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Abstract

High dynamic range (HDR) video synthesis is a very challenging task. Consecu-

tive frames are acquired with alternate expositions, generally two or three differ-

ent exposure times. Classical methods aim at registering neighbouring frames

and fuse them using image HDR techniques. However, the registration often

fails to obtain accurate results and the fusion produces ghosting artifacts. Deep

learning techniques have recently appeared imitating the structure of existing

classical methods. The neural network is intended to estimate the registration

function and choose the fusion weights. In this paper, we propose a new method

for HDR video synthesis using a variational model. The proposed model uses

a nonlocal regularization term to combine pixel information from neighbouring

frames. The obtained results are competitive with state-of-the-art. Moreover,

the proposed method gives a more reliable and understandable solution than

deep-learning based ones.
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1. Introduction1

The fusion of images of the same scene acquired with different exposure2
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permits to enhance the dynamic range of the image. In order to do so, High3

Dynamic Range (HDR) imaging methods [1, 2] need to combine the radiance4

values of the pixels. First, the camera response function (CRF) has to be5

estimated, which is generally achieved using the method proposed by Devebec6

and Malik [3]. These radiance values are no longer limited by the 8-bit restriction7

of general image formats, neither is their combination which permits to merge8

dark and bright areas. Once the HDR image is built, an extra step is necessary9

to quantize this output into a fixed number of bits fixed by the visualization,10

storing device or file format. This last step is known as tonemapping [4, 5].11

When the camera is not fixed, e.g hand-held acquisitions, or the objects in12

the scene move, a direct per pixel combination creates ghosting artefacts. Thus,13

the sequence of images has to be pre-registered or their combination needs to14

take into account such a non-static nature [6, 7].15

The creation of HDR video is still more challenging than HDR imaging.16

Although there exists cameras which can record videos with a dynamic range of17

colors, they require specific hardware that has large costs, which reduces its use18

[8]. In practice, videos are recorded acquiring frames with alternate exposures19

(generally 2 or 3). Later, HDR video is synthesized with an offline algorithm.20

Despite the multi-image nature of HDR imaging, its extension to video se-21

quences with alternating exposure is not straightforward. Since only two or22

three different exposures are available, many regions will appear only under23

or over exposed. For video, we need an HDR version of each frame, which24

prevents the choice of a middle-exposed image as reference, as it is the case25

of single-image HDR. There exist several approaches by either using classic or26

deep learning methods [9, 10]. For all, registration is an important step and27

their result depends critically on it.28

In this paper, we propose a new method for HDR video synthesis by using29

a variational method. We use a nonlocal regularization term to combine pixel30

information, either from the same or from neighbouring frames. Motion estima-31

tion is used to compensate the search areas of neighbouring frames from which32
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pixels are combined. The patch distance taking part in the weight computation33

reduces the dependence on the estimated motion. It also reduces the ghosting34

artefacts.35

The use of a variational method allows us to model the HDR video synthesis36

in a simple and intuitive manner, without the need of deep neural networks and37

large datasets. There is no extensive and time consuming training or need of38

retraining whenever the processed data differs from the used for training. More-39

over, the results are more reliable and interpretable since the method depends40

on a few understandable parameters.41

The remaining of the paper is organized as follows: in Section 2 we make a42

review of existing HDR video methods. In Section 3 we present the proposed43

method. In Section 4 we compare our method with state-of-the-art. Finally, we44

state the conclusions and future work in Section 5.45

2. Related work46

A common step in all HDR methods is to estimate the radiance of the47

sequence by inverting the CRF using Devebec and Malik [3] and dividing by the48

exposure time of each frame. This step permits to compare and combine values49

from different frames.50

There is an extensive literature for HDR imaging, we refer the reader to the51

comprehensive reviews [11, 12]. In the rest of the section, we focus on video52

HDR methods. The literature on video HDR imaging is much scarcer.53

Due to occlusions, large motion and saturated areas, frame alignment is54

very challenging. For that reason, ghosting removal, known as deghosting, is55

the main objective of most proposed methods for video HDR. For the majority,56

the process applies to a reference frame and makes use of its neighbouring ones.57

