Universitat

de les Illes Balears

MASTER’S THESIS

OPTIMISATION AND IMPLEMENTATION OF ALGORITHMS
ON PHYLOGENETIC NETWORKS

Narcis Rossello Payeras

Master’s Degree in Intelligent Systems (MUSI)
Specialisation: Artificial Intelligence and Data Science

Centre for Postgraduate Studies

Academic Year 2021-22

Tutor: Joan Carles Pons Mayol

OPTIMISATION AND IMPLEMENTATION OF ALGORITHMS
ON PHYLOGENETIC NETWORKS

Narcis Rossell6 Payeras

Master’s Thesis
Centre for Postgraduate Studies

University of the Balearic Islands

Academic Year 2021-22

Key words:

Phylogenetic Networks, Tree-child Networks, Reconstruction, Algorithms.

Thesis Supervisor’s Name: Joan Carles Pons Mayol

Optimisation and Implementation of Algorithms on
Phylogenetic Networks

<Narcis Rossell6 Payeras>
Tutor: <Joan Carles Pons Mayol>
End of Master’s thesis in Intelligent Systems (MUSI)
University of the Balearic Islands
07122 Palma, Illes Balears, Espanya
<narcisrossello@gmail.com>

Abstract—TIn this paper we develop and implement two pseudo-
code approaches to two models for the reconstruction of tree-
child phylogenetic networks described in [13] and [3]. In order
to feed and test these algorithms, a system for extracting the
information necessary for the operation of the algorithm from
the original networks is also developed. During the manuscript,
the implemented functions are described, as well as different
examples to see and understand how each of these approaches
works internally. The code has been developed in Python through
notebooks, and can be downloaded at the following link: https:
//github.com/narcisrossello/TreeChildReconstruction.

Index Terms—Phylogenetic networks, tree-child networks, re-
construction, algorithms.

1. MOTIVATION

The classical way to represent the evolution of species or
genes has been using the mathematical model of a phylo-
genetic tree, a rooted directed acyclic graph with the leaves
labelled by the taxa under study. However, it has been seen that
this model has some deficiencies when it comes to representing
some events that occur in nature, such as horizontal gene
transfer, recombination or hybridisation. For such cases, there
are nodes that need to have more than one parent modelling
the action of more than one entity involved in the generation
of the new one, transforming the tree into a network [11].

One of the main issues about phylogenetic networks is how
to reconstruct them from the available data, be it sequences,
distances between sequences, trees, triplets, quartets, splits,
clusters or even networks. Every possibility of input present
can lead to a type of path or pathway from which a more
or less efficient type of reconstruction can be made. This
same problem can be derived to others, such as network
visualisation, simulation, comparison, consensus and so on [1].

Based on this situation, different solutions have been found
to the problems encountered. Some of these have been theoret-
ical solutions, developing a mathematical and formal solution
to the problem described. Other solutions have been closer
to practice, resulting in solutions with possible computer
implementations with polynomial costs, while many others are
encompassed by NP-complete solutions [1]. In order to attack
this problem, different implementations can be found in the
literature and in computer libraries that solve some problems
of treatment and management of the structures treated in a
general way and others that try to give a solution to more

specific problems. One of the main problems is not finding
a common standardisation for these, as each one uses the
informatic resources or programming languages closest to
its environment, being in some cases outdated languages or
difficult to use and access.

The main objective of this project is to develop an al-
gorithm that solves a specific problem, in this case that
of reconstruction. In this project, tree-child networks will
be reconstructed from Maximum Lower-Level Subnetworks
(MLLS) and from a distance matrix. In addition, with a vision
closer to engineering, a solution has been given that optimises
resources in the most appropriate way, as there is no point in
having a solution if it is more costly than the problem itself. In
addition, it is intended to give a forward-looking approach, for
this reason, a programming language such as Python is used,
which is one of the most widely used in programming today,
and it is also essential that the access to the development is
as transparent and simple as possible. For this purpose, the
notebooks of this programming language fulfil this purpose
appropriately. Finally, it is a clear objective to make maximum
use of libraries and implementations that have already been
implemented. In this case, we have chosen to make use of
the network processing and manipulation library networkx,
which is widely used in the world of networks. The use
of such a widely used library allows greater ease of access
and understanding of the project, as well as greater ease of
connection with other types of formats such as eNewick or
connection with other developments in possible future work.

The rest of the manuscript is organised as follows. Firstly,
a brief overview and description of phylogenetic networks
and more specifically tree-child networks is given in Section
II. In addition, it is shown what kind of implementations
and programmes can be found to attack from general to
specific problems. Then, in Section IIl a common view of
the two implementations is given, explaining the common
structure developed and the technical procedure followed in
the implementation. Furthermore, there are the explanatory
points of the actual development of the two algorithms in
Sections IV and V, explaining briefly the idea behind the
one described in the original article and how this has been
translated into a real and functional implementation. It also
presents an explanation of real cases of networks reconstructed
with the different algorithms, as well as a closer look to

the data processed to understand what happens and what
is done internally in each of the algorithms. Moreover, in
Section VI an observation is made of the different points
in common, particularities and differences that each of the
previously described and analysed algorithms have. Finally,
some more personal conclusions and a possible view of future
work are given in final Section VIL.

II. PHYLOGENETIC NETWORKS

Phylogenetic networks are the main tool for describing
and visualising the evolutionary and genetic relationships of
some groups of species. This type of network is gaining in
popularity as it allows for greater ease in describing reticulate
events, which is not possible with phylogenetic trees. Over the
years, the excessive simplicity of trees has led biologists and
mathematicians to use networks [12].

In the transformation to networks, the leaves are labelled
nodes representing species, genes or individuals, while the root
of the network represents a common ancestor among them all.
The internal nodes of the network with two or more outgoing
connections represent those divergent events that have taken
place, seeing a single lineage split into two or more lineages,
while the internal nodes with one or more incoming and
one outgoing connection represent the convergence of two or
more lineages into one. The latter are known as reticulation
evolutionary events, which include hybridisation, introgression
and horizontal gene transfer. These nodes are known as
reticulate nodes or network reticulations. It should be noted
that a network without reticulations is a phylogenetic tree. In
this way, it can be understood that phylogenetic networks are
a more general model of representation and treatment of the
evolution of species than the model offered by phylogenetic
trees [10][15].

It is important to know the origin and evolution of phylo-
genetic networks. But it is also important to know the model,
the restrictions, the scope and the possibilities that they can
offer us. In this way, a formal definition extracted from [11]
will be given in order to have a definitive idea of what they
are and what they offer.

Definition II.1 (Rooted binary phylogenetic network). A
rooted binary phylogenetic network N = (V| E) on X with
root p is a rooted directed acyclic graph with no parallel arcs
satisfying the following properties:

(i) the (unique) root p has in-degree zero and out-degree
two;

(ii) a vertex with out-degree zero has in-degree one, and the
set of vertices with out-degree zero is identified with X;

(iii) all other vertices have either in-degree one and out-
degree two, or in-degree two and out-degree one.

Even if definition II.1 is taken as a way of understanding and
specifying phylogenetic networks, it is still a definition that
encompasses a large number of possibilities. When general
definitions have to be translated into the computer world,
this can sometimes become very costly works and processes.
For this reason, from this starting point, different adaptations
arise trying to facilitate the development and understanding

of some specific problems. Some of these derivations are
the following subclasses [11]: Time-consistent, Tree-child,
Tree-sibling, Reticulation-visible, Genetically stable, Stack-
free, Normal, Regular, Orchard, Tree-based or LGT networks,
just to name a few.

A. Tree-child Networks

The class of tree-child networks is one of the most widely
used classes of phylogenetic networks. Those were introduced
to fit a complex biological reality into a computationally
tractable environment. Biologically, these are networks where
every non-existing species has some descendant by mutation.
Mathematically, every tree node has at least one child that is
a also a tree node [6][5].

Even so, tree-child networks are one of the most permis-
sive types of phylogenetic networks and they are capable of
modelling quite a few important scenarios, and those where
perfect modelling is not possible, they do so with a fairly good
approximation [5].

There are already a number of articles that solve prob-
lems and issues for this type of networks. Each of these
provides a different solution, each with its own particularities,
advantages and disadvantages. This is also the case and it is
analysed in the algorithms developed in this project. In order
to have some points of reference, we can find a first example
of reconstruction from the trinets encoded in the tree-child
network [17]. We can see another approach of reconstruction
and comparison from their path multiplicity vectors, given as
a practical solution developed in Java and Perl programming
languages [7]. As a last example, a reconstruction by path-
length distances between taxa can be found [2]. The idea
behind this last example is similar to the one developed in the
second algorithm (see Section V), which raises some particu-
larly characteristic and relevant key points in the performance
of the algorithm.

III. PROCEDURE AND STRUCTURE

In both developments made of MLLS_Algorithm and
Q_Algorithm an internal structure is kept as similar as possi-
ble. The two relevant notebooks have their own differences
which will be described in their respective points, but in
general they follow a structure where each part is clearly
defined.

