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ABSTRACT

Coronal holes and active regions are typical magnetic structures found in the solar atmosphere. We propose several magnetohydro-
static equilibrium solutions that are representative of these structures in two dimensions. Our models include the effect of a finite
plasma-β and gravity, but the distinctive feature is that we incorporate a thermal structure with properties similar to those reported by
observations. We developed a semi-analytical method to compute the equilibrium configuration. Using this method, we obtain cold
and under-dense plasma structures in open magnetic fields representing coronal holes, while in closed magnetic configurations, we
achieve the characteristic hot and over-dense plasma arrangements of active regions. Although coronal holes and active regions seem
to be antagonistic structures, we find that they can be described using a common thermal structure that depends on the flux function.
In addition to the force balance, the energy balance is included in the constructed models using an a posteriori approach. From the
two-dimensional computation of thermal conduction and radiative losses in our models, we infer the required heating function to
achieve energy equilibrium. We find that the temperature dependence on height is an important parameter that may prevent the system
from accomplishing thermal balance at certain spatial locations. The implications of these results are discussed in detail.
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1. Introduction

Coronal holes (CHs) are usually defined as the darkest patches
on the solar surface that are observed in ultraviolet (UV) and
X-ray radiation. These structures are associated with magnetic
fields that are open to the interplanetary space and have strong
links with the solar wind, which is thought to emanate from
their base. A significant effort over the past decades of part
of the scientific solar community has been to reproduce the
velocities that are reported for the solar wind. We refer to the
review of Cranmer (2009) of measurements of the plasma prop-
erties in CHs and how they are used to reveal details about the
physical processes that heat the solar corona and accelerate the
solar wind. Because the magnetic field in CHs is unipolar and
therefore open, this configuration is in some aspects similar to
solar sunspots (see a detailed comparison in Obridko & Solov’ev
2011), which are characterised by a concentration of magnetic
flux at a low temperature with respect to the environment. How-
ever, CHs are thought to have a low plasma-β (ratio of gas to
magnetic pressure) in contrast to sunspots, where this parameter
changes substantially with height from the photosphere to the
corona. The plasma-β is typically about 3×10−3 in CHs (see e.g.
Isenberg & Vasquez 2007).

The arrangement of active regions (ARs) is inverse to that
of CHs. ARs are composed of dense and hot plasma cores lying

along closed magnetic field lines. UV-imaging spectroscopy dur-
ing the early 1970s from Skylab already revealed that ARs are
composed of filamentary structures, commonly called loops,
rather than consisting of a plain diffuse plasma distribution.
Gallagher et al. (2001) found that the AR they studied had the
structure of a central hot high-density core, contained by a
large number of low-lying magnetic field lines and surrounded
by cooler loops, which in turn were embedded in hot coronal
plasma. The authors were able to estimate the plasma pres-
sure distribution over the AR and found that it was higher in
the core and lower in the halo (almost two orders of magni-
tude). This agrees with the fact that pressure in ARs is known
to be correlated with higher magnetic flux concentrations; see
for example Golub et al. (1980). It is also known that the mag-
netic field is a primary quantity in relation to coronal heat-
ing, especially in ARs. Although the analysis and modelling
of coronal loops in ARs has received much attention (see e.g.
Aschwanden et al. 1999, 2000), the plasma emitting in the EUV
within the AR that is not associated with distinguishable loops is
often ignored. Here we concentrate on the largely diffuse com-
ponent in ARs because coronal loops generally comprise only a
small proportion of the AR emission, typically only 10%–30%
of the enhancements over the background (Del Zanna & Mason
2003; Viall & Klimchuk 2011). In our case, and similar to the
definition given in Viall & Klimchuk (2011), diffuse emission
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refers to background emission without distinct discrete inten-
sity enhancement such as loops, and whether it occurs in hot or
warm temperatures. One of the conclusions of Viall & Klimchuk
(2011) was that the diffuse background shows understandable
patterns that are consistent with impulsive nanoflare heating.
This indicates that the emitting coronal plasma in the whole
AR is not steady, but dynamic and constantly evolving (see also
Viall & Klimchuk 2012, 2016, 2017). This somewhat contra-
dicts the results of Warren et al. (2012), who indicated that the
hot-component plasma in several observed ARs is often close
to equilibrium. Recently, Warren et al. (2020) have shown using
observations of an AR from the High-resolution Coronal Imager
(Hi-C) sounding rocket together with modelling that the heat-
ing in the AR core is taking place at a relatively high frequency
and that the observed loops are close to equilibrium. This is an
indication of nearly steady heating.