The same procedure is repeated for all frames of the sequence.58

Classical methods. Kang et al. [13] were the first to propose a HDR59

method for video. The reference and neighbouring frames are registered using60
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a global transformation and a gradient based optical flow method. The aligned61

frames are merged using a weighted average that takes into account exposition62

and errors from optical flow. Many posterior methods share the same general63

structure but refine the aligning and merging strategies.64

Mangiat and Gibson [14] observed that the use of optical flow methods is65

not sufficient to eliminate all ghosting effects. They proposed to use instead66

block matching methods for registering neighbouring frames to the reference67

one. However, the proposed registration introduces blocking effects that need68

to be corrected a posteriori. These are removed with a cross-bilateral filter at69

the tonemapped image. In a posterior work [15], the same authors improved70

the a posteriori correction by locally setting the filtering strength depending on71

the computed registration function. They increased the filtering magnitude at72

large motion vectors, which are more likely to be incorrect. However, the strong73

filtering ends removing many details and texture, making the final result look74

unnatural. Posterior algorithms try to minimize the dependence on the initial75

registration, in order to reduce the blurring by Kang et al. [13] or blocking76

artifacts by [15].77

Kalantari et al. [16] proposed an optimization method based on the previ-78

ous HDR imaging work by Sen et al. [17]. The energy to be optimized uses79

a temporal similarity measure to get information from forward and backward80

frames. The computed alignment, global and optical flow, is used only to com-81

pensate the search areas for the defined similarity measure. Their algorithm82

not only creates the HDR version, but the missing exposures for each frame.83

The proposed measure forces a temporal similarity between the current frame84

and neighbouring ones for all the reconstructed expositions. In particular, it de-85

mands for each patch of a reconstructed exposure that a similar patch is found in86

the previous and posterior frames. The proposed approach correctly avoids the87

creation of blocking effects and has a better texture and detail reconstruction88

than previous approaches, but still, it blurs many details. The same approach89

was adapted by Gryaditskaya et al. [18] to be applied to sequences where the90
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exposure time is adjusted at each frame in order to reduce motion artifacts.91

More recent methods have focused in the improvement of the alignment step92

[19, 20]. Li et al. [19] first separate the foreground and background areas of93

the image by a multi-scale regression and rank minimization method. Such a94

separation is used to estimate the motion between frames and reconstruct the95

HDR. Van Vo and Lee [20] divide the motion estimation step into two phases:96

on one hand, they perform optical flow estimation of well-exposed areas in a97

descriptor domain. On the other hand, they perform a superpixel-based motion98

estimation on poorly exposed areas. This latter estimation uses the optical flow99

field of non consecutive frames. That is, the algorithm is only valid for sequences100

with two alternating exposures.101

Learning methods. There exists an increasing literature in learning based102

HDR imaging [7, 21, 22, 23, 24, 25] (a wide review can be found on [12]). Niu103

et al. [7] propose a GAN network. Yan et al. [21] uses an attention module104

to eliminate the adverse effects of misalignment and saturation. Yan et al. [22]105

introduces a non-local module to capture global features from the images. Song106

et al. [23] present a transformer-based medthod. Prabhakar et al. [25] propose107

a recurrent network.108

However, there exist very few learning methods for HDR video. Kalantari109

and Ramamoorthi [9] were the first ones to propose a learning-based method110

for HDR video synthesis. They first use a convolutional neural network (CNN)111

to estimate the optical flow. Afterwards, a second CNN estimates the weights112

to combine the warped frames. Anand et al. [26], proposed a modification113

of Kalantari et al., which adds a denoising module at the beginning of the114

architecture and uses a generative adversarial strategy.115

Chen et al. [10] aim at improving Kalantari et al. [9] results by adding116

another module at the end of the proposed architecture. This new network117

takes as input the HDR results for 3 consecutive frames and outputs a refined118

version of the central one. This is the state of the art in video HDR.119

Other neural network methods have been proposed for very related problems120
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to HDR video. Kim et al [27] creates a well exposed video from a gradual flash121

sequence. A video sequence is recorded with a very high frame rate at the same122

time that the flash is being lighted on and off creating a sequence with 4 different123

lighting conditions. Cogalan et al [28] shows that video HDR can be achieved by124

a dual-exposure sensor, which acquires each frame with two different exposures125

being spatially interleaved in a single image.126

HDR Measures There exist several measures to evaluate the performance of127

HDR methods. Although the most of them are intended for HDR imaging, they128

can be used in HDR video, by sequentially applying them to each frame. The129

measures can be classified depending on whether they require a ground truth130

or not. Among the ones using a ground truth, the most relevant and widely131

used are HDR-VDP-2 [29] and HDR-VQM [30]. The HDR-VDP-2 metric was132

proposed by Mantiuk et al. [29] and is intended to compute a visual difference133

