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1 Introduction

Differential equations are present nearly everywhere, since every process that
evolves with time can be modelled by a differential equation. Thus, in order
to fully understand the modelled process, their study becomes essential. And,
regarding this study, two branches arise, each one of them with a different focus.

On the one hand, classical theory focuses on finding an explicit solution of
the differential equation, for a given initial value. This solution, that is not
analytically obtainable for every differential equation, completely determines the
evolution of the system.

On the other hand, qualitative theory is not focused on finding an explicit
solution. Instead, the focus of this branch of theory is to locate points with a
specific behavior, that will determine the behavior of nearby solutions. Thus,
the qualitative study also helps us determine the evolution of the system without
having to compute an explicit solution. Of course, if the solution is easily
obtainable, its use eases the work.

In particular, for linear differential systems, as the one given by

ẋ = Ax, (1)

for A ∈ Mn(R) and x ∈ Rn, an explicit solution is always obtainable. In fact,
there is a wide amount of theory and results regarding this family of systems,
since linear systems are the easiest to work with. However, there are still some
open questions regarding these systems.

This work is intended to cover some of these questions. In particular, the
focus of this work is to fully determine the evolution of a linear system over
any hyperplane P transversal to the flow of the system. This master’s thesis is
inspired by the article [7] and the work [8], both developed by J. Llibre and A.
E. Teruel.

As new points with respect to the latter reference, first in this work the
contact points are fully treated and classified into disjoint sets Lm with respect
to their order of contact. Secondly, the hyperplane P is partitioned into two
subsets PI and PO that gather all the points that evolve to one of the half-
spaces separated by the hyperplane. On the third place, theorems about explicit
expressions for the transition maps and their derivatives are stated and proven.
Moreover, for dimensions n = 2, 3 these expressions are used to obtain explicit
expressions for the transition maps in a neighborhood of the contact point.

In the last section, we present a study over a family of piecewise linear systems
as an application of the theory developed throughout the work. In particular,
for these systems the results developed start to shine, as it will be stated below.

1.1 Results and concepts related to the work

This subsection is devoted to locate the basic results that will be applied
throughout the work, in order to preserve clarity and organization.

In the next result, and over the rest of the work, A0 = In, the n× n identity
matrix.
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Theorem 1 (Cayley-Hamilton). Let pA(x) =
∑n

i=0 dix
i be the characteristic

polynomial of the matrix A, where d0 = (−1)n det(A), dn−1 = −Tr(A), and

dn = 1. Then, An = −
∑n−1

i=0 diA
i.

Corollary 1. The matrix A verifies

An+m = −
n−1∑
i=0

dmi A
i

for all m ≥ 0.

Theorem 2 (Picard). Consider (t0,x0) ∈ D ⊂ R × Rn and let R = Ia(t0) ×
Bb(x0) ⊂ D, for Ia(t0) the closed interval of radius a centered at t0 and Bb(x0)
the closed Rn ball of radius b centered at x0. Let f : D → Rn be a continuous
function verifying the Lipschitz condition with respect to the second variable in
D. Then, the initial value problem{

ẋ = f(t,x),
x(t0) = x0,

has a unique solution, defined over Iα(t0), where α = min(a, b
M ) and M =

max{∥f(t,x)∥ : (t,x) ∈ R}.

Theorem 3 (Implicit Function Theorem). Let f : (V,W ) ⊂ Rn+m → Rm be
of class C1((V,W )), where we consider (x,y) to be the coordinates of (V,W ),
and suppose there exists a point (v,w) ∈ (V,W ) such that f(v,w) = 0. If the
differential matrix

Dy(v,w)

is regular, then there exists an open subset U ⊂ V in a neighborhood of v and
there exists a unique function h : U → Rm of class C1(U) such that h(v) = w
and f(v, h(v)) = 0 for all v ∈ U .

2 Linear Differential Systems

In this first section, we present all the concepts and results relative to linear
differential systems, which are given by

ẋ = A(t)x(t) + b(t) (2)

for A : I → Mn(R), b : I → Rn continuous functions, being I ⊂ R an interval.
If b(t) ≡ 0, we call the system homogeneous.

As it happens in any family of differential systems, there are two branches of
theory for these ones: classical theory, and qualitative theory. Both branches
bring useful results, so in what follows we will introduce definitions and results
for each of these branches.
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2.1 Classical Theory

Classical theory is focused on explicitly solving the presented differential equation,
the linear system (2) in this case, in order to have a full understanding on
the system. Although an explicit solution is always desired, there are some
systems that are analytically unsolvable. Moreover, even for some systems
where a solution is obtainable, expressions are so complex that they yield little
information. For the linear systems, this is not the case, and we can always find
a solution for equations of the form (2).

To obtain an expression for the solution, we present some definitions that
will be needed in order to get to the mentioned expression.

A first result ensures we have a unique solution for each given initial condition.

Theorem 4. Consider a point (t0,x0) ∈ I × Rn. The Cauchy problem (2) with
initial condition x(t0) = x0 has an unique solution, defined all over I.

Proof. For closed and bounded I, the result follows straightforward from Picard’s
Theorem, noting that linearity of the vector field yields to Lipschitz condition
over the domain I × Rn with Lipschitz constant equal to L = maxt∈I ∥A(t)∥
since A(t) is a continuous function.

Now, consider I left-open, right-open or open. Consider a fixed initial
condition (t0,x0) and a sequence of closed and bounded intervals {In}∞n=0 such
that t0 ∈ In, In ⊂ In+1 and I =

⋃∞
n=0 In. Since these intervals are closed, on all

of them we have a unique solution fulfilling the initial condition. Let us label
these solutions as {φn}∞n=0. If we consider now the function

φ : I → Rn

t 7→ φ(t) = φn(t) if t ∈ In,

then we have that, as In is closed, the function φn is unique. Thus, as φn+1|In =
φn, the function φ(t) is solution of the differential equation satisfying the initial
condition (t0,x0) and it is unique.

The uniqueness of solutions for a given initial condition (t0,x0) allows us to
talk about the solution φ(t; t0,x0), a function of t that for t = t0 takes as image
the initial condition x0. Logically, it verifies the differential equation from which
it is solution, that is, φ̇ = A(t)φ+ b(t), for any t ∈ I.

For the case of homogeneous systems, the next result states the algebraic
structure of the set of solutions. Specifically, they form a vector space.

Theorem 5. The set A of all solutions of the homogeneous system ẋ = A(t)x
forms an n−dimensional vector space.

Proof. First of all, notice that the set A is a subset of the vector space C1(I).
Moreover, the zero vector of this space, the function 0, is in A. Thus, it
suffices to check that this set is closed with respect to vector addition and scalar
products. If we consider x1,x2 ∈ A, as the differential equation is linear, it

follows d(x1+x2)
dt = ẋ1 + ẋ2 = A(t)(x1 + x2), from where x1 + x2 ∈ A. Now,
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consider x ∈ A, c ∈ R. We have ẋ = A(t)x, thus multiplying by c, it follows
cẋ = cA(t)x, from where cx ∈ A.

Let us now consider the function φs : Rn → A given by φs(x) = φ(t; s,x). If
we prove it is an isomorphism, we will have the dimension ofA. We have that φs is
linear, as φs(x1+x2) = φ(t; s,x1+x2). If we evaluate this expression at time t =
s, we have φ(s; s,x1+x2) = x1+x2, which is the same as φ(s; s,x1)+φ(s; s,x2).
From uniqueness of solutions, as these both coincide in a point, they must be
the same, that is, φ(t; s,x1 + x2) = φ(t; s,x1) + φ(t; s,x2). Similar calculations
show that the property holds for scalar products. In consequence, the map is
linear. Consider now its kernel, kerφs = {x ∈ Rn : φs(x) = 0} = {0} by the
uniqueness of solutions. Moreover, the map is surjective, as to any solution with
a given initial condition can be mapped the point acting as this initial condition.
Thus, it follows that φs is an isomorphism.

From the result above, it follows that solutions of a linear homogeneous
system form a vector space, thus in order to describe all possible solutions it
suffices to know a basis of them. Moreover, as a linear combination of vectors
can be written in terms of a matricial product, the following definition leads to
easier calculations.

We define the solution matrix for a homogeneous system to be a matrix in
which every column is a solution:

M(t) =
(
φ(t; t1,x1) φ(t; t2,x2) . . . φ(t; tn,xn)

)
. (3)

If all columns (solutions) that form the matrix are linearly independent, we
say the matrix is a fundamental matrix. In this case, it follows straightforward
that those solutions span a basis of A.

On the next result, there are presented some basic properties of solution
matrices and fundamental ones.

Proposition 1. Let (3) be a solution matrix for system (2) with b(t) ≡ 0.
Then, the next properties follow:

a) M(t) is a solution matrix if, and only if, Ṁ(t) = A(t)M(t).

b) M(t) is a solution matrix if, and only if, M(t)c is a solution, for all
c ∈ Rn.

c) If M(t) is a solution matrix, then M(t)C is a solution matrix for all matrix
C.

d) M(t) is a fundamental matrix if, and only if, there exists a t0 ∈ R such
that det(M(t0)) ̸= 0.

e) If M(t) is a fundamental matrix, then

d

dt
M−1(t) = −M−1(t)A(t).
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Proof. Since most of these properties are straightforward, we will just prove
statement d).

For the direct implication, since M(t) is fundamental, we have that the
columns {φ(t; ti,xi}ni=1 of the matrix are linearly independent for all time t, in
particular, for some time t0. Therefore, det(M(t0)) ̸= 0.

For the converse, let us suppose there exist α1, . . . , αn not all null such that∑n
i=1 αiφ(t; ti,xi) ≡ 0, where 0 denotes the function identically zero. Now, since

linear combination of solutions is a solution, it follows that det(M(t)) = 0 for all
time t, which is a contradiction.

Moreover, on the next results it is shown a formula to compute the solution
for both a homogeneous and a non-homogeneous system.

Proposition 2. Let M(t) be a fundamental matrix of system (2) with b(t) ≡ 0
and let φ(t; t0,x0) be a solution of this system. Then,

φ(t; t0,x0) =M(t)M−1(t0)x0.

Proof. Let φ(t; tk,xk) be the columns of matrix M(t). As this is a fundamental
matrix, the set {φ(t; tk,xk)}nk=1 is a basis ofA. Therefore, the solution φ(t; t0,x0)
can be written in terms of the base, that is,

φ(t; t0,x0) =

n∑
k=1

λkφ(t; tk,xk) =M(t)Λ,

where Λ = (λ1, . . . , λn). In consequence, we have x0 = φ(t0; t0,x0) =M(t0)Λ or,
equivalently, Λ =M−1(t0)x0. Substituting this expression for Λ in the previous
chain of equalities, the result follows.

Proposition 3. Let M(t) be a fundamental matrix for the homogeneous system
ẋ = A(t)x and let φ(t; t0,x0) be a solution of the non-homogeneous system
ẋ = A(t)x+ b(t). Then,

φ(t; t0,x0) =M(t)

(
M−1(t0)x0 +

∫ t

t0

M−1(s)b(s)ds

)
.

Proof. Suppose the function ψ(t) =M(t)C(t) is a solution for the non-homogeneous
system. If we differentiate this expression, we have ψ̇(t) = Ṁ(t)C(t)+M(t)Ċ(t) =
A(t)ψ(t)+M(t)Ċ(t). Therefore, C(t) must fulfill the condition Ċ(t) =M−1(t)b(t).

It follows then C(t)− C(t0) =
∫ t

t0
M−1(s)b(s)ds. From this, we have

ψ(t) =M(t)

(
C(t0) +

∫ t

t0

M−1(s)b(s)ds

)
.

And, as ψ(t0) =M(t0)C(t0), the result follows.
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From the last result above, we almost have an explicit expression for the
solution. However, computations of a fundamental matrix M(t) are generally
hard to perform. In some cases, the calculus gets simplified. A family in which
this simplification happens are the linear systems with constant coefficients,
which are given by

ẋ = Ax+ b, (4)

for A an n× n constant matrix, and b a vector of Rn. As above, if vector b is
null, the system will be called homogeneous.

Moreover, if z is a zero of equation Ax + b (we will explain later in the
qualitative theory section the interest for these zeros), the change of variable
y = x− z converts system (4) in a homogeneous one. Relabeling y as x, it is
given by

ẋ = Ax. (5)

For the case of A being regular, there is a unique zero, and it is given by
z = A−1b.

For homogeneous systems, as the one given in equation (5), we have a pretty
compact expression for its fundamental matrix. It is defined as

eAt =

∞∑
k=0

Aktk

k!
, (6)

and we will refer to this as the exponential matrix of the system. The following
result shows us that this matrix is indeed a fundamental matrix for the system
(5) and shows that the series converge.

Theorem 6. Consider the linear homogeneous system

ẋ = Ax,

for A ∈ Mn(R) and x ∈ Rn. The fundamental matrix for this system is the
exponential matrix, given by

eAt =

∞∑
k=0

Aktk

k!
,

and this series converges absolutely and uniformly over compact subsets of R.

Proof. Consider the initial value problem

ẋ = Ax,
x(0) = ek,

where ek is the k−th vector of the canonical basis of Rn, and its solution
φ(t; 0, ek).

Consider, for a closed interval I ⊂ R, the Picard operator

T : C(I,Rn) → C(I,Rn)

φ(t; 0, ek) 7→ ek +
∫ t

0
Aφ(t; 0, ek)ds.
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As the vector field is linear, it fulfills the Lipschitz condition with Lipschitz
constant ∥A∥; therefore, starting with any φ0 ∈ C(I.Rn), the sequence of Picard
iterates {T iφ}i≥0 converges uniformly in I to the unique solution of the initial
value problem.

Let us consider now the sequence of iterates given by

φ0(t) = ek,

φm(t) = ek +
∫ t

0
Aφm−1(s)ds, m ≥ 1.

Direct computations show φ1(t) = (In +At)ek, for In the n× n identity matrix,

φ2(t) = (In + At + A2t2

2 )ek and, iteratively, φm(t) = (
∑m

i=0
Aiti

i! )ek. As this
sequence converges uniformly in I to the solutionφ(t; 0, ek), we have that

φ(t; 0, ek) = lim
m→∞

φm(t) =

( ∞∑
i=0

Aiti

i!

)
ek.

Let us now consider the fundamental matrix given by

M(t) =
(
φ(t; 0, e1) φ(t; 0, e2) . . . φ(t; 0, en)

)
,

whose columns are the limits of the sequence of iterates for each vector on the
canonical basis of Rn. From the explicit expressions for these limits of iterates,
and defining the exponential matrix as

eAt =

∞∑
i=0

Aiti

i!
,

it follows

M(t) = (

∞∑
i=0

Aiti

i!
)In = eAtIn.

From this expression, it follows that the exponential matrix is actually the
fundamental matrix for system (5), and it is defined all over I.

Notice that, due to its construction, the exponential matrix eAt commutes
with the matrix A. Indeed, we have

AeAt = A
∑∞

k=0
Aktk

k! =
∑∞

k=0
Ak+1tk

k!

= (
∑∞

k=0
Aktk

k! )A = eAtA.
(7)

On the other hand, and although we have now an explicit expression for fun-
damental matrices, we can further simplify the computations of the exponential
matrix with the aid of next result.