An approach that is commonly used in the literature for
heating studies in the solar corona relies on the assumption of
an a priori form of the heating, for example, a decaying expo-
nential with height. This heating profile, representing a foot-
point heating, has been used to solve the time-dependence prob-
lem, and the characteristics of the equilibrium, if achieved, or
of the non-equilibrium, have been investigated in detail in the
past (see e.g. the summaries of this subject of Klimchuk 2019
and Antolin 2020). Thermal non-equilibrium (TNE) is a clear
example of a non-existing equilibrium situation in which a non-
linear mechanism can explain coronal rain or the cold conden-
sations that lead to prominence formation around magnetic dips.
The a priori approach to the heating form is not the only way
to solve this problem. An alternative method is based on the
calculation of the stationary solutions of the configuration in
two or three dimensions. With this approach, we have the pos-
sibility of choosing a certain temperature and pressure profile,
calculate the force balance to have equilibrium of forces, and
investigate the energy balance a posterioir without an a priori
assumption about the heating form. The choice of temperature
and pressure, together with the magnetic field, determines ther-
mal conduction in the system. The optically thin radiative losses
of the corona depend on the density and temperature distribu-
tion of the obtained solution under force balance. When we have
the contribution of thermal conduction and radiative losses, we
can calculate the heating profile to have a perfect equilibrium.
An example of this is the one-dimensional (1D) Rosner-Tucker-
Vaiana (RTV) scaling law (see the model of Rosner et al. 1978
under the assumption of uniform pressure and heating, and also
the two-dimensional (2D) model of Petrie et al. 2003). The ques-
tion that arises here is whether we can always find energy bal-
ance in the system. With this approach we can derive, without
directly solving the time-dependent problem, some conditions
that lead to the existence or absence of thermal balance. In this
case, thermal balance does not refer to thermal equilibrium along
an individual magnetic field line only (the 1D case). Because the
problem is treated in 2D in the present work, we instead consider
CHs or ARs as global structures.

Regardless of whether the coronal heating is impulsive or
steady, it is known that many magnetic structures of the solar
corona can from a large-scale point of view have long life-
times. This suggests that they are in a sort of equilibrium state,
although the observations reveal a strong dynamism that is often
reinforced by flows on small spatial scales. In spite of the
dynamic nature of the coronal structures, magnetohydrostatic
(MHS) models, in which flows are assumed to be zero or station-
ary, should not be discarded. In particular, recent literature lacks
MHS equilibrium models of CHs, except for Tsinganos (1981,

1982), Low & Tsinganos (1986) in the 1980s, and the afore-
mentioned work of Obridko & Solov’ev (2011). MHS models
of CHs are needed for several reasons. They can provide a bet-
ter understanding of how these structures are kept in the two
basic balance conditions, namely the force and thermal bal-
ance. MHS models of CHs are necessary for other purposes
such as for example to carry out investigations about the interac-
tion of global MHD waves with these structures because so far,
very simple geometries have been addressed, mostly based on
a purely vertical magnetic field (see Piantschitsch et al. 2018a,b,
2020; Piantschitsch & Terradas 2021). Global three-dimensional
(3D) MHD simulations have also been used to investigate this
problem (e.g. Downs et al. 2011), but the results about the inter-
action with CHs are limited and deeper analyses are required,
especially using elementary models. The same also applies to the
construction of magnetohydrostatic solutions of ARs. Another
argument in favour of studying MHS models is that we can
obtain some information about the conditions for which these
models are not possible. In order words, if the MHS models pro-
vide unrealistic configurations, real solar structures are not in
MHS equilibrium.

The main aim of the present work is twofold. First, we
explore different CH models that include a cold and under-dense
region (the CH) that connects with an atmosphere at typically
1 MK (corona) through a smooth coronal hole boundary (CHB).
Using the same scheme based on the early works of Low (1975,
1980), we investigate how uninvolved MHS models can also
reproduce the main features of ARs, paying particular attention
to the high pressure and diffuse background of these structures
instead of the single-loop structures. The main characteristics of
the different MHS models developed here are analysed in detail.
Second, and closely related to the previous goal, we carry out a
detailed investigation of the energy balance in these structures.
We calculate the spatial distribution of heating required for a
situation in thermal balance, and we provide some constraints
for the temperature dependence on height to achieve energy
equilibrium.

2. Magnetohydrostatic equilibrium in 2D

We start by describing the problem we aim to solve and how it
is formulated using the equations of magnetohydrostatics, which
are applicable as a first approach to CHs and ARs. Low (1975)
addressed the situation of magnetohydrostatic equilibrium in the
presence of purely vertical gravity in Cartesian geometry. We
also refer to Parker (1968, see their Appendix A) and Parker
(1979). We look for solutions to the following equation:

1
µ0

(∇ × B) × B − ∇p − ρg êz = 0, (1)

where B is the magnetic field, p is the gas pressure, ρ is the
plasma density, g is the gravity acceleration on the solar sur-
face (pointing in the negative z-direction), and µ0 is the magnetic
permeability of free space. The magnetic field from Maxwell’s
equations has to satisfy

∇ · B = 0. (2)

We assume that the plasma is composed of fully ionised hydro-
gen that satisfies the ideal gas law,

p =
R

µ̄
ρT, (3)
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where T is the temperature, R is the gas constant, and µ̄ is the
mean atomic weight (µ̄ = 0.5 for fully ionised hydrogen plasma
and µ̄ = 0.6 when fully ionised helium with coronal abundances
is included). The aim is to obtain solutions to the previous equa-
tions, but we have a system of five equations (Eqs. (1)–(3)) but
six unknowns, B (three components), p, ρ, and the tempera-
ture T . An energy equation, sometimes also called heat transport
equation, is required to have a closed system. Here we adopt
the approach of Low (1975) in which the energy equation is not
solved directly. The key point is to select a temperature profile
based on some observational constraints, in particular, we use
the fact that in CHs the plasma temperature is lower than in the
coronal environment; see Munro & Withbroe (1972) and the ref-
erences in Cranmer (2009). When we have obtained a solution,
we calculate the corresponding energy balance that the system
has to satisfy in order to keep a thermal equilibrium. Because it is
difficult to solve the energy equation simultaneously with force
balance, another option is to prescribe a priori a polytropic equa-
tion of state, which effectively corresponds to some energy addi-
tion or sink computed a posteriori (e.g. Tsinganos et al. 1992;
Petrie et al. 2002). Nevertheless, here we prefer to select an a pri-
ori temperature profile based on some observational constraints.