The common diagram for both implementations shows
where the different defined modules are fed from (see Figure
1). These modules are equivalent to function grouping layers,
with the L being the Low-level Definitions layer, the M for
Medium-level and the H for High-level. The extraction module
stores those functions for obtaining the algorithm’s input
from original networks. Finally, the main module is the main
code blocks that directly store the described and implemented
algorithms. The names used in the different modules for
all the different functions try to maintain an explanatory or
intuitive meaning of the function performed. In addition, in
the defined notebooks they maintain a minimal explanation
of what each function performs, as well as what kind of
output they have. Functions maintain a PascalCase format,

Result

Figure 1. Implementation Diagram Scheme.

while variables follow the camelCase definition format. The
different notebooks can be found at the following addresses:

e MLLS_Algorithm: https://bit.ly/3nLEm46.
e Q_Algorithm: https://bit.ly/3fwbo3K.

The different notebooks are written with Python, because
of the usefulness of development on the available notebooks,
as well as the possibility of using ready-made libraries like
networkx [9] directly on the notebook. In both implementa-
tions, polynomial-time reconstruction algorithms are provided,
depending on the size of the input networks [13].

I'V. RECONSTRUCTION FROM RETICULATE-EDGE-DELETED
SUBNETWORKS

A. Paper

In [13] it is presented a way to reconstruct tree-child
phylogenetic networks from their Maximum Lower-Level
Subnetworks (MLLSs). These are extractions made from an
original network. The reticular nodes, those nodes that have
an input degree 2, play a major role in this process. Each
MLLS is extracted by removing one of the two input edges
from one of the reticulated nodes of each level-k biconnected
component of the network. Looking at this, the higher the
number of reticulated nodes, the higher the number of MLLS
extractions. However, not all extractions are valid. It has to
be fulfilled that by removing one of the parent edges of the
reticulated node, there must be exactly two nodes and three
edges less in the resulting network compared to the original
one.

Knowing this, the algorithm is able to detect these reticu-
lated nodes by comparing and contrasting the possible retic-
ulated node deletions with the set of MLLSs it receives as
input. This algorithm provides a unique way of reconstruct-
ing networks from their reticulate-edge-deleted subnetworks.
Specifically, the analysed networks are tree-child networks and
level-k networks. This fact is derived from the demonstration
that tree-child networks contain either a Cherry (also under
the name of A in the Figure 2) or a reticulated Cherry (also
under the name of the H used in the algorithm but also found
in the shapes K and A in the Figure 2) connection type. Efforts
are put into reconstructing this second type H and it is shown

how they can only be reconstructed from an exhaustive study
of the case [13].

The blob trees explored in the article are important in this
process. These represent labelled trees obtained from the input
networks by collapsing each biconnected component into a
single node. These components are derived from nodes (also
called top nodes of the biconnnected component) where their
removal causes the disconnection of the network. This is seen
in the different examples analysed in this section, as in Figure
9. By way of explanation, it can be seen how in this Figure 9
at Part 2 the focus is on the biconnected component derived
from node 19 and this is collapsed or grouped in Part 3 of the
same Figure. Finally, the different types of inter-leaf shapes
in Figure 2 is essential when making the comparison between
MLLS explained. By being able to have a number of specific
shapes at the same point, the algorithm is able to ensure that
at that point there has been a change from the original. It is
thanks to this that the different missing reticulated nodes and
the deleted edges are reconstructed.

B. Implementation Structure

In the developed notebook TCM-
LLS_Reconstruction_Algorithm.ipynb, the idea described
above is implemented, developing what the author proposes
in the form of pseudo-code. As an introduction, the notebook
is structured in different parts, which are made respecting
as much as possible the initial idea of the author, but
always trying to give as much efficiency as possible to the
development. In this way, we can find the different points:

« Initialization and variables declaration: In this point
the libraries used are imported and the constants used
in the implementation are defined. The main library as
well as the main data base is networkx. This is used to
configure the networks that form part of the algorithm’s
input. In addition, its own methods are used, as well as
its own specific implementations on the same network
models.

o Function Declaration: This is where the methods in-
volved in the operation of the main algorithm are defined.
They are divided into layers according to their level of
abstraction. See subsection IV-C.

o Main algorithm: At this point the reconstruction algo-
rithm is developed, maintaining a structure as similar as
possible to the one described in the article. See subsection
IV-D.

o Mlls extraction from original network: In this section
we work on obtaining an algorithm that performs the ex-
traction of mlls from an original network. See subsection
IV-E.

o First Example: In this point a first simple example is
made to see how the algorithm works. In this example
recursion is not necessary. See subsection IV-FI1.

« Second Example: At this point a second, more complete
example is carried out to see how the algorithm works.
In addition, the extraction of mlls from a more complex
network is also used. Recursion is needed to solve this
problem. See subsection IV-F2.

a a b
a a
T Y Ty ¢ T Yy T U

Az, y) Alx.y) K(x.,y)

Figure 2. All possible shapes on two leaves {x,y} in tree-child networks [13].

The main structures used are the following:

1) Networks with networkx. The networks provided by the
public networkx library are used. These networks have
a series of formal restrictions regarding their declaration.
The root will be the node with value 0. Leaf nodes will
have alpha-numeric values, while internal nodes will
have positive numeric values. This point is critical as
it conditions the good functioning of the algorithm from
this library with the possibilities it attributes. With these
restrictions, it is possible to formalise tree-child network
structures.

2) Blob-tree in the form of a matrix of lists of lists. As a
noticeable modification of the article definition, the blob-
tree as such is not formalised in this case. Instead, lists
of lists are formed. Each list is equivalent to a node,
which has collapsed all leaf nodes. The list of lists is
equivalent to the different nodes that form a blob tree.
Finally, the array of list of lists equals the different blob-
trees of all participating MLLSs.

3) Pointer to the top node. As an implementation optimisa-
tion, when forming the different blob-trees, the top nodes
of the blob-trees from which they are formed are stored.
This is to avoid having to traverse parts of the blob-
trees again, which would be computationally expensive.
In this way, saving the pointer can lead to significant
savings in complexity in relatively large networks.

C. Methods

In this section the different methods involved in the main re-
construction algorithm are declared. The methods are divided
into three main groups:

1) Low-Level Functions: In this group are the functions
that are closest to data manipulation. They have very basic and
concrete objectives. These include obtaining the internal nodes
of the network in the form of a list, obtaining the network
without leaves, obtaining the direct parent or parents of a node,
obtaining the top node of a group of nodes or the comparison
between foundation nodes. In these, the programming is clear
and straightforward, so that the possibilities of input as well
as output variables are kept to a minimum.

In addition to the functions related to the processing of the
basic structures, this group includes the functions that identify

Hx.y)

Alx,y)

the different shapes available between two leaves, which are
described in the Figure 2. We will briefly describe how each
of them works:

¢ LambdaFU (Lambda Function Upper-case): This function
is equivalent to the type of connection between two leaves
described by the letter A. In this function, the aim is to
check whether the single parent of leaf x is equal to the
single parent of leaf y. If so, the function will check
whether the single parent of leaf = is equal to the single
parent of leaf y. Thus, if so, it can only be the case for
this type of connection.

e LambdaFL (Lambda Function Lower-case): This function
is equivalent to the type of connection between two leaves
described by the letter A. In this function, the aim is to
check whether the grandfather of leaf y (original notation
with letter a) is equal to the parent of leaf = (a). In
this way, the algorithm checks for all connections of the
parent of y (b), whether there is a node that is equal to
the parent of x. In addition, it checks that at node b there
are exactly two leaves connected, which correspond to
y and c. This procedure is unique, i.e., if you want to
check the reverse case of the leaf order, you must call
the function with the relevant changes in the leaf order.

o H: This function is equivalent to the type of connection
between two leaves that the name of the method itself
indicates. In this function, what is first examined is
whether ¢ is a reticulated node. If so, it is examined
whether c has a parent connected node which is the same
as the parent of a.

o Pi: This function is equivalent to the type of connection
between two leaves described by the letter II. This
function checks only if the path distance between the
two leaves is greater than or equal to 4.

2) Medium-Level Functions: In this group are declared
those functions that need further development and with broader
objectives than those of the first group. Even so, they are not
found in the final declarations of the algorithm, so they are
in this intermediate state. To better understand how all the
different steps work and how they have been reached, the main
ideas and functionalities of the different declared methods will
be defined. The auxiliary functions in this group that do not
provide further information are described only in the notebook.

e BiconnectedNodes.