image of the ground truth and algorithm’s result and calculates a metric that134

measures the quality of the result based on this difference. Narawaria et al. [30]135

proposed a measure for video HDR assessment. The video quality is computed136

based on a spatio-temporal analysis that relates to human eye fixation behavior137

during video viewing.138

Among the ones not requiring any reference, Tursun et al. [31] propose a139

metric for evaluating ghosting artefacts. It compares the input globally regis-140

tered images with the HDR result. Karajuzovic-Hadziabdic et al. [32] propose141

a database for ghosting evaluation and uses the UDQM measure.142

3. Proposed method143

We propose a novel video HDR algorithm under the form of a variational144

minimization. We use non-local regularization which is commonly used for145

variational methods in noise removal, deblurring, super-resolution [33, 34, 35],146

but it is used for the first time in HDR synthesis.147

The classical gradient regularization is replaced by a probability distribution148

which defines the similarity of each pixel with its neighbouring ones. This149
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similarity between two pixels writes as a decreasing function of the distance of150

patches centred in them.151

A fidelity term demands to preserve radiance values for pixels which are well152

exposed. The regularization term permits to propagate the HDR value of these153

well exposed pixels to the similar pixels in the same frame and neighbouring154

ones.155

Since registration and alignment is a very challenging task for HDR videos,156

the estimated transform is used only to compensate the search window in which157

the probability distribution is defined. The weight similarity depending on patch158

distance makes the distribution to be robust to optical flow inaccuracies, choos-159

ing the correct pixels in these compensated areas. Thus, additionally reducing160

the ghosting artifacts.161

The proposed method presents several novelties that distinguish it from pre-162

vious works:163

• It is the first variational method to use a non local regularization term for164

HDR synthesis.165

• It jointly synthesizes three consecutive HDR frames, increasing the tem-166

poral stability of the method.167

• It uses patch distances in order to weight the similarity of pixels mak-168

ing the method robust to optical flow errors, thus reducing the ghosting169

artefacts.170

• It obtains results comparable to state of the art deep learning methods,171

while using a simple and understandable model.172

• The regularity term makes the model robust to noise and indeed reduces173

it notably.174

3.1. Variational formulation175

The proposed method takes as input a multi-exposure video sequence {Lt |176

t = 1, . . . , N}, each frame with exposure et. In order to compute the HDR177
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of a certain frame Lt we will use its previous and posterior frames, Lt−1 and178

Lt+1 respectively. The current approach can be modified to take into account179

a temporal neighbourhood of any length.180

Let Hi, i ∈ {t − 1, t, t + 1} denote the corresponding radiance frames and181

Si the expected HDR frame outputs. Although we will compute the triplet of182

HDR images, we will only keep as output the one corresponding with the central183

frame St.184

We propose to minimize a variational energy. In a continuous setting, all185

the images are defined on Ω ⊂ R2, usually a rectangle, being x = (x1, x2),∈ Ω186

spatial coordinates on the domain of the image. The proposed variational energy187

writes as188

J(St−1, St, St+1) =

t+1∑
i=t−1

3∑
c=1

∫
Ω

||∇ωS
c
i (x)||2 dx

+

t+1∑
i=t−1

αi

2

3∑
c=1

∫
Ω

h(Lc
i (x)) (Sc

i (x)−Hc
i (x))2dx.

(1)

where αi = α(ei) are the tradeoff parameters between the terms of the func-189

tional, ei indicates the exposure time of frame i and α(·) is an increasing func-190

tion. The index c indicates the color channel, and h(L) is a weighting function191

that benefits well-exposed pixels and penalizes under or over-exposed ones,192

h(L) =



0 L ≤ l2 or L ≥ h2

1− l1−L
l1−l2 l2 ≤ L ≤ l1

1 l1 ≤ L ≤ h1

1− L−h1

h2−h1
h1 ≤ L ≤ h2

. (2)

The function h(L) discards pixels for which the color value is below a dark193

threshold l1 or above a bright threshold h2 (see Figure 1, left). The radiance of194

well exposed pixels (h(L) = 1) will be kept and influence the synthesized HDR195

value of similar ones.196

Each fidelity term, associated to a different image of the temporal neighbor-197

hood, has a different weight αi = α(ei). This permits to decrease the importance198
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of short exposure frames which have a low signal to noise ratio and quantiza-199

tion effects in the dark parts. The fidelity term applies independently for each200

channel in order to avoid discarding a particular channel value when the others201

are saturated. This is crucial in order to recover the value of saturated parts.202