To avoid unnecessary complications, we restrict our analysis
to a 2D coordinate geometry with invariance in the y-direction
and with no component of the magnetic field in this direction.
The magnetic field is written in terms of a magnetic flux function
(the y-component of the magnetic vector potential), denoted by
A(x, z) and ensuring Eq. (2), but this needs to be determined. We
write

Bx(x, z) = −
∂A
∂z

(x, z), (4)

By(x, z) = 0, (5)

Bz(x, z) =
∂A
∂x

(x, z). (6)

The dependence of gas pressure and temperature on the magnetic
flux function is prescribed according to the type of solution that
we seek. It can be shown, see for example Low (1975), Priest
(1982) and the multiple examples explored in Priest & Forbes
(2007), that the flux function is the solution of the following non-
linear elliptical partial differential equation:

∂2A
∂x2 (x, z) +

∂2A
∂z2 (x, z) + µ0

∂p(A, z)
∂A

= 0, (7)

where gas pressure is given by

p(A, z) = p0(A) e−
∫ z

0
µ̄g

RT (A,z′) dz′
, (8)

and T (A, z) is the temperature profile that can depend on the flux
function A and the z coordinate as well. Equation (8) imposes a
balance between the force due to the gas pressure gradient and
the gravity force along the magnetic field lines, while Eq. (7)
represents the condition of force balance perpendicular to the
magnetic field. The function p0(A) determines the profile of gas
pressure at z = 0. Equation (7) is of Grad-Shafranov type, but
includes the effect of gravity. This equation must be solved under
some boundary conditions.

It is useful to rewrite Eq. (7) in dimensionless form because
it reduces to

∂2Ā
∂x̄2 (x̄, z̄) +

∂2Ā
∂z̄2 (x̄, z̄) +

β0

2
∂p̄(Ā, z̄)
∂Ā

= 0, (9)

where

β0 =
2µ0 p00

B2
0

, (10)

is the reference plasma-β, the lengths are normalised to h, the
pressure to p00, and the flux function to B0h. The pressure scale
height is h = RTC/µ̄g, where TC is the reference coronal tem-
perature (h is typically about 60 Mm for TC = 1 MK). If gas
pressure is ignored in Eq. (9) (β0 = 0), this equation reduces to a
Laplace equation that leads to the potential solution. In this case,
a maximum principle exists, stating that a solution cannot attain
a maximum (or minimum) at an interior point of its domain. This
result implies that the values of the solution in a bounded domain
are bounded by its maximum and minimum values on the
boundary.

The magnetic field and the thermodynamic variables are
given in terms of A, p0(A), and T (A, z). We distinguish between
the photospheric and coronal footpoint definition, which can
be quite different in case of a canopy-like divergence from the
phothosphere to the base of the corona. Our reference level,
z = 0, is located at the base of the corona. If we know the mag-
netic field at this reference level, that is, Bz(x, z = 0), then we
calculate the flux function at this level by direct integration of
Eq. (6),

A(x, z = 0) =

∫
Bz(x, z = 0) dx, (11)

which is used to calculate the gas pressure at the reference level

p(x, z = 0) = p0(A(x, z = 0)). (12)

We need to solve Eq. (7) subject to the boundary value of
A(x, z = 0) (a Dirichlet problem) previously calculated, and in
terms of some given T (A, z) that has not been prescribed yet.
The most relevant boundary condition is at the bottom of the
system, z = 0, this determines the behaviour of the solution
in the whole spatial domain. The Grad-Shafranov equation is a
fourth-order partial differential equation, meaning that we have
to specify additional boundary conditions. We have explored two
situations, a finite rectangular domain and the upper half-plane
(with the solution assumed to vanish at infinity), and decided to
concentrate on the last configuration because it is not affected by
the location of the edges of a finite domain.

It is worth mentioning that Low (1980) proposed another
scheme in which treating A(x, z) as a known function then Eq. (7)
is used to determine T (A, z). This scheme is more flexible and the
equations of magnetostatic equilibrium can readily be integrated
in closed form. However, for the purposes of the present paper
related to the investigation of different profiles for T (A, z), the
scheme of Low (1975) adopted here is more convenient.

3. Magnetic configuration

In this section we calculate the magnetic field configuration. We
begin with the simplest case, a unipolar magnetic field that rep-
resents a CH, and then we explore a bipolar model describing
an AR. We provide rather simple analytical solutions in the case
β = 0, that is, the potential magnetic field.

