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Resum

La Posidonia Oceanica és una part vital dels ecosistemes costaners del Mediter-
rani, amb efectes positius des de proveir aliments i recer a altres organismes marins
a previndre l’erosió de les costes i mitigar el canvi climàtic. L’activitat humana
està danyant aquestes praderies mil·lenàries a un ritme alarmant, en part degut al
canvi climàtic, ja que l’increment de temperatura de l’aigua augmenta la mortalitat
d’aquesta planta marina. L’objectiu d’aquest treball és estudiar els possibles canvis
en les dinàmiques espaciotemporals de la P. Oceanica, centrant-nos en l’efecte d’una
mortalitat dependent del temps.
Com volem investigar els efectes de l’heterogenëıtat espacials i els efectes col·lectius
de la P. Oceanica, farem servir un model que incloga aquests factors. El model
emprat inclou termes espacials i no linears arran de tindre en compte interacciones
col·lectives i no locals, i captura fenòmens complexos com la formació de patrons,
biestabilitat i punts de no retorn. Dos escenaris teòrics s’estudiaran: Un increment
lineal amb el temps de la mortalitat i un increment abrupte d’aquesta. Al primer
cas, un llindar en el ritme d’increment de la mortalitat s’ha trobat per damunt
del qual els patrons no es poden formar i aleshores la vida d’una praderia cau
ràpidament, ja que aquest mecanisme de resiliència es perd. Quan la mortalitat es
canvia abruptament, un arrelentiment cŕıtic s’observa i, per mortalitats just damunt
el punt de no retorn, regions de la praderia desapareixen independentment unes
de les altres. En general, queda de manifest la importància de tindre en compte
l’estrucutra i dinàmica espacial per a comprendre completament la situació i evolució
de la praderia. S’ha tractat de fer prediccions de l’evolució de les praderies a causa
de l’escalfament global basant-se en dades de camp. Tot i que les incerteses a
les dades dificulta la presentació de conclusions quantitatives firmes, les ferramentes
emprades per a estudiar aquestes dades incorporant una major part de la complexitat
d’aquestes praderies s’ha explorat, servint com un pas endavant en l’enteniment del
dest́ı de les praderies de P. Oceanica.
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Abstract

Posidonia Oceanica is a vital part of the Mediterranean coastal ecosystem, with
positive effects ranging from providing food and shelter to other marine organisms
to preventing coastal erosion and mitigating climate change. Human activity is
damaging these millenary meadows at an alarming rate, partly through climate
change, since water warming increases this seagrass’ mortality. The aim of this
work is to study the possible changes in the spatiotemporal dynamics of P. Oceanica,
focusing on the effect of a time-dependent mortality.
Since we want to investigate the effects of spatial heterogeneity and collective effects,
we will use a model that accounts for these factors. The model used includes spatial
and non-linear terms accounting for collective and non-local interactions, and it cap-
tures complex phenomena such as pattern formation, bi-stability and tipping points.
Two theoretical scenarios will be studied: A linear increase of mortality with time
and an abrupt increase of mortality. In the first case, a threshold in the mortality
increase rate is found over which patterns are not formed and hence the lifespan of
a meadow decreases abruptly since this mechanism of resilience is lost. When the
mortality is changed abruptly, critical slowing down is observed and, for mortalities
just above the tipping point, patches of meadow disappear independently of each
other. In general, the importance of taking the spatial structure and dynamics into
account to fully understand the situation and evolution of a meadow is made clear.
An attempt to make predictions of the evolution of meadows with an increase of
mortality due to global warming based on field data is made. Although uncertain-
ties in the data and the model hinder the capacity of presenting firm quantitative
conclusions, the tools to study this data incorporating more of the meadow’s com-
plexity is explored, serving as a step forward in the understanding of the fate of P.
Oceanica meadows.
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1 Introduction

Posidonia Oceanica is a seagrass endemic of the Mediterranean Sea and a key part
of its coastal ecosystems. This clonal plant forms extensive meadows that set the
foundations of the trophic network as the main producer and provide shelter to
many organisms. It can be found at depths starting at 0.3m and, in very clear
waters such that enough light can reach it, up to 45m. An estimated 50 000 km2 of
seafloor, around 3% of the Mediterranean basin, is occupied by it [1]. Its ribbon-like
leaves grow vertically with a typical height of 1m and cause the meadows to have a
noticeable impact on the hydrodynamics of coastal currents and be efficient particle
and floating sediment filters [2].

P. Oceanica, and seagrass in general, are among the main carbon sinks in the bio-
sphere, with a P. Oceanica patch having an estimated carbon absorption capacity
15 times larger than an equally sized patch of rainforest [3]. The high rate at
which organic matter is produced from CO2 is complemented by low nutrient and
oxygen concentration in the meadow’s sediments, so organic matter decomposes
slowly, allowing a large part to be buried indefinitely under the meadow, raising the
seafloor[4]. If a meadow is lost, there is a risk of this organic matter being released
into the sea where it can eventually release the trapped carbon back into the atmo-
sphere.

Whilst individual shoots may live around 30 years, meadows can persist for millen-
nia. In fact, a massive P. Oceanica meadow on the Ibizan coast contends for the
title of the longest-lived organism in existence to have been discovered, with esti-
mates of its age having a lower bound of 12 000 years and upper bounds of up to
200 000 years [5]. This extraordinarily long life is one of the reasons why meadows
are such large carbon sinks, with depths of up to 11m of buried carbon having been
documented under millenary meadows [6].

1.1 Spatial structure of meadows

In spring, seeds are released and drift for several days before sinking and trying to
hold on to the seabed and form a new plant, but this has a very low rate of success.
The main method of propagation of P. Oceanica meadows is clonal growth, with
rhizomes that slowly extend horizontally (at a parsimonious rate of around 5 cm
y−1) and sprout vertical shoots at roughly regular intervals, such that shoots are
regularly separated by a typical distance. Whilst some meadows are fairly homoge-
neous at a landscape scale, others have been found to show diverse heterogeneous
patterns even in otherwise homogeneous environments.