Proposition 4. Let P, P−1 ∈ Mn(R) such that J = PAP−1, then eJ =
PeAP−1.
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Proof. We have

eJ = lim
n→∞

n∑
k=0

(PAP−1)k

k!
= P ( lim

n→∞

n∑
k=0

Ak

k!
)P−1 = PeAP−1.

As a consequence of the previous result, we just need to know the exponential
matrix of the Jordan canonical form of matrix A of system (5) and the matrices
of the change of variables. Thus, the problem of computing a fundamental matrix
reduces, for this family of systems, to knowing the exponential matrix for the
different Jordan canonical forms. And, as Jordan matrices are represented block
by block, it suffices to know the exponential matrix of each of the blocks. This
is summarized below:

• For blocks of the form J1 = λIm, it is straightforward to show that the
exponential matrix is

eJ1t = eλtIm.

• For blocks of the form J2 = λIm +N , where N =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0

 ,

the exponential matrix will be given by

eJ2t = eλt
m∑

k=0

tkNk

k!
= eλt



1 t t2

2! . . . tm−1

(m−1)!

0 1 t . . . tm−2

(m−2)!

...
...

...
. . .

...

0 0 0
. . . t

0 0 0 . . . 1


.

• For blocks of the form J3 =

(
α β
−β α

)
, the exponential matrix will be

eJ3t = eαt
(

cos(βt) sin(βt)
− sin(βt) cos(βt)

)
.

• Finally, for blocks of the form J4 =diag(J3, J3, . . . , J3) + N2, for N the
matrix above, the exponential matrix will be

eJ4t = diag(eJ3t, eJ3t, . . . , eJ3t)

m
2∑

k=0

tkN2k

k!
.
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To end up, note that this exponential matrix leads us to a solution, from
Proposition 2, as we are working with homogeneous systems as given by equation
(5). This solution will be then given by

φ(t; t0,x0) = eA(t−t0)x0. (8)

Moreover, from Proposition 3, solutions for non-homogeneous systems will
be given by

φ(t; t0,x0) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)bds. (9)

The previous expression can be further simplified for the cases where equation
Ax = b has a solution. This is presented and proven below.

Proposition 5. If z is a solution of equation Ax = b, then the solution for the
non-homogeneous system ẋ = Ax+ b starting at x0 can be written as

φ(t; t0,x0) = eA(t−t0)(x0 − z) + z.

Proof. From expression (9), by means of the change of variable τ = t− s applied

to the integral, we have
∫ t

t0
eA(t−s)bds = −

∫ 0

t−t0
eAτbdτ =

∫ t−t0
0

eAτbdτ . Now,

if z is such that Az = b, the integral becomes
∫ t−t0
0

eAτAzdτ . Now the integral is

solved straightforward, leading to
∫ t−t0
0

eAτAzdτ = eA(t−t0)z− Iz. Substituting
this in expression (9), we get the result.

2.1.1 The Putzer method

In this section, it is presented an alternative method to compute the exponential
matrix eAt of a homogeneous linear system, as the given by (5). It is due to E.
G. Putzer, see e.g. [9], and it is useful since it works for any matrix A, regardless
of its Jordan Canonical Form, and the calculations of this form are completely
by-passed. To state and prove the main result, we just need the characteristic
polynomial of matrix A, which is given by

|λI −A| =
n∑

i=0

diλ
i,

for dn = 1.
Then we have the following theorem, that shows a formula for the exponential

matrix of matrix A and states the Putzer method of computing it.

Theorem 7. Consider the linear differential system given by (5), and let di, i =
0, 1, . . . , n − 1 be the coefficients of the characteristic polynomial of matrix A.
Let z(t) be the solution of the Cauchy problem{ ∑n

i=0 diz
(i) = 0,

z(0) = ż(0) = . . . = z(n−2)(0) = 0, z(n−1)(0) = 1,
(10)
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where the superscript (i) denotes the i-th derivative, being z(0) = z(t), dn = 1
and di, i = 0, . . . , n− 1 the coefficients above. Consider the vector

Z(t) =


z(t)
ż(t)
...

z(n−1)(t)

 ,

and the matrix

C =


d1 d2 . . . dn−1 1
d2 d3 . . . 1 0
...

...
. . .

...
...

dn−1 1 . . . 0 0
1 0 . . . 0 0

 .

Then, we have

eAt =

n−1∑
i=0

γi(t)Ai, (11)

for γi(t) the components of the vector

Γ(t) = CZ(t).

Proof. It suffices to show that the matrix

Φ(t) =

n−1∑
i=0

γi(t)Ai

fulfills dΦ
dt = AΦ and Φ(0) = In, as the exponential matrix eAt also verifies the

previous conditions and we have uniqueness of solutions.
Notice that, by construction, only γ0(t) involves z(n−1)(t), thus γi(0) = 0 for

i ≥ 1. In consequence, γ0(0) = 1, from where Φ(0) = In.
We will now prove that dΦ

dt −AΦ = 0. To do so, we differentiate Φ(t) with
respect to t and apply the Cayley-Hamilton Theorem. We then have

dΦ

dt
−AΦ = (γ̇0 + d0γ

n−1) +

n−1∑
i=0

(γ̇i − γi−1 + diγ
n−1)Ai,

from where we just have to show that

γ̇0(t) = −d0γn−1(t),
γ̇i(t) = γi−1(t)− diγ

n−1(t), i = 1, . . . , n− 1.
(12)

From the definition of the γi, we have, for each i = 0, . . . , n− 1,

γi(t) =

n−i−1∑
k=1

ck+iz
(k−1) + z(n−i−1),

11



thus

γ̇i(t) =

n−i−1∑
k=1

ck+iz
(k) + z(n−i). (13)

As γn−1 = z, by adding diz to both sides of the previous expression we have

γ̇i(t) + diγ
n−1 =

n−i−1∑
k=0

ck+iz
(k) + z(n−i). (14)

For i = 0, we have

γ̇0(t) + d0γ
n−1 =

n−1∑
k=0

ckz
(k) + z(n).

As z(t) is the solution of the Cauchy problem (10), the right-hand side of the
previous expression is null. Hence, we have the first identity of expression (12).

For i ≥ 1, by replacing i by i − 1 in expression (13) and changing the
summation index from k to k + 1, we get to

γi−1(t) =

n−i−1∑
k=0

ck+iz
(k) + z(n−i).

Now, the right-hand side of the previous expression is the same as the right-hand
side of expression (14), from where it follows the second identity of expression
(12) for each i = 1, . . . , n− 1.

Notice that in the proof the eigenvalues make no appearance, and neither do
their multiplicities. Thus, the proof is indeed valid for any matrix A, regardless
of its JCF. Therefore, the method is valid for every matrix A.

2.2 Qualitative Theory

2.2.1 Phase space and orbits

Qualitative theory, in contrast of classical theory, isn’t focused on finding an
explicit solution. In fact, tools and results from this branch on theory help us
understand the asymptotic behaviour and evolution of the solutions, without
needing to compute explicit expressions for them.

We start with some definitions applied to linear systems, for the sake of
formalism. Let us consider a linear differential equation

ẋ = f(x) := Ax+ b, (15)

where x ∈ D ⊂ Rn, A ∈Mn(R) and b ∈ Rn. As in the rest of the work we will
be dealing with linear systems with constant coefficients, from here onwards
definitions and results will be focused on this family of systems, although most
results apply to generic systems aswell.
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We will call D the phase space. As f in equation (15) is locally Lipschitz,
for all x0 ∈ D exists a unique solution φ(t; t0,x0) verifying x(t0) = x0, and
defined all over R. This last statement comes from an extension of Theorem 4
since A and b are constants, thus I = R.

Noting that φ(t + τ ; t0,x0) = φ(t; t0 − τ,x0) for all τ ∈ R, without loss of
generality we can consider the initial time as t0 = 0, and work with φ(t;x0),
which implicitly tells us that the initial time is 0.

Remark 1. Notice that φ(t;φ(t1;x0)) = φ(t+ t1;x0), as both solutions coincide
for t = 0 and we have uniqueness of solutions. So the consideration of a solution
starting at x0 at time t+ t1 = 0 leads to the same expression as the composition
of a solution that at time t = 0 starts at φ(t1;x0).

Now, given an initial point x0 ∈ D, we define an orbit through x0 to be
the set

γx0
= {φ(t;x0)|t ∈ R} ⊂ D. (16)

This set, for a given initial point x0, is the main tool to study the evolution
and behaviour of the system. Moreover, the Remark 1 ensures that the set γx0

forms a group with the composition.
We have a first direct result, which ensures that different orbits do not

intersect, and that the initial point for an orbit is arbitrary.

Proposition 6. Under all previous conditions, the following properties are
verified:

a) If x1 ∈ γx0
, then γx1

= γx0
.

b) If γx0 ∩ γx1 ̸= ∅, then γx0 = γx1 .

Proof. To prove the first statement, notice that if x1 ∈ γx0 , then there exists
t1 ∈ R such that x1 = φ(t1;x0). Therefore, the orbit through x1 is

γx1
= {φ(t;x1)|t ∈ R} = {φ(t;φ(t1;x0))|t ∈ R}

= {φ(t+ t1;x0)|t ∈ R} = {φ(s;x0)|s ∈ R} = γx0
,

where the third equality comes from Remark 1.
For the second statement, suppose that the intersection γx0

∩ γx1
is not

empty. Thus, consider x2 ∈ γx0 ∩ γx1 , from the first statement of this result it
follows γx0 = γx2 = γx1 , which proves the result.

This result also assures that the set {γx}x∈D forms a partition of the phase
space. We call this partition the phase portrait. This portrait will allow us to
visually understand the system we are dealing with.

Now we characterize possible orbits, with the aid of the next technical lemma.

Lemma 1. If F is an additive closed proper subgroup of R, then there exists
T > 0 such that F = TZ.

13



Proof. Consider T = inf{x ∈ F |x > 0}. As F is closed, it follows T ∈ F . Let
us suppose T = 0, therefore for all ϵ > 0 exists x ∈ F such that x ∈ (0, ϵ).
This implies F is dense in R as for any interval of length ϵ it has elements, as
considering nx ∈ F it follows nx ∈ (0, nϵ). Moreover, as F is closed, it must be
F = R, which is a contradiction as F is proper. So it must be T > 0.

Now, to show F = TZ, the inclusion TZ ⊂ F is direct for T ∈ F . Now,
suppose we don’t have the other inclusion, that is, there exists x ∈ F such that
x ̸∈ TZ. We can suppose x > 0, hence there exists n such that nT < x < (n+1)T ,
which implies 0 < x− nT < T with x− nT ∈ F , as both T, x ∈ F and F is an
additive group. But this last statement is a contradiction, since T is the infimum
of F . Consequently, the other inclusion must be verified.

Theorem 8. Every orbit is either a point, homeomorphic to S1 or homeomorphic
to R.

Proof. Given x0 ∈ Rn, as a consequence of Remark 1 we have that γx0
forms a

group with the composition of solutions. Hence, the map φ(·;x0) : R → γx0
is a

continuous group epimorphism. Therefore, R/ kerφ ≃ γx0
where ≃ denotes the

isomorphism.
Now, kerφ = {t ∈ R|φ(t;x0) = x0}, as x0 is the identity element of γx0 .

Therefore, kerφ is the preimage of the identity element, from where it is a
closed additive subgroup of R, as {x0} is a subgroup of γx0

. Now, if kerφ is not
proper, either we have kerφ = 0, from where γx0

≈ R; or kerφ = R and thus
γx0

≈ x0. On the other hand, if kerφ is proper, then kerφ = TZ. And as R/TZ
is homeomorphic to S1 it follows γx0 ≈ S1.

From the result above, it follows that we have three different kinds of orbits.
We will call a singular point, critical point or equilibrium point to an orbit
consisting of only one point. Orbits homeomorphic to S1 are called periodic
orbits.

Notice that singular points are orbits formed by just one point, hence they
are defined by constant solutions starting at the specific point. From this, it
follows that the vector field evaluated at this point is null. Thus, a simple way
to compute singular points is to solve the equation f(x) = 0.

These orbits are usually the easiest to compute, and with the aid of some basic
results they characterize the local behaviour of the system in a neighborhood of
them.

As for periodic orbits, they are defined from periodic solutions of the dif-
ferential equation. That is, given a solution φ(t;x0) of system (15) verifying,
for a fixed T ∈ R+, φ(T ;x0) = x0 and φ(t;x0) ̸= x0 for all t ∈ (0, T ), then the
solution defines a periodic orbit. Moreover, the period of this orbit will be T .

If a periodic orbit is isolated in the set of periodic orbits, we call this orbit a
limit cycle.
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2.2.2 Singular points and invariant subspaces

Consider a linear system given by equation (15). Its singular points will be given
as the solutions of

Ax = −b,

if the previous system has solutions, i.e., the system is compatible.
Suppose we have a solution, z , of the previous system. Then, z is a singular

point. Moreover, if A is regular, this singular point will be the unique solution,
and it will be given by z = A−1b.

To simplify the study, if there exists a singular point z of the system, we
can translate it to the origin by means of the change of variables x − z → x
and thus we get to work with homogeneous systems, whose solutions are easily
computable in terms of exponential matrices.

Now, we move on to study the global behaviour of the flow. In particular,
we will see that the phase space can be decomposed as a direct sum of vector
subspaces such that the asymptotic behaviour of any solution contained in any of
these subspaces is clear. Consequently, as the set of solutions form a vector space,
as we have seen in the previous section, any solution can be written as a linear
combination of solutions contained on these subspaces. Thus, the asymptotic
behaviour of any solution can be deduced from these other solutions.

First of all, we must clarify what it means for a solution to be contained in a
subspace. To get there, we first have to include some other concepts.

We say that a set D is invariant by the flow of a differential equation if
for all points p ∈ D the solution φ(t;p) ∈ D for all t ∈ R. We now introduce
some examples, in order to clarify this concept.

As a first example of an invariant set, suppose λ ∈ R is an eigenvalue of matrix
A of system (5), and consider v ∈ Rn its associated eigenvector. Then, the set
R = {z+ rv|r ∈ R} is invariant by the flow, for z such that Az = b, that is, z is
an equilibrium point of the system. To check it, take x0 ∈ R, thus x0 = z+ r0v.
Now, the solution starting at x0 is φ(t;x0) = eAt(x0−z)+z, as it has ben proved
in Proposition 5. From this expression, we have φ(t;x0) = r0e

Atv+z = r0e
λtv+z.

In consequence, φ(t;x0) ∈ R for all values of t.
Another example: suppose λ = α+ iβ is an eigenvector of A with associated

generalized eigenvectors v and w. Then, the plane P = {z+r1v+r2w|r1, r2 ∈ R}
is invariant by the flow, where z is an equilibrium of the system. Now, by taking
a point x0 ∈ P , that is, x0 = z+ r01v+ r02w, it can be checked that φ(t;x0) ∈ P
for all t ∈ R.

The next lemma states that the previous examples are just some particular
cases. It shows the invariance of generalized eigenspaces.

