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Abstract

Artificial intelligence is a new paradigm of information processing where ma-
chines emulate human intelligence and perform tasks that cannot be done
with standard computers. Neuromorphic computing is in particular inspired
by how the brain computes. Large network of interconnected neurons whose
synapses are varied during a learning phase, and where the information
flows in parallel throughout different connections. Photonics platforms rep-
resent an interesting possibility where to implement neuromorphic processing
schemes, exploiting light and its advantages in terms of speed, low energy con-
sumption and inherent parallelism via wavelength division multiplexing. In
particular, a candidate playing a diversity of key roles in integrated networks
is the microring resonator. In silicon photonics, the microring resonator can
implement the strength of a synapse, the spiking emission of a biological
neuron, and it can exhibit a fading memory based on its multiple linear and
nonlinear dynamical timescales. This manuscript presents an overview of
the main applications of silicon microring resonators in neuromorphic silicon
photonics, and then focuses on its implementation in a processing scheme,
named time delay reservoir computing (RC). Time delay RC is a hardware-
friendly approach by which implement a large neural network, where this is
folded in the nonlinear dynamical response of only one physical node, such
as a dynamical system with delay feedback. The manuscript illustrates, both
numerically and experimentally, how to make time delay RC exploiting the
linear and nonlinear dynamical response of a silicon microring resonator.
The microring is coupled to an external optical feedback and the results
on a diversity of time series prediction tasks and delayed-boolean tasks are
presented. Numerically, it is shown that the microring nonlinearities can
be exploited to improve the performance on prediction tasks, such as the
Santa Fe and Mackey Glass ones. Experimentally, it is shown how the net-
work can be set to solve delayed boolean tasks with error-free operation, at
12 MHz operational speed, together with possible upgrades and alternative
implementations that can boost its performances.



Resumen

La inteligencia artificial es un nuevo paradigma de procesamiento de informa-
ción en el que las máquinas emulan la inteligencia humana y realizan tareas
que no pueden ser realizadas con ordenadores estándar. La computación neu-
romórfica está particularmente inspirada en cómo el cerebro realiza cálculos.
Consiste en una gran red de neuronas interconectadas cuyas sinapsis varían
durante una fase de aprendizaje, y donde la información fluye en paralelo a
través de diferentes conexiones. Las plataformas fotónicas representan una
interesante posibilidad para implementar esquemas de procesamiento neuro-
mórfico, aprovechando las ventajas de la luz en términos de velocidad, bajo
consumo de energía e inherente paralelismo a través de la multiplexación por
división de longitud de onda. En particular, un candidato que desempeña una
diversidad de roles clave en redes integradas es el micro-anillo resonador. En
la fotónica de silicio, el micro-anillo resonador puede implementar la intensi-
dad sináptica, la emisión de pulsos de una neurona biológica, y puede exhibir
una memoria que decae con el tiempo basada en sus múltiples escalas tempo-
rales dinámicas lineales y no lineales. Esta tesis presenta una visión general
de las principales aplicaciones de los resonadores de anillo microscópicos de
silicio en la fotónica neuromórfica de silicio y se centra en su implementación
en un esquema de procesamiento llamado time delay reservoir computing
(RC). Time delay RC es un enfoque favorable para el hardware mediante el
cual se implementa una gran red neural, a través de la respuesta dinámica no
lineal de solo un nodo físico, como un sistema dinámico sujeto a retroalimen-
tación. Este trabajo ilustra, tanto numérica como experimentalmente, cómo
realizar la computación en time delay RC utilizando la respuesta dinámica
lineal y no lineal de un resonador de anillo microscópico de silicio. El micro-
anillo resonador está acoplado a una retroalimentación óptica externa y se
presentan los resultados de una diversidad de tareas de predicción de series
temporales y tareas booleanas retrasadas. Numéricamente, se muestra que
las no-linealidades del micro-anillo resonador se pueden aprovechar para me-
jorar el rendimiento en tareas de predicción, como las de Santa Fe y Mackey
Glass. Experimentalmente, se muestra cómo la red se puede configurar para
resolver tareas booleanas retrasadas sin errores, a una velocidad operativa
de 12 MHz, junto con posibles mejoras e implementaciones alternativas que
pueden aumentar su rendimiento.



Resum

La intel·ligència artificial és un nou paradigma de processament de la infor-
mació en què les màquines emulen la intel·ligència humana i realitzen tasques
que no es poden dur a terme amb ordinadors estàndard. La computació neu-
romòrfica s’inspira particularment en com el cervell calcula. Es tracta d’una
gran xarxa de neurones interconnectades, les sinapsis de les quals varien du-
rant una fase d’aprenentatge, i on la informació circula en paral·lel a través
de diferents connexions. Les plataformes fotòniques representen una possi-
bilitat interessant per implementar esquemes de processament neuromòrfic,
aprofitant la llum i els seus avantatges en termes de velocitat, baix consum
d’energia i el paral·lelisme inherent mitjançant multiplexació per divisió de
longitud d’ona. En particular, un candidat que juga una diversitat de rols
clau en xarxes integrades és el ressonador d’anell microscòpic. En la fotòni-
ca de silici, el ressonador d’anell microscòpic pot implementar la intensitat
d’una sinapsi, l’emissió d’espigues d’una neurona biològica, i pot exhibir una
memòria que decau amb el temps basada en les seves múltiples escales de
temps dinàmiques lineals i no lineals. Aquest treballo presenta una visió
general de les principals aplicacions dels resonadors d’anell microscòpics de
silici en la fotònica neuromòrfica de silici, i després es centra en la seva im-
plementació en un esquema de processament anomenat time delay reservoir
computing (RC). Time delay RC és un enfocament amigable per la maqui-
nària mitjançant el qual s’implementa una gran xarxa neural a través de la
resposta dinàmica no lineal d’un únic node físic, com un sistema dinàmic
amb retroalimentació de retard. Aquest treball il·lustra, tant numèricament
com experimentalment, com fer la computació en dipòsit de retard tempo-
ral aprofitant la resposta dinàmica lineal i no lineal d’un ressonador d’anell
microscòpic de silici. El microanell està acoblat a una retroalimentació òp-
tica externa i es presenten els resultats de diverses tasques de predicció de
sèries temporals i tasques booleans retardades. Numèricament, es demostra
que les no-linealitats del microanell es poden aprofitar per millorar el ren-
diment en tasques de predicció, com ara les de Santa Fe i Mackey Glass.
Experimentalment, es mostra com la xarxa es pot configurar resoldre tas-
ques booleans retardades sense errors, a una velocitat operativa de 12 MHz,
juntament amb possibles actualitzacions i implementacions alternatives que
poden augmentar el seu rendiment.
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Chapter 1

Introduction

In the last decades, the field of artificial intelligence (AI) has notably in-
creased, with applications in automotive, face recognition, time series pre-
diction, robotics, and medicine. Differently from conventional computers
that are specifically programmed with a precise sequence of instructions to
solve a problem, AI algorithms learn how to solve it. Learning is one of
the keywords distinguishing these new techniques. Artificial neural networks
(ANNs) represent a class of these algorithms that takes inspiration from how
a biological brain works. In ANNs models, an ensemble of artificial neu-
rons is connected via artificial synapses to form a network with many diverse
topologies. Here, the information can flow in parallel between the neurons
(network nodes), and the strength of the connections (weights) changes ac-
cording to a training algorithm. A learning phase is needed to optimize the
network (i.e. change the connections) to solve a particular task, often requir-
ing large training datasets. For this reason, when artificial neural network
algorithms are executed in an electronic platform, specialized hardware like
Graphics Process Units (GPUs) or tensor process units (TPUs) typically en-
gaged [1]. The latter are able to parallelize the computation, accommodating
the intrinsic parallelism of neural network architectures and speeding up their
computation.

Neuromorphic photonics represents an alternative and attractive frame-
work where ANNs can be implemented. Its main advantages relate to the
fast speed of light and lower power consumption. Furthermore, the intrinsic
parallelism demanded by neural networks can be realized here via different
spatial photonics nodes, and extends even further to the wavelength, as mul-
tiple signals encoded on different wavelength channels can travel in the same
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propagating medium. Among others, time-delay reservoir computing (RC)
architectures have been widely investigated in photonics. The RC [2][3] con-
cept, essentially treats an ANN as an ensemble of recurrently connected nodes
with a fixed connection strength and only optimizes a subset of connections,
to solve a particular task. The conceptual brake-through of time-delay RC is
that the network, rather than being composed of many spatial distinct nodes,
can be folded in the nonlinear dynamics of only one physical node [4]. This
simplification from a physical implementation point of view, paved the way
for several realizations of time delay RC in photonics platforms. Examples
of single nodes that are reported in the literature are semiconductor lasers,
semiconductor optical amplifiers, feedback loops made by optical fiber, and
Mach-Zehnder interferometers, among others.

In my research work, I investigated time-delay RC, realizing a novel hard-
ware based on a silicon microring resonator coupled to an external optical
feedback as a nonlinear node. The advantages that microring resonators
bring are connected, among others, to their compact footprint, and conse-
quently their integration in photonic platforms. Silicon photonics is chosen
leveraging on the progress made by the electronics industry, which allows
fabrication in large volumes and operating photonics circuitry in synergy
with electronics ones. When the microrings are designed with a high-quality
factor, fully passive nonlinearities become also available in silicon. The
manuscript is organized in the following chapters.

• Chapter 2 presents an overview of the different types of ANN models,
and the main building blocks of silicon photonics, that allow for their
implementation.

• Chapter 3 presents the modeling of the linear and nonlinear dynamics
of a single silicon microring resonator. These will serve to introduce
the role that microring resonators have in integrated neural networks.
Their linear filtering properties serve as input weights of a photonics
neuron, while their nonlinear dynamics serve as a neuron nonlinear
activation function.

• Chapter 4 describes the model of a silicon microring resonator coupled
to an external optical feedback and its implementation in a time-delay
RC architecture. The system is tested on different benchmark tasks
with diverse memory requirements to grasp insights about its compu-
tational properties. The findings here are mainly three: first, 4 system
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parameters, such as the average input optical power, the optical detun-
ing between the input and the microring resonance wavelengths, the
phase and the amplitude of the feedback signal, emerge as critical in
determining the performance on these tasks. Second, the microring
free carrier nonlinearity is successfully exploited to improve the perfor-
mances on the benchmark tasks. Third, it is observed that the inertia
induced by the microring nonlinearity can also act as a source of mem-
ory in the system, where past information injected into the microring
is stored in the actual amount of free carriers and temperature in the
waveguide.

• Chapter 5 describes the optical setup for the experimental investiga-
tion. A microring resonator in an add-drop filter configuration is specif-
ically designed and coupled to an optical fiber that serves as external
optical feedback. This feedback implementation brings experimental
unexpected complications, as it introduces phase shifts in the delayed
optical signal due to thermal, vibrational, and phonic environmental
noise. Most of the experimental effort is devoted to the stabilization of
the system against these sources of noise. An optoelectronic controller
developed for the stabilization of the system against phase noise and
the setup assembled for this experiment are described.

• Chapter 6 describes the experimental results obtained by testing the
microring with an external feedback loop in linear and nonlinear de-
layed boolean benchmark tasks. The results are compared to other
implementations, including the single microring resonator without a
feedback loop.

• Chapter 7 is dedicated to the future perspectives of this work. It
presents a fully integrated and upgraded version of the microring with
an external feedback loop system, already designed and fabricated.
Then, it provides some insights about how to extend the application
of the system as a fiber sensor. Finally, it proposes the prototype of a
feed-forward neural network for sensing applications.

• Chapter 8 leads to the final conclusions of the work.

9
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Chapter 2

Theoretical background

2.1 Artificial neural networks

ANNs are inspired by their biological counterparts and aim at providing ma-
chines with parallel information capabilities that vaguely mimic those of the
brain. An ANN can be represented as an ensemble of units - named nodes or
artificial neurons - coupled by connections of different strength (dendrites and
synapses). In a simplified model, sketched in Fig. 2.1(a), a biological neu-
ron accumulates the input signals from the dendrites into the soma and, if a
threshold potential is overcome, it fires a spike wave potential along the axon,
that will then reach subsequent neurons connected by various synapses. Sim-
ilarly, an artificial neuron has several parallel inputs xi that are weighted and
then summed to emulate the integration phase within the soma, as sketched
in 2.1(b). The artificial neuron response, named activation (a), is spread
to other neurons and is evaluated as a = f(

∑
i wixi + b), where wi are the

weights setting the relative importance between the input channels, b is a
bias term and f is the neuron activation function. The network learns how
to solve a task by tuning the interaction between the neurons, i.e. the internal
weights and bias values.

The evolution of ANN models can be described in terms of three gen-
erations [5]. The first generation is based on the concept of the perceptron
model, which was introduced in the 1950s and 1960s [6] [7]. The perceptron
refers to a single artificial neuron scheme, as in Fig. 2.1(b), equipped with a
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Figure 2.1: Sketch of a) biological neuron and b) artificial neuron, that high-
lights their common features: integration of the input signals and sharing of
the output response with subsequently connected neurons.

-10 -5 0 5 10

z

0

0.5

1
Step function

-10 -5 0 5 10

z

0

5

10

ReLU function

-10 -5 0 5 10

z

0

0.5

1
Sigmoid function

-10 -5 0 5 10

z

0

5

10

ELU function

Figure 2.2: Common nonlinear activation functions adopted in ANN models,
as a function of the weighted input to the neuron z =

∑
i wixi + b.

step-like activation function:

f(w⃗ · x⃗) =

{
1 if w⃗ · x⃗+ b > 0;

0 otherwise;
(2.1)

where · indicates the inner product in the Euclidean space and x⃗, w⃗ are the
input and weight vectors, respectively. The perceptron was initially inspired
by the "all-or-none" spiking response of biological neurons. This model can
recognize two different categories of inputs by testing whether f(w⃗ · x⃗) is
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Figure 2.3: Scheme of a multilayer perceptron fully connected to realize a
FFNN. While the design of the input and output layer is generally dictated
by the problem that the network is designed to solve, the size of the hidden
layers can be different.

positive or null, and is the basic unit of a variety of first generation neural
networks, like the multi-layer perceptron models.

In the second generation of ANNs, the activation function is extended
from the step function to the continuous domain, providing the networks with
an internal analog representation of the information. Examples of activation
functions are illustrated in Fig. 2.2.

Finally, in the third generation of ANNs, neurons are modeled with a
more detailed internal dynamic proper of biological neuron models (section
2.4). The result is a signal-encoding paradigm where information is encoded
at the time of binary spike events.

Independently on the generation of neurons adopted, specific topologies
emerge when artificial neurons are linked together. ANNs topologies can be
essentially classified within two main categories: feedforward and recurrent.

Feedforward neural networks In feed-forward ANNs neurons are grouped
into layers, as presented in Fig. 2.3. The information to be processed is
represented by the state of neurons belonging to the input layer. This infor-
mation is then propagated unidirectionally through the network, according
to the internal connections, until it reaches the output layer. The state of
the output neurons encodes the network response to a certain input. The
dimension of the input and output layers is generally dictated by the partic-
ular problem at hand. For example, in image classification tasks, the input
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input layer output layerhidden layers

Figure 2.4: A recurrent neural network is characterized by internal recursive
connections, as compared to feed-forward ones.

layer can represent the value of the pixels in the image with an equivalent
number of neurons. While the dimension of the output layer may represent
the total number of output classification classes where the image needs to
be categorized, the dimension of each hidden layer and their number is not
guaranteed by specific a priori rules and typically requires testing the net-
work on different configurations [8]. Deep FFNNs include at least one hidden
layer.

Peculiar of FFNNs is that the information flows unidirectionally from the
input to the output layer. There are no loops in the network that allow the
information to propagate back, and mix to the propagation of future input
signals. As a consequence, FFNNs are applied on tasks that do not require
memory, such as pattern recognition and computer vision.

Recurrent neural networks Recurrent Neural Networks (RNNs) include
recursive connections within the network, as shown in Fig. 2.4, so that
the input information at a given time is preserved within the system for a
certain period of time. Due to this, the unique input-output correspondence
of FFNNs holds no more, since the network response to a certain input is
also affected by the history of the system.

Essentially any function involving recurrence can be considered a recur-
rent neural network. The classical form of a recurrent dynamical system can
be expressed as:

a⃗t = f (⃗at−1, x⃗t, w⃗), (2.2)
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where a⃗t are the state of the units at a time t, x⃗t is an element of the input
sequence, and w⃗ are the weights related to the internal connections. Eq. 2.2
is recurrent, since the state a⃗ at time t refers back to a⃗ at time t − 1, and
similarly this last. Hence, RNNs find applications in memory demanding
tasks, such as handwriting recognition [9], speech recognition [10], and time
series prediction [11].

2.2 Training a neural network

Learning is the key property that differentiates machine learning algorithms,
such as ANNs, with respect to algorithms specifically developed for a par-
ticular problem. In the latter case, a precise list of instructions needs to be
provided to the machine in advance, describing its response to the incom-
ing input signal. On the other hand, learning algorithms are designed with
internal parameters that adapt from experience. These parameters, so far
called weights, are optimized to minimize an output error of the network
with respect to a desired output.

Learning strategies can be categorized into three main classes: supervised,
unsupervised, and reinforcement learning.

In supervised learning the network is trained with examples (xi, yi), with
target values yi a priori known for each input data xi. If initially an untrained
network will output values oi ̸= yi, during training the internal weights are
adapted to minimize the error between yi and oi. The second generation
ANNs, relying on differentiable activation functions, were the first to intro-
duce support to supervised learning algorithms based on gradient descent
[12]. A famous example is given by the back-propagation algorithm, previ-
ously proposed in 1960 [13], and then adapted for the training of deep ANNs
[14]. Back-propagation combined with stochastic gradient descent algorithms
rely on a differentiable cost function that is defined to minimize the output
layer response and the desired target. The weights and bias of the network
are updated according to the derivatives of the cost function with respect to
them (with opposite sign), in a chain rule that starts from the last layer and
back-propagates towards the first hidden layer. Back-propagation was also
adapted for training of RNNs [15].

On the other hand, in unsupervised learning, the targets are not known a
priori, and the network is trained to find patterns underlying unlabeled data.
Unsupervised learning is particularly useful for at least two reasons: cluster-
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ing generation from large amounts of unstructured raw data, and generation
of labels useful then for supervised learning.

Reinforcement learning is based on an agent, that must learn behavior
through trial-and-error interactions with a dynamically changing environ-
ment. At each time step, the agent receives an input signal, considers the
actual state of the environment, and takes actions that in turn modify the
environment. Reinforcement learning algorithms reward the agent for taking
actions that lead to successful states. Reinforcement learning finds applica-
tions in game playing [16], robotics, and control [17].

The choice of the input and target datasets in supervised learning, or
the strategies of awards delivered in reinforcement learning, finally define
the task that the neural network is trained to solve. Once finalized the
learning, the network undergoes a test phase, where it is presented with new
datasets not seen before. In this phase, the trained weights of the network
are no more changed and the task error directly measures how much the
features previously learned generalize to the new dataset. Overfitting the
training dataset is a possible risk during the training phase, which induces
the network to learn insights that are particular to the training dataset but
that are not generalizable to new ones.

For large networks, which involve recurrences particularly, the learning
phase is time and resource challenging. A new paradigm for the training of
RNNs, namely reservoir computing, is described in the next section.

2.3 Reservoir computing

Reservoir computing (RC) is a new paradigm to recurrent ANNs, introduced
to simplify their training [2][3]. As the general scheme in Fig. 2.5 illustrates,
the recurrent network is treated as a black box whose connection’s strength
and topology are left unchanged over time. For this reason, the recurrent
network is also named reservoir and does not participate in the training
process. The reservoir’s dynamic is driven by the information to process,
which is encoded at the input layer. A linear output layer is then estimated
via a weighted sum of the reservoir node states.

Mathematically, the state a of a reservoir composed of N nodes, can be
expressed as:

a(i) = f(Winx(i) +Wa(i− 1) + b) (2.3)
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Figure 2.5: Schematic of reservoir computing, consisting of an input layer, a
reservoir of interacting nodes with fixed topology and strength, and a final
output layer. The training only involves the weights wout of the linear readout
layer.

y(i) = Wouta(i) (2.4)

where x(i) ∈ Rk×1 is a k-dim input vector, Win ∈ RN×k refers to the in-
put weights, W ∈ RN×N refers to the internal weights of the reservoir, and
f ∈ RN×1 describes the nonlinear activation function of each neuron. Then
Wout ∈ Rk′×N are the output weights that project the reservoir neurons to the
output layer, whose state identifies the response y ∈ Rk′×1 of the network.

In RC only the output weights Wout are trainable parameters. The reser-
voir serves to nonlinearly project the input information onto a higher di-
mensional space, given by the number of internal nodes. From the reservoir
state, the correct output can be estimated by a simple linear readout layer.
As an example, let’s consider the boolean XOR task also represented in Fig.
2.6. The XOR problem, in the two-dimensional space created by the possi-
ble combinations of input [(0, 0), (1, 0), (0, 1), (1, 1)] is not linearly separable,
i.e. there is no line able to successfully separate the correspondent targets
[0, 1, 1, 0] (encoded as orange and blue colors in Fig. 2.6). Instead, if the
input is nonlinearly mapped into a higher dimensional space, for example
with an extra dimension (analogous to the reservoir), it becomes possible to
find a hyperplane (linear readout, with coefficients given by Wout), leading
to the correct classification of the 2 classes.

As a consequence of the "black box" approach, different complex physical
systems have been proposed to serve as reservoir implementations. An ex-
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Figure 2.6: XOR problem: in two dimensions, no line can successfully sep-
arate the two classes. On the other hand, under an appropriate nonlinear
mapping into a higher dimensional space, the problem becomes linearly sep-
arable.

ample highlighting the potential of a physical RC system is reported in [18].
In this work, a tank of water is perturbed on the surface, according to the
input to process, by 8 LEGO engines. The tank of water is illuminated from
the bottom. Light propagates up to the water’s surface, where it is scattered
according to the wave pattern present at that moment. The scattered light
finally reaches a camera positioned above the setup, where is detected. The
pixel values are considered the reservoir node states, which are then, offline,
linearly combined to generate the output of the network. In the experiment,
the reservoir nodes (pixels) are coupled with each other thanks to the wave
pattern on the water’s surface. This experiment is very instructive, as it
shows how physical reservoirs can be beneficial in terms of computational
cost and reservoir dimensionality, rather than their simulation: the coupling
of the reservoir nodes occurs naturally in the system, exploiting the interac-
tion between water particles, while it would require a large computational
power and knowledge if simulated.
Computing systems with multiple reservoirs have also been proposed. For
example, in [19], the authors propose a deep architecture that exploits the
RC framework at each layer. Different reservoirs across the layers, provide
a diversification of the temporal input representation across the layers, thus
providing here the full network with different processing timescales.

Time-delay RC Time delay RC is a further simplification of the RC ap-
proach, introduced in 2011 by Appeltant at al. [4]. In this approach, the
conceptual breakthrough is the possibility to emulate networks with a large
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number of neurons, exploiting the nonlinear dynamics of only a single node,
such as a dynamical node subject to delay. Within the feedback loop, virtual
nodes are defined [4]. A network of virtual nodes is then extracted by sam-
pling the nonlinear response of the single node to a certain input information,
and then using the recording of these temporal samples to feed the output
layer, as in traditional RC.
The approach is suitable for physical implementations as it minimizes the
hardware requirements. Many physical implementations have been investi-
gated in this context, including the one presented in this thesis. A detailed
description of this processing scheme will be presented in Chapter 4.

2.4 Spiking neural networks

ANNs, as presented until now, consider the input information from different
channels always reaching a neuron synchronously, and then summed. These
times are typically discretized by the simulation time step. In Spiking Neural
Networks (SNN)s, this restriction is left, so that input signals can reach a
neuron delayed with respect to each other, and the synchronicity is no more
guaranteed. The neuron is here described as a spiking neuron. Similar to first
generation neurons, spiking neurons act as integrate-and-fire units and have
binary response. The spiking neuron, however, has an inherent dynamic na-
ture characterized by an internal state which changes with time. This allows
ANNs, to mimic more closely biological neural networks, where information
can be encoded in the time at which individual spikes are generated, as well
as in the firing rate.

The spiking neuron needs to satisfy some specific characteristics:

• Excitability threshold: each neuron fires an action potential (spike) at
the time instance its internal state exceeds the neuron threshold.

• Leaky integrating dynamics: the inherently dynamic nature of each
neuron allows the integration of sufficiently closed-spaced sub-threshold
pulses, eventually leading to its excitation and spike emission.

• Refractory period: after each spike emission, a time interval follows
where the neuron relaxes to its rest state. During this time, the neuron
is inactive and does not fire, independently of the input it is receiving.
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Figure 2.7: Trade-off between biological plausibility and implementation cost
in FLOPS per 1ms of simulation time, for several mathematical and biophys-
ical models. Taken from [20].

• Cascadability: the output spike of a neuron needs to be strong enough
for subsequent neurons to be excited as well.

• Inhibitory spiking behavior: the arrival of an input stimulus can reduce
the probability of spiking.

Spiking neurons can be modeled in different ways, with a number of
detailed mathematical and biophisical models developed to quantitatively
characterize biological neuron behaviors (Fig. 2.7). The presence of an inter-
nal dynamic, when combined with the need to use large networks, leads to
a high computational cost of SNNs. This is why first and second generation
ANNs, based on simplified neuron models, were first investigated. Nowadays,
the computational power available also allows the simulation of large SNNs.
The field, referred to as computational neuroscience, studies electrophysio-
logical processes, pattern generation, and the dynamic behavior of groups of
neurons. The reader can refer to [21] for a detailed review of the topic.

2.5 Neuromorphic computing

While conventional computer allows the simulation of ANNs models, their
centralized processing architecture provides a bottleneck regarding the speed
of operation. Central Processing Units (CPUs) operate indeed in a serial
way, with continuous access to the cache memory that limits the intrinsic
parallelism underlying ANN models. For this reason, electronic hardware
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with parallel processing capabilities has also been developed to accelerate
the simulation of ANNs. An example is given by Graphic Processing Units
(GPUs) that, originally were introduced to boost the performance of video
games, were then also exploited for the simulation of ANNs. Another exam-
ple is given by Tensor Process Units (TPUs), application-specific integrated
circuits originally developed by Google in 2017 to improve the costs and
performance of ANNs inference in their data centers [1].

Neuromorphic electronic hardware has been also developed. Notable ex-
amples in this regard are the SpiNNaker [22] and the IBM’s TrueNorth [23],
whose computing platforms are based on spiking neural networks and rely on
parallel and custom cores with programmable connectivity, for high-efficiency
computation. However, electronics implementations face fundamental limits
as Moore’s law is slowing down [24][25]. Moreover, moving data electronically
on metal wires has fundamental bandwidth and energy efficiency limitations.

Photonics represents an attractive and alternative framework for produc-
ing accelerated processors where artificial network schemes are combined with
the speed of light [26]. Research in neuromorphic photonics encompasses a
variety of hardware implementations and neural network types, with both
free space, fiber optics, and integrated techniques.