3.1. Unipolar CH and bipolar AR

The type of solutions we are interested in should represent a CH,
and the boundary conditions at z = 0 allow us to chose families
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of solutions that have a vertical magnetic field at the center of
the hole that progressively expands with distance from the cen-
tral part. This is the sort of configuration that is inferred from
the observations and from photospheric magnetic field extrapo-
lations. A convenient choice is a function that is concentrated at
x = 0 and that decreases with distance, for example following a
Gaussian dependence,

Bz(x, z = 0) = B0 e
−

(
x

w0

)2

, (13)

where w0 is the characteristic width, and the Gaussian is centered
around x = 0. Integrating with respect to x, Eq. (11), we find that
the corresponding flux function is

A(x, z = 0) =

√
π

2
B0w0 Erf

(
x

w0

)
+ C, (14)

where Erf(x) is the error function, and C is an integration con-
stant that is set to zero without loss of generality. The obtained
flux function is proportional to the product B0 w0 and to the
error function, which is very similar to the hyperbolic tangent
function. An example of the flux function is shown in Fig. 1.
It is worth noting that although the magnetic field is localized in
space, the flux function is not confined around x = 0 and has tails
that extend over the whole spatial domain. This is due to the fact
that the magnetic field is unbalanced, that is, the net magnetic
flux is not zero.

Other profiles for the magnetic field can be explored, but as
we show in the following, the main features of the flux func-
tion are found to be essentially the same. We consider an inverse
parabolic profile for the magnetic field,

Bz(x, z = 0) =

B0 − B0

(
x
x0

)2
−x0 < x < x0,

0 |x| ≥ x0.
(15)

The corresponding flux function is

A(x, z = 0) = B0F(x) =


B0x − B0

x2
0

x3

3 −x0 < x < x0,
2
3 B0x0 x ≥ x0,

− 2
3 B0x0 x ≤ −x0,

(16)

where the values of A(x, z = 0) for |x| higher than or equal to
x0 (we assume that x0 > 0) were adjusted through the integra-
tion constant to have a continuous derivative of A and therefore a
continuous variation of Bz(x, z = 0). The integration constant C
has also been set to zero. We introduced the definition of F(x) in
Eq. (16). The flux function is plotted in Fig. 1 and can be com-
pared with the corresponding flux function associated with the
Gaussian profile. The two profiles are very similar, meaning that
for our purposes, the specific function we chose to represent the
unipolar magnetic field is unimportant. In the rest of this section,
we use the parabolic profile for the magnetic field and the cor-
responding flux function. The reason for choosing this depen-
dence is that, as we show below, analytical progress is possible
if the polynomial form of the flux function given by Eq. (16) is
used. When the energetics of the problem is addressed in Sect. 5,
the Gaussian profile is more convenient because the conduction
term (involving second-order spatial derivatives) has a smoother
behaviour than the term for the parabolic profile (which has dis-
continuous derivatives in the x-direction).

Now we construct an elementary magnetic model that rep-
resents an AR. Such configurations are in general bipolar, and
a straightforward method to represent them is to superpose two
individual unipolar regions of opposite polarity and separated

Fig. 1. Flux function as a function of the horizontal position at z = 0.
The continuous line corresponds to the Gaussian profile, and the dotted
line shows the parabolic profile. The horizontal dashed lines represent
the constant values that the Gaussian profile tends to asymptotically. In
this plot, w0/h = 1, and C = 0 for the Gaussian profile, while x0/h = 1
for the parabolic profile.

Fig. 2. Flux function as a function of the horizontal position at z = 0 for
the bipolar AR described by Eq. (17). The continuous line corresponds
to the superposition of the left unipolar region (dotted line) and the right
unipolar region (dashed line). In this plot, x1/h = −2, x2/h = 2 and
x0/h = 1/4.

by a certain distance. In terms of the function F(x) introduced
before, the flux function is

A(x, z = 0) = B1F(x − x1) + B2F(x − x2), (17)

where we assume hereafter that B1B2 < 0 to have a bipolar con-
figuration. The parameters x1 and x2 correspond to the centres
of the opposite-polarity unipolar magnetic fields. The distance
between them therefore is |x1 − x2|. If we assume that the two
unipolar regions are equal (same widths and intensities, except
for the sign of the magnetic field), then the flux function, in con-
trast to the case of a unipolar field, is a localized function in
space. In this situation, there is a perfect balance that cancels the
tails of the flux function. This feature is clear in Fig. 2.

In a general case, it is easy to see that the minimum and
maximum values of the flux function are given by

Amin = (−B1x0 − B2x0)
1
2
, (18)

while the absolute maximum value is

Amax = (B1x0 − B2x0)
1
2
. (19)

A136, page 4 of 18



J. Terradas et al.: Coronal hole and active region MHS solutions in 2D

We assumed that the thickness of each unipolar region is the
same, x0, but the previous expressions are easily extended to
non-equal widths. The minimum and maximum values of the
flux function are useful when the thermal structure of the model
is introduced in Sect. 4.