Data: A set T = N™/15(N) for some level-k tree-child network N, where k > 2
Result: The network N
t Update T by collapsing maximal common pendant subnetworks from every network in 7
2 Find the blob tree for each network in 7;
3 Find a minimal set A that is a node of the blob tree of each network in 7,
4 Find a leaf pair {x, y} where x, y € A such that distinct networks Ny, Ny, N3 of T
contain A(x, y), H(x, y), and one of A(x,), A(y, x), or [T(x, y), respectively;
s Update N3 by adding nodes a, ¢ directly above x, y, respectively, and an edge (a, c);
6 Let N4 denote the pendant subnetwork rooted at the top node of this blob in N3;
7 for NS € T do
§ | Find the pure node p with leaf-descendant set A;
9 | Replace the pendant subnetwork rooted at p by Ny;
0 | Collapse Ny from N,
1t end
12 i T contains a single element T then
n| N=T;
14 else
15

16 end

N := TCMLLS- RECONSTRUCTION(T);

17 Construct N from N by appending the maximal common pendant subnetworks we have collapsed;

18 return N

Algorithm 1: Algorithm TCMLLS- RECONSTRUCTION(T)

def TCMLLS_RECONSTRUCTION(T, depth = @8):
#2
if len(T) == @:
return T
#0.5
if len(T) == 1:
return T

t, namesNewlodes = CollapsingMaximalCP(T)
#2 - tophlodes is optimization

BT, topNodes = FindBlobTreeWithTopNodes(t)

A, topNedeA = FindMinimalFoundationNodesWithTopMode(BT,
#4
leafl, leaf2, N3 = Check3Types(t, A)
#5
if N3 != -1 and leafl != -1 and leaf2 != -1:
AddnodeaC(t[N3], leafl, leaf2, depth)
#6
NA = GetNA(t[N3], topNodeA[N3])
tprima = []
for n, nmlls in enumerate(t):
#8
p = GetPureNode(nmlls, topModeA[n])
#9
t[n] = ReplacePureNode(nmlls, topNodeA[n], p, NA)
#18
tprima.append(CollapseNA(t[n], p, topNodeA[n], MA, A))
#11
Isomorphic reduction
arelsomorphics = True
while arelsomerphics:
arelsomorphics = Theredrelsomorphic(tprima)
#12
if len(tprima) == 1:
Nprima = t[e]
#14
else:
Nprima = TCMLLS_RECONSTRUCTION(tprima, depth + 1)
return Nprima
#15
Nprima = UnCollapseNA(Nprima, topNodeA[N3], GetNodeA(A), MA)
#17
if len(namesNewlodes) == ©:
return Nprima
#18
return UnCollapse(Nprima, namesNewNodes, depth)

tophodes)

Figure 3. MLLS_Reconstruction_Algorithm: Comparison between original algorithm (left side) and implemented one (right side).

e IsBiconnected. .
e VisitedLeaves: This function is used to detect all those .
leaves that can be visited from a set of specific nodes. For .
each of these, all connections are visited. If it is a leaf, o
it is added to the final set. All those internal nodes not .

visited will be explored recursively in this same method.

e GetLeaves.

o GetMax.

o GetSubNetworksWithTopNodes and GetSubNetworks:
These two functions have a very similar construction.
They oversee calculating, from the list of biconnected
nodes, all those subnetworks that are in a network.
Each of these is obtained from the nodes that are not
in the list of bi-connected nodes of the network. In
this way, for those nodes that the elimination of one
of their connections means the disconnection of the
entire network, it means that they are a principle for
one of these sub-networks. The difference between these

methods is whether the node from which the subnetwork o
was removed, which is the top node of the subnetwork, .
is saved. o

e FindBlobTreeWithTopNodes and FindBlobTree:
These two functions have the same differences as the
two previous ones. By saving or not the top node, they
oversee generating for all the input networks a list of
lists of nodes that are equivalent to the blob-trees.

GetNA.

GetNANodes.

GetP.

GetPNodes.

DeleteIntersectionNodes: This function is used to
solve an error in the construction of the network from the
library used in networkx. The problem is that, although
two subnets share the same leaves, they do not have to
share the same internal nodes. Thus, when nodes are
removed from the NV A set, if there is a node that is not in
this set, it is left behind in this network. As an example,
if NA is a set formed by {1,2} and the NA’ has the
set formed by {1, 2,3}, although they relate to the same
leaves, when only 1 and 2 are eliminated, node 3 will
remain in the network, but without connections, so it will
cause errors. In this way, this function examines those
nodes that are not in N A, but in NA’ and eliminates
them for these cases.

ReplacePureNode.

FindFoundationNodes.

ReduceLeafFN.

3) High-Level Functions: In this group are declared the
functions directed called from the algorithm as can be seen in
the Figure 3.

UnCollapse: This function un-collapses what has been
collapsed during the algorithm. Specifically, here it un-

collapses the node created, which has as a compound
name the following format: {leaf1,leaf2}. In this way,
from this name it is possible to extract those initial
leaves/nodes which have been collapsed. As can be seen
in Figure 7, the created node {v,w} is decomposed in
1 internal node and 2 leaves: r0, v and w. Node r will
remain in the centre connecting with the parent of the
previous node and with the two created leaves.

e UnCollapseNA: In a similar way to the previous un-
collapse, this function un-collapses the node with the
foundation node of A. In this way, the place where the
node A was located is replaced by the NA network that
existed before the collapse.

o AddNodeAC: This function adds two new nodes a and ¢
in the network. These nodes have marked in their names
the level of depth at which they have been created. In
addition, a new edge is created between these two created
nodes.

o CheckOneEach: This function checks that for the differ-
ent types of inter-leaf connections required, there are a
A(z,y), an H(z,y) and a A(z,y) or A(y, z) or II(z,y).
Store the index of the last check.

e CollapsingCP: This function is composed of different
parts. First, it checks all the blobs trees in the network.
Secondly, it looks for the foundation nodes of these
networks. Finally, for the smallest foundation node found,
it collapses it by creating a new node.

e FindMinimalFoundationNodes and
FindMinimalFoundationNodesWithTopNode: These
two functions have a similar construction and purpose.
They oversee searching for the minimum set of available
foundation nodes. The difference is that in the second
function the top node of the chosen foundation node is
saved, using in this case the dedicated functions.

o Check3Types: This function checks for the three types
of inter-leaves connections required. These checks are
carried out for all possible combinations between the
leaves. The order of the combination is decisive, as it
is not the same to combine (z,y) as (y,).

e CollapseNA: This function collapses the NA subnetwork
within the network into a single node.

e GetNodeA: This function is an auxiliary function to
generate the name of the new node A from the foundation
node A.

e ThereAreIsomorphic: This function indicates whether
two nets are isomorphic. If so, it deletes the second of
these two. This check is done for all nets passed, but
the function terminates when any or none of the nets are
deleted.

D. Main Algorithm

The main process has been called in the same way as in the
article: TCMLLS_RECONSTRUCTION (Figure 3). In addition to
this, we have tried to respect as much as possible the different
points that appear in this one, replicating the functionalities
that are intended in each one. In this way, it is possible to
compare and link each point with the one established in the

development. In the same way, the different points dealt with
are explained with comments on their equivalences. As a final
consideration, the nomenclature used tries to give a maximum
representation of the objective of each line.

The different points will be broken down and the different
particularities or other concepts to be considered when un-
derstanding how it works will be explained. The first point
to analyse is the inputs. As can be seen, there is the same
input T' as in the article, consisting of a list of MLLS from
which the original network is to be reconstructed. In addition,
an additional depth variable can be found. This variable, with
a default value equal to 0, allows to be aware and place the
execution in a certain depth, giving it the ability to generate an
environment of variable names and other messages according
to its iteration layer. In this way, it helps in the detection of
errors by locating each part and being able to know at what
depth each node of the final network has been reconstructed.

o Point 0: This first point is not covered in the article. In
any algorithm there must be a minimum error control, so
as it is not explicit in the article, it must also be included
almost obligatorily. In this point, a minimum control is
simply made, such as that the set of MLLS given as input
is empty or not. If so, an error message is given, and
the execution is terminated by returning a null value. It
should be noted that this effect also applies in recursion.

o Point 0.5: As an additional point to the previous one,
when having an input with only one network, it is not
going to be possible to work on it, so the same variable
T is going to be returned.

o Point 1: As the first point present in the algorithm of the
article, as its name indicates, it oversees collapsing those
maximal common pendant subnetworks for each one of
the networks in 7. In this way, for all those cherries
present in the network, they are going to be collapsed
in a single node. In this way, in case of any modification,
all the names of the new nodes are returned in the form
of a list. Likewise, the networks are returned as a t-
variable, whether they have been modified or not. This
preserves the original networks without affecting their
possible dependencies inside or outside the algorithm.