Lemma 2. Let E be a generalized eigenspace associated to an eigenvalue λ of
matrix A of system (5). Then, E is invariant by the flow.

Proof. Let λ be an eigenvalue of A and {v1, . . . ,vm} be the generalized eigen-
vectors associated to λ. Then, we have (A − λI)mjvj = 0 for some minimal
value mj ∈ Z+. Let M = max{mj}.
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We know that

ker(A− λI) ⊂ ker(A− λI)2 ⊂ . . . ⊂ ker(A− λI)M ⊂ E.

Thus, as vj ∈ E, wj = (A−λI)vj ∈ ker(A−λI)mj−1 ⊂ E and wj = Avj −λvj

it follows Avj ∈ E. From this, it follows Av ∈ E for all v ∈ E. Therefore, we
have eAtv ∈ E.

From the previous lemma and the examples, we can consider now the sub-
spaces generated by the union of all the eigenvectors associated to eigenvalues
having either positive, negative or zero real part. These subspaces are essential
to study the behaviour of solutions of linear differential equations.

Let us then consider the eigenvalues λk = αk + iβk, with βk = 0 for the real
ones, and their associated generalised eigenvectors vk = uk + iwk, with wk = 0
if βk = 0. We define the stable subspace ES = Span{uk,wk|αk < 0}, the
unstable subspace EU = Span{uk,wk|αk > 0} and the center subspace
EC = Span{uk,wk|αk = 0}, where Span{v} denotes the subspace generated
by v. These subspaces are invariant by the flow, and gather all the converging,
diverging and oscillating dynamics of the system, respectively. These statements
come from the following theorem.

Theorem 9. Let ES, EU and EC be the stable, unstable and central subspaces,
respectively, associated to the homogeneous linear differential equation ẋ = Ax.
They verify the following two statements:

a) They are invariant by the flow of the system.

b) Rn = ES ⊕ EU ⊕ EC .

Proof. The first statement is a consequence of Lemma 2. The second statement
is direct.

From the result above, it follows that solutions starting in some of these
spaces will remain there for all values of t. Moreover, since the phase space is
decomposed in the stable, unstable and central spaces, the linear combination of
solutions is a solution, and we have uniqueness of solutions, any solution can
be written as a linear combination of a solution contained in the stable space, a
solution contained in the unstable space and a solution contained in the central
space. Therefore, in order to describe the behaviour of solutions of a linear
differential system, it is enough to describe the behaviour of solutions on the
invariant spaces ES , EC and EU , respectively. This leads us to the following
result, that states the dynamics of solutions depending on the subspace they
belong to.

Proposition 7. Let A ∈ Mn(R) and consider φ(t;x0) the unique solution to
the linear system ẋ = Ax with initial condition x(0) = x0. Then:

a) if x0 ∈ ES\{0}, then limt→+∞ φ(t;x0) = 0 and limt→−∞ ∥φ(t;x0)∥ =
+∞.
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b) if x0 ∈ EU\{0}, then limt→−∞ φ(t;x0) = 0 and limt→+∞ ∥φ(t;x0)∥ =
+∞.

c) if x0 ∈ EC\{0} and A diagonalizes, then there exist positive constants m
and M such that m ≤ ∥φ(t;x0)∥ ≤M for all t ∈ R.

d) if A does not diagonalize, then there exists x0 ∈ EC\{0} such that

limt→±∞ ∥φ(t;x0)∥ = ∞.

e) if ES ̸= {0}, EU ̸= {0} and x0 ∈ ES ⊕ EU\ES ∪ EU , then

limt→±∞ ∥φ(t;x0)∥ = ∞.

f) if EU ̸= {0}, EC ̸= {0} and x0 ∈ EU ⊕ EC\EU ∪ EC , then

limt→∞ ∥φ(t;x0)∥ = ∞ and limt→−∞ ∥φ(t;x0)∥ does not exist.

g) if ES ̸= {0}, EC ̸= {0} and x0 ∈ ES ⊕ EC\ES ∪ EC , then

limt→−∞ ∥φ(t;x0)∥ = ∞ and limt→∞ ∥φ(t;x0)∥ does not exist.

Proof. For the first statement, consider x0 ∈ ES\{0}. We have x0 =
∑m

i=1 αivi

for vi the generalized eigenvectors with negative real part. Now, for each of
these generalized eigenvectors, we have ∥eAtvi∥ = eait∥vi∥ for ai the real part
of their associated eigenvalue. Now, taking limits, we have the result for these
vectors. Since linear combination of solutions is a solution, we have the result
for any x0 ∈ ES\{0}.

The second statement is analogous to the first one.
For the third one, take x0 ∈ EC\{0}. Under the assumption that A diago-

nalizes, we can write x0 =
∑k

i=1 αivi for vi the eigenvectors of null real part.
Now, for these eigenvectors, we have that ∥eAtvi∥ writes as a linear combination
of sin(βit), cos(βit). Hence, the solution is bounded both above and below. The
statement follows since linear combination of solutions is a solution.

For statement d), if A does not diagonalize, there exists a generalized eigen-
vector v ∈ ES . For this generalized eigenvector, ∥eAtv∥ will write as a linear
combination of sines and cosines, but it will also have powers of t. Hence, the
result follows.

The rest of the statements follow from the previous ones.

For some systems, the central subspace EC is null. In these cases, we have
Rn = ES ⊕ EU , and whenever this happens, we call the singular point of the
system to be hyperbolic. These points are of special interest, since whenever
there is no central subspace, the dynamics are completely determined for any
solution. Moreover, some results require the singular point to be hyperbolic. It
is straightforward to check that this definition coincides with the one usually
presented for hyperbolic singular points: all the eigenvalues of the jacobian
matrix of the system evaluated at the singular point have non-zero real part.

Moreover, from the result above, notice that, although the dynamics for both
the stable and unstable subspace are characterized, dynamics for solutions on
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the central subspace depend on the spectrum of matrix A. More explicitly, if A
diagonalizes, solutions remain bounded; otherwise, solutions tend to ∞, spiraling
if the eigenvalues are complex. Finally, in order to preserve clarity, a couple
examples are presented below, for different system configurations.

Example 1. Consider the 3−dimensional system ẋ = Ax, where

A =

 4 0 0
−1 3 1
0 0 −2

 .

The eigenvalues for this matrix are λ1 = 4, λ2 = 3, λ3 = −2, and the respective
associated eigenvectors are v1 = (1,−1, 0),v2 = (0, 1, 0),v3 = (0,−1, 5). Thus,
the stable subspace is ES = Span{(0,−1, 5)} and the unstable subspace is EU =
Span{(1,−1, 0), (0, 1, 0)}. Moreover, there is no central subspace, so the singular
point is hyperbolic.

Now, if we pick a point P ∈ R3, the position vector of this point can be
decomposed as P = a(0,−1, 5) + b1(1,−1, 0) + b2(0, 1, 0). Thus, the solution can
be decomposed as

φ(t;P ) = aφ(t; (0,−1, 5)) + b1φ(t; (1,−1, 0)) + b2φ(t; (0, 1, 0)).

This is straightforward, since sum of solutions is a solution, and as for time
t = 0 the left-hand side and the right-hand side coincide, uniqueness of solutions
yields that both expressions refer to the same solution.

Thus, every solution that has initial condition not contained in any of the
subspaces has a stable component approaching the origin and two unstable ones
moving away from it, as time increases. This can also be stated from statement
e) in Proposition 7.

In Figure 1, there is a representation of the stable manifold in blue, the
unstable manifold in red, and an orbit in green outside of these manifolds.
Moreover, the projection of the orbit in each of these manifolds is also graphed.

Example 2. Consider the 4−dimensional system
ẋ = ay,
ẏ = −ax,
ż = bw,
ẇ = −bz,

which has associated matrix

A =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 ,

for a, b > 0.
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Figure 1: Unstable and stable manifolds, alongside with an orbit. In light-blue,
the projection of the orbit onto the stable manifold, and in orange, the projection
of the orbit onto the unstable manifold.

Its eigenvalues, which are easy to calculate, are ±
√
ai,±

√
bi being each of

them of multiplicity one. As all of them have zero real part, this system has no
stable or unstable subspaces, having only a central one. Moreover, the central
subspace has two invariant subspaces: the one corresponding to a plane XY
generated by the eigenvectors associated to the eigenvalues ±

√
ai and the other

generated by an analogous plane ZW . Orbits defined by solutions contained on
each of these invariant planes rotate without a homotecy, thus they correspond
to periodic orbits. The whole orbits in R4 are the product of two circumferences,
hence all of them are contained in an invariant torus, filling it. However, these
full solutions in R4 will define periodic orbits only in determinate conditions,
that will be explained below. Therefore, only in this case the torus will be filled
with periodic orbits.

Moreover, according to statement c) in Proposition 7, as the matrix diago-
nalizes (over C), solutions remain bounded for all time t ∈ R.

For this family of systems, the orbits projected onto either the XY or the
ZW invariant planes will turn out to be periodic orbits of period 2π

a and 2π
b ,

respectively, even if the whole solution does not define a 4D periodic orbit.
If a

b is rational, at some point both projected orbits will close, thus the whole
solution will define a 4D periodic orbit. Moreover, the period for this orbit will
be 2π

gcd(a,b) .

On the other hand, if a
b is irrational, there is no number that makes both

projected orbits close at the same time, thus the 4D orbit will not be periodic,
even though projections onto the XY and ZW planes are periodic.

For a = 2, b = 5, some solutions are represented in Figure 2. For a =
√
2, b =

5, projections on the XZ and YW plane are represented in Figure 3.
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(a) Orbits on the XY
plane.

(b) Orbits on the ZW
plane.

(c) Orbit on the XZ
plane. Initial condition
(1, 0, 1, 0).

(d) Orbits on the YW
plane. Initial condition
(1, 0, 1, 0).

Figure 2: Orbits for rational a
b of example 2.

(a) Orbit on the XZ plane
for irrational a

b
.

(b) Orbit on the YW
plane for irrational a

b
.

Figure 3: Orbit for irrational a
b defined by solution with initial condition

(1, 0, 1, 0), of example 2.

Example 3. Consider the 4−dimensional system given by
ẋ = y + z,
ẏ = −x+ w,
ż = w,
ẇ = −z,
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which has associated matrix

A =


0 1 1 0
−1 0 0 1
0 0 0 1
0 0 −1 0

 .

This system is very similar to the one in the previous example for a = b = 1,
but in this case matrix A does not diagonalize. Thus, from statement d) in
Proposition 7, it follows that there exist unbounded solutions for this system.

This translates as, although projections onto the XY−plane or onto the
ZW−plane will look like periodic orbits, the global dynamics won’t be periodic,
i.e. solutions will have oscillatory behavior in the 4−dimensional space, but they
will grow to infinity.

Projections of an orbit are presented in Figure 4, where it can be seen that
the subspace generated by the ZW plane is invariant, and the projected orbit
is periodic there, even though with respect to toe coordinates X and Y it grows
unbounded, as it can be seen in the other projections, where the X and Y bounds
are near 300.

(a) Orbit on the XY plane. (b) Orbit on the ZW plane.

(c) Orbit on the XZ plane. (d) Orbit on the YW plane.

Figure 4: Projection of an orbit defined by a solution with initial condition
(0, 0,−1, 0), of example 3.
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3 Transition maps: general study in Rn

3.1 Contextualization

On the previous section there has been presented an introduction to both classical
and qualitative theory applied to linear systems. From that introduction, it
is easy to notice that these systems are rather simple as they form a family
for which a solution can be computed, thus in most cases the qualitative work
gets simplified. In this section, by taking advantage of the simplicity of these
systems, we present and study a map, similar to the Poincaré map, defined over
a transversal hyperplane to the flow of the linear system that sends points on
this hyperplane to other points on it, following the flow of the system.

Although in this section we will be focused on linear systems to develop the
theory and results of this map, it shines when dealing with a family of systems
called piecewise linear systems (PWLS for short), which are formed by two
(or more) linear systems separated by a hyperplane, by taking this hyperplane
as the cross section.

In this work we will be dealing with linear systems of constant coefficients,
such as

ẋ = Ax+ b, (17)

where A ∈Mn(R) and x,b ∈ Rn and such that matrix A is regular, thus they
have exactly one equilibrium, given by z = −A−1b. Remind that, as it was
seen in Section 2.2.2, all linear systems with constant coefficients having at least
one equilibrium can be transformed in homogeneous systems by translating the
equilibria to the origin. Thus, we will be focused on homogeneous constant
coefficient systems, such as

ẋ = Ax. (18)

In order to be more precise, we define here the mentioned hyperplane, that
is also called a cross-section for the linear system, and it is given by

P = {q ∈ Rn|kTq = 1}

for a fixed vector k ∈ Rn\{0}.
Notice that, from the definition above, the hyperplane does not contain

the origin, as kT0 = 0. Moreover, this hyperplane splits the whole Rn in two
half-spaces, one of which will contain the origin. We will denote these half-paces
as S0 for the one containing the origin, and S for the other one.

As it was stated in the introduction of this section, the map we will define
and study will send a point q ∈ P to another point q̂ ∈ P through the orbit
defined by the solution starting at q. For any point q ∈ P, the orbit defined by
the solution starting at q can either evolve to P through S0 or through S. This
latter statement allows us to define two different transition maps: ΠA, that will
act on points q ∈ P such that their orbit evolves through S0, and Π̂A, that will
act on points q ∈ P such that their orbit evolves through S.

However, before moving on to work with these maps, some concepts and
results are presented for the sake of clarity.
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3.2 Contact points, observability

First of all, let us introduce a concept and some results related to it that will be
of aid to continue the study. Specifically, this concept and some of the results
presented will lead to a base that will reduce the dimensionality of the problem.

We define a point q ∈ P to be a contact point of order m ≥ 1 of the flow
defined by the system (18) with the hyperplane P if it satisfies

i) kTAlq = 0,∀l = 1, 2, . . . ,m− 1,

ii) kTAmq ̸= 0.

If the first condition is fulfilled for every m ≥ 1, we define the order of q to
be infinity.

The following lemma relates the existence of a unique contact point p of
order n to the regularity of matrix A.

Lemma 3. If there exists a unique contact point p of order n of the flow of
system (18) with the hyperplane P, then kTAnp = (−1)n+1 det(A) and, therefore,
det(A) ̸= 0.

Proof. Let p ∈ P be the unique contact point of order n of the flow defined
by system ẋ = Ax. We have kTp = 1,kTAlp = 0,∀l = 1, 2, . . . , n − 1 and
kTAnp ̸= 0.

From the Cayley-Hamilton Theorem, we have An = −
∑n−1

i=0 diA
i for di

the coefficients of the characteristic polynomial of matrix A, thus kTAnp =
−
∑n−1

i=0 dik
TAip. Now, applying the equalities i), ii) from the definition of a

contact point, we have kTAnp = (−1)n+1d0 = (−1)n+1 det(A), and as kTAnp ̸=
0, we have the result.

The previous lemma states that, under the assumption of a unique contact
point of order n of the flow of system (18), then the matrix A of the system will
be regular. Thus, if the matrix defining the system is singular, the differential
equation will not have a unique contact point of order n.