3.2. Solution for the upper half-plane: Green’s function

For the situation β = 0, we showed that the Grad-Shafranov
equation given by Eq. (7) reduces to a Laplace equation. We
assume that the domain is z > 0 (upper half-plane) and there-
fore we implicitly assume that the flux function tends to zero for
x → ±∞ and z → ∞. For this kind of problem, it is known that
we can use the properties of Green’s functions. They have been
applied in the past to calculate potential magnetic fields based on
photospheric magnetograms (see Schmidt 1964; Sakurai 1982
for details about the first applications of the Green function
method in the solar context). When this method is used, it is
known that the Laplace equation in the Cartesian domain z > 0
plus the inhomogeneous boundary condition at z = 0 have the
following analytical solution:

A0(x, z) =
z
π

∫ ∞

−∞

A(ξ, z = 0)
(x − ξ)2 + z2 dξ, (20)

where we use the subindex 0 to indicate that it corresponds to
the zero β case. This exact solution tends to zero at large dis-
tances from the source, and it involves a definite integral and the
specific profile of the flux function at z = 0, that is, A(x, z = 0).
In general, the integral in Eq. (20) needs to be calculated numer-
ically, but for our deliberate choice of the parabolic profile for
the unipolar field at z = 0 given by Eq. (16), the primitive is
analytical,

A0(x, z) =
a0

4πx3
0

(
z
(
−3x2 + 3x2

0 + z2
)

ln
(x − x0)2 + z2

(x + x0)2 + z2

+
(
2x3 − 6xx2

0 − 6xz2 + 4x3
0

)
tan−1

( x − x0

z

)
+

(
−2x3 + 6xx2

0 + 6xz2 + 4x3
0

)
tan−1

( x + x0

z

)
− 8xx0z

)
, (21)

where a0 = (2/3)x0B0. This solution contains up to third-order
polynomials together with logarithmic and trigonometric func-
tions, and it is therefore relatively easy to handle. It can be shown
that applying l’Hôpital’s rule, the limit of Eq. (21) when z tends
to∞ is zero, as expected.

The components of the magnetic field associated with
Eq. (21) using Eqs. (4) and (6) are

Bx(x, z) =
3a0

4πx3
0

(
4xx0 +

(
x2 − x2

0 − z2
)

ln
(x − x0)2 + z2

(x + x0)2 + z2

+ 4xz
[
tan−1

( x − x0

z

)
− tan−1

( x + x0

z

)] )
,

(22)

Bz(x, z) = −
3a0

2πx3
0

(
2x0z + xz ln

(x − x0)2 + z2

(x + x0)2 + z2

+
(
−x2 + x2

0 + z2
) [

tan−1
( x − x0

z

)
− tan−1

( x + x0

z

)] )
.

(23)

Substituting z = 0 in Eq. (23) and using that tan−1(±∞) = ±π/2,
we find that only the third term on the right-hand side is different
from zero, and we recover the parabolic profile given by Eq. (15)

Fig. 3. Magnetic field lines in the analytical CH model given by Eq. (21)
(β0 = 0). In this example, the half-width of the CH at z = 0 is x0 = h.
Magnetic field lines coincide with isocontours of the flux function A0.
The geometry of the magnetic field would be affected by boundaries at
a finite distance from the source, but the method implemented in this
work prevents these effects through the Green functions.

that was used as boundary condition to construct the solution in
the whole 2D domain.

An example of a CH model based on the previous analytical
solution is shown in Fig. 3 for a particular choice of the param-
eters B0 and x0. The magnetic field is purely vertical at x = 0
and globally shows a radial expansion of straight magnetic field
lines except near the bottom boundary, where the field matches
the boundary conditions at z = 0 and the magnetic field lines are
slightly curved. At low heights and far from the source, the hor-
izontal component of the magnetic field dominates the vertical
component. Because at z = 0 we impose that Bz(x, 0) = 0 for
|x| ≥ x0 (see Eq. (15)), the magnetic field becomes purely hori-
zontal at our reference level. In this regard, the Gaussian profile
given by Eq. (13) would avoid this effect and produce a more
confined structure. In a real CH, it is quite unlikely that the mag-
netic field is purely horizontal outside the CH because there are
contributions from other nearby magnetic fields with different
spatial scales and intensities that have emerged through the pho-
tosphere (this is partially addressed in the following paragraphs,
where a CH is combined with an AR).

The analytical solution for the unipolar magnetic field is
the basis for constructing more complicated magnetic configu-
rations. As we described in the previous section, we build an
AR model by adding two unipolar magnetic fields of opposite
polarity. We can use this superposition of solutions for the flux
function because the Laplace equation is a linear partial differen-
tial equation. We introduce a translation of the solution given by
Eq. (21) with respect to the x-coordinate by making the change
x → (x − x1), where x1 is the centre of the new unipolar region.
We repeated this operation for the opposite-polarity unipolar
field, located at x2, and then we added the corresponding flux
functions according to Eq. (17). An example of this equilibrium
is shown in Fig. 4. We obtain closed field lines that for our pur-
poses represent a typical magnetic configuration of a symmet-
ric bipolar AR. This magnetic configuration was used later to
host a dense and hot plasma in the case of a plasma-β differ-
ent from zero. Figure 5 shows a similar situation, but the AR
is not perfectly symmetric: the magnetic field at the right foot-
point is stronger than that at the left footpoint. At low heights,
the configuration is closed, but it changes to open away from
the AR core. At very large distances from the bipolar region, we
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Fig. 4. Magnetic field lines in a symmetric AR model based on Eq. (17).
In this example, the two unipolar sources are located at x1 = −1/4h and
x2 = 1/4h, where x0 = h.

Fig. 5. Magnetic field lines in a non-symmetric AR model. In this exam-
ple, the two unipolar sources are located at x1 = 1/4h and x2 = −1/4h,
where x0 = h. The source located at x = x1 is 1.2 times stronger than
the source at x = x2. There is some spatial overlap in the sources, but
this is allowed in our model because it is based on the superposition of
individual solutions.

essentially recover the structure of a single unipolar configura-
tion with straight magnetic field lines; compare with Fig. 3.