« Point 2: In this second point, the different blob-trees are
constructed. These are not going to be networks as such,
but will have the form of a matrix of the different nodes
present in each blob-tree. In addition, the different top
nodes of each of these are extracted, so that they can be
used in subsequent lines.

o Point 3: In this third point the minimal foundation node is
obtained from the previous list of blob-trees. In addition,
from the selected list, the relevant top node will be
chosen, so that the different collapses can be assembled
from it. The name of the original variable is considered,
being this subnetwork with the foundation node called A,
as well as its respective topNodeA node.

o Point 4: In this fourth point, the existence of a pair
of leaves {z,y} belonging to the set A that meet the
requirements is checked. It must be considered that if
there are 3 networks that meet the three casuistry it

is enough. If an available combination is found, it is
returned in two separate variables, as well as the index
of network N3, which is going to be modified in the
following point. If any of the cases is not fulfilled, —1 is
returned.

Point 5: As a fifth point, in case that some modification
must be produced in the network N3 and all the variables
to use are different to —1, the points from 5 to 10 are
going to be executed. Otherwise, we will jump directly
to point 11. When entering the if, the first thing to do
is to add the new nodes a and ¢, with their respective
connections in the N3 network.

Point 6: Once the necessary changes have been made,
we are going to extract the entire subnetwork whose col-
lapsed node in the blob-tree is the one found previously
with the variable A. In this function, it is helped by the
previously saved variable of the top node, so the function
must take only the network that hangs from this node
topNodeA. In this way, a network with the name N A
is finally obtained, with all the connections and nodes
belonging to the subnetwork of N3.

Point 8: As point number eight, for each of the MLLS,
we will first have to know the node from which every
N A hangs. Each network can have a different node
directly above it, so this is a separate process for each
of them. The extracted node is named p, as a similarity
to the article, which is the parent of the node extracted
previously as topNodeA.

Point 9: Once we have the VA subnetwork to replace
and the point from which p is going to hang, the only
thing left to do is to do the directly obvious. For this,
you must consider what is described in the respective
functions used not to leave nodes that are neither in N P
nor in N A, since the N A subnetwork is not the same for
all networks, only the N A subnetwork of N3 is used.
These changes are made directly on the networks stored
in t.

Point 10: Finally, to finish the modification with N A,
it remains to collapse what has been hung on a single
node. In this way, as has already been done in point 1,
the whole set of leaves of A is collapsed into a single
node, in this case without enclosing it by {}, separating
them only by spaces. A new variable tprima is created
to store the information, so that the iteration over ¢ is not
altered.

Point 11: This point is not present in the pseudocode
of the article but its addition makes sense during the
explanation of the article. It is necessary to somehow
reduce the networks that are duplicated after the collapses
that occur with the common pendant subnetworks and
NA. In this way, if there are duplicate networks, they
are eliminated one by one, until only one remains. The
transformations are performed directly on the analysis
variable tprima.

Point 12: Key point in the termination of the execution of
the algorithm. When enough isomorphic networks have
been eliminated so that only one remains, it will mean
that the algorithm has reached the end of the reconstruc-

tion process, having obtained the original network.

o Point 14: In the case that all the transformations have
been carried out and the original network has not been
obtained, it will mean that another iteration is needed.
To carry out this step, another recursive call to this same
function with the modified networks will be needed. In
this case, the parameter tprima will be passed, which
have collapsed N A, and a depth value greater than the
current one. The completion of the recursion will result
in a Nprima, which will have only one net.

« Point 15: As point number fifteen, it will be necessary
to uncollapse what has been previously collapsed. In this
case, VA is going to be de-collapsed by the sub-network
that it had. It must be considered that this N A network is
going to be N3’s own network extracted previously. Once
finished, the recovered information will be obtained in the
same variable Nprima.

o Point 17: The penultimate point is to know if there has
been any collapse in point 1. If not, Nprima will be
returned without having to make any additional modifi-
cation.

o Point 18: As a final point, if it has arrived here, we
have an Nprima that has collapsed the common pendant
subnetworks. In this way, for all possible collapsed CPs
we are going to have to recover them with their original
form. These, with form {leaf1,leaf2} are going to have
to be connected to a node created with the name of r plus
the depth plus the reconstruction number. Finally, once
everything necessary has been reconstructed, the resulting
network will be returned.

E. MLLS Extraction

To form those networks that will be part of the input
information of the algorithm, an additional function to the
one implemented above is necessary. In this case, what we are
interested in is to be able to form, from an original network,
all its possible MLLS subnetworks. These will be formed
thanks to the implemented function CreateMLLSNetworks.
The purpose of this function is to detect those reticular nodes
of the original network. From these, it will iterate over the
connections they establish with their two parents. Once each
edge is selected, it will be removed. The resulting network
will be a valid MLLS if it meets two requirements: it must
have exactly 3 edges and 2 less nodes. The functions used in
this process are the following:

o GetReticulatedNodes.

e GetNumberOfDeletedNodes.

e DeleteDegree2Nodes.

e CreateMLLSNetworks.

F. Examples

To test the algorithm and all its different parts, two examples
are performed. The first example, used in the article in an
illustrative way, serves to get a better idea of how the algorithm
must work. The problem with the first example, which makes
it insufficient and requires an additional example, is that it does
not need recursion. The algorithm solves this first network in

Figure 4. Original network 1 [13].

a single iteration. A second, more complex example, is used
to test how well it works at different execution depths.

1) First Example: The first network is the one shown in
the Figure 4. From this, a total of 4 sub-networks are formed,
which are formed by eliminating the edges of the reticular
nodes 4 and 7 with their respective parents. An example of
this network is the one shown in Figure 6, which edge between
nodes 7 and 6 has been eliminated. After eliminating this edge,
the resulting nodes 7 and 6 have a degree 2, meaning that
they have one input edge and one output edge. In this way,
those nodes are eliminated, having eliminated a total of two
nodes and three edges after the selection of this reticulated
edge from the reticulated node 7. In the same way, the other
three networks are formed to form the input set 7' of the
reconstruction algorithm. In this way, from this input it is
expected to obtain the same network as the original one.

Using the same subnetwork as an example, it can be seen
at a glance how the algorithm could be expected to recognise
and collapse the v and w leaves. This will happen if the same
casuistry exists in all nets. Looking at the first paragraph when
executing the code we see how exactly the same leaves as
described are collapsed:

Starting Collapsing Part
Maximal CP to collapse: [v, w]
Node Created: {v,w}
Ended Collapsing Part

To see what the algorithm does internally, we can see how
in the case of the second subnetwork formed in the Figure 5
Part 2 we have a node already collapsed with the name {v, w}.
At this point, the different blob-trees must be formed. For this
second case, we can observe that the non-biconnected nodes,
that is to say, that with their elimination they disconnect the
network, are nodes 1 and 2. Therefore, the two existing nodes
to form the blob-trees will be formed from these. In this way,
it can be seen how the algorithm does this:

[z, {v, w},y, 2], [z, {v, w},y]]
[1,2]

Seeing that the above has been confirmed, we continue
with the reconstruction. At this point we need to find the
minimal foundation nodes (FN) in all the blob-trees. In other

words, we need to find the minimum node of the blob-trees
that is common to all of them. This case is fulfilled by the
FN [z, z,y, {v,w}], which is called the set A. Then, for all
the leaves present in the set A, the check described above of
the three types will be performed. In this case, the check is
satisfied for the leaves y and x, resulting in the type II(y, x)
having the subnetwork with index 3, the fourth network of the
input. The selected leaves are not the only options, seeing as
in the article the selected leaves are other equally valid ones
such as {v, w} and z. The selected nodes are already ordered
according to the one that has the parent reticulated, in this
case being the leaf z. This check has been done by checking
for the other reticulated the H-form between the two leaves.

At this point, two new nodes, a and ¢, have to be added. This
happens in the selected network, seeing how in the Figure 5
Part 3 nodes a0 and c0 are on the selected leaves. Finally,
it remains to hang the subnetwork formed with these new
nodes on all the other networks. In this way, the top nodes
are selected, in this case being in all of them the root node
0. It remains to collapse this new sub-network, which can be
seen in Figure 5 Part 3.

Finally, from these networks with collapsed A, those that are
isomorphic are eliminated. In this case, with this first iteration
we have managed to keep only one, which means that we
have reached the original network, returning the network in
the Figure 7 equivalent to the original one in the Figure 4.

2) Second Example: The second network is the one in
the Figure 8. In this case, the leaves with original values a
and c are converted to aprima and cprima to avoid internal
conflicts with created internal nodes a and c. From this, a
total of 14 sub-networks are formed, which are formed by
eliminating the edges of the reticular nodes 4, 13, 14, 20, 21,
26 and 27 with their respective parents. An example of this
network is the one shown in Figure 9 Part 1, which edge
between nodes 2 and 4 has been eliminated. In this way,
the resulting nodes 4 and 2 with the elimination of this edge
become nodes with degree 2. For this reason, both nodes are
eliminated, having eliminated a total of two nodes and three
edges. In the same way, the other 13 networks are formed to
form the input set T of the reconstruction algorithm. In this
way, from this input it is expected to obtain the same network
as the original one.

