proposition
2.11 in [103]). Given subsets Dn ⊂ Rn and Dm ⊂ Rm, a reservoir map T is strictly
contractive if there exists 0 < r < 1 such that

||T(x, s)− T(x′, s)|| ≤ r||x− x′|| (1.19)

for all x, x′ ∈ Dn, , s ∈ Dm and a given norm || · ||.
Further requirements generally depend on the universality statement one in-

tends to prove, such as the separability condition and polynomial algebra con-
dition [104]. Separability refers to the ability of RC systems to discriminate in-
puts and therefore requires the existence of elements of a given RC family that
enable to differentiate any pair of inputs. Let us define a compact metric space E
and C(E) the set of real-valued continuous functions on E. We say that a subset
A ⊂ C(E) has the separation property if for any distinct pair of points a, b ∈ E,
there exists a function f ∈ A that fulfills f (a) ̸= f (b). In the RC case, separability
is satisfied by an RC family if for any pair input sequences which differed in the
past, s1 ̸= s2, there exists a reservoir functional such that HT

o (s1) ̸= HT
o (s2). An

RC family forms a polynomial algebra if it is closed under addition and product
of its elements. Let oi ∈ C(Dni), Ti : Dni ×Dm → Dni , i ∈ {1, 2} and λ ∈ R. Then,
product and linear combination are defined as [104]:

HT1
o1 · H

T2
o2 = HT

o , with o := o1 · o2 ∈ C(Dn1 × Dn2).

HT1
o1 + λHT2

o2 = HT
o′ , with o′ := o1 + λo2 ∈ C(Dn1 × Dn2),

(1.20)
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where T : (Dn1 × Dn2)× Dm → (Dn1 × Dn2) is given by

T((x1k, x2k), sk) := (T1(x1k, sk), T2(x2k, sk)), (1.21)

for any (x1k, x2k) ∈ Dn1 × Dn2 , sk ∈ Dm and k ∈ Z−. All these conditions are the
ingredients of the Stone-Weierstrass theorem, which reads as follows [104, 106]:
Let E be a compact metric space. If A ⊂ C(E) is a subalgebra that contains the
constant functions and separate points of E, then A is dense in C(E). Of course,
this is only a sufficient route to prove UAP of RC systems. Different strategies
might be required and different conditions may arise when one is faced with a
different setting, such as when one cannot make use of the polynomial algebra
condition as with ESNs [103], or when using the Lp norms criteria [91].

1.3.5 Physical reservoir computing

RC is an amenable technique for hardware implementations, generalizing ini-
tially introduced algorithms (see Fig. 1.4 and Ref. [107] for several examples). In
fact, a specific term was coined to differentiate software applications from a va-
riety of experimental implementations known as physical reservoir computing
(PRC) [107, 108].

In this context, it is crucial the dynamical system choice. It is usually claimed
that if the dynamical system is complex enough, it might be a good candidate for
the reservoir layer. However, some prerequisites should be fulfilled to ensure a
successful computation [107, 109]. First, we need reproducibility of the input-
output relation, i.e., the same input sequence should always produce the same
output sequence. This, although may look naive, it is a rather strong condition.
For instance, it requires the ESP to avoid any dependence on the initial condition
of the system. The reproducibility relation also implies some degree of stability
against experimental noise, especially in our context of analog computation. But
although noise may seem a problem at first, it can be shown that in some situa-
tions we can control its effect during the training [80, 110]. Second, it is usually
required a high dimensional reservoir space [111]. High dimensionality facil-
itates the separation of inputs for classification tasks and improves the finding
of spatiotemporal dependencies of inputs in prediction tasks. Third, if we want
our reservoir to be as general purpose as possible, it must exhibit rich nonlinear
dynamics.

Many types of dynamical systems have been proposed for PRC. Some repre-
sentative examples may be found in photonics [84], spintronics [118], mechani-
cal systems [81, 119], nanomaterials [120] and quantum systems [113]. See [107,
109] for a comprehensive list of implementations. The goal of exploring such a
variety is, on the one hand, trying to find physical systems that are able to per-
form complex enough computations, and on the other hand, pushing them to the
limit to extract some advantage from their particular physical properties. In fact,
speed and energy efficiency have been two of the main goals in the latest years.
Photonic and electronic implementations are becoming the best exponents of this
trend [84, 109], but new physical systems could enter into the race.

Indeed, quantum systems are becoming an interesting playground for these
machine learning techniques [18]. The interest in quantum systems in RC is at
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FIGURE 1.4: Different types of physical reservoir computers. (a) A phys-
ical liquid state machine that exploits Faraday waves [112]. (b) Quantum
reservoir composed of quantum spins [113]. (c) Different spintronics reser-
voir. The upper scheme shows a reservoir that exploits vortex-type spintron-
ics [114] while the lower one exploits spatially multiplexed magnetic tunnel
junctions [115]. (d) Turing B-type atomic switch networks [116]. (e) Skyrmion
network embedded in frustrated magnetic films [117]. Figure reprinted from

[107].

least four-fold: i) exploit the large number of degrees of freedom that Hilbert
space can exhibit for few-particle systems; ii) the possibility to implement them in
current experimental devices; iii) the possible quantum advantages that could
be found respect to other physical models; and iv) extend the RC techniques for
quantum input processing and tasks in fully quantum architectures. In the next
section, we will introduce quantum systems as reservoir computers, exploring
their implications and exposing the state-of-the-art in the field.

1.4 Quantum reservoir computing

Quantum reservoir computing (QRC) extends the RC framework to the quan-
tum regime. In its most basic conception, QRC represents the case where the
reservoir is a quantum dynamical system. Then, a QRC state-space transforma-
tion is defined by: {

ρk = T(ρk−1, sk),
yk = o(ρk).

(1.22)
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Here input sequences s are real-valued, i.e. classical, and the output layer o
maps quantum states to real values. Both assumptions could be relaxed consid-
ering quantum input and output [18]. Quantum states are represented as density
matrices ρk ∈ S(H), with S(H) being the space of Hermitian, positive semi-
definite and trace-one operators. The symbol H represents the Hilbert space of
the quantum substrate. The input codification and dynamics of the reservoir are
gathered in a single quantum channel T. Quantum channels are linear maps
T : B(H) → B(H) that are completely positive and trace preserving (CPTP),
where B(H) is the space of bounded operators that act over the Hilbert spaceH.
We say that T is positive when it maps positive semi-definite operators to posi-
tive semi-definite operators. Completely positive maps are those positive maps
which, when extended to a larger space using the tensor product T ⊗ Il, with Il
the identity map in dimension l, also yield a positive map for any l ∈ N. Finally,
trace-preserving maps keep the same trace of operators after their application.

Linear maps are CPTP if and only if they can be written with a Kraus de-
composition [121], i.e., there exists a set of operators {Ki}i∈X such that for all
A ∈ B(H):

T(A) = ∑
i∈X

Ki AK†
i , (1.23)

where ∑i∈X K†
i Ki = I and X is an index set of cardinality at most d2, with d =

dim(H). A natural way to insert the input dependence of the reservoir map equa-
tion (1.22) is using the same Kraus decomposition:

T(ρk−1, sk) = ∑
i∈X

Ki(sk)ρk−1K†
i (sk). (1.24)

Choosing a convenient quantum channel T brings us back to the physical
reservoir choice problem because quantum reservoir dynamics should be com-
plex enough to guarantee successful computations. First, few-particle quantum
systems can easily provide high dimensionality, which makes them amenable for
QRC. Besides, linear independence of observables, which allows exploiting the
high dimensionality, can be obtained with the right choice of the quantum model,
for example avoiding symmetries. These points are met for several QRC imple-
mentations, and in particular, will be shown to be true for the QRC spin model
studied in this thesis in Chapters 3, 4, and 6.

Second, nonlinearity could be a more delicate matter since quantum dynamics
is linear per se. Nevertheless, input codification, together with the reservoir dy-
namics and observable election, can determine the nonlinear input-output trans-
formation [122]. Chapter 5 explicitly tackles this question for our QRC spin model
and the harmonic oscillator model proposed in [123]. Third, we also require the
reproducibility of the input-output relation. This implies that stochastic reservoir
dynamics could not be desired. How do we conciliate this with quantum mechan-
ics? We will consider average observables in the output layer such that the effects
of quantum measurements are mitigated and the input-output relation is guaran-
teed. However, we do not discard the possibility of employing stochastic reser-
voir dynamics as an information-processing tool in future research. Furthermore,
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as seen in the previous section, RC requires ESP and FMP as fundamental ingre-
dients for a reservoir to be useful. Then, these conditions imply reservoir dy-
namics that becomes independent of the initial conditions. Some degree of dissi-
pation must be introduced into the system in order to observe input-dependent
dynamics, meaning that unitary dynamics alone is not enough for QRC. We will
approach this question in Chapter 7 in a very general QRC framework.

We move now to the description of the three RC layers as depicted in Fig. 1.3:
reservoir, input, and output.

1.4.1 Quantum reservoir

In most cases, a quantum reservoir will represent the mathematical model that
processes the input information. But as discussed in Sect. 1.3.5, hardware ap-
proaches are also considered in RC, and quantum systems are not an exception.
Then, depending on the context, the quantum reservoir will refer to either the
quantum physical substrate or the mathematical model. This dichotomy be-
comes relevant if a given quantum model may be simulated in different physical
platforms, such as with qubits, distinguishing between "physical" reservoirs and
"model" reservoirs.

With respect to physical substrates, a multitude of platforms have been en-
visioned to work as reservoirs since the beginning of the field. Section 2.4 in
Chapter 2 contains a summary of the main ones up to 2021, including NMR in
molecules [16], trapped ions [15, 124], quantum circuits [125, 126] and photonic
platforms [127, 128]. Along 2022, new platforms have been proposed for QRC,
such as Rydberg atoms for quantum spins [129], Josephson mixers as two coupled
oscillators [130], and closed loops of optical pulses working as an ensemble [131].
With respect to QRC models, the exploration has grown as well, with single qu-
dits [132] or quantum master equation of quantum spins with tuned losses [133]
as examples. The first proposal was based on the transverse-field Ising model
[113], and it will be described in detail in Sect. 1.4.4.

Experimental implementations of QRC are already in their infancy. Few pub-
lished works that use quantum reservoirs to solve temporal tasks have been re-
ported on quantum computers, either using a reset rate as the source of dissipa-
tion [126, 134, 135] or harnessing the natural noise of quantum devices [79, 94,
125]. Yet, as commented before, a multitude of other platforms are good can-
didates as quantum reservoirs and experimental realizations are expected in the
near term [17].

Before moving to the input and output layers, we notice that in some cases
reservoir and input layers are intertwined and there is not a clear distinction be-
tween them in the mathematical model. As discussed in Sect. 1.4.4, one can gen-
erally proceed by introducing a specific CPTP map for the input codification (in-
put layer) and a specific CPTP map for information processing (reservoir layer).
However, we may find some examples where there is not a boundary line, as in
some implementations with quantum circuits [79, 94, 125]. We might also find
quantum channels where input and dynamics are merged into one single map.
This can happen when the input is fed as part of a model hyperparameter [122],
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as can be seen for instance in [133]. Under these circumstances, we will still de-
note the quantum model as the reservoir, bearing in mind that it includes the
input codification.

1.4.2 Input and output layers

A quantum reservoir has to be accompanied by a proper input encoding and
output extraction because both input and output are restricted by the physics of
the reservoir. In the seminal work of Fujii and Nakajima [113], classical inputs are
codified in the state of one qubit, and the exact expected values of observables of
the system are used for the construction of the output layer. We will apply the
same scheme as the basis of our work in Chapters 3 to 6. The ancillary codification
has been continued in several articles, either with quantum spins models [19, 20,
136–142], quantum circuits [126, 134] or continuous-variable systems [110, 123,
131].

Other input codifications have been proposed in the literature, either intro-
ducing classical information through the variation of reservoir parameters [122,
129, 130, 132, 133, 143, 144], quantum gates [79, 94, 125, 135, 145] or directly using
quantum states as inputs [146–150].

Classical output information is required when the target is classical. Then,
although there might be several options for the input codification, an output
layer for classical tasks is enforced to be constructed by measurements over the
reservoir. Generally speaking, quantum measurements modify the state of the
observed system, while the measurement outcome (and therefore the state after
a measurement) is given with a certain probability. The basic formalism about
quantum measurements is introduced in Sect. 1.5. Under these circumstances,
the number of measurements and even the type of measurement become funda-
mental ingredients at the moment of designing a QRC system (see Chapter 6).
However, QRC is not limited to deal with classical outputs, as shown by some
recent works [148–150].