Two additional examples of equilibrium based on the super-
position of unipolar regions are shown in Fig. 6. The magnetic
configuration combines a CH and an AR. In the first case, the
polarity of the left footpoint of the AR is the same as the polar-
ity of the CH. The CH is displaced towards the left due to the
presence of the AR, which is squashed by the CH. Due to the
presence of the AR, the magnetic field is no longer purely hor-
izontal at the right part of the CH for x > x0, as happens in the
configuration of Fig. 3. In the second situation, the polarity of
the AR is reversed. The CH is shifted to the right, and a null
or X-point, with zero magnetic field, appears in the AR. In this
configuration, the separatrixes of the magnetic field provide an
excellent definition of the location of the CHB (understood as
the layer that separates open from closed magnetic field lines).
In conclusion, the examples shown in this section illustrate the
flexibility of the scheme to construct a variety of potential mag-
netic field configurations that can be used in general as the basis
for other studies, and in particular in the following section as the
skeleton to include the effect of gas pressure and gravity in the
system.

Fig. 6. Magnetic field lines of a mixed CH and AR model. The CH is
located at x1 = 0, and the AR is represented by equal opposite-polarity
sources located at x1 = h and x2 = 2h, where x0 = h. The differences
between the two panels are due to the polarity of the left footpoint of
the AR with respect to the CH: positive in the top panel, and negative
in the bottom panel. This creates an X-point.

4. Coupling the magnetic field to the plasma

When the β of the plasma is different from zero, the magnetic
field and the plasma are coupled. Because this parameter in CHs,
ARs, and in general in the corona is small, the deviation from
the potential solution is expected to be limited. Nevertheless,
it is crucial to include gas pressure in the scheme because the
observations specifically provide information about the struc-
ture in density (emission measure) and temperature (both related
to gas pressure), and to a lesser extent, about the magnetic
field, inferred from extrapolations based on photospheric mag-
netograms.

We included a non-zero gas pressure in Eq. (7) through the
in principle arbitrary functions p0(A) and T (A, z) that need to be
defined. For simplicity and with the aim of focusing on the over-
all behaviour, we assumed the following separable dependence
for temperature, although this is not mandatory in the present
formalism:

T (A, z) = T (A)H(z). (24)

This profile entails a type of uniform temperature dependence on
height in the whole region of interest, either the CH or AR, but
temperature is still allowed to vary from field line to field line
due to the term T (A). This situation is similar to the cases of
self-similar MHD solutions that were explored, for example, by
Petrie et al. (2002, 2003) and Tsinganos (2010). An isothermal
temperature distribution along a given field line (A = const.) is
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obtained by imposing thatH(z) = 1. In this case, and according
to Eq. (8), the gas pressure dependence is

p(A, z) = p0(A) e−
µ̄g
RT (A) z, (25)

which is the well-known exponential stratification whose scale
height depends on the temperature of the plasma along the field
line that we consider (the particular value of A).

For the non-isothermal situation, a simple choice for the tem-
perature dependence with height is

H(z) = ez/Λ, (26)

where Λ is the characteristic spatial scale, which might be pos-
itive or negative. This allows us to consider a situation with an
increasing or decreasing temperature with height and therefore
with a net effect of thermal conduction that changes the energy
balance in the system; this is addressed in Sect. 5. The pressure
dependence in the non-isothermal case calculated from Eq. (8)
is

p(A, z) = p0(A) e
µ̄g
RT (A) Λ (e−z/Λ−1), (27)

and deviates from the easy exponential dependence with z for
the isothermal situation, Eq. (25).

According to these equations, the gas pressure term that
appears in Eq. (7) for the isothermal case (when we refer to an
isothermal situation, we mean that temperature does not change
along the magnetic field lines, but it changes from line to line)
reads

∂p
∂A

(A, z) = e−z µ̄g
RT (A)

(
∂p0

∂A
(A) + z

µ̄g

R

∂T

∂A
(A)

p0(A)
T 2(A)

)
, (28)

while for the non-isothermal case, using Eq. (27), we simply use
the transformation

z→ −Λ (e−z/Λ − 1), (29)

because the derivatives in Eq. (28) do not affect the z coordinate
explicitly.

4.1. CH and AR thermal structure

When some general features of the pressure and temperature
dependence in our model are known, we must constrain the func-
tional form of p0(A) and T (A) according to observations of CH
and AR. For the CH model, we chose these functions to have a
minimum at the centre of the structure and to increase smoothly
with position to match coronal values, creating a depletion in
pressure and temperature inside the CH. This is the common
behaviour inferred from observations of CHs (see e.g. Cranmer
2009). Our specific choice was

p0(A) = (pC − pCH)
(

A
Aref

)2

+ pCH,

T (A) = (TC − TCH)
(

A
Aref

)2

+ TCH, (30)

where pC and TC are the reference coronal pressure and tem-
perature values outside the CH, and pCH and TCH are the values
inside the CH (satisfying that pCH/pC < 1 and TCH/TC < 1
to have representative CH conditions). In Eq. (30) the depen-
dence on the square of the flux function, A, arises because firstly,
pressure and temperature must be positive defined (and A is not
necessarily positive everywhere, see Fig. 1), and secondly, the

unipolar region should be symmetric with respect to the centre
of the CH because the magnetic field is symmetric (the parabolic
profile). The quadratic dependence satisfies these requirements,
but this is not a uniquely possible choice. In Eq. (30) the flux
function A is divided by a reference value, Aref , which in this
present case is chosen to be equal to Amin, previously introduced
in Sect. 3.1. This allows us to fix coronal values to pC and TC for
A = Amin. The values of pCH and TCH are achieved when A = 0,
that is, when the magnetic field is vertical in our configuration.
Applying the ideal gas law, we obtain the relation