The nonlocal gradient ||∇ωS
c
i (x)||2 is defined for a particular frame i and203

pixel x = (x1, x2) as204

||∇ωS
c
i (x)||2 =

t+1∑
j=t−1

√∫
Ω

ωi,j(x,y)(|Sc
i (x)− Sc

j (y)|)2dy. (3)

being j the index of the neighboring images being involved and y = (y1, y2).205

3.2. Nonlocal weights206

For a fixed pixel x belonging to a frame i, the family of weights ωi,·(x, ·)207

favours those neighbouring pixels having a similar radiance image neighborhood,208

that is, a weight ωi,j(x,y) will be higher when the patches centered at pixels x209

in radiance image i and y in radiance image j, respectively, look similar. Also,210

the family of weighs takes into account the motion between images and the211

saturation of pixel colors.212

In order to compute the optical flow between images Li and Lj , as in [36], we213

first photometrically calibrate the color values of the darker image to look alike214

the brighter one and then both are converted to grayscale. This calibration is215

carried out by using the method proposed by Martorell et al. [6]. The pro-216

posed photometric calibration computes a joint histogram between the globally217

registered images using [37] and looks for the color increasing transformation218

curve passing near the peaks of that histogram. The flow is then computed with219

the optical flow algorithm from Brox et al. [38] with weights γ = 0.3 and α = 9.220

For a pixel x from frame i, let P be the squared window centered at x and221

radius r. We compare P with other patches of the same size located in a222

spatial neighbourhood of (2R+ 1)× (2R+ 1) pixels at frame i and the motion223

compensated neighbourhoods in the other two frames.224
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For each frame j ∈ {t−1, t, t+1}, we compute the set of neighbouring pixels225

as226

N j
x = {y = x + ui,j(x) + (s1, s2) | −R ≤ s1, s2 ≤ R} (4)

being ui,j the estimated flow between frames i and j. The corresponding set227

of neighbouring patches in frame j is228

N j
P = {Qy centered at y | y ∈ N j

x}. (5)

Then, the set of neighbouring pixels and corresponding patches are defined is229

Nx =

t+1⋃
j=t−1

N j
x , NP =

t+1⋃
j=t−1

N j
P . (6)

We can compute the weight for each pixel y from frame j centered at Qy ∈ NP ,230

named ωi,j(x,y). This weight is formed by the product of three terms. The231

first one is based on the patch color difference between neighbourhoods P and232

Qy233

λi,j(x,y) = exp

(
−||Hi(P )−Hj(Qy)||2

κ(Li(x))2

)
, (7)

being κ(Li(x)) an adaptive bandwidth, whose objective is to minimize the234

importance of patch distance in the overall weight when x belongs to a white235

saturated part and thus its radiance is not reliable. Therefore the function κ236

takes large values whenever Li(x) gets close to saturation (see Figure 1, right,237

and Equation (16)).238

The second one is based on the distance between the pixel y and the center239

of the search area in frame j240

βi,j(x,y) = exp

(
−||x + ui,j(x)− y||2

θ

)
. (8)

where θ is a bandwidth related to the radius R of the search window. We favor241

pixels being close the center of the compensated neighborhood, since these are242

more likely, to belong to the same object.243

Finally, the third one is based on the saturation of pixel y244

ηj(y) =
1

3

3∑
c=1

h(Lc
i (y)) (9)
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Figure 1: Plot of the weighting function h(L) in (2) and parameter κ(L) in (16).

with h(L) being the weighting function in (2). The term ηj(y) indicates whether245

the pixel y is near dark or bright saturation. Brightly saturated pixels will lead246

to incorrect radiance values, while pixels close to dark saturation might be247

noisier and more quantized.248

Finally, combining the three terms we get249

ωi,j(x,y) =
1

CP
· λi,j(x,y) · βi,j(x,y) · ηj(y) (10)

with CP being the normalization factor250

CP =
∑
y∈Nx

λi,j(x,y) · βi,j(x,y) · ηj(y). (11)

The weight for all other pixels outside of Nx is set to zero.251

3.3. Minimization252

We propose to minimize253

arg min
St−1,St,St+1

J(St−1, St, St+1), (12)

where J(St−1, St, St+1) is the variational energy shown in Eq. (1). This energy254

(1) is convex but non-smooth. To find a global optimal solution we use the255

primal-dual algorithm proposed by Chambolle and Pock [39]. This algorithm256

reformulates the minimization into a saddle point problem by introducing a dual257

variable q. Then, the saddle optimal point is computed with an iterative scheme258

consisting of a descending step with the primal variable, an ascending step in259
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Figure 2: HDR results on three consecutive frames of Skateboarder sequence from Kalantari

et al. dataset [16].