One of the main motivations for using quantum substrates for RC is the pres-
ence of a large number of degrees of freedom in few-elements quantum systems.
A large number of degrees of freedom increases the chances to improve the per-
formance. In this context, multiplexing techniques have been proposed in the
literature to try to maximize the information extracted from the available de-
grees of freedom. They consist on increasing the number of output variables
either by sampling the RC system more frequently or adding more reservoir lay-
ers. On the one hand, temporal multiplexing harnesses the complex dynamics
of quantum many-body systems to multiply the number of output observables
by a factor equal to the number of snapshots that we take from the dynamics
[113]. Remember that the RC output layer was defined in Eq. (1.8) for a number
of output observables M that are sampled only once after each input injection. In
temporal multiplexing, these M output observables are sampled V times between
two input injections and this is repeated for all inputs, obtaining a total of MV
observable nodes for the output layer. Given an observable ⟨O⟩, the snapshots at
input step k are evenly divided as ⟨O⟩ (k∆t + v∆t/V), with 1 ≤ v ≤ V. Temporal
multiplexing can significantly increase the performance of QRC models, although
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it could require a large number of experimental resources. Besides, there is a limit
in the size of V given by the moment at which two consecutive snapshots become
linear dependent. In that situation, increasing V would not introduce new infor-
mation into the output layer. An implementation of this technique and further
details will be found in Chapter 3. On the other hand, spatial multiplexing fo-
cuses on exploiting several reservoir layers at the same time, parallelizing the pro-
cessing of information [136]. The latter, although may seem more experimental-
friendly than temporal multiplexing in terms of resources (using many copies of
the system), requires non-identical reservoir layers. Otherwise, observables from
each reservoir would be linearly dependent and there would not be any extra
contribution to the full (combined) output layer.

1.4.3 Universal approximation property considerations for quan-
tum reservoir computing

Another important aspect of the QRC research is about theoretical results of the
UAP. In the case of qubits, sufficient conditions for the ESP and UAP were pro-
vided constraining the norm of the quantum dynamical map [139]. These results
were limited to the input codification proposed by [113], but a variation in terms
of a family of quantum circuits was guaranteed to have the UAP as well [126],
further extended in [151]. Later, a similar definition of ESP is introduced in [138],
where the focus moves to the eigenvalues of the dynamical map. With respect
to other physical platforms, the UAP has also been proven for networks of linear
oscillators with Gaussian states [123]. In this work, we showed that by encoding
the input in different families of single-mode Gaussian states, like thermal and
squeezed, a polynomial readout ensures all nonlinear input combinations and
separability can be proven.

Chapter 7 has been our main contribution to the theory of QRC with finite-
dimensional quantum systems and classical inputs. This work provides nec-
essary and sufficient conditions for obtaining operational reservoirs. We con-
sider operational QRC systems to be those that fulfill the ESP and FMP and that
guarantee an input-dependent mapping for an arbitrarily long input sequence.
Conclusions about the design of QRC systems can be drawn from these findings,
and we provide several examples to support our conclusions. We remark that
operational reservoirs are not necessarily useful, as will be evident for the model
we introduce here below in terms of its hyperparameters.

1.4.4 Fujii and Nakajima reservoir model

From chapters 3 to 6 we will focus on reservoir layers based on qubit networks
evolving unitarily under the transverse-field Ising model. The natural dynamics
of the closed quantum systems in the Schrödinger picture is governed by

ρ(t) = e−iHtρ(0)eiHt, (1.25)

where H is the Hamiltonian, ρ is the reservoir state, and we are setting h̄ = 1.
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As our work is mainly developed with qubits, it is convenient to provide some
basic definitions to also set the notation. A qubit is a two-level quantum system,
which lives in a 2-dimensional complex Hilbert space C2. Its state can be repre-
sented as a linear combination of linear independent bounded operators acting
on C2. These operators could be chosen to be the identity matrix I, and the three
Pauli matrices σz, σx and σy:

ρ =
1
2
(I + azσz + axσx + ayσy), (1.26)

where the ai’s are just the projections of the state ρ in the directions of the differ-
ent Pauli matrices, i.e., the inner product in the Hilbert space known as Hilbert-
Schmidt product: ai = ⟨σi⟩ = tr(σiρ)/2. In fact, the state of a qubit can be repre-
sented in a 3-dimensional space known as the Bloch sphere, where each compo-
nent ai represents each one of the space coordinates. A convenient (and conven-
tional) basis set to describe the matrix elements of the state ρ are the eigenstates
of σz, such that we can write the density matrix as

ρ = ρ00 |0⟩ ⟨0|+ ρ01 |0⟩ ⟨1|+ ρ∗01 |1⟩ ⟨0|+ (1− ρ00) |1⟩ ⟨1| , (1.27)

where we already applied the normalization of the state (tr(ρ) = 1) and the her-
miticity of the matrix.

The matrix formulation can be extended to an arbitrary number of qubits,
enlarging the dimension of the Hilbert space through the tensor product. In the
case of N qubits, the multi-qubit state is represented by

ρ =
1

2N

4N

∑
i=1

aiBi, (1.28)

where {Bi} forms an orthogonal basis in the space of bounded operators that
act over our new Hilbert space C2N. The 4N operators that we usually take are
constructed as all the possible combinations of tensor products between the ba-
sic operators {I, σz, σx, σy} of each qubit. An example could be Bi = σx

1 ⊗ σ
y
2 ⊗

I3 ⊗ · · · ⊗ σz
N, and ai would be computed as ai = ⟨Bi⟩ = tr(Biρ). This produces

4N − 1 linear independent operators (disregarding the identity) that are observ-
ables. It means that, in principle, a quantum system of N qubits can offer 4N − 1
degrees of freedom to perform computations in our RC framework. Finally, we
can also describe matrix elements of the multi-qubit state ρ with the 2N simulta-
neous eigenstates of all of the {σz

i }.
Having defined the elementary constituents of our RC architecture based on

qubits, we need to introduce the dynamical model that will allow the processing
of information. Part of the work of this thesis gravitates around a very specific
Hamiltonian: the transverse-field Ising model. Introduced in the context of QRC
by Fujii and Nakajima [113], this model has been a constant link between the first
works in the field and our contributions. The former proposal reads as

H =
N

∑
i>j=1

Jijσ
x
i σx

j + h
N

∑
i=1

σz
i , (1.29)
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where N is the number of qubits, h is an homogeneous external magnetic field
and Jij is the coupling strength between qubits i and j. These couplings are usu-
ally given by a random uniform distribution over an interval [−Js/2, Js/2], where
Js denotes the maximum absolute coupling strength.

Disorder in the couplings helps to avoid any redundancy in the dynamics of
the observables. For example, if Jij = Js > 0 i.e. all couplings are identical, the
dynamics of each qubit becomes identical, hindering the processing capability.
Since our goal is to exploit as many observables as possible, we consider instead
a random distribution of the couplings, following the common convention of dis-
ordered connectivity matrix of traditional RC. However, one could try to tune
different coupling configurations to see which one improves results with respect
to specific problems. These new configurations could be artificial, like star or
ring networks, while other examples could be naturally found in experimental
setups, like in long-range interactions in ion-trap experiments [140]. With respect

Reservoir Network 

Input Output 

FIGURE 1.5: Scheme of a quantum spin model reservoir. The input layer
consists in feeding the input to one of the spins, rewriting its state. Then, the
unitary dynamics of the model processes the input information, extracting
the output through some of the observables of the system. Figure reprinted

from [21] and Chapter 5.

to the physics of Eq. (1.29), this Hamiltonian possesses a parity Z2 symmetry.
Intuitively, this symmetry means that the Hamiltonian is invariant under a global
spin flip in the x-direction. Mathematically, the parity operator P = ∏N

i σz
i com-

mutes with the Hamiltonian ([P, H] = 0), and the shape of the eigenstates will
depend on the ratio h/Js. If h = 0, the eigenstates are just all the possible con-
figurations of spins aligned in the x axis (|n⟩ = |←→→ . . .⟩). When h/Js << 1,
the eigenstates look like cat states as the superposition of states aligned in the
x axis: |n±⟩ ≃ 1√

2
(|←→→ . . .⟩ ± |→←← . . .⟩), where ± indicates the parity of

the eigenstate. In the other extreme, when h/Js >> 1 the Hamiltonian becomes
effectively the term h ∑N

i=1 σz
i , being the total spin in the z direction a nearly con-

served quantity. Then, the eigenstates are very close to spins aligned in the z axis
(|n⟩ ≃ |↑↑↓↑ . . .⟩).

Chapters 3 and 6 work with Eq. (1.29) as the Hamiltonian of our spin reser-
voirs. In chapter 4 we proposed an extension to explore more dynamical regimes,
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later exploited in Chapter 5. The extended Hamiltonian is inspired by the ion-
trap experiments of [14] and relaxes the assumption of an homogeneous external
magnetic field:

H =
N

∑
i>j=1

Jijσ
x
i σx

j +
1
2

N

∑
i=1

(h + Di)σ
z
i , (1.30)

where Di is a local magnetic field drawn from a random uniform distribution
in the interval [−W, W], being W the disorder strength. The introduction of lo-
cal disorder is one of the routes to the phenomenon of many-body localization,
which will be explained in Sect. 1.6.2.

Let us now introduce the reservoir and input injection maps. Here we adopt
the Fujii and Nakajima framework following an amplitude encoding scheme. As
illustrated in Fig. 1.5, a unidimensional input sk is fed to a single qubit, which we
will call qubit one. The state of this qubit is reinitialized every time step as

|ψsk⟩ =
√

1− sk |0⟩+
√

sk |1⟩ , sk ∈ [0, 1], (1.31)

which is represented with the density matrix ρ1 = |ψsk⟩ ⟨ψsk |. This is a conve-
nient encoding and variations are proposed in Chapter 5, finding different non-
linear responses in terms of the codification. Input injection of ρ1 corresponds to
"rewriting" this density matrix, leading to a full reservoir state updated with the
input information:

ρ′k = ρ1 ⊗ tr1(ρk−1), (1.32)

where ρ′k is the updated reservoir state and tr1 is the partial trace over the first
qubit. There are some strategies to implement this input protocol:

• Equation (1.32) can be approximated by a strong local dissipation over the
first qubit followed by a quantum rotation gate [133]:

ρ1 ⊗ tr1(ρk−1) ≈ Ry1(sk)eD1∆td ρk−1, (1.33)

where eD1∆td is a dissipative Markovian dynamical map that sends the first
qubit to the ground state for ∆td → ∞, and Ry1(sk) is a rotation gate in the
y direction of the first qubit that introduces the input.

• By performing an unselective projective measurement over the first qubit
(see Sect. 1.5), we are actually implementing the partial trace operation
tr1(ρk−1). Since unselective measurements would discard the outcome of
the first qubit measurement, we could not know its state to prepare a ro-
tation gate. However, we can prepare an auxiliary qubit with state ρ1 and
perform a SWAP operation between this ancilla and the first qubit to ex-
change their states. This method requires the preparation of a new ancilla
for each input codification.

• Another possibility is to perform the measurement over the first qubit and
register the outcome. Depending on this outcome, a rotation that encodes
the input is prepared. In this situation, expected values of observables
would be computed by averaging over several measurements at each time
step, following a similar scheme to Ref. [126].
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Finally, we let the system, i.e. the full quantum network, evolve under its
natural dynamics during a ∆t time to process the information:

ρk = e−iH∆tρ1 ⊗ tr1(ρk−1)eiH∆t. (1.34)

Equation 1.34 defines the QRC map (whose CPTP properties can be easily demon-
strated). As we will see in our numerical experiments, Eq. (1.34) provides the
ESP, necessary for the optimal performance of the model. We note that unitary
dynamics by itself cannot produce a dissipation that erases the initial conditions.
It is the interplay between the partial trace and unitary dynamics of the previ-
ous time step that makes it compatible with the RC requirements. In particular,
e−iH∆t creates entanglement between the ancilla qubit (qubit one) and the rest of
the reservoir, and the operation of taking partial trace becomes an irreversible
process when there are correlations between the two subsystems, erasing infor-
mation.

As we will be dealing with classical targets, we will construct the output lay-
ers with the expected value of observables, using a subset of the degrees of free-
dom of our quantum system. In the limit of infinite measurements (no statistical
error) and no measurement backaction, observables are computed as

⟨O⟩ (t) = tr (Oρ(t)) . (1.35)

This choice can be justified if the experimental protocol consists of a large num-
ber of measurements at each time step, with the corresponding repetition of the
dynamics up to the measurement instant (see the restarting and rewinding pro-
tocols in Chapter 6). Another possibility is to perform ensemble measurements
over many copies of the system such that backaction is negligible, as it is done in
NMR experiments [16].

The output layer is constructed then as a linear combination of observables:

yk =
M

∑
i=1

wi ⟨Oi⟩ (k∆t) + w0, (1.36)

where M indicates the size of the subset of observables. The most common choice
will be the local spin projections ⟨σx

i ⟩, ⟨σ
y
i ⟩ and ⟨σz

i ⟩ for 1 ≤ i ≤ N, but we will
also consider two spin correlations ⟨σa

i σb
j ⟩ in some chapters. The explicit input

dependence of Eq. (1.36) is shown in Chapter 5, where an analysis of the nonlin-
ear input-output relation is carried out for several encoding maps. In particular,
we demonstrate that the nonlinear response of the output layer depends on the
chosen observables, the number of qubits used for the input injection, and the
dynamical regime of the reservoir model.