ρCH

ρC
=

pCH

pC

TC

TCH
, (31)

which must be smaller than one to represent a CH (under-dense
structure with respect to the environment). This means that we
have the restriction pCH/pC < TCH/TC when we choose the
parameters of the CH model, that is, the pressure decrement must
be smaller that the temperature decrement.

Other profiles in Eq. (30) can be adopted, but the important
property is that the central values must be lower than the coronal
values to properly represent CH conditions. It is necessary to
remark that if we assume a constant temperature along the field
lines, then thermal conduction, in principle relevant in the solar
corona, would not have any effect because it is proportional to
the second derivative of temperature with space, which is zero in
this particular case.

The question that arises now is how we can define the depen-
dence of pressure and temperature when an AR is considered.
ARs are denser and hotter than the surrounding corona. Accord-
ing to the dependence of the flux function on position in a bipolar
AR, see Fig. 2, a suitable choice is

p0(A) = (pAR − pC)
(

A
Aref

)2

+ pC,

T (A) = (TAR − TC)
(

A
Aref

)2

+ TC. (32)

We could select a linear dependence with A instead, but if the
bipolar region has a small imbalance in the parameters B1 and
B2, then the flux function can be negative, and this is not conve-
nient to ensure positive defined pressures and temperatures. With
a quadratic dependence, we avoid these issues. Using Eq. (32)
when A = 0 pressure and temperature have exactly coronal val-
ues, pC and TC. At the centre of the AR, we have that A = Aref ,
and therefore pressure and temperature tend to the core values,
pAR and TAR (pAR/pC > 1 and TAR/TC > 1 to describe an AR).
For a symmetric bipolar region, we have that Aref = Amax and
Amin = 0. Again, from the ideal gas law, we find that

ρAR

ρC
=

pAR

pC

TC

TAR
, (33)

which must be greater than one to represent an over-dense
region with respect to the environment. Therefore, the condition
pAR/pC > TAR/TC needs to be satisfied.

From Eqs. (30) and (32), we have some freedom to choose
the main parameters of the models. Namely, pCH and TCH (sat-
isfying pCH/pC < TCH/TC) for the CH model and pAR and TAR
(satisfying pAR/pC > TAR/TC) for the AR model. A modifica-
tion of these parameters affects the density values and eventu-
ally the magnetic field structure due to the coupling between the
plasma and the magnetic field. We have an infinite number of
possible solutions.
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It is indispensable to remark that the assumed functional
dependencies for pressure and temperature for both the CH and
the AR are essentially the same. Equations (30) and (32) have
the same dependence on the flux function A (but A is dissimilar
for each structure), and the differences are caused by the constant
factors. For the CH model, however, the multiplicative factor is
always positive (pC − pCH > 0), and the same applies to the AR
model (pAR− pC > 0). This suggests that although the two struc-
tures may seem to have very dissimilar physical properties, they
can be described using a common picture. Thus, the nature of CH
and AR is not so antagonistic, according to our uninvolved rep-
resentation. In this regard, a magnetic configuration containing
both a CH and an AR might be composed, like those shown in
Fig. 6, and the common thermal structure described by Eqs. (30)
or (32) would produce depletions or enhancements in the density
and temperature of the CH and AR contained in the system. This
approach can be applied, for example, to investigate the coupling
between CHs and ARs, but this topic is beyond the scope of the
present work.

4.2. Approximate semi-analytical method for computing
equilibria in the low-β regime

When we have chosen the specific profiles for p0(A) and T (A, z)
the Grad-Shafranov equation needs to be solved to understand
how the topology of the magnetic field changes according to the
values of the plasma parameters. In general, finding solutions to
Eq. (7) requires numerical methods unless the profile for p(A, z)
and the boundary conditions are simple. It is known that only
when Eq. (7) is a linear equation, are general analytical methods
available. In the past, significant effort has been devoted to find
exact analytical solutions in similar problems because they pro-
vide deep insights into the physics of the problem (see e.g. the
extensive literature about the subject of B. C. Low). Before solv-
ing Eq. (7) by purely numerical means in Sect. 4.3, we introduce
a semi-analytical method based precisely on the linearisation of
this equation. First, the non-linear elliptic equation for the flux
function is rewritten as

∂2A
∂x2 +

∂2A
∂z2 + ε f (A) = 0. (34)

The parameter ε can be viewed as the plasma-β (see the equiv-
alent non-dimensional Eq. (9)), and f (A) is the derivative of the
pressure term with respect to A, given by Eq. (28) for the isother-
mal case, or Eq. (28) modified according to Eq. (29) for the non-
isothermal case.