In a very similar way to the first example described above,
the same reconstruction procedure is performed, but in this
case a total of 3 complete runs at different recursion depths
are needed. Thus, an idea of the procedure followed and the
state of the network in each of these can be seen in Figure 9.
In the first iteration, the subnetwork collapses the leaves e and
f, forming for the case of the first subnetwork the collapsed
node {e, f} from the discovered cherry, which can be seen in
Figure 9 Part 2. From this moment on, all the nodes that are
part of the blob tree are collected. In the case of the observed
MLLS we have the following, with their respective top nodes
from which they are formed:

[k7 l’ m’ n, g’ h7 Z.’ d’ {67 f}7 a}p’rlma7 b7 Cprima7-]]’
[k’ l7 m? n}?
[aprima, b, cprimal

PART 1 PART 2
ﬁ
@7 ; :
ParT 3 PART 4
L]
— -
o
z x vifly.w}

Figure 5. Part 1: Second MLLS extraction from original network in Figure 4. Part 2: Second MLLS extracted from Original Network 1 with collapsed leaves
v and w as {w,v}. Part 3: Second subnetwork with addition of nodes a and c. Part 4: Second MLLS with collapsed subnetwork N A.

s

Figure 6. First MLLS extracted from original network 1 in Figure 4.

[1,7,19]

Finally, for this first depth, it is found the minimum foundation
node known as set A, which in this case is equivalent to the one
formed by [aprima, b, cprimal. All the participating leaves of
A are checked for those that meet the three types analysed.
In this case, in the subnetwork 13 are added two new nodes
(which are a0 and c0) for this depth above the leaves aprima
and b in this order, which can be seen in Figure 9 Part 3. In

s

Figure 7. Reconstructed network from original network 1 in Figure 4.

this way, it will be reduced in a subnetwork similar to the
one observed for the first MLLS in Figure 9 Part 4, as all
the part other than A can have its own particularities. With
all the subnetworks with A collapsed and not having reached
the global isomorphism, we proceed to a second iteration. In
this moment, all the inputs have been modified for all the
subnetworks, all the processes are passed again. In this case,

Figure 8. Original network 2 [13].

no maximal common pendant is found to collapse, so the
algorithm is continued. As a first step, the new blob trees
need to be formalised, which following the case of the first
MLLS, its new blob tree and top nodes are as follows:

[k7l7m7 n? g? h? Z’? d7 {67 f}? a'p/rima b Cprima? j]?
[k, 1, m,n]
[1,7]

It can be seen in the first node formed above that there is a
leaf which is the collapse performed in the previous recursion.
Thus, the foundation node minimal for these new blob trees is
sought, which is the one formed by [k, [, m, n|. Being this the
new set A, the three types for all the leaves participating in this
subnetwork A will be searched again. In this case, leaves k and
[are found to be valid, which will receive two additional nodes
a and c for subnetwork number 11. Once the new subnetwork
is found in Figure 9 Part 5, it will be substituted by all the
subnetworks A of all the other subnetworks. In this way, the
last point to do is to collapse these new ones into a single
node, the resulting modified subnetworks are going to be the
input for the next recursion as the global isomorphism is not
yet found. Even so, 4 equivalent networks are found, which are
eliminated from the study to optimise the cost of the algorithm.
As a last recursion for this network, we have as input for
the observed case the subnetwork observed in the Figure 9
Part 6. For this depth there are no maximal common pendant
subnetworks to collapse. Again, the blob trees will be formed,
being for this first case the following with its upper nodes:

lg, h, i, klmn,d, {e, f}, aprima b cprima, j]
1]

As in the previous cases, it can be seen how the A subnets
are kept collapsed in the form of leaves. In this case, as there
is only one node left in the blob tree, this will have to be
the common one for all the subnetworks, as shown by the
algorithm. For this last case, the subnetwork selected to add
nodes a and c is number 7, with leaves g and h, observing the
result in Figure 9 Part 7. Finally, this new subnetwork A is
added and collapsed in all MLLS. Seeing as a result in Figure
9 Part 8, all the subnetworks are isomorphic, so all of them are
eliminated leaving only one, which is returned as equivalent

to the original one before the extraction of all its MLLS, as
shown in Figure 10.

V. RECONSTRUCTION FROM PAIRWISE LEAF DISTANCES
A. Paper

In [3] it is presented a reconstruction of an original network
made from a distance matrix. This matrix is obtained from the
distances between the leaves that form the network. Because
of the existence of reticular nodes, there can be more than one
possible distance between two leaves. This characteristic will
be fundamental in differentiating whether between two leaves
there was a Cherry type or a reticulated Cherry.

In this case, the network contains positive weights or
distances associated with each edge. In its definition, there is a
strong constraint. For all reticulated nodes, the input edges of
the reticulated nodes must have the same weight. In the same
way they will be reconstructed. It should be noted that the
reconstructed networks will have the same number of nodes,
the same number of edges and the same connections, but
they could have different weights for each edge comparing
with the original one. The main difference is that the input
edges of the reticulated nodes will have a weight equal to 0.
Even so, the distance matrix that can be obtained from the
reconstructed one is the same as the one obtained from the
original one, meaning that both networks are equivalent. This
can be seen and compared in original network in Figure 14
and in its reconstruction in Figure 16 used in the example of
this Section.

The idea in this algorithm is to classify each pair of leaves
into one type or the other. This process follows an order
according to the distance from an introduced element called
outgroup. This is a kind of leaf with unique characteristics.
It is directly connected to the root node, and the distances
to all the other leaves are calculated in the same way. This
element will be fundamental to be able to know, calculate and
reconstruct the distances and above all the reticular shapes.
The order followed to iterate and select the leaves to analysed
is followed by the Qscore inspired by the Neighbour-Joining
algorithm [14], to determine those local structures that are of
major importance in the construction of the network.

B. Implementation Structure

In the developed notebook
Q_Reconstruction_Algorithm.ipynb, which can be found
in https://bit.ly/3fwbo3K, the idea described above is
implemented, developing what the authors propose in the form
of pseudo-code. The defined points try to keep a common
structure with the MLLS_Reconstruction_Algorithm
algorithm. In this way, the different points can be found:

« Initialization and variables declaration: In this point
the libraries used are imported. In this case, none of the
main ones is the main one, being all of them used in
an auxiliary way. The networkx library is only used to
configure the networks that form part of the algorithm
input.

o Function Declaration: At this point, the methods that
participate in the operation of the main algorithm are

ParT 1

PaRT 2

PART 3

ParT 4

PART 5

PART 6

PaRT7

h 4

i prima

ghikimnd {eeprima b cprima j

Figure 9. Internal transformation of the first subnetwork in the reconstruction performed by the algorithm. Part 1: First MLLS extracted from original network
2 in Figure 8 as input. Part 2: Collapsing part generating node {e, f} as a result. Part 3: Addition of nodes a0 and c0. Part 4: Collapsed subnetwork N A.
Part 5: First recursive level and adding new nodes al and cl. Part 6: Collapsed N A. Part 7: Second recursive level and adding new nodes a2 and c¢2. Part

8: Final collapse of subnetwork N A and final step of the reconstruction.

Figure 10. Reconstructed network from original network 2 in Figure 8.

defined. They are divided into layers according to their

level of abstraction. See subsection V-C.

o Main algorithm: At this point the reconstruction algo-

rithm is developed, maintaining a structure as similar as
possible to the one described in the reference paper. See
subsection V-D.

Distance matrix extraction from original network:
In this section we work on obtaining an algorithm that
performs the extraction of the distance matrix from an
original network. See subsection V-E.

Example: In this last section, a complete example of the
algorithm is given. In this case, only one example is used
as it accesses different levels of recursion. See subsection
V-F.

The main structures used are the following:
1) Networks with networkx. The networks provided by the

free networkx library are used. These networks have a
series of formal restrictions regarding their declaration.
The root will be the node with value 0. Leaf nodes will
have alphanumeric values, while internal nodes will have
positive numeric values. The edges between them will

1. If |X| = 1, then return the phylogenetic network (Aj,wp) consisting of the
single vertex r.

2 If | X| = 2, say X = {r, s}, then return the phylogenetic network (N, wn)
consisting of leaves + and s adjoined to the root p with (p, r) weighted the
single value in D, , and (p, s) weighted 0.