These types of patterns are found in other vegetation landscapes, marine and terres-
trial, and serve to reorganise the pathways of energy and resources in some conditions
[7]. These conditions are generally those of scarcity of resources or large stress on
the ecosystem, making it incapable of supporting a dense homogeneous meadow.
These patterns can be observed through satellite images in shallow waters (under
5m) and through sonar cartography for deeper waters. Using these tools, the project
LIFE Posidonia [8] provides a set of maps of the seafloor in several regions of the
Balearic coast. In some cases, like in the neighbouring bays of Pollença and Alcúdia,
the spatial structure is quite complex, as can be seen in Figure 1. The main het-
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erogeneous pattern seen is of meadow with holes, but smaller regions show regular
patches of meadow over bare sand, and channels or stripes. In all these cases, the
patterns show a degree of regularity in size and spacing of their features larger than
what one would find in a disordered structure.

Figure 1: Segrass meadow cartography of the bays of Pollença (a) and Alcúdia (b) at the
north of Mallorca [8]. The green regions correspond to P. Oceanica meadows, the pink
to mixed communities of the seagrass C. Nodosa and the algae Caulerpa Prolifera, and
yellow to sand.

1.2 Monitoring and protection

Due to the ecological importance of P. Oceanica, efforts have been made to monitor
its situation. By analysing all available works studying the extent and density of
meadows since 1842 [9], a decline in the density and extension of these meadows has
been documented in many regions where it grows. Several key factors have been
attributed to it: physical aggressions such as those from fishing or docking yachts,
nutrient imbalances from runoff fertilisers or waste, an increase in water turbidity
and coastal works, amongst others.

Estimates of the areal extent decrease of seagrasses in the Mediterranean basin in 50
years (from 1959 to 2009) are in the range of 13% to 50% . The remaining meadows
have seen their density halved in 20 years, on average, and become more fragmented.
Due to the slow speed of expansion, the losses are hard to recover from: If a region
of meadow is lost, the best the meadow can do is expand horizontally 5 cm each
year to repopulate the lost region.
The possibilities of restoration and protection projects to mitigate the damages
caused and plant new shoots have been studied and some projects are already being
developed [10, 11, 12]. If done correctly, these can prevent existing meadows from
disappearing and accelerate meadow expansion beyond what would be naturally
possible with slow clonal growth.
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1.3 Effects of temperature rise

The effects of water temperature on mortality have also been studied, both by study-
ing field data [13, 14] and performing studies in a controlled laboratory environment
[15]. Both methods give evidence of the detrimental effects of high temperature on
seagrass growth.

The laboratory study [15] consisted of planting a single shoot in water and substrate
conditions replicating that found in their natural environment. After a period of
acclimatisation, different samples were exposed to different water temperatures and
their vertical growth rates measured. The results for all different macrophytes stud-
ied were a bell-type curve for growth against temperature (Figure 2a). For P.
Oceanica, the maximum growth rate was attained for ∼ 27◦C and the growth rate
dropped below 0 for ∼ 33◦C.

In the field study [13], parcels in several meadows in the natural park of Cabrera
were delineated and the number of shoots measured yearly. From the change in den-
sity from one year to another, the rate of loss, or mortality, of the meadow within
said parcel was calculated. The maximum Seawater Surface Temperature (SSTmax)
for each year was also measured at each site. From these two measurements, the
dependence of mortality on temperature was studied, as can be seen for a single
site in Figure 2b, where the shoot density was plotted against that year’s the cor-
responding SSTmax. In all cases, the drastic increase in SSTmax from 2002 to 2003
gave rise to a decrease in density of up to 40%. A general trend of decreasing density
with increasing SSTmax was observed. These results show the negative effect of high
temperatures on meadows, especially understood as a mass mortality event when
the temperature crosses a threshold of around 28◦C, as stated in the article itself as
a main conclusion.

Quantitative predictions of the decline of meadows due to temperature increase were
later made using these results, predicting the year of extinction (density dropping
below 10% of the present density) of the meadows they studied to be 2061±13 by
combining the aforementioned field measurements with predictions of seawater tem-
perature rise according to climate models [16]. Something that differentiates global
warming from the other anthropogenic causes mentioned earlier is that it can cause
losses even in meadows isolated from direct human impact, as was the case in the
studied meadows. Also, whilst some impacts, such as physical aggressions, can be
quickly stopped, this is not the case with global warming.
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Figure 2: Results from studies of the effect of water temperature on P. Oceanica growth
rates. Panel (a) the effect of water temperature on vertical leave growth in laboratory
conditions [15]. Points correspond to individual samples, and the line to the fit made.
Panel (b) shows the shoot density in terms of the SSTmax for an observation parcel in a
P. Oceanica meadow in the natural park of Cabrera [13]

.

1.4 Modelling

In both cited studies regarding the effects of temperature, non-linear and collec-
tive phenomena were left out, either by the experimental design in the laboratory
case, where isolated shoots were studied or in the mathematical assumptions for
the population dynamics in the field study. The collective effects due to interac-
tions amongst shoots, which can be both facilitative and competitive were thus
not taken into account. These effects depend on density, which varied considerably
throughout the sites studied due to depths being different: densities of up to 700
shoots m−2 were registered at 5m depth and as low as 140 shoots m−2 at 25m depth.

There is now a good theoretical [17, 18, 19] and empirical understanding of pat-
tern formation in terrestrial (often arid) ecosystems [20, 21], where the interactions
amongst the plants give rise to complex regular patterns. These interactions are
often mediated by competition for water or other resources, creating a distribution
that maximises the overall density for the available resources whilst distributing the
meadows spatially in a way that these resources are not depleted at any particular
point. In the case of underwater meadows, lack of water is evidently not a driving
mechanism, but competition for other resources such as sunlight, CO2 or space can
play a similar role [22, 23]. Positive interactions also exist, like the dampening of
strong waves and currents or sediment trapping [24]. Over time, the meadows are
expected to evolve in a way that minimises competition and maximises facilitation.
In the particular case of clonal plants such as P. Oceanica, spatial interactions are
especially important compared to isotropic seed diffusion[25].

By studying the growth mechanisms of P. Oceanica, one can derive a microscopic
description [26, 27], that is, modelling all individual shoots and rhizomes. Whilst
this is ideal from the precision point of view, working with the positions and inter-
actions of individual shoots can be quite cumbersome for medium-sized meadows
and analytical studies of the equations will be harder to perform. For large enough
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meadows (relative to shoot spacing), a coarse-grained model (in terms of continu-
ous density – not individual shoots) can be derived to describe the spatiotemporal
evolution of a meadow. One such model is the ABD (Advection, Branching Death)
model [28], which preserves a strong link to the biological observables but offers a
continuous approach and can be better analysed analytically. It consists of a pair
of integro-differential equations with an explicit angular dependence, making the
model effectively three-dimensional. The non-local interactions are introduced via
a kernel K(~r−~r′) that weights the intensity and sign of the interaction between two
positions. This is the hardest term to connect with real measurements since the
exact interaction mechanisms are still not fully understood.