An example of free space implementation is the diffractive deep network
proposed in [27]. Here, an input-encoded light propagates through subse-
quent diffractive layers (with an area of 8cm× 8cm), until is collected by ten
detectors placed in different positions at the output layer. Each layer, can be
seen as an ensemble of secondary wave sources, which integrate the diffracted
light from the previous layer, apply a complex modulation, and transmit it
to the ’neurons’ of the next layer. Differently from a FFNN model, the
nonlinearity here only applies at the output layer, via the photodetection
square low, and not across the layers, thus highlighting the flexibility of neu-
romorphic engineering, rather than being limited to strictly emulate ANNs
models.

Other examples of free space networks exploit the RC paradigm [28][29].
Spatial light modulators encode here the input information in the optical do-
main, and, interestingly, the reservoir is just the simple linear optical prop-
agation of light before being nonlinearly detected.

Free space optics for RC is also applied in [30], to address the optical input
information towards an integrated matrix of 5 × 5 Vertical Cavity Surface
Emitting Lasers (VCSELs), which serve as a nonlinear reservoir.

On the other hand, the rapid development of Photonic Integrated Cir-
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cuits (PICs), provides a promising framework for ANNs. Today there exists
a wide diversity of technology platforms for PICs. These include different
material systems such as III-V semiconductors, Lithium Niobate, high-index
glasses and nitrides, polymers, and silicon. Silicon photonics has the unique
advantage to be CMOS compatible and benefits of advanced fabrication tech-
nologies proper of the electronics industry. High volume manufacturing at
potential low cost is possible, with, at the same time, the possibility to in-
tegrate photonic ANNs with electronic functions. This synergy allows for
electronic feedback controls and tuning of the photonics components that
suit the programmability of the internal weights required by ANNs. More-
over, the high refractive index contrast between the silicon core and the silica
cladding used to confine light allows for sub-micrometer waveguide dimen-
sions (waveguide cross-section of 250nm × 500nm), lower bends (< 5µm),
and thus for dense functional structures on the surface of the chip, despite
real scalability of the networks is still an issue due to propagation losses.

Leveraging these properties, silicon photonics is already the technology
adopted in large data centers, to route the increasing global data traffic [31].
It also finds applications in biosensing and diagnostics [32] [33], spectroscopy
[34], sensor functions, such as Lidar [35] and appears now as a promising
framework for realizing integrated ANNs.

The next section will introduce and briefly review the main building
blocks of a silicon photonic network.

2.6 Silicon photonics building blocks

An integrated photonic circuit relies on a multilayer structure as sketched in
Fig. 2.8, where a silicon layer is surrounded by a cladding and a substrate,
typically made of silicon dioxide (SiO2). This ensures the possibility to trap
light inside the silicon layer, where the optical integrated components are
built, and thus guide it through the different structures.

2.6.1 Dielectric waveguides

Dielectric waveguides represent the physical pathways along which light can
be driven on the surface of a photonic chip, interconnecting its different
optical components. They consist of a silicon core (nsi ≈ 3.4, at λ = 1.55µm),

22



Silicon

Silica

Silica/air

2
-3

 �

m

�

1
.8

 �

m

2
2
0
 n

m

Silicon substrate

Figure 2.8: Illustration of an SOI wafer cross-section with typical dimensions,
having a silicon core and silica cladding and substrate. Also air, for example,
can serve as a cladding. The bottom silicon layer is used as substrate of the
structure while the optical components are built in the top silicon layer.

surrounded by a cladding material with a lower refractive index, like silica
(nSiO2 ≈ 1.55, at λ = 1.55µm) or air (nair = 1). Light is prevented to escape
the core thanks to total internal reflection (TIR)

Relying on the TIR principle, dielectric waveguides can be classified ac-
cording to their shape, as sketched in Fig. 2.9. In the simplest step-index
(slab) waveguide light is confined in only one direction at the upper and
lower interfaces. Adding lateral boundaries to the core material allows TIR
to take place also at the lateral interfaces, thus providing an additional con-
finement dimension of the optical field. These 2D waveguides are typically
named strip and can be both embedded in the substrate or on top of it. In
this last case, the core layer can be either etched fully to the bottom oxide
layer or partially etched, providing in this last case a rib waveguide. Note
that optical fibers, which are widely used in nowadays off-chip long-distance
communications, are also a well-known example of channel waveguides with
geometrical shape.

Light propagates inside a 2D dielectric waveguide in the form:

E(r, t) = E(r)eiϕ(r)e−iwt, (2.5)

with E(r) and ϕ(r) being the complex amplitude and phase, solutions of the
Helmholtz equation [36]. Only approximate solution methods, such as finite
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Figure 2.9: Waveguide geometries, with the darker blue region representing
the core of the waveguide where light propagates.

element methods (FEM), can be used for an estimation of E(r) and ϕ(r) in
2D-waveguides, while analytical solutions exist for the 1D slab waveguide.
In both cases, the finite dimensionality along one or more directions and
the necessity to satisfy the continuity of the tangential component of the
electric and magnetic fields and their derivative across the interfaces leads
to the concept of mode. Assuming a monochromatic wave and that the
refractive index does not depend on the propagation direction z (translational
invariance), the propagating mode can be described by:

Em,n(x, y, z) = Em,n(x, y)e
jβm,nz (2.6)

where Em,n(x, y) describes the transverse shape of the field with respect to
the propagation direction, βm,n is the propagation constant, and m and n are
integer numbers arising from the quantization of the wave vector components
kx and ky. These last indicate the number of nodes that the node exhibit in
the correspondent directions.

The propagating field is classified as transverse electric (TE) or transverse
magnetic (TM), depending on which field component is transverse to the
propagation direction. Examples of TE and TM polarized modes are reported
in Fig. 2.10, for a multimode waveguide of dimension 1.6µm× 0.25µm.

Fig. 2.10 also highlights another important characteristic of a polarized
mode: the modal confinement factor. This last can be defined as:

Γc(m,n) =

∫
wg

n2|Em,n(x, y)|2dxdy∫
n2|Em,n(x, y)|2dxdy

, (2.7)

where at the numerator the integral extends only to the waveguide (wg) area.
As the mode order increases, a larger portion of the light profile extends
beyond the waveguide core, thus leading to a lower confinement factor. At
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Figure 2.10: Field power distribution for the three lowest order TE and
TM polarised modes, in a silicon waveguide of dimension 1.6µm × 0.25µm,
surrounded by silica. Simulations performed in Comsol.

the same time, the effective modal index decreases, as the optical field senses
less the core refractive index and more the surrounding refractive index.

It is thus convenient to express the propagation constant in terms of the
effective refractive index: βm,n = w

c
neff,m,n, where neff,m.n is still a complex

quantity whose real part is related to the propagation and whose complex
part is related to losses. Losses caused the field intensity to exponentially
decreases along z as e−αz, with α the attenuation coefficient given by α =
2π
c
Im(neff,m,n).
The expressions of the field distribution reported until now rely on the

assumption that the field is monochromatic. Otherwise, the dispersion of the
material with respect to the wavelengths has to be considered. Assuming a
small range of frequencies, the propagation constant can be expanded in
series:

β(ω′) ≃ β(ω) +
∂β(ω)

∂ω
∆ω +

1

2

∂2β(ω)

∂ω2
∆ω2

≃ 1

vph
ω +

1

vg
∆ω +

1

2
GVD∆ω2

(2.8)

where vph is the phase velocity, vg the group velocity and GVD the group
velocity dispersion, defined as following:

vph :=

(
β

ω

)−1

(2.9)
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vg :=

(
∂β

∂ω

)−1

(2.10)

GVD :=
∂2β

∂ω2
=

∂

∂ω

1

vg
(2.11)

They describe respectively the speed at which the wavefront of each frequency
propagates in space, the speed at which the modulation of the wave propa-
gates, and finally how the medium affects the single frequency components
of the pulse.
In analogy with the refractive index, also an effective group index is defined
as:

ng
eff :=

c0
vg

=
∂(ωneff (ω)

∂ω
) = neff (ω) + ω

∂neff (ω)

∂ω

≃ neff (λ)− λ
∂neff (λ)

∂λ

(2.12)

where the group velocity is used at the denominator instead of the phase
velocity.

Losses in a waveguide are due to both scattering and bulk-absorption
processes. Scattering losses are in particular caused by the waveguide side-
walls [37]. Indeed, when the optical mode distribution overlaps with the
side walls, the irregularities present here become a source of backscattering,
thus attenuating the propagating beam. Sidewalls roughness are the result
of fabrication process such as the optical lithography and dry-etching process
and can be reduced either by processes aiming to smooth the sidewalls [38]
[39], or by optimizing the geometry such to reduce modal field intensity at
the side walls [40]. As a result, a lower confinement factor is also an index
of higher losses, since more light feels the surface effects. In the example of
Fig. 2.10, the waveguide is designed to support TE modes and would present
higher propagation losses for TM modes. This is why, experimentally, it is
important to properly polarize the optical field before coupling it to the chip.

2.6.2 Couplers

Optical coupling refers to all the operations in which light is injected into
a waveguide. Light can be squeezed into the photonic waveguide without
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changing its propagation direction, thus using an in-plane approach, or oth-
erwise using a less intuitive out-of-plane approach.

Edge coupling In edge coupling or butt coupling, light is coupled from
the waveguide edges. In this case, efficient coupling requires an input field
profile overlapping the waveguide core. For example, if the coupling involves a
waveguide (core ∼ 1µm2) and a standard single mode fiber (SMF) 28 (core ∼
10µm2), the geometrical mismatch between the modes leads to high insertion
losses. In addition, due to the refractive index difference (nSi

= 3.45, nSiO2 =
1.55), large Fresnel reflection occurs. In this case, the facets of both the
fiber and the waveguide can be engineered to reduce the mismatch. Inverse
tapering techniques gradually decrease the width of the waveguide along
the direction of light propagation. As the waveguide dimension decreases,
the mode becomes less confined, its effective cross-section increases and the
effective index reduces to become as similar as possible to the effective index
of the fiber mode. Waveguide lengths longer than 100 µm, are required for
adiabatic conversion of the waveguide width to few tens of nanometers, while
the height remains dictated by the thickness of the silicon layer.

For reducing farther the losses, lensed optical fibers can be used, where
one of the two facets is polished (or laser-ablated) into a hemispherical tip,
which allows focusing the fiber mode down to a 2µm diameter spot, for an
improved fiber-waveguide mode overlap.

Grating coupling In an alternative way, light is coupled into the waveg-
uide from its top surface through grating couplers. In this case, a grating
is written across the waveguide by periodic etching of the waveguide core’s
surface, thus creating alternating regions of different refractive indices. Light
can be diffracted into the waveguide if the grating equation is satisfied. In
fact, light can be coupled into the waveguide (or scattered from the waveg-
uide), with an angle θ (with respect to the normal to the grating), provided
that the following phase matching condition is satisfied:

sinθ =
Λneff − λ0

Λn
, (2.13)

where Λ is the etching period, neff the effective index of the waveguide mode,
λ0 the wavelength of light, and n the refractive index of the medium where
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the wave is radiated.

While edge coupling strategies offer better performance, with higher cou-
pling efficiencies and almost flat bandwidth, grating coupling techniques re-
sult more practical for accessing and testing several structures on a photonic
chip, but with the disadvantage of a limited working band. A detailed review
of the topic with the relative efficiencies can be found in [41].

2.6.3 Splitters and combiners

In order to achieve a high density and large connectivity on-chip, strategies
to exchange light between waveguides or in-plane waveguide-crossings are
desirable. Several components serve this purpose, from directional couplers
that simply couple light via evanescent field, to engineered structures such
as Y-junctions and Multi-Mode Interference devices.

Directional coupler A first design consists of two waveguides sufficiently
close that their evanescent fields overlap. Depending on the separation dis-
tance, the coupling length, and the effective index mismatch, the optical field
can be exchanged in different amounts between the two waveguides. For ex-
ample, Fig. 2.11 shows the coupling between two straight waveguides. The
waveguides have a silicon core (220nm× 480nm) and are surrounded by sil-
ica (substrate) and air (cladding). Light feeds only one waveguide, and is
collected at the output port of the other waveguide, as a function of their
gap distance, while using a pumping wavelength λp = 1550nm. The result
shows that the optical coupling decreases exponentially while increasing the
gap width between the two waveguides, in agreement with the exponential
decay of the evanescent field out of the waveguide core.

Crossings Other than coupling light between waveguides, there may be the
need to cross multiple waveguides minimizing their cross-talk. In a simple
direct crossing configuration (Fig. 2.12(a)), often presented as a four-ports,
symmetric circuit component, the lateral confinement is lost in the crossing
region, causing diffraction of light, cross-talk between the waveguides, and
hence optical losses.

Optimized design aim at avoid diffraction in the crossing region by cus-
tomizing the crossing geometry to suppress the wide-angle component of the
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Figure 2.11: Coupling efficiency between two straight silicon waveguides.
Light is input to one waveguide and the normalized optical transmission S21
is measured at the output of the second waveguide. Simulations performed
with Comsol.

mode (Fig. 2.12(b)). In these cases, the mode is evolved near the crossing to a
plane wave, for example using an elliptical or parabolic mode expander, com-
bined with an adiabatic tapering that smoothly expands the guided modes,
without exciting high order modes.

Another efficient strategy is to etch holes just before the crossing region,
obtaining a lens-like structure. In this way, a crossing device has been demon-
strated with insertion loss lower than 0.175 dB and crosstalk lower than -37
dB, while maintaining an extremely compact footprint of ∼ 1× 1µm2 [43].

It is also possible to avoid crossing between waveguides by creating a
bridge in the crossing region. Here, light is coupled from the silicon channel
into a top layer before the crossing, and then coupled back to the silicon
channel after the crossing is surpassed. This is an example of vertical direc-
tional coupler method (also named bridge method). The coupling efficiency
strongly depends on the top material employed and can be maximized with
optical impedance matching. An amorphous silicon layer has been proposed
in [44], because of its high refractive index (3.3-3.7) and the possibility to
be integrated during SOI fabrication processes. In this work, the authors
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Figure 2.12: Scheme of crossing structures on silicon-on-insulator. a) Direct
waveguide crossing. b) Shaped taper waveguide crossing. c) crossing with the
holey sub-wavelength grating method. d) crossing with a vertical directional
coupler. Taken from [42].

emphasized how tapering both the bottom and top waveguides, within the
vertical coupling region, can be important to have larger tolerances in the
variations of the amorphous silicon refractive index and satisfy the optical
impedance matching condition. Insertion losses as low as 0.2 dB can be ob-
tained in this way. Other materials have been also investigated like polymers
[45] and silicon nitride [46].

Y-junction Another need is an optical component that splits or combines
the signal on the chip. Y-junctions are an example of waveguide-based struc-
tures that, thanks to a specific tapering, allow a single input channel to be
equally separated into two output channels, and vice-versa. Optimization
algorithms are used to optimize the tapering width. For example, the taper
can be first digitalized in a certain number of segments in the direction of
light propagation, each one related to a certain width. Then, a figure of
merit sets the goal of the structure and, accordingly, the width values of
each segment are optimized. The tapered geometry is finally given by the
interpolation of these points, as shown in Fig. 2.13 [47].

Crossing designs, Y-junctions, and more in general multimode interferom-
eters are typically designed by starting with an analytically designed struc-
ture and then hand-tuning a few parameters. Inverse design methods are
algorithms that automatize and extend the hand-tuning process, to a much
wider space of possible structures.

Among the many approaches, described in [48], inverse design algorithms
share common features. The physical structure is firstly divided into pixel
domains, which account for the precision allowed by the fabrication process in
depositing the material in a certain position. Then, a real function ϕ(x, y) :
R2 → R is defined in the pixel domain, and constrained to ϕ = 0, at the
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Figure 2.13: a) Sketch of Y-junction layout with tapering optimized in width
for each horizontal segment, and b) contour plot of the simulated E-field
distribution at 1550 nm wavelength. Taken from [47].

structure’s boundary. A permittivity function ϵ is also defined to consider
smooth candidate structures consisting of two materials:

ϵ(x, y) =

{
ϵ1 if ϕ(x, y) ≤ 0;

ϵ2 if ϕ(x, y) > 0;
(2.14)

Note that compared to the traditional Y-junction, where only the taper-
ing width was optimized, inverse design methods allow to optimize also the
material composition internal to the structure, suggesting those pixels where
the material needs to be deposited. The function ϕ(x, y), then, is let evolving
ether via an equation of motion or via gradients, that minimizes an objective
function corresponding to the targeting functionality. Many optimization
techniques can apply to find convenient trajectories in the enormous space
of possible designs. While there is no guarantee that the solution found cor-
responds to a global minimum, it is anyway possible to find designs that
perform remarkably well. As an example, an integrated polarization beam
splitter has been realized, with internal pixels composed of silicon and air, on
top of a silica substrate, [49]. The structure accounts for 20x20 pixels with
sides of 120 nm, for a remarkably low device footprint of 2.4µm×2.4µm. The
device is able to discriminate between TE and TM input light polarizations
and transmit them accordingly in one of the two output channels, with TE
and TM transmission efficiencies of 71% and 80%, and corresponding extinc-
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tion ratios of 11.8 dB and 11.1 dB, respectively. The same machinery can be
applied for optimizing compact on-chip wavelength demultiplexers. In this
application, the optical signal will propagate to a specific output channel
depending on its wavelength [50].

2.6.4 Modulators

Within the brain, synaptic plasticity continuously adapts the weight of these
connections both while wakefulness as well as during sleeping [51]. The
scheme of an artificial neuron, inspired by biology, also considers connec-
tions whose weight values are trainable parameters. While these values are
generally codified as real numbers in ANN models, they can be extended
in photonics to the complex domain, thanks to the complex nature of light.
Light modulators can be seen, under this perspective, as tools for applying
complex weights directly on the chip, by changing both the amplitude and
phase of the propagating optical signal.

Modulators are essential building blocks in silicon photonics, as phase and
intensity are two key quantities that can encode information optically. The
important characteristics of modulators include extinction ratio, insertion
losses, modulation speed, energy consumption, footprint area, and modula-
tion efficiency, defined as the product of the π-phase-shift voltage and mod-
ulator length (VπL). These properties vary between phase and amplitude
modulators.

Phase modulation To externally tune the phase of an optical signal, a
possible strategy is to modulate the real part of the refractive index along
the waveguide where the optical mode propagates. In silicon, the index
tuning mechanisms are based on the thermo-optic effects or on the free-carrier
absorption and free carrier dispersion (also known as plasma dispersion).

Silicon waveguides benefit of a relatively large thermo-optic coefficient
dn/dT = 1.86 × 10−4K−1, measured at room temperature T = 300K [52],
that favors the refractive index tuning. Thermal heating in a waveguide can
be achieved by positioning a metal filament in the proximity of the waveg-
uide during fabrication, or by doping the waveguide of donor carriers. Then
a current is injected into the metal core or the doped waveguide which, by
Joule effect, causes the heating of the resistor. Heat flow to the waveguide
changes its temperature which in turn changes its refractive index. Thermal
heating works at the KHz regime, which may result slow for applications
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requiring faster modulation. Moreover, the heat can be transmitted to other
structures across the chip, creating undesirable thermal cross talks. Never-
theless, photonics weights that exploit thermal heaters have been proposed.
An example is reported in [53], where a photonic perceptron relies on the
trainable complex modulation provided by thermal heaters.

An alternative way to encode data in the real part of the refractive index
of a waveguide is to control the free carriers concentration in the waveguide,
which in turn allows for free carrier dispersion and free carrier absorption
modulations. The carrier concentration can be controlled by lateral p-n dop-
ing the waveguide and thermal heating.

When operating in a reversed-bias condition, the p-n junction depletes
free carriers from the waveguide, in amounts proportional to the voltage
applied. Free carrier dispersion induces thus phase shifts in the optical prop-
agating light, which may serve in the realization of a complex weight in
neural network architectures. Due to the relatively weak free carrier disper-
sion coefficient of silicon [54], carrier-depletion effects require long phase shift
regions (typically millimeters), while maintaining low drive voltages to the
p-n junction. For example, a phase shifter with VπL = 1.47 V/cm, at a p-n
junction reversed bias of −0.5 V is adopted in [55].

On the other hand, when forward biasing the p-n junction, free carriers
are injected into the waveguide. As a result, free carrier dispersion is now
accompanied by extra losses induced by free carrier absorption. Modulators
based on carrier injection, still modulate the phase of the propagating light,
benefiting of lower dimensions than those based on carrier depletion, but
exhibit a lower bandwidth and higher losses. As a result, there is a trade-off
between optical losses, footprint, and the VπL voltage, that needs to be found
for the specific application at hand.

Amplitude modulation The modulation of the optical signal amplitude
is especially required in optical neural networks that rely on incoherent light,
where phase encoding does not produce any effects. An amplitude mod-
ulation can be achieved by placing phase modulators, like the ones just
described, within an interferometric structure. When thermal or electrical
phase modulators are placed along an arm of a Mach Zehnder interferome-
ter, for example, they allow for different interference conditions at the output
recombination of the two arms, thus changing the amplitude of the output
signal. An example of a silicon modulator optimized for 56 Gb/s operation,
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relying on carrier depletion over mm regions, is reported in [55]. In this
application, a slower thermal phase shifter is also engaged, to provide a cor-
rect quadrature bias for the Mach Zehnder interferometer. In [56] instead,
the authors combine amplitude and phase modulators by cascading 56 pro-
grammable Mach Zehnder interferometers, to realize an integrated photonic
circuit for deep learning applications.

Alternatively, hybrid waveguides can be engineered to compensate for
the lack of electro-optical effect in silicon. For example, other materials
with favorable index modulation properties than silicon can be realized in
the proximity of the silicon core, and hence perturb the propagation signal.
Lithium niobate [57] and graphene [58] hybrid integration are an example.

Lately, modulators gated by phase change materials have been also pro-
posed [59]. Phase change materials have the ability to reversibly shift from
an amorphous to a crystalline phase and, when placed on top of a waveg-
uide, attenuate diversely the propagating mode, thus applying a modulation.
These materials can be addressed both electronically, or by dedicated optical
pulses that heat the material and induce the phase transition. In the context
of neural networks, phase change materials represent promising weight can-
didates, especially during inference tasks, when the optimal weights are kept
fixed. If properly codified in the state of different segments of phase change
materials, no additional energy is required [60], thus providing advantages in
terms of energy efficiency with respect to the electronic/thermal counterparts
[61].

2.7 Silicon nonlinear optics

Nonlinear optics in silicon photonics is desirable for neuromorphic applica-
tions, since the importance of nonlinear transformations in ANNs. The study
of nonlinear optics was accelerated when in the ’60s, lasers begin appearing
on the commercial market, paving the way for the study of nonlinear phe-
nomena in materials with weak dielectric susceptibility.

The nonlinear optical properties of a material are described by the relation
between the macroscopic polarization P , and an externally applied field E
[62]:

P = ϵ0(χ
(1)E + χ(2)E2 + χ(3)E3 + . . . ), (2.15)

with ϵ0 indicating the vacuum permittivity and χ(i) the dielectric suscepti-
bilities of the material. For low exciting optical power, the relation involves
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only χ(1) and is linear. Higher-order terms become important as the value of
the external electric field E approaches the one binding electrons and nucleus
in the atom, typically 105 − 108V/m [36].

To better understand the role of nonlinear effects, Maxwell equations can
be manipulated in the simple case of a homogeneous and isotropic dielectric
medium, in terms of the polarization P = ϵ0χE + PNL, in the following way
[36]:

∇2E − 1

c2
∂2E

∂t2
= −µ0

∂2PNL

∂t2
, (2.16)

where the electric field E must satisfy an equation where the nonlinear contri-
bution of the polarization PNL acts as a radiative source inside the material,
and this polarization term is itself depending on the input electric field E
due to Eq. 2.15.

In center-symmetric materials, like silicon, all the susceptibilities of even
order vanish due to symmetry considerations [36]. The third order suscepti-
bility, therefore, becomes the lowest effective order, with the real and imag-
inary part that amounts to χ

(3)
Im = 10−19m2

V 2 and χ
(3)
Re = 10−5m2

V 2 , respec-
tively. The real part is responsible for the Kerr effect while the imaginary
part is linked to an additional absorption process inside the material named
Two-Photon Absorption (TPA), both occurring in timescales of the order of
femtoseconds. The Kerr effect introduces a change in the real part of the
refractive index which is proportional to the intensity of the electric field (I):

∆nkerr = n2I (2.17)

with n2 the Kerr coefficient, given by:

n2 =
3η0
n2ϵ0

χ(3), (2.18)

where η0 =
√
µ0/ϵ0 is the impedence of the medium, being µ0 the vacuum

magnetic permeability. The optical Kerr effect is a self-induced effect where
the phase velocity of the wave depends on the wave’s own intensity. In sil-
icon, at λ ∼ 1550nm, the Kerr coefficient is n2 ∼ 0.45 × 10−17m2/W [62].
The optical Kerr effect is responsible for effects like self-phase modulation,
self-focusing, and spatial solitons [36]. TPA indicates the simultaneous ab-
sorption of two photons, with equal or different frequencies, by electrons that
move from the valence band to the conduction band of the semiconductor.
In silicon for example, at a wavelength of 1.55µm, the energy of a single
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Figure 2.14: TPA allows the promotion of valence electrons to the conduction
band in silicon, at communication wavelengths. Extra carriers in the con-
duction band lead to FCD and to FCA. The process also involves phonons
release with consequent material heating.

photon hν ∼ 0.81eV is lower than the silicon bandgap (1.1eV ) and it is not
sufficient to excite electrons in the conduction band and holes in the valence
band. On the other hand, two photons can induce this excitation via TPA.
Fig. 2.14 describes the chain of events that TPA induces in silicon: valence
electrons are excited in the conduction band, increasing the number of free
carriers and leading to variations in the refractive index known as free car-
rier dispersion (FCD). Electrons in the conduction band in turn absorb the
propagating light by free carrier absorption (FCA) and release the energy by
phonons emission that heats the material. Moreover, since silicon is a semi-
conductor with an indirect bandgap, the electron decay from the conduction
to the valence band is accompanied by phononic emission too.

2.7.1 Thermal nonlinearity

The intra-band relaxation of free carriers occurs by emitting phonons and
consequently heating the silicon waveguide. The refractive index variation
can be estimated by:

n0(T,w) ≈ n0(T0, w) +
dn0

dT

∣∣∣∣
T0

(T − T0) (2.19)
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with dn0

dT
= 1.86 × 10−4k−1 the thermo optic coefficient evaluated at room

temperature T0 = 300K, and n0(T0, w) ≈ 3.5 at λ = 1.55µm.
When working at steady state ∆T = T − T0 can be related to the field
intensity by the following relation :

∆T = γlin|E|2 + γTPA|E|4 + γFCA|E|6 (2.20)

where γlin, γTPA, and γFCA are coefficients that refer to the linear, TPA,
and FCA absorption mechanisms respectively. Thus, ∆T is linear with light
intensity and so is ∆n, until TPA and FCA come into play:

n0(T,w) ≈ n0(T0, w) +
dn0

dT

∣∣∣∣
T0

(γlin|E|2 + γTPA|E|4 + γFCA|E|6) (2.21)

The temperature dynamics of a silicon structure, when absorbing optical
power, is typically described according to the Fourier law:

d∆T (t)

dt
= −∆T (t)

τth
+

Pabs

mCp

, (2.22)

with Pabs indicating the absorbed power by the material that causes heat-
ing, m the mass, Cp the silicon specific heat at constant pressure, and τth
the thermal lifetime. The thermal lifetime is the typical time needed by the
waveguide to relax to room temperature T0 in absence of optical excitation.
It includes the heat loss in the surrounding medium. Thermal effects occur
on timescales down to tens of nanoseconds for micron-wide waveguide [63].
Nevertheless, these timescales strictly depend also on the fabrication pro-
cess, and it was recently reported that a more sophisticated equation than
the Fourier low may be necessary for a correct description [64].