the dual variable followed by an overrelaxation. In our model, this leads to the260

following iterative scheme.261 

qk+1
i,j (x,y) =

(qk + σ∇ωS̄
k)i,j(x,y)

max{1, |(qk + σ∇ωS̄k)|i,j(x, :)}

Sk+1
i (x) =

Sk
i (x) + τ(divωq

k+1)i(x) + ταihi(x)Hi(x)

1 + ταihi(x)

S̄k+1
i (x) = 2Sk+1

i (x)− Sk
i (x)

(13)

where qki,j(x,y) is the value of the dual variable at pixels x and y and frames i262

and j in the iteration k. The norm | · |i,j(x, :) is defined for a given variable p263
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Initial Kalantari13 Kang Chen Ours

Figure 3: Excerpt of the results shown in Figure 2. Kalantari13 tends to blur moving details

(e.g foot of the girl on the right and trousers of the skater) and has some ghosting artifacts

(e.g left shoulder of the skater). Kang also presents some ghosting artifacts (e.g right shoulder

and left foot of the skater). Chen and our does not have apparent ghosting but Chen result

is noisier.

as264

|p|i,j(x, :) =

√∫
{y∈Ω|wi,j(x,y)6=0}

(pi,j(x,y))
2
dy (14)

and (divωq
k)i is the nonlocal divergence of the dual variables defined as265

(divωq
k)i(x) =

t+1∑
j=t−1

∫
Ω

√
ωi,j(x,y)qki,j(x,y)−

√
ωj,i(y,x)qkj,i(y,x) dy

(15)

The parameters τ and σ of the Chambolle-Pock minimization method are set266

to 0.2 the default values commonly used.267
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Initial Kang Mangiat

Kalantari13 Ours

Initial Kang Mangiat

Kalantari13 Ours

Figure 4: HDR results on two consecutive frames of Hallway sequence provided by Li et al.

[19].
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Initial Kang Mangiat

Kalantari13 Ours

Figure 5: Excerpt of the results shown in Figure 4. Mangiat removes many details and

Kalantari13 deforms the roof of the building. Kang and our method have no noticeable

artifacts.

Since the energy can be decoupled per channel, the iterative scheme is ap-268

plied separately at each channel. The iterative scheme (13) is repeated a fixed269

number of iterations and is early stopped if the difference between consecutive270

iterations is smaller than a threshold.271

3.4. Parameter setting and implementation details272

The use of patch comparison is quite common in both image and video pro-273

cessing algorithms. The size of the patch depends on the particular processing274

task, the number of color or spectral channels of the image and the transformed275

used to combine patch values. Generally, if patches are combined by simple276

statistical tools, the patch size is set as small as possible being robust to noise.277

Since the processed sequences have three channels and a high signal to noise278

ratio, a 3×3 patch has shown to be sufficient for comparison. In addition, since279

radiance values at saturated zones are not correct, the use of a small window280

minimizes the effect that these radiances have when processing spatially close281

but non saturated pixels. As a consequence, the radius r of patch P is set to 1.282
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Algorithm 1 Energy minimization

Input: Input images: Li, i ∈ {t− 1, t, t + 1}

Output: HDR frames {St−1, St, St+1}

1: Hi ← radiance(Li), i ∈ {t− 1, t, t + 1}

2: ωi,j(x,y)← nonlocal weights computation i, j ∈ {t− 1, t, t + 1},x,y ∈ Ω

3: k ← 0

4: while k < K or error < ε do

5: qk+1
i,j (x,y)← (qk+σ∇ωS̄

k)i,j(x,y)

max{1,|(qk+σ∇ωS̄k)|i,j(x,:)} , i, j ∈ {t− 1, t, t + 1},x,y ∈ Ω

6: Sk+1
i (x) =

Sk
i (x)+τ(divωq

k+1)i(x)+ταihi(x)Hi(x)