3. Else, find a 2-element subset {s,t} of X such that

#e

if len(X) ==
return finalNetwork

def Q Algorithm(X, D, r, recursivity depth = @):
finalNetwork = nx.Graph()

#1
Qr(s,t) = max{Q.(z.y) : z.y € X - {r}}. elif len(X) ==
if r == [0]:
(a) If |D, 4| =1 (in which case, {s,t} is a O-reticulated cherry), then return finalNetwork.add_node(r)
(1) Reduce ¢ in D to give the multi-set distance matrix 2" on X' = return FinalNetwork -
X - {t}. 42

(i) Apply @-REDUCTION to input X', D', and r. Construct (Np, wo)
from the returned network (Njj, wf,) on X* by reversing the reduc-
tion on £. In particular, if u is the parent of s in (N.w(), then
subdivide (u, s) with a new vertex v, add a new leaf { and adjoin
it with the new edge (v, t). assign weights wo(u, v) and wg(v, s) #3
so that

else:

elif len(X) == 2:
CreateDoubleVertexNet(finalNetwork, X, D, r)
return finalNetwork

#Find max distance subset - {r}

Q,(s,t) = max{Q,(z,¥) :x,y € X — {r}}

subset, max_distance = Find2ElementSubset(X, D, r)
#Case @-reticulated cherry

if len(GetDictValue(D, subset[8], subset[1])) == 1:

and
wo(u, v) + wolv, 8) = wj(u, s),
and assign weight wy(v, 1) so that d,;.(s,t) = welv, s) + wo(v, t).
Return (N, wy) #ii.

(b) Else ({s,t} is a l-reticulated cherry, in which case it has reticulation
leaf ¢ if, for all x € X — {s.t},

{d+c:d€D,.} S Dy,

else;

where ¢ = dpax(r,) — duax(r, 5)),
(i) Cut {s,t} in D to give the multi-set distance matrix D" on X.
. s =
(ii) Apply Q-REDUCTION to input X, D', and r. Construct (Np.wo) e

from the returned network (N, wy) on X by reversing the cutting

of {s,t}. In particular, if u; and uy denote the parents of s and

t, respectively, in (Af, wg). then subdivide (1, s) and (ug, t) with

new vertices vy and wg, respectively, adjoin vy and ve with the § =

new edge (v, vs), assign weight wy(uy, v;) so that =
Q,(s,1) = max{Q,(z,y) : z,y € X}, #1. Cut

Dprima
#ii. Q-Algorithm(X, D', r)
finalNetwork = Q Algorithm(X, Dprima, r, recursivity_depth+1)
if recursivity depth »>= @:

HReconstruction(finalMNetwork, s, t, D, recursivity_depth)

assign weight wg(vy, 8) so that
UL
woluy, v1) + wo(vr, 8) = wi(uy, s),

and assign weight 0 to (vy,v2) and (u2,v2), and weight wj(ua.t)
to (va, £). Return (Mg, wg).

#i. Reduce
Dprima, Xprima = UpdateD@(X, D, subset[8], subset[1])
Q-Algorithm(X"', D', r)
finalNetwork = Q_Algorithm(Xprima, Dprima, r, recursivity_depth+1)
if recursivity_depth >= @:
CherryReconstruction(finalNetwork, subset[@], subset[1], D, r, recursivity_depth)
#Case 1-reticulated cherry

if ReticulationTest(D, X, subset[@], subset[1]):
subset[8]
subset[1]

elif ReticulationTest(D, X, subset[1], subset[@]):
subset[1]
subset[@]

UpdateD1(X, D, s, t, r)

return finalNetwork

Figure 11. Q_Reconstruction_Algorithm: Comparison between original algorithm (left side) and implemented one (right side).

have positive weight. In this case, in order to maintain
the same defined structure, a new outgroup node is added
with the name r connected only to the root node. This
point is critical as it conditions the good functioning
of the algorithm from this library with the possibilities
that it attributes. With these restrictions, it is possible to
formalise tree-child network structures.

2) Distance matrix in dictionary form. For the definition of
the distance matrix defined in the paper, a structure
offered by the dictionary is chosen. This makes it
easier to iterate over the different sheets, as well as to
delete, modify or perform other operations. It must be
considered that the distances appear only once, that is
to say, even if from x to y and from y to z there is the
same distance, it will only be saved in one of these two
pairings.

C. Methods

In this section the different methods involved in the main re-
construction algorithm are declared. The methods are divided
into three main groups:

1) Low-Level Functions: In this group are the functions
that are closest to data manipulation. They have very basic
and concrete objectives. Among these are the functions that

manipulate the data structures used: the dictionary and the
network itself. With these four functions, all the necessary
operations on the dictionary are achieved. The operation
of these functions is intuitive, yet the description of their
development is available in the notebook.

e GetDictValue.

e RemoveDictValue.
e UpdateDictValue.
e CleanDictValue.

In addition, a few auxiliary functions are needed for the
extraction of the distance matrix from the original network,
such as the GetLeaves function and the GetValue function
(described in the previous algorithm).

2) Medium-Level Functions: In this group are declared
those functions that need further development and with broader
objectives than those of the first group. Even so, they are not
found in the final declarations of the algorithm, so they are
in this intermediate state. In order to better understand how
all the different steps, work and how they have been reached,
the main ideas and functionalities of the different declared
methods will be defined.

o Q_distance: This function oversees calculating the dis-
tance @ for two given leaves. It applies the mathematical
function of the ()score from the distance data stored in

Figure 12. Cherry reconstruction structure.

Figure 13. Reticulated cherry (H) reconstruction structure.

the dictionary.

e D max.

e D min.

e FindCherryWeights: This function calculates the dis-
tances in the reconstruction between u and v, between
v and s, and between v and ¢. A value ¢ is calculated
from the difference of weights between the two weigths
pending of 7. This function works for both positive ¢ and
negative ¢, when the path to s is greater than to ¢. This
structure and its nomenclature can be seen in Figure 12.

o FindHWeights: This function calculates the weights for
the edges between the u, v and s nodes. This calculation
is performed for the reconstruction of the network with
the element H. This structure and its nomenclature can
be seen in Figure 13.

o GetSubset: This function returns true or false depending
on whether or not dl is a subset of d2, comparing the
first subset to the second one summed to the value c.

e CutST: This function eliminates the central path of the
case H for the specific case of the leaves s and ¢. For
this case the smallest distance between these two leaves
is eliminated.

e GetOutJoin: This function returns those distances be-
tween two leaves that do not pass through the central
edge of H. For this, it is checked for all distances plus
¢ whether they lie within the other set of distances.

3) High-Level Functions: In this group are declared the
functions directed called from the algorithm as can be seen in
the figure 11.

e GetCutDistances: This function obtains the distances

between leaf s and leaf ¢ that do not pass through the
central edge of the form H, which we have already seen

in the Figure 2, between them. For this, the value of ¢
is needed and from this the distances that do not pass
through this central edge are obtained.

e ReticulationTest: This function says, for case of
the form H between two leaves, the leaf ¢ passed by
parameters has the parent as a reticular node.

e Reduce: This function updates the weights for the first
case, cherry shape between two leaves. For this case all
distances to leaf ¢ will disappear, as this leaf is removed
from the list. The same happens in the list of available
leaves.

e Cut: This function updates the weights for the second
case, form H between two sheets. For this case no leaf
is removed. The distances that used the central path will
disappear. Moreover, only the distances to the leaf with
the lattice parent of the H-shape, i.e. with ¢, are modified.

e HReconstruction: This function reconstructs the H
element of the network, see Figure 13. It modifies the
network by adding the new element and assigns the
relevant weights to the affected edges. The modification
occurs directly in the input network.

e CherryReconstruction: This function reconstructs the
cherry element of the network, see Figure 12. It modifies
the network by adding the new element and assigns the
relevant weights to the affected edges. The modification
occurs directly in the input network.

e CreateDoubleVertexNet: This function creates a de-
fined and concrete type of structure. All the weight found
in D, there being only one, is assigned to the edge
between the root and the leaf in X, while the weight
between the root and 7 will be 0.

e Find2ElementSubset: This function returns a pair of
leaves s and ¢, which have the maximum value of the
formula @) score. In case there is more than one pair of
leaves with the same maximum, the first one is chosen.

D. Main Algorithm

The main process has been called in the same way as in the
article: Q_Algorithm (Figure 11). The same guidelines and
procedures in terms of nomenclature and structure have been
maintained as in the previous algorithm.

The first point to analyse is the inputs. As can be seen,
there are the same three inputs as the article, namely X, D
and r. The first of these contains the list of leaves present in
the network. The second variable contains the distance matrix.
This, as we have seen, also implicitly contains the leaves in
the network, although it is fully complementary to the first
variable. Finally, the last variable is r, which indicates the
name of the outgroup present in the list of leaves. In addition,
as in the previous algorithm, there is a final additional variable
recursivity_depth to indicate and be aware of the depth
of the recursion of the execution in which it is found. This
variable is initialised to 0 by default, so that it is not used
externally, allowing a correct increment when recursion is
performed.

o Point 0: In this first one it is not contemplated in the
article. Even so, it must be present as an error control

point or simply as an indication of an input which does
not give the option of generating a reconstruction from
it. In this way, it is controlled when the list of leaves X
comes without any element, that, by default, the distance
matrix will be empty as well as the r variable. In this case,
execution is stopped and an empty network is returned.
Point 1: First point covered in the paper. In this case it
is considered the case that in the list of leaves X there is
only one element. For this case, if the remaining element
is equal to the leaf present in the outgroup variable r,
it means that a particular network has to be created.
This shall be formed only by the node 7, which shall
be returned. In case the equality between the remaining
node and the outgroup is not fulfilled, a null value shall
be returned.