2.7.2 Free carriers nonlinearity

The variation of the free carrier density in the conduction band alters both
the real (∆nFC) and imaginary (∆αFC) parts of the refractive index of the
material. Specifically [65][66]:

∆nFC =
dn

dN

∣∣∣∣
N0

∆N
Si≃ −1.73× 10−21 ·∆N (2.23)
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∆αFC =
dα

dN

∣∣∣∣
N0

∆N
Si≃ 1.45× 10−17 ·∆N (2.24)

where ∆N = N−N0 indicates the variation in free carrier density population
concerning the equilibrium value. Its dynamical behaviour is described by
the following rate equation:

d∆N

dt
= −γFC∆N +G, (2.25)

where γFC is a phenomenological quantity taking into account the recombi-
nation rates of electrons from the conduction to the valence band and G is
the total generation rate per unit volume. At optical communication wave-
lengths, free carriers are mainly generated through TPA and thus G can be
written as:

G =
PTPA

2ℏwV
, (2.26)

where PTPA is the TPA absorbed power. Nonlinearities due to carrier effects
occur on timescales ranging from a few to tens of ns [64] [67]. This free
carrier lifetime can be further reduced when embedding the waveguide in a
p-n junction that, when operated in reverse biased, speeds up the depletion
of the generated carriers from the device, down to tens of picoseconds [68].

Thermal and free carrier variations are responsible for nonlinear effects
in silicon only when generated from the propagating optical power. On the
other hand, if their variations are produced by means of thermal heaters and
p-n junctions, for instance, the effects are only visible in the linear suscep-
tibility ∆χ(1). The excess polarization ∆P = ϵ0∆χ(1)E, maintains indeed a
linear relationship with the input optical field E, although the temperature
and free carrier variations.

An interesting way to trigger nonlinear effects in silicon photonics while
using relatively low input optical power is through resonance structures. In
the next chapter, silicon-based microring resonator structures are presented,
and accompanied by discussing its usefulness in a wide variety of applications
in neuromorphic photonics.
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Chapter 3

Silicon microring resonators

An optical microring resonator consists of a bent waveguide closed on itself.
A microresonator placed on an optical chip represents an isolated system
unless it is coupled via an evanescent field overlap with other waveguides
in its close proximity. Generally, microring resonators are designed in the
two configurations illustrated in Fig. 3.1. An input bus waveguide provides
the incoming optical signal that is coupled to the microring, according to
the coupling coefficient k1, and transmitted to the through port, according
to the coefficient t1. A resonance condition inside the microring is satisfied
when, after a round trip, light constructively interferes with itself, i.e. when
the length of the ring’s circumference is an entire number of wavelengths:

λmm = 2πr ; βm2πr = m2π (3.1)

where r is the microring radius and m is the azimuthal mode number. In
terms of the vacuum wavelength λ0, Eq. becomes:

λ0,m =
neff (λ)2πr

m
(3.2)

The microring is in the all-pass configuration when it is only coupled to one
input waveguide. In this case, all wavelengths can be transmitted from the
input to the through port. On the other hand, if an additional output waveg-
uide is coupled to the microring, the latter is in the add-drop configuration.
The output waveguide offers the possibility to extract the resonant wave-
lengths from the microring and eventually mix them to an incoming optical
signal propagating from the add port. While the all-pass configuration may
serve as a frequency-dependent delay line, a notch filter or as a phase shifter,
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Figure 3.1: The two main configurations of microring resonators. a) The all-
pass and b) the add-drop filter configurations. c) Coupling region between
the input bus waveguide and the microring waveguide.

in the add-drop configuration the microring acts like a pass-band filter and a
wavelength router, thus resulting in a critical component for optical networks
on chip, especially for telecom applications [31].

3.1 Linear regime

3.1.1 Frequency response

The steady-state frequency response of a microring working in the add-drop
configuration and in a linear regime can be estimated through a scattering
matrix approach [36]. Here, the optical power exchanged via the evanescent
fields between the microring and the waveguides is described by two direc-
tional couplers characterized by the parameters ki, ti, with i = 1, 2. The
directional coupler is assumed to satisfy reciprocity and to be lossless, by im-
posing k2

i + t2i = 1. This approximation is a better approximation the more
the coupling region can be considered point-like. If for example, the coupling
region is extended by elongating the portion of microring coupled to the
external waveguides, propagation losses in that case should be considered.
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The 2× 2 directional coupler at the input waveguide can be described in
a scattering matrix approach in the following way, referring to Fig. 3.1(b)(c)
for the a, b, c and d fields:(

a
Eth

)
=

(
ik1 t1
t1 ik1

)(
Ein

d

)
. (3.3)

In the same way, the directional coupler at the output waveguide results:(
Edr

c

)
=

(
ik2 t2
t2 ik2

)(
b

Ead

)
. (3.4)

The propagation inside the resonator is described by means of the roundtrip
field attenuation factor art = e

−αp
2 , with p the microring perimeter and α

the microring losses per unit length, and the roundtrip phase accumulated
ϕrt = βp, with β the propagation constant. For example:

d = c(
√
arte

−iϕrt/2) = · · · = t2arte
−iϕrta, (3.5)

By expressing a as a function of d, as in Eq. 3.3, and substituting Eq. 3.5,
one obtain the following expression for the internal field a:

a =
ik1Ein

1− t1t2arte−iϕrt
, (3.6)

from which also the fields b =
√
arte

−iϕrt/2a and the field c = t2
√
arte

−iϕrt/2a.
As can be noted, the power within the microresonator is equally distributed
(|a| ≈ |b| ≈ |c| ≈ |d|) whenever the internal losses and coupling coefficients
are small, i.e. when art ≈ 1 and t1, t2 ≈ 1.

Substituting the expression of a of Eq. 3.6, in Eq 3.3 and Eq. 3.4, the
through (T) and drop (D) optical transmissions are finally extracted [69]:

T =

∣∣∣∣Eth

Ein

∣∣∣∣2 = ∣∣∣∣ t1 − t2arte
−iϕrt

1− t1t2arte−iϕrt

∣∣∣∣2 (3.7)

D =

∣∣∣∣Edr

Ein

∣∣∣∣2 = ∣∣∣∣−k1k2
√
arte

−iϕrt/2

1− t1t2arte−iϕrt

∣∣∣∣2 (3.8)

Note that the equations of microring in all-pass configuration can be obtained
from the precedent one, by simply using t2 = 1 (k2 = 0).
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Figure 3.2: Through and drop transmissions of a microring resonator in add-
drop filter configuration, having radius r = 6.75um, k2 = 0.2 and art = 0.9.

The drop transmission signal of a microring in an add-drop filter config-
uration is shown in Fig. 3.2, as a function of the input wavelength. The
spectra are characterized by a series of Lorentzian peaks at the drop port
(blue curve) and a series of Lorentzian dips at the through port (red curve),
expressing the lack of optical power at the through port whenever the wave-
length is resonant with a microring resonance.

Several figures of merit can be defined to describe a microresonator. The
distance between two consecutive resonances is defined as the Free Spectral
Range (FSR). It is obtained by a first-order Taylor expansion of the propa-
gation constant β = neffk0 = neff2π/λ respect to λ and noting that, from
Eq. 3.1, βm−1 − βm = − 1

R
. The FSR results:

FSR =
λ2
m

ng(λm)2πR
(3.9)

The average spectral distance between two resonances thus decreases as the
resonator increases in size.

Another important feature is the Full Width at Half Maximum (FWHM)
of the Lorentzian resonances, which is related to the internal losses and to
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the coupling coefficient according to [70]:

FWHM =
(1− t1t2art)λ

2
m

πng(λm)p
√
t1t2art

(3.10)

The quality factor (Q) is defined as the ratio between the mth order resonant
wavelength and its FWHM, and can be expressed as:

Q =
πng(λm)pt1t2

√
art

(1− t1t2art)λm

(3.11)

As Eq. 3.11 shows, high Q-microrings are characterized by weak coupling
with the external waveguides, low internal losses and high radius (perime-
ters).

Finally, the enhancement factor (EF) refers to the ratio between the field
inside the microresonator and the one at the input port.

EF =
ik1

1− t1t2arte−iϕrt
(3.12)

As Eq. 3.12 shows, a high enhancement factor is achieved by reducing the
internal losses (art → 1) and by reducing the coupling coefficients. For
example, EF ∼ 1/k when considering a resonant wavelength, a symmetric
coupling k1 = k2, and low internal losses art ≈ 1. In this condition, a coupling
coefficient k = 0.01, allows for optical power within the microring hundred
times larger than the input one. Microring resonators are for this reason
useful tools to reduce power requirements in nonlinear optics applications.
The spectrum in Fig. 3.2 is described for example by a FSR = 15.2nm, a
FWHM = 1.55nm, a Q = 0.7 and an EF = 1.78 calculated at resonance.

Note that the values plotted in Fig. 3.2 represent the stationary optical
power achieved at the drop and through ports of the microring, in a linear
regime. The evolution of the system towards those stationary values is a
consequence of the time the microring takes to load the optical field within
the cavity, up to the steady state. This time is referred to as photon lifetime
(τph), and is linked to the quality factor through:

τph =
Q

2πν
. (3.13)

An input signal that is modulated in time faster than the photon lifetime,
for example, continuously keeps the microring internal field in a transient
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state, which in turn will be observed at the through and drop ports. These
transients will be investigated and exploited in section 4.2.3, for a time-delay
RC application involving a microring resonator.

3.1.2 Linear time response

The linear time response of a microring resonator can be calculated from
Eq. 3.6, by firstly expanding it around a resonance frequency w0 and then
applying an inverse Fourier transform [66]. Let us assume low propagation
losses within the microring (αp << 1) and weak coupling coefficients (k1,2 <<
1), then:

dŨ(t)

dt
=

[
−i(wp − w0)−

(
1

τk1
+

1

τk2
+

1

τ0

)]
Ũ(t) + i

√
2

τk1
Ein, (3.14)

where Ũ(t) represents the slowly varying envelope of the internal energy am-
plitude U(t) = Ũ(t)ei(wp), wp = 2π/λp the frequency of the input exciting
field Ein(t) = Ẽin(t)e

iwpt, and 1/τk1, 1/τk2 and 1/τ0 the decay rates of the in-
ternal energy induced by the two coupling regions and the linear losses within
the microring resonator, respectively. As can be noted, Eq. 3.14 describes
the energy amplitude within the microring as a mass-spring system subject
to a specific driving force. When no external forces are applied, the en-
ergy within the microring decays with a total rate 1/τtot =

(
1
τk1

+ 1
τk2

+ 1
τ0

)
.

On the other hand, when the driving force is present, the cavity exhibits a
resonance when wp = w0.

3.2 Nonlinear time response

The possibility to enhance the optical field within microring resonators al-
lows for nonlinear effects in silicon photonics. As reported in section 2.7,
two-photon absorption leads to the generation of extra free carriers in the
conduction band, which in turn increases the optical losses and the tempera-
ture within the microring waveguide, changing as a result also the refractive
index of the silicon waveguide. For a microring resonator, these effects can
be taken into account in Eq. 3.14 by additional parameters. Refractive in-
dex variations modify here the resonance wavelength positions (∆wR

nl) and
introduce extra losses that increase the decay rate of the energy field within
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the microring (∆wI
nl). It is possible to account for these nonlinear effects, by

rewriting Eq. 3.14 as:

dŨ(t)

dt
=

[
−i

(
wp −

(
w0 −∆wR

nl(t)
))

−
(

1

τtot
+∆wI

nl(t)

)]
Ũ(t) + i

√
2

τk1
Ein.

(3.15)
The microring resonance is thus modified with respect to its cold position
(w0) depending on the nonlinear effects taking place within the microring.
The nonlinear resonance shift can be expressed as a contribution of a thermal,
free carrier and a Kerr shifts:

∆wnl

w0

= 1/w0 (∆wTOE +∆wFC +∆wkerr)

=
Γc

nSi

dn

dT
∆T +

Γc

nSi

dn

dN
∆N +

cn2

n2
SiVeff

Ũ(t)2,
(3.16)

with Γc the confinement factor, nSi the silicon refractive index, n2 the Kerr
coefficient, dn/dT the thermo-optic coefficient at room temperature, dn/dN
the free carrier dispersion coefficient, ∆T the mode-averaged temperature
difference between the circular waveguide of the microring and its surround-
ings, ∆N the excess carrier concentration, Veff the mode effective volume.
The integration of Eq. 3.16 requires the knowledge of the temperature and
free carrier dynamics within the waveguide, as given by Eq. 2.22 and Eq.
2.25. All combined, they provide a set of three coupled nonlinear differential
equations that fully describe the nonlinear cavity dynamics.

3.3 Photonics computing with microring res-
onators

Both the linear and nonlinear response of microring resonators has been in-
vestigated in the context of photonics computing. While the microring linear
frequency response suites the realization of photonic weights, its nonlinear re-
sponse is proposed as a possible nonlinearity candidate for photonic neurons.
The aim of this section is to provide an overview of these applications.

3.3.1 Linear response as weight

An important component of an artificial (and also biological) neuron are the
input weights. The weights are trainable parameters that adapt and allow the
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network to solve specific tasks. The linear filtering capabilities of microring
resonators in add-drop filter configuration make them very attractive com-
ponents for the realization of input weights. A microring resonator placed at
the input port of a photonic neuron is indeed able to transmit only a por-
tion of the incoming signal, according to Eq. 3.7 and 3.8, depending on the
detuning between the input and the resonance wavelengths. Whenever the
detuning is externally controlled by shifting the microring resonance wave-
length, thus changing its transmission properties, an analog and trainable
weight can be obtained by means of a microring. The idea is particularly
suitable when the information to process is encoded onto several multiplexed
wavelength channels. In this case, it is natural to deliver the weight opera-
tion to an extended set of microring resonators, the weight bank, still placed
at the input of a photonic neuron. In doing so, each wavelength channel can
be uniquely weighted, and the intrinsic parallelism of photonics hardware is
exploited. In a common weight bank geometry (see Fig. 3.3), a set of micror-
ing resonators share the same input and output bus waveguides. Multiplexed
wavelength signals enter the input port, are filtered by the weight bank, and
their resulting two weighted versions are transmitted to the through and drop
ports, where a balanced photodiode finalizes the incoherent optical sum. The
generated photocurrent encodes in this way the input weighted sum of the
photonic neuron. To note that the use of a balanced photodiode allows to ap-
ply both positive and negative weights in the microring weight bank. Indeed,
the weight will be zero whenever the microring equally splits the energy be-
tween the two ports, and will be positive or negative whenever an unbalance
is present [71].

The microring extinction ratio sets the range of weight values that can
be applied. Ideally, the goal is to obtain the maximum extinction ratio,
by having a complete energy transfer to the drop port when the incoming
wavelength is in resonance, or a complete energy transfer to the through
the port when it is out of resonance. Designing the microring in critical
coupling allows to best approach this situation [72]. Equally important is
the radius r of the microrings, as linked to their resonance wavelengths (λ =
neff2πr/m, with m = 1, 2, 3, ...). Designing a weight bank with microrings
that have a slightly different radius, allows the separation of the individual
resonance spectra. When the resonance spectra are completely separated, i.e.
when there is no optical cross-talk, the device is described as an ensemble of
independent microrings, each one applying a weight to a specific wavelength
channel. Nevertheless, optical cross-talk between the microrings is also a
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Figure 3.3: a) A weight bank composed of an array of microring resonators
in an add-drop filter configuration. The structure is specifically designed
to take advantage of wavelength-division-multiplexing (WDM) and applies
specific weights (wi) to the incoming wavelength channels (λi) by tuning
the transmission of the microrings. A balanced photodetector integrates the
through and drop weighted signals, and enables both positive and negative
weights. b) Artificial/biological neuron representation, where input values
are firstly weighted, then integrated and finally used as an argument for the
neuron nonlinear activation function. Differently from a biological neuron
where a multidimensional input requires several physical channels, photonics
equipped by WDM can employ only one.

subject of recent studies [73].
The FSR is also affected by the radius according to Eq. 3.9, and represents

a critical limiting factor for the number of wavelength channels that the
weight-bank can access and weight.
Because of fabrication errors, every microring is realized slightly differently
with respect to the values of the nominal parameters set in the design pro-
cess. Additionally, environmental changes like temperature variations, and
thermal and electrical cross-talks between the microrings also interfere with
the weight bank. As a result, precise calibration and control strategies have
been developed. The latest progress relies on appropriate sensing elements
placed at each microring resonator site, to realize integrated feedback con-
trols, aiming to set and maintain a desired weight [74]. For example, such
a sensor can be realized by embedding a heater in the microring waveguide,
by lightly doping [75]. In this case, when an electric current is applied, a
variation in the applied voltage can be sensed whenever light circulates the
microring. In fact, donor-induced extra losses in the waveguide will produce
new electron-hole pairs, which in turn lower the conductance. Note that the
same sensor can also be used to tune the weight of the microring, by heating
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Figure 3.4: Photonics implementation of neural network adopting the
broadcast-and-weight architecture [79]. A broadcast interconnect drives the
multi-wavelength optical signal to all the photonics neurons. A microring-
based weight bank applies the input weights to the incoming signal, produc-
ing photocurrent that an electro-optical (E/O) converter nonlinearly imprints
on a specific wavelength carrier, which is finally multiplexed into the broad-
cast interconnect. Each neuron emits at a specific wavelength, provided that
it couples to the weight banks to be later on weight. From [73]

and thus shifting its resonance wavelength, with a precision up to 7 bits [76],
and up to 9 bits when the control extends to noise sources other than the
microrings [77]. Thermal stabilization of the photonic chip is an additional
solution to balance temperature variations in the environment.

A first proposal of an integrated photonic network implementing micror-
ing weight banks was suggested in [78], in what is known as the "broadcast
and weight" protocol. The idea, schematically represented in Fig. 3.4, is
to multiplex N different wavelengths onto a single common medium that
brings the signal to the photonic neurons and at the same time collects their
optical response. The information is thus continuously reused by the net-
work. Each photonic neuron is equipped with an N-microring weight bank,
which independently acts on each input wavelength channel, followed by an
electro-optical converter. At this stage, the photocurrent generated by the
balanced photodiode is nonlinearly imprinted on an output light signal at
one specific wavelength channel, which is in turn finally multiplexed in the
common medium. The electro-optical conversion can be implemented in sev-
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eral ways. For example, the electrical signal can be delivered to a laser close
to the lasing threshold to trigger an optical spike. Or it can be used to drive
a phase shifter in a Mach Zehnder modulator fed by a CW laser signal [80].
In a recent implementation, the electro-optical conversion is realized through
a further microring resonator equipped with a pn-junction [79], which rep-
resents one of the possibilities to take advantage of microring resonators as
photonic nonlinear activation functions (section 3.3.2).

Microring-based weight banks are emerging as promising platforms also
for photonics Tensor Processing Units (TPUs), where they can perform ma-
trix multiplications and speed up those applications that rely on matrix
algebra. Machine learning, and in particular deep neural networks, heav-
ily depend on these operations. An example of photonic TPU employing
microring-based weight banks is reported in [81]. A Matrix-Vector Multipli-
cation (MVU) operation O = XI is performed, being O and I respectively
the output and input m-dimensional vectors, and X an m × m matrix. In
the experimental implementation, X has dimensionality 4× 4 and is realized
via 4 weight banks, each one composed by an array of 4 microrings. The
time-of-flight latency for performing an operation is here only limited by the
detection speed, which can be as short as tens of picoseconds in modern pho-
todetectors. Note also that in machine learning tasks, once concluded the
training phase, the weights are usually fixed or slowly updated in time, with
respect to the input vector. In this situation, the device becomes particu-
larly efficient, as once the weights are loaded by tuning the heaters of each
microring, the structure is able to process a fast input signal requiring only
a constant energy power to keep the microring transmissions at the trained
value. Additionally, the energy efficiency can be further improved by adopt-
ing phase change materials (PCMs), as they allow for nonvolatile photonics
memory that only demands energy when the weight needs to be updated.
This solution has been investigated with PCMs based on Ge2Sb2Se2, 30nm
thin and 250nm wide, placed on top of the waveguide and arranged in a grat-
ing fashion, within a structure closely similar to the microring-based weight
bank previously discussed [82]. By local electrostatic heating, the PCMs can
be individually and reversibly switched between an amorphous and a crys-
talline phase, characterized by different absorption coefficients. The authors
numerically showed that by cascading 15 PCMs a memory with total inser-
tion losses limited to only 1dB (all PCMs in the amorphous state), extinction
ratio up to 3.5dB (all PCMs in the crystalline state) and 4-bit resolution can
be achieved.
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3.3.2 Nonlinear response as activation function

In ANNs the original information is mapped into a higher-dimensional space
and processed by nonlinear functions. As mentioned in section 2.1, each ar-
tificial neuron initially integrates the signal arriving from the input channels
and then applies a nonlinear activation function. Thanks to their nonlinear
behaviors, microring resonators have been proposed as photonic candidates
for applying the nonlinear activation function of a neuron. By looking back
at Fig. 2.2, sigmoid and ReLU activation functions are quite commonly used
by the computer science community [8][83]. These activation functions can
be realized by microring resonators. Furthermore, spiking neural networks
rely on spiking emissions from the neurons, as explained in section 2.4. The
microring can also replicate the spiking behavior [84][65][85].

Steady state nonlinearity

The mechanism exploited to achieve a sigmoid-like activation function is the
microring thermal bistable behavior, schematically represented in Fig. 3.5(a).
The thermal bistability occurs whenever the thermal nonlinear effects over-
come the free carrier ones, and the pump wavelength λp is initially slightly
red-shifted with respect to the cold resonance λ0 (λp > λ0) [86]. As a re-
sult, while increasing the input optical power, the microring internal optical
energy is firstly increased linearly, until nonlinear phenomena triggered by
TPA start to occur. The microring resonance position is, hence, red-shifted
due to the predominance of the thermal nonlinearities, moving closer to λp

(refer to Fig. 3.5(b)), which in turn favors a higher field in the cavity. A
positive feedback mechanism is finally triggered, ending up with λp < λ0 and
high optical power at the drop port. The effects of larger input power are
now hindered since the resonance is further red-shifted, moving away from
λp (optical limiting). At this point, if the optical power reverts and starts
to decrease, the microring internal optical power decreases as well, firstly
hindered by the resonance blue-shift (cooldown), which now moves towards
λp. Then, it jumps to a lower level thanks to a similar negative feedback
mechanism. The above considerations translate in the two curves of Fig.
3.5(a): the red curve indicates the step when the input power is increased
("hot" curve) while the blue curve indicates the step when it is decreased
("cold" curve).

From a neuromorphic processing point of view, despite the microring
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Figure 3.5: a) Thermal bistability of an add-drop microring resonator similar
to a sigmoid activation function. The red curve represents the "hot" curve,
obtained by increasing the input power while the blue curve indicates the
"cold" curve obtained by decreasing the input power. Pin and Pout represent
the input and drop optical power. b) Resonance shift position along the hot
curve, for different Pin. c) Example of ReLU activation function obtained
by embedding a microring (in all-pass configuration) in a p-n junction and
varying the input voltage.

"hot" curve resembles to a sigmoid activation function, photonics implemen-
tation needs to account also for the "cold" curve. Indeed, the microring that
has been promoted to the higher state of the bistability loop while processing
the optical bit xi, can not exhibit the same ’jump’ for the next bit xi+1, as
it will respond through the ’cold’ curve in Fig. 3.5. This is a remarkable
difference with respect to the simpler sigmoid function adopted in ANNs.
Eventually, it can be avoided by separating the input optical bits by a suf-
ficient time for the microring to cool down. This happens at the cost of a
reduced processing speed. Note, however, that the thermal bistability can be
exploited as a memory-based nonlinearity, resulting in an attractive ingredi-
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ent for photonic neural networks. An example of an all-on-chip feed-forward
network that exploits the thermal nonlinearity of three microring resonators
is proposed in [87].

Microring nonlinearities are not limited to TPA-triggered processes. An-
other way to obtain a steady state nonlinear transformation is with the use
of a p-n junction in a microring. In this case, the p-n junction operates
in forward bias condition and modifies the free carrier concentration within
the microring waveguide, hence changing the resonance position λ0. As a
result, the optical signal at the microring input port is transmitted differ-
ently, according to the voltage driving the p-n junction (refer to Fig. 3.5(c)).
At this point, the device behaves just as a tuned filter, where the output
power, either at the through or drop ports, still remains linear with respect
to the input optical power. The method becomes nonlinear when the driving
voltage to the p-n junction represents certain information to process. This
(electrical) information is thus nonlinearly imprinted onto the optical sig-
nal propagated through the microring, via the correspondent transmission
changes. The Lorentzian microring resonance describes the nonlinear func-
tion of this electro/optic nonlinear process. Fig.3.5(c) shows a ReLU-like
activation function obtained with a microring in all pass configuration, in a
starting configuration where λp = λ0, when zero voltage is applied to the
p-n junction. Consequently, the optical power at the through port is initially
at the minimum. A larger voltage to the p-n junction drives away the reso-
nance, increasing the transmitted optical power accordingly to the through
port.

Photonic neurons equipped with this kind of nonlinearity have been real-
ized in [88], within an end-to-end fully integrated feed-forward network. The
network is designed for image classification tasks, with an input layer com-
posed of a 5x6 matrix of grating couplers (150 µm x 140 µm). A laser beam
from the top of the chip is opportunely collimated (beam diameter 870 µm),
and shined on a specific letter designed on a custom-made Plexiglas holding
frame. The transmitted light is thus collected by the grating couplers (41dB
estimated losses) and routed to the first of three layers composing the network
by means of nanophotonics waveguides, y-junction splitters, and waveguide
crossings. The input light signals to each photonic neuron are carried by in-
dependent P-doped-intrinsic-N-doped current-controlled waveguide channels
(500 µm long), that, when in forward bias, also allow to apply the trained
weight. These signals are independently detected by silicon-germanium pho-
todiodes (PD) and combined to generate an electronic input weighted sum.
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This last is then amplified and converted to a voltage by a transimpedance
amplifier (TIA) and finally drives the forward bias pn-junction of a microring
resonator. Interestingly, all the layers in the network are externally powered
by CW light (where the microring nonlinearity applies), mitigating scalability
issues induced by optical losses.

P-n junction-equipped microrings also serve as neuron activation func-
tions in [79]. The authors used in this case the broadcast-and-weight proto-
col to realize a feed-forward neural network model, having two hidden layers
with two and eight neurons, respectively. The architecture has proven to
be successful for fiber nonlinear compensation tasks, and fiber transmission
signal recovery.