1+ταihi(x)
, i ∈ {t− 1, t, t + 1},x,y ∈ Ω

7: S̄k+1
i (x) = 2Sk+1

i (x)− Ski (x), i ∈ {t− 1, t, t + 1},x,y ∈ Ω

8: error ← ||Sk+1 − Sk||2

9: k ← k + 1

10: end while

Since we use motion compensation, the size R of the spatial neighbourhood283

does not need to take into account large displacements. It just needs to take284

into account optical flow imprecisions, which are supposed to be at most of two285

or three pixels. If the flow fails completely, patch distance is able to discard286

such matches, reducing ghosting effects. Therefore, R, the radius of the spatial287

neighbourhood, is set to 3. Additionally, we favor pixels being close the center288

of the compensated neighborhood, since these are more likely, to belong to289

the same object. This is reflected in the weight term βi,j(x,y) in (8) and the290

parameter θ which has been estimated empirically to 1.291

The tradeoff parameters αi = α(ei) balance the weight of the regularity292

and fidelity terms. Since short exposures are noisy and quantized in very dark293

parts, we privilege long exposures, setting α(·) to be an increasing function. In294

practice, the sequences used in the experimentation section have exposure times295

in {2−3, 2−2, 1, 22, 23}. We have experimentally set the corresponding α values296

to {7, 8, 10, 12, 13}, espectively.297

The function h(L) is designed to avoid the use of saturated values in both the298

regularization and fidelity terms. We set l2 = 5 as the dark saturation value and299
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h2 = 246 as the bright one. Since most sequences were originally compressed,300

values between 0 and 10 are highly quantified and have a poor signal to noise301

ratio and artifacts. Taking a l2 = 5 is a good compromise to avoid enhancing302

artifacts. The h2 is the white saturation value we observed for all the examples303

used in the experimentation section. As displayed in Figure 1 in order to avoid304

a drastic zero to one change, the values l1 = 20 and h1 = 240 permit a smoother305

change. These values are not critical for the performance of the method.306

The function κ(Li(x)) sets the kernel bandwidth in an adaptive manner,307

depending on the exposure of the reference point: pixels that are saturated308

provide a wrong radiance value, hence, we cannot rely on patch distances when309

computing weights ωi,·(x, ·). In such a case, setting a high value of κ we diminish310

the importance of patch distance in the overall weight computation. We define a311

continuous variation between over-exposed and well-exposed pixels for defining312

κ(L)313

κ(L) =


δ L ≤ h1

δ + L−h1

h2−h1
(δ∞ − δ) h1 < L ≤ h2

δ∞ L > h2

. (16)

We experimentally set δ = 0.1, while δ∞ is set to any large enough value, so314

any weight λi,j(x,y) equals one.315

For image regions saturated in all exposures, the value of the normalization316

term CP will be very small or even zero, and thus the weight distribution will317

not be reliable. In such cases, being CP too small, if Li(x) is over h2, we set318

to 1 all weights from the image with lowest exposure time and renormalize the319

weight distribution. In the case Li(x) is below l2, the same procedure is applied320

to the weights of the image with highest exposure.321

4. Results322

In this section we present the results of the proposed model for HDR video323

synthesis, as well as a comparison with state-of-the-art methods. We compare324
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qualitatively and numerically the proposed method with sequences from the325

datasets provided by Kalantari et al. [16] and Chen et al. [10].326

On one hand, we evaluate our method on sequences Waving Hands, Skate-327

boarder, Dog and Ninja from the dataset provided by Kalantari et al. [16].328

Unfortunately for this dataset, there is no true HDR image that can be used as329

reference to compare with. We compare them with the precomputed results by330

Mangiat et al. [14], Kalantari et al. [16] (Kalantari13), Kang et al. [13], Kalan-331

tari et al. [9] (Kalantari19) and Chen et al. [10]. The results of the firsts three332

methods were available at Kalantari’s website 2; and the last two where kindly333

provided by Chen et al. [10]. Since, not all methods published their result for334

each sequence, we display in each case the available ones. The tonemap in our335

experiments is performed by using the tonemapping algorithm from Reinhard336

et al. [40].337

On the other hand, we compare our method with the sequences with 2338

exposures from the dataset by Chen et al. [10]. In this case, we compare with339

Kalantari et al. [16], Chen et al. [10] and the provided ground truth.340

4.1. Numerical comparison341

Table 1 displays the quantitive results in terms of the UDQM measure [31].342

The UDQM is an objective metric that takes into account the most common343

deghosting artefacts that appear in the output of widely used algorithms and344

does not require any reference ground truth. The evaluations have been per-345

formed on the sequences for which do not dispose of a reference: Dog, Skate-346

boarder, Hands and Ninja. It has been evaluated for one particular frame for347

each exposure. We have highlighted for each sequence the method giving the348

best score. Our method gives the highest score in most sequences which is in349

accordance with the visual quality analysis performed below.350

Table 2 shows the PSNR-µ computed on tonemapped images for the first351

four sequences of the dataset provided by Chen et al. [10] with two different352

2https://web.ece.ucsb.edu/~psen/PaperPages/HDRVideo/
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Sequence Dog Skateboarder Hands Ninja