Further approximations can be made to reduce this to a single PDE, referred to as
the Clonal Growth Model [25]. This exchanges the explicitly long-range terms of
the ABD model for an effectively local model, but keeps the dynamical regimes and
the saddle-node bifurcation they both present at the same mortality value. Whilst
some quantitative correction is lost with these approximations, a simpler model will
allow us to better explore the possible scenarios relevant to a changing mortality
scenario, both numerically and analytically.
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2 Clonal growth model

The clonal growth model [25], which will be used throughout the thesis, consists of
the following PDE:

∂tn = −ωn+ an2 − bn3 + ε∇2n+ α(∇2n)n+ δ|~∇n|2 + β(∇4n)n, (1)

where n is the shoot density and is space-dependent, n = n(~x, t). The intrinsic
mortality ω will be the control parameter and accounts for the rate at which shoots
die (shoot mortality ωd0) and the rate at which new shoots are recruited due to
rhizomes branching (branching rate ωb): ω = ωd0 − ωd. This is equivalent to the
mortality in a linear model, in the sense that, if the spatial and non-linear effects
were somehow eliminated, for example, isolating a single shoot.
The other parameters will be taken as constants and have the following interpreta-
tions:

an2 : Facilitative interactions that allow meadows to exist for positive mor-
talities.

−bn3 : Saturation, being small for small densities but growing fast for larger
values until the total growth rate is 0 and the maximum density is
attained.

ε∇2n : Effective diffusive term due to clonal growth and branching.

α(∇2n)n

β(∇4n)n

}
: Long range interactions between plants.

δ|~∇n|2: Originating from the clonal growth mechanism, affects mainly the front
dynamics, contributing to their velocity of propagation.

Previous works have identified a valid set of parameter values [25]. These were
mainly derived from biological measurements and in part by performing trial and
error adjustments to maximise agreement with empirical observations. These are
then re-scaled for them to be adimensional and of a similar order of magnitude, thus
providing better numerical accuracy:

a = 1.39 , b = 1 , ε = 1.15 · 10−2 , α = −1.78 , δ = 1.03 · 10−2 , β = −1

In these adimensional units, time is adimensionalised with the branching rate: t′ =
ωbt, so the mortality is normalised with the branching rate: ω = ωd0−ωb

ωb
.

The simulations will be carried out by integrating Eq. (1) using a pseudo-spectral
method.

2.1 Homogeneous steady state

Setting all spatial and temporal derivatives to 0, we will first study the homogeneous
steady state solutions:

− ωn+ an2 − bn3 = 0 (2)

Solving this equation we obtain the homogeneous fixed points of the model:
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Figure 3: Bifurcation diagram of the clonal growth model in 1D. The continuous black lines
correspond to the stable homogeneous fixed points and the dashed lines to the unstable
homogeneous fixed points. The Modulation Instability (MI) and Saddle Node (SN) are
indicated. The curve that lies between these two points marked with a dotted-dashed line
is the part of the homogeneous stable fixed point n+ that is unstable to patterns, that
is, whilst it’s stable for homogeneous systems, any heterogeneous perturbation will cause
the system to organise into a pattern state. The stable branch for the striped pattern
solution, which has been obtained numerically, is shown in blue. Note that here the
maximum density is shown, which for the homogeneous solutions corresponds to the total
average density, but not for the pattern solutions.

n0 = 0

n± =
a±
√
a2 − 4bω

2b

(3)

The first solution, n0, corresponds to bare soil and is stable for positive mortalities
and unstable for negative ones. The other two solutions, n±, exist when ω < a2

4b

(when the radicand is positive) and arise from a saddle-node (SN) bifurcation, being
the n+ solution the node, or stable solution.
The bifurcation diagram corresponding to these solutions is shown in Figure 3.
The effect of both non-linear terms can be seen clearly: Due to the −bn3 term,
growth is saturated and the equilibrium density is finite, and due to the +an2

term a stable populated solution exists for positive mortalities, although coexisting
with the stable bare-soil solution. The biological interpretation of this bi-stability
is that once a meadow is established, even if mortality turns positive, facilitative
interactions prevent the death of the meadow, whilst an isolated shoot in a region
with positive mortality would die. Within this bi-stable region, the unstable branch
n− separates densities for which a meadow would survive and approach the stable
populated solution or die and approach the unpopulated solution. This means there
is a density threshold (that grows with mortality) for facilitation to overcome the
tendency towards extinction due to having a positive mortality. The SN point at
ωSN = a2

4b
acts as a tipping point: If the mortality of a populated meadow increases
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Figure 4: Growth rate λ as a function of the wavenumber q. Three cases of ω are shown:
Below, at and above ωMI , as indicated in the legend.

just above this point, bare soil becomes the only stable solution, so the density
would fall to zero irreversibly. Even if the mortality were to be decreased back to
the previous value, the density would still follow the unpopulated solution branch.

2.2 Patterns

We now recover the spatial terms to study inhomogeneous solutions. Introducing
an inhomogeneous perturbation of the form np = Aeλteiqx into Eq. (1) around the
fixed point n+ the expression for the growth rate can be found [29]:

λ(q) = −ω + 2an+ − 3bn2
+ − αn+q

2 + βn+q
4 − εq2 (4)

Where q is the wavenumber of the perturbation. For small values of ω, λ is negative
∀q, but, increasing ω, the maximum of λ(q) becomes 0, and increasing further there
is a range of q for which there is a positive growth rate (Figure 4). This change
in sign for the maximum growth rate corresponds to a Turing or Modulation In-
stability (MI), making the fixed point n+ unstable to patterns from the first value
of mortality where the maximum of λ(q) becomes 0 (ωMI = 0.331) up to the SN
bifurcation (ωSN = 0.483), where the fixed point disappears. For mortalities in this
range, the system self-organises into a stable pattern, which for this model can be
stripes or hexagons (positive or negative), depending on the mortality, as can be
seen in Figure 5. Although only these three patterns are stable solutions, in reality,
mixed patterns are often obtained for random initial conditions of the density field
(Figure 5 d). These will eventually converge to one of the three mentioned patterns.
Once a pattern is close to being formed, its evolution slows down and defects or
fronts between different patterns or orientations of the same type of pattern can
persist for a long time.