Nonlinear transients

Nonlinear transient dynamics are initiated whenever the time-varying in-
put is faster than the system nonlinearity timescale of interest and are the
base of the processing paradigm introduced with liquid state machine [3].
Transient dynamics based on both thermal and free carrier nonlinearity can
be achieved. An example is reported in [89], where a reservoir computer
made with a 4x4 matrix of silicon microring resonators, connected in a swirl
topology, is numerically investigated. In this implementation, the microrings
represent the physical nonlinear nodes of the network, while the connectivity
matrix is given by splitting ratios, losses, and random phase shifts. The net-
work is tested successfully on the 1-bit delayed XOR task, a nonlinear boolean
operation that requires storing 1 bit of past information, and a proper non-
linearity transformation. Other implementations of RC involving matrices
of 25 (5x5) and 36 (6x6) InGaAsP/InP microrings have been studied in [90]
and [91] as well.

Spiking nonlinearity

Transient state dynamics can eventually result in self-pulsation, a dynamical
regime emerging from the competition between free carrier and thermal non-
linearities in high Q-factor microring resonator [84][65][85]. The microring
response to a CW optical signal is here characterized by a series of spikes,
both at the through and drop ports. This is shown in in Fig. 3.6(a)(b), for a
microring radius of r = 6.75µm, with FWHM ∼ 138pm and Q ∼ 11× 103,
whose resonance is shown in Fig. 3.6(d) as a function of the starting wave-
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Figure 3.6: Example of simulated self pulsation dynamics achieved with a
microring having radius r = 6.75µm, FWHM = 138pm, Q = 11 × 103,
and k2 = 0.03, under CW optical injection at the input port, with Pin =
9.3mW . a) Drop temporal response and b) zoom, showing additionally the
complementary through response. c) nonlinear contribution of the thermal,
free carrier, and Kerr effects to the microring resonance shift, d) Linear drop
transmission of the simulated microring.

length detuning ∆λs = λp − λ0.
To understand the mechanism behind self-pulsation, let’s remember that the

opposite changes in refractive index induced by thermal (Eq. 2.19) and free
carrier (Eq. 2.23) nonlinearities can be observed as a shift of the resonance
position over time (Eq. 3.16). Thus, the reader can refer to Fig. 3.6(c),
for each thermal, free carrier, and Kerr nonlinear contribution ∆λ to the
resonance shift, and for the effective shift given by their sum (purple line),
while the spike emission in Fig. 3.6(a) is occurring. The simulation refers to
a microring having radius r = 6.75µm, FWHM = 138pm, Q = 11 × 103,
k2 = 0.03, starting detuning ∆λs = 50pm (red dashed line in Fig. 3.6(b)),
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and to an optical power at the input port Pin = 9.3mW . When the carrier
signal is switched on, the resonance is initially red-shifted due to thermal
heating. But the more the resonance is red-shifted, and a lower optical power
is coupled to the microring. The microring starts then to cool down, and the
resonance blue shifts approaching λp. The input power within the microring
starts to increase again, up to a point where a large free carrier population
is generated, due to TPA nonlinear processes, and a strong blue-shift occurs.
The free carrier effects is followed again by thermal heating that finally leads
to a new red-shift of the resonance so that the loop is repeated. A spike is
generated at each iteration. Note that each spike at the drop port is com-
posed of two maxima, originating when the wavelength λp becomes perfectly
resonant, firstly because of the free carrier blue-shift, and then because of
thermal effects. Moreover, the second maximum is always lower than the
first one, reflecting a larger population of free carriers at this time and thus
larger losses by FCA. The reader can refer to Fig. 3.6(b) for a zoom of a
spike, and for the complementary dynamic that is observed at the through
port. The sum of the drop power and the through power reflects the losses
by TPA.

Not all the starting wavelength detuning conditions lead to self-pulsing
behavior. Self-pulsation is in principle more difficult to achieve at negative
detuning, where a larger free carrier nonlinearity is initially needed to trigger
the phenomena. If this is not the case, because for example the microring
Q-factor is not sufficiently high, thermal effects dominate and the optical
limiting phenomena are observed for negative detuning.

The frequency of self-pulsation depends on the time the microring takes
to cool down, between consecutive spikes, before the input optical power
can be coupled again to the microring triggering the free carrier action, that
in turn reiterates the spiking process. Thus, the thermal timescale plays a
significant role in determining the spiking frequency. Moreover, the higher
the input optical power injected to the microring, the larger the resonance is
red-shifted because of heating. As a result, the resonance cools down towards
the pumping wavelength in a longer time period. The self-pulsing frequency
change, as a function of the input optical power, is shown in Fig. 3.7, where
the relationship has been investigated for some positive and small negative
starting detuning. All curves are proper of a second-class neuron since the
discontinuity occurs close to the self-pulsing threshold [92]. At the same time,
some starting detuning conditions are more sensitive to the variation of the
input power, as they lead to a wider range of self-pulsing frequencies. They
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Figure 3.7: Self pulsing frequency (fsp) as a function of the input power, for
different starting detuning. The simulated microring has radius r = 6.75µm,
FWHM = 138pm, Q = 11× 103, k2 = 0.03.

catch in this way a peculiarity of class 1 biological neurons, whose spiking
frequency depends on the strength of the applied current [93]. At more
negative detuning conditions than the one plotted in Fig. 3.7, only one spike
is generated if the input power is sufficiently high, right after switching on
the input light. This spike is followed by oscillations that lead to a stationary
solution, thus mimicking phasic spiking biological neurons [93].

Self-pulsation is an attractive feature for spiking neural networks. In
[94], properties like the self-pulsing threshold, excitability, refractory time,
and cascadability are studied in detail, by driving a microring on the onset of
self-pulsation using a CW optical signal. As a result, the microring becomes
more easily excitable when a second probe signal encoding a short input
optical pulse is input in parallel: when the probe pulse carries enough energy,
the microring emits a spike. Interestingly, the authors show experimentally
that the spike emitted by a microring may serve as a perturbation for a
second microring, still kept on the onset of self-pulsation. This demonstrates
the cascadability of the self-pulsation between coupled microring resonators.
The refractory period is another important property of a biological neuron,
that inhibits the effects of any input signal within a defined time window that
follows the spike emission. Self-pulsation also replicates the refractory period.
Indeed, when the resonance is pushed far apart from the pump wavelength,
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the microring is not sensible to any input perturbation involving the same
λp. Note that when scaled to large SNNs, the refractory period also directly
determines the operation speed of the whole network.
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Chapter 4

Silicon microring resonators for
time-delay reservoir computing

Microring resonators have been considered in the precedent section for in-
troducing optical nonlinearity in photonic neuromorphic systems. In this
chapter, a detailed numerical investigation of a delayed-silicon microring res-
onator for time delay RC is presented. The versatility of this passive device
is demonstrated, by exploiting different operating regimes and solving com-
puting tasks with diverse memory requirements. All the results are referred
in [95].
The chapter is organized as follows. Firstly, the basic concepts of a time
delay RC system are introduced in section 4.1. In section 4.2 these concepts
are adapted to the specific case of a microring-based time delay RC. Here,
the numerical modeling of the system, together with strategies to adapt it
in a time-delay RC scheme, are described. Then, in section 4.3 the results
obtained for different benchmark tasks are demonstrated. Finally, the effects
of noise applied at the readout layer are investigated in section 4.4.
The results obtained in this chapter provide the basis to understand time-
delay RC using microring resonators and are preparatory for the design and
realization of the experimental investigations that will be described in chap-
ters 5 and 6.
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4.1 Time delay RC

4.1.1 Basic concepts

In 2011 Appeltant et al. [4] introduced an attractive strategy for physically
implementing analog ANNs in a practical hardware setup, with a relatively
high number of neurons. The scheme, which is sketched in Fig. 4.1, resembles
the RC one (section 2.3). It consists of three parts: the input layer, the
reservoir, and the output layer. The main idea consists of folding an ANN
in the nonlinear dynamical response of a single node, named real node, and
simply operating a linear regression on its different temporal responses. The
nonlinear dynamics of the node is essential to map the information at the
input layer into a higher dimensional space, given by the number of sampled
temporal responses. These last emulate the reservoir nodes. Like in RC,
only the output weights (projecting to the output layer) are trained during
a task. Note that the network nodes are usually referred to as virtual nodes,
to highlight that are time-multiplexed in the response of the real node and
do not have any physical correspondence. Otherwise sad, the response of the
reservoir is sampled multiple times as a function of time rather than as a
function of space, like instead occurs in traditional RC.

The processing scheme is typically referred to as time-delay RC (or delay-
based RC) because of the wide application using delay-based systems, since
its introduction. This is also accounted for in Fig. 4.1, with a response
signal which is fed back to the real node. When considering a continuous
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time variable, delay-based systems can be described, in a simple form, by
the following delay differential equation:

ȧ(t) = f [t, a(t), a(t− τF )] , (4.1)

where a(t) is the state of the real node at time t, f(·) is a nonlinear function,
and τF is the feedback delay. Mathematically, a continuous time-delayed
system is infinitely dimensional, as the initial conditions need to be specified
over the interval [−τF , 0]. Practically, their initial state can be approximated
by a discrete signal sampled at least twice faster than the response time T
of the system [96]. Assuming T << τF , a high number of virtual nodes can
be defined, and the real node is operated in a transient state.

Time-multiplexing is adopted at the input layer to serialize the informa-
tion to be processed. Each input information (xi) has to be stretched in time
for a duration that will be indicated from now on as bw (bit width). The du-
ration bw can be chosen differently according to the real node characteristic
timescale T . When the input bit is multidimensional, i.e. xi = (xi,1, xi,2, . . . )
its components can be either inserted in parallel to the system, when more
input channels are available, or inserted along the same input line, by multi-
plexing in time the components of xi. The scheme in Fig. 4.1 represents the
case of unidimensional input bits xi.

An additional mask procedure is commonly applied on top of the stretched
input information for introducing transient dynamics in the response of the
real node. The mask refers to an additional modulation that is periodically
applied within each bit duration bw, whose timescale depends on the char-
acteristic time T of the real node. The generated transfer dynamics serve
to increase the richness of the dynamics and, hence, to increase the range of
values that virtual nodes can assume.

4.1.2 Spatiotemporal topology analogy

Time delay RC uses input time-multiplexing to serialize the information to be
processed and combines it with a masking procedure to enrich the dynamical
response of the real node, by introducing coupling between virtual nodes.
The network topology and the coupling strength between the virtual nodes
emerge from the relation of the real node characteristic timescale T and
the mask timescale θ, and from the feedback recursivity. Based on these
elements, different coupling strategies can be realized.
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Figure 4.2: Coupling possibilities between virtual nodes in time-delay RC.

A first possibility is encountered when θ < T . In this case, the mask
allows to keep the system in a transient state: the system response can not
reach a steady state before the next mask value is input. As a result, the
virtual nodes, whose sampling time is θ as well, are coupled in a ring topology
(Fig. 4.2(a)). The presence of a feedback line allows for additional couplings
between the virtual nodes. If the input bit is synchronous with the delayed
bit, i.e. bw = τF , with τF the feedback delay, each virtual node is also cou-
pled with its state at the previous clock cycle (Fig. 4.2(b)). Otherwise, when
bw ̸= τF neighboring virtual nodes, already coupled by the transient dynam-
ics of the real node, become also connected via the feedback recursivity.

A second possibility is that θ >> T . This is the case of a fast nonlinear
response with respect to the input mask modulation period. Practically, this
situation is encountered when the electronic instruments available to generate
the mask signal are much slower than the real node nonlinearity timescale
[97]. Here, the system reaches a steady state for each value of the input
mask. If there is no feedback, each virtual node state is totally independent,
and therefore there isn’t any formation of a network topology. (Fig. 4.2(c)).
On the other hand, when the feedback is applied in a synchronous regime
(bw = τF ), each node becomes coupled with its state at the previous cycle
(Fig. 4.2(d)). Anyway, the coupling between different virtual nodes is still
lacking. The reservoir states correspond indeed to the response of uncoupled
dynamical systems, which slightly differ because of the different mask values.
To couple the virtual nodes, it is essential to use an asynchronized feedback
regime, with τF − bw = kθ [97]. Thanks to this method, each virtual node
becomes coupled with the kth previous virtual node. In the case k = 1
(the most common value used), a ring topology again emerges (Fig. 4.2(a)).
Nevertheless, the ring topology essentially differs from the one obtained with
a transient dynamics (θ < T ), since the coupling now involves the states of
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Figure 4.3: Two coupling possibilities between the virtual nodes, relying on
the feedback signal. In a synchronous regime bw = τF , with θ < T , virtual
nodes are coupled through the feedback to themselves at previous τF cycles
(vertical light blue line), and between them by the real note inertia (red
arrows). In the asynchronous regime τF − bw = θ, with θ >> T , virtual
nodes are only coupled to the state of their previous virtual node at previous
τF cycles (vertical light blue line). A ring topology emerges in both cases,
via the real node inertia in the first one and via the feedback recursivity in
the second one.

virtual nodes belonging to different clock cycles. To grasp this last fact, an
illustrative example is reported in Fig. 4.3, for the two cases θ < T and θ >>
T , the former in the synchronous regime and the second in the asynchronous
regime. The mask values are here reported with different colors, with a
Roman number indicating which input xi they refer to. In the example,
the synchronous regime refers to τF = bw = 4θ, while the asynchronous
regime refers to τF = 4θ and bw = 3θ. In both examples, different rows
highlight the information that is contributing to the system response. For
0 < t < τF the node response only depends on the actual input information.
For τf < t < 2τF , the real node response accounts for two contributes, the
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actual input information and the previous one, which is delayed by one clock
cycle τF , and input again to the real node. The same rule applies to the case
2τf < t < 3τF . The two illustrated examples show how the information is
coupled in the two respective regimes.

4.1.3 Delay-based implementations

Delay-based systems are particularly suitable for time-multiplexing reser-
voirs, and for this reason, they have been widely investigated since the intro-
duction of this processing scheme. From the first electronics implementation
in 2011 [4], many optoelectronics and all-optical implementations followed.
A list of many delayed systems reported in the literature is presented in Ta-
ble 4.1. The reader can refer to [96] and [98], for a detailed review regarding
the implementations reported.

Type nonlinear node asynch. Feedback NV τF Ref.
OE Mach Zehnder k=1 SMF 50-200 8.5µs [97]
OE Mach Zehnder k=0 SMF 400 20.87µs [99]
AO SOA k=1 SMF 50 7.9µs [100]
AO SRL k=0 SMF 200 4ns [101]
AO SL k=0 SMF 388 77ns [102]
AO SESAM k=1 EDFA 50 8µs [103]
AO fiber cavity k=1 SMF 50-500 1.13µs [104]
AO VCSEL k=0 OC 325 65ns [105]
AO DBF k=0 WG + EM 6 254ps [106]
AO DBR k=0 InP WG 23 1.170ns [107]

Table 4.1: Time-delay RC implementations. SMF=Single Mode
Fiber; OE=Optoelectronics; SOA=Semiconductor Optical Ampli-
fier; SRL=Semiconductor Ring Laser; SL=Semiconductor laser;
SESAM=Semiconductor Saturable Absorber Mirror; VCSEL: Vertical
Cavity Surface Emitting Laser; OC=Optical Circulator; AO=All Optical;
DBF=Distributed Feedback semiconductor laser; DBR=Distributed Bragg
laser; WG=waveguide; EM=External Mirror

In the first optoelectronics implementations, the real nonlinear node is
implemented with a voltage-driven Mach Zehnder Interferometer (MZI), sup-
plied by a CW optical signal, introducing a sine nonlinearity on it. The op-
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tical signal propagates then through the feedback line, at the end of which is
photodetected, and combined with the electronics input to the MZI, closing in
this way the loop. The MZI nonlinearity applies essentially instantaneously
on the propagating light, as it emerges from the interference condition at the
output of the MZI. Hence, it is hard to induce nonlinear transient dynamics
by using an electronic mask signal to the MZI. Thus, an experiment exploit-
ing an asynchronous regime (τF −bw = kθ, with k=1) has been proposed [97].
Alternatively, another group introduced a low pass filter after the detection
step to provide the system with a characteristic timescale T . In this case, an
asynchronous regime (k=0) was studied for time-delay RC [99]. The same
system scheme was also studied in [108], with an optical switch inserted prior
to the photodetection. The authors were able to compare the performance of
the system on benchmark tasks with feedback and without feedback, eventu-
ally compensating for the lack of feedback recurrency by introducing artificial
memory in the input information.

Other nonlinear nodes have been investigated, including Semiconduc-
tor Optical Amplifier (SOA) [100], Semiconductor Ring Laser (SRL) [100],
Semiconductor Laser (SL) [102], Semiconductor Saturable Absorber Mirror
(SESAM) [103], Vertical Cavity Surface Emitting Lasers (VCSELs) [105] and
a passive fiber cavity [104]. When using a passive fiber cavity, the nonlin-
earity exploited is directly the output detection square nonlinearity, which
measures the network response, before computing offline the output layer.
All these implementations consider delay lines based on optical fibers, and
are supported by an offline training that requires the exchange of data with
a conventional computer, with the output weights typically optimized by a
linear ridge regression algorithm. A proposal of a stand-alone time delay RC
was also proposed in [109]. The application relies on the same optoelectron-
ics implementation based on a delayed-Mach Zehnder interferometer already
mentioned, which communicates now with a field-programmable gate array
(FPGA). This last provides both the electrical input information to the MZI
and acquires the output photodiode signal. The FPGA is also programmed
to perform an online gradient descent for the optimization of the output
weights.

Multiple delay lines have been also considered. An example is given in
[110], where the authors model the possibility to unfold a multilayer deep neu-
ral network, in the dynamics of a single nonlinear node subject to multiple
delay lines. For example, fully connected layers with N nodes are emulated
using N − 1 delay lines, each one equipped with a modulator, that emulate
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the weights between the layers.

Other implementations are inspiring because performing multiple tasks
at the same time. An example concerns the case of a SRL cavity [101]. The
system is here suitable for computing two tasks in parallel, exploiting the
clockwise and anticlockwise propagation directions of light in the SRL.

The integration of time-delay RC systems has been also explored, with
integrated Distributed Feedback semiconductor lasers (DBF) [106] and Dis-
tributed Bragg Reflector (DBR) lasers [107] as nonlinear nodes. However, in-
tegrated implementations are in general limited by the length of the feedback
loop which in turn limits the available number of virtual nodes (NV ≈ τF/θ).
Offline techniques can help to compensate for the low number of virtual
nodes, for instance by acquiring more virtual nodes per mask node, or by
sampling the virtual nodes over multiple bw time intervals, but at the cost
of a slower computational speed.

This argument highlights the importance of the choice of the mask. A
piecewise function constant over intervals of length θ is the most common
choice, despite analog masks, such as sinusoidal signals, have been used as
well [111].

Delay-based systems in time delay RC have been tested on tasks including
time series prediction, delayed-boolean tasks, spoken digit recognition, and
nonlinear channel equalization. This last task is particularly investigated
exploiting the nonlinear dynamics and bandwidth of SLs with a time-delay
feedback loop, as reported in [112][113][114]. Here, bandwidth enhancement
mechanisms are possible by optimizing the optical signal injection from the
master laser. In this way, it is possible to shorten the virtual nodes sampling
time down to 12 ps (τF = 8 ns clock time), for faster signal recovery speed
[115] that eventually matches real-time applications.

In the next part of the chapter it will be presented the numerical inves-
tigation of a novel real node for an all-optical time delay RC based on an
integrated silicon microring resonator with external optical feedback
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4.2 Microring resonator with external optical
feedback as real node

The delayed system of the proposed time-delay RC implementation is a sil-
icon microring resonator coupled to an external optical feedback [95]. The
microring is designed in add-drop filter configuration, and the feedback line
is realized by connecting the through and add ports, as shown in Fig. 4.4.
This section describes the numerical model of the system, as well as how to
adapt it in a time-delay RC implementation.

4.2.1 Real node modelling

Linear frequency response

A scattering matrix approach can be applied to the system, similarly to
section 3.1.1, to obtain the linear frequency response. The equations that
are reported below take into account the feedback contribution.(

Edr

c

)
=

(
ik2 t2
t2 iK2

)(
b

Ead

)
(4.2)

b =
√
arte

−iϕrt/2a (4.3)

Ead =
√
ηF e

−iϕFEth (4.4)

67



(
a
Eth

)
=

(
ik1 t1
t1 iK1

)(
Ein

d
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(4.5)

Along the feedback line, two additional parameters ηF and ∆ϕF are in-
troduced to control the strength and the phase of the feedback signal, respec-
tively. The parameter ηF ∈ [0, 1], with zero value assigned to the complete
attenuation of the signal and one assigned to the complete transmission of
the feedback signal. The parameter ∆ϕF ∈ [0, 2π] is a tunable phase quantity
that is added to the phase of the feedback signal, so that ϕF = βFLF +∆ϕF ,
with LF the length of the feedback line and βF the correspondent propaga-
tion constant. These parameters, as will be shown in the following, will be
optimized when testing the system on computational tasks.

The drop port transmission D = |Edr/Ein|2 can be derived in the follow-
ing way. First, Edr is expressed as a function of Ein and d by concatenating
Eqs. 4.2-4.5. Then, the expression of d =

√
arte

−iϕrt/2c is updated with the
expression of the field c given by Eq. 4.2, to become a function of Ein as
well. Hence, the optical drop transmission can be calculated as:

D =

∣∣∣∣Edr

Ein

∣∣∣∣2 =
∣∣∣∣∣t1t2

√
ηF e

−iϕF − k1k2
√
arte

−iϕrt/2 −√
ηFarte

−i(ϕF+ϕrt)

1−
[
t1t2arte−iϕrt − k1k2

√
ηF

√
arte−i(ϕF+ϕrt/2)

] ∣∣∣∣∣
2

,

(4.6)
that simplifies to Eq. 3.8 when the feedback signal is fully attenuated (ηF =
0).

Nonlinear time response

The temporal response of the microring coupled to an external feedback
follows the one of a single microring in add-drop filter configuration, already
reported in Eq.3.15, but considering an additional input field also at the
add port (Ead). The latter is included in the equation of the internal energy
amplitude as an additional driving force. For symmetry reasons, the equation
describing the dynamics of the internal field amplitude Ũ(t) is written as:

dŨ(t)

dt
=

[
−i

(
wp −

(
w0 − δwR

nl(t)
))

−
(

1

τtot
+∆wI

nl(t)

)]
Ũ(t)

+ i

√
2

τk
(Ein + Ead). (4.7)
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Figure 4.5: Drop transmission of a microring resonator, with a feedback
connecting the through and add ports. The microring has a radius r =
6.75µm, symmetric coupling coefficient k1 = k2 = k, with k2 = 0.01, a
feedback delay τF = 1ns, a feedback strength ηF = 0.25, and no control over
the feedback phase (∆ϕF = 0). a) Wide drop spectrum. b) Comparison of
the spectra in presence and absence of the feedback. c) Comparison of the
spectra obtained from a scattering matrix approximation (Eq. 4.6) and from
a numerical simulation of the temporal solution (Eq. 4.7).

From Eq. 4.7, the drop response is calculated as:

Edr = t2Ead + ik2
Ũ(t)√
p/vg

, (4.8)

with Ead(t) =
√
ηF e

−iϕFEth(t − τF ), being τF the feedback delay, p the mi-
croring perimeter and vg the group velocity.

The use of Eq. 4.7 is validated by simulating the drop linear response for
many input wavelength detuning values, thus extracting the correspondent
steady states normalized with respect to Pin, and then comparing those with
the linear transmission expected from Eq. 4.6. Note that the time needed to
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reach a steady state depends now on the delay provided by the feedback line.
Thus, the system needs to be simulated for a time longer than τF to reach its
steady state. The results that follow refer to the drop transmission obtained
for a microring radius r = 6.75µm, a feedback delay time τF = 1ns, and
a simulation time of 2µs (>> τF ). Fig.4.5(a) shows the drop transmission
in presence of feedback for a wide region of input wavelengths, while Fig.
4.5(b)(c) is focused around one of the microring resonances. In particular,
Fig. 4.5(b) compares the transmission of the microring when including or
not the feedback. When the feedback is not present, the drop signal reduces
to almost zero for large detuning ∆λs, as light propagates to the through
channel. The through signal, if the feedback line is connected, is reinjected
back to the add port and then to the drop port. As a result, the drop
transmission for large detuning ∆λs, is non-zero and depends on the feedback
strength (ηF = 0.25 in the example). If ∆λs is instead partially in resonance,
larger interference fringes at the drop port appear. Fig. 4.5(c) shows the
agreement between simulation and scattering matrix spectrum, validating
the use of Eq. 4.7.

4.2.2 Feedback effects on nonlinearity

Both the amplitude and phase of the optical feedback signal are quantities
that affect the optical field within the microring, and hence its nonlinear
dynamics. Indeed, the delayed feedback signal can be coupled again to the
microring, as represented in the inset of Fig. 4.6, and then interfere with the
internal optical field.
Three main situations can occur, assuming the microring in a linear regime

and a CW input signal. (i) The optical input signal is perfectly resonant
(∆λs = 0), and almost no signal propagates through the feedback line. (ii)
The optical input signal is out of resonance (|∆λs| >> FWHM), so it by-
passes the microring, reaching the drop port with a delay τF . (iii) The input
optical signal is partially resonant (∆λs ∼ FWHM) so that it is both cou-
pled to the microring and to the feedback line. Similarly, at the add port,
the optical feedback signal is partially coupled back to the microring and
partially transmitted to the drop port. Thus, the feedback signal interferes
with the microring’s internal electric field. As a consequence, the tuning
of the feedback phase ∆ϕF and strength ηF , allows controlling the optical
power within the microring by changing the interference condition. The ex-
ample reported in Fig. 4.6 shows that the tuning of the parameter ∆ϕF is
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Figure 4.6: The delayed signal is coupled back to the microring. The feedback
phase ∆ϕF set the interference condition within the microring, while its
strength ηF determines its contribution.

the means to select the interference condition within the microring, lower-
ing the internal optical power with destructive interference, or enhancing it
with constructive interference. As a result, ∆ϕF and ηF represent additional
tools for controlling the microring internal power, and thus the microring
nonlinearity.

4.2.3 Processing scheme

The scheme of the proposed time-delay RC is sketched in Fig. 4.7. It fol-
lows the typical scheme, consisting of an input layer, the real node, and an
output layer. The real node here is a silicon microring resonator coupled to
an external optical feedback, connecting the through to the add ports with
a delay τF . The microring receives an optical signal at the input port. Its
response is encoded in the detected drop signal, where the virtual reservoir
is folded.