The lemma has a reciprocal under an additional condition, that we present
here. We say that system (18) is observable relative to the hyperplane P if the
observability matrix

O =
(
k ATk (AT )2k . . . (AT )n−1k

)T
, (19)

has rank n.
Now we present the (almost) reciprocal of Lemma 3.

Lemma 4. If the homogeneous linear system (18) is observable relative to the
hyperplane P and the matrix A is regular, then there exists a unique contact
point p of order n of the flow of the system with the hyperplane P.

Proof. As the system is observable, the linear system of equations

Ox = e1, (20)
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has a unique solution, where e1 denotes the first vector of the canonical basis.
This solution, namely p, fulfills

kTp = 1,
kTAip = 0, i = 1, . . . , n− 1,

so this point is a contact point of order greater or equal to n.
But, as from Cayley-Hamilton theorem we have An = −

∑n−1
i=0 diA

i, it follows
kTAnp = (−1)n+1 det(A) as in Lemma 3. Now, as A is regular, the last equality
is not null, thus p is a contact point of order n. Moreover, as it is the unique
solution to system (20), uniqueness follows.

For the rest of the work, it will be assumed that system (18) is observable
relative to the hyperplane P, with matrix A regular, as it was stated in the
introduction of this section. From the lemma above, under the mentioned
conditions it follows the existence and uniqueness of a contact point p of order n.

3.3 The Krylov base

Under the assumption of existence and uniqueness of a contact point p ∈ P of
order n, there appears a somewhat special vector set, namely, B = {Akp}n−1

k=0 .
In the following result it is proved that B is actually a base for Rn, which is
called the Krylov base.

Lemma 5. If there exists a unique contact point p of order n of the system
(18), then the set B = {Akp}n−1

k=0 forms a basis for Rn.

Proof. As the set B consists of exactly n vectors, it suffices to show that either
they are linearly independent or that they span the whole Rn space. We will prove
the first statement. Let, then,

∑n−1
i=0 αiA

ip = 0 be a null linear combination
of these vectors. By multiplying both sides by kTA, as p is a contact point of
order n, the equality reduces to αn−1k

TAnp = 0. From this last expression, we
deduce αn−1 = 0. By plugging the value of αn−1 = 0 in the sum and multiplying
it now by kTA2, we are left with αn−2k

TAnp = 0, thus αn−2 = 0. If we now
iterate the reasoning for kTAj increasing j until n− 1, the linear combination
gets reduced to α0p = 0. And, since p ̸= 0 since it is a point of P and the
origin is not contained in the hyperplane, it follows α0 = 0. Therefore, we have
αi = 0,∀i = 0, 1, . . . , n− 1, thus the vectors are linearly independent and they
form a basis.

In terms of the Krylov base, B, the cross-section is written as P = {p +∑n−1
i=1 aiA

ip|ai ∈ R}. Thus, if we identify every point q in P with its coordinates
(a1, a2, . . . , an−1), we get that P is isomorphic to Rn−1. In the following, we will
use the notation qB = (a1, a2, . . . , an−1) in Rn−1 to express the coordinates of a
point q ∈ P in the Krylov base. It follows directly that for the contact point p
of order n, we have pB = (0, 0, . . . , 0).
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Moreover, the representation of matrix A of system (18) on the Krylov base
turns out to be rather simple. Precisely, the matrix in this base is written as

B =



0 . . . . . . 0 −d0

1
. . .

... −d1

0
. . .

. . .
... −d2

...
. . .

. . . 0
...

0 . . . 0 1 −dn−1


, (21)

where di, i = 0, . . . , n− 1 are the coefficients of the characteristic polynomial of
A. This matrix B is usually called the controlability matrix of system (18),
and it is widely used in the study of Piecewise Linear Systems by authors like
Carmona et al., see e. g. [4].

3.4 Analysis of the flow through P
In this section, the objective is to determine and classify the points of P in which
the flow evolves through the half-space S0 or to the half-space S, respectively.

Let us now consider the following subsets of P, which can be defined by an
abuse of notation in terms of the Krylov base B:

Lm = {(a1, a2, . . . , an−m, 0, . . . , 0) ∈ Rn−1|an−m ̸= 0}, for m = 1, . . . , n− 1,

Ln = {(0, 0, . . . , 0) ∈ Rn−1}.

These sets locate and classify all the contact points of the flow of system (18)
in the plane P with respect to their order of contact. This statement is proven
in the following result.

Lemma 6. a) The sets {Lm}nm=1 form a partition of P.

b) For each m = 1, 2, . . . , n, the set Lm is formed by all the contact points of
order m of the flow of system (18) with P.

Proof. The first statement is direct.
For the second statement, the case m = n is also direct. Now, consider

m ∈ {1, 2, . . . , n − 1} and let q be a point of Lm. As q ∈ Lm, we can write
q = p+

∑n−m
i=1 aiA

ip =
∑n−m

i=0 aiA
ip for a0 = 1, an−m ̸= 0. Then, if we multiply

by kTAr, it follows

kTArq =

n−m+r∑
i=r

ai−rk
TAip.

If r ∈ {1, 2, . . . ,m− 1}, then the index on the right-hand side runs from i = r
to i = n−m+ r ≤ n− 1. Thus, each of the summands is null as p is a contact
point of order n, therefore kTArq = 0. Otherwise, if r = m, the index runs from
i = m to i = n, thus it follows kTAmq = an−mkTAnp ̸= 0. It follows that q is
a contact point of order m.
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Reciprocally, let q ∈ P be a contact point of order m. From statement a),
the point q is in exactly one of the Lk sets, for k ∈ {1, 2, . . . , n}. Now, as we
have seen that the points in Lk are the contact points of order k, we can deduce
that q ∈ Lm.

Remark 2. From the previous result, we have that these Lm sets form a partition
of P. Moreover, for m < n, each of these sets has two connex components, having
as a boundary the union

⋃n
i=m+1 Li.

Now, in order to make the previous remark a bit more clear, we present some
low-dimensional examples below.

The most basic case is n = 2, where the hyperplane P = L1 ∪ L2 is just a
straight line formed by two segments of contact points of order 1 that share a
common boundary given by L2, that consists of p the contact point of order 2.
In Figure 5 there is a visualization.

L1

L2

Figure 5: Set L1 containing the contact points of order 1, in orange, separated
by the set L2 containing the unique contact point of order 2, in blue.

As a more illustrative example, consider the case n = 3. Here, we have
P = L1 ∪ L2 ∪ L3. The set L1 is formed by two open semi-planes that gather
all the contact points of order 1, and they have as a boundary the straight line
L2 ∪ L3. The set L2 is formed by two segments that gather the contact points
of order 2 and they have as a boundary the set L3, which consists in the contact
point p of order 3. This can be visualized in Figure 6.

Once we have P partitioned in subsets such that each subset gathers all the
points with the same contact order, now we study the behavior of the flow in
terms of this order of contact. This will lead us to define a flow orientation and
to classify the orbits depending on their behavior with respect to P. Moreover,
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L1

L2

L3

Figure 6: Set L1 containing the contact points of order 1, in orange, separated
by the set L2 containing the contact points of order 2, in blue, separated as well
by the set L3 containing the unique contact point of order 3, in pink.

it will be seen that orbits defined by solutions starting on an even order contact
point will remain locally in either S0 or S, while orbits defined by solutions
starting on an odd order contact point will cross from S0 to S or vice versa.

We start by introducing a few definitions. Let q ∈ P, and consider φ(s;q)
the solution of system (18) with initial condition x(0) = q. Let γq be the orbit
through q. If there exists ε > 0 such that kT (φ(s;q)− q)kT (φ(−s;q)− q) < 0
for s ∈ (0, ε), we say that γq is a crossing orbit. These orbits cross from
S to S0 or vice versa, hence their name, and this allows us to define a flow
orientation at q. We say γq is inward oriented when it goes through q from
S to S0, which means that kT (φ(s;q) − q) < 0 and kT (φ(−s;q) − q) > 0. If
kT (φ(s;q) − q) > 0 and kT (φ(−s;q) − q) < 0, then the orbit goes through
q from S0 to S, and we say it is outward oriented. Finally, if there exists
ε > 0 such that kT (φ(s;q)− q)kT (φ(−s;q)− q) > 0 for s ∈ (0, ε), then γq is a
non-crossing orbit.

Notice that non-crossing orbits are contained in either S0 or S. For a non-
crossing orbit, we say it is inward contained at q when kT (φ(s;q)− q) < 0
and kT (φ(−s;q) − q) < 0. If kT (φ(s;q) − q) > 0 and kT (φ(−s;q) − q) > 0,
then the non-crossing orbit is outward contained at q.

The result presented below helps us classify the orbits γq, and shows us that
they depend purely on the parity of the order of contact of q.

Lemma 7. Let q be a contact point of order 1 ≤ m ≤ n of the system (18) with
the hyperplane P and γq be the orbit through q. Let qB = (a1, . . . , an−1) be the
coordinates of q in the Krylov base, and set a0 = 1. Then:

a) If m is odd, then γq is a crossing orbit to P at q. Moreover:

a.1) if (−1)n+1an−m det(A) < 0, then γq is inward oriented,

a.2) if (−1)n+1an−m det(A) > 0, then γq is outward oriented.
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b) If m is even, then γq is a non-crossing orbit at q. Moreover:

b.1) if (−1)n+1an−m det(A) < 0, then γq is inward contained,

b.2) if (−1)n+1an−m det(A) > 0, then γq is outward contained.

Proof. Let q ∈ P be a contact point of order m. Let φ(s;q) be the solution to
system (18) with initial condition x(0) = q. Applying the Taylor expansion to
the solution, we have

φ(s;q) = q+

m−1∑
i=1

si

i!
Aiq+

sm

m!
Amq+O(sm+1).

Now, as q is a contact point of order m, by subtracting q and multiplying
by kT to the left, we have

kT (φ(s;q)− q) =
sm

m!
kTAmq+O(sm+1). (22)

Moreover, as qB verifies an−m ̸= 0 and ai = 0 for n − m < i ≤ n − 1,
then q =

∑n−m
i=0 aiA

ip and kTAmq =
∑n−m

i=0 aik
TAi+mp, for p ∈ P the unique

contact point of order n. Now, from Lemma 3 and by the definition of contact
point, the second equality reduces to

kTAmq = (−1)n+1an−m det(A). (23)

Now the results from both statements are straightforward:

a) If m is odd, from equation (22) we deduce that expressions kT (φ(s;q)−q)
and kT (φ(−s;q)− q) will have opposite sign. This implies that γq crosses
P through q. Statements a.1), a.2) follow from equation (23).

b) If m is even, the reasoning is similar to the one performed in a).

From Lemma 7, if m < n is odd, the set Lm+1 splits Lm into two parts, one
containing the points at which the orbits are inwards transversal to P and the
other consisting of the points at which the orbits are outwards transversal to P.
These sets are called, respectively,

LI
m = {(a1, . . . , an−m, 0, . . . , 0)|(−1)n+1an−m det(A) < 0},

LO
m = {(a1, . . . , an−m, 0, . . . , 0)|(−1)n+1an−m det(A) > 0}.

Similarly, if m < n is even, the set Lm+1 splits Lm in two parts, containing
each of these parts the points at which the orbits are inwards tangent to P and
the points at which the orbits are outwards tangent to P , respectively. Explicitly,
these sets are

LI
m = {(a1, . . . , an−m, 0, . . . , 0)|(−1)n+1an−m det(A) < 0},

LO
m = {(a1, . . . , an−m, 0, . . . , 0)|(−1)n+1an−m det(A) > 0}.
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Notice that this pair of sets has the same definition as the pair defined above,
for odd m, even though they are different sets, since orbits defined by solutions
starting at points on these sets have different behavior. However, since their
behavior depends purely on the parity of m the order of contact, both these
pairs of sets are well-defined and differentiated from each other.

On the other hand, for each m < n each of these subsets is precisely one of
the connex components of Lm that were stated in Remark 2.

The case m = n is a bit different, because as Ln = {p} either LI
n is empty, or

the other one will be empty. This will depend on the parity of n, the dimension
of the space where the system is located, and on the sign of the determinant of
matrix A.

Finally, we define PI =
⋃n

k=1 LI
k, which is formed by all the points of P at

which orbits evolve to S0, and PO =
⋃n

k=1 LO
k , which is formed by all the points

of P at which orbits evolve to S.

3.5 Transition maps

Under the assumption of existence and uniqueness of a contact point p of order
n of system (18), we can ensure the existence of a map defined over P that sends
points on the hyperplane to points on the same hyperplane through the flow of
the system. In particular, the existence of this map defined over the set Lm with
odd m and in a neighborhood of Lm−1, follows from the continuity of the flow
with respect to initial conditions. We will call this map the transition map,
and we distinguish two of them depending on the domain being a subset of PI

or PO. Precisely, we have:

ΠA : D1 ⊂ PI → PO,

Π̂A : D2 ⊂ PO → PI .

Now, if we take a point q ∈ D1, as it belongs to P as well, it can be written
in terms of the Krylov base, that is

q = p+

n−1∑
i=1

aiA
ip, (24)

for qB = (a1, . . . , an−1). The same holds for ΠA(q) ∈ PO, leading to

ΠA(q) = p+

n−1∑
i=1

biA
ip, (25)

for ΠA(q)B = (b1, . . . , bn−1). From expressions (24) and (25), it follows that the
coordinates of ΠA(q) in the Krylov base can be expressed in terms of these of q,
say bi = πA

i (a1, . . . , an−1) . Thus the transition map ΠA can be determined from
the set of n− 1 functions {πA

i }
n−1
i=1 . A similar analysis leads us to conclude that
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the other transition map, Π̂A, can also be determined from the n− 1 functions
{π̂A

i }
n−1
i=1 . In following sections we will deal with the determination of the maps

components. But, before moving on to that, we introduce some other expressions
for these maps, that will be useful to simplify the work.

3.5.1 Expressions for the transition maps

Remind that, as the system (18) is linear, its flow is given by Φ(q, t) = etAq for
q ∈ Rn a given initial condition. If we take q ∈ D1, we can deduce the existence
of a function τ(q) > 0 such that

ΠA(q) = eτ(q)Aq ∈ PO,
Φ(q, t) ̸∈ P,∀t ∈ (0, τ(q)).

(26)

In a similar way, for points in q ∈ D2 there exists a function τ(q) > 0 verifying
the analogous properties. In both cases the function τ(q) is called the time of
flight of the point q, and the procedure of obtaining this function is somewhat
likely to the one of the time of flight of the Poincaré map.

Let q ∈ D1 such that qB = (a1, . . . , an−1). From expressions (25) and (26),
and applying that matrices A and eτ(q)A commute as it was checked in equations
(7), we get

ΠA(q) = eτ(q)Ap+

n−1∑
i=1

aiA
ieτ(q)Ap. (27)

Now, from the Putzer method explained in the previous section, by means of
the functions γi, expression (27) can be written as

ΠA(q) =

n−1∑
i=0

n−1∑
m=0

aiγ
m(τ(q))Ai+mp, (28)

where we have considered a0 = 1 for the sake of compacity of the expression.
Once again an analogous expression is obtained for the other map.