For simplicity, from now on the simulations will be carried out in a system discretised
in a 2× 256 grid. Due to the periodic boundary conditions, both grid points along
the short direction are identical, giving rise to an effectively 1D system. This makes
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(a) Positive hexagons. ω = 0.5 (b) Stripes. ω = 0.1

(c) Negative hexagons. ω = 0 (d) Mixed. ω = 0.35

Figure 5: Examples of meadows in different patterned states. The three stable configura-
tions are shown (a-c) along with one mixed configuration(d). The mortalities are chosen
taking into account the different stability range of each solution. All the simulations were
carried out in a 256×256 grid

us lose the hexagonal solutions, and retain only the striped pattern solution. This
striped solution corresponds to the blue branch of the bifurcation diagram (Figure
3). Note that the bifurcation diagram shows the maximum density, not the spatial
average (which for the homogeneous solution are equivalent). Pattern solutions have
generally a larger local density than the equivalent homogeneous meadows for that
mortality (when it exists), but a lower average due to the unpopulated regions. The
patterned solution exists for values of mortality beyond the SN, up to the patter
tipping point ωp ≈ 0.612; self-organisation into patterns increases meadow resiliency.
This agrees with the biological reasoning behind pattern formation, which is to better
distribute resources when there is some sort of scarcity or pressure. Note that if the
mortality is decreased below ωMI , the meadow won’t fall back to the homogeneous
state until the mortality is decreased even further, down to ω = 0.
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3 Theoretical Scenarios

Before attempting to make predictions based on real data, two theoretical scenarios
will be tested: a linear increase of mortality and an abrupt change of mortality.
The first corresponds to the simplest case of a smooth evolution of mortality, as
one would expect from the gradual increase of average temperature due to global
warming or other generally continuous changes that might affect the plant such
as water pH [23] or salinity [30]. On the other hand, mortality has been found to
increase drastically above a certain temperature threshold around 28◦C [15] and can
also increase due to large impact events such as physical aggressions or large runoffs,
like the dramatic event in the Dutch Wadden Sea in 1930 [10], where meadows of
Zostera Marina, another clonal seagrass, quickly went extinct in that region after
the construction of a dam and the incidence of a disease. The study of discontinuous
changes in mortality is thus of interest and relevant to realistic scenarios. These two
scenarios will offer a qualitative picture of some possible dynamics a meadow can
undergo when mortality changes with time.

3.1 Linear increase of mortality

For the first scenario, the mortality will be modelled to depend on time linearly with
a certain constant rate of mortality increase ωr ≡ dw

dt
.

ω(t) = ω0 + ωrt (5)

To have a benchmark against which to compare the effect of pattern formation and
to see separately the effects of the local non-linearities an2 and bn3 from the effects
of the spatial terms, we first work with the homogeneous solutions, that is, disre-
garding all terms with spatial derivatives.

The simulation will be started with a low mortality and the corresponding density
from the stable populated branch n+ as initial condition. We then integrate the
model, updating the mortality at each integration step. In Figure 6(a) we can see
several runs for different rates of mortality increase, showing the evolution of density
with ω. For slow rates, the evolution happens practically along the stable branch of
the bifurcation diagram (we can consider the mortality change adiabatic). For faster
speeds though, there is not enough time for the solution to approach the steady state
before ω changes, so the evolution curve lies above the fixed point curve. In Figure
6(b), the evolution with time is shown. Relative to the simulation length, slower
simulations have a more abrupt fall when crossing the SN, whilst for faster ones the
crossing of the SN is less appreciable. With equal time-scales, the tail of the faster
decays is steeper, as expected, there simply is not a slow section to compare it with.
The shape of the tail of the evolution can be approximated by discarding the non-
linear terms, since the density is close to 0, the only stable solution beyond the
SN.

∂tn = −ωrtn
n = n0e

−ωrt2/2
(6)

The same procedure is now carried out but integrating the whole model including
the spatial terms (Eq. (1)). The initial condition will be a homogeneous meadow
with a mortality such that the populated homogeneous solution is stable and with
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Figure 6: Density evolution for three simulations using only the homogeneous part of the
model with different mortality increase rates, as indicated by legend. The mortality range
is ω ∈ [−0.5, 2] for all cases. Panel (a) shows the density against the mortality at that
point in time, overlaid on the bifurcation diagram. Panel (b) shows the density against
time for each simulation.

density corresponding to this stable fixed point. In Figure 7 (a) we can see the
evolution of the maximum density with the mortality for different rates ωr, overlaid
on the bifurcation diagram. Here it is clear how the existence of the pattern solution
extends the life of the meadow slightly beyond the SN point, which is a tipping
point for the homogeneous solution. In Figure 7(b) we can see the results from the
same simulation, but this time the average density (not its maximum) against time.
Here we can see, especially in the slowest case, how there is a considerable dip in
density when changing from one regime to the other, but not complete extinction.
The meadow then survives further until reaching the tipping point of the striped
solution ωp.

3.1.1 Threshold in the mortality increase rate for pattern formation

For a fast enough increase in mortality, the meadow does not have time to organise
into the striped solution before decaying to the bare-soil solution and “skips” the
MI. This can be seen in Figure 7 (a) where, as the rate is increased, the mortality
for which the systems transitions to the patterned state is delayed, until skipping
it completely for the fastest speed (red curve). Meadows with a mortality increase
rate in the region where it might skip the transition to a patterned solution are
thus susceptible to small variations in the rate, so finding and understanding this
speed threshold is of interest. It can also allow us to either predict if a meadow will
develop patterns or not if mortality keeps increasing at a given rate. To find this
threshold, we will compare the same simulation with and without the spatial terms.
For velocities fast enough to skip the MI, one would expect similar results regardless
of the inclusion of the space-dependent terms, since pattern formation does not get
a chance to play a significant role. On the other hand, if the speed is slow enough,
there should be a noticeable difference since in the full model patterns develop and
the tipping point is extended beyond that of the homogeneous model.