In this section, we have dealt with closed quantum systems, that is, those that
are not connected to an external environment or any measurement apparatus. We
remark that none of our works will include an environment, but Chapter 6 deals
specifically with the problem of applying a measurement process. The motiva-
tion to describe the measurement process in QRC is to depart from the ideal situa-
tion of infinite projective measurements, where a significant amount of resources
is usually required to estimate the output layer if no ensemble measurement is
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available. We propose a more realistic scenario where weak measurements are
used to balance the effect of quantum measurements (backaction and finite statis-
tics) with respect to the information we extract from the system, keeping a good
performance with a reasonable amount of resources.

1.5 Quantum measurements

The previous section introduces the reservoir model that we employed in Chapters
3 to 6. However, Chapter 6 also presents QRC experimental protocols for which
quantum measurements are a basic ingredient. For this reason, we introduce here
the quantum measurement formalism, which is fundamental for the statistical
interpretation of quantum mechanics. The measurement process introduces two
aspects to quantum mechanics experiments: the change in the state of measured
systems, known as backaction, and the finite statistics of observations. Here,
we will focus on quantum measurement schemes that allow the monitoring of a
quantum reservoir driven by a sequential input.

1.5.1 Projective measurements

The projective (sometimes denoted as ideal) measurement scheme of most quan-
tum mechanics textbooks relies on the treatment of Born and Von Neumann [152]
and the later extension by Lüders [153]. Let us start by supposing we want
to measure a quantum system S , which is represented by a finite-dimensional
Hilbert space HS , and a state ρ. We are interested in measuring a particular ob-
servable of the system named O, which we consider discrete. Observables are
described by Hermitian operators (O = O†) and have a spectral decomposition,

O = ∑
j

ojΠj, (1.37)

where Πj are called the projectors on the eigenbasis of O with eigenvalues oj. If
the eigenvalues are non-degenerate, the projector is a rank-1 operator defined as
Πj = |oj⟩ ⟨oj|, where the orthonormal eigenvectors |oj⟩ form a basis. Otherwise,
degeneracy has to be taken into account and the projector becomes

Πj = ∑
dj
l=1 |oj, l⟩ ⟨oj, l|, where dj accounts for the degeneracy of eigenvalue oj.

The sum of all degeneracies must add up to the dimension of the Hilbert space,
∑j dj = dS , with dS = dim(HS). Projectors fulfill the orthonormal relation
ΠiΠj = δijΠi and the completeness relation

∑
j

Πj = I. (1.38)

Given an initial state ρ for system S , the projective postulate states that the
only possible result of measuring the observable O on system S is one of the
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eigenvalues oj, with probability Pj = tr(ρΠj), leaving the system after measure-
ment in the state

ρ′j =
ΠjρΠj

Pj
, (1.39)

where the prime refers to the perturbed state by the measurement and the proba-
bilities are normalized to 1, ∑j Pj = 1, given the completeness relation of Eq. (1.38).
The updated state of Eq. (1.39), known as the conditional state, is the projection
of ρ to one of the eigenstates of O, and the measurement is known as selective.
If a measurement is performed but the result is ignored, named non-selective
measurement, then the final unconditional state is an average over all possible
outcomes:

ρ′ = ∑
j

ρ′jPj = ∑
j

ΠjρΠj. (1.40)

The expected value of observable O can be easily derived from the previous def-
initions:

⟨O⟩ = ∑
j

ojPj = tr(ρ ∑
j

ojΠj) = tr(ρO), (1.41)

Equation (1.41) is the building block of Eq. (1.35) when considering projective
measurements. But the expected value of observables can be obtained from more
general measurements.

1.5.2 Generalized measurements

Projective measurements are the simplest case of quantum measurements, but
this formalism has many limitations. First, the number of possible outcomes is
limited by the dimension of the Hilbert space. It could be often desired to have
more outcomes than the dimension of the Hilbert space while keeping positiv-
ity and normalization of probabilities distributions. Second, we may find that
the final state of our measured system is not an eigenstate of the observable we
are measuring, difficulting the well-known repeatability of projective measure-
ments. Consider as an example the position detection of a photon in a silver
screen, which destroys the photon in the process and makes it impossible to re-
peat the measurement. Third, one never measures directly the system. There is
always a chain of interactions between the system of interest and other systems,
such as the measurement apparatus or the environment. However, even consid-
ering the interaction between different agents during the measurement, we need
to introduce a cut in the chain at a certain point to introduce a projective mea-
surement and be consistent with the quantum mechanics postulates [154].

All these issues can be formally addressed by relaxing the assumptions on the
operators that describe the measurement process. Let us consider a discrete set
M of possible outcomes m ∈ M. The extension to a set of continuous values is
straightforward. The space M can be considered as a sample space where the
elements m are the events. Let us define a positive operator Em, called effect,
which satisfies the completeness condition:

∑
m∈M

Em = I. (1.42)
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The measurement outcome m will be a random number given by the probability
distribution Pm = tr(ρEm), such that, together with the completeness condition,
the total probability is normalized, ∑m∈M Pm = 1.

For the case of a selective measurement over a state ρ, the conditional state is
given by

ρ′m =
Φm(ρ)

Pm
, (1.43)

where the operation Φm(ρ) depends on the effect Em. Φm(ρ) is assumed to obey
the consistency condition to ensure the normalization of density matrices:

tr(Φm(ρ)) = tr(ρEm), (1.44)

in such a way that Φm(ρ)/Pm is a CPTP map. For non-selective measurements,
the unconditional state is

ρ′ = ∑
m∈M

ρ′mPm = ∑
m∈M

Φm(ρ). (1.45)

One can check the von Neumann-Lüders scheme of projective measurements is
a special case of the above setting. Indeed, the effect would correspond to a pro-
jection, i.e. Em = Πm, where the operation over the measured state is given by
Φm(ρ) = ΠmρΠm.

A natural generalization of the projection example is given by an operation
map like

Φm(ρ) = ΩmρΩ†
m, (1.46)

with the corresponding effect Em = Ω†
mΩm. The linear operator Ωm still satisfies

the completeness condition as ∑m∈MΩ†
mΩm = I.

This concept of generalized measurement leads to the more general idea of
positive operator-valued measure (POVM), which associates effects Em with mea-
surement outcomes m. The most general effect that one can construct is the fol-
lowing:

Em = ∑
l

Ω†
mlΩml ≤ I, (1.47)

where the operation over the measured state is

Φm(ρ) = ∑
l

ΩmlρΩ†
ml. (1.48)

The construction of this general case is based on the definition of CPTP maps
introduced in Sect. 1.4 and its Kraus decomposition (see Eq. (1.23)), where l
accounts for the number of Kraus operators. Further details about generalized
measurements can be found in Refs. [154, 155].

1.5.3 Indirect measurements

So far we have not given any hint about the nature of the measurement itself. We
have not commented on how the measurement is performed, what kind of appa-
ratus is used, what distinguishes measurement from other types of interactions,
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etc. The indirect or ancilla scheme goes in this direction. The ancilla system, also
called meter, probe, or pointer that we will denote byA, is a detection device that
will be connected with the system we want to measure S . We will only consider
a measurement chain with one extra element because the difference with adding
further stages is negligible when the ancilla undergoes a rapid decoherence pro-
cess [154]. Our indirect scheme is hence composed of three elements: the system
under measurement S with Hilbert space HS , the ancilla system A connected to
S which lives in a Hilbert spaceHA, and a classical apparatus by which a projec-
tive measurement is performed over the ancilla.

The aim of the indirect scheme is to obtain information about S from the cor-
relations built up between system S and ancilla A during their interaction by
measuring the ancilla. The preparation of the measurement follows three steps.
First, before the interaction between the system and the ancilla starts at t = 0,
the ancilla is prepared in a well-defined state ρA, while the system is in a state
ρS . Second, the interaction between the system and the ancilla starts at t = 0 and
finishes at some t = τ > 0, before the classical apparatus performs the projec-
tive measurement over the ancilla. Finally, the classical apparatus reads out the
ancilla, and the von Neumann-Lüders measurement postulate is applied.

In the following, we will derive the expressions of effects and post-measurement
states of the indirect measurement scheme. We start by assuming that system and
ancilla are completely independent of each other at t = 0 (before interacting),
such that the initial global state of system and ancilla is ρSA(0) = ρS ⊗ ρA. The
Hamiltonian of the total system is

H(t) = HS + HA + Hint(t), (1.49)

where HS and HA describe the free evolution of system and ancilla respectively,
and Hint(t) is the interaction Hamiltonian. The latter is assumed to vanish when
outside of the time interval [0, τ]. The unitary operator of the time evolution for
this interval is given by

U ≡ U (τ, 0) = T exp
(
−i

∫ τ

0
dtH(t)

)
, (1.50)

where T denotes here the chronological time ordering. After applying the unitary
time evolution, the composite system state is

ρSA(τ) = UρS ⊗ ρAU †. (1.51)

An important consequence of this evolution is that system and ancilla become
entangled and cannot be written as product states anymore. Once the unitary
operator has acted, an ancilla measurement produces an outcome. The classi-
cal apparatus performs a projective measurement over the ancilla by probing
an observable R (which acts in the Hilbert space HA). We here assume that R
has a non-degenerate and discrete spectrum, writing its decomposition as R =
∑m rm |rm⟩ ⟨rm|, where eigenstates |rm⟩ form an orthonormal basis. Notice that
although the measurement is performed over the ancilla, the system will be in-
fluenced too because of the entanglement. We also assume that the evolution
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of the system and the ancilla is negligible during the measurement of the classi-
cal apparatus, considering the measurement as instantaneous. The probability of
obtaining an outcome rm is then

Pm = tr((IS ⊗ |rm⟩ ⟨rm|)ρSA(τ)) = tr(U †(IS ⊗ |rm⟩ ⟨rm|)U (ρS ⊗ ρA)), (1.52)

where the trace is taken over the whole Hilbert space HS ⊗HA. Denoting the
partial traces overHS andHA as trS and trA respectively, the last expression can
be rewritten as

Pm = trS(EmρS), (1.53)

where
EmρS = trA(U †(IS ⊗ |rm⟩ ⟨rm|)U (ρS ⊗ ρA)). (1.54)

The projection postulate, given a selective indirect measurement, produces the
following global conditional state:

ρ′SAm =
(IS ⊗ |rm⟩ ⟨rm|)ρSA(τ)(IS ⊗ |rm⟩ ⟨rm|)

Pm
. (1.55)

If we only focus on the system of interest S , the final state is

ρ′Sm = trA(ρ′SAm) =
⟨rm|UρS ⊗ ρAU †|rm⟩

Pm
, (1.56)

where we notice that the unconditional state should read ρ′S = ∑m ρ′SmPm.
Introducing the spectral decomposition of the initial density matrix of the an-

cilla,
ρA = ∑

l
pl |ψl⟩ ⟨ψl| , (1.57)

the operation map that acts over the system can be written as

Φm(ρS) = ∑
l

ΩmlρSΩ†
ml, (1.58)

where we define the operators Ωml :=
√

pl ⟨rm|U |ψl⟩ and the effects are given by
Eq. (1.47), i.e. Em = ∑l Ω†

mlΩml. In the particular case of an initial pure state for
the ancilla, ρA = |ψ⟩ ⟨ψ|, the operators and effects become Ωm = ⟨rm|U |ψ⟩ and
Em = Ω†

mΩm respectively. We further notice that the ancilla states |ψl⟩ are not, in
general, eigenstates of the observable R, but superpositions of such eigenstates.

1.5.4 Continuous-variable indirect measurement

In the previous section, we introduced the indirect measurement scheme for the
simple case of an observable R of the ancilla with a discrete spectrum. We now
generalize to the case of an observable R with a continuous spectrum, R :=∫

rdr |r⟩ ⟨r|, introducing a more realistic implementation closely connected with
the measurement model described in Chapter 6. The observable R is going to be
now the momentum operator in a specific direction. Therefore, the classical mea-
surement apparatus will measure a certain momentum component of the ancilla
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particle. Our goal is to exploit the indirect measurement scheme to measure an
observable O of the system S . We take O as a discrete, non-degenerate observ-
able O = ∑j oj |oj⟩ ⟨oj|. To this end, we will consider an interaction Hamiltonian
that couples the observable O to the canonically conjugate position operator of R,
which we will denote as Q and that fulfills the commutation relation [Q, R] = i
(for h̄ = 1). The interaction Hamiltonian reads as

Hint(t) = G(t)OQ, (1.59)

where we assume that the time-dependent coupling G(t) vanishes outside the
interval [0, τ]. We make a further assumption by considering that the interaction
time τ is so short that the free evolution HS + HA can be neglected over this
window of time. The unitary evolution becomes then

U = exp
(
−i

∫ τ

0
dtG(t)OQ

)
= e−igOQ, (1.60)

where g is the integrated coupling strength. This parameter indicates how strong
will be the correlation between the system and the ancilla before the readout.
For simplicity, we assume that the initial state of the ancilla is a pure state ρA =
|ψ⟩ ⟨ψ|. We can comment now that the choice of this Hint is based on the fact that
the operator eiλQ, with λ ∈ R, acts as a translation operator for wave functions
like ϕ(p) ≡ ⟨p|ψ⟩ of the ancilla. Therefore, the operators Ωp, where p represents
a momentum outcome detected by the classical apparatus, are given by

Ωp = ⟨p|U |ψ⟩ = ⟨p|e−igOQ|ψ⟩ = ∑
j
|oj⟩ ⟨p|e−igojQ|ψ⟩ ⟨oj|

= ∑
j
|oj⟩ ⟨p|e−igojQ|ψ⟩ ⟨oj| = ∑

j
ϕ(p + goj) |oj⟩ ⟨oj| .