Point 2: As a second point, following the previous idea,
we intend to give a solution to a possible end of the
recursion. In this case, the end is contemplated when there
are two elements left in the list of leaves. By definition
of the algorithm itself, one of these two remaining leaves
must be equal to the outgroup r, so this check is not
performed. In addition, there will only be two leaves in
the distance matrix, and there is only one distance for
these two leaves. At this point, a specific basis for the
final network is constructed. This will consist of three
nodes, a root connected to a leaf r and at the same time
connected to the other remaining leaf in list X. Moreover,
the distribution of the weights is also very specific, with
all the weight of the distance available in the matrix being
dumped onto the edge between the root and the leaf other
than r. In this way, the distance between the root and the
leaf r will be equal to 0.

Point 3: As a third point, having passed the various
checks above, we have a number of leaves greater than
2. For this case, we must continue with the recursion and
obtain a next group of type cherry or type H between two
leaves. The selection of these two candidate leaves must
be done through the application of the) score function.
In this way, for all the leaves available at this depth,
the first two with a maximum value of () score will be
selected. These two will be stored in the list of two subset
elements (s,t), in addition to the value of q_distance
obtained in the max_distance variable. The latter will be
used only for external display for understanding in the
execution of this.

— Case 0: For the two available types of participat-
ing network structures, it is examined at this point
whether the one found is of type cherry. To be part
of this structure in the distances for the two leaves
found in the previous point there must be only one
distance available.

* Case 0, (i): After finding a substructure between
the two selected cherry leaves, the current distance
matrix must be reduced. This process abstractly
eliminates the existence of the second leaf, i.e., the
leaf t. All leaves that have a distance connection
to this leaf will be eliminated, as well as all entries

.-r.f

R
pdg

e
s e
\./a

Figure 14. Original Network for Q_Algorithm [3].

of ¢. For this point a different distance matrix will
be obtained, which will be named Dprima, in
addition to the elimination of the leaf ¢ in the list
of leaves, which will be named X prima.

x Case 0, (ii): As an end point of the first cherry
case found, the function must be recursively called
again with the previously reduced information.
As a result of this, a network with all leaves
and distances present in the newly formed raw
variables will be returned. As a final part, the
information that has been found at this depth level
in the network returned in the recursive call has to
be reconstructed. For this, the relevant distances
between the connections between the s- and -
sheets and their parent must be correctly inscribed.

— Case 1: For the two available types of participat-
ing network structures, at this point it is examined
whether the one found is of type reticulated cherry
(H). To be part of this structure in the distances
for the two leaves found in point 3 there must
be more than two available. This means that more
than two paths are present between one leaf and
the other. Before proceeding further, it is essential
to check which of the two leaves has the latticed
parent, as they cannot be reversed. In this way,
the ReticulationTest function is used to examine
whether the first subset element is equivalent to s or
t.

x Case 1, (1): Once the structure H and the order of
the leaves have been found, the central connection
of the formed H is cut in this line. This will
involve the elimination of certain distances in the
distance matrix D. It should be stressed that this
process does not eliminate any leaves, so the list
of leaves remains identical. Thus, as a result of
this call, a new variable Dprima is obtained to
store the new information of the distance matrix.

* Case 1, (ii): As the end point of the second case
H found and the last point of the algorithm,
this same function must be called recursively

PART 1 PART2 PART3
g]
®)
[> - — —>
® a
ParT4 PARTS ParT6
[. - -
> P > -

ParT7

Figure 15.

ParT8

Internal transformation of the subnetwork in the reconstruction performed by the Q_algorithm. Part 1: Basic structure in depth 7. Part 2:

Reconstructed Cherry in depth 6. Part 3: Reconstructed Cherry in depth 5. Part 4: Reconstructed H in depth 4. Part 5: Reconstructed Cherry in depth 3. Part
6: Reconstructed Cherry in depth 2. Part 7: Reconstructed Cherry in depth 1. Part 8: Reconstructed H in depth 0.

with the information cut from the previous point.
As a result, a network with all the leaves and
distances present in the newly formed raw variable
will be returned. As a final part, the informa-
tion that has been found at this depth level in
the network returned in the recursive call must
be reconstructed. For this, the relevant distances
between the connections between the s- and ¢-
leaves and the connections between these must
be correctly inscribed. It should be noted that
the double connection between the parents of the
lattice parent of ¢ will have a weight equal to 0.

E. Distance Matrix Construction

For the construction of the distance matrix, a series of own
implementations are used. For this construction, all possible
paths between one leaf and another are traversed with a series
of established limitations. These limitations, which can be

followed in a very specific way in the code, are, on the one
hand, the non-repetition of paths already visited and, on the
other hand, always following an up-down path. The Ilatter
limitation means that when there is a change of direction, it
cannot be changed again, i.e., once you go down, you cannot
go up again. With this, it is possible to limit the possibilities
and obtain the paths that are really going to be used in the
reconstruction of the network. The following functions are
used:

e GetDistance.
e GetDirection.
e GetDistanceMatrix.

F. Example

For the complete testing and execution of the whole al-
gorithm, only one example is used in this case. This runs
through all the different parts, as well as different levels
of recursion. The source network used is the one shown

Table I
DISTANCES MATRIX EXTRACTED FROM ORIGINAL NETWORK IN FIGURE 14

r x1 x2 x3 x4 x5 x6
x1 [19] - - - - -
x2 [18] 3] - . - » -
x3 [19, 18] [14, 21] [13, 20] - - - -
x4 [21,20, 18] [21, 16, 23] [20, 15, 22] [21, 14, 6] - - -
x5 [18] [21] [20] [21, 14] [23, 16, 8] - -
x6 [14] [17] [16] [17,10] [19,12, 8] [8] -
in the Figure 14. The first step to perform before making Table IIT
use of the reconstruction algorithm is to obtain the distance DISTANCE MATRIX ALGORITHM DEPTH 1.
matrix between all the different leaves. Using the implemented
function, the following distances are reported in Table I. - r X_l x_"' X_4 X_S X_6
In this table it should be noted that the distances are stored < 9] - . P
in a unique way, so that only one triangle of the total table x3 [19, 18] [14, 21] - - - -
is retained. In addition, the outgroup node is also obtained in Xg Hg EH gi iﬂ [é] - -
. . . X s - -
the form of variable r and the list of leaves in the form of <6 (1] [17] 10 8 B -

variable X:
[r, 26, x5, 23, x4, 21, 22]

Once we have all the necessary variables, we proceed to
the reconstruction of the analysed network. For each iteration,
the one with the highest q_score is calculated for all possible
combinations of leaves. In this first case, it can be observed
that leaves x3 and x4 are selected with a q_score value of 17.
As there is more than one distance available between these
two leaves, it is equivalent that in the original network there
must be an H shape between the two, which can be seen
in the Figure 14 that this is the case. In this way, once the
structure found has been selected, we proceed to do a Cut
of the distance matrix. This procedure tries to eliminate those
distances that pass through the central connection of the H
form. The resulting table is as shown in the Table II.

Table II
DISTANCE MATRIX ALGORITHM DEPTH 0.

r x1 x2 x3 x4 x5 x6
r N N - N N N -
x1 [19] - - - - - -
x2 [18] [3] - - - - -
x3 [19, 18] [14,21] [13, 20] - - - -
x4 [18] [21] [20] [21, 14] - - -
x5 [18] [21] [20] [21, 14] [8] - -
x6 [14] [17] [16] [17, 10] [8] [8] -

Having made the necessary adjustments, we proceed to the
next level of recursion. For this second level, a pair of leaves
zl and 22 is found with the same value of q_score as in the
first case. As they have the same value, they could have been
produced in reverse without altering the results. For this case,
as there is only one distance, it is a cherry structure formed
between the two leaves, as can be seen in the Figure 14. In this
case, the method Reduce has to be performed on the matrix,
which consists of eliminating all paths leading to x2. Thus,
the resulting matrix is shown in the Table III.

With this new distance matrix, we move to the next level.

Here, with a q_score value of 14, a pair of x5 and x4 leaves is
found. These are equivalent in the same way as the previous
one to a cherry. At first glance, this structure is not visible in
the original network. It should be noted that the connection
between nodes 7 and 8 of the original network in Figure 14
does not exist for the first step, so that from node 6 hangs a
cherry between the leaves found. The resulting matrix has its
leaf x4 removed as shown in the Table IV.

Table IV
DISTANCE MATRIX ALGORITHM DEPTH 2.

r x1 x3 x5 x6
r C N N N N
x1 [19] - - - -
x3 [19, 18] [14, 21] - - -
x5 [18] [21] [21, 14] - -
x6 [14] [17] [17, 10] [8] -

As the next recursion level, another cherry is found again
between the leaves x6 and x5, in this case with a q_score
value of 12. The resulting matrix has the connections to x5
removed as shown in the Table V.