The following result provides us explicit expressions for the components of the
transition maps, {πA

i }
n−1
i=1 and {π̂A

i }
n−1
i=1 . In order to prove it, we first introduce

and remind some tools and concepts. The first of those will be the controlability
matrix (21) of system (18) introduced above, in Section 3.3.

For each m ≥ 0, we define the vectors dm = (dm0 , d
m
1 , . . . , d

m
n−1), which are

given by

dm = Bm


d0
d1
...

dn−1

 . (29)
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Finally, we define the functions L,U, P : Rn−1 →Mn(R) given by

L(a1, . . . , an−1) =


1 0 . . . 0

a1 1
. . .

...
...

. . .
. . . 0

an−1 . . . a1 1

 , (30)

U(a1, . . . , an−1) =


0 0 . . . 0
0 an−1 . . . a1
...

. . .
. . .

...
0 . . . 0 an−1

 , (31)

P (a1, . . . , an−1) = L(a1, . . . , an−1) +Bn−1U(a1, . . . , an−1). (32)

Theorem 10. Let q ∈ P with qB = (a1, . . . , an−1), {πA
i }

n−1
i=1 , {π̂A

i }
n−1
i=1 be the

components of the transition maps ΠA, Π̂A, respectively, and the function P
defined in expression (32). Now,

a) If q ∈ D1, then
1

πA
1 (a1, . . . , an−1)

...
πA
n−1(a1, . . . , an−1)

 = P (a1, . . . , an−1)


γ0(τ(q))
γ1(τ(q))

...
γn−1(τ(q))


b) If q ∈ D2, then

1
π̂A
1 (a1, . . . , an−1)

...
π̂A
n−1(a1, . . . , an−1)

 = P (a1, . . . , an−1)


γ0(τ(q))
γ1(τ(q))

...
γn−1(τ(q))


Proof. We will prove the first statement, as the second is analogous.

Suppose then q ∈ D1. From expression (28), if we take r = m+ i, it follows

ΠA(q) =

n−1∑
r=0

(
r∑

m=0

ar−mγ
m(τ(q))

)
Arp+

2n−2∑
r=n

 n−1∑
m=r−(n−1)

ar−mγ
m(τ(q))

Arp

=

n−1∑
r=0

(
r∑

m=0

ar−mγ
m(τ(q))

)
Arp+

n−2∑
r=0

(
n−1∑

m=r+1

an+r−mγ
m(τ(q))

)
An+rp,
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for a0 = 1. From the corollary 1, we have

ΠA(q) =

n−1∑
r=0

(
r∑

m=0

ar−mγ
m(τ(q))

)
Arp−

n−2∑
r=0

(
n−1∑

m=r+1

an+r−mγ
m(τ(q))

)
n−1∑
i=0

driA
ip

=

n−1∑
r=0

(
r∑

m=0

ar−mγ
m(τ(q))

)
Arp−

n−1∑
i=0

(
n−2∑
r=0

(
n−1∑

m=r+1

an+r−mγ
m(τ(q))

)
dri

)
Aip.

If we rearrange the indices in the summations of the second term, we have

ΠA(q) =

n−1∑
r=0

(
r∑

m=0

ar−mγ
m(τ(q))

)
Arp−

n−1∑
i=0

n−1∑
j=1

(
j∑

k=1

an−kd
j−k
i

)
γj(τ(q))

Aip

=

n−1∑
r=0

 r∑
m=0

ar−mγ
m(τ(q))−

n−1∑
j=1

(
j∑

k=1

an−kd
j−k
r

)
γj(τ(q))

Arp

=

n−1∑
r=0

(
arγ

0(τ(q)) +

r∑
m=1

(
ar−m −

m∑
k=1

an−kd
m−k
r

)
γm(τ(q))

−
n−1∑

m=r+1

(
m∑

k=1

an−kd
m−k
r

)
γm(τ(q))

)
Arp.

Now, remind that ΠA(q) = p +
∑n−1

i=1 π
A
i (qB)A

ip. Therefore, both the
previous expression and this one are written in terms of the Krylov basis.
Hence, the coefficients of the terms Aip, i = 0, 1, . . . , n− 1 will coincide for both
expressions. Explicitly, the term r = 0 in the equation above will coincide with
the coordinate of p in the second expression, that is,

1 = a0γ
0(τ(q))−

n−1∑
m=1

(
m∑

k=1

an−kd
m−k
0

)
γm(τ(q)).

On the other hand, for the rest of the coordinates Arp, where r = 1, . . . , n− 1,
we obtain the following equalities for the coefficients:

πA
r (a1, . . . , an−1) = arγ

0(τ(q)) +

r∑
m=1

(
ar−m −

m∑
k=1

an−kd
m−k
r

)
γm(τ(q))

−
n−1∑

m=r+1

(
m∑

k=1

an−kd
m−k
r

)
γm(τ(q)).

Finally, rearranging the second equality for each r = 1, . . . , n−1 to determine
the part that comes from matrix L and the part that comes from matrix Bn−1U ,
we have

πA
r (a1, . . . , an−1) =

r∑
m=0

ar−mγ
m(τ(q))−

n−1∑
m=1

(
m∑

k=1

an−kd
m−k
r

)
γm(τ(q)).
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Now, it is straightforward to check that this expression for each r = 1, . . . , n−1
is exactly the r + 1-th row of the matricial product

P (a1, . . . , an−1)


γ0(τ(q))
γ1(τ(q))

...
γn−1(τ(q))

 ,

and the equality for the first coordinate corresponds to the first row of the
previous product. Hence, the result follows.

In theorem 10 we have obtained explicit expressions of the components of
the transition maps in terms of the coordinates of the point q and its time of
flight τ(q). Moreover, the time of flight is implicitly defined in the first equation.
Now, whenever we are able to solve the equation involving the time of flight, we
will be able to fully determine the transition map. In particular, if we know the
time of flight τ0 of a point q, we can try to apply the Implicit Function Theorem
in order to obtain an explicit expression for the time of flight in a neighborhood
of τ0, and thus determining the transition map in a neighborhood of q. As an
example, for the contact point of order n p, we know that its time of flight is
τ = 0, so we can try to apply the previous reasoning near this point. This will
be done for dimensions n = 2 and n = 3 in the following section.

On the other hand, notice also that matrix P (a1, . . . , an−1) only depends
on the coordinates of q and the coefficients of the characteristic polynomial of
matrix A. Moreover, information on the eigenvalues is organized within the
functions γi(τ).

3.5.2 Expressions for the derivatives of transition maps

Now we address the problem of computing the partial derivatives of the transition
maps. In order to prove the main result we introduce the next technical lemma.

Lemma 8. Matrices B,P defined above commute, i.e.,

BP = PB

Proof. The proof of the lemma is a direct calculation of both matricial products,
since all the elements in each matrix are known.

On the other hand, the controlability matrix defined in (21) allows us to find
a system of differential equations for the functions γi introduced in Section 2.1.1.
Even more, the result can be stated as a corollary from Theorem 7, since there it
is shown that the functions satisfy the corresponding equations presented below.

Lemma 9. Let Γ(t) = (γi(t))n−1
i=0 be the vectorial function which components

are the functions defined in Theorem 7. Then, Γ(t) is the solution of the linear
differential system Γ̇(t) = BΓ(t) satisfying the initial condition Γ(0) = e1, where
e1 = (1, 0, . . . , 0) is the first element of the canonical base of Rn.
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Proof. Notice that in the proof of Theorem 7 expressions (12) were found to
be true. Moreover, in earlier stages of the theorem it was also shown that the
components verify the initial conditions mentioned. Thus, this result is direct
from the proof of that theorem.

The previous result will be useful for the main result of this subsection, and
in following sections as well, as it allows us to find series expansions for functions
γi in a neighborhood of t = 0, by means of the system of differential equations
they fulfill. Matricially, the expansions are written as

Γ(t) =

m∑
k=0

BkΓ(0)
tk

k!
+O(tm+1), (33)

and they give us an easier way of obtaining explicit expressions for these functions
γi.

Now we present and prove the main result.

Theorem 11. Let q ∈ P and {πA
i }

n−1
i=1 , {π̂A

i }
n−1
i=1 , P,B, γ

i(t) defined as above.
Now,

a) if q ∈ D1 with qB = (a1, . . . , an−1), then
0

∂πA
1

∂xj
(a1, . . . , an−1)

...
∂πA

n−1

∂xj
(a1, . . . , an−1)

 =
∂P

∂xj


γ0(τ(q))
γ1(τ(q))

...
γn−1(τ(q))

+
∂τ

∂xj
B


1
πA
1
...

πA
n−1

 .

b) if q ∈ D2 with qB = (a1, . . . , an−1), then
0

∂π̂A
1

∂xj
(a1, . . . , an−1)

...
∂π̂A

n−1

∂xj
(a1, . . . , an−1)

 =
∂P

∂xj


γ0(τ(q))
γ1(τ(q))

...
γn−1(τ(q))

+
∂τ

∂xj
B


1
π̂A
1
...

π̂A
n−1

 .

Proof. We will prove the first statement, as the second is analogous.

From Theorem 10, the partials of the transition map verify
∂πA

i

∂xj
= ∂P

∂xj
γ(τ(q))+

∂τ
∂xj

P Γ̇(τ(q)). The result now follows by applying Lemmas 8 and 9.

Note that expressions of ∂τ
∂xj

can be explicitly obtained from the first equation

in the above Theorem.
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3.6 Geometrical aspects

We work out now some geometrical aspects related to the hyperplane P under
the assumption of a unique contact point p of order n.

We have the following as a first result:

Proposition 8. Under the assumption of existence and uniqueness of a contact
point p of order n, the hyperplane P can not be parallel to any invariant subspace.

Proof. As we are dealing with linear systems of the form ẋ = Ax, invariant
subspaces are either eigenspaces or generalized eigenspaces. Thus, it suffices to
show that P can not be parallel to neither of these.

Suppose then that P is parallel to an eigenspace

Eλ = {v ∈ Rn|Av = λv}.

Hence, there exists a vector v ∈ Eλ such that p + v ∈ P. Hence, it
follows kTv = 0. Moreover, since v is an eigenvector of eigenvalue λ, we have
kTAv = λkTv = 0. On the other hand, in terms of the Krylov base we have

v =

n−1∑
i=1

αiA
ip, (34)

hence Av =
∑n−1

i=1 αiA
i+1p. Thus, from this expression and the previous

equation it follows αn−1(−1)n+1 det(A) = 0. From this, either det(A) = 0,
which leads to a contradiction, or αn−1 = 0. In this latter case, we can iterate
the reasoning with Akv, k ≥ 2, and at some point we will get to det(A) = 0
since as v is an eigenvector, its non-null by definition, thus αj ̸= 0 for some
j = 1, 2, . . . , n− 1. Hence, the hyperplane P can not be parallel to an eigenspace.

Let us suppose now that the hyperplane P is parallel to the generalized
eigenspace

Vλ = ker(A− λI)m.

Hence, there exists a vector v ∈ Vλ such that p+ v ∈ P. Thus, in terms of the
Krylov base, we have once again expression (34) for the coordinates of v. Now,
since the generalized eigenspaces verify the chain of inclusions

ker(A− λI) ⊂ ker(A− λI)2 ⊂ . . . ⊂ ker(A− λI)m−1 ⊂ ker(A− λI)m = Vλ,

we have that there exists a vector v ∈ ker(A− λI)m such that (A− λI)v = w
for some vector w ∈ ker(A− λI)m−1. Since Vλ is parallel to P, its subsets will
also be parallel to the hyperplane. Thus, we have kTv = 0, kTw = 0. Hence, it
follows kTAv = 0. And this leads to a contradiction analogous to that of the
eigenspaces shown above.

Therefore, we conclude that the hyperplane P can not be parallel to any
invariant subspace.
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Another question of interest is the location of the points of D1 (resp. D2) that
share time of flight. For τ > 0, let Pτ be the set of all points in D1 with time of
flight τ , and ΠA(Pτ ) be its image set by the corresponding transition map. The
next lemma shows that both these sets are contained into (n− 2)-dimensional
affine manifolds of P.

Lemma 10. Consider a fixed value τ > 0. Then, the set Pτ is contained in the
affine manifold {q ∈ Rn|kTq = 1,kT eτAq = 1} and the set ΠA(Pτ ) is contained
in the affine manifold {q ∈ Rn|kTq = 1,kT e−τAq = 1}. Moreover, both these
manifolds are (n− 2)-dimensional.

Proof. Consider q ∈ Pτ . Then, q ∈ P and eτAq ∈ P, that is, kTq = 1 and
kT eτAq = 1. If we consider now the image of q by ΠA, ΠA(q) = q̂ = eτAq, we
have kT q̂ = kT eτAq = 1 and kT e−τAq̂ = kTq = 1, which proves the first part
of the result.

Now, suppose that the manifold {q ∈ Rn|kTq = 1,kT eτAq = 1} is (n− 1)-
dimensional, which implies that the system formed by equations{

kTq = 1,
kT eAτq = 1,

has rank 1 and it is indeterminate. That is, the manifold {q ∈ Rn|kTq =
1,kT eτAq = 1} fills the whole hyperplane P. This implies that any point in
P has flight time τ . Therefore, the functions γi(τ) are constant. Under this
assumption, from Lemma 9 it follows γi(τ) = 0,∀i = 0, 1, . . . , n − 1 since the
controllability matrix B is regular, as it is a change of basis from matrix A which
is also regular. But, if all the functions γi are null, from Theorem 10 it follows

1
πA
1 (a1, . . . , an−1)

...
πA
n−1(a1, . . . , an−1)

 =


0
0
...
0

 ,

which in particular leads to 1 = 0, a contradiction. Hence, it follows that the
manifold needs to be (n− 2)-dimensional. An analogous reasoning holds for the
other manifold.

As it was expected, the same result holds for the other map, Π̂A.
Now, for a fixed time of flight τ , the previous lemma allows us to simplify

the study of the problem for all the points sharing the time of flight τ , as we can
reduce the dimension of P and work with the mentioned (n − 2)-dimensional
manifolds. For instance, for dimension n = 3 the result tells us that the transition
maps map line segments contained in P into line segments contained in P.

In the next result, it is shown that for solutions starting at points q ∈ P
written in terms of the Krylov base

{Aip}n−1
i=0 =

{
diφ(t;p)

dti

∣∣∣∣
(0;p)

}n

i=0

,
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their coordinates remain the same for all values of time t.

Lemma 11. Let p be the unique contact point of order n of system (18). Then,
for any point q ∈ P such that qB = (a1, a2, . . . , an−1), we have

φ(t;q) =

n−1∑
i=0

aiA
ietAp =

n−1∑
i=0

ai
diφ(t;p)

dti
,

for all time t, where a0 = 1.

Proof. On the one hand, we know that the solution of system (18) writes as
φ(t;x) = etAx, for any point x ∈ Rn. In particular, if we take a point q ∈ P, it
follows φ(t;q) = eAtq.

On the other hand, in terms of the Krylov base we have

q =
∑n−1

i=0 aiA
ip,

where a0 = 1. Thus, it follows

eAtq = eAt
n−1∑
i=0

aiA
ip.