(1.61)

It follows that the probability density of obtaining a momentum outcome p is

P(p) = trS(EpρS) = ∑
j
|ϕ(p + goj)|2 ⟨oj|ρS |oj⟩ . (1.62)

This measurement scheme illustrates how the pre-measurement interaction shifts
the ancilla state by an amount goj. Reading out the momentum constitutes then
an approximate measurement of the observable O by the proximity of p to one
of the values goj (assuming that the initial momentum of the ancilla is zero,
⟨R⟩ (0) = ⟨ψ|R|ψ⟩ = 0). All relevant quantities can be now related to the shifted
states. In fact, further details can be obtained if one considers a specific initial
wave function, such as a Gaussian probability density:

ϕ(p) = ⟨p|ψ⟩ = 1
(2πσ2)1/4 e

−p2

2σ2 , (1.63)

where σ is the Gaussian width. This is the starting point of the measurement
model of Chapter 6, which is described in more detail in its supplementary infor-
mation Section II.B.
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1.6 Dynamical phase transitions in closed quantum
systems

This thesis is devoted to a large extent to the use of complex closed quantum
systems as reservoir computers. Interestingly, in the last few years, the statistical
mechanics of closed quantum systems has been a very active research field. This
is in part due to the interest in studying fundamental properties of many-body
atomic systems (like ultracold atoms [156] and trapped ions [157]), motivated by
the increasing access to experiments of nearly isolated quantum systems, but also
because of the interest to control these fundamental properties, with the develop-
ment of new quantum technologies in mind as computation or simulation.

In this section, we will introduce two dynamical regimes and the main mech-
anisms that describe them: the thermal and MBL dynamical phases. We start
by describing the thermal regime and how it is understood in closed quantum
systems.

1.6.1 Eigenstate thermalization hypothesis

Thermalization in closed quantum systems has been one of the hottest topics in
many-body physics during the last years, with pioneering publications even back
to the first days of quantum mechanics [158] (original in [159]), but with more
recent contributions that settled the grounds of the field [160–162]. However,
these latter works were almost forgotten until the work by Rigol et al. [163], in
part due to experimental limitations.

Let us now proceed by introducing the concept of thermalization. In thermo-
dynamics, macroscopic physical systems are in thermal equilibrium with an envi-
ronment when they reach the same temperature after exchanging energy and/or
particles, staying in a stationary state. At thermal equilibrium, these physical
systems become fully characterized by just a few extensive conserved quantities,
such as temperature, chemical potential, etc, suggesting that this process of ther-
malization is associated with the erasure of information of the system’s initial
state [164].

The thermodynamic description of macroscopic classical objects lacks a con-
nection with microscopic dynamics until statistical mechanics comes into play.
Under this formalism, the macroscopic deterministic dynamics is replaced by
a probabilistic description of the microscopic system, which is usually comple-
mented with the ergodic hypothesis: at long times, the system visits all accessi-
ble microstates with equal probability. By accessible we mean that the dynam-
ics might be constrained by, for example, energy conservation, exploring only a
subregion of the total phase space. The formal formulation of this hypothesis is
presented as

lim
t→∞

1
t

∫ t

0
o(t′)dt′ =

1
V

∫
V

o(x)dx, (1.64)

where o is a classical macroscopic observable, t is time and V is the volume
of phase space that the system can explore. The left-hand side is equal to the
time-independent right-hand side, meaning that the system reaches a stationary
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value of the observable after the deterministic macroscopic dynamics. Then, the
right-hand side integrates over the volume V of phase space, averaging over the
equally weighted accessible microstates. Notice that given that the right-hand
side does not depend on the initial conditions, the stationary value neither does,
becoming one of the main characteristics of ergodicity. We further remark that
this concept introduces thermalization in a weak sense: ergodicity deals with
long-time averages of observables, while we are interested in the value of observ-
ables at long times.

In the language of quantum mechanics, we will work with thermalization in
the strong sense, meaning that the values of observables will approach, at a given
time, their equilibrium value predicted by statistical mechanics, and remain close
to it at almost all subsequent times. Indeed, closed quantum systems exhibit sit-
uations where the expectation value of local observables arrives at a stationary
state that agrees with microcanonical predictions, "forgetting" their initial condi-
tions. See Fig. 1.6 for a numerical example. Then, there is an apparent paradox

FIGURE 1.6: Dynamics of spin projections in the z direction for the transverse-
field Ising model of Eq. (1.30). Parameters are h = 10, Js = 1, W = 0 and

N = 12.

between thermalization and unitary dynamics, which cannot erase any informa-
tion. The explanation of why an isolated quantum system can exhibit thermal-
ization is that smaller subsystems use the rest of the system as if it were a bath.
Hence, the information about the initial conditions of the system is hidden in the
global operators. In fact, in the thermodynamic limit, this information would be
hidden in those degrees of freedom that are not observables, i.e. infinite dimen-
sional Hermitian operators. Therefore, quantum thermalization in closed systems
is not about forgetting but hiding the information about the initial condition.

To understand the main ingredients of thermalization in closed quantum sys-
tems, we are going to consider a quantum system initially prepared in a pure state
|ψ(0)⟩ and evolve it under a time-independent Hamiltonian H. We remark that
the following analysis can be straightforwardly generalized to density matrices.
The eigenvalues and eigenvectors of H are given by H |m⟩ = Em |m⟩. The ini-
tial state can be decomposed in the eigenbasis of H as |ψ(0)⟩ = ∑ Cm |m⟩, where
pm = |Cm|2 is the probability of finding the initial state at the eigenstate |m⟩. The
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time-evolved state would be given by

|ψ(t)⟩ = e−iHt |ψ(0)⟩ = ∑
m

Cme−iEmt |m⟩ . (1.65)

The time evolution of some observable is then

⟨O⟩ (t) = ⟨ψ(t)|O|ψ(t)⟩ = ∑
m

pm ⟨m|O|m⟩+ ∑
m,n ̸=m

C∗mCnei(Em−En)t ⟨m|O|n⟩ .

(1.66)
As commented before, it is considered that an observable thermalizes if, after
some transient time, the expectation value of this observable agrees with micro-
canonical predictions, but we also further require that the temporal fluctuations
of the expectation value around the prediction are small at most later times. These
two requirements imply that the long-time average accurately describes the value
of the expected value ⟨O⟩ (t) after relaxation time, with a value close to the mi-
crocanonical prediction.

Now we face the problem of matching Eq. (1.66) with the previous require-
ments. The infinite-time average ⟨O⟩∞ is given by

⟨O⟩∞ = lim
t→∞

1
t

∫ t

0
⟨O⟩ (t′)dt′ = ∑

m
pm ⟨m|O|m⟩ , (1.67)

where the second term of Eq. (1.66) averages to zero (considering that there are
no degeneracies). How can Eq. (1.67) agree with the microcanonical ensemble
if the probabilities pm are constant in time? Besides, the eigenenergies of many-
body systems get exponentially close when we increase their size, and one could
need to wait an exponentially long time to observe the second term of Eq. (1.66)
disappear, in contradiction with the requirement of thermalization at a finite time
(and with experience).

A first solution could be given by the random matrix theory (RMT) [165,
166]. Originally developed to understand the spectra of heavy nuclei [167–170],
RMT lies at the heart of the so-called field of quantum chaos [171]. Under the
RMT hood, if a Hamiltonian H were a random matrix generated by one of the
ensembles of this theory, diagonal elements ⟨m|O|m⟩ would be independent of
the eigenstate |m⟩ and the off-diagonal terms ⟨m|O|n⟩ would be exponentially
small in system size. The eigenbasis {|m⟩} is given by random orthonormal vec-
tors, where its elements (in the computational basis) are well approximated by
Gaussian random numbers with unit variance. Let us consider an observable
with a discrete non-degenerated decomposition, i.e. O = ∑i oi |oi⟩ ⟨oi|. The RMT
ansatz for its matrix elements in the basis {|m⟩} is

⟨m|O|n⟩ ≈ Oδmn +

√
O2

d
Rmn (1.68)

where d is the dimension of the Hilbert space, Rmn is a random variable with zero
mean and unit variance and the upper bar over operators accounts for an average
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over random eigenvectors |m⟩, being:

O := ⟨m|O|m⟩ = 1
d ∑

i
oi,

O2 := ⟨m|O2|m⟩ = 1
d ∑

i
o2

i ,
(1.69)

see [172] for more details. Under these conditions, we would find that observ-
ables thermalize in the sense specified above: the long-time average becomes
independent of the initial conditions by

⟨O⟩∞ = ∑
m

pm ⟨m|O|m⟩ ≈ O ∑
m

pm = O, (1.70)

However, RMT falls short because physical Hamiltonians are not truly ran-
dom. In particular, the microcanonical ensemble prediction is energy-dependent
while O is not, and relaxation times are observable-dependent. Hence, RMT does
not provide all the detailed information that diagonal and off-diagonal matrix
elements of observables contain in real systems.

The most promising explanation to solve this conundrum was provided by the
groundbreaking works of Srednicki and Deutsch [160–162]. Srednicki’s ansatz is
known as the eigenstate thermalization hypothesis (ETH), and it can be formu-
lated as the assumption:

⟨m|O|n⟩ = O(E)δmn + e−Sth(E)/2 fO(E, ω)Rmn, (1.71)

where E = (Em + En)/2, ω = En − Em, and eSth(E) is the density of states at en-
ergy E, therefore relating Sth(E) to the thermodynamic entropy. The terms O(E)
and fO(E, ω) are smooth functions, and Rmn is again a random real (or complex)
variable with zero mean and unit variance. The ETH ansatz (1.71) differs from
the RMT ansatz (1.68) in: i) the energy dependence of the diagonal elements and
ii) the envelope function fO(E, ω) that goes with the off-diagonal terms. Then,
the former ansatz reduces to the latter when one focuses on a very narrow energy
window where fO(E, ω) is constant (realizing that e−Sth(E)/2 ∝ 1/

√
d). As we will

see, the ETH ansatz is a sufficient condition for thermalization. This, together
with the fact that RMT satisfies the ETH ansatz, means that Hamiltonians which
follow the RMT are expected to thermalize. Later we will see how to exploit RMT
indicators to detect thermalizing Hamiltonians.

Let us now see how ETH implies thermalization and ergodicity. We assume
that the expected value of the total energy

⟨E⟩ := ⟨ψ(0)|H|ψ(0)⟩ = ∑
m
|Cm|2Em (1.72)

has a quantum uncertainty

δE2 := ⟨ψ(0)|H2|ψ(0)⟩ − ⟨ψ(0)|H|ψ(0)⟩2 = ∑
m
|Cm|2(Em − ⟨E⟩)2 (1.73)
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that is sufficiently small. This is a natural assumption since for d large, initial
states of physical interest fulfill δE ∼ E/

√
d. Therefore, eigenenergies are found

in a small window such that we can expand O(Em) in powers of Em − ⟨E⟩ as
O(Em) ≈ O(⟨E⟩) + (Em − ⟨E⟩)O′(⟨E⟩) + 1

2(Em − ⟨E⟩)2O′′(⟨E⟩). Inserting this
approximation in Eq. (1.67), we obtain

⟨O⟩∞ ≈ O(⟨E⟩) + 1
2

δE2O′′(⟨E⟩). (1.74)

We can also observe that assuming ETH matrix elements, the microcanonical pre-
diction equals O(⟨E⟩):

OMC =
1
Ω ∑ ′Omm ≈

1
Ω ∑ ′O(Em) ≈

O(⟨E⟩)
Ω ∑ ′1 = O(⟨E⟩), (1.75)

where ∑ ′ = ∑Ω
⟨E⟩<Em<⟨E⟩+δE and Ω is the number of microstates whose energy

lies in the shell ⟨E⟩ < Em < ⟨E⟩+ δE. Then, ergodicity is displayed in the quan-
tum system by the relation ⟨O⟩∞ ≈ OMC. On the other hand, the long-time aver-
age of temporal fluctuations of ⟨O⟩ is

σ2
O = lim

t→∞

1
t

∫ t

0

((
⟨O⟩ (t′)

)2 − ⟨O⟩2∞
)

dt′ ≤ max
m ̸=n
| ⟨m|O|n⟩ |2 ∝ e−Sth(E). (1.76)

The time fluctuations of ⟨O⟩ are exponentially small in system size since Sth(E) ∝
N is an extensive quantity, where N is the number of particles. This equation
tells us that at almost any time the expectation value ⟨O⟩ is close to the result
of Eq. (1.67). Notice that these fluctuations are the deviation of the expected
value, not the experimental measurement fluctuations of the observable. It can
be shown that the latter, when taking the long-time average, are approximated by
the fluctuations predicted by the microcanonical ensemble [172]. Finally, we can
comment on the relaxation time scale. In general, it depends on the observable,
the initial state, and the Hamiltonian that drives the dynamics. But as numeri-
cal and real experiments show, the relaxation time scales of observables are not
exponentially large [172].