The input layer properly encodes the information in the optical domain,
before being input to the microring. This information can be either contin-
uous in time or with discrete values, as discussed in [4]. In both cases, it is
normalized in the range [0,1]. Then, sampled values xi from the sequence are
extracted and translated in bits of proportional amplitude and duration bw.
The resulting signal modulates the optical carrier emitted by a CW laser,
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Figure 4.7: Schematic of time delay RC with an MRR subject to optical
feedback. The encoded information X(t) is masked with a sequence M(t)
and modulates the optical power from the laser (LAS) emission. At the drop
port, the photodetected (PD) signal provides the time-multiplexed output
states of the reservoir, which are weighted and linearly combined to compute
the predicted value oi. The weight optimization is performed via a linear
classifier, with supervised learning over the expected values yi data set.

with the amplitude of each optical bit then becoming bh,i = xiPmax, with
Pmax the power of the optical signal before the modulation. Each optical
bit is additionally masked with a set of random values M(t) taken from a
uniform distribution, with M(t) = M(t+bw). Then, the optical signal enters
the input port of the microring and propagates along the structure. Different
paths (orange dotted line in Fig. 4.7) are allowed, depending on the detun-
ing between the pump wavelength λp and the resonance wavelength λ0(t),
as discussed in section 4.2. The optical response is detected at the drop
port, from which the virtual nodes are sampled and the output estimation
of the network oi, relative to the input bit xi, is computed. The nonlinear
transformation of the input signal occurs at both the microring and the pho-
todetection stages. Additionally, each uni-dimensional input information is
eventually projected through this physical system into a higher dimensional
space defined by the number of virtual nodes Nv = bw

θ
, with θ referring to

their temporal distance separation.
By defining Nj,i as the jth virtual node response associated with the ith

processed element xi, the output of the network oi is estimated as a linear
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weighted sum, like in traditional RC. In formulas:

Nj,i =| Edrop(bw(i− 1) + θj) |2, (4.9)

oi =
Nv∑
j=1

WjNj,i, (4.10)

where Wj is the Nv-dimensional vector of the readout weights. The latter also
represent the only parameters that are optimized during the training phase
of a task, based on a chosen cost function to minimize. A cost function
commonly used is the Normalized Mean Square Error (NMSE), defined as:

NMSE =

∑
i(oi − yi)

2

Ndσ2
y

, (4.11)

where the sum includes all the elements of the test dataset Nd, σ2
y is the

standard deviation squared of the test dataset, and yi is the target output
related to xi. The lower the NMSE in Eq. 4.11 is, the better the system
predicts the expected output series. This metric will be applied later on in
the numerical work to quantify the performance of the trained network on
benchmark tasks. Finally, a linear ridge regression algorithm [116] is applied
to find the optimal readout weights.

4.2.4 Parametrization of the system and dynamics

This section describes the choice of the optical bit duration bw, mask function
and timescale θ, and feedback delay time τF . As already mentioned, the
dynamics of a microring resonator is influenced by the photon lifetime τph,
the free carrier lifetime τFC and the thermal lifetime τTH . Note that while τph
refers to the microring internal field discharge time, which introduces linear
dynamics to the microring, τFC and τTH refer to the nonlinear dynamics
triggered by TPA processes within the microring.

A first problem to face is how to manage these timescales for time-delay
RC, considering that generally τph < τFC < τTH . In particular, free carrier
nonlinear effects (here τFC ≈ 3ns) are typically two orders of magnitude faster
than thermal effects (here τTH ≈ 83 ns). Since the nonlinearity timescale is
directly linked to the computing speed, the choice is to process the input
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Figure 4.8: Dynamical response of a microring to a fast modulating signal at
the input port, based on the input layer concept of a time delay RC scheme.
Black dashed line and black continuous line represent the input information
before and after the masking, respectively. The response of the microring is
obtained at the drop port (green line), while the green circles indicate the
sampled virtual node states of the reservoir, separated in time by θ = 40 ps
(one virtual node per mask node). The blue and red dashed lines show the
contribution of the free carrier (∆λFC) and the thermal (∆λTH) nonlinear
effects, respectively, to the wavelength resonance shift (measured in the right
y-axis).

information by exploiting the free carriers of the microring, which have a
faster response time. Thus, a microring exhibiting free carrier effects has to
be designed. The simulated microring has a radius r = 6.75µm, a FWHM =
48pm, a quality factor of Q = 3.19 × 104, and can exhibit self-pulsation
dynamics, as discussed in section 3.3.2. Each optical pulse is stretched in
time for a duration similar to the free carrier lifetime. Here, the choice of
bw = 1ns is made, a time sufficiently large to allow the excitation of extra
free carriers within the microring waveguide. The reader can refer to Fig.
4.5 for the linear drop transmission of the microring.

The fastest characteristic response time of the microring - associated with
the photon lifetime (here, τph = 52ps ) - is also exploited to keep the system’s
operation in a transient state, via the mask applied at the input layer. The
letter corresponds to a piece-wise function, constant over intervals θ = 40ps,
periodically applied on each optical pulse. Thus, the microring does not
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completely release the internal field, when the next mask sample is applied.
This allows the coupling of neighboring virtual nodes through this kind of
inertia. As a consequence, an asynchronous regime is not necessary to couple
the virtual nodes. Therefore, a synchronous regime is applied by setting
bw = τF .

Note that the same time interval θ is used both for the mask values dura-
tion as well as for the virtual node sampling time, thus creating a one-by-one
correspondence between mask node and virtual node. In this way, a total
number of Nv = bw/θ = 25 virtual nodes are defined within a duration of
bw. This number of virtual nodes allows computations at GHz rates and is
also compatible with delays provided by integrated silicon feedback waveg-
uides. Figure 4.8 combines all the concepts just discussed, showing both the
masked input and the temporal response of the microring with an external
feedback loop. The nonlinear contributions to the resonance shift induced
by free carriers (∆λFC) and thermal (∆λTH) effects are also shown (blue
and red dashed line, respectively). As can be seen, the microring resonance
position blue shifts when the largest pulse is input to the microring, thus
manifesting the presence of excited free carriers. On the contrary, thermal
effects are much slower and do not participate in the nonlinear transforma-
tion of the input information. Still, they add a positive bias to the resonance
position, and become important when self-pulsing dynamics are activated for
sufficiently high optical power.

4.3 Task results

Under the above conditions, the microring-based network is tested on three
different benchmark computational tasks, with different requirements for sig-
nal processing. The NARMA 10 belongs to the category of nonlinear system
identification tasks and requires explicitly 10 memory steps to be solved [117].
The Mackey-Glass [118] and the Santa Fe [119] are benchmark one-step-ahead
chaotic time-series prediction tasks where the system has to predict a future
value xi+1 of the input series while processing xi.

Since the performance of every task relies on a characteristic trade-off
between a nonlinear transformation of the input information and the system’s
linear memory [120], an estimation of these two quantities is addressed below.
The nonlinear transformation is evaluated indirectly, via the time dependence
of the standard deviation of the wavelength resonance shift σ(λo(t)). A high
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standard deviation indicates higher resonance shifts occurred along the task,
and thus a higher microring nonlinearity. The system’s linear memory is
evaluated by the linear memory capacity (MC) task [121]. Traditionally,
MC is calculated by using an input random sequence of bits, with values
taken from a uniform distribution [122]. However, there is an inconsistency
in this method when one tries to evaluate the response of a nonlinear system
to an input with specific spectral properties. The linear memory capacity of
the system can be different when entering into the system either a random
sequence or a sequence with correlated temporal profiles. This stands also
here, where different input series may lead the microring operation under
different nonlinear dynamics, even for the same operating parameters. For
this reason, here, the MC task is solved for the actual time series of the
benchmark tasks that will be evaluated. The system is trained to remember
the lth previous input element of the used series, by exploiting the information
that is still present in the system. In fact, MC is computed as:

MC =
lmax∑
l=0

m(l), with m(l) =
cov2(o(n), x(n− l))

σ2
oσ

2
x

, (4.12)

where m(l) measures the normalized linear correlation between the predicted
(o(n)) and delayed (x(n − l)) input series, cov2() indicates the covariance
between two vectors and σ2 the variance. When this correlation is very small
(m(l) << 1), the system is unable to preserve any information of l past
input. On the contrary, when m(l) ≈ 1, the system remembers the exact
value. For the MC computation, it is also considered the case of l = 0 which
refers to the capability of the system to retrieve the actual input.

The performance of the microring with external optical feedback RC is in-
vestigated on the selected tasks by tuning the input power Pmax, the starting
wavelength detuning between the signal wavelength and the cold resonance
wavelength ∆λs, the feedback strength ηF and the feedback phase ∆ϕF . All
these parameters affect the dynamics of the real node, by changing the non-
linear operation of the microring and the contribution of the feedback signal.
Thus, the nonlinearity and the memory of the system can be probed. The
following ranges of values are selected for these parameters: Pmax ∈ [1 mW, 8
mW], with step of 1 mW, including also the value 0.1 mW where the micror-
ing operates in a linear regime; ∆λs ∈ [−50 pm, 50 pm], with step of 10 pm,
so that all the microring resonance (having FWHM = 48pm) is covered;
ηF ∈ [0, 1]; ∆ϕF ∈ [0, 2π].
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To train the network, the discrete input series of each task are separated in
the following way: 1000 input data values are used to drive the system in
a working regime and eliminate any oscillatory operation due to the inclu-
sion of the input. Then, 2000 input data values serve the training phase,
and the next 1000 data the testing phase, where the system performance are
tested on previously unseen entries. The latter are evaluated according to
the NMSE, as defined in Eq. 4.11. The same random mask M(t) is used in
all the simulations that involve the same number of virtual nodes, which is
fixed to 25 unless differently specified. The ridge regression parameter of the
RC’s output layer linear classifier is set to 10−4.

4.3.1 Narma 10 benchmark task

In the Narma 10 task, the system is trained to predict the response of a
discrete-time tenth-order nonlinear auto-regressive moving average (NARMA)
system [117], described by the following equation:

ri+1 = 0.3ri + 0.05ri(
9∑

j=0

ri−j) + 1.5xi−9xi + 0.1, (4.13)

where xi represents the ith element of the input series uniformly distributed
in the range [0, 0.5] and ri+1 is the correspondent expected target, labeled
by yi in the scheme of Fig. 4.7. Eq. 4.13 suggests that at least 10 values
(the current one and 9 in the past) need to be considered to predict the next
value.

In Fig. 4.9(a) the NMSE performance of the microring system is shown,
versus the feedback parameters ηF and ∆ϕF . In parallel, the linear MC of the
microring-based system is also shown for this task (Fig. 4.9(b)). While for the
performance optimization, it is used the 4-dimensional parameter manifold
(Pmax, ∆λs, ηF , ∆ϕF ), the results are provided in two dimensions while fixing
the rest of the parameters of the complete manifold. The parameter space for
which the lowest values of NMSE are observed is where the MC approaches
its maximum value. This in turn is achieved when the microring is operated
in a linear regime. The results in Fig. 4.9, hence, are obtained for input
power Pmax = 0.1mW . Still, the network exhibits a nonlinearity, given by
the photodetection.

First, I consider the absence of the external optical feedback in the system
(ηF = 0). In this case, the MC value is only around 2 (Fig. 4.9(b)), and the
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Figure 4.9: Performance of the neural network to the Narma 10 benchmark
task. (a) NMSE and (b) MC, versus optical feedback strength ηF and phase
∆ϕF . The red circle denotes the conditions with the lowest NMSE. (c) Mem-
ory function m(l), for the cases without feedback (blue line) and with feed-
back conditions that result in the lowest NMSE (red line). (d) Readout
weights for a task to remember the previous input value xi−1, for the cases
without feedback (blue line) and with feedback conditions that result in the
lowest NMSE (red line). MC is computed using lmax = 19. The initial wave-
length shift is ∆λs = −10pm and the microring is operating in the linear
regime, with bw = 1 ns.

system is only able to preserve information regarding the actual bit xi and
the previous one xi−1, as shown by the blue line in Fig. 4.9(c). Information of
the previous bit here emerges from the inertia between the last virtual nodes’
responses to the input value xi−1 and the first virtual nodes’ responses to the
next input value xi. This can be verified by a simple memory task that aims
to give the past bit. In this case, the computed weight values of the RC
linear classifier are shown in Fig. 4.9(d). When the classifier is trained to
provide as an output xi−1, by considering the response of the reservoir to
the actual input xi, only the response of the first virtual nodes is important
for computation (Fig. 4.9(d), blue line). But when activating the feedback
(Fig. 4.9(c), red line), all virtual nodes contribute to the task (Fig. 4.9(d),
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red line). Thus, to obtain an extended linear memory, a strong feedback
parameter ηF is required, under an appropriate phase condition at the add
port of the microring. Here, MC values beyond 10 are exhibited for ηF
approaching 1, while at the same time lowering the NMSE (Fig. 4.9(a)).
In particular, the minimum error NMSEmin = 0.204 ± 0.026 is found at
ηF = 0.9, and ∆ϕF/2π = 0.55, for Pmax = 0.1mW and a starting wavelength
detuning of ∆λs = −10pm.

Note that the combination of a linear microring and an optical feedback
line acts like an analog shift register. If the microring is in resonance, part
of the feedback signal is coupled back to the microring. Thus, an input light
pulse can propagate multiple times through the fiber loop, providing a linear
optical memory to the system. A worse performance is expected when the
microring operates in a nonlinear regime since it progressively distorts the
information [120].

The lowest obtained NMSE value is even higher than the one expected
from a linear shift register (NMSESR = 0.16) [4]. The reason for this is
the small number of virtual nodes. But since in this task the microring
dynamics is not bounded to its nonlinearity, a longer bit duration bw can
be considered while preserving the same dynamical response and the same
virtual node time separation θ = 40ps. For example, when Nv = 200 and
bw = 8 ns, a NMSE = 0.010± 0.009 is obtained, an equivalent performance
to [4]. This improvement, compared to the linear shift register performance,
is attributed to the square-law nonlinearity of the photodetection, since both
cases exploit the same linear memory. This operation is consistent with the
one presented in [104], where a linear external cavity with an optical fiber loop
was used and from which the output optical signal was photodetected. For
comparison, the use of the microring in absence of optical feedback, results
in NMSE = 0.545 ± 0.001, for Pmax = 2 mW and ∆λs = 20 pm. When
a higher input power is applied, the microring nonlinearities deteriorate the
linear MC, and also the performance on this task.

In conclusion, the single microring operating in the linear regime and in
absence of feedback can preserve the previous value of input information,
through the inertia. For the Narma 10 task, which has longer memory re-
quirements, the external cavity is the main contributor to the linear memory
capacity of the computing system.
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4.3.2 Mackey Glass benchmark task

The Mackey-Glass input series is obtained by integrating in time the following
equation:

dx(t)

dt
=

αx(t− τ)

1 + x(t− τ)β
− γx(t), (4.14)

whose solutions may be periodic, aperiodic, and chaotic, depending on the
values of the parameters. Eq. 4.14 was initially considered in [123] to de-
scribe physiological diseases in the human body and later, in recurrent neural
networks [118], as a benchmark timeseries for prediction. In the last case, a
weakly chaotic behavior is commonly used, by numerically solving Eq. (4.14)
with an integration step of 0.1, and the following parameter values: α = 0.2,
β = 10, γ = 0.1, and τ = 17. In this investigation, a downsampling by a
factor 30 is also applied, similarly to [124].

The results of solving this tasks are shown in Fig. 4.10, for the parameters
Pmax = 5 mW and ∆λs = −30 pm. The results are shown in the feedback
parameter space via ηF and ∆ϕF , with the best configuration of the task
obtained for ηF = 0.85 and ∆ϕF/2π = 0.6 (black circle). These conditions
result in an NMSEmin = 0.0053 ± 0.0005, lower than NMSESR = 0.01
obtained by a linear shift register. Differently from the Narma 10 task,
the optimal computing conditions here exploit the microring nonlinearity, as
indicated by the corresponding standard deviation value of the microring res-
onance shift ∆λo(t) (Fig. 4.10(b)). Nevertheless, the region with the largest
resonance shifts in Fig. 4.10(b) is related to higher NMSE in Fig. 4.10(a).
The external cavity, besides its contribution to the extended fading memory,
is beneficial in the following sense: different interference conditions between
the feedback signal and the internal field of the microring are achieved by
tuning the ηF and ∆ϕF values. Thus, the feedback conditions also deter-
mine the circulating internal optical power in the microring and eventually
its nonlinearity. For example, when ηF > 0.3 and 0 < ∆ϕF/2π < 0.45, a con-
structive interference is observed in the microring, leading to higher values
of ∆λo(t), thus higher microring nonlinearity (Fig. 4.10(b)) and degraded
performance (Fig. 4.10(a)). For this region of the feedback parameter space,
the high nonlinearity is able to shift the microring resonance enough to un-
couple it from the input signal wavelength. This is illustrated in Fig. 4.10(c,
upper panel, red line) from the evolution of the resonance shift ∆λo(t) in
time while executing the computation. For the conditions indicated with
the red circle in Fig. 4.10(a), a series of bursting spikes in the wavelength
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Figure 4.10: Performance of the Mackey-Glass benchmark task. (a) NMSE
and (b) standard deviation of the resonance wavelength shift σ(λ0), versus
optical feedback strength ηF and phase ∆ϕF of the microring system. The
black (red) circle denotes the conditions with the lowest (highest) NMSE.
(c) Temporal evolution of the resonance shift and the bit error |oi − yi| dur-
ing the task for two feedback conditions: the black line corresponds to the
lowest NMSE (black circle, (a)), and the red line corresponds to the high-
est NMSE (red circle, (a)). (d) Dynamical operation of the microring with
optical feedback under self pulsations: light occasionally enters (path 1, up-
per) or bypasses (path 2, lower) the microring. The initial wavelength shift
is ∆λs = −30pm, the maximum launched optical power at the input is
Pmax = 5 mW and bw = 1 ns.
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resonance shift is observed, followed by a thermal warming and then a ther-
mal cool-down. This dynamical behavior resembles self-pulsations, where the
spiking emerges as a competition between the free carrier and thermal effects
within the ring. Self-pulsing temporarily drives the resonance far away to the
input wavelength (out of resonance condition). In these time intervals, the
optical signal mainly propagates through the external cavity (Fig. 4.10(d,
path 2)) and is not affected any more by the microring nonlinearity. At the
same time, as the feedback signal passes the microring, it can not be cou-
pled back and iterated further. In this way, the system loses the feedback
memory. These conditions result in degraded performances, as it is indicated
by the corresponding higher prediction error in Fig. 4.10(c, bottom panel,
red line). As a comparison, the lowest NMSE configuration is also reported
in Fig. 4.10(c, black line). In this case ∆λo(t) oscillates in phase with the
input signal (Fig. 4.10(c, upper panel, blue line)) and with lower amplitudes.
Note that in a comparison with the NARMA 10 task, the region with the
worst NMSE performance (Fig. 4.10(a)) – where the microring transition to
self-sustained oscillations occurs – differs from the one in Fig. 4.9(a), since
in the latter the microring is operated in a linear regime. In a comparison
with the linear shift register, neither the single microring in absence of the
feedback (NMSE = 0.015 ± 0.002) nor the linear microring in presence of
feedback (NMSE = 0.0095± 0.0009) provide improved performance.

4.3.3 Santa Fe benchmark task

The Santa Fe benchmark test is another one-step-ahead time series prediction
task. In this task, the input series is the optical power emitted by a far-
infrared laser that operates in a chaotic regime [119].

While processing this dataset with a linear shift register results in a value
of NMSESR = 0.2, with the microring-based RC lower NMSE values can
be obtained. This is shown in Fig. 4.11(a), where the best NMSE for each
pair (∆λs, Pmax) are plotted. The standard deviation of the resonance shift
σ(λ0) (Fig. 4.11(b)) and the feedback strength ηF (Fig. 4.11(c)), related to
the configurations with the lower error in Fig. 4.11(a) are also presented.
While all the displayed configurations achieve errors lower than NMSESR, a
joint evaluation of the three figures allows interpreting why the best results
are obtained with a given parameter set. At Pmax = 0.1mW , the microring
works in a linear regime, as also indicated by the small values of σ(λ0) at
this power (Fig. 4.11(b)). In this condition, the feedback strength ηF is
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Figure 4.11: Performances relative to the Santa Fe benchmark task, by using
a single microring with external feedback. (a) NMSE, (b) standard deviation
of the resonance wavelength shift σ(λ0(t)), and (c) strength of the feed-
back, versus the starting detuning ∆λs and the maximum incident power
Pmax. The quantities refer to the feedback configuration with the lower error
achieved at each (∆λs, Pmax). The black circle indicates the conditions for
which the lowest NMSE is obtained.

maximized (Fig. 4.11(c), at Pmax = 0.1mW ). Thus, the recursivity of the
feedback signal in the system is increased and, consequently, the detection
nonlinearity acts on a larger number of feedback-delayed terms. This sug-
gests that when the microring is forced in a linear regime, due to the limited
input optical power, the system enhances the linear memory using higher
feedback strengths, to effectively solve the task. The best performance for
this processing scheme results in NMSE = 0.042 ± 0.008. At higher max-
imum incident power Pmax > 0.1mW , the microring nonlinearity becomes
also accessible, but is not required. As illustrated in the previous task, the
feedback phase ∆ϕF can still be tuned to minimize the optical power inside
the microring (destructive interference), and thus minimize its nonlinearity.
Nevertheless, Fig. 4.11(b) shows that for these input optical powers, the
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standard deviation of the resonance shift, σ(λ0), is higher than in the linear
case (Fig. 4.11(b), at Pmax = 0.1mW ), so that the system is actually exploit-
ing the microring nonlinearity. In particular, a region of lower NMSEs in Fig.
4.11(a) is related to intermediate values of σ(λ0). In parallel, the strength of
the feedback is reduced with respect to the linear case (Fig. 4.11(c)). These
results suggest that, under these conditions, the microring contributes to the
overall nonlinearity of the system and improves the prediction performance,
down to NMSE = 0.038±0.008, at ∆λs = 10 pm, Pmax = 2 mW, ηF = 0.55
and ∆ϕF = 0. Alternatively, the detection nonlinearity is also sufficient to
solve the task, once enhanced by stronger external optical feedback.

Interestingly, a better performance, compared to the linear shift register,
is obtained when disconnecting the feedback from the microring (ηF = 0).
The results are shown in Fig. 4.12, as a function of ∆λs and Pmax. Figure
4.12(a) indicates the NMSE achieved, 4.12(b) the nonlinear microring reso-
nance shift, and 4.12(c) an estimate of the memory capacity (MC) computed
on the SantaFe input series itself, as previously discussed in section 4.3. The
lowest obtained error is NMSEmin = 0.045 ± 0.002, and it is achieved for
Pmax = 7 mW and ∆λs = −40 pm (Fig. 4.12(a), black circle). This NMSE
value is only slightly higher than the one obtained with a microring with
an external loop, indicating that the contribution of the extended external
memory is not critical for this task. When the microring works in the linear
regime (i.e. for low optical power Pmax = 0.1 mW), the NMSE obtained is
as high as 0.13 (Fig. 4.12(a)). In this case, the microring has only access
to an inertia memory of one step, as explained in section 4.3.1, while the
output undergoes a nonlinear transformation through the square-law pho-
todetection. Consequently, one bit of memory and nonlinearity are sufficient
to obtain a NMSE lower than NMSESR. By increasing Pmax the nonlinear
contribution of the microring is increased and the NMSE is significantly
reduced (Fig. 4.12(a)). This happens only for those ∆λs conditions that
preserve the free carrier nonlinearity of the microring in a specific range of
values (Fig. 4.12(b)). The σ(λo) should not be very low - which implies an
absence of nonlinear effects - but also not high enough to trigger self-pulsing
dynamics, as explained in section 4.3.2. The configurations leading to lower
NMSE values are also correlated to an increased memory, with respect to
the one that the microring has in the linear regime (Pmax = 0.1 mW). This
difference is indicated as ∆MC in Fig. 4.12(c). For conditions that lead
to self-pulsation dynamics (e.g. for high Pmax, detuning dependent), the
capability of the system to retain the memory is lower, the nonlinearity of
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Figure 4.12: Performance of the Santa Fe benchmark task, by using a single
microring without external feedback. (a) NMSE, (b) standard deviation of
the resonance wavelength shift σ(λ0), and (c) change of MC (∆MC), versus
the starting wavelength shift ∆λs and the optical power Pmax. The black
circle indicates the conditions for which the lowest NMSE is obtained.

the system is very high, and the overall capability for computation becomes
limited.

4.4 Noise effects on performance

Several noise sources can be present in the different layers of a computing
system. Instruments at the input layer that encode the input information
introduce noise, as well as those at the output layer that readout the node
response. The reservoir itself can introduce noise, in particular when includ-
ing active elements, such as optical amplifiers. The presence of noise can
be beneficial or a deteriorating factor for the computational properties of a
system. For instance, in [125] noise is intentionally added to the input series
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(xi). The network can in this way dynamically explore a larger region in the
state space, which results, after the training phase, in more robust long-term
predictions. In contrast, the presence of noise at the output layer may have
negative effects on the performance, with an impact that also depends on the
task: classification tasks are noise-robust tasks, while memory and prediction
tasks, where the target is a precise analog value, may result more sensitive
to noise [126].

In this section, the role that the microring nonlinearity has in preserving
the task performance when noise is introduced at the output layer, is investi-
gated [127]. To do so, the single microring resonator, in absence of feedback,
is tested on the Santa Fe benchmark task. Here, Gaussian white noise is
added to the drop response of the system while solving the task as described
by the following equation:

|Edrop(t)|2 = |Edrop(t)|2 + 10(noise(dB)/10)Cu(t), (4.15)

where C = 0.16 mW is a reference value, corresponding to the standard
deviation of the detected drop response while processing the task in one of
the configurations more resilient against noise (black circle in Fig. 4.14). u(t)
is a random scalar value drawn from the standard normal distribution with
mean 0 and variance 1.

The performance on the Santa Fe task for different amounts of output
noise is reported in Fig. 4.13(a), versus the Pmax and ∆λs parameters. The
average noise value is indicated (in dB) at the top of each panel. In absence
of output noise, the results are those already reported in the previous section
4.3.3, with a region of optimal performances clearly present, which extends
both at positive and negative ∆λs. The best configuration is achieved at
Pmax = 7 mW and ∆λs = −40 pm. As the average noise applied on the
drop signal becomes stronger, from −35 dB to −12 dB with respect to the
reference value C, the computed error increases. The region with the best
performance slightly moves at positive starting detuning. This is better dis-
played in Fig. 4.13(b), where the NMSE against the noise is shown for two
particular configurations: the best one in absence of output noise (Pmax = 7
mW, ∆λs = −40), and one with positive starting detuning which results
more resilient against noise (Pmax = 3mW , ∆λs = 40 pm).
More insights regarding this diverse noise resistance can be grasped from

Fig. 4.14. In Fig. 4.14(a), it is shown the standard deviation of the res-
onance shift while computing the task, σ(∆λo(t)), for each scanned (Pmax,
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Figure 4.13: Performance on the Santa Fe benchmark task when using a
single MRR in the add-drop filter configuration. a) NMSE vs the input
optical power Pmax and starting detuning ∆λs, for different levels of noise,
reported at the top of each panel. The noise is added directly at the drop
signal. b) NMSE versus the amount of noise for 2 particular configurations:
the configuration having lower NMSE in absence of output noise (Pmax =
7mW , ∆λs = −40 pm, red line), and a configuration which is more noise
robust (Pmax = 3mW , ∆λs = +40 pm, black line). The blue dotted line
indicates a reference value for NMSE, achieved by processing the input series
xi directly with a linear shift register, thus in absence of output noise.
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Figure 4.14: a) Standard deviation of the resonance wavelength shift
σ(∆λo(t)) while computing the Santa Fe task, for each (Pmax, ∆λs) configu-
ration, and b) effective average detuning during computation. c) Temporal
evolution of the resonance wavelength shift to the Santa Fe input optical
power (blue line) for two configurations: the one having lower NMSE in ab-
sence of noise (Pmax = 7mW , ∆λs = −40 pm, red circle in Fig. 4.14(a),(b)),
and a configuration which is more noise robust (Pmax = 3mW , ∆λs = +40
pm, the black circle in Fig. 4.14(a),(b)). Dashed lines show the correspondent
starting detuning. d) Portion of the resonance curve transmission effectively
explored while computing the task for the previous two configurations. Solid
lines indicate the effective average detuning and the dashed line indicates the
correspondent maximum and minimum detuning while computing the task.
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∆λs) configuration. The plots of Fig. 4.14(a) appear asymmetric with re-
spect to ∆λs = 0, because of thermal effects. Even though slow with respect
to the input modulation, the temperature variations, due to the generated
free carriers, contribute with a positive bias to the resonance shift ∆λo(t).
As a result, if initially λp > λ0, the detuning decreases because of the tem-
perature bias shift. As a consequence, the same optical power can be loaded
within the microring using lower Pmax values, as compared to negative detun-
ing configurations, and induce the same nonlinear resonance shift σ(∆λo(t)).
This effective average detuning can be expressed as ∆λavr = ∆λs −∆λo(t),
where ∆λo(t) is the average resonance shift. ∆λavr is the quantity plotted in
Fig. 4.14(b). Interestingly, the configurations at positive starting detuning
in Fig. 4.13(a), which are more robust against noise, share in Fig. 4.14(b)
the same amount of ∆λavr ≈ 10 pm.