To get a value for the lifespan of a meadow, a density under which we consider the
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Figure 7: Evolution of density with a linearly increasing mortality, with four different
rates, as indicated in the legend. Panel (a) shows the change in maximum density against
mortality. This graph can be misleading since time is implicit, so the time taken to reach
the final mortality of w(tf ) = 1 for each run is shown in the legend alongside the speed
ωr. The mortality of the striped solution’s SN is indicated as a vertical dashed line. Panel
(b) shows the change in average density against time for the same four simulations.

meadow to go extinct is chosen (nD = 0.01) and the time for the maximum of the
density to dip below it is obtained for different velocities. This time is calculated
for both homogeneous and full models, and the discrepancy between the times is
calculated as tfull/thom. This discrepancy against the corresponding mortality in-
crease rate is shown in Figure 8, where one can see a very noticeable increase around
ωTr ≈ 0.01. For speeds just slow enough for patterns to form, meadows extend their
lifespan by around 20% compared to when patterns do not form for slightly larger
speeds. This value depends on the somewhat arbitrary choice of the density nD
below which the meadow is considered to die, but the existence and position of the
threshold in the mortality rate for pattern formation does not depend on nD as long
as it is reasonably smaller than the density of a stable populated meadow.

This threshold can be understood by comparing the time the system takes to jump
to the pattern solution (determined by the unstable eigenvalue of the MI) with the
time the mortality takes to reach the SN. If the latter is shorter the system jumps to
the bare solution, otherwise, the patterns develop and the tipping point is avoided.
We will now estimate both characteristic times to be able to compare them. In
general, for a starting value near an unstable fixed point, the growth of this per-
turbation can be approximated by an exponential increase with the eigenvalue of
the fixed point. In our case, the eigenvalue changes with time, since it depends on
ω, which is time-dependent. We will not use the exact eigenvalue, since it has a
dependence on the wavenumber q, instead, we will use an approximate growth rate
σ(t) assuming the maximum of the dispersion relation (λ(q) in Eq. (4)) dominates
the growth rate: σ(t) = maxq[λ(q, ω(t)]. The evolution of a perturbation to n+ will
be the solution to the following equation:

∂tnp = σ(t)np (7)

From the expression of λ(q) (Eq. (4)), we can calculate σ analytically:

16



0.000 0.005 0.010 0.015 0.020 0.025 0.030
ωr

1.00

1.05

1.10

1.15

1.20

1.25

1.30

tfull
thom

Figure 8: Ratio of lifespan with and without spatial terms for simulated meadows against
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σ = −ω + 2an+ − 3bn2
+ −

1

4

(αn+ + ε)2

βn+

(8)

In Figure 9a we plot σ(ω), where we can see that the dependence is close to lin-
ear except for the last small section towards ωSN . Approximating the dependence
linearly, we obtain a reasonable approximation: σ(ω) ≈ 3.23ω + ct. By choosing
to start at the MI (ω(0) = ωMI) we have that σ(0) = 0, since, by definition, the
maximum growth rate is 0 at the MI. This allows us to ignore the constant term.
Since ω(t) = ωrt+ ω0, we obtain the final expression for σ(t):

σ(t) ≈ 3.23ωrt ≡ σst (9)

Introducing (9) into (7) and solving:

∂tnp = σstn

np(t) = n0e
σst

2

2

(10)

A constant eigenvalue λ has an associated characteristic time of τ = 1
λ
, which is the

time taken for the distance to a fixed point to increase or decrease by a factor of
e = 2.718. From the same definition, we define, for our time-dependent case, the
fixed point’s escape time τe. The assumption is that after a time of this order, the
system escapes the influence of the fixed point, in this case forming patterns if this
happens before the SN is crossed:

np(τe) = n0e
σsτ

2
e

2 = en0

1 = σsτ
2
e /2

τe =

√
2

σs

(11)
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Figure 9: (a) Maximum growth rate against mortality in the range where n+ is unstable to
patterns. (b) Characteristic time for both ways to exit the fixed point n+ with a linearly
increasing mortality, as a function of the mortality speed.

The second timescale, is simply the time taken to get from the MI to the SN with
a constant mortality speed ωr:

τSN =
ωSN − ωMI

ωr
(12)

In Figure 9b we plot the values of τe and τSN for a range of values of ωr, on which
both depend. We can see how, for slow mortality speeds, the time to escape the
fixed point τe is much smaller than the time to reach the SN τSN , so the meadow
organises into a pattern solution way before crossing the SN. Around the same order
of magnitude of the threshold value of ωTr ≈ 0.01 found in the simulation, both times
approach each other, finally crossing each other around ωTr = 0.038. There is some
arbitrariness in the estimation of the characteristic time τe, which only gives a value
of the order of magnitude, hence the discrepancy in the theoretical and numerical
values found, which are nonetheless of the same order of magnitude.

Pattern formation is generally understood as an indicator of ecosystem health and
a mechanism of resilience [31]. For a rapidly increasing mortality, not only is this
resilience lost, but no visible warning of the meadow’s situation is given.

3.2 Abrupt change of mortality

We will now study an abrupt increase in mortality. For this, the initial condition will
be a density field corresponding to a stable populated meadow, but the mortality
will be set to a constant value beyond the tipping point. As before, we will first
work with the homogeneous model and then with the full one.

For the homogeneous model, a large density is set as initial condition and the mor-
tality is fixed beyond the SN. As mentioned in the introduction, the calculation of ω
from field data and predictions of the density evolution have been performed using
a linear model equivalent to linearising around the fixed point n0 corresponding to
the bare soil solution. Our results will be compared to what would be obtained with
this linear model, which yields an exponential decay with ω:
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Figure 10: Time evolution of the density with a constant mortality such that the only
solution is bare soil, starting from a populated meadow. In orange the decay predicted by
the linear model is shown, and in blue the one predicted by the homogeneous non-linear
model. Panel (a) corresponds to a mortality just above the SN and Panel (b) a mortality
considerably larger.

n(t) = n0e
−ωt (13)

This will allow us to compare with what could be predicted using linear models
and see separately the effects of the non-linear terms. In Figure 10 we can see the
time evolution of the density for both the linearised and non-linear (homogeneous)
models, for values of ω just above the SN (Figure 10a) and a larger value of ω
(Figure 10b). The inset shows the same plots with logarithmic y-axes. There, one
can see how, for small values of the density, the non-linear model indeed follows
an exponential decay as in the linear approximation. However, at the beginning of
the evolution, where densities are larger and non-linear terms dominate, there is a
considerable deviation from the exponential behaviour.