While it is not clear yet if the ETH is a necessary condition for thermaliza-
tion, neither it is known which observables satisfy the ansatz, it is believed that it
holds for very general many-body quantum systems with strong interactions and
for all their physical observables (i.e. finite-dimensional) [172]. This ansatz has
implications for the structure of eigenstates and their entanglement properties.
For an eigenstate |m⟩ obeying the ETH, all the observables with support over a
small subsystem A will have thermal expectation values, implying that the re-
duced density matrix ρA = trB(|m⟩ ⟨m|) (B is the complement of A) is a thermal
state.

1.6.2 Many-body localization

On the extreme side, we can find isolated many-body quantum systems that
break the ergodicity of the ETH. There are some known routes to escape from it,
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such as integrability, characterized by an extensive number of conserved quanti-
ties [173] or quantum many-body scars, where a specific type of initial conditions
never reach thermal equilibrium because quantum systems can have an exten-
sive number of nonergodic eigenstates [174]. Another possible route is given
by localization. Phillip Anderson was the first one to notice that wave function
localization could be present in noninteracting systems [175], but recently, local-
ization in interacting systems has gained a lot of attention since the publication
of the work by Basko et al. [176]. This localization with interactions defines the
many-body localization (MBL) regime, where the dynamics of local observables
retain a memory of their initial conditions, see Fig. 1.7. We notice that MBL is the
only known example where ETH can be violated by all the eigenstates in a non-
integrable system. This means that MBL is a phase of matter where localization
happens at finite energy density, i.e. far away from the ground state. However,
it could happen that transitioning from ergodic to MBL, not all eigenstates lo-
calize. The presence of this phenomenon, named mobility edge [176], implies
that there is a definite energy density in the spectrum at which the properties of
the Hamiltonian eigenstates change, separating localized and ergodic eigenstates.
This means that the initial condition determines whether the system thermalizes
or remains localized, depending on its energy.

FIGURE 1.7: Dynamics of spin projections in the z direction for the transverse-
field Ising model of Eq. (1.30). Parameters are h = 1, Js = 1, W = 100 and

N = 12.

The existence of the MBL regime has not only been shown in numerical exper-
iments (see the reviews [177–179] for early contributions), but it has been also the-
oretically demonstrated for one-dimensional spin models [180, 181] and experi-
mentally shown for a multitude of platforms, such as trapped ions [14], supercon-
ducting qubits [182, 183], bosons [184] and fermions [185] in optical lattices, and
nuclear spins [186]. However, for d > 1 dimensions and long-range interactions,
it is not clear if the MBL phase is stable. Indeed, localization would be harder to
sustain, not knowing which are the conditions that guarantee the MBL phase sta-
bility in the thermodynamic limit. Since our work deals with finite-dimensional
quantum systems (used as complex reservoirs), we will be only concerned with
those finite systems that exhibit MBL features and get localized up to experimen-
tally relevant time scales.
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The usual mechanism to escape ergodicity in the MBL context is through local
disorder, which introduces a new kind of integrability. And this emergence of
integrability is compatible with the observation of memory of initial conditions
that we commented on before. The effective theory that we will describe below
provides a complete description of the most important properties of the MBL
regime, such as the absence of transport, logarithmic dynamics of entanglement,
dynamics of local observables, and the breakdown of ETH. Let us introduce it
through a simple example, which will help us to gain some intuition. A trivial
limit of MBL would be the case of an integrable system, as a chain of quantum
spins with Hamiltonian

H = H0 = J
N−1

∑
i=1

σz
i σz

i+1 +
N

∑
i=1

hi

2
σz

i , (1.77)

where N is the number of spins, σz
i is the Pauli matrix in the z axis at site i, J is

the coupling strength and hi is a local magnetic field different for each spin, i.e.
|hi| ̸= |hj| for i ̸= j (avoiding degeneracy in the spectrum). For simplicity, we
assume that hi are randomly distributed in an interval hi ∈ [−W, W], where W
is the disorder strength. The Hamiltonian of Eq. (1.77) commutes with all σz

i and
any product of them. Hence, in this integrable model, there is no thermalization
because of the extensive number of conserved quantities that it presents. And
independently of the magnitude of disorder W, the eigenstates of Eq. (1.77) are
spins aligned in either the parallel or antiparallel direction of the field.

Now, we add a weak nearest-neighbor interaction to the Hamiltonian in the
other directions with strength g:

H = H0 + g
N−1

∑
i=1

(σx
i σx

i+1 + σ
y
i σ

y
i+1). (1.78)

This Hamiltonian is known as the Heisenberg model, which is non-integrable and
the paradigmatic example in (the numerical analysis of) MBL [187–189]. Equation
(1.78) is no longer diagonal in the z basis. Keeping a low value of g, such that
O(g/W) ≪ 1 with O(J/W) ∼ 1, we can construct a set of "dressed" opera-
tors τz

i such that [H, τz
i ] = [τz

i , τz
j ] = 0. These τz

i are called local integrals of
motion (LIOMs) [190, 191]. They are quasi-local operators whose support de-
cays exponentially with the distance to the corresponding spin i. One can con-
nect each dressed operator τz

i with its original integral of motion σz
i through a

quasilocal unitary transformation: τz
i = Uσz

i U†. A unitary transformation is
defined as quasilocal if it can be factorized into a sequence of local unitary op-
erators as U = ∏i · · ·U

(3)
i,i+1,i+2U(2)

i,i+1, such that the long-range unitary operators

fulfill ||I −U(n)
i,...,i+n||

2 < e−n/ξ over the Frobenius norm, where ξ is the localiza-
tion length scale. This localization scale, which controls the locality of τz

i , is what
distinguishes the MBL regime from the ergodic one. In principle, one could also
define operators τz

i for thermal regimes, but they would be highly nonlocal and
therefore useless [179].

We can form a complete basis of operators with the new quasilocal operators,
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such as the Pauli matrix basis that we employed in Sect. 1.4.4. For that, we need
to introduce the quasilocal terms τ

x,y
i = Uσ

x,y
i U†, and now every operator can be

decomposed in terms of the operators τ
x,y,z
i . Hence, we can exploit this represen-

tation to show the general form of an MBL Hamiltonian. Since all τz
i are integrals

of motion, i.e. [H, τz
i ] = 0, the Hamiltonian cannot contain the operators τ

x,y
i be-

cause they do not commute, i.e. [τx,y
i , τz

i ] = U[σ
x,y
i , σz

i ]U
† ̸= 0. Then, the general

expression of an MBL Hamiltonian can be written as:

HMBL = ∑
i

h̃iτ
z
i + ∑

i>j
Jijτ

z
i τz

j + ∑
i>j>k

Jijkτz
i τz

j τz
k + · · · . (1.79)

The parameters h̃i denote the effective external fields acting over each l-bit (the lo-
calized bits, sometimes used in the literature referring to the operators τz

i ), while
the couplings

Jij ∝ e−|i−j|/κ, Jijk ∝ e−|i−k|/κ, . . . (1.80)

decay exponentially with the separation between the l-bits. It can be shown that
the interaction length scale κ satisfies the inequality κ−1 ≥ (ξ−1 + ln 2)/2 [179].

The emergent integrability of the MBL phase explains the breakdown of er-
godicity since local observables retain memory of the initial states, encoded in
the initial values of the LIOMs. It also explains many other features of the MBL
regime, that in fact, are quantified as deviations from ETH, such as area law en-
tanglement entropy [190, 192], Poisson level statistics of eigenenergies [188, 193],
logarithmic growth of entanglement [194, 195] and dynamics of local observables
after a quench [187, 194]. We now formally define these concepts, which can be
exploited to detect a phase transition between both regimes. The main figure of
merit we are going to introduce is Eq. (1.86), used in Chapter 4.

1.6.3 Dynamical phase transition

The differences between the ergodic and the MBL phase can be seen in many
indicators. One of the most characteristic features of the ETH ansatz and the MBL
phase is the entanglement properties of eigenstates. Let us take an eigenstate |m⟩
and define two partitions A and B of its Hilbert space, such that we can define
the reduced state ρA = trB(|m⟩ ⟨m|), being B the complement of A. If the state
|m⟩ could be written as a pure state product, |m⟩ = |m⟩A ⊗ |m⟩B, then ρA would
be pure and uncorrelated from subsystem B. Otherwise, it is a mixed state. A
way of quantifying the entanglement between the two partitions is through the
entanglement entropy:

Sent = −tr(ρA ln ρA), (1.81)

which is the von Neumann entropy of subsystem ρA. Then, for a pure state ρA
we find Sent = 0. If mixed, Sent ≥ 0.

A random eigenstate |m⟩ that fulfills the ETH will exhibit a thermal density
matrix when it is reduced to a sufficiently small subsystem A. Then the en-
tanglement entropy of A equals the thermodynamic entropy (as introduced in
Eq. (1.71)) in the thermodynamic limit: Sent = Sth. And since the thermodynamic
entropy is an extensive quantity, the entanglement entropy follows a volume law
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as Sent ∝ vol(A). It can be also shown that in the case of random vectors in Hilbert
space, the average (over random pure states) entanglement entropy is computed
as Sent ≈ ln(dA)− dA

2dB
with 1 ≪ dA ≤ dB, where dA and dB are the Hilbert space

dimensions of partitions A and B respectively [196]. The connection between
the volume law and the previous formula for random vectors can be made ex-
plicit for a concrete example, as in a unidimensional chain of qubits. Splitting a
chain of N qubits into two partitions of equal size, the partition dimensions are
dA = dB = 2N/2. The average entanglement entropy would read

Sent ≈
1
2
(N ln 2− 1), (1.82)

which is proportional to the chain’s length, following the volume law. On the
contrary, it has been shown that high energy eigenstates of MBL systems exhibit
an area law entanglement entropy [190, 192]. This means that the entanglement
entropy of A scales proportional to the volume of the boundary ∂A of A. The
usual argument to understand this is as if the MBL eigenstates were obtained
from a local perturbation that entangles particles between A and B only over
a distance ξ away from the boundary ∂A [179, 190]. This local perturbation is
supposed to decay exponentially in distance from the boundary.

The entanglement entropy is not the only quantity that can detect differences
in the spectrum between phases. The ETH implies a high sensitivity of eigen-
states to small local perturbations of the Hamiltonian, and the sensitivity of ther-
mal eigenstates implies level repulsion [172]. Level repulsion is in fact one of
the main features of the Wigner-Dyson distribution, used to describe the level
statistics of quantum chaotic systems, and as commented in Sect. 1.6.1, quantum
chaos is an indicator of thermalization. The Wigner-Dyson distribution of a 2× 2
Hamiltonian has the general form

PWD(w) = Aβwβe−Bβw2
, (1.83)

where w := E2− E1 is the energy gap, the coefficients Aβ and Bβ are given by nor-
malization and β depends on the symmetry of the Hamiltonian. Time-reversal
symmetry makes the Hamiltonian a real symmetric matrix, having β = 1, while
β = 2 means the absence of this symmetry (not shown here, see [172]). Observe
that the probability of a vanishing energy gap goes to zero, limw→0 PWD(w) = 0,
defining the so-called level repulsion. Generalizing the Wigner-Dyson distribu-
tion, one can define an ensemble of matrices drawn from a Gaussian distribution
with probability [172, 197]:

PWD(H) ∝ e−
β

2a2 tr(H2), (1.84)

where a sets the energy scale. As before, β = 1 refers to real symmetric matrices,
denoted as the Gaussian orthogonal ensemble (GOE), while β = 2 corresponds
to Hermitian matrices, denoted as the Gaussian unitary ensemble (GUE). The
nearest-neighbor level-spacing distribution PWD(w) that one would derive from
Eq.(1.84) does not have a closed analytical form. However, it is qualitatively and
quantitatively close to the simple case of two levels in Eq. (1.83) [197].
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In contrast, for strong disorder in MBL systems the energy level repulsion
disappears and the level statistics approaches a Poisson distribution [188, 193].
The absence of level repulsion means that it is likely to find energy levels arbi-
trarily close to each other within an energy interval. This is a consequence of
emergent integrability and can be explained as follows. For an extensive num-
ber of integrals of motion (as in integrable models) in many-particle systems, the
eigenstates behave as independent random variables. Therefore, the distribution
of energy level spacings corresponds to an uncorrelated random spectrum, being
described by a Poisson distribution [172]. For a mean level spacing set to one, the
distribution of energy gaps is

PPoisson(w) = e−w, (1.85)

which fulfills the absence of level repulsion PPoisson(0) = 1. The statement that
energy eigenvalues behave as a sequence of independent random variables in
integrable quantum systems whose corresponding classical counterpart is inte-
grable is known as the Berry–Tabor conjecture [198]. This conjecture describes
what is actually seen in many quantum systems, even without a classical coun-
terpart, but one can find examples for which it fails, such as a single particle in a
harmonic potential [199].