The result follows reminding that matrices A and eAt commute.

4 Transition map in the neighbourhood of the
contact point

In this section, we focus on a local study of the transition map for dimensions
n = 2 and n = 3, by means of trying to solve the first equation of Theorem 10,
in order to get an explicit expression for the time of flight. As it was stated
right after the mentioned theorem, we will apply the Implicit Function Theorem
onto the first equation, as for the contact point p of order n we know that its
time of flight will be τ = 0. Thus, the expansions will be local, precisely in a
neighborhood of τ = 0.

Remind that the study could also be performed near any other point q ∈ P
for which its time of flight is known.

4.1 Study on R2

Let us now consider a two-dimensional linear differential system given by

ẋ = Ax, (35)

with D = det(A) > 0. The study for the case D < 0 is analogous, since the only
differences are the orientation of the subsets LI

1 and LO
1 , that will have a different

sign on their last coordinate, and the contact point p of order 2 belonging to
the subset LO

2 .

37



The hyperplane in this case will be simply a straight line, given by

P = {q ∈ R2 : kTq = 1} (36)

for a fixed non-zero vector k ∈ R2.
Suppose there exists a unique contact point p of order 2 with the straight

line P, that will verify pB = 0 ∈ R. Then, the set L2 = {0} splits L1 into two
parts: LI

1 = {a1 : a1 > 0} and LO
1 = {a1 : a1 < 0}, by the characterization

defined at the end of Section 3.4. The domain of the transition map ΠA defined
over P is

D1 ⊂ PI =

2⋃
i=1

LI
i ,

where LI
2 = {p} since n = 2 is even and D > 0. Thus, the contact point will be

in D1, and it will have time of flight τ(p) = 0.

In a similar way, the domain of the transition map Π̂A defined over P is

D2 ⊂ PO =

2⋃
i=1

LO
i ,

where the set LO
2 is empty. However, we can extend the domain D2 to p by

extending the time of flight function assigning τ(p) = 0. It can be checked
that this extension is continuous by arguments about continuous dependence of
solutions of differential equations on initial conditions.

Now, for two-dimensional systems as the one given by (35), and using the
tools and concepts defined for the generic n-dimensional ones, here we can obtain
approximations π̂A

1 , τ in terms of the coordinate a1 of a point q ∈ P, expressed
in terms of the Krylov base. This claim is proven in the lemma below.

Lemma 12. Consider a two-dimensional linear system (35) with D = det(A) >
0, T = Tr(A), a straight line (36) such that the flow of the system has exactly
one contact point p of order two with P. Then, for q ∈ P, the component of the
transition map Π̂A and the time of flight τ defined over P verify the following
series expansion, in terms of qB = (a1),

π̂A
1 (a1) = −a1 +

2T

3
a21 −

4T 2

9
a31 +

2

135
T
(
22T 2 − 9D

)
a41

+
4

405

(
27DT 2 − 26T 4

)
a51

+
2

945

(
27D2T − 176DT 3 + 100T 5

)
a61 +O(a71),

τ(a1) = −2a1 +
2T

3
a21 +

2

9

(
3D − 2T 2

)
a31 −

4

135
T
(
27D − 11T 2

)
a41

− 2

405

(
81D2 − 180DT 2 + 52T 4

)
a51

+
2

567
T
(
243D2 − 268DT 2 + 60T 4

)
a61 +O(a71).
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Proof. Let q ∈ D2, where D2 = Dom(Π̂A). From Theorem (10) and expression
(32), we have (

1
π̂A
1 (a1)

)
= P (a1)

(
γ0(τ(q))
γ1(τ(q))

)
, (37)

where P (a1) is given by equation (32), that is, P (a1) = L(a1) + BU(a1), con-
sidering the matrices B,L,U defined as in expressions (21), (30) and (31) for
n = 2. From the explicit expressions of each of these, we get that P is given by

P (a1) =

(
1 0
a1 1

)
+

(
0 −D
1 T

)(
0 0
0 a1

)
=

(
1 −a1D
a1 1 + a1T

)
.

Thus, the time of flight of q, which can be expressed in terms of qB, that
is, τ(a1), and the image of that point by the map Π̂A, which will have one
component π̂A

1 (a1), are determined implicitly by the equations

1 = γ0(τ(a1))− a1Dγ
1(τ(a1)), (38)

π̂A
1 (a1) = a1γ

0(τ(a1)) + (1 + a1T )γ
1(τ(a1)), (39)

where functions γ0, γ1 are the ones defined in Putzer’s method, thus they are
the coefficients of the solution Γ(t) of the linear system Γ̇ = BΓ with initial
condition Γ(0) = e1, as it was shown in Lemma (9).

Now, by applying Lemma (9) iteratively, one can easily obtain Taylor series
expansions for both γ0(τ), γ1(τ) in a neighborhood of τ = 0 by means of the
differential system these equations form and relating the successive derivatives
with their respective equations. Matricially, this corresponds to what was shown
in expression (33). Explicitly, these expansions are

γ0(τ) = 1− D

2
τ2 − DT

6
τ3 +

1

24
D
(
D − T 2

)
τ4

+
1

120
DT

(
2D − T 2

)
τ5 − 1

720
D
(
D2 − 3DT 2 + T 4

)
τ6

−
DT

(
D − T 2

) (
3D − T 2

)
5040

τ7 +O(τ8),

γ1(τ) = τ +
T

2
τ2 +

1

6

(
T 2 −D

)
τ3 − 1

24
T
(
2D − T 2

)
τ4

+ 1
120

(
D2 − 3DT 2 + T 4

)
τ5 +

1

720
T
(
D − T 2

) (
3D − T 2

)
τ6

+
−D3 + 6D2T 2 − 5DT 4 + T 6

5040
τ7 +O(τ8).

Now, by a procedure of indeterminate coefficients, we obtain the following
series expansion of τ in terms of a1,

τ(a1) = −2a1 +
2T

3
a21 +

2

9

(
3D − 2T 2

)
a31 −

4

135
T
(
27D − 11T 2

)
a41

− 2

405

(
81D2 − 180DT 2 + 52T 4

)
a51

+
2

567
T
(
243D2 − 268DT 2 + 60T 4

)
a61

+ O(a71).

(40)

39



By substituting expression (40) in the expansions for γ0, γ1, we get both
these functions in terms of a1:

γ0(a1) = 1− 2Da21 +
8

3
DTa31 +

2

9
D
(
9D − 14T 2

)
a41

− 8

135
DT

(
81D − 58T 2

)
a51

− 2

405
D
(
405D2 − 1656DT 2 + 748T 4

)
a61 +O(a71),

γ1(a1) = −2a1 +
8T

3
a21 +

2

9

(
9D − 14T 2

)
a31 −

8

135
T
(
81D − 58T 2

)
a41

− 2

405

(
405D2 − 1656DT 2 + 748T 4

)
a51

+
16T

(
1215D2 − 2124DT 2 + 692T 4

)
2835

a61 +O(a71).

(41)
Finally, by substituting the expansions for γ0, γ1, τ in terms of a1 into

equation (39), we get

π̂A
1 (a1) = −a1 +

2T

3
a21 −

4T 2

9
a31 +

2

135
T
(
22T 2 − 9D

)
a41

+
4

405

(
27DT 2 − 26T 4

)
a51 +

2

945

(
27D2T − 176DT 3 + 100T 5

)
a61

+ O(a71),

as we wanted to show.

Notice that we do not talk about approximations of πA
1 . This comes from

the fact that points belonging to D1 evolve to the half-space that contains the
origin, thus these points will belong to solutions defining orbits that surrounds
the equilibrium. Hence, their time of flight will not be in a neighborhood of 0.

For the case of D < 0, Lemma 12 will instead give a valid approximation for
the component πA

1 of the transition map ΠA
1 , since the singular point will be a

saddle, thus orbits belonging to S0 will not surround the origin.
On the other hand, Lemma 12 allows us to completely determine the position

and time of flight for any point q ∈ P in a neighborhood of the contact point p.
Moreover, if we take a look at the first terms in the series expansion for π̂A

1 (a1),
we have

dπ̂A
1 (a1)
da1

= −1 + . . . ,
d2π̂A

1 (a1)

da2
1

= 4T
3 + . . . .

The previous expressions allow us to know the behaviour of Π̂A(a1) near a1 = 0.
Precisely, the expressions obtained assure that the function is decreasing in a
neighborhood of a1 = 0, while local convexity will depend on the sign of T . As
an application, these statements can be used to describe the local behaviour
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of a pair of transition maps on a Piecewise Linear System, defined over the
separation hyperplane taken as a cross section, as it will be shown in the next
section. With the analysis of its growth and convexity, we can check if there
exists a point in which both maps coincide, that will correspond to a limit cycle,
in a neighborhood of the contact point p.

4.2 Study on R3

In this section, we consider a three-dimensional system analogous to the one
defined in expression (35), verifying also D = det(A) > 0. This latter consid-
eration is not significant, and results for the case D < 0 are analogous to the
presented.

Let us consider the existence of a unique contact point p of order 3 with a
plane

P = {q ∈ R3 : kTq = 1} (42)

in the phase space, where k ∈ R3 is a fixed vector. In this case, we have
pB = (0, 0), so L3 = {(0, 0)} splits L2 into LI

2 = {(a1, 0) : a1 < 0} and LO
2 =

{(a1, 0) : a1 > 0}. Similarly, the set L2 splits L1 into LI
1 = {(a1, a2) : a2 < 0}

and LO
1 = {(a1, a2) : a2 > 0}. Now, the domain of the transition map ΠA defined

over P is

D1 ⊂ PI =

3⋃
i=1

LI
i ,

where LI
3 = ∅, and therefore the point p ̸∈ D1. However, one can extend D1 to

p by extending the time of flight function τ assigning τ(p) = 0. It can be shown
that this extension is continuous by arguments about continuous dependence of
solutions of differential equations on initial conditions.

Let pA(x) = x3 − Tx2 +Mx − D be the characteristic polynomial of the
matrix A, where T denotes the trace of A and M the sum of its principal minors.
Let q ∈ P such that qB = (a1, a2) ∈ D1. By applying Theorem 10, its flying
time τ(q) can be implicitly determined from the first equation, that is,

1 = γ0(τ(a1, a2)) +Da2γ
1(τ(a1, a2)) + (Da1 +DTa2)γ

2(τ(a1, a2)). (43)

Moreover, the image of q by the transition map ΠA is explicitly determined
by equations

πA
1 (a1, a2) = a1γ

0(τ(a1, a2)) + (1−Ma2)γ
1(τ(a1, a2))

+ ((D −MT )a2 −Ma1)γ
2(τ(a1, a2)),

πA
2 (a1, a2) = a2γ

0(τ(a1, a2)) + (a1 + Ta2)γ
1(τ(a1, a2))

+ (1 + Ta1 + (T 2 −M)a2)γ
2(τ(a1, a2)).

(44)

Now, we want to get explicit expressions for the time of flight τ in terms of the
coordinates of a point qB = (a1, a2) and explicit expressions for the functions γi,
in order to fully determine the image of q by the transition map ΠA depending
only on its position.
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As a first approach, let us consider a fixed time of flight τ = τ0. From Lemma
10, we know that the points from P having time of flight τ0 will be contained
in a straight line, and so will be their images. Moreover, we can obtain explicit
expressions for these straight lines, as in expression (43), for a fixed time of flight,
functions γi, i = 0, 1, 2 are constants. Thus, we are able to compute an explicit
expression of a1 in terms of a2 only with linear terms, that is, the equation of a
straight line. Explicitly, the expression we obtain is

a1 =
1− γ0

γ2D
− a2

γ1 + Tγ2

γ2
. (45)

Now, as we have said, from Lemma 10, the image of the points sharing time
of flight τ0 will be another straight line, and we are able to compute an explicit
expression for this other straight line, by combining equations (44) and equation
(45). By substituting the expression for a1 in the previous equation and after
some straightforward calculations, we get to the following expressions for the
transition map components:

π1(a1, a2) = γ1 + 1−γ0

γ2D (γ0 −Mγ2)

− a2

(
(γ

1

γ2 + T )(γ0 −Mγ2) +Mγ1 − (D −MT )γ2
)
,

π2(a1, a2) = γ2 + 1−γ0

γ2D (γ1 + Tγ2)

− a2

(
(γ

1

γ2 + T )(γ1 + Tγ2)− γ0 − Tγ1 − (T 2 −M)γ2
)
.

(46)

If we label the terms of the previous equations as A1, A2, B1, B2 such that

π1(a1, a2) = A1 − a2A2,
π2(a1, a2) = B1 − a2B2,

it is straightforward that π1, π2 fulfill the equation of a straight line, namely,

B2π1 −A2π2 = B2A1 −A2B1.

Therefore, for a constant time τ0 we not only know that points sharing that
time of flight will be contained in line segments that will be mapped to other
line segments, but we can also determine explicit expressions for both these
line segments. Moreover, the equations we have derived are exact, since no
series approximations have been used. However, in order to keep things simple,
functions γi, i = 0, 1, 2 are derived by series approximations, as it is done below,
in expression (47).

Now, for τ variable, thus we work in a more generic setting, we start by
finding an approximate expression of τ in a neighborhood of 0 using Taylor
expansions. For functions γi, series expansions in a neighborhood of τ = 0 can be
obtained by successive applications of Lemma 9, since the successive derivatives
can be substituted by either the expression on the differential equation or its
derivatives, which by successive substitution will lead to some coefficient. This,
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once again, corresponds matricially to expression (33). The explicit expressions
are below,

γ0(τ) = 1 +D τ3

3! + TD τ4

4! + . . . ,

γ1(τ) = τ −M τ3

3! + (D − TM) τ
4

4! + . . . ,

γ2(τ) = τ2

2 + T τ3

3! + (T 2 −M) τ
4

4! + . . . .

(47)

Now, substituting equations (47) in equation (43), we obtain an expansion of
(43) in power series of τ , which can be rewritten as 1 = 1 +Dτ(eq(τ) +O(τ4)),
where

eq(τ) = a2 + (a1 + Ta2)
τ
2 + (1−Ma2 + (a1 + Ta2)T )

τ2

3!

+ (T + a2(D − TM) + (a1 + Ta2)(T
2 −M)) τ

3

4!

(48)

Suppose τ̂ is a zero of eq(τ). Then, τ̂ is an approximation to the time of
flight τ , satisfying |eq(τ)− eq(τ̂)| = O(τ4).

One way of approaching the problem of obtaining expressions of τ, π1, π2 in
terms of the coordinates a1, a2 of a point q ∈ P written in terms of the Krylov
base is to consider a1 fixed. In this setting, the procedure of indeterminate
coefficients applied to equation (48) to obtain a series of τ(a1, a2) gets reduced to
a series of τ(a2) with coefficients depending of a1. By substituting the obtained
series in functions γi and thus substituting γi in equations (44), we obtain
expressions of π1 and π2 in terms of a2 for each fixed a1. This is summarized
and proved in the following result.