Whilst the non-linearities cause meadows to take longer to die off, even for mortal-
ities where there are no stable populated solutions, they can also cause empirical
estimations of the mortality for meadows just beyond the critical point to be under-
estimated if using the linear model to extract the mortality from measurements of
∂tn: One would predict a low mortality for a meadow which is actually on its road
to extinction if the meadow is in the slowed-down region, since the measured slope
would be lower than expected.

The simulations are now repeated including the spatial terms. The scenario will be
that of a meadow in a stable pattern state whose mortality is increased suddenly
beyond ωp. To generate the initial condition, a simulation is carried out with a
mortality for which the pattern solution is stable, letting enough time for the sim-
ulated meadow to reach the steady state which will serve as initial condition. The
mortality is then chosen such that the striped solution no longer exists. In Figure
11, the time evolution of the meadow’s average density with a mortality just above
the tipping for the patterned solution is plotted, along with a raster plot showing
the 1D density profile at each point in time. There are several density dips, followed
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Figure 11: Time evolution of density of 1D system starting with the stable pattern solution
for ω = 0.6, but with ω = 0.6135, just beyond the tipping point. The bottom panel shows
the evolution of the average density, whilst the top panel is a raster plot showing the 1D
density field at each point in time. Each black line corresponds to a peak in the field, with
each existing for a different amount of time. The dips in the average density coincide with
the disappearance of peaks as seen in the raster plot.

by a plateau that corresponds to meta-stable configurations that survive for some
time. Each dip in density corresponds to the loss of a peak or pair of peaks, as
can be seen in the corresponding raster plot. These meta-stable configurations are
only found when the mortality is very near the SN. When the mortality is larger,
the whole meadow disappears more uniformly, as can be seen in Figure 12a, where
the evolution of the average density does not show the same plateaus and dips as in
the previous case. Nonetheless, the decay is not completely uniform as some peaks
decay at slightly different rates, as evidenced in Figure 12b, where the density profile
at an intermediate step of the decay is shown and all peaks have different heights.
This spatial variability for the density even when the mortality is the same for the
whole meadow loss highlights the importance of taking measurements at different
points in a meadow in order to obtain a clear picture of its dynamics, along with
observing the large scale spatial structure of the meadow.

3.3 Homogeneous model as a dynamical system

When working with the homogeneous 1D version of the model and with a linearly
time-dependent mortality, the differential equation can be transformed into a 2D
dynamical system:

ṅ = −ωn+ an2 − bn3

ω̇ = ωr
(14)

This representation can help us discuss some of the phenomena both for the abrupt
change and linearly increasing mortality cases more formally and visualise the whole
phase space for a given velocity, instead of a single trajectory. The phase space for
this dynamical system has the same coordinates as the bifurcation diagram of the
homogeneous solutions shown in Figure 3, so the dynamics on this phase space are
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Figure 12: (a) Time evolution of the density with ω = 0.614 (b)Density profile of a
meadow after some evolution (t = 63), before reaching extinction, showing that decrease
is not uniform across all peaks, which started with the same height at t = 0.

identical to those shown in Sections 3.1 and 3.2 with the homogeneous system when
representing n against ω.

The condition for fixed points is that both ṅ = 0 and ω̇ = 0. The solution of the
first condition is the solution to the homogeneous stationary equation given in Eq.
(3), whilst the second condition implies that ωr = 0, that is, fixed points only ex-
ist for a constant mortality and these coincide with the stationary solutions in the
bifurcation diagram. When mortality is time dependent, the stationary solutions in
the bifurcation diagram are the nullclines of n and there are no fixed points.

For the ωr = 0 case, shown in Figure 13(a), one can see clearly how n− separates
densities for which facilitation is enough to take the system to the populated state
n+ from those where it is not enough and the system falls to the bare soil solution.
Trajectories with ω & ωSN fall to the bare soil solution, but do so passing near the
fixed point n+, hence the reason why the critical slowing down is observed in the
simulations for an abrupt change of mortality with mortality slightly above the SN.

The ωr > 0 case, shown in Figure 13(b), shows no fixed points, with all initial
conditions approaching n = 0 and ω → ∞. Since the stationary solutions on the
bifurcation diagram are the nullclines of n, the behaviour in the vertical direction is
still guided by these fixed points and will slow down near them. As ωr is increased,
its contribution to the velocity in phase space grows and the effects of the non-linear
terms, such as critical slowing down or the sharp fall when the SN is crossed, are
obfuscated. Unlike what one would have with actual fixed points, a trajectory can
cross any of the fixed point lines under certain conditions, for example, if the initial
density is below n+ and ωr is fast enough.
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4 Real data

Now that the basic scenarios have been explored, we can implement real predictions
of the evolution of mortality to estimate the future change in the studied mead-
ows. As mentioned in the introduction, predictions for the decline in P. Oceanica
meadows due to the increase in mortality caused by global warming have been made
[16] based on field data presented in a previous article [13]. We will use the same
mortality time series, corrected and in the appropriate units for our model.

4.1 Data acquisition

From 2002 to 2006 the water temperature in several P. Oceanica meadows along the
coast of the isle of Cabrera, in the homonymous archipelago located to the south of
Mallorca, were measured regularly, along with roughly yearly measurements of the
density change in delimited parcels of the meadows [13]. The Cabreran archipelago
is a natural park, so direct anthropogenic pressures are expected to be lower than in
other coastal areas, making it a good place to study the effect of temperature rise.
Living shoots were marked with a plastic tag, so each measurement allowed for the
counting of surviving (alive with a tag), dead (dead with a tag) and new shoots (alive
without a tag). The shoot mortality is estimated for each measurement, comparing
the number of surviving shoots at a given measurement NS(ti) with the total from
the previous measurement NT (ti−1)

M =
1

∆t
ln

[
NT (ti−1)

NS(ti)

]
(15)

Note that, by construction, M cannot be negative since the surviving shoots NS(ti)
will always be less than or equal to the previous total shoots NT (ti−1).
The Recruitment rate (analogous to the branching coefficient ωb in our model) is
calculated by comparing the current total shoot count NT (ti) to the number of
surviving shoots NS(ti), measuring the proportion of alive shoots that are new:

R =
1

∆t
ln

[
NT (ti)

NS(ti)

]
(16)
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Figure 14: Recorded mortality for each year against the respective maximum temperature
(a) or temperature anomaly over 26.6◦C in degree days (b) [13]

.