In Fig. 4.14(c) the resonance shift dynamics (∆λo(t)) is reported, for the
lowest NMSE configuration in absence of noise (Pmax = 7mW , ∆λs = −40
pm, red circle in Fig. 4.14(a),(b)) and for a more noise-robust configuration
(Pmax = 3mW , ∆λs = +40 pm, black circle in Fig. 4.14(a),(b)). The blue
line refers to the optical input to the microring in arbitrary units, while the
dotted line refers to the starting detuning ∆λs for the two configurations. In
both cases, the resonance oscillates in phase with the optical input. But in the
more noise-robust configuration (black line), the effective average detuning
is lower, as the resonance positions oscillate closer to the pump wavelength
(∆λs = 40 pm). These facts are mapped on the resonance transmission shape
in Fig. 4.14(d) for clarity. The noise-robust configuration not only shows a
larger resonance oscillation range, but it also corresponds to a steeper region
of the resonance curve. As a result, the same resonance shift imprints more
nonlinear effects on the drop signal, than the same resonance shift interesting
a smoother region of the resonance curve, i.e. that for the red configuration.
Thus, the configuration which is more noise-robust is actually the one that
exploits more the microring nonlinear transformation.
Similar conclusions are also found in [128], where an electronic implementa-
tion of time-delay RC was studied. An electronic real node applies a Mackey-
Glass nonlinear transformation to the incoming signal, and the memory of the
system only relies on a feedback signal. With that system, noise-robust sys-
tem configurations are associated to the nonlinear region of the Mackey-Glass
function that is explored during the Santa Fe task. Nevertheless, exploring
the highest nonlinearity region of the function is not helpful for computation:
the delay-based network has in this case a limited linear memory capacity
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and solves the task with worse performance. On the contrary, the microring
studied here does not have a feedback signal and the only source of mem-
ory comes from the microring nonlinearity inertia. Thus, configurations with
higher nonlinearities improve the nonlinear memory, and eventually the per-
formance, as long as thermal effects are not so important (for large Pmax).
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Chapter 5

Fiber-based experimental
implementation

In this section an experimental realization of a time-delay RC, based on
the dynamics of a silicon microring resonator coupled to an external optical
feedback, is presented. The design of the experiment relies on the numerical
results obtained in chapter 4, with particular attention to replicating the
system parameters that emerged critical for computation. These are the
average input power, the starting detuning, the strength, and the phase
of the feedback signal. This physical implementation involves a microring
resonator designed in an add-drop filter configuration on a SOI chip, with
a grating coupler at each of its ports for external accessing the structure.
The feedback is realized by connecting the through and add ports, like in the
numerical study, via an external single-mode optical fiber.

The chapter is organized as follows. First, the interferometric problems
that an optical fiber-based feedback introduces in the system are discussed,
together with a proposed solution. Then, the experimental setup for test-
ing the microring-based RC computational capabilities is described, together
with an experiment aiming to define the fading memory of the structure.

5.1 Hybrid approach

An integrated microring coupled to an external optical fiber may refer to a
hybrid approach of time-delay RC, where the system is only partially inte-
grated. A fully integrated version of the feedback has been also designed,

91



Figure 5.1: Time delay RC based on a microring and an optical fiber feedback
loop. The optical fiber connects the through and add ports. An Arduino-
based controller stabilizes the system against environmental noise. ’R’ and
’F’ refer to the optical contributions to the drop signal, from the ring and
the feedback respectively, respectively. Along the feedback loop there are a
semiconductor optical amplifier SOA, a polarization controller, and a piezo-
phase shifter.

as will be discussed in section 7.1. When the feedback is realized with an
optical fiber, the optical signal propagating through the fiber is affected by
environmental thermal, phonic, and vibrational noise. All these noise sources
change the refractive index of the fiber and thus the phase of the delayed sig-
nal. These changes can interest all the fiber or only a portion of it, depending
on where the perturbation occurs. An increase in the room temperature or
people speaking loudly close to the fiber, for example, perturb its length. On
the other hand, touching the fiber in a particular region only affects locally
the refractive index. In both cases, the phase of the feedback signal is varied
over time, with a speed that depends both on the noise source and on the
interested fiber length. As a consequence, when the feedback signal is cou-
pled back to the microring, noisy interference conditions take place.
The drop signal is the result of the interference between the optical field from
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the microring (R) and the field from the feedback loop (F), as represented in
Fig. 5.1. These two fields can be expressed in a simple way that highlights
their relative phase as R = A and F = Bei∆ϕF . As a result, the optical
power at the drop port is:

|R + F |2 = A2 +B2 + 2ABcos(∆ϕF ), (5.1)

and ranges between maximum and minimum identified by A2 + B2 ± 2AB.
The amplitude of the two field components defines the interference range,
while the relative phase states the interference condition: constructive (∆ϕF =
0), destructive (∆ϕF = π), or intermediate, with π-periodicity. Environ-
mental noise randomly changes the phase of the delayed signal and is thus
computed with Eq. 5.1, as fluctuations in the ∆ϕF values over time. As a
result, the drop signal, which is driven by this noise, randomly varies within
the interference intensity range, even when a CW input signal is injected.
This problem was not taken into account during the modeling work, where
the feedback phase was not affected by any perturbation, and was a real
challenge to face for the practical realization of the time-delay RC.

5.2 Phase stabilization

This section describes the system that has been developed to compensate for
the noisy phase fluctuations of the feedback signal in the microring system
with external fiber loop. The system is inspired by the working principle
of a Proportional Integrative Derivative (PID) controller, a feedback control
mechanism widely used in a variety of applications requiring continuously
modulated control over a physical quantity. Here, after fixing a desired target
value for this quantity, the PID controller continuously calculates an error
value err(t) based on the difference between the target and its current value.
The controller applies then a correction based on proportional, integrative,
and derivative terms, with the last two terms accounting for the response
time of the system and the rate at which the physical quantity of interest is
changing.

5.2.1 The phase controller

To compensate for environmental noise, a specific controller has been devel-
oped. Similarly to a PID controller, this system needs to detect the effects
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of the noisy fluctuations affecting the microring-based system and continu-
ously compensate them according to a target value. The phase controller
developed is composed of the following instruments:

• Detector: placed at the drop port, this detector measures the power
fluctuations induced by phase noise along the feedback loop.

• Arduino Mega: computing unit, which continuously estimates a correc-
tion signal aiming to keep the phase of the feedback loop at a desired
target value.

• Digital Analog Converter (DAC): it converts the digital correction sig-
nal from Arduino into an analog electronic signal.

• Voltage amplifier: it amplifies the electronic correction signal.

• piezo-driven phase shifter (LUNA FPS-001): this instrument is only a
few centimeters long, and has an optical fiber connected to its ends.
The driving voltage allows to change in the length of the piezo material,
hence the length of the internal optical fiber and, as a result, also the
optical path and the phase of the propagating light after propagating
through the phase shifter.

A dedicated detector is placed at the drop port of the microring to mea-
sure the time varying drop signal due to the phase noise. This signal is then
sent to an Arduino Mega, where it is stored as vin. Arduino continuously
elaborates a correction signal vout based on the desired target value vtar. The
target value corresponds to a power value within the interference range and is
set via PC using a serial connection. The correction signal vout is encoded as
a 16-bit integer and then transmitted to a DAC using 16 output logical chan-
nels available in the Arduino board. The resulting analog signal is amplified
and then fed to a piezo-driven phase shifter (LUNA FPS-001, 0-20KHz band-
width) placed along the feedback fiber line, which finally applies the phase
correction. When the piezo-phase shifter is properly driven, phase noise fluc-
tuations are compensated. The process has to run fast enough to correct the
noisy fluctuations. Arduino Mega benefits from a 16 MHz clock speed, that
is used to run the list of instructions needed for each correction action. This
list is reported in Code 1 in appendix C. The program updates the output
every 55µs, which accounts for the external digital to analog conversion, as
shown in Fig. 5.2. The voltage amplifier, with only 200 Hz bandwidth, limits
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Figure 5.2: DAC output voltage, when driven by Arduino running the phase
correction code 1 in the absence of any input. New outputs are provided
every 55µs approximately, thus at 18kbps, and the maximum output voltage
at the DAC is ∼ 4V . The value of the voltage steps shown is a consequence
of the proportional constant (kp) set.

the bandwidth of the entire phase controller system. Still, the system is able
to correct the largest contribution of the environmental phase noise, which
is present at lower frequencies, as will be discussed in section 5.2.2.

Note that only the proportional component kp is used in Code 1 when
updating vout. Indeed, vout = vout + kp(vtar − vin). The phase of the feedback
optical signal reacts so quickly with respect to the external perturbations,
that is actually independent of past phase values. Thus, there is no need to
use integrative and derivative terms when estimating the correction signal
vout. Note also that if this was not the case, and past states needed to
be considered, a dedicated vector would have been needed to be stored on
Arduino, with a size proportional to the inertia of the system, and updated
at each void loop repetition, strongly limiting the correction rate.

5.2.2 Results

The effects of the noise at the microring drop port and its compensation
using the phase controller system can be quantified by introducing into the
system a CW optical signal and performing a Fourier transform of the drop
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Figure 5.3: Fourier transform of the temporal traces acquired at -4GHz de-
tuning from the microring resonance. a) The SOA is switched ON, while the
stabilization controller is both OFF (purple line) or active at different phase
targets. b) The stabilization controller is switched OFF, and the effects of
the presence of the feedback are reported for various SOA configurations,
including when the SOA is removed from the feedback loop (No SOA). As a
reference, the noisy trace recorded by a detector with no input signal is also
reported (detector and oscilloscope noise).

signal. The input optical signal needs to be partially coupled to the microring
resonator in order to allow and probe variations in the interference taking
place at the drop port.

The drop noise spectra are reported in Fig. 5.3 when the phase-controller
is on/off, respectively. Different operational conditions are considered. When
the phase controller is not active, and hence ∆ϕF is subject to phase noise,
the frequency contributions to the optical signal are larger at lower frequen-
cies and decrease at higher frequencies. Fig. 5.3(a) shows that by properly
driving the piezo phase shifter along the feedback loop with the phase con-
troller, it is possible to substantially reduce the noise fluctuations at lower
frequencies, up to approximately 1kHz. Furthermore, Fig. 5.3(b) shows that
many peaks at frequencies ν > 104 Hz refer to artifacts due to noise in the
oscilloscope and in the detector, rather than optical variations of the drop
signal. Differently, the peak at 100 Hz is due to the power supply of some
instruments, such as the biasing controllers of the laser and SOA, which is
reflected in power variations at the drop port and amplified by the presence
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Figure 5.4: Microring drop response to a CW input. Data are taken by a 3
kHz bandwidth photodetector and an oscilloscope with a 1 ms sampling time.
a) The blue curve in the background represents the noisy signal induced by
environmental noise, while the colored lines represent the stabilized signal
via the Arduino-based controller, at interference conditions specified by the
user. b) Sometimes the correction fails, in particular when the controller
target is close to the interference limits, or a strong perturbation occurs.

of the feedback. This peak highlights a potential source of error suffered
by the phase controller: in the frequency range where the controller works
(< 1kHz), any optical power variation at the drop port is compensated by
varying the phase of the optical signal along the feedback loop, even though
they may be induced by other factors, as for example by power supply fluc-
tuations of some instruments. The phase controller attempts to compensate
them, thus leading to wrong phase corrections. Luckily, the contribution at
100 Hz is a hundred to thousand times smaller than those induced by phase
noise at lower frequencies and can be neglected.
Fig. 5.4 shows the temporal variation of the output signal over a five sec-

onds time interval. It can be observed that the controller compensates the
phase fluctuations over time. The correction may also fail, as shown in Fig.
5.4(b), in particular when the controller target is close to the interference
limits, or a strong perturbation occurs. I anticipate here that the bench-
mark tasks that will be described in chapter 6.2, require about 300µs to be
processed optically. This time is relatively fast compared to the phase noise
fluctuations. Still, the phase controller is fundamental because allows setting
the desired feedback phase value, maintaining it among several repetitions
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of the task measures. Notably, from Fig. 5.4, we deduce a σπ/6 = 17.5mV ,
σπ/3 = 20.4mV , σπ/2 = 20.1mV , σ2π/3 = 20.5mV , and σ5π/6 = 16.7mV
(without considering the temporal interval where the controller fails), for the
normalized output signal.

5.3 Experimental setup

The setup composed to investigate the time-delay RC is reported in Fig.
5.5. It can be divided into four parts: the input layer, the Device Under Test
(DUT), the output layer, and the controller developed for phase stabilization.

The input layer is dedicated to the encoding of data in the optical do-
main and their routing in the DUT. First, light is generated by a Tunable
Laser Source (TLS) operating in CW within the C-band. The optical signal
is then amplitude modulated by using a mach zehnder interferometer (MZI)
electro-optic IQ modulator (MXAN-LN-10, 10 GHz), driven by a 500MHz
Teledyne (T3AFG500) arbitrary waveform generator (AWG), and stabilized
in quadrature by a bias controller (MBC-AN-LAB). Then, an amplification
step is performed by an erbium-doped fiber amplifier (EDFA), followed by a
variable optical attenuator (VOA) for tuning the input power. A polarizer
allows to proper polarize the input optical signal to match the TE polariza-
tion required by the DUT. Before entering the DUT, 1% of the input optical
power is extracted by a directional coupler and routed towards a photodetec-
tor (PMi), for monitoring the average input optical power. The modulated
optical signal is input in the DUT, whose detailed description is given in
section 5.3.1. At the output of the DUT, an optical filter suppresses am-
plified spontaneous emissions (ASE) noise generated by the SOA present in
the setup. Then, after the optical filter, the signal is separated along two
channels. One is labeled as the output layer of the system, and includes
those instruments that allow acquiring the optical response of the microring
to a certain task input series. This channel receives 90% of the DUT opti-
cal response. The optical signal is firstly photodetected (PMt, Menlosystem,
FPD610-FC-NIR, 600 MHz), then read out by an oscilloscope (Picoscope
6000 series, full bandwidth of 500 MHz), and finally communicated to a com-
puter where it is stored for an offline evaluation. Note that the bandwidths of
both the detector PMt (600 MHz) and the picoscope (500 MHz), are chosen
such to make the output layer able to detect the DUT response even for the
largest AWG modulation frequency (500 MHz). The second channel aims to
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Figure 5.5: Scheme of the experimental setup.
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compensate for environmental phase variations and involves the controller
described in Section 5.2. Thus, 1% of the DUT response is directed to this
channel using a directional coupler. Here, the DUT response is measured by
means of a photodetector (PMc) that is slower than the one employed in the
output task layer. Its electronic signal is then input to the Arduino-based
controller for phase stabilization. It is worth noting the importance of a
slower detector in this channel. The detector PMc needs to capture only the
DUT optical response variations induced by phase environmental noise, and
not the optical modulation that encodes the information to be processed.
Indeed, the phase controller interprets any optical variation at the drop port
of the microring as induced by environmental phase noise. In this way, any
optical variation due to the input task modulation, if input to the phase
controller, would lead to wrong phase corrections. Thus, a proper detector
bandwidth is needed, possibly lower than the task modulation speed but
higher than the main frequency contributions to environmental phase noise
(< kHz). To this purpose, an InGaAs switchable gain detector (PDA10CS2,
Thorlabs) is operated, whose bandwidth depends on the electronic gain set.
Practically, the detector was set at a 70 dB gain, with a consequent 3 kHz
bandwidth (at 1550nm), sufficient for detecting most of the phase noise, and
too slow for the task modulation rate, that, as will be discussed later on, is
∼ 20MHz.

5.3.1 DUT: microring resonator with feedback loop

The device under test (DUT) corresponds to the microring resonator and
the feedback loop, as sketched in Fig. 5.6. The microring is fabricated on a
SOI chip, in an add-drop filter configuration. All four ports of the microring
are accessible by means of grating couplers (GCs), which are aligned and
equally spaced by 127µm, for coupling an 8-channel SM fiber array, with 6.9°
polishing angle. In this way, all the ports are accessible at the same time, in
agreement with the numerical model studied in section 4.2.3. The fiber array
is fixed on a fiber holder, which in turn is moved with sub-micrometric pre-
cision along the x, y, and z directions, thanks to a Thorlabs 3-axis NanoMax
300 stage. The alignment between the fiber array channels and the GCs is op-
timized, with each GC having 5dB coupling losses. The silicon-on-insulator
chip is fixed on top of an aluminum block, which is positioned on a Peltier
cell. The aluminum block, however, was not equipped with a hole for a tem-
perature sensor, so the chip was not thermalized. Thus, to compensate for

100



holder
fiber

phase
noiseSOA

101

delay

PMF

polarization
control

10%

90%

phase
shifter

input

output

DROP

ADD

IN

THROUGH

x

y
z

Figure 5.6: Experimental device under test: microring resonator with ex-
ternal optical feedback. The microring is integrated in a silicon-on-insulator
chip and accessed by a fiber array. The feedback delay line is realized ex-
ternally, via an SM optical fiber. It includes a series of instruments that
allow to control and monitor the phase, the strength, and the polarization of
the feedback signal. The input signal comes from the input layer, while the
output signal is sent to the output optical fiber.

environmental thermal fluctuations of the microring resonance position, this
last is tracked using automatized routines during a measure. The measures
are moreover automatized and run overnight when the laboratory temper-
ature is more stable, achieving resonance deviations, with respect to the
starting value, lower than 1 GHz.

An external single-mode optical fiber is coupled to the through and add
ports of the microring, providing the feedback loop for the application. Along
the feedback loop, many instruments are used to manipulate and monitor
the optical feedback signal. An SOA is used to vary the strength of the
feedback signal. Its driving electric current ranges between [0 − 500]mA,
and determines whether the SOA works as a gain medium, increasing the
strength of the feedback signal, or as an absorber medium, decreasing the
strength of the feedback signal. 10% of the feedback signal is extracted and
routed toward a monitor detector. The optical signal is polarized to match
the TE polarization, and then phase modulated by a piezo-phase shifter, to
set the desired phase value while compensating for the environmental phase
noise. Finally, the feedback signal is coupled back to the chip.

Note that the delay provided by the feedback loop is mostly induced by
the propagation in the SM fiber. However, also the other components in the
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Figure 5.7: Microring resonator in absence of feedback: a) Drop transmission
and b) self pulsing map, evaluated as the standard deviation of temporal
trace, for different configuration of detuning (∆νs) and optical input power
(Pin).

delay line contribute to the total feedback delay time. The SOA, internally,
is coupled to an optical fiber of approximately 2m long; the fiber array also
introduces delays due to the length of each optical fiber channel. The total
feedback delay time can be estimated without prior knowledge of the delays
introduced by the instruments in the delay line. In section 5.5 a simple
experiment to measure the total delay is presented.

5.3.2 Microring resonator characteristics

The integrated microring used in the experiment has a waveguide cross-
section of 220 × 500nm2, a radius r = 6.75µm, and a symmetric gap with
the two bus waveguides of 238nm. Its drop port transmission is reported
in Fig. 5.7(a). From this spectrum we deduce a FWHM = 4.52GHz
(FWHM = 36.4pm), and a quality factor Q = 4.2 × 104, at a resonance
cold position ν0 = 193.16THz (λ0 = 1553.11nm).
At high input optical power, the microring enters in self-pulsation dynam-
ics. This can be observed by plotting the standard deviation of the drop
temporal traces to CW input optical signals at different configurations of
detuning (∆νs) and input power (Pin). As can be observed from Fig. 5.7(b),
for Pin > 200µW , the ring starts to exhibit oscillations that become more
important as the power is increased. Note also that larger |∆νs| values re-
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Figure 5.8: a) Lasing circuit and b) Drop power at the microring resonance
wavelength λ0 = 1553.11nm (ν0 = 193.16THz).

quire larger input power to initiate self-pulsing. The latter are finally not
triggered when the detuning is completely out of resonance.

5.4 Lasing

An important aspect of the setup is the possibility of lasing in the feedback
loop, due to the presence of the optical amplification section. The SOA
emits amplified spontaneous emission noise over a wide range of wavelengths.
Those wavelengths that are resonant with the microring are coupled back
to the feedback SOA itself, hence producing a positive feedback loop (Fig.
5.8(a)).
Lasing requires the gain to be larger than the losses along the feedback loop.
The SOA wavelengths are affected by different losses, for example because
of the grating couplers frequency response. In the experiments that follow,
lasing occurs only at the working cold resonance wavelength λ0 = 1553.11nm,
and can be observed just increasing the current driving the SOA while keeping
the input laser off, as shown in Fig. 5.8(b).

Despite lasing was not considered during the numerical work, it repre-
sented another experimental challenge. Signatures of lasing emerged during
the calibration of the phase controller, which was not able to stabilize the
phase of the optical feedback signal.
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5.5 Echo memory experiment

The fading memory is an important property in time-delay RC, representing
the fact that the information stored in the system needs to fade over time.
In this way, the dynamical response of the reservoir depends only on recently
injected input.

In our system, the memory of previously injected bits can be encoded
in an optical signal that iterates several times the feedback loop. The ex-
periment that is here presented aims at measuring these multiple iterations.
The experiment consists in measuring the drop response to a series of input
optical pulses injected to the microring system. The pulses have a duration
bw = 10ns and are spaced by a time much larger than τF = 88ns. In this
way, for every input pulse, it is possible to observe if there are optical delayed
pulses at the drop port.

The average input optical power to the microring is Pin = 78µW , which,
according to Fig. 5.7, is a value well below the appearance of self-pulsing
phenomena. The experiment is carried out for different configurations of
detuning ∆νs, feedback strength ηF (SOA current), and feedback phase ∆ϕF .
∆ϕF is set in the following way: for each combination of ∆νs and ηF , the
interference range at the drop port is firstly estimated by measuring the
drop response fluctuations under environmental noise, using the detector
PMC for five seconds. Based on the maximum (constructive interference,
∆ϕF = 0) and minimum (destructive interference, ∆ϕF = π) values of this
interference range, the target optical power related to the selected ∆ϕF is
estimated according to Eq. 5.1 and set on Arduino during the experiment.
In particular, ∆ϕF ∈ [π/6, π/3, π/2, 2π/3, 5π/6]. The feedback strength is
spanned, in terms of SOA current, in all the supported range [0, 500]mA,
with steps of 50mA. The detuning ∆νs ∈ [−30, 30]GHz, with steps of 6GHz.
Experimental traces acquired at the drop port are reported as an example
in Fig. 5.9, for different combinations of detuning and SOA current, for
a specific ∆ϕF = 2π/3. In this figure, every row is related to a detuning
value, while every column is related to an SOA current. The first column
shows the drop response in absence of any feedback (zero SOA current). In
this condition, at the drop port, only the portion of the input pulse signal
that is directly dropped can be observed, while the portion that, via the
through port, is coupled to the feedback loop is fully absorbed by the SOA.
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Figure 5.9: Drop response to a 10ns input pulse, acquired at ∆ϕF = π/3
and for various detuning (rows) and feedback strength ηF (SOA current)
(columns). The first column represents the system response in absence of a
feedback signal (zero SOA current). An increase in the SOA current allows
a larger number of delayed copies (echoes) in the microring with external
feedback. The blue dots indicate the drop copy that follows the input one,
while the green dots refer to the copies via the feedback loop. The red dots
indicate the delayed copies that are not counted by the algorithm.

Thus, only one optical pulse is observed at the drop port. Note that the
height of dropped pulse decreases, as the detuning increases, since the input
wavelength is moving away from the resonance condition. When ηF (SOA
current) is increased, other pulses start to appear at the drop port. The
latter represent the delayed copies of the input pulse that, thanks to the
amplification step along the feedback loop, are able to iterate multiple times
along the feedback circuit. In these cases, the first pulse observed at the
drop port is provided by the portion of the input signal that is directly
dropped, while the others are the delayed copies, all equally spaced by the
delay time, which in this way can be estimated in τF = 88ns. Note that the
first dropped pulse, is practically simultaneous to the input pulse, if compared
to τF . This contribution, during a task, will allow having the information of
the current bit in the analysis of the virtual nodes. Information regarding
the past processed bit will also contribute to the state of the virtual nodes,
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Figure 5.10: Number of delayed copies (green dots in Fig. 5.9) as a func-
tion of detuning and feedback SOA current, for five different values of ∆ϕF ,
ranging from almost constructive (∆ϕF = π/6) to almost destructive inter-
ference (∆ϕF = 5π/6. The number of delayed copies increases with ηF (SOA
current), reaching a maximum of 5 delayed copies for SOA current toward
350mA.

thanks to the delayed response of previous bits. Note, moreover, that starting
from a feedback SOA current of 400mA, the temporal traces become noisier,
probably because of lasing dynamics (refer to Fig. 5.8).

The number of delayed copies related to each system configuration is re-
ported in Fig. 5.10, for the 5 values of ∆ϕF spanned. The number of delayed
copies is estimated in the following way. Every temporal trace is acquired
for ≈ 1300ns, synchronously to a trigger signal, and averaged over three
repetitions. The last 600ns, characterized by an absence of delay copies, are
exploited to estimate the mean value (Pmean) and the standard deviation
(σ(P )) of the temporal trace in absence of pulses. A delayed copy at the
drop port is effectively counted when |Pcopy − Pmean| > c ∗ σ(P ), being Pcopy

the optical power at the drop port, correspondent to the peak of the delayed
copy, and c an adjustable parameter. As one can observe, the number of de-
layed copies increases when larger feedback SOA currents are used, reaching
maximum values toward an SOA current of 350mA and detuning values of
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Figure 5.11: ∆ϕF effects on the temporal traces while operating at 6GHz
detuning and 150mA SOA current. The delayed copies tend to vanish while
approaching ∆ϕF = π/2.