Proposition 9. Consider q ∈ P such that qB = (a1, a2), with a1 ̸= 0 and fixed.
Then, the time of flight and the components of the transition map ΠA verify the
following series expansion in a neighborhood of a2 = 0:

τ(a2) = −2a2

a1
+

(2Ta1−4)a2
2

3a3
1

− ((4T 2−6M)a2
1−10Ta1+16)a3

2

9a5
1

+
((44T 3−108MT+54D)a3

1+(216M−156T 2)a2
1+300Ta1−400)a4

2

135a7
1

+ O(a52),

π1(a2) = a1 − 2a2

a1
+

(2Ta1−4)a2
2

3a3
1

+
(6Da3

1+(−4T 2+6M)a2
1+10Ta1−16)a3

2

9a5
1

− (90DTa4
1+(−44T 3+108MT−144D)a3

1+(156T 2−216M)a2
1−300Ta1+400)a4

2

135a7
1

+ O(a52),

π2(a2) = −a2 + (2Ta1+2)a2
2

3a2
1

− (4T 2a2
1+2Ta1−8)a3

2

9a4
1

+
((44T 3−18MT−36D)a3

1+(−6T 2−54M)a2
1−120Ta1+200)a4

2

135a6
1

+ O(a52).
(49)

Proof. For a fixed a1 ≠ 0, by means of an indeterminate coefficients procedure
applied to equation (48) we obtain the series of τ(a2) presented. The series for
π1(a2) and π2(a2) follow by substituting the approximations given in expression
(47) for γi and the series of τ(a2) into equations (46).

Notice that the previous result holds for a1 ̸= 0. In fact, the points of P that,
expressed in the Krylov base, fulfill a1 = 0 are precisely the points of the set L2,
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for a2 ≠ 0, or the contact point p of order 3. Both these points have time of
flight τ = 0, which is a branch that was eliminated in order to obtain equation
(48). Consequently, the previous result will give an approximation of the time of
flight and the coordinates of the image of contact points of order 1.

Moreover, as the series expansion obtained for τ has as its first terms the odd
powers of a1, it looks like it will be valid for a1 → 0 whenever a2 = O(a21). This
last statement would imply that the domain D1 of the transition map would
have as boundary {(a1, a2)|a2 = O(a21)}. This is still to be proven, and it is one
topic where to continue this work, as it will be stated in the last section.

5 Applications to Piecewise Linear Systems

The theory and results we have developed so far is interesting and useful by its
own, since it allows us to know and fully classify the behavior of solutions on any
hyperplane transversal to the flow, under suitable conditions. However, there
exists a family of systems in which these results become even more useful. This
is the family of piecewise linear systems (PWLS, for short), that has been
mentioned throughout the text. PWLS consist on a set of linear systems defined
on a partition of the phase space, in such a way that any linear system acts on a
set of the partition. Even when different partitions of Rn can be considered, it is
usual to consider half-spaces separated by parallel hyperplanes. As an example,
a PWLS with two zones is formed by equations of the form

ẋ =

{
ALx+ bL, kTx ≤ 1,
ARx+ bR, kTx ≥ 1,

(50)

where Ai ∈Mn(R) and x,k,bi ∈ Rn, for i = L,R. Here, the hyperplane kTx = 1
splits the phase space Rn into two half-spaces kTx < 1 and kTx > 1, where over
each of these regions the vector field is defined by the respective linear system.

Notice that depending on the values of the components of matrices Ai and
vectors bi, these systems can either be continuous or discontinuous. Focusing on
PWLS with two zones, we have that for continuous PWLS, the contact point and
the Krylov base is shared between both zones. On the other hand, discontinuous
PWLS can be of different kinds, depending on the contact points, the orientation
of the Krylov base for each zone and the location of the sets LI

m and LO
m for

m = 1, 2, . . . , n. If both linear zones share the contact point, and the sets LI
m of

one linear system are located where the sets LO
m of the other linear system are

located, then we still have uniqueness of solutions despite the discontinuity of
the whole PWLS, for a configuration where each linear system has a singular
point in its region of definition. For the case of singular points belonging to the
same region of definition, uniqueness of orbits will hold if the sets LI

m for each
linear system share location and the sets LO

m for each linear term share location
as well. If either the contact point is not shared or the respective sets LI

m,LO
m

for each zone aren’t located as mentioned above, there will be regions of sliding
for the orbits, leading to complex schemes that will not be considerate here.

44



The family of PWLS, both continuous and discontinuous, is of great interest,
as it allows the qualitative behaviour of some non-linear systems to be obtained
through linear ones, allowing a more simplified study of the dynamics, but
maintaining the qualitative behaviour of the flow. There is a wide amount of
theory and results devoted to this family of systems, see e.g. articles [2], [6], [1],
[4] and books [5], [8].

The theory we have developed in this work allows us to analyze the flow
in a neighborhood of the contact point, which is an issue which has not been
considered previously anywhere, at least in a phase spaces of dimension greater
than 2.

A comprehensive study of these systems would fill a whole work. Instead,
in this section we will devote ourselves to study a family of 2-dimensional
discontinuous PWLS sharing the contact point of order 2, in which the results
we have obtained throughout the work are applied. This study will serve as an
application of the theory developed in the previous sections, and in particular we
will state some conditions on the PWLS for it to exhibit a bifurcation similar to
the one of Hopf, but located around the contact point instead of the equilibrium.
As it has been stated above, the theory developed in this work allows us to
perform a local study, in a neighborhood of the contact point.

Now, since the system we will work with is discontinuous, we first study each
linear part in order to determine the behavior of the system near its boundary.
Thus, we will be able to properly define the PWLS domain for each linear part,
including the definition over the separation straight line and on the contact point
of order 2. In this example, we will consider the separation straight line to be

P = {x ∈ R2|kTx = 1}, kT = (1, 1). (51)

Now we study one of the linear parts. In particular, for given D0, T0, let us
consider the linear system

ẋ = A0x, kTx ≤ 1, (52)

where A0 =

(
T0 −1
D0 0

)
. This system has the origin as a singular point,

trace given by T0 and determinant given by D0. Under the assumption of A0

being regular, this equilibrium is unique, and we have ensured the existence
and uniqueness of a contact point of order 2. Moreover, the behavior of the
equilibrium will depend on the signs of these two parameters. On the other hand,
the contact point of order 2 for this system is given by the following system of
equations for the coordinates of p0:{

p1 + p2 = 1,
T0p1 − p2 +D0p1 = 0.

These equations have as solution the point

p0 =

(
1

1 + T0 +D0
,

T0 +D0

1 + T0 +D0

)
.
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Moreover, the Krylov base associated to this system will be given by {p0, A0p0} =
{( 1

1+T0+D0
, T0+D0

1+T0+D0
), ( −D0

1+T0+D0
, D0

1+T0+D0
)}.

Now, since the system is defined over the half-space given by {x ∈ R2|kTx ≤
1}, the orbits will only be defined in this domain. In particular, over the boundary
given by the straight line defined in (51), the set LO

1 will consist of end points
of orbits, and the set LI

1 will consist of starting points of orbits. From this
statement, the transition map actually defined for this system will be ΠA0 ,
following the notation introduced in the work. In what follows, we will label this
transition map as Π0, and its component will be labelled as π0.

Remind that, as the dimension is n = 2 one of the subsets LI
2,LO

2 will be
empty, and the other one will contain the contact point p0. This last statement
will depend on the sign of D0. In particular, if D0 < 0, then the contact point
p0 ∈ LO

2 , and it will be the only point of the orbit that will actually belong to
the domain. On the other hand, if D0 > 0, then the contact point belongs to LI

2

and the orbit through it is a non-crossing orbit inward contained, see Lemma
7(b.1). Therefore, it will be defined before and after the contact point.

For the second linear system let us consider, for given T,D, the linear system
given by

ẋ = Ax, kTx ≥ 1, (53)

where A =

(
T −1
D 0

)
. This second linear system has also the equilibrium at

the origin, and it has as trace the parameter T and as determinant the parameter
D. Once again, we assume matrix A to be regular, thus the equilibrium is unique
and there exists a unique contact point of order 2. Notice, however, that in
this case the singular point is located outside the domain of definition of the
linear system. From the point of view of PWLS, these singular points are called
virtual singular points, and even though they are not actual equilibria of the
system, their study helps to determine the behavior of their associated linear
part. In particular, its behavior will depend on the signs of the parameters T
and D. Like before, the contact point of order 2 for this system is given by the
following system of equations for the coordinates of p1:{

p1 + p2 = 1,
Tp1 − p2 +Dp1 = 0.

These equations have as solution the point

p1 =

(
1

1 + T +D
,

T +D

1 + T +D

)
.

Moreover, the Krylov base associated to this system will be given by {p1, Ap1} =
{( 1

1+T+D ,
T+D

1+T+D ), ( −D
1+T+D ,

D
1+T+D )}.

As this linear system is defined over the half-space given by {x ∈ R|kTx ≥ 1},
orbits will only be defined over this domain. Following a reasoning similar to the
one performed for the previous system, in this case we arrive at the conclusion
that the set LI

1 will consist of end points of orbits, and the set LO
1 will consist of
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start points of orbits. For this system, the transition map actually defined will
be Π̂A. We will label it as Π1, and its component as π1.

Once again, as n = 2 is the dimension, one of the subsets LI
2,LO

2 will be
empty, and the other one will contain the contact point p1, depending on the
sign of the determinant D. In particular, if D > 0, then the contact point will
belong to LI

2 and since the system is defined above the straight line, the contact
point will be the only point of the orbit actually belonging to the domain. If
D < 0, then the contact point will be in LO

2 and the orbit will be defined before
and after the contact, see Lemma 7(b.1).

Now, in order to define properly the region of definition of the whole PWLS,
we introduce some conditions for each linear part. First of all, we want the
system to share the contact point in order to avoid regions of sliding and thus
keeping the study as simple as possible. This condition leads to T +D = T0+D0.
Secondly, since we want monodromic behavior in a neighborhood of the contact
point, it must be fulfilled that the set LI

1 for the system defined by matrix A0

must be located exactly where the set LI
1 is for the system defined by matrix

A, and we want an analogous property for the sets LO
1 . This implies that the

determinants of both matrices must have different signs, that is, DD0 < 0.
Moreover, since we will work in a neighborhood of the contact point, in order
to have small amplitude limit cycles, we must have D0 < 0 and D > 0, see
Figure 7a and Figure 7b. Moreover, in this setting, the shared contact point
is the only point of its associated orbit actually in the domain of each linear
system. Thus, on this point, we can define the PWLS to be 0 and it will act as
a pseudo-equilibria.

Let us then consider, for givenD > 0, D0 < 0, T, T0 such that T+D = T0+D0,
the PWLS given by ẋ = A0x, {kTx < 1} ∪ {kTx = 1,x ∈ LI

1},
ẋ = 0, x = p,
ẋ = Ax, {kTx > 1} ∪ {kTx = 1,x ∈ LO

1 },
(54)

where kT = (1, 1), A0 =

(
T0 −1
D0 0

)
and A =

(
T −1
D 0

)
, just as above.

This PWLS is written in what is called the Liénard form, a generic form for
most PWLS. Thus, the study of this system will be of aid in the study of most
PWLS with two zones. Moreover, this Liénard form is just a change of basis from
the Krylov base in which the vectors of the base have been reordered. Remind
that the Krylov base matrix representation is given by (21), the controlability
matrix.

As it has been stated above, if T +D = T0 +D0, both linear parts share the
contact point of order 2. We will label the contact point as p. However, the
Krylov base differs for each system, being the vectors A0p and Ap proportional
with negative constant, that is, A0p = −γ2Ap, for some γ ∈ R\{0}. Moreover,
the proportionality constant can be easily computed, since both vectors are
known. By taking norms on both sides of the previous equality, we have that γ2
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is then given by

γ2 =
∥A0p∥
∥Ap∥

=

√
D2

0

(1+D0+T0)2

√
2√

D2

(1+D+T )2

√
2

=

∣∣∣∣D0

D

∣∣∣∣ = −D0

D
, (55)

since D0 < 0, D > 0.
On the other hand, under the assumptions D0 < 0, D > 0 we have that

the sets LI
1, LO

1 coincide for each linear part. Therefore, even when the system
is discontinuous, we still have uniqueness of solutions and also monodromic
behavior near the contact point p.

Regarding the contact point, notice that we have defined the vector field at
p to behave like a singular point. This comes from the fact that, for the setting
D0 < 0, D > 0, the contact point will be the only point of its associated orbit to
actually belong to the domain of definition for each linear system. Thus, from
the PWLS point of view, an orbit starting at p will not move from it. Hence,
this point will be a pseudo-equilibria.

From the definition of the PWLS, the transversal hyperplane given by (51)
acts as the the boundary between both linear zones. In particular, we have
Π0 as the transition map through the system defined by matrix A0 and Π1 as
the transition map through the system defined by matrix A. Since D0 < 0,
D > 0 and thus the respective sets LI

1, LO
1 for each system share location,

the composition of both transition maps will be well-defined. We will use this
composition later on.

Now, since we will work with the series expansions obtained in Lemma 12,
the study will be local, in a neighborhood of the contact point p. Under the
setting D0 < 0, D > 0, small amplitude limit cycles, in terms of the Krylov
base, can appear for this PWLS in a neighborhood of p. In what follows, we
will study conditions for a limit cycle to appear.

We have that, if the Krylov base for the linear part on the left of P is labelled
as B0 = {p, A0p} and the Krylov base for the linear part on the right is labelled
as B1 = {p, Ap}, then a point q ∈ P writes as qB0 = a with respect to B0 and
it writes as qB1

= b with respect to B1. Remind that, under the assumption
D0 < 0, D > 0 the proportionality constant for the second vector of each Krylov
basis writes as γ2 = −D0

D . That is, A0p = D0

D Ap. Therefore, since q = p+aA0p
and q = p+ bAp, it follows that aA0p = bAp. Now, from the proportionality
condition, it follows −aγ2 = b, that is, aD0

D = b.
Now, the transition map for the linear system defined by matrix A0 takes

a point a0 ∈ LI
1 = {a : (−1)3aD0 < 0} = {a : a < 0} and takes it to a point

b0 ∈ LO
1 = {a : (−1)3aD0 > 0} = {a : a > 0}, where the coordinate is written

with respect to B1. On the other hand, the transition map for the linear system
defined by matrix A maps a point a1 ∈ LO

1 = {a : (−1)3aD > 0} = {a : a < 0},
written with respect to B2, to a point b1 ∈ LI

1 = {a : (−1)3aD < 0} = {a : a >
0}.

In order to study the stability of the contact point, we will study the difference
between the starting point and the end point of the composition of the transition
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p0
ṗ0

p0 + a0ṗ0

p0 + b0ṗ0

(a) Transition map for D < 0. Contact
point p0 in gray, vector ṗ0 in blue, or-
bits starting at points p0+a0ṗ0, a0 < 0
and ending at points p0 + b0ṗ0, b0 > 0,
in black.

p1

ṗ1

p1 + b1ṗ1

p1 + a1ṗ1

(b) Transition map for D > 0. Contact
point p1 in gray, vector ṗ1 in blue, or-
bits starting at points p1+a1ṗ1, a1 < 0
and ending at points p1 + b1ṗ1, b1 > 0,
in black.