The current analysis of spectral level spacing for distinguishing ETH from
MBL is usually carried out through the so-called gap ratio [193]:

rn =
min(δn, δn+1)

max(δn, δn+1)
, (1.86)

where δn = En+1 − En is the energy gap between consecutive levels in the spec-
trum. It has been shown that the average gap ratio (averaged over random real-
izations of the Hamiltonian) for a spectrum of Poissonian statistics is rPoisson =
2 ln 2 − 1 ≈ 0.38, while in a GOE ensemble of random matrices it was found
rGOE ≈ 0.53 [200]. Since the transverse-field Hamiltonian of Eq. (1.30) has time-
reversal symmetry (described by the GOE ensemble when thermalizing), we will
make use of the previous values to classify its dynamical regimes in Chapter 4.

So far we have commented on order parameters that depend on the eigen-
values and their statistics. But we are dealing with dynamical phases: nonequi-
librium regimes where physical quantities can exhibit different behavior in time.
The most obvious order parameter with time dependence would be the long-
time value of local observables. Compare for example Figs. 1.6 and 1.7. This fea-
ture has been actually employed to experimentally demonstrate dynamical phase
transitions, for instance in ion-trap [14, 15] and cold atoms experiments [201, 202].
But other physical quantities can be evaluated in time to detect the ergodicity
breaking in MBL [187, 203, 204]. One of the most common ones is the entangle-
ment entropy dynamics. The idea is very similar to the eigenstate entanglement
entropy detection: we divide the system into two parts, A and B, where B is the
complement of A. Generally, one takes half of the system for each partition. Then,
the system is usually initialized as a product state, |ψ(0)⟩ = |ψ(0)⟩A ⊗ |ψ(0)⟩B.
The system evolves under the unitary dynamics and the entanglement entropy is
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evaluated at each time t as

Sent(t) = −tr(ρA(t) ln ρA(t)). (1.87)

Starting from a product state, Sent(0) = 0 and Sent(t) > 0 for any finite t. The
entanglement entropy grows until the system becomes entangled and it saturates.
The key point is the temporal dependence of this growth. In the thermal regime,
the growth is ballistic, Sent(t) ∼ t, while in the localization regime under strong
disorder, the growth is logarithmic, Sent(t) ∼ ln t.

Of course, all these differences in entanglement and eigenvalue statistical prop-
erties must have an impact on how closed quantum systems process information.
An example of this is that systems exhibiting MBL can furnish quantum memo-
ries at finite temperature [205], enable quantum batteries [206], or prevent over-
heating in Floquet systems [207, 208]. Localization of quantum spin models can
also enhance the trainability in quantum machine learning [209]. On the other
hand, localization has been reported as potentially negative for quantum ran-
dom walk algorithms [210, 211] or quantum annealing [212, 213], although adi-
abatic optimization algorithms can be successfully defined around the transition
point [214]. The central goal of Chapter 4 is to understand the role of thermal-
ization and localization in the specific scenario of QRC, demonstrating that the
optimal information processing abilities in QRC are not only preferred in the er-
godic phase but also have significant benefits during the onset of this regime.

1.7 Main original contributions of this thesis

We finish the introduction with a summary of the results of this thesis, presenting
the problems that we tackled from a chronological perspective. For this, we will
proceed by briefly reviewing the QRC literature, summarizing the outcome of
each chapter within the context of publications in the QRC field. We would like
to warn the reader that some of the articles discussed here may have a publication
date distant from their first appearance in the arXiv. Besides, the QELM field has
been developed almost in parallel in time with respect to the QRC field, but we
will focus on the QRC field in this discussion for the sake of conciseness.

The field of QRC started with the publication of the quantum reservoir spin
model of Fujii and Nakajima in 2017 [113], presented in Sect. 1.4.4. This work
was a natural continuation of the exploration of classical physical implementa-
tions for RC and neuromorphic platforms that had started some years before [75,
109]. The proposal was based on exploiting a transverse-field Ising model as the
reservoir, with amplitude encoding as the input mechanism and the expected
value of observables for the readout. Then, it immediately followed a series of
articles that contributed to extend the understanding of the same model. These
contributions include further explorations of the spin network topology [137], the
introduction of a deep reservoir scheme through spatial multiplexing [136], and
a proof-of-principle QELM experiment with NMR [16]. Soon after these publica-
tions, Chen and Nurdin analyzed sufficient conditions for the ESP and FMP in
QRC [139], accompanied by numerical experiments of a variation of the model of
Sect. 1.4.4.
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Up to this point, we realized that all the previous studies only used local spin
projections as the observables for the output layer, that is, nobody had explored
the possibility of using the rest of the degrees of freedom for computation in QRC.
Besides, although some benchmark tasks had been analyzed [113, 137, 139], it was
not clear the computational capabilities that these observables could offer in the
spin model. Therefore, our first work focused on exploring these capabilities for
both local and second-order observables [19] (Chapter 3). For doing this, we took
a novel approach by calculating the IPC within the QRC framework, assessing
the linear and nonlinear memory capabilities of the system. By analyzing the
convergence speed with respect to the input injection time, we also identified the
optimal conditions for input driving that would enhance computational speed
and performance of the studied model. This investigation was crucial in reveal-
ing the intricate nature of the Ising model as a reservoir, demonstrating how its
hyperparameters strongly influence its performance and highlighting the bene-
fits offered by the large dimension of the Hilbert space.

Meanwhile, in 2019 Chen et al. had been working on the first IBM experimen-
tal proposal for QRC [126, 215], studying the ESP, FMP, and UAP in a quantum
circuit platform with a reset rate as the dissipation source. A second article on an
IBM implementation with a different quantum circuit design followed soon af-
ter [125], characterizing its linear memory capacity. Around the same time, with
Nokkala et al. [123] we started to work on the first proposal of a continuous-
variable QRC model with Gaussian states, and studied the conditions that pro-
vide universality in this platform. Also in 2020, a perspective article appeared
including an overview of quantum neuromorphic computing with a mention to
QRC [216]. Later that year, Tran and Nakajima continued exploring new ways of
improving the performance and scalability of QRC models [138], and two book
chapters were released [108]: an introduction to both the QRC field [217] and the
NMR experimental platform they previously employed for QELM [218].

All the research mentioned above focused either on heuristically exploring
new reservoir architectures or improving the performance of the already existing
ones. This is in fact a common trend in the ML research: new algorithms are
proposed and optimized in the search for the best results, sometimes postpon-
ing the detailed understanding of models. After publishing our first work [19],
we decided to fill this gap in the quantum spin model. Reference [20] (Chapter
4) aimed to gain a comprehensive understanding of the relationship between the
hyperparameters of the quantum spin model and its performance. Our investiga-
tion revealed the relation between these factors and the dynamical regimes of the
unitary dynamics. Specifically, we found that thermalization within the unitary
dynamics establishes favorable conditions for RC, while localization has a detri-
mental effect. Furthermore, we observed that at the transition point between the
thermalization and localization regimes, there might exist a peak in performance
that depends on the specific task being addressed. While we identified the roles
of the dynamical regimes for QRC and characterized them in all detail, it is worth
mentioning that we were not the only ones thinking about this problem. The first
publication of Fujii and Nakajima gives some hints about the dynamical regime
dependence of the quantum spin model [113], and Xia et al. released a related
work almost at the same time [140].
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FIGURE 1.8: Number of citations (left axis) and number of publications (right
axis) in the field of QRC between the years 2017 and 2023. Data has been
obtained by searching "reservoir computing" and "quantum" in Scopus [219].
Preprints are not included and QELM and other unrelated references have

been manually removed.

We find a few more publications during 2021, see Fig. 1.8. In Ref. [110],
Nokkala et al. continued evaluating the capabilities of continuous variables quan-
tum reservoirs, further extending the applicability of these models to process
quantum time series [148]; a few months before, the application of quantum spin
reservoirs to learn the tomography of temporal quantum maps had already been
proposed [149]; Kalfus et al. explored the impact of the Hilbert space dimension
of a single qudit reservoir [132]; Suzuki et al. proposed a new quantum circuit
implementation where the natural hardware noise is exploited for QRC [79]. That
summer, two review articles were published, Refs. [18] (Chapter 2) and [220]. It
is not a coincidence that both publications appeared almost at the same time: the
QRC and QELM fields were burgeoning enough to be reviewed, foreseeing some
perspective on the future directions that the fields could take. In fact, some re-
view articles with a broader scope had already devoted paragraphs to them [2,
109, 216].

Again, some fundamental questions were not being addressed up to this point.
In particular, the origin of nonlinearity in QRC was not completely clear. In a
prior study [123], we successfully demonstrated that nonlinearity of a continuous-
variable implementation using Gaussian states can be entirely attributed to the
input codification. A more general description was provided by Govia et al., in
which again the input encoding becomes the determinant factor to provide non-
linearity [122]. But input encoding is not the only ingredient. In the study pre-
sented in Ref. [21] (Chapter 5), we derived analytical expressions for the expected
values of observables of the Fujii and Nakajima model based on the chosen input
codification, revealing their dependence on the observable itself, input prepro-
cessing, and the number of qubits involved in the encoding map. We presented
the QRC spin model alongside the harmonic oscillator model from Ref. [123] for
the sake of comparison.

While we were working on this, experimental implementations on the IBM
quantum computers have been already carried on, but they relied on restarting
the protocol at each time step to obtain the expected value of the output observ-
ables. Reinjecting the input sequence from the first codification at each time step
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yields a time complexity that increases quadratically with the length of the se-
quence. Since the beginning of 2021, we had been wondering how to implement
a more efficient protocol to process time series. We focused on finding an alter-
native strategy where an external memory of inputs would not be required to be
processed once the quantum reservoir is trained. That is, we wanted to propose
a scheme where the quantum reservoir could make predictions from a directly
injected input sequence, without any storage of the input information. Our pro-
posal was to implement weak measurements over an ensemble of copies of QRC
systems [22] (Chapter 6). This approach allows us to keep a balance between
performance and the effect of backaction, the retrieved information after each
measurement, and the statistical noise of finite sampling.

After a few years of research, the QRC field was becoming attractive to more
researchers. Vintskevich and Grigoriev proposed to enhance the performance of
quantum reservoirs with spatial multiplexing by connecting them with nonselec-
tive measurements [221]; in Ref. [147], Khan et al. analyze the transition between
the classical and quantum regime of a Kerr oscillator reservoir, with quantum
states as inputs and output measurements determined by the experimental plat-
form; Araiza Bravo et al. studied the construction of a quantum reservoir from an
array of Rydberg atoms [129]; Dudas et al. numerically studied coupled quantum
oscillators [222] and its implementation in Josephson junctions [130]; Llodrà et al.
compared the memory capacity of bosons and fermions with a model inspired
by the one presented in Sect. 1.4.4 [223]; García-Beni et al. proposed a photonic
platform for online QRC based on an ensemble of reservoirs formed by identical
optical pulses recirculating through a closed loop [131]; Sannia et al. explored
the memory and forecasting capabilities of quantum dissipative systems with
tuneable local losses, given that this family of models possesses the universal-
ity property [133]. Also, new studies continued to explore experimental imple-
mentations. A hybrid scheme between classical RC and quantum computation
scheme for predicting convection flow was experimentally tested [224]; Kubota
et al. numerically evaluated the TIPC for quantum circuit reservoir under differ-
ent hardware noise channels and [94]; Molteni et al. explored the optimization
of quantum circuits with reset rate [134]; lastly, Spagnolo et al. demonstrated the
viability of optical quantum memristors for performing QRC [17].

Finally, more contributions have appeared in 2023. Götting et al. studied the
relation between entanglement, STM capacity, and the effective Hilbert space di-
mension of the spin model of Sect. 1.4.4 [142]; Motamedi et al. evaluated the
performance of a single nonlinear oscillator in a time-series prediction task with
respect to a measure of quantumness [144]; Fry et al. extended the previous works
on quantum circuits with hardware noise [79, 94] optimizing the very same noise
channels [135]; Xia et al. optimized hyperparameters of a quantum reservoir to
efficiently solve multiple tasks with the same system [141]; Mlika et al. tackled
the problem of predicting the trajectory of mobile users with a quantum circuit
implementation [225]. In this context of new research groups and very diverse
publications, we published our last work [23] (Chapter 7). A detailed analysis of
the requirements that make quantum reservoirs suitable for time-series process-
ing was missing. For finite-dimensional quantum systems with classical inputs
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and an infinite number of measurements, we determined that the crucial crite-
rion for a reservoir to be valuable is the presence of strictly contractive dynamics
leading to input-dependent fixed points.
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Chapter 2

Opportunities in Quantum Reservoir
Computing and Extreme Learning
Machines

2.1 Motivation and contribution

By the time this work was published, the field of QRC was burgeoning. We de-
cided to make the effort of gathering all the available information up to that mo-
ment, analyzing the status of the field, and giving some hints about future lines
that could be explored providing a perspective on QRC. Beyond QRC, we also
described the state-of-the-art in quantum extreme learning machines (QELM),
not devoted to temporal tasks, since both concepts are closely related. In QELM
and QRC, quantum dynamical systems are exploited as physical substrates for
supervised machine learning tasks, with the common characteristic of no fine-
tuning of the quantum systems during training. The main differences between
RC and ELM (and their quantum versions) are highlighted in Sect. 2 of the pub-
lished paper, with emphasis on the presence (RC) or absence (ELM) of memory
in the hidden layer. Although they differ in the nature of the target tasks, actually
most of the physical substrates proposed for QELM could be used in QRC, and
vice versa. Since both QRC and QELM were developed almost at the same time
and often not clearly identified in the literature, it made sense to review them
together. As a complement to this chapter, Sect. 1.4 updates in some aspects the
state-of-the-art of the QRC literature.