Table V
DISTANCE MATRIX ALGORITHM DEPTH 3.

r x1 x3 x6
r - - - -
x1 [19] - - -
x3 [19, 18] [14, 21] - -
x6 [14] [17] [17, 10] -

As the antepenultimate case, a second H-structure is de-
tected between leaves z1 and z3 with a q_score value of 12.
In this case, it must be taken into account that the cross-linked
parent is the one of leaf 3 and not the other way round,
since in that case the reconstruction cannot be performed. In

this case the method Reduce is performed again, so that the
matrix is as follows without seeing any of its leaves eliminated
as shown in the Table VI

Table VI
DISTANCE MATRIX ALGORITHM DEPTH 4.

r x1 x3 x6
r N N N N

x1 [19] - - -
x3 [18] [21] - -
x6 [14] [17] [10] -

As a penultimate case, another cherry is found again for
the 6 and x3 leaves found with a q_score value of 11. The
distance matrix is as follows as shown in the Table VII.

Table VII
DISTANCE MATRIX ALGORITHM DEPTH 5.

r x1 x6
I‘ - - -
x1 [19] - -
x6 [14] [17] -

Finally, the last recursion level finds a cherry with a q_score
value of 8 for the combination of leaves x6 and zl. By
eliminating the latter, only 6 and r will remain in the list
of leaves, so in the next iteration it will form the second final
basic structure from the following distance matrix in the Table
VIII.

Table VIII
DISTANCE MATRIX ALGORITHM DEPTH 6.

r x6
r - -
x6 [14] -

For the network reconstruction process, the algorithm will
reconstruct the network from the most basic structure found
above. As can be seen in the Figure 15 it is possible to see
how for each depth the found structures are added. In this way,
for Parts 4 and 8 in this same Figure, H structures are added,
while in all the other Parts cherries are added. In the case of
Part 1, it is the basic structure found in point 2 described in
the algorithm. Finally, the recovered structure equivalent to the
original one is formed in the Part 8 seen in the process with
all the weights, as can be seen in Figure 16.

The reconstructed network consists of the same number of
nodes and number of edges, as well as the same connections
between the nodes that form it. Even so, the weights of the
edges are not the same as the original one, having a total sum
of the weights of 43 compared to the sum of 46 of the original
network. This difference is derived from the weights 1 + 2 of
the parent edges of the reticulated nodes 4 and 8 respectively,
which are equal to 0 in the reconstructed network. Seeing
this, the networks are not equal but equivalent, being able to
generate from these the same distance matrix.

L
*</’§”°\
\t\?

o

Ve
.r&svaE ®.0

Figure 16. Reconstructed network with weights from original network in
Figure 14.

VI. MAIN SIMILARITIES AND DIFFERENCES

As we have seen in section IV and in section V, two
algorithms are developed that address the same problem from
different points of view. In this way, the two, although they
embark on their reconstruction journey from different starting
points, share parts of the path to reach the same goal, to
achieve a total reconstruction of a phylogenetic network of
tree-child class. Looking at this it is clear that there will be
differences and similarities between the two approaches.

The main similarity is the structure of the network itself.
The two developments exploit and play around its construction
in order to define the reconstruction. The shapes defined
between two leaves in the Figure 2 is key in both the first and
the second. For the reconstruction from MLLS it is necessary
to find and reconstruct those H structures, with special interest
in the reticulated parent. In the extraction of the subnetworks,
they lose this characteristic, so finding them is the main
point of this one. In the second algorithm analysed, the H
structure is of vital importance, as is the cherry (A) structure.
Another similarity is the computational cost in polynomial
time. This implies that the larger the input, the higher the
cost of resources and time used in the two algorithms.

The main difference is the origin of the reconstruction itself.
While the first algorithm requires a relatively large number
of sub-networks from the original one, the second one only
requires a matrix of distances from a single network. This
implies that in some situations this may be a differential issue.
Still, the algorithms can work in a complementary way, as they
both address the same problem. In addition, another difference
that can be extracted in the operation of the algorithms them-
selves is that in the first one, the complexity and computational
cost of solving the reconstruction is a function of the number
of lattice nodes in the original network. The more nodes there
are, the more MLLS appear for the algorithm’s input. Thus,
in the second algorithm, the computational cost is a function
only of the size of the network and the number of leaves it
contains.

In view of the above, the type of network and the amount of
information available may be an important factor to take into

20

account when using one type of reconstruction or another, as
it may involve a computational cost or even the impossibility
of being able to carry out the total reconstruction depending
on the data available and those that are not available.

VII. CONCLUSION

I hope that the realisation and implementation of these
two algorithms will be a useful contribution to the world of
computational phylogenetics. In part, the choice of a language
such as Python has been to facilitate and share the work
done in a greater way, so that it can be easily reproducible
and understandable through the notebooks. Some of the basic
network manipulation methods used in the algorithms are
implemented in other languages such as Julia or Java [16],
and parts in Python [4]. The problem with these is that in
order to use possibly useful methods, the format of the network
has to be adapted to the expected one, thus complicating the
need to apply additional methods not originally implemented.
Even so, the benefit of the possible methods against the
difficulty of adaptation has not outweighed the gains that this
brings, so we have opted for an implementation close to the
problem addressed, optimising the operation based on what is
expected to be obtained.

Along the same lines, the same problem has been seen
with the networkx visualisation and data processing library.
Better visualisations such as the eNewick [8] format allow a
better visualisation of the network but make it difficult to work
with it. However, as a possible future work, it is possible to
transform a network in eNewick format into a format that the
algorithm can work with, and the result can be transformed
back into eNewick format.

As a possible future work that could be interesting in
terms of packaging everything that has been done is the
creation of a programme with a graphical interface in which
different options can be obtained from the data. These could
be reconstruction in the case of having parts of an original
network, being able to compare, visualise, etc. In short, a
hub in which the input method can be facilitated, and the
output mode facilitated, so that we have a tool in which the
difficult part is understanding the network and not using it. The
algorithms developed are part of this idea, in which, depending
on the data available, it can be reconstructed in one way or
another.

REFERENCES

[1] T. Agarwal, P. Gambette, and D. Morrison. Who is who in phylogenetic
networks: Articles, authors and programs. urlhttp://phylnet.univ-mlv.fr,
2016.

[2] M. Bordewich and C. Semple. Determining phylogenetic networks
from inter-taxa distances. Journal of Mathematical Biology, 73:283—
303, 2016.

[3] M. Bordewich, C. Semple, and N. Tokac. Constructing tree-child
networks from distance matrices. Algorithmica, 80(8):2240-2259, Aug.
2018.

[4] G. Cardona. Phylonetwork 2.1.
https://pypi.org/project/phylonetwork/, 2020.

[5] G. Cardona, J. C. Pons, and C. Scornavacca. Correction: Generation
of binary Tree-Child phylogenetic networks. PLoS Comput. Biol.,
15(10):e1007440, Oct. 2019.

[6] G. Cardona, F. Rossello, and G. Valiente. Comparison of tree-child
phylogenetic networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 6(4):552-569, 2009.

url-

[7]
[8]
[9]
[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

G. Cardona, F. Rossello, and G. Valiente. Comparison of tree-child
phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinformatics,
6(4):552-569, oct 2009.

G. Cardona and D. Sanchez. Phylonetwork’s documentation.
https://pythonhosted.org/phylonetwork/index.html, 2012.

N. developers. Networkx. urlhttps://networkx.org/, 2021.

L. Jetten and L. van Iersel. Nonbinary tree-based phylogenetic networks.
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
15(1):205-217, 2018.

S. Kong, J. Carles Pons, L. Kubatko, and K. Wicke. Classes of
Explicit Phylogenetic Networks and their Biological and Mathematical
Significance. arXiv e-prints, page arXiv:2109.10251, Sept. 2021.

B. Moret, L. Nakhleh, T. Warnow, C. Linder, A. Tholse, A. Padolina,
J. Sun, and R. Timme. Phylogenetic networks: modeling, reconstructibil-
ity, and accuracy. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 1(1):13-23, 2004.

Y. Murakami, L. van Iersel, R. Janssen, M. Jones, and V. Moulton.
Reconstructing tree-child networks from reticulate-edge-deleted subnet-
works. Bull. Math. Biol., 81(10):3823-3863, Oct. 2019.

N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Mol. Biol. Evol., 4(4):406-425, July
1987.

C. Solis-Lemus, P. Bastide, and C. Ané. PhyloNetworks: A package for
phylogenetic networks. Mol. Biol. Evol., 34(12):3292-3298, Dec. 2017.
C. Solis-Lemus and C. Ané. Phylonetworks.jl. url-
https://juliapackages.com/p/phylonetworks, 2021.

L. Van Iersel and V. Moulton. Trinets encode tree-child and level-2
phylogenetic networks. Journal of Mathematical Biology, 68(7):1707—
1729, June 2014.

url-