±6GHz, with 5 delayed copies. Note however that this number represents
an underestimation. A finer tuning of the SOA current may allow the ob-
servation of a higher number of delayed copies, before entering the lasing
behavior.

Fig. 5.10 also shows that, for small feedback SOA currents, no delayed
copies are measured. This region extends to higher ηF (SOA current), when
∆ϕF −→ π/2. The absence of delayed copies at lower SOA currents is caused
by the high optical losses in the feedback loop, mainly due to the two grating
couplers, which are not sufficiently compensated by the SOA amplification.
To understand why the region without delayed memory extends to larger
SOA current when ∆ϕF −→ π/2, the reader can refer to Fig. 5.11. As can be
observed, the different ∆ϕF values reflect different average optical power at
the drop port. In the particular case ∆ϕF = π/2, the delayed copies tend to
vanish.
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Chapter 6

Experimental results

In this section I present the results that the microring with an external de-
lay loop system has obtained in benchmark tasks. The tested tasks are in
particular delayed boolean operations that require both linear and nonlinear
memory to be solved. In this way, the computational properties of the sys-
tem such as its nonlinearity, memory, and consistency over time are tested
for time delay RC. The experiments are performed with an input optical
power to the microring resonator well below self-pulsation, where the mi-
croring regime is linear. This maximizes the linear memory, while using the
photodetection as the main nonlinearity source in the system. The same
system configuration was exploited in the numerical work in section 4.3.1, to
solve the Narma 10 task. The microring is coupled to an optical feedback
loop where we allocated a maximum of 8 virtual nodes. The positive results
obtained in the tested delayed-boolean tasks prove the consistency over time
of the system, providing in particular indication regarding the successful im-
plementation of the phase controller in the system. Nevertheless, the low
number of virtual nodes and input optical power, limited the performances
in time series prediction tasks, such as the Santa Fe and Mackey Glass tasks
reported in the numerical work. These are thus omitted from the discussion
and represent future benchmark tasks on which testing the system when the
number of virtual nodes will be improved and a wider range of input optical
power will be investigated.

The chapter is organised in this way. First, the chosen boolean tasks
are described in section 6.1. Then, the results obtained on these tasks both
including and excluding the feedback loop are discussed in section 6.2 and
section 6.3, respectively. A final discussion where these two approaches are
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compared concludes the chapter.

6.1 Tasks description

Time delay RC uses time multiplexing to serialize the information to process.
Delayed boolean tasks refer to standard logical operations between two input
bits, which are delayed in time because of time-multiplexing at the input
layer of the system. The different boolean tasks investigated in this work are
reported in table 6.1. They consider considered common logical tasks such
as the AND, OR, NAND, and XOR. Also a linear memory task is introduced
and labeled by MC, having the target always equal to the delayed bit value.
Note that the XOR task is considered as the most difficult two-bit binary
delayed task since it is not linearly separable in machine learning terms.
The XOR task represents for this reason a nonlinear memory task. Each

xi xi−d MC AND NAND OR XOR
0 0 0 0 1 0 0
0 1 1 0 1 1 1
1 0 0 0 1 1 1
1 1 1 1 0 1 0

Table 6.1: Delayed-boolean tasks operated between the actual bit xi and the
previous d intervals in the past bit xi−d.

boolean operation applies between the current bit xi and a delayed bit xi−d,
with d = 0, 1, 2, . . . , and has target yi dictated by the logical operation
considered.

The input series xi is thus a pseudo-random binary sequence (PRBS) of
bits, which is then time-multiplexed at the input layer of the network, in
the optical domain. xi = 0 does not necessarily correspond to zero optical
power, as it depends on how the Mach-Zehnder modulator is operated. From
the microring response, the output oi is computed. Only the dynamical
response to the optical input xi is used for sampling the virtual nodes, as
sketched in Fig. 6.1. In this way, the memory properties of the microring-
feedback system are tested. In an alternative approach [106], virtual nodes
are sampled from multiple bw time intervals at the output response, which
extend in the past direction. In this case, artificial memory is introduced at
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Figure 6.1: Delayed-boolean task scheme. The boolean operation is carried
out between the actual bit xi and a bit xi−d previously input to the microring.
The response of the network is estimated from the dynamical response of the
microring system, only to the current bit. In this way, the memory properties
of the microring resonator are tested.

the output layer of the system, which does not necessarily rely on the memory
properties of the real node. From now on, every task will be labeled by the
correspondent name, followed by a number d = 0, 1, 2 . . . , indicating that the
task involves the current bit xi and a delayed bit xi−d, already presented to
the network.

The performances on each task are computed in terms of the Bit Error
Rate (BER), i.e. the number of misclassified bits over the total number
of bits processed. To estimate the BER, the output series oi need firstly
to be digitized, and then compared with the digital target yi. To do so,
the output series oi is normalized. Then, each element is considered to be
one or zero, according to a threshold θBER. Different BER estimations are
given by spanning θBER in the range [0, 1], with steps of 0.01. The BER
obtained in a task will refer to the minimum BER achieved when scanning
θBER. The procedure is illustrated in Fig. 6.2(a)(b), in two cases where
the BER does not reach or reaches error free operation, respectively. The
left column shows a comparison between the target and the (normalized)
predicted series, and the right column shows the dependence of the BER
on the threshold θBER. When the system fails the prediction, as in Fig.
6.2(a), there is no threshold θBER associated with zero BER. On the other
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hand, when the system is able to correctly predict the target series, as in Fig.
6.2(b), more θBER values can lead to zero BER. I define θBER − area, as the
normalized percentage area for zero error operation. A larger θBER − area
indicates a larger separation between the predicted series values, and hence
a more robust prediction result. The quantity θBER − area will be used in
the following to highlight those system configurations, leading to zero BER,
that are more robust.
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Figure 6.2: Two examples of a) wrong and b) correct task prediction. The
left panels show a comparison between the target and normalized predicted
series, while the right panels show the dependence of the BER as a function
of the threshold θBER, used to digitize the predicted series.

6.2 Microring resonator with feedback

6.2.1 Setting

The performance on the delayed binary tasks has been evaluated using a
processing scheme that differs from the one adopted in the numerical work
in section 4.2.4. There, the mask modulation was set at the photon lifetime
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(θ < τph), and served to couple neighbor virtual nodes using the transient
dynamics induced by the microring optical loading time. The mask nodes
were applied periodically to every bit processed, whose width, in turn, was
stretched to encounter the free carrier lifetime (bw ≈ τFC). The resulting
number of virtual nodes was Nv = bw/θ = 25, with bw = 1ns and θ = 40ps.
In the experiment, two factors limit the number of actual nodes. First, the
limited AWG bandwidth (500MHz) did not allow the modulation of the
input optical signal at the photon lifetime. Second, the microring has a high
free carrier (and thermal) timescale, τFC = 45ns (instead of τFC = 3.3ns,
used in the simulations).

The bit width bw is adapted to the new microring free carrier lifetime, as
well as the feedback delay time τF . On the other hand, instead of a mask
modulation at the photon lifetime, the AWG bandwidth allows to mask the
input signal at the free carrier timescale, such to couple virtual nodes using
these transients. Nevertheless, the microring is here operated in the linear
regime to maximize the linear memory of the system, and this possibility
is precluded. Thus, we couple here the virtual nodes by introducing an
asynchronous regime. A temporal mismatch between the bit width bw and the
delay time τF is applied. In this asynchronized regime, as already explained
in section 4.1.2, the feedback allows to connect neighbor virtual nodes that
belong to different delay intervals, increasing the complexity of the dynamical
response, and in this way the representativity of the network. A temporal
mismatch τF − bw = kθ, with k = 1 is applied in all the experiments.

The benchmark tasks have been performed using 3 and 7 virtual nodes,
by varying both the delay of the feedback fiber loop (thus its length) and
the mask node separation θ. For comparison, the tasks have been also tested
with a synchronous regime using 8 virtual nodes. Table 6.2 summarizes all
the settings adopted. Similarly to the numerical work, a mask is periodically
applied to the input optical signal. A step-wise function constant over inter-
vals of length θ masks every bit, with values that are randomly taken from
the set: [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0]. An example of an optical
input signal, representative of the signal that is fed to the microring, is shown
in Fig. 6.3. In particular, the full Mach Zehnder modulation is exploited,
thus input bits xi = 0 equal an almost zero input optical power (which in
the figure is linked to negative voltages from the detector, due to its high
electronic gain of 2× 106 V/W).

From an entire dataset of 4200 elements, the first 200 are used to bring
the system on a working regime, while the subsequent 3000 are used for the
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Figure 6.3: Optical input masked before entering the DUT. The mask is com-
posed of seven values and is periodically applied to every bit. This example
refers to the setting with bw = 77ns and θ = 11ns.

offline training of the readout weights, and finally, the other 1000 elements
serve for testing the network. Note that the input PRBS has order 13 so
that the PRBS sequence is periodically repeated every 8192 (213) elements.
In this way, repetitions of the entire sequence over the computing dataset,
which has a lower 4200 length, are avoided. Ridge regression is applied at the
output layer for optimizing the output weights, with 10−4 ridge parameters.
Each measure is repeated 3 times, and the correspondent BERs are finally
averaged.

6.2.2 SOA nonlinearity

All the tasks are performed using an input power Pin = 78µW , a value well
below the appearance of self-pulsing phenomena (refer to Fig. 5.7(b)), that
maximizes the linear memory to exploit in the delayed-boolean tasks. De-
spite this low input optical power, the SOA of the feedback loop can increase
the optical power of the circulating signal, introducing nonlinearities into the
overall system. To monitor the presence of SOA nonlinear effects, the same
task can be repeated with different feedback SOA currents. Then, from the
optical response of the system, one can track the state of a virtual node Nj,i,
relative to a particular input element xi. If the virtual node state varies lin-
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θ (ns) Nv bw (ns) k τF (ns)
19 3 57 1 76
11 7 77 1 88
11 8 88 0 88

Table 6.2: Setting of the input encoding and the feedback delay time adopted
for the processing of the benchmark tasks. The feedback delay time is mod-
ified by varying the length of the external fiber loop. Input bit duration bw
and delay time τF are related by τF − bw = kθ, with k = 0 indicating the
synchronous regime and k ̸= 0 indicating the asynchronous regime.

early with the SOA current, then the nonlinear behavior is not introduced.
To better visualize this, I show in Fig. 6.4 a limited time interval of the
microring-based system response, for different feedback SOA currents, re-
ported on top of each panel. Each plot shows the microring response for
different detuning values: ∆νs = 0 (in resonance), ∆νs = 30GHz (out of
resonance), ∆νs = ±6GHz (partially in resonance). The masked input op-
tical trace is also shown as a reference, here represented by a logical one,
surrounded by zeros. The phase of the feedback signal is in this case not im-
portant. Indeed, the optical signal is modulated by exploiting the maximum
transmission of the MZI. As a result, the input optical power corresponding
to xi = 0 input bits is almost zero, and the resulting drop response is only
provided by the feedback signal, thus without interference.

The following observations can be made:

• For ∆νs = 0, the microring-based system response is perfectly aligned
with the optical input, and no delayed copies appear.

• For ∆νs = 30GHz, the input signal is out of resonance, and the relative
optical trace is delayed by τF = 88ns.

• For ∆νs = ±6GHz, echoes of the input signal appear.

• Lasing noise starts to appear for SOA currents above 400mA, with
effects already visible at this current for ∆νs = 0.

The state of a virtual node can be sampled and tracked over the different
SOA currents and detuning values. As an example, Fig. 6.5 refers to a
virtual node sampled at 273ns, which represents the third virtual node of
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Figure 6.4: Temporal traces obtained when input a PRBS signal to the
microring coupled to an external feedback in an asynchronous regime, for
varying feedback SOA currents. Each plot shows the input optical signal
and the drop response for different detuning values: ∆νs = 0 (in resonance),
∆νs = 30GHz (out of resonance), ∆νs = ±6GHz (partially in resonance).

the first echo signal, and thus incorporates the effects of the feedback SOA
amplification. In the case ∆νs = 0, there is no feedback signal, as the input
signal is suddenly dropped. The virtual node state is independent of the
SOA current until the system undergoes lasing above 400mA. For larger
detuning values ∆νs, the optical power which is input to the SOA increases,
as more optical power at the input port of the microring is transmitted to the
through port, and then to the SOA in the feedback loop. For all ∆νs ̸= 0, the
dependence of the virtual node state is linear with the SOA current, before
the lasing effects start to exhibit, and also does not show the effects of SOA
gain saturation.
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Figure 6.5: Response of a virtual node sampled at 273ns as a function of the
SOA current, for different starting detuning values.

6.2.3 Computing performance

All the boolean tasks reported in table 6.1 are evaluated from the dynamical
response of the microring with external feedback. Several configurations have
been explored to find the region of optimal performance. Relying on the pre-
vious numerical work, I have explored the influence of the feedback strength,
as a function of the electrical current driving the feedback SOA, the feedback
phase ∆ϕF , using the Arduino-based controller, and the starting detuning
∆νs (here in GHz) between the cold resonance and the input signal frequen-
cies. The SOA current is varied over the full allowed range [0− 500]mA, the
feedback phase varies from almost constructive to destructive interference,
i.e. ∆ϕF ∈ [π/6, π/3, π/2, 2π/3, 5π/6], and ∆νs ranges in [−30,+30]GHz,
with 2GHz steps. The input optical power is fixed to Pin = 78µW , which,
referring to Fig. 5.7, is a value well below the appearance of self-pulsing
phenomena.

The results that follow relate to the mask setting with 7 virtual nodes,
in an asynchronous regime, where each mask node lasts for a time interval
θ = 11ns and the bit duration is bw = 77ns. Since each mask node relates to
a correspondent virtual node at the output layer, the microring response is
acquired with a picoscope sampling time Ts = 800ps. In this way, 14 samples
are available per virtual node (θ/Ts = 13.75, is then linear interpolated to
obtain 14 samples), from which only the 7th sample indicates the virtual node
state. All the other samples are discarded to avoid spurious electronic inter-
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Figure 6.6: BER achieved by the microring-based network in the boolean
MC task as a function of the feedback SOA current and the starting detuning
∆νs, at ∆ϕF = π/6. The tasks are the a) MC0, b) MC1, c) MC2, and d)
MC3. The left column reports the BER, while the right column reports the
threshold area θBER − area, related to error free operation.

symbol effects, possibly induced by the limited bandwidth of both the input
AWG (500MHz) and the detector in the output layer task line (600MHz).

Before presenting a summary of the best performance obtained in the
boolean tasks of table 6.1, some useful examples are reported to better illus-
trate the physics of the system.
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Boolean task MC

The first illustrative task is the boolean memory MC, whose target is the
state of the delayed bit. In Fig. 6.6, the results of this task are presented
for d = 0, 1, 2, 3, and ∆ϕF = π/6. The BER is reported in the left column,
while the threshold area θBER-area, associated with error free operation, is
reported in the right column. The x-axis of each plot indicates the feedback
SOA current, while the y-axis indicates the starting detuning ∆νs.

In the task MC0, the input bit xi is also the target. Thus, this task
requires the direct transmission of the input to the drop port of the micror-
ing, while delayed information is not necessary. Indeed, Fig.6.6(a) indicates
that the task is robustly solved with BER = 0 and a θBER − area ≈ 0.7,
as ∆νs approaches zero, where the input signal is mostly dropped. The
performance start to degrade for SOA currents above 350mA, when lasing
dynamics appear in the system. The task MC1 requires at the drop port
also information regarding the bit xi−1, while computing xi. In this case,
∆νs = 0 is no more a solution, since there is no delayed information at the
drop port, as shown in Fig. 6.6(b). Instead, for ∆νs ̸= 0 part of the informa-
tion is transmitted through the feedback loop, and thus delayed at the drop
port to better solve the task. Anyway, a minimum feedback SOA current is
needed in this case. Still, Fig. 6.6(b), shows that the configurations with the
highest θBER − area ∼ 0.7 in the MC1 task, are achieved when the input
signal frequency is completely out of resonance and the feedback SOA cur-
rent approaches 400mA. In this case, indeed, the optical path bypasses the
ring, and the drop signal is a 1τF -delayed version of the input signal, thus
matching the requirements of the MC1 task. As a result of the asynchronized
regime (τF − bw = θ), this region is also optimal for solving the MC2 task
as the first virtual node carries information regarding the response to two
previous bits. The MC2 results are shown in Fig. 6.6(c). The task MC3
is not solved with zero BER. The regions of lower BER are here restricted
(Fig. 6.6(c)), requiring a pump frequency coupled to the resonance. This
last condition, indeed, allows the light signal for multiple iterations along
the microring-feedback optical circuit, which is the only way to provide three
bits of memory into the system.

While in the previous examples, all the results were referring to a precise
feedback phase configuration, the next two examples will focus on the effects
of different ∆ϕF values.
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Figure 6.7: BER results for the AND3 task, for five values of ∆ϕF . The
minimum BER, reported at the top of each panel, as a constructive interfer-
ence condition at the drop port, ∆ϕF = π/6, is reached.

Boolean task AND

The results obtained in the boolean AND3 task are reported in Fig. 6.7, for
the five values investigated of ∆ϕF . Each panel reports the BER value as
a function of the feedback SOA current and the starting detuning ∆νs. On
top of each panel, the minimum BER value obtained for the correspondent
∆ϕF configuration is also reported. An attribute of the AND3 task is the
dependence of the best BER on the parameter ∆ϕF , which decreases as
the parameter ∆ϕF moves from destructive (∆ϕF = 5π/6) to constructive
(∆ϕF = π/6) interference. Considering that the target value of the AND
task is one only when both arguments are one, this fact is reasonable: the
system exploits the constructive interference between the drop response of
the input bit xi = 1, and the delayed information relative to the input bit
xi−3 = 1 (optical information provided by the feedback loop), to obtain the
highest output power. For all the other combinations of xi and xi−3 the
output power will be lower, and as a result, the task is solved.

In Fig. 6.8, the results achieved in many delayed AND-d tasks are re-
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Figure 6.8: BER in different delayed AND-d tasks, with d = 0, 1, 2, 3 (left
column) and the correspondent θBER − area, related to error free operation.

ported, with d = 0, 1, 2, 3, while considering always the parameter ∆ϕF =
π/6. The left column of panels reports the BER, while the right one reports
the correspondent θBER − area, leading to error free operation. The AND0
task requires at the drop port only the information regarding the actual in-
put xi. For xi = 1 the target is one, for xi = 0 the target is zero. Clearly,
the best region in Fig. 6.8(a), where this task is solved, is on resonance,
as indicated by the correspondent θBER − area at ∆νs = 0. Other configu-
rations that also provide delayed information through the feedback degrade
the performance, while configurations providing only delayed information
(|∆νs| >> FWHM) do not solve the task. The AND-1-2 tasks, shown in
Fig. 6.8(b)(c) respectively, are solved, instead, even when the pump wave-
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Figure 6.9: BER results for the XOR1 task, for five values of ∆ϕF . The
minimum BER, reported at the top of each panel, decreases as a destructive
interference condition at the drop port, ∆ϕF = 5π/6, is reached.

length is out of resonance, relying on the asynchronization between the input
and delay optical signals. Nevertheless, more robust configurations emerge
towards the region where the pump wavelength is coupled to the microring
resonance. Here, the constructive interference occurring at the drop port
leads to more robust configurations with error free operation, as indicated
by the correspondent θBER − area values.

In the case d = 3, shown in Fig. 6.8(d), the task is solved in a narrow
region, corresponding to the one with the highest number of delayed copies
obtained in Fig. 5.10. For d = 3, the only way to provide the required past
information for solving the task is by multiple iterations of the optical signal
through the microring-feedback circuit.

Boolean task XOR

Similarly to the AND task, I report the results for the boolean XOR1 opera-
tion in Fig. 6.9, for five values of ∆ϕF . Each panel reports the BER as a func-
tion of the feedback SOA current and the starting detuning ∆νs. By tracking
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the value of the best BER, on top of each panel, as a function of ∆ϕF , an op-
posite trend with respect to the AND task appears. This time, destructive in-
terference at the drop port is desirable. This is again reasonable, since for the
combinations of input (xi, xi−d) = (0, 0), (1, 1), having target yi = 0, the cor-
respondent drop optical power can be lower, and thus separable, with respect
to the drop optical power of the input combinations (xi, xi−d) = (0, 1), (1, 0),
having target yi = 1. The results for the XOR-d task, with d = 1, 2, 3, are
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Figure 6.10: BER in different delayed XOR-d tasks, with d = 1, 2, 3 (left
column) and the correspondent θBER − area, related to error free operation.

shown in Fig. 6.10(a)(b)(c) respectively, keeping this time ∆ϕF = 5π/6.
Differently from the boolean AND and MC operations, the XOR task re-
quires a nonlinear memory to be solved. The simple 1-bit linear memory
emerging from the delayed bit at |∆νs >> FWHM |, or the 2-bit linear
memory emerging due to asynchronization, still at |∆νs >> FWHM |, is
here not enough. As a result, for all d-values, the task is never solved when
the pump wavelength is out of resonance. Destructive interference at the
drop port is here always required, between the input optical information xi

that is suddenly dropped, and the delayed xi−d bit coming from the feed-
back loop. Hence, for any d value, this task relies on the multiple iterations
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that the optical field is able to do along the microring-feedback optical circuit.
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Figure 6.11: Summary of the best BER results obtained on delayed boolean
tasks, using the following number of virtual nodes and synchronization
regimes: a) NV = 3 and asynchronous regime (k=1), b) NV = 3 and asyn-
chronous regime (k=1), and c) NV = 8 and synchronous regime (k=0).

Results summary

The summary of the lowest BER values for each delay and task performed
is reported in Fig. 6.11(a). As can be observed from the boolean MC task,
the microring coupled to the feedback loop is able to recall correctly up
to three bits in the past. The boolean AND task and its negation NAND
task overlap, similarly to what was reported in [129], and can be solved up
to d = 4, this last with BER=0.02. The OR and XOR tasks are finally
solved up to two bits in the past. As already mentioned, these boolean
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tasks have been also tested considering both NV = 3 virtual nodes in an
asynchronous regime, and NV = 8 virtual nodes in a synchronous regime.
Both these measures were done by scanning the detuning in a more restricted
area, precisely ∆νs ∈ [−10,+10]GHz, and are reported in Fig. 6.11(b)(c),
respectively. A comparison between the two processing regimes, suggests that
operating the system in an asynchronous regime allows better performance
on the delayed boolean tasks. In fact, the tasks are only solved up to d = 1
for synchronous regimes.

6.3 Microring resonator in absence of feedback

While in the previous section the feedback was a critical component for the
correct evaluation of delayed binary tasks, in this section it is disconnected
from the microring. The aim is to investigate if the microring resonator
alone, thanks to its own nonlinear dynamics, is also able to properly evaluate
delayed binary tasks. Recent works have already answered positively to this
question. In [130], the free carrier nonlinearity is used to solve the 1-bit
delayed OR and AND tasks, but it is not sufficient to solve the 1-bit delayed
XOR task. In [131], the authors use two input optical signals, a pump and a
probe, coupled to adjacent microring resonances. The microring nonlinearity
is triggered by the pump signal, which encodes the input information, and
are imprinted to the probe signal, whose samples are given to the ridge
regression. The authors show that by using this approach, the microring
free carrier nonlinearity can be exploited to solve also 1-bit delayed XOR
task. The results in this section show a third possibility to solve the 1-bit
delayed XOR task, that exploits the self-pulsation dynamics of the microring,
without requiring pump and probe signals. Moreover, these results will serve
for a final discussion in section 6.4, where the performance of the microring
with and without feedback loop are compared.
The microring that is exploited has radius r = 7µm, waveguide cross-section
of 220 × 500nm2, symmetric gap with the two bus waveguides of 180nm,
FWHM = 10.5GHz, a quality factor Q = 1.8× 104, and similar free carrier
timescales to the microring used in the feedback experiment (as it belongs to
the same chip), estimated as τfc ∼ 45ns.
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6.3.1 Setting

The experimental setup for this experiment is the same as reported in Fig. 5.5
without the feedback loop and the phase controller system. The performance
of the single microring in the tasks is investigated by spanning the input
power Pin, the starting detuning ∆λs, the input bit rate, and the modulation
amplitude. Precisely, the parameters span over the following range of values:

• Input power to the microring Pin: 0.07, 0.29, 0.51, 0.73, 0.96, 1.18,
1.40, 1.62, 1.84, 2.06 mW.

• ∆λs ∈ [−20,+20]GHz with step of ∼ 1GHz, for a total of 40 values
spanned.

• bit rate: 1, 2.5, 5, 10, 15, 25, 40, 60, 80 Mbps. Correspondingly, the
oscilloscope sampling time are set to: 100, 40, 20, 10, 4, 4, 2, 2, 1 ns.

• modulation amplitude: 0.02, 0.04, 0.1, 0.5, 0.7.

The modulation amplitude is set by operating in quadrature the input Mach-
Zehnder modulator and only changing the Vpp applied on it, through the
AWG (see Appendix B). A modulation amplitude of 1 indicates the full use
of the Mach-Zehnder transfer function, with zero-bit levels encoded in the
minimum power to the Mach Zehnder, and one-bit levels to full transmission.
Intermediate amplitude modulations refer to the partial use of the Mach-
Zehnder transfer function with respect to the full transmission range, always
centered around the quadrature point.

Note that the input bit rate was a parameter not spanned when the
feedback was present since it was constrained to the feedback delay time τF .
Moreover, now there is no mask applied at the input layer, while 5 virtual
nodes are sampled at the output layer, synchronously with the input bit
injection.

6.3.2 Task results

A summary of the obtained results is reported in Fig. 6.12. Each panel shows
the best BER as a function of the input bit rate, for different modulation
amplitudes. The results refer to the case d = 1, i.e. to tasks operated between
the actual bit xi and the previous bit xi−1. Larger d values are not shown,
since they never allow zero BER. Fig. 6.12 highlights the following points:
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Figure 6.12: Best BER obtained in delayed binary tasks (d = 1) using a single
microring resonator without feedback loop. The parameters investigated are
the starting detuning ∆νs, the input optical power Pin, the input bit rate,
and the modulation amplitude (Mod).

• The lower modulation amplitudes (0.02, 0.04) do not allow to solve any
task, independently of the input bit rate adopted. The optical zero and
one levels are close enough to be confused within the readout noise.

• Larger modulation amplitudes (0.1, 0.5, 0.7) allows for zero BER in all
tasks. Moreover, the BER curves seem to exhibit a trend, according to
which the BER is minimized towards the lowest bit rates (1 Mbps). It
then degrades and is later minimized again at bit rates around 40 Mbps.
This last bit rate is linked to transient dynamics induced by free carrier
nonlinearities, while the slowest bit rates relate to a combination of free
carrier and thermal nonlinearities, that are present even in self-pulsing
dynamics.

• The AND1 task, appears easier to solve at all bit rates, while the XOR1,
which is also the only nonlinear task, is solved only at the slowest input
bit rates.
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Figure 6.13: BER obtained in delayed binary tasks (d = 1) using a single
microring resonator without external feedback. Each panel shows the BER
performances as a function of the starting detuning ∆λs and the input optical
power Pin. The three columns of panels, from left to right, refer to 1 Mbps,
40 Mbps, and 80 Mbps input bit rates (br), respectively. The amplitude
modulation is 0.5. Red dots indicate (Pin, ∆νs) configurations with zero
BER, whose temporal dynamic is shown in Fig. 6.14.
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Figure 6.14: Example of experimental traces acquired at an input bit rate
of a) 40Mbps and b) 1Mbps, for specific configurations (Pin,∆νs) indicated
on top of each panel. These configurations refer to the red dots in Fig. 6.13.
The modulation amplitude is 0.5.