Exposure low mid high low mid high low high low high

Kalantari13 0.36 0.36 0.36 0.34 0.33 0.34 0.33 0.34 0.36 0.36

Kang 0.36 0.36 0.36 0.34 0.34 0.34 0.33 0.34

Chen 0.40 0.39 0.38 0.35 0.37 0.35 0.42 0.42 0.36 0.40

Kalantari19 0.37 0.37 0.37 0.36 0.36

Mangiat 0.40 0.40

Ginger 0.33 0.34

Ours 0.38 0.37 0.38 0.37 0.38 0.37 0.42 0.42 0.39 0.41

Table 1: Evaluation of the results using the UDQM metric [31]. Higher values of this index

represents less ghosting artefacts. The highest values are highlighted in bold. The empty

cells come from not having the result of that method in that sequence. The methods giving

the lowest values are Kalantari13 and Kang. Our method gives the highest score in most

sequences. These values are supported by the visual analysis on the HDR results.

exposures (one of these sequences is displayed in Figure 11). As in [10] and [9],353

we apply the following transformation to the images354

Ti =
log(1 + µSi)

log(1 + µ)
, (17)

with µ = 5000 to compare them.355

Chen et al. algorithm, being the state of the art on HDR video, is a complex356

and computationally demanding neural network. It applies an initial network357

in which a first HDR result is obtained by combining three consecutive frames.358

Afterwards, a second net combines three consecutive first HDR in order to obtain359

the final result. As a consequence, five frames are used in order to compute the360

HDR of a particular frame. In our case, we use only three frames and a single361

pass algorithm.362

We also compare with Kalantari et al. [16], which is the closest algorithm to363

ours, since it uses a patch similarity measure and minimizes an energy containing364

this similarity and a fidelity term for well exposed pixels. We perform better365

than both methods on low exposure frames and we perform similarly to Chen366

on high exposure ones. On average, Chen and the proposed method obtain a367

similar PSNR, while Kalantari13 has a poorer performance.368

19



4.2. Visual comparison369

Figure 2 shows the results on three consecutive frames of sequence Skate-370

boarder, each of them taking as reference a frame with a different exposure time.371

Figure 3 displays an excerpt on the results of the previous figure. It is noticeable372

that Kang’s result has ghosting artifacts on the left feet and right shoulder of373

the skater and on the right feet of the girl. Kalantari13 result looks blurry on374

the trousers of the skater and it has ghosting artifacts in its left shoulder. On375

the second crop, it blurs the right foot of the right side girl. Chen and our does376

not have apparent ghosting but Chen result seems noisier than ours.377

Figure 4 shows the results on two consecutive frames of sequence Hallway378

provided by Li et al. [19]. Figure 5 displays an excerpt on the results of the379

previous figure. Mangiat excessively filters the details of the image. Kalantari13,380

because of a bad registration, deforms the roof of the building. Kang and our381

method do not have apparent ghosting or excessive filtering.382

Figure 6 shows the results on two consecutive frames of sequence Waving383

hands. Kang and Magiat results present ghosting artifacts and Kalantari13384

result looks blurry.385

Figure 7 shows results on two frames of Dog sequence. Figure 8 displays an386

excerpt of it, centered at the head of the dog. Kang and Kalantari19 results387

have ghosting artifacts near the nose and mouth of the dog and the Kalantari13388

result looks blurry.389

Figure 9 shows the results on the Ninja sequence. Taking a closer look on390

the excerpt on Figure 10, we can see that Kalantari13 and Kalantari19 produce391

blurry results and Chen result looks noisier than ours.392

Finally, Figures 11 and 12 display the results with Sequence 1 and 4 from393

Chen et al. dataset [10]. Kalantari13 presents several ghosting artefacts, while394

at a first look Chen and our method perform similarly better. For Figure 11,395

a close look into the shirt, reveals that Chen over-smooths the texture and has396

a ghosting artifact on the left side. For Figure 12, a close look into the object397

being hold, reveals that Chen over-smooths the vertical detail.398
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Sequence 0 1 2 3 mean

Exposure high low high low high low high low

Kalantari13 27.17 28.59 28.50 29.39 31.00 30.36 29.23 30.35 29.32

Chen 49.86 43.78 50.14 43.99 48.87 44.55 49.79 45.55 47.07

Ours 48.08 44.51 49.53 44.97 48.46 45.23 49.37 45.91 47.01

Table 2: Numerical comparison on two exposure sequences from the dataset of Chen et al. [10].