Figure 7: Configurations for different sign of D.

maps. Since the coordinate in one Krylov base writes in terms of the other
Krylov base, we can consider the inverse transition map, that is, the transition
map for matrix −A0, and subtract both transition maps expressed on the same
base. This is performed in what follows, and leads us to an expression that will
be labelled as the displacement function.

By means of the series expansion obtained in Lemma 12, the previous
statement yields the following expressions

b0 = π0(a0) = −a0 + 2T0

3 a20 −
4T 2

0

9 a30 +
2

135T0(22T
2
0 − 9D0)a

4
0 + . . . ,

b1 = π1(a1) = −a1 + 2T
3 a

2
1 − 4T 2

9 a31 +
2

135T (22T
2 − 9D)a41 + . . . .

(56)

If we invert time on the first equation, as the system is linear, it is converted
in system ẋ = −A0x, thus the second coordinate in the Krylov base B1 has its
sign inverted. To add up, the trace is changed to −T0, and the determinant
remains constant as the dimension is n = 2, an even number. Moreover, the
transition map for this new system maps the point −b0 to the point −a0. All
these statements yield the equation

−a0 = b0 −
2T0
3
b20 +

4T 2
0

9
b30 −

2

135
T0(22T

2
0 − 9D0)b

4
0 + . . . . (57)

On the other hand, the coordinates a1, b1 can be written in terms of B1 as
a1 = D0

D b0 and b1 = D0

D a0. Thus, the second equation of expression (56) writes,
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simplifying a factor of D0

D on both sides and multiplying the equation by −1, as

−a0 = b0−
2T

3

D0

D
b20+

4T 2

9

(
D0

D

)2

b30−
2

135
T (22T 2−9D)

(
D0

D

)3

b40+. . . . (58)

By last, if we subtract equation (57) from equation (58), we get to the
displacement function that was mentioned above. This map takes the form
δ(b0) = π̃(b0)− π−1(b0) and it is given by

0 = 2
3b

2
0

(
(−T D0

D + T0) +
2
3 (T

2
(
D0

D

)2 − T 2
0 )b0

+ 1
45 (−T (22T

2 − 9D)
(
D0

D

)3
+ T0(22T

2
0 − 9D0))b

2
0 + . . .

)
.

Now, we define

f(b0) =
(
−T D0

D + T0
)
+ 2

3

(
T 2
(
D0

D

)2 − T 2
0

)
b0

+ 1
45

(
−T (22T 2 − 9D)

(
D0

D

)3
+ T0(22T

2
0 − 9D0)

)
b20 + . . . ,

(59)

hence the displacement function can be written as δ(b0) =
2
3b

2
0f(b0).

The trivial solution of the previous equation, b0 = 0, corresponds to the
coordinate of the contact point p. Now, since we have b0 > 0 due to the PWLS
configuration, we are interested in the non-trivial positive solutions of the term
f(b0). If there exists any of such positive solutions, it will correspond to a
non-zero coordinate b0, that will translate as a limit cycle. On the other hand, if
f(b0) is not null for some b∗0, its sign will determine the stability of the contact
point or the limit cycle near this value b∗0.

From this last statement, for small values of b0, the sign of the independent
term −T D0

D + T0 of f(b0) determines the behavior of the flow in a neighborhood
of the contact point p. This follows from the fact that, locally, if this term is
negative, the end point will be closer to p than the start point, and similarly, if
this term is positive, the end point will be further away from p than the start
point. Therefore, we can state a first result about the local behavior of the
contact point p, in which the inequality gets simplified.

Proposition 10. Let p be the contact point of the PWLS (54) fulfilling T +D =
T0 +D0, and q ∈ P such that qB0

= a0 and π0(a0) = b0. Then:

a) if D + T < 0, the contact point p is stable,

b) if D + T > 0, the contact point p is unstable.

Proof. Since the function f(b0) in equation (59) acts as a displacement function
for the transition maps composition, the sign of its first term will determine the
local behavior of the contact point p. Now, if we substitute D0 = T +D− T0 in
the independent term of f(b0), we have

−T D0

D
+ T0 = −T (1 + T − T0

D
) + T0 = (T0 − T )(1 +

T

D
) =

T0 − T

D
(D + T ).
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Now, since D0 < 0, it follows D < T0 − T and, as D > 0, we deduce T0 − T > 0.
Hence, the previous expression has a positive first factor. In consequence, the
sign of the whole term will coincide with the sign of D + T . Then, the result
follows directly.

The previous result is rather interesting. On the one hand, it yields that
the contact point has behavior similar to that of an equilibrium, without being
a proper singular point. On the other hand, it states a change of stability for
a specific parameter combination, particularly in −T D0

D + T0 = 0. Therefore,
the system might suffer a bifurcation similar to the Hopf bifurcation. This
bifurcation will lead to the birth of a limit cycle in a neighborhood of the PWLS.
Moreover, for −T D0

D + T0 = 0 in equation (59), then b0 = 0 is a double root of
f(b0) since both the independent and linear parts get cancelled. This condition
implies that TD0 = DT0, and as D and D0 have opposite signs, it follows that
T and T0 will also have opposite signs.

Now, at the value T = D
D0
T0, applying the condition T +D = T0 +D0 we

arrive at the values
T0 = −D0,
T = −D, (60)

that fulfill both conditions. From this, in order to simplify the study, we will
consider the following family of PWLS:

ẋ =

(
T0 + µ −1
−T0 0

)
x, {kTx < 1} ∪ {kTx = 1,x ∈ LI

1},

ẋ = 0, x = p,

ẋ =

(
T + µ −1
−T 0

)
x, {kTx > 1} ∪ {kTx = 1,x ∈ LO

1 },

(61)

for µ ∈ R a parameter. Consider fµ(b0) to be the function f(b0) defined in
expression (59) where now we have the trace T + µ and the determinant −T of
the matrix of the linear system in kTx ≥ 1, instead of T and D; and the trace
T0 + µ and the determinant −T0 of the matrix of the linear system in kTx ≤ 1,
instead of T0 and D0. After some simplifications, the displacement function will
now be given explicitly by

fµ(b0) = µ
(
T−T0

T

)
+ 2

3µ
(
T0−T

T

) (
µ
(
T0+T

T + 2T0
))
b0

+ 1
45

(
9
T 2
0

T (T − T0) + µ
(
9 + 22T0 − 9

T 2
0

T 2

−22µ2 T 2
0

T 3 − 66µ
T 2
0

T 2 − 66
T 2
0

T

))
b20

+ . . . .

(62)

For µ = 0, this PWLS is exactly the original one for the case T = D
D0
T0.

Thus, f0(b0) has null independent and linear terms.
For µ ̸= 0, since the independent term is given by µ(T−T0

T ), and T0, T

have opposite signs, then the term (T−T0

T ) is positive. Thus, the sign of µ will
determine the stability of the contact point for this new system. Precisely:
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• if µ < 0, then p will be stable,

• if µ > 0, then p will be unstable.

Moreover, the contact point will still be the same for both linear parts, and it
will be given by p = ( 1

1+µ ,
µ

1+µ ). Since we want to study the bifurcation, we will
consider µ in a neighborhood of 0, thus the value µ = −1 will not be reached.
Now, for −1 << µ < 0, the contact point will be located on the fourth quadrant,
and for 0 < µ << 1 the contact point will lie on the first quadrant. Thus, the
bifurcation, if it exists, will happen precisely when the contact point crosses the
X-axis.

We now state the main result of the study, in which it is proven that the
family of PWLS (61) suffers a bifurcation in which a limit cycle is born whenever
the contact point changes its stability.

Theorem 12. Consider the PWLS given by (61), and let fµ(b0) be the function
defined in (59) for this PWLS. We have:

a) if µ = 0, then f0(b0) has a double zero at b0 = 0,

b) if −1 << µ < 0, then fµ(b0) has a simple positive zero b0 = b0(µ) such
that limµ→0 b0(µ) = 0. Therefore, there exists a limit cycle that is born at
the contact point and surrounds it. Moreover, the limit cycle is unstable.

Proof. The first statement is straightforward to check. To prove it, we will rewrite
the function fµ(b0) as fµ(b0) = t0 + t0t1b0 + t2b

2
0 + O(b30), where t0 = µT−T0

T
and so on, following expression (62). Hence, for µ = 0, the term t0 vanishes,
thus the function f0(b0) starts with, at least, quadratic terms. It now suffices to
show that t2 ̸= 0. We have

t2|µ=0 =
9T 2

0

T (T − T0).

Now, since T < 0, T0 > 0, it follows that t2|µ=0 is always positive. In particular,
it is not null. Therefore, the root is double.

For the second statement, we will label b0 as x, and we will apply the Inverse
Function Theorem (IFT, for short) to the function g(µ, x) := fµ(x). On the
one hand, form the previous statement we have that g(0, 0) = 0. Hence, the

point (0, 0) is a root of the function g. On the other hand, we have ∂g
∂µ

∣∣∣
(0,0)

=

T−T0

T > 0, since t0 = µT−T0

T . Therefore, by the IFT there exists a function
µ(x) defined in a neighborhood (−x0, x0) of x = 0 such that µ(0) = 0 and
g(µ(x), x) = 0,∀x ∈ (−x0, x0).

Now, this tells us that in a neighborhood of (0, 0) we have, for each value of
x, a value of the parameter µ(x) such that it yields a root of the whole function
fµ(x), that is, a limit cycle. Since the coordinate b0 was assumed to be positive,
we are only interested in values of x ∈ (0, x0). Moreover, since µ(0) = 0, the
function µ(x) written as a polynomial, starts, at least, with linear terms. Hence,
its first value will be given by µ′(0). And this value can be computed by implicit
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derivation. Indeed, we have that, since g(µ(x), x) = 0, then d
dx (g(µ(x), x)) = 0.

If we compute the derivative explicitly, we have

0 =
d

dx
(g(µ(x), x)) |x=0 =

(
∂g

∂µ
µ′ +

∂g

∂x

)∣∣∣∣
(µ,x)=(0,0)

. (63)

Now, since ∂g
∂x = t0t1 = µT−T0

T t1, we have ∂g
∂x

∣∣∣
(µ,x)=(0,0)

= 0. Thus, from the

previous equation it follows µ′(0) = 0 since ∂g
∂µ

∣∣∣
x=0

> 0. Therefore, the sign of

µ(x) will depend on the sign of µ′′(0) since both the independent and linear terms
are null. And this value can be obtained once again from implicit differentiation.
From equation (63), if we differentiate again with respect to x, we have

0 =

(
d

dx

(
∂g

∂µ

)
µ′ +

∂g

∂µ
µ′′ +

∂2g

∂x∂µ
µ′ +

∂2g

∂x2

)∣∣∣∣
x=0

=

(
∂g

∂µ
µ′′ +

∂2g

∂x2

)∣∣∣∣
(µ,x)=(0,0)

,

since µ′(0) = 0. Thus, we have µ′′(0) = − 2T
T−T0

t2, since
∂2g
∂x2

∣∣∣
(µ,x)=(0,0)

= 2t2.

Hence, µ′′(0) < 0, thus we have the existence of the limit cycle for each x ∈ (0, x0).
Finally, in order to state its stability, notice that as µ(x) < 0 in a neighborhood

of x = 0, the term t0 is negative, while the term t2 > 0. Therefore, the function
fµ(x)(x) is negative for 0 < x << 1 and becomes positive for bigger values of x.
Hence, the displacement function has negative sign for orbits inside the region
delimited by the limit cycle, and it has positive sign for orbits outside of that
region. Therefore, the limit cycle is unstable.

This result ensures that whenever the parameter µ decreases from µ = 0, an
unstable limit cycle appears for the PWLS (61) surrounding the contact point,
that will be stable since µ < 0. This kind of bifurcation is similar to the Hopf
one, but here the limit cycle is born near the contact point instead of a singular
point, whenever the contact point changes its stability. Moreover, notice that,
in the proof of the previous result, we have seen that the dependence of the
parameter µ with respect to x is of order x2. In particular, we have obtained
µ = − 2t2T

T−T0
x2 + . . .. Therefore, if we invert this first term in the series we have

x =

√
T0 − T

2Tt2
|µ| 12 + . . . .

From this expression, we have that x(µ) is not an analytic function and therefore
it is not possible to apply the IFT to obtain this function instead of µ(x) as we
have done in the proof of the previous result. Moreover, this expression states
that the dependence of the amplitude with respect to the parameter is of order
1
2 , which coincides with the dependence of the amplitude with respect to the
parameter in the smooth case. This is curious, since this dependence differs from
the dependence of a Hopf-like bifurcation near a singular point for PWLS, where
the dependence is linear, see e.g. [3]. In Figure 8 it is shown the bifurcation
diagram, where it can be checked that indeed the dependence is of order 1

2 .
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Figure 8: Bifurcation diagram for the bifurcation. On the X−axis, the values of
µ. On the Y axis, the coordinate b0. In red, values for which the limit cycle and
the contact point are unstable. In blue, values for which the contact point is
stable.

To sum up, a numerical simulation is shown in Figure 9, where for negative
µ the limit cycle is located, and for positive µ a diverging solution is plotted,
with no limit cycle.

(a) Limit cycle for µ =
−0.2.

(b) Limit cycle for µ =
−0.02.

(c) Orbit for µ = 0.02, di-
verging from the contact
point.

Figure 9: Orbits for the PWLS for T = −0.8, T0 = 1.

6 Future Work

Even though this work has introduced a wide amount of concepts and results,
hence it has been extensive, there are still some points to be studied or amplified.
On the one hand, this study has opened some questions that are still unanswered,
while other points have not even been considered due to different factors.

Hence, in this section we make a summary of these open questions and topics,
in order to gather all possible continuations to this work.
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On the first place, regarding Section 4, we worked out series expansions for
dimensions 2 and 3, where the latter expressions were a bit trickier to obtain.
A procedure similar to the one performed could give expressions for higher
dimensions, but it was not considered here. Thus, this is another point in which
to continue this work.

On the same section, in particular for the case n = 3, Proposition 9 seemed
to imply that the set D1 would have as a boundary the set {(a1, a2)|a2 = O(a21)},
and points in D1 would be points with a2 = ak1 , for k ∈ R+, k < 2. However,
this conjecture has not been proved, and it is another question that remains
open. Moreover, since we have dealt with local approximations, the limit of this
domain is also local, and nothing can be stated about the whole domain D1,
only in a neighborhood of the contact point p, for points q with time of flight
near to 0.

On the third place, in Section 5, where we studied a general family of PWLS,
we defined a particularization of that family that always yielded a bifurcation
similar to the subcritical Hopf one, where an unstable limit cycle was born for
a parameter decreasing from 0. Thus, for this PWLS family, we could study
conditions for the system to exhibit a wide variety of kinds of bifurcations, e.g.
the birth of a pseudo-homoclinic loop connecting the invariant axis of a saddle
on one linear system with a monodromic orbit for the other linear system.

By last, in Section 5 we used the theory and results developed throughout
the work and applied them to a PWLS. For R2 there exist alternatives to our
methods that yield good results as well. However, the advantage of our work
to some of these alternatives is the fact that it is easily generalizable to higher
dimensions. Hence, it allows us to study linear systems and PWLS in dimensions
n ≥ 3.
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