Due to the nature of this work and although all the authors contributed to the
manuscript, it was necessary to initially divide the workload by different topics.
In particular, my contributions to the text are especially reflected in all the sections
that are related to spin models. The outcome of this work is the publication of an
accessible introduction for newcomers, but also a good reference to consult for
experts in the field.

2.2 Published paper

Pere Mujal, Rodrigo Martínez-Peña, Johannes Nokkala, Jorge García-Beni, Gian
Luca Giorgi, Miguel C. Soriano and Roberta Zambrini, Opportunities in quantum
reservoir computing and extreme learning machines, Advanced Quantum Technologies,
4, 2100027 (2021).
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https://doi.org/10.1002/qute.202100027

 https://doi.org/10.1002/qute.202100027


49

Chapter 3

Information Processing Capacity of
Spin-Based Quantum Reservoir
Computing Systems

3.1 Motivation and contribution

The characterization of RC systems is one of the main problems that the RC com-
munity has to address when a new physical substrate is proposed. By character-
ization we mean to understand what are the capabilities of an RC system, being
the performance in different tasks a crucial issue in view of applications. This
characterization could be related to the more general capacity problem of neural
networks, where the committed errors during task executions are estimated in
terms of the hyperparameters of the system.

In principle, there is no way of completely characterizing RC systems such
that the performance for any arbitrary target task can be anticipated. A usual
approach is to examine some benchmark tasks that the community considers ap-
propriate proxies. For instance, dynamical systems with chaotic regimes, such as
the Lorenz or Mackey-Glass models are used as indicators of the ability to pre-
dict chaotic time series [226, 227], while the short-term memory task is a good
indicator of the capacity of a system to remember linear functions of past inputs
[90].

In our case, we characterized the memory of the recently proposed QRC model
of spins [113], since due to its novelty it was not clear which kind of tasks it could
solve, although some benchmark tasks were already analyzed [113, 137, 139].
In fact, we were mainly concerned with two points: 1) which nonlinear tasks it
could solve since the form and origin of nonlinearity in QRC were still unclear
at that moment; and 2) what were the capabilities of a QRC system beyond the
output layer made of single spin observables, as had been constructed in previ-
ous works. We decided to characterize the memory of the RC system with the
IPC, which quantifies in a fairly objective way the different linear and nonlinear
contributions to the memory of an RC system. We computed the IPC in terms
of different hyperparameters, such as the input injection rate ∆t, the number of
spins N, and the external magnetic field h. This, with a previous analysis of the
convergence speed in terms of ∆t, allowed us to find optimal conditions for the
input driving in terms of speed and performance. Finally, we provided differ-
ent alternatives for the output variables after evaluating the effect of temporal
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multiplexing and correlation observables in the output layer. We further notice
that this paper pioneered the use of the IPC to characterize the capabilities of a
quantum reservoir.

To follow this chapter, Sects. 1.4.4 and 1.3.3 provide an introduction of the
basic concepts. Section 1.4.4 contains a detailed description of the model we em-
ployed while Sect. 1.3.3 defines the IPC. As the first author, I led this project,
performing all the numerical simulations and (with all the authors) contributing
to analyze and interpret the results.

3.2 Published paper

Rodrigo Martínez-Peña, Johannes Nokkala, Gian Luca Giorgi, Roberta Zambrini
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Chapter 4

Dynamical phase transitions in
quantum reservoir computing

4.1 Motivation and contribution

While preparing the previous chapter’s article, we realized that something im-
portant was affecting the RC performance when varying hyperparameters like h,
Js, and ∆t. For example, the decrease of the IPC in Fig. 8 (a) for a small magnetic
field h was unintelligible at that moment. We had the intuition that the saturation
of the IPC for large values of ∆t was connected with some thermalization time
scale. After some tests and revision of the literature, we realized that the value of
these hyperparameters determines the dynamical regime of our closed quantum
system. Then, the motivation behind this chapter was to contribute to the identi-
fication of "good" reservoirs, answering the particular question: what is the role
of dynamical phases in QRC?

We studied the case of a transverse-field Ising model, generalizing the Hamil-
tonian proposed in [113] and exploring its different dynamical regimes. We actu-
ally provided a complete phase diagram of this model establishing the presence
of ETH, MBL, and spin glass phases when changing the relative strength of the
homogeneous magnetic field and the heterogeneous disordered magnetic field.
Our conclusions can be extrapolated to any QRC model where unitary dynamics
processes the input information. Indeed, the physical interpretation that we pro-
vide in terms of dynamical regimes like thermalization or MBL intuitively assures
that different dynamical systems within the same phase should provide similar
RC properties.

The outcome of this work is understanding the role of dynamical regimes in
QRC systems composed of an input protocol map and an entangler unitary dy-
namics. The thermal regimes of the unitary part provide the appropriate condi-
tions for temporal information processing, while localization regimes like MBL
are detrimental. Interestingly, the transition between these regimes can offer an
improvement in performance, as shown in Fig. 4. However, as Fig. S5 shows for
nonlinear targets, this is not necessarily true for any task.

Section 1.6 offers an introduction to the thermalization of closed quantum sys-
tems, MBL, and dynamical phase transitions. This, with the content of Sect. 1.4.4,
contributes to comprehending the present chapter. As in the previous chapter,
I led this research project by refining the research idea toward dynamical phase
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transitions, performing all the simulations, and providing a physical interpreta-
tion.
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Chapter 5

Analytical evidence of nonlinearity
in qubits and continuous-variable
quantum reservoir computing

5.1 Motivation and contributions

The first explanations about the origin of nonlinearity in QRC were not satisfac-
tory. In particular, explicit expressions of the input dependence on the output
were missing in QRC, including the Fujii and Nakajima model. With such ana-
lytical expressions, we could have a better intuition of which kind of nonlinear
functions the models could solve. Indeed, in a previous work, we proved that the
nonlinearity of a continuous-variable implementation with Gaussian states was
completely determined by the input codification [123]. This allowed us to explain
why the proposed Gaussian state implementation could not solve tasks like the
parity check with a linear output layer made of first and second moments, since
reservoir equations were missing the products of inputs at different time steps.
To solve the parity check task, a careful construction of the output layer was re-
quired, such that it contained the desired input products. Besides, we observed
that different input encodings were responsible for shifting the nonlinear capabil-
ities of the continuous-variable model from completely linear to highly nonlinear.

The input encoding that we used in Ref. [123] is the same ancillary input cod-
ification scheme that Fujii and Nakajima proposed in [113]. Therefore, after the
experience we gained with the continuous-variable work, we expected to obtain
similar conclusions with the qubit model, i.e., that the nonlinearity of the Fujii
and Nakajima model should be determined by the input codification (for a linear
output layer). However, the input mechanism does not necessarily uniquely de-
termine the nonlinear response of a general QRC system. In Ref. [21] we obtained
analytical expressions of the expected values of observables in terms of the input,
showing a dependence on the chosen observable, the input preprocessing, and
the number of qubits that participate in the encoding map. The QRC spin is pre-
sented together with the harmonic oscillator model of Ref. [123] for the sake of
comparison. These results are complemented in Chapter 6 clarifying the role of
measurement: no further nonlinearities are introduced into the QRC spin model
by applying any of the experimental protocols we explored. Furthermore, we
show that the dynamical regime of the quantum spin model can play a determi-
nant role, finding that the MBL regime completely neutralizes the input response,
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an aspect we have fully characterized in Chapter 4. This is also found in other
implementations such as quantum master equations or parameterized unitaries,
showing that input codification and reservoir dynamics together determine the
nonlinearity [122].

The most relevant introductory section for this chapter is Sect. 1.4, as it con-
tains a general description of quantum reservoirs and input codification. The
original idea of this chapter was developed by Dr. Pere Mujal, where explicit
analytical expressions of the quantum spin reservoir equations were derived in
terms of the input. In this case, my contribution is devoted to the numerical as-
pects of the spin model section, including the discussion of the analytical results.
The learned conclusions about the nonlinear input dependence of the continuous-
variable case were also included for the sake of completeness.
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Chapter 6

Time-Series Quantum Reservoir
Computing with Weak and Projective
Measurements

6.1 Motivation and contribution

This chapter is the beginning of a new exploration line, that is, the study of ex-
perimental protocols for QRC. This work was actually motivated by a crucial
question in view of (QRC) implementations of time series processing: how to ef-
ficiently monitor and extract meaningful information from a quantum reservoir?

Let us introduce some context to understand the previous question. The clas-
sical RC technique is implemented as an online protocol, i.e., after the supervised
training, one expects to continuously extract outputs at each time step with no
halts in the algorithm. However, online monitoring in quantum systems leads to
the backaction of quantum measurements, which introduces two effects. The first
one is the memory dissipation that measurements introduce into the reservoir dy-
namics. In the case of projective measurements, the collapse of an eigenvector of
the measured observable will erase most of the information about the input. If
indirect measurements are applied, the collapse will be more or less evident in
terms of the measurement strength (interaction strength between measurement
apparatus and system). Second, the outcome of a measurement is stochastic, so
we need to repeat the measurement process several times at a given time step to
obtain some statistics.

The combination of these two effects, represented by the measurement strength
and the number of measurements respectively, is introduced in the proposed on-
line protocol, and both effects determine the answer to the question formulated
above. On the one hand, the measurement strength controls the trade-off between
how much information is extracted in a single measurement and the dissipative
effect, and we proposed to use weak measurements to maximize this trade-off.
On the other hand, the number of measurements is directly related to the re-
sources of the experimental protocol. The number of measurements in this pro-
tocol refers for instance to the number of copies of the system, feeding the input
information in all copies at the same time. The performance of the online protocol
is tested against two other protocols with halt and repetition, the restarting and
rewinding protocols, in order to make a fair comparison between performance
and resources.
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Again, Sect. 1.4.4 of the introduction is relevant to follow this chapter because
of the model description it contains, while Sect. 1.5 introduces the quantum mea-
surement formalism, providing some of the basic ingredients that led us to the
present publication. As in the previous chapter, this work was led by Dr. Pere
Mujal, establishing a thriving collaboration in both numerical and analytical as-
pects of the QRC experimental protocols.
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Chapter 7

Quantum reservoir computing in
finite dimensions

7.1 Motivation and contribution

Approaching the end of this thesis, we looked back over the last years and we
realized that there were only a few theoretical results in the QRC field. As com-
mented in the introduction, sufficient conditions for the UAP have been obtained
for qubit platforms [126, 139, 151], finding a few other publications where the
quantum ESP is discussed as well [138, 149]. We also contributed to the theory
of QRC by finding a necessary and sufficient condition for the ESP and FMP and
studying the UAP of continuous-variable systems with Gaussian states [123].

However, we found this material insufficient. Although RC properties are
usually hard to analyze in nonlinear RC systems, quantum reservoir dynamics is
intrinsically linear. And indeed, linear dynamics considerably simplifies the RC
theory [91, 104, 123, 228–232]. Another student of the team was actually able to
show that a different QRC approach based on the master equation description
displays also UAP [133]. Then, we tackled the question of minimal ingredients
for operational QRC systems. We had the intuition that some general statements
could be derived for QRC systems under very few assumptions. We started by
exploring a simple setup: a finite-dimensional system whose reservoir dynamics
is driven by a CPTP map with classical inputs. To do so, we realized that a differ-
ent approach to previous theoretical works was required. We based our study on
using a different representation of quantum systems, in such a way that the RC
properties analysis could be simplified. We found the state-affine system (SAS)
representation to be the desired one [104].

The findings of the chapter can be summarized in a single sentence: the neces-
sary and sufficient condition that makes a quantum reservoir valuable is strictly
contractive dynamics towards input-dependent fixed points. The intuition be-
hind this formal result is that dissipation and contractive dynamics make the sys-
tem converge to an attractor where the system will eventually "die" if the attractor
does not respond to the input injections. But if this attractor depends on the input,
the system will follow its lead. This work connects with two important elements
of the theory of QRC systems: the UAP and the proper design of a quantum reser-
voir. Future work will be devoted to tackling both problems, completely charac-
terizing the UAP in quantum finite dimensional systems and understanding the
physical conditions that optimize the performance in QRC systems.
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This paper is intended to be self-contained in many aspects. Section 1.3 and
in particular Sect. 1.3.4 can help to gain some intuition about the mathematical
properties of reservoir computers. This work was produced during my research
stay at the Nanyang Technological University of Singapore in collaboration with
Professor Juan-Pablo Ortega. I led the project with the proposal, demonstration,
and analysis of the results.
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Chapter 8

Conclusions and outlook

This thesis has contributed to the development of the QRC field in different as-
pects. From the beginning, special attention has been devoted to complex net-
work platforms that provide rich enough dynamics to process temporal series.
Such an interest in quantum complex systems as physical substrates for RC aroused
because of the following main reasons: the possibility to disclose the relation be-
tween complex quantum dynamics and information processing; the large number
of degrees of freedom that quantum systems can exhibit with a few particles; the
current availability of these experimental platforms; the possible experimental
advantages that we could find with respect to classical models; and the potential
extension of RC techniques to deal with quantum data. Most of our work has
been devoted to numerically and analytically exploring quantum spin models as
reservoirs, with special attention to ensemble quantum systems. NMR experi-
ments are suited for this approach [16], where one can measure the average value
of an observable with a single shot and we can find a rich dynamical landscape
[186, 233, 234], but their use for temporal tasks remains unclear. Other platforms
like trapped-ion quantum simulators [14, 15], superconducting circuits [183, 235]
or integrated photonics [17] are already well established to serve as QRC systems
as well.