We display the PSNR-µ metric for particular low and high exposure frames. Each sequence

number corresponds to the index on the dataset. One of these sequences is displayed in

Figure 11. We compare with Kalantari et al. [16] and Chen et al. [10]. Our algorithm gives

the highest PSNR for low exposure frames and performs similarly to Chen on high exposure

ones. On average, Chen and the proposed method obtain identical PSNR, while Kalantari13

has a poorer performance.

4.3. Computational complexity399

We run our method in a computer with a processor 2.8GHz Intel Core i7-400

1165G7. With the images from the Kalantari dataset [16] having 1280x720401

pixels, our method takes 150 seconds. This time corresponds to all the steps402

of the proposed algorithm, including optical flow. With the same image, [16]403

being the closest method to ours, takes 400 seconds.404

According to the work by Chen et al. [10], the application of their convolu-405

tional network takes 0.51 s. However, the network runs on a GPU and requires406

an extensive and computationally intensive training, while our method runs on407

a CPU and does not require a training stage. Therefore, the computational408

times are not comparable.409

5. Conclusions410

We have presented a new variational model for HDR video synthesis. It411

writes as an energy minimization using nonlocal regularization across the neigh-412

bouring frames and a fidelity term for well exposed pixels. The proposed method413

obtains competitive results compared with state-of-the-art deep learning tech-414

niques Kalantari et al. [9] and Chen et al. [10]. Compared to these methods,415
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our approach depends on a few understandable parameters, making the results416

more reliable and interpretable.417

As a future work, we plan to study the incorporation of unrolling methods418

[41, 42, 43]. These hybrid methods combine energy minimization strategies and419

deep learning techniques. The advantages of replacing the proximal operator420

with a neural network include gains in representation power and direct learning421

of algorithm parameters from real data.422

Constraining the network structure to particular mathematical expressions423

reduces its complexity, improves its generalization capabilities and increases the424

interpretability.425
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Initial Kalantari13 Kang

Mangiat Chen Ours

Initial Kalantari13 Kang

Mangiat Chen Ours

Figure 6: HDR results on two consecutive frames of Waving hands sequence from Kalantari

et al. dataset [16]. Kang and Mangiat results present ghosting artifacts, Kalantari13 results

look blurry and Chen and our method obtain pleasant results without noticable artifacts.
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Initial Kalantari13 Kang

Kalantari19 Chen Ours

Initial Kalantari13 Kang

Kalantari19 Chen Ours

Figure 7: HDR results on two consecutive frames of Dog sequence from Kalantari et al.

dataset [16]. Kalantari13, Kang and Kalantari19 have problems at registering the head of the

dog. Chen and our method both produce high quality results (see details on Figure 8).
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Initial Kalantari13 Kang

Kalantari19 Chen Ours

Figure 8: Excerpt of the results shown in Figure 7. Kalantari13, Kang and Kalantari19

present ghosting artifacts.
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Initial Kalantari13 Kalantari19

Chen Ours

Initial Kalantari13 Kalantari19

Chen Ours

Figure 9: HDR results on two consecutive frames of Ninja sequence from Kalantari et al.

dataset [16].
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Initial Kalantari13 Kalantari19

Chen Ours

Figure 10: Excerpt of the results shown in Figure 9. The result from Kalantari13 looks blurry

and results from Kalantari19 and Chen look noisier than ours.
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Input frame

Kalantari13 Chen Ours

Input frame

Kalantari13 Chen Ours

Figure 11: Full frame and excerpt of the input frame and HDR results on sequence 1 of

Chen et al’s dataset. Kalantari13 presents several ghosting artefacts, while at a first look

Chen and our method perform similarly better. A close look into the shirt, reveals that Chen

over-smooths the texture and has a ghosting artifact on the left side when centred at the

shorter exposure.
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Input frame

Kalantari13 Chen Ours

Input frame

Kalantari13 Chen Ours

Figure 12: Full frame and excerpt of the input frame and HDR results on sequence 4 of Chen

et al’s dataset. Kalantari13 presents several ghosting artefacts, while at a first look Chen and

our method perform similarly better. A close look into the object being hold, reveals that

Chen over-smooths the vertical detail and has a slight ghosting artifact on the finger.
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