The net shoot mortality W is defined as the difference between the mortality and
recruitment rates:

W = M −R =
1

∆t
ln

[
NT (ti − 1)

NS(ti)

NS(ti)

NT (ti)

]
=

1

∆t
ln

[
NT (ti−1)

NT (ti)

] (17)

What effectively is being measured is the change in density, which is fitted to an
exponential decay, as predicted by a linear population model.
In total, 9 parcels at different locations amongst 3 meadows were studied. The aver-
age mortalities obtained with this method were then plotted against the correspond-
ing annual maximum seawater surface temperature (SSTmax) and the temperature
anomaly with respect to the 1988-1999 average maximum of 26.6◦C in degree-days,
as shown in Figure 14. In both cases, a positive correlation was observed and a linear
was fit made. In the follow-up article [13], only the results of the fit with respect
to SSTmax are used. For this reason and due to the availability of predictions of
SSTmax , we will also only use that fit. Their fit obtained for the shoot mortality in
y−1 with SSTmax gave the following linear relationship:

M = a · SSTmax + b

a = 0.021± 0.002

b = −0.47± 0.06

(18)

Using historical data of SSTmax , predictions of the evolution of atmospheric green-
house gas concentration and atmospheric-ocean models, predictions of the increase
of SSTmax until the end of the 21st century were made, as shown in Figure 15. In-
troducing this SSTmax time series into Eq. (18), a time series for mortality M can be
obtained. Finally, the recruitment rate must be subtracted from the mortality M to
obtain the net shoot mortality W = M − R. The recruitment rate was considered
independent of temperature and estimated as R = 0.05± 0.01y−1.
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For simplicity, the temperature time series has been modelled by fitting linearly the
ensemble average of predicted SSTmax growth (red line in Figure 15) and adding a
Gaussian noise with standard deviation such that the fluctuations are of the same
size as in the prediction:

SSTmax = 0.04Y− 53.2 + η

σ(η) = 0.24
(19)

With this we can finally generate a time series of mortality which we will use to
perform simulations.

Figure 15: Annual SSTmax in the Balearic Islands region projected for the twenty-first
century. Grey lines: the outputs of single general Atmospheric-Ocean General Circu-
lation Models (AOGCMs) models; purple and blue lines, respectively: the outputs of
PROTHEUS and VANIMEDAT2 (regional) models; red line: the ensemble average [16]

4.2 Correction to measured mortality

Before introducing the mortality time series into the clonal growth model, a few
adjustments must be made. Due to the choice of the adimensionalisation of the
model’s parameters, the mortality needs to be adimensionalised by dividing by the
recruitment rate W ′ = W

R
. Time is also re-scaled multiplying by the recruitment

rate (t′ = Rt). This means that one unit of time in the simulation corresponds to
1
R

= 20 years.

Measurements of mortality have been made assuming a linear model:

∂tn = −ωLn (20)

We cannot simply take the values of mortality obtained there, since the non-linear
terms have not been taken into account when translating the density measurements
into mortality values. We will now obtain a relationship between the values cal-
culated assuming the linear model (ωL) and the mortality that will be used in the
model (ωNL). There is no mention of the meadows’ spatial arrangement so, for sim-
plicity, we will assume it is in the homogeneous regime, which seems likely looking at
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Figure 16: Size of the correction to the linearly measured mortality as a function of the
meadow density.

the meadow cartography [8]. We factor out n from the linear homogeneous equation
to express it as follows:

∂tn =
(
−ωNL + an− bn2

)
n (21)

By comparing Eqs. (20) and (21), taking into account ∂tn and n are experimental
measures and as such will be the same in both models, we can see that the terms
multiplying n on both equations must be equal:

− ωL = −ωNL + an− bn2 (22)

Finally, we rearrange Eq. (22) to obtain an expression for ωNL in terms of ωL:

ωNL = ωL + an− bn2 (23)

The correction (an − bn2) which is added to the linearly measured mortality has a
maximum value which coincides with ωSN = 0.482, and becomes 0 at n = a = 1.39,
as can be seen in Figure 16. After this density, which is the same a stable homoge-
neous meadow would have at mortality ω = 0, the correction becomes negative. For
any measured positive mortality, the actual mortality will be larger (assuming the
meadow’s density is near or below its equilibrium value). Not considering the non-
linearities causes the mortality to be underestimated: facilitation causes a slower
decay that is erroneously attributed to a lower mortality.

The mortality data which we are using [13] is an average for several sites and depths
with initial densities ranging from 140 to 820 shoots m−2, with an average value of
n(2002) = 430± 210shootsm−2. This large difference is mainly due to the different
depths, which ranged from 5m to 25m, with deeper meadows having consistently
lower densities, since less light can arrive. To adimensionalise this value we have to
divide by

√
ωb
b

, with b = 12.5 cm4 y−1 and ωb = R = 0.05 ± 0.01y−1. The range
of initial densities in adimensional units goes from 0.2 to 1.3. The simulations will
require a starting density, and this in turn affects the initial mortality ωNL.
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Figure 17: Evolution of the density (a) and mortality (b) of a meadow with an increasing
mortality as predicted in [16]. The three colours correspond to three values of the recruit-
ment rate R, accounting for the error given. The region between the upper and lower
bounds taking into account the error in the mortality fit (Eq. (18)). The prediction given
in [16] is shown as a red dashed line.

4.3 Simulation with real data

At last, we proceed to simulate the evolution of a meadow under the described rise
of mortality due to global warming using the clonal growth model. Since SSTmax

is calculated for each year, a 1 year run with constant mortality is carried out for
each year, with the final state becoming the initial state of the next year with its
corresponding mortality. In each step, the mortality will be taken from the predicted
mortality time series and corrected taking into account the current average density.
The two sources of error considered are the error in the fit of W against SSTmax

and the error in the recruitment rate R. Simulations will be made using the central
value and the upper and lower bounds according to the errors, giving in total 9
simulations covering all combinations of errors for both sources considered.
In Figure 17a we can see the evolution of a meadow for R = 0.04, 0.05 and 0.06, each
case showing the uncertainty range due to the error in W . For comparison, the curve
predicted with the linear model [16] is also shown. In this case, there is not a large
difference between both models. To better comment on this, it is illustrative to see
the evolution of mortality with time (Figure 17b). Though the measured mortality
is extrapolated linearly, due to the density-dependent correction, the corrected mor-
tality does not follow a linear relationship with time, especially at the beginning of
evolution where the density (and hence the correction) is not negligible. Via a linear
fit to the curve corresponding to the central value, the approximate mortality rate
of increase is found to be ωr = 0.37 ± 0.05, much larger than the threshold speed
for the MI of ωTr ≈ 0.01, so it is reasonable to assume that these meadows won’t
form patterns. Almost every scenario starts with a mortality beyond ωSN , due to
this, together with the large mortality increase rate, the evolution is similar to that
predicted by the linear model.
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5 Conclusions

We have studied the clonal growth model to describe the spatiotemporal dynamics of
P. Oceanica meadows including non-linear and spatial terms arising from collective
interactions. This model presents complex phenomena such as pattern formation,
tipping points and hysteresis. The main focus has been on the long term response
of meadows when the mortality increases with time.