Most of our results (Chapters 3 to 6) address different fundamental and im-
plementation issues exploring in depth the Fujii and Nakajima model [113]. The
specific setting that we have analyzed during these years is a QRC system formed
by the composition of an input CPTP map and a unitary reservoir map. The input
map consists on the reinitialization of one qubit with a superposition in terms of
the input. The unitary dynamics processes the input information and it is given
by the transverse-field Ising model. The simplest version we used contained a ho-
mogeneous magnetic field in the z axis, while the posterior version we adopted
included a random heterogeneous magnetic field, increasing the richness of the
dynamical regimes of the model. The joint action of the unitary map with the
reinitialization of a single qubit is determinant to obtain the dissipation that guar-
antees the ESP and FMP. The final element of the QRC system under study is an
output layer formed by the expected value of the spin observables.

The first question, addressed in Chapter 3, was devoted to understanding the
computational capabilities of this QRC system of quantum spins. While differ-
ent tasks were reported in [113], we computed for the first time in QRC the IPC,
which measures the linear and nonlinear memory of the system. Assisted by
an analysis of the convergence speed in terms of ∆t, we found optimal condi-
tions for the input driving in terms of computational speed and performance,
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also showing different alternatives for the output layer in terms of temporal mul-
tiplexing and correlation observables. Actually, this study was crucial to unveil
the complexity of the Ising model as a reservoir with a performance strongly in-
fluenced by its hyperparameters. This approach displayed the advantage offered
by the dimension of the Hilbert space. Chapter 4 pursued a firm understanding
of this relation between the hyperparameters of the quantum spin model and its
performance. We discovered that a direct connection between these elements is
established through the dynamical regimes of the unitary dynamics. In fact, we
concluded that thermalization in the unitary dynamics provides the appropriate
conditions for RC while localization is detrimental. At the transition between
thermalization and localization regimes, it is possible to observe a peak in per-
formance depending on the task that we address. Chapters 3 and 4 constituted
a fundamental block in the development of this thesis. Intensive but feasible
numerical calculations of tools like the IPC and other benchmark tasks allowed
us to pave a path that our group still relies on to understand the capabilities of
quantum reservoirs [131, 223].

Chapter 5 deals with the specific problem of understanding the origin of non-
linearity in the models that we had been employing. This question is not only
relevant in QRC, but also in the whole quantum ML field since nonlinearity is
a fundamental ingredient for the expressivity of ML models while quantum dy-
namics is linear. Of course, linearity in the state does not preclude nonlinearity in
the input-output relation. Indeed, explicit analytical expressions were provided
for QRC models of spins and also for the case of linear boson dynamics: the in-
put codification, with its preprocessing, determines the nonlinear response of the
QRC system. However, the natural dynamics of the reservoir, determined by the
hyperparameters of the model, can affect this response too, as we showed for
the dynamical regimes of the transverse-field Ising model in Chapter 4. We em-
phasize that different input codification strategies for a given dynamical model,
or otherwise, different dynamical models for the same input codification, can
completely change the nonlinear response. This was vividly illustrated in the
quantum master equation examples of Chapter 7. The input dependence of these
models can be intricate, exhibiting trigonometric and hyperbolic functions in an
organic way. But what is more striking is that just a change in the direction of the
external magnetic field, as in the models of Example 3 and Sect. IV A of Chapter
7, which have the same dissipation, can totally modify the nonlinear response
(and the viability of the reservoir).

We concluded the study of QRC based on quantum spin models with the con-
ception of an online experimental protocol in Chapter 6. Indeed, a crucial aspect
to deal with temporal data analysis is the possibility to process information se-
quentially. Our goal was to prove that it is possible to find a compromise be-
tween performance and resource efficiency for a protocol where there is no need
to repeat input encoding steps nor need to store any input externally, and still
properly consider the measurement backaction in the reservoir dynamics. The
key of our proposal relies on indirect weak measurements over an ensemble. We
find that utilizing measurements of the proper strength with the OLP could po-
tentially outperform the RWP, even when dealing with higher-order moments of
observables. This can ultimately lead to an efficient exploitation of the Hilbert
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space. In this line, an independent approach for a photonic implementation was
also proposed in Ref. [131].

Chapter 7, despite being our last article, is the beginning of a thriving collab-
oration where we take a step back from the study of specific models. Instead,
we adopted a general viewpoint of the QRC framework, sacrificing some experi-
mental details in exchange for a deeper insight into the physical aspects that make
QRC systems operational. In the precise case of finite dimensional quantum sys-
tems with classical inputs and an infinite number of measurements, we find that
the necessary and sufficient condition that makes a reservoir valuable is strictly
contractive dynamics towards input-dependent fixed points. In this chapter, we
also establish a connection between experimental protocols and the viability of
the QRC model. The weak measurement scheme we proposed in Chapter 6 can
be represented as a dephasing channel in the measurement direction when av-
eraging in the limit of an infinitely large ensemble. Then, as discussed in Sect.
IV of Chapter 7, not all CPTP maps might be employed with this measurement
scheme since the fixed point of the total quantum channel could become input-
independent. For instance, unitary maps would not fit because the composition
map would be unital, becoming useless for long input sequences as described
in Theorem 1. Hence, we see that our general picture can relate measurement
schemes and reservoir dynamics in a formal way, being able to design opera-
tional QRC systems under backaction effects as well. Indeed, our framework can
cover online protocols with backaction as well as offline protocols with repetition,
concluding that our results are valuable for the design of experimental platforms.

Chapter 2 precedes the research chapters of this thesis because of the global
perspective that it offers. The time elapsed between the first publication of Fujii
and Nakajima [113] and our review [18] allowed us to understand the large num-
ber of physical platforms that are good candidates for QRC (and QELM as well)
and identify the main challenges of the field. Since its publication, new articles
have confirmed some of our research avenue predictions (exposed in Sect. 3 of
Chapter 2). For example, the quantum circuits experimental line for QRC has
continued, where noise can be incorporated as part of the RC dynamics [79, 94,
134]. As commented at the end of Chapters 2 and 7, caution is advised since the
size of temporal sequences that noisy circuit platforms (and any noisy quantum
device) can process is limited by the decoherence time scale. Another challenging
aspect that we noticed and that we have started to explore is the design of online
experimental protocols for time series processing. Chapter 6 was the response
to this initially identified challenge, where we proposed a middle-point solution
between the theoretical idea of ensemble measurements without backaction and
strong projective measurements: weak measurements over several samples at
each time step. However, up to this moment, there is no experimental implemen-
tation of online protocols with quantum hardware. We further notice that some
advancements were also made in the QRC theory of quantum temporal task [148–
150].

However, due to the early age of the QRC field, the list of open problems is
large and wide open to increase with each breakthrough. To start with, several
directions can be taken from Chapter 6. Apart from the obvious exploration of
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different types of quantum measurements and reservoir models, a very impor-
tant question is how to experimentally and efficiently exploit the large number of
degrees of freedom that complex quantum systems offer. A possible path could
be the randomization of the measurement process [236], as it is done in shadow
tomography, which still requires averaging over samples but can be proven to
be efficient to estimate a set of local observables [237]. Besides, state-of-the-art
quantum platforms would already allow to implement the devised experimen-
tal protocols. Several experimental groups with the means to perform QRC have
shown their interest (e.g. [17]). Another aspect from Chapter 6 that is quite open
to debate is the exploration of online protocols with stochastic reservoir dynam-
ics. The idea would be to try to reduce the number of measurements to the mini-
mum, with even single-shot measurements at each time step. Despite finding that
a small number of samples give a poor performance in qubit systems in Chapter
6, there could be situations where a quantum stochastic reservoir is still opera-
tional. The intuition behind this statement is that a small amount of noise in the
reservoir (either classical or quantum) dynamics should be tolerable, with a tran-
sition between operational and useless in terms of noise strength. This transition
might only happen at the quantum-classical limit, but the exploration could be
worth it.

The fact that Chapter 7 is just our first dive into a QRC theory leaves the door
open to many possibilities. Studying particular CPTP maps like Markovian mas-
ter equations, extending the theory to non-ideal situations such as a finite num-
ber of measurements, or the inclusion of arbitrary POVMs into the reservoir dy-
namics are just a few examples. More ambitious directions include the study of
infinite-dimensional quantum systems or trying to find the most general as pos-
sible statement about the UAP with QRC systems. Different encoding strategies
and dynamical maps can be explored as well. We recently studied the imple-
mentation of Markovian quantum dynamics in spin models, where the input is
codified as a Hamiltonian parameter such as an external magnetic field [133].
This implementation, when compared with Fujii and Nakajima model with the
same number of qubits in the reservoir and the same output observables, out-
performed the latter for such dispair targets such as the NARMA task and the
Mackey-Glass time-series prediction.

Finally, one of the driving forces of studying QRC systems is the possibil-
ity to find advantages over classical systems. These advantages could be of any
type: performance, time, or even energy. At this moment, there are a few works
suggesting an advantage in terms of physical resources such as reservoir size
[94, 113, 138, 139]. However, we consider that a systematic exploration could be
worth it. In fact, we suspect that any possible advantage of quantum versus clas-
sical might come from the study of quantum temporal tasks. Quantum systems
are native platforms for processing quantum information and it makes sense that
any advantage emerges in this particular setup.
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Acronyms
ML Machine Learning
QML Quantum Machine Learning
NMR Nuclear Magnetic Resonance
GPU Graphical Processing Unit
ANN Artificial Neural Network
FFNN Feed-Forward Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
MSE Mean Square Error
NMSE Normalized Mean Square Error
SGD Stochastic Gradient Descent
RC Reservoir Computing
PRC Physical Reservoir Computing
QRC Quantum Reservoir Computing
ESN Echo State Network
LSM Liquid State Machine
UAP Uuniversal Approximation Property
ESP Echo State Property
FMP Fading Memory Property
CPTP Completely Positive and Trace Preserving
ELM Extreme Learning Machine
QELM Quantum Extreme Learning Machine
POVM Positive Operator-Valued Measurement
RMT Random Matrix Theory
GOE Gaussian Orthogonal Ensemble
GUE Gaussian Unitary Ensemble
ETH Eigenstate Thermalization Hypothesis
MBL Many-Body Localization
LIOM Local Integral Of Motion
IPC Information Processing Capacity
TIPC Temporal Information Processing Capacity
NARMA Nonlinear Autoregressive Moving Average
STM Short-Term Memory
RSP ReStarting Protocol
RWP ReWinding Protocol
OLP OnLine Protocol
SAS State-Affine System
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222. Dudas, J., Grollier, J. & Marković, D. Coherently coupled quantum oscillators
for quantum reservoir computing in 2022 IEEE 22nd International Conference on
Nanotechnology (NANO) (2022), 397–400.

223. Llodrà, G., Charalambous, C., Giorgi, G. L. & Zambrini, R. Benchmarking
the Role of Particle Statistics in Quantum Reservoir Computing. Advanced
Quantum Technologies, 2200100 (2022).

224. Pfeffer, P., Heyder, F. & Schumacher, J. Hybrid quantum-classical reservoir
computing of thermal convection flow. Physical Review Research 4, 033176
(2022).

225. Mlika, Z., Cherkaoui, S., Laprade, J. F. & Corbeil-Letourneau, S. User Trajectory
Prediction in Mobile Wireless Networks Using Quantum Reservoir Computing.
arXiv preprint arXiv:2301.08796 (2023).

226. Jaeger, H. & Haas, H. Harnessing nonlinearity: Predicting chaotic systems
and saving energy in wireless communication. science 304, 78–80 (2004).

227. Lu, Z. et al. Reservoir observers: Model-free inference of unmeasured vari-
ables in chaotic systems. Chaos: An Interdisciplinary Journal of Nonlinear Science
27, 041102 (2017).

228. Ganguli, S., Huh, D. & Sompolinsky, H. Memory traces in dynamical sys-
tems. Proceedings of the national academy of sciences 105, 18970–18975 (2008).

https://www.scopus.com


78 Bibliography

229. Couillet, R., Wainrib, G., Sevi, H. & Ali, H. T. The asymptotic performance
of linear echo state neural networks. The Journal of Machine Learning Research
17, 6171–6205 (2016).
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