To verify that optimal BERs rely on the microring nonlinearities, the results
are shown in a Pin −∆νs map in Fig. 6.13, for a specific amplitude modula-
tion of 0.5. The three columns relate to three different input bit rates (1, 40,
and 80 Mbps, from left to right, respectively). As can be seen, the regions
with the best performance are found where the input signal wavelength is
coupled to the microring resonance, and improve for higher input average
power, task-dependent, in agreement with [130][131].

Some examples of experimental traces are also reported in Fig. 6.14, to
highlight the transient dynamics induced by the microring nonlinearities.
The traces refer to system configurations indicated with a red circle in Fig.
6.13, leading to error free operation. The traces show clearly the presence of
self pulsing, for both input bit rates of 40 Mbps (Fig. 6.14(a)) and 1 Mbps
(Fig. 6.14(b)). This last, in particular the trace related to Pin = 1.84mW
and ∆νs = −0.51GHz, shows that self-pulsation dynamics can be exploited
to solve the XOR1 task, thus extending the results obtained in [130][131].
It is interesting to track the behavior of the drop signal in correspondence
with a zero-level input bit. The optical signal is still affected by nonlinear-
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ities that were previously triggered and that now are relaxing down. It is
also interesting to note how the number of spikes in Fig. 6.14(b) depends on
the starting detuning ∆λs, which reduces to one for the positive frequency
detuning displayed (section 3.3.2). In particular, Fig. 6.14 suggests a pos-
sible strategy for encoding information in the number of microring spikes,
similarly to [132] where a numerical cognition task is solved by encoding the
input number given to a single integrate-and-fire neuron model, in its spiking
nonlinear response.

As a result, the inertia of the thermal and free carrier nonlinearities are
here exploited to preserve information about the previous input bit, and
consequently for solving the 1-bit delayed binary tasks presented. The finite
timescale of the nonlinearities, under this perspective, acts as a memory
source for the microring-based reservoir, provided that the input bit rate
codifies the information to process at similar timescales to introduce transient
dynamics. Dynamical transients generated by only the free carriers or from
both the free carriers and thermal effects in self-pulsation dynamics, are
useful for computation.

6.4 Discussion

Despite the apparent simplicity of the logical operations considered (AND,
OR, XOR, MC, NAND), these tasks usually serve as benchmark tasks be-
cause these unveil the available nonlinearity and memory mechanisms of the
system. The experiments carried out show that different memory sources are
present in the system, with and without the feedback loop, already predicted
in the numerical work in chapter 4.

The microring coupled to an external loop relies on the feedback sig-
nal, opportunely tuned, for achieving error-free operation in delayed boolean
tasks, that require up to 3 bits of memory (d = 3). The richness of the
system response is here enhanced by masking the input signal and using an
asynchronous regime (τF − bw = θ). The AND and XOR tasks previously
illustrated, show that the interference condition at the drop port between
the actual bit and the delayed bit of interest, is essential in solving the tasks,
thus suggesting the importance of the photodetection square low nonlinear-
ity when combined with a feedback loop that provides the optical memory
of the system.

On the other hand, when disconnecting the feedback loop, the microring
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is still able to achieve error-free operation in delayed boolean tasks, but only
considering up to 1 past bit (d = 1). In this case, the source of memory
relies on the inertia of the thermal and free carrier nonlinearities, properly
triggered by input bit rates that introduce transient dynamics, and hence
memory, in the drop response.
Thus, memory can emerge within the system both as an optical delayed
signal propagating along the feedback loop, and as the state (∆N,∆T ) of
the microring resonator, nonlinearly modified by the input optical signal.

Task performance comparison The performed experiments highlight an
important difference between the two memory schemes above described. The
response of the single microring without feedback loop needs a non-zero op-
tical signal where imprinting the microring nonlinear effects, and thus write
the memory information of the system. Thus, logical input bits such as
xi = 0 and xi = 1 in a PRBS, need both to be encoded in non-zero optical
signals, for probing the past information stored in the microring state. In
section 6.3, for example, the modulation amplitude was always < 1, meaning
that 0-level input bits were codified in a non-zero optical signal. Otherwise,
a pump and probe strategy can be operated [131]. On the other hand, the
microring with an external fiber loop is free from this constraint. In fact,
even for zero optical input signal, there can be a positive optical power at
the drop port due to the delayed optical signal. As a result, the system was
operated by exploiting the full Mach Zehnder modulation range at the input
layer (modulation amplitude 1) to maximize the signal-to-noise ratio, hence
encoding 0-level bits belonging to the input PRBS in almost zero optical
power pulses.

Between the investigated tasks, the boolean XOR is considered the hard-
est delayed binary task. Indeed, in addition to memory requirements, it
also needs a proper nonlinear transformation. The results obtained show
that both the microring with and without the external delay loop are system
configurations that are able to solve the XOR task, although with different
processes. The former exploits the feedback parameter ∆ϕF to set a destruc-
tive interference condition at the drop port of the microring, followed by the
photodetection nonlinearity. The latter relies on combinations of thermal
and free carrier nonlinearity transients. As a result, the XOR1 is solved in
both cases, while the XOR2 is solved only by the microring with an external
feedback loop. Referring to the literature, the XOR1 is a nonlinear bench-
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mark solved in many other implementations. For example, the XOR1 task is
solved in [89] using an integrated reservoir made of 16 microring resonators
coupled in a swirl topology, in [129] using an integrated reservoir made only
of combiners and splitters, and in [107] with an integrated SOA coupled to
a feedback loop operated in a time-delay RC approach. Between the cited
works, the XOR2 is solved only in [129] (which extends to even farther de-
layed bits), thanks to a parallel readout from several nodes in the network.
Nevertheless, the XOR2 is a more difficult task when using time-delay RC,
and for example, it is not solved in [107]. Thus, solving the XOR2 task
with the microring coupled to an external delay loop can be considered a
remarkable result.

Task performance improvements The performances obtained in the
delayed boolean tasks show that the microring-feedback system has been
successfully implemented, and is reliable thanks to a phase-controller system
that works in parallel with the apparatus and compensates the environmental
noise while performing the task measurements. The system has been inves-
tigated with input optical power well below the appearance of self-pulsation,
where the microring works in a linear regime, and using an optical feed-
back delay τF = 88ns. This allowed for 7 virtual nodes in the asynchronous
regime, and 8 virtual nodes in the synchronous regime. Certainly, the most
attractive part of the work comes now, since the system can be upgraded in
many ways for solving more complicated benchmark tasks. In the following, I
present a list of possible future directions to explore while using this system.

• High input optical power can be investigated for also exploiting the
microring nonlinearity. This has proven fundamental in solving the de-
layed boolean tasks when disconnecting the feedback line, relying both
on the free carrier nonlinearity and even self-pulsation dynamics. Thus,
using larger input powers also when the microring is coupled to the ex-
ternal loop is desirable, possibly extending the feedback delay up to
1µs, to match the best input rate suggested in Fig. 6.12. Nevertheless,
it is worth noting that performing the measures at a high input optical
power is not as simple as with the single microring operation, since
it also requires the calibration of the phase-controller system. Indeed,
both the detector in the slow output line (PMc) and the input ADCs
of Arduino, do not have to saturate as a consequence of the increased
input power. Attempts to solve the tasks at higher input power have
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been already done with the current feedback τF = 88ns, but without
checking for these saturation problems, and are not discussed in the
thesis.

• At larger input power, it is possible to mask the input signal by exploit-
ing the free carrier nonlinearity transients. This last, in combination
with an asynchronous regime, may lead to a richer dynamical range in
the response of the microring with external feedback, which is beneficial
for task computation [133].

• The number of virtual nodes can be increased, by for example extending
the length of the fiber loop. In this situation, the virtual nodes can be
coupled using a mask signal modulated at the free carrier nonlinearity
timescale τFC = 45ns, thus relying on the microring nonlinearity. A
feedback delay τF = 1µs and a masking modulation time θ = 25ns
is sufficient in this case to allocate 40 virtual nodes. Alternatively,
the microring can be operated in a linear regime and an asynchronous
regime can be applied to couple the virtual nodes, as in the experiments
performed in this work. This last configuration maximizes the system’s
linear memory and relies on the photodetection nonlinearity. Note that
the realization of the experiment with larger fiber lengths is limited
since more environmental phase noise will interest the system.

• Faster phase-controller, employing for example a faster FPGA board
(instead of Arduino), voltage amplifier and phase shifter, may allow
the stabilization of longer feedback loops (larger τF ), thus extending
the number of virtual nodes available for computation.

• A sufficiently fast AWG, at the input layer, can be operated for masking
the input signal at the fastest microring photon lifetime (θ < τph), hence
introducing additional transient dynamics. Considering to sample one
virtual node per mask node θ ∼ τph, as it was proposed in the numerical
implementation in section 4.2.3, it is possible to reduce the feedback
delay τF while maintaining a high number of virtual nodes. In this
case, an integration of the feedback loop may become convenient, as
it also eliminates the problems related to environmental phase noise
encountered during my experiments (section 7.1).

• A higher number of virtual nodes, as suggested by the previous points,
and a higher input optical power open the way to compute also analog
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tasks, such as the Santa Fe and Mackey-Glass prediction tasks, that
were tested in the numerical work. To this aim, a higher input optical
power is beneficial also for encoding the analog task information in the
optical domain with a higher signal-to-noise ratio.

• More complex structures based on microring resonators, for example
CROW and SCISSOR geometries, can be exploited to enhance the real
node nonlinearity and thus the richness of the dynamical response.
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Chapter 7

Future perspectives

The concepts and strategies learned during this thesis work, have finally
led to a series of ideas. Their basic ingredients are presented in the following
sections, hoping that they can inspire future applications in the neuromorphic
photonic field.

7.1 Hybrid spatial-time delay RC

Realizing a microring resonator with an optical fiber as a delay line brings
several complications. As already described in section 5.2, an optical fiber
translates environment vibrational, phonic, and thermal noise, into a feed-
back optical signal characterized by a noisy phase. As a result, a system that
compensates for these sources of noise is required and has been implemented
in this thesis work. An alternative and attractive way to realize a microring
resonator with an external feedback loop is to integrate this last. Within
my thesis work, the design of such a structure has been carried out and just
fabricated by the foundry AMF (Singapore).

The layout of the design, reported in Fig. 7.1(a), is characterized by a
2cm integrated delay line coupled to a scissor composed of two microrings
7.1(b). Along the delay line, two heaters are included. One of them aims at
controlling the phase of the feedback signal, while the second one, included
in one arm of an interferometer (section 2.6.4), aims to control the amplitude
of the delayed signal. Multimode interferometers MMIs are used to split and
combine light where needed. A grating coupler (GC) along the feedback
loop also serves to monitor the optical power of the delayed signal. To this
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Figure 7.1: a) Layout of the integrated and updated version of the microring
resonator coupled to an external feedback loop. b) Focus on the two micror-
ings designed.

purpose, light can be coupled to an external optical fiber and then detected,
or an infrared camera can be placed on top of the chip, to directly measure
the scattered light by the grating.

The microring is here updated with a SCISSOR (side-coupled integrated
spaced sequence of resonator) [134] composed of two identical microrings,
having radius r = 7um and a coupling coefficient k2 = 0.01. Both microrings
are provided with p-n junctions that aim to control (and in particular reduce)
the free carrier timescale. One of the two microrings is also equipped with a
heater, to modify the relative resonance positions between the two microrings.
In an extreme case, the two microring resonances are totally uncoupled,
and the single delayed-microring system is recovered (while using a single
wavelength signal).

Finally, it is worth noting that a shorter delay line also allows for a lower
number of virtual nodes. Here, the delay τF ∼ 220ps can provide around
five virtual nodes, using a masking time θ = 40ps that works at the photon
lifetime. In order to improve the number of virtual nodes, the structure is
designed with multiple output waveguides, which pick up the signal from
different locations of the scissor (drop, out up, out down). In this way, the
virtual nodes can be sampled in parallel from several output signals, possibly
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increasing their useful number, in a hybrid spatial-time delay RC processing
scheme.

7.2 Microring resonator-based fiber sensor

The phase of the feedback signal is a tool for tuning the optical power circu-
lating within the microring. The idea of a fiber sensor coupled to a microring
is inspired by Fig. 7.2, where the drop response of the delayed-microring to
a CW input signal is acquired as a function of time, without the phase con-
troller, thus at the mercy of the environmental noise. As can be noted, the
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Figure 7.2: a) Drop response to a CW input signal as a function of time,
of the delayed microring resonator. b) spiking response in a zoomed time
interval. No phase controller is activated, so that the drop signal is subject
to environmental phase noise.

dynamic is modified as a function of the time, showing in particular larger
oscillation until approximately 0.05s. In other moments, instead, the drop
signal is higher and exhibits smaller oscillations. Actually, spiking activi-
ties characterized the region with larger oscillations, as shown in a zoom in
Fig. 7.2(b). It looks like a behavior induced by the fluctuating phase of
the feedback signal, that when induces destructive interference at the drop
port (lower signal), it enhances at the same time the optical light circulat-
ing across the microring-feedback loop, and thus the microring nonlinearities
that lead ultimately to spike emission. This behavior suggests a possible
mechanism for using the optical fiber as a sensing element: an agent in the
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environment can perturb the fiber, thus varying the phase of the optical sig-
nal. The phase perturbation reaches the optical chip where it is translated
in a series of spikes emitted by the microring. If the microring is part of a
photonic neural network, this process can be used to convert stimulus from
the environment into spiking pulses within the neural network. If the phase
controller is active, environmental phase noise can be compensated (KHz),
and does not participate in the spiking mechanism above described. The
target environmental stimulus instead, which should be faster and hence not
compensated by the phase controller, induce spiking emission within the inte-
grated microring-based network. The idea extends naturally to other systems
that may produce spikes, for example to VCSELs possibly included within
3D networks [135].

7.3 Feed-forward neural network for sensing ap-
plications

Different from time-delay RC, but still belonging to the neuromorphic com-
puting field, is the following idea, inspired by a feedforward neural network
reported in [79]. The idea is to use a similar scheme for the realization
of an integrated neural network for sensing applications. The design con-
cept is schematized in Fig. 7.3. The network exploits the broadcast-and-

Figure 7.3: Scheme of a prototype FFNN designed for sensing applications.
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weight protocol and equips each neuron with a microring weight bank and
an electro-optic conversion step that applies the nonlinear transformations
using a further microring resonator. Each layer of the network is refreshed
by input CW optical signals, either via multiple wavelength channels or via
a broadband ASE, which are then modulated by the photonic neurons of
the previous layer through their output microrings. The main idea here is
to provide the input layer of the FFNN with a set of microring resonators,
whose surfaces are engineered to trap specific chemical species. By designing
trenches in correspondence of the microrings, for example, these lasts can
be exposed to the environment and detect the target chemical species there
present. The microring resonance position is shifted in an amount propor-
tional to the concentration of target chemical species, and the information is
hence imprinted on the corresponding wavelength channel, thus propagating
through the network where it can be processed according to a neural network
scheme. Most importantly, the weight banks of each neuron can be trained
to perform the task of interest. While in my thesis work, the environment
has played the role of a noise source for the delayed-microring network, the
same environment is here providing the input information to be processed
by the photonic neural network.
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Chapter 8

Conclusions

My Ph.D. work focused on the realization of time-delay RC in silicon pho-
tonics, in particular relying on the dynamics of silicon microring resonator
coupled to an external optical feedback.

During the first phase of the thesis, I became familiar with the linear and
nonlinear dynamics that silicon microring resonators exhibit, elaborating a
model which also considered a feedback optical signal to the structure. Then,
I investigated how to fold a neural network in these dynamics, exploiting all
the timescales associated with the microring nonlinearities τfc, τth and with
optical storage τph. The numerical results obtained [95] were a useful tool
for understanding reservoir computers containing microring resonators, and
constituted the starting points for the design of the subsequent experimental
investigation.

During the second phase of the thesis, I set up the optical system for
the experimental implementation of the microring resonator with external
optical feedback in time-delay RC, obtaining positive results in the delayed
boolean benchmark tasks. To this end, it is worth mentioning the effort
dedicated to the stabilization of the system against environmental noise.
While this last was not accounted for in the numerical work, it appeared a
major problem during the experiments, that needed to be solved for ensuring
the reproducibility of the results over time. To this aim, I designed and
developed a phase-controller system that compensates for the environmental
noise, and that can work in parallel with the apparatus while performing task
measurements. Moreover, I took part in the design of photonic integrated
structures, which include an integrated version of the microring resonator
with external optical feedback, and followed the administrative procedures
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that lead to their final production. The concept learned during the thesis
provided insights for ideas related to future perspective applications, which
have been also presented.

Overall, while investigations beyond the single delay node RC architec-
ture are becoming increasingly demanding, these architectures will continue
to provide fundamental insights, benefiting from their implementation sim-
plicity. This also stands for the microring resonator with an external feedback
loop, where different processing strategies emerged to better solve the bench-
mark tasks presented in the thesis. However, the experimental investigation
presented, which relies on an optical fiber as a feedback loop, could work
consistently because stabilized against environmental noise. The high num-
ber of virtual nodes that typically time delay RC architectures achieve, by
simply extending the feedback loop, is here limited by the environmental
noise. Indeed, longer delay times τF , and hence longer feedback lengths, for
allocating a larger number of virtual nodes, comes at the expense of a larger
environmental phase noise along the optical fiber loop, which becomes in-
creasingly difficult to compensate. Instead, the input modulation bandwidth
can be increased to enhance the number of virtual nodes. This last, combined
with a fully integrated solution of the feedback loop that avoids phase noise,
is most probably the best direction to follow for future studies that use a
microring resonator with external feedback for time delay RC. This system
has been already designed and will be therefore soon investigated.

In conclusion, in this work I presented the role that silicon microring
resonators have in photonics neuromorphic applications and extended their
functionality also in time delay RC. Microring resonators are certainly an im-
portant component for integrated photonic ANN implementations. Indeed
microring resonators show a nonlinear response that can serve as a neuron
nonlinear activation function, with spiking capabilities. They are basic com-
ponents in integrated weight banks, which in turn allow the operation and
training of the network within time division multiplexing schemes. They can
route the information across a network and also act as sensing input nodes for
the neural network, if for example their surface is properly engineered. They
can also serve as real node for time delay RC. All these ingredients make
silicon microring resonators promising candidates within integrated photonic
implementation, whose functionalities can work in synergy with other strate-
gic elements, such as VCSEL.
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Appendix A

Simulation parameters

The corresponding parameters used in the numerical simulations are provided
in Table A.1. Most of them refer to [66].

Table A.1: Parameter values used in the numerical simulations in the model
of chapter 4 and section 3.3.2.

Parameter Value parameter Value
p 2π × 6.75µm λo 1549.66nm

1/τo 1.68GHz 2/τk 17.2GHz

k2 = 2γepng

c
0.01 (ng=4.1) t2r = 1− k2 0.99

art e
− cpτ0

4ng Q 3× 104

dnsi/dT 1.86× 10−4K−1 dnsi/dN −4.2× 10−27m3

nF 1.4682 τph 52.81ps
τTH 83.3ns τFC 3.3ns
Γc 0.9 Veff 5.331× 10−18m3

σFCA 1.45× 10−21m2 ηFCA
σFCAΓcc

2nSi

βTPA 0.79× 10−11m/W Pabs
2
τ0
|U(t)|2

GTPA
c2βTPA

2Veffn
2
Si

FWHM 48.4pm
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Appendix B

Optical input encoding

According to the processing scheme adopted in the numerical investigation
(section 4.2.3), the input information is encoded in the amplitude of a CW
optical signal emitted by an infrared laser, which is then input to the input
port of the microring resonator. The encoding in the optical domain is exper-
imentally realized by an electro-optic intensity modulator, specially designed
for the transmission of analog signals. The modulator consists of a LiNbO3
MZI (iXblue MXAN-LN-10), having 10 GHz bandwidth. It has one optical
input and one optical output, the last providing the modulated waveform
desired. The modulator is driven by an RF electronic signal, providing the
modulation waveform. It also accepts a secondary electronic bias input, to
set the modulator in quadrature. Figure B.1(a) shows the transmission of
the device operated in the experiment. Here, the Mach-Zehnder modulator
is continuously locked in quadrature by a bias controller (MBC-AN-Board),
while the modulation depth is provided by the RF voltage, whose maximum
range is achieved at V = ±8 V.

A pre-compensation of the signal out of the AWG is needed to eliminate
the cos2 dependence of the modulator intensity, especially when analog input
series (such as the SantaFe one) are input. To this purpose, the input series
undergoes a transformation. First, the input series is normalized with respect
to its maximum value, thus resulting in the series xi ∈ [0, 1], with i = 1 . . . N ,
being N the series length. Then, a modulation range is chosen by setting
the AWG with a certain maximum (V+) and minimum (V−) voltage values.
To fully exploit this modulation range, xi needs to be linearly mapped into
a new series ui ∈ [−1, 1], whose extreme values ui = −1(+1) will refer to
the set voltages V−(V+). The problem relies on finding the values ui, such
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Figure B.1: a) LiNbO3 Mach-Zehnder modulator transmission as a func-
tion of the input RF voltage. The modulator is kept in quadrature by
a bias controller. b) Linear input series loaded into the AWG with(red
curve)/without(blue curve) the pre-compensation needed to eliminate the
cos2 dependence of the modulator intensity.

to linearly transform the input series xi in the optical domain. Referring to
V as the signal out of the AWG, to T as the transmission function of the
modulator, and assuming the modulator locked in a negative quadrature as
in Fig. B.1, one can impose the following condition:

T (Vi) = T (V+) +
(
T (V−)− T (V+)

)
xi, (B.1)

where Vi is related to the input series ui by:

Vi = (V+ − V−)
(ui + 1)

2
+ V−. (B.2)

Substituting Eq. B.2 into Eq. B.1,and solving for ui, leads to:

ui = −1 +
2

(V+ − V−)

{
−V− + T−1

[
T (V+) +

(
T (V−)− T (V+)

)
xi

]}
, (B.3)

being T−1 the inverse function of the modulator transmission. Thus, given
the normalized input series xi and the modulator transmission T , one can
estimate the correct series ui to load into the AWG by using Eq. B.3 (Fig.
B.1(b))
In the simpler case V+ = −V−, and calling Vpp = V+ − V−, Eq. B.3 simplifies
in:

ui =
2

Vpp

T−1
[
T (V+) +

(
T (V−)− T (V+)

)
xi

]
. (B.4)
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An alternative approach that avoids the above transformations, is to re-
duce the Vpp range out of the AWG, to the central region of the modulator
transfer function, whose behavior is approximately linear. The drawback
of this choice is the restricted modulation range used, with respect to the
maximum one available.
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Appendix C

Arduino-based controller

The physical implementation of a silicon microring resonator coupled to
a feedback optical fiber loop makes the system sensible to environmental
phase fluctuations. A phase controller has been implemented to compensate
for environmental phase noise. The controller exploits an Arduino board
to elaborate a correction signal. The board needs to receive the signal to
correct vin, to elaborate an error based on a target vtar, and finally elaborate
a correction signal vout, similarly to a PID controller. The list of instructions
loaded on the Arduino board is presented in code 1. The instructions are
written within a void loop, which is continuously repeated, at a rate that
defines the correction rate of Arduino. An external analog conversion of vout is
then requested by the application. Thus, the correction rate is here optimized
by implementing an external DAC with 16 parallel digital input channels,
that receive vout from 16 digital output channels present in the Arduino
board. The communication via 16 parallel channels boosts the speed, as
groups of 8 digital channels (PORTC and PORTC in code 1) can be addressed
in parallel, reducing the number of operations per void cycle loop. A DAC
predisposed for I2C communication could be also used. In this case vout is
communicated as a sequence of 16-bit multiplexed in time, thus requiring 16
Arduino clocks, and leading to lower correction rates.
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1 void loop()
2 {
3 //setting target from Matlab
4 char matlab_command = Serial.read();
5 Serial.flush();
6 if (matlab_command == 't' )
7 {
8 v_tar = Serial.parseFloat();
9 }

10 // Acquisition signal from the photodetector
11 int v_in = analogRead(A0);
12 // Error estimation
13 err = v_tar - v_pd;
14 // Estimation of the correction signal
15 v_out = (uint16_t) (v_out + (kp*err));
16 // Emission of the correction signal
17 PORTC = v_out;
18 PORTA = (v_out << 8);
19 if (v_out == ByteH)
20 {
21 PORTC = B00111111;
22 PORTA = B11111111;
23 }
24 if (v_out == ByteL)
25 {
26 PORTC = B00111111;
27 PORTA = B11111111;
28 }
29 }

Code 1: List of instructions that Arduino continuously repeats over time to
keep stable the feedback phase. The frequency at which the void loop is
repeated provides also the final correction rate of Arduino, which in this case
is approximately 18kHz.
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Acronyms

ADC Analog to Digital Converter. 132

AI Artificial Intelligence. 7

ANN Artificial Neural Network. 7, 8, 11–13, 15, 16, 19–22, 32, 34, 50, 60,
142

ASE Amplified Spontaneous Emission. 98, 139

AWG Arbitrary Waveform Generator. 98, 126, 133, 149, 150

CPU Central Processing Unit. 20

CW Continuous Wave. 98, 149

DAC Digital Analog Converter. 94, 95, 153

DUT Device Under Test. 98, 100

EDFA Erbium Doped Fiber Amplifier. 98

EF Enhancement Factor. 43

FCA Free Carrier Absorption. 36, 37

FCD Free Carrier Dispersion. 36

FFNN Feed Forward Neural Network. 13, 14, 21, 138, 139

FSR Free Spectral Range. 42, 47

FWHM Full Width at Half Maximum. 42, 43
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GC Grating Coupler. 100

GPU Grapgic Processing Unit. 7

MMI Multi Mode Interferometer. 135

MZI Mach Zehnder Interferometer. 64, 65, 98, 115, 149

PIC Photonic Integrated Circuit. 22

PID Proportional Integrative Derivative. 93, 153

PRBS Pseudo Random Binary Sequence. 110

RC Reservoir Computing. 1, 8, 16, 18, 21, 53, 59–62, 64–67, 71–74, 76–78,
82, 89, 91, 93, 98, 104, 109, 110, 132, 137, 142

RNN Recurrent Neural Network. 14–16

SL Semiconductor Laser. 66

SNN Spiking Neural Network. 19, 20, 57

SOA Semiconductor Optical Amplifier. 65, 92, 98, 101–103

SOI Silicon On Insulator. 91, 100

SRL Semiconductor Ring Laser. 66

TIR Total Internal Reflection. 23

TLS Tunable Laser Source. 98

TPA Two Photon Absorption. 35–38, 73

TPU Tensor Processing Unit. 7

VCSEL Vertical Cavity Surface Emitting Laser. 65, 138, 142

VOA Variable Optical Attenuator. 98
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