The regimes of this model have been summarised in the bifurcation diagram, which
presents a sub-critical saddle-node bifurcation at positive mortalities, giving rise
to a region of bi-stability where meadows can exist despite the positive mortality
thanks to the collective facilitation. We have found a Modulation Instability in
the stable branch that makes homogeneous meadows unstable to patterns above
this mortality. The branch in the bifurcation diagram corresponding to the pattern
state has a tipping point at a higher mortality than the homogeneous meadow,
implying that pattern formation serves as a resiliency mechanism.
To get an overview of the possible dynamics, simulations have been carried out with
both a continuous linear increase and with an abrupt increase of mortality. When
the mortality increases linearly with time, the density of the meadow is close to the
stable one at that mortality for slow rates of mortality increase, so when represent-
ing density against mortality, the curve lies almost on the bifurcation diagram. For
faster speeds, the actual density lags behind the stable one, not having enough time
to settle onto the stable density before the mortality increases. Once the tipping
point is crossed and the only solution is bare soil, the impact of the non-linear terms
is reduced and the decay is close to an exponential decay with t2. When increasing
the mortality past the Modulation Instability, the homogeneous meadows start to
organise into a spatially heterogeneous state, “jumping” to another branch of the
bifurcation diagram whose tipping point is for a larger mortality. The jump to the
branch does not happen immediately after crossing the MI, but there is a delay that
becomes bigger the larger the mortality increase is. If the speed at which mortality
is being increased is too fast, the meadow does not have enough time to develop
patterns before crossing the homogeneous tipping point and decaying to the bare
solution. We have found numerically and estimated analytically a threshold value
above which the system does not benefit from the increased resiliency of pattern
formation. This speed threshold has been interpreted as the result of a time scales
separation amongst the escape time from the unstable homogeneous solution when
it is unstable to patterns and the time taken to reach the homogeneous tipping
point due to the increase of mortality. Bifurcations are often studied assuming slow
changes of the bifurcation parameter, so more studies in this type of dynamic bifur-
cations are of interest, especially bearing in mind its likely application to real-world
systems, where control parameters are changed non-adiabatically.

When the mortality is increased abruptly, from one yielding a stable meadow to one
where bare soil is the only solution, we have found a critical slowing down for mor-
talities above but near the SN, with densities decreasing slower than expected for
values near the density at the SN. This can be understood better when expressing
the homogeneous part of the model with a time-dependent mortality as a dynamical
system, where the general theory regarding trajectories in phase space near a fixed
point justifies the existence and position of this slowing-down. For larger mortali-
ties, the evolution resembles more an exponential decay, especially when densities
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become small enough for non-linear effects to be negligible. When the meadow is
initially in a patterned state and the mortality is just above the SN for the pattern
branch, peaks disappear at different times and meta-stable configurations of few
peaks can exist for long times.

Based on previous works collecting and extrapolating field data using a linear ap-
proximation, we have attempted to make predictions with the same data but using
the clonal growth model. A correction has been obtained to translate the mea-
surements using the linear model into mortalities valid for our model, and we have
simulated the evolution of the studied meadows. Several simulations have been
carried out with different parameter values accounting for several error sources.
In general, there is not a stark difference between the previous predictions with a
linear model and ours. This is mainly due to the large starting mortality, beyond the
SN, and large increase rate, annulling most of the improved resiliency from facilita-
tion and crossing the MI so fast that patterns do not form. Another important factor
is that the correction to the mortalities measured using a linear model underestimate
the intrinsic mortality, so the simulations with the linear model had lower mortality
values. The 9 meadows studied offer a very small amount of measurements (4 or 5,
which get reduced by one since time differences are taken) so the average from these
9 meadows was used. This might be problematic since the meadows were at differ-
ent depths and so cannot be considered equivalent, despite being in the same region.

Overall, the quantitative estimations are to be taken with great caution. Despite
this lack of firm quantitative values presented, a general sketch of the possible sce-
narios has been explored and the precautions that must be taken in order to capture
and predict the correct situation of meadows have been highlighted, especially those
regarding to the use of only local measurements without regarding the larger-scale
structure and the exclusion of non-linear terms when extracting mortality values
from data. Future work will involve working directly with larger and longer datasets
with a more rigorous approach to error prediction and extrapolation. Future work
should also consider a 2D space, since all the work here has been made in a 1D
system. Other models with less approximations and more free parameters can also
allow for a more exact simulation.

Measurements of shoot density change are hard to scale up since they have to be
carried out by diving in the region and manually counting shoots in the parcelled-
out area. This direct solution to this limitation is evident: more investment in
monitoring programs, but it is not the only one. Technological developments can
give us better remote sensing techniques to automate these measurements and are
already used to study the large-scale structure of meadows, at a resolution that
is more than enough to study the patterns formed by these meadows [8]. Citizen
science projects are also being developed by NGOs such as Medgardens [32] or Save
the Med [33], both based in the Balearic Islands, in order to empower non-scientists
to learn the techniques to monitor P. Oceanica meadows. This can have the dual
effect of increasing the available data dramatically and approaching the general
public to the often too gated scientific community and the reality of our seas.
We are all in this together, so it makes sense to involve as many people as possible
in the task of understanding and protecting the vital ecosystems on which we and
uncountable other beings depend.
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[27] Tomàs Sintes, Núria Marbà, and Carlos M. Duarte. Modeling nonlinear seagrass
clonal growth: Assessing the efficiency of space occupation across the seagrass
flora. Estuaries and Coasts, 29(1):72–80, February 2006.
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