To make analytical progress, we use a pertubational expan-
sion and write

A = A0 + εA1 + ε2A2 + . . . (35)

We obtain the following equation to zero order in ε:

∂2A0

∂x2 +
∂2A0

∂z2 = 0, (36)

which is strictly the Laplace equation for A0 that has been solved
analytically in Sect. 3.2 given a superposition of parabolic mag-
netic field profiles at z = 0. The solution to this equation is just
the potential magnetic field.

Now we apply a Taylor expansion to f (A), keeping terms up
to first order in ε,

f (A) ≈ f (A0 + εA1) ≈ f (A0) + εA1 f ′(A0). (37)

Using this expansion in Eq. (34), we find, to first order in ε, the
following equation:

∂2A1

∂x2 +
∂2A1

∂z2 = − f (A0). (38)

Equation (38) is just a Poisson equation for A1 and the inhomo-
geneous or source term on the right-hand side depends on the
solution A0 to the Laplace equation. Appropriate boundary con-
ditions need to be applied, but the inhomogeneous BC at z = 0
has been incorporated in the Laplace solution, and therefore,
homogeneous BCs (i.e. A1 = 0) need to be imposed on the Pois-
son solution so that the full solution given by Eq. (35) satisfies
the required BC at z = 0. Hence, the highly non-linear problem
has so far been reduced to solving a linear Laplace equation plus
a Poisson equation, which is also linear. We can keep higher-
order terms in ε, and to second order, we have

∂2A2

∂x2 +
∂2A2

∂z2 = −A1 f ′(A0), (39)

obtaining again a Poisson equation, but the source term depends
on A1 and A0, that is, the previous order solutions. Nevertheless,
in this work we only consider terms up to first order in ε.

The method of images used to solve the Laplace equation in
Sect. 3.2 is also applied here to solve the Poisson equation given
by Eq. (38), but forcing the Green function to be zero at z = 0
because of the required homogenous BC. In this situation, we
have to use a source image of the point (x, z) with respect to the
x-axis, (x,−z). The analytical solution to the Poisson equation in
this case is known to be (e.g. Myint-U & Debnath 2009)

A1(x, z) = −
1

4π

∫ ∞

0

∫ ∞

−∞

f (A0(ξ, η)) ln
(x − ξ)2 + (z − η)2

(x − ξ)2 + (z + η)2 dξ dη.

(40)

This formal solution to the Poisson equation involves the evalu-
ation of a double integral, and in general, it is rather difficult to
obtain a closed analytical form of the solution in terms of known
functions.

A purely numerical evaluation of Eq. (40) is required for the
examples investigated in the present paper. For this reason, we
provide the main steps to evaluate Eq. (40) numerically with-
out major difficulties. First, we use the following result for the
inner integral:

∫ ∞
−∞
F (y) dy =

∫ ∞
0

[
F (y) + F (−y)

]
dy. Then we

introduce a variable transformation to have finite limits in the
inner and outer integrals. A convenient variable transformation
is ξ = (1 − t)/t and η = (1 − s)/s, which changes the integration
domain from 0 < ξ < ∞ and 0 < η < ∞ to the more convenient
range 0 < s < 1 and 0 < t < 1. The double integral in terms of
the new variables reads

A1(x, z) =

−
1

4π

∫ 1

0

∫ 1

0

[
f
(
A0

(
1 − t

t
,

1 − s
s

))
ln

(
x − 1−t

t

)2
+

(
z − 1−s

s

)2(
x − 1−t

t

)2
+

(
z + 1−s

s

)2

+ f
(
A0

(
−1 + t

t
,

1 − s
s

))
ln

(
x − −1+t

t

)2
+

(
z − 1−s

s

)2(
x − −1+t

t

)2
+

(
z + 1−s

s

)2

] 1
t2 dt

1
s2 ds.

(41)

An examination of this double integral reveals that the points
t = 0 and s = 0 need special treatment in order to avoid (reg-
ular) singularities. This is accomplished by choosing a quadra-
ture formula based on an open method that does not explicitly
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Fig. 7. Density and temperature distribution for the CH model with β0 =
0.004. In this solution, pCH/pC = 1/4, TCH/TC = 0.8, x0/h = 0.2. The
isothermal condition (along the field lines) is imposed in this model.
The solid blue lines represent the magnetic field, and the dashed lines
correspond to the potential magnetic field. The footpoints of the two
ensembles of magnetic field lines are exactly the same, and a direct
comparison is meaningful.

use the end points (located at 0 and 1 in our case, but 1 is not
problematic) to calculate the integral. Trapezoidal and Simpson
methods do not fall into this category, but the standard composite
midpoint method of integration is suitable. We find that this last
method, with typically 200 × 200 points, is enough to provide
accurate values of the integral and convergence of the results is
warrantied.

To summarise, the procedure of incorporating the effect of
gas pressure and gravity in the model is (a) to calculate the
potential solution A0 (see Sect. 3.2), (b) to build the function
f (A0), and (c) to calculate A1 using Eq. (41), and (d) the final
flux function is A0 + εA1, where ε = β0/2 (when dimensionless
variables are used). This method is applied in the following to
assemble a variety of models. In Fig. 7 we find a constructed
model for an isothermal CH (no temperature variation along
the magnetic field lines, but temperature changes from line to
line) in a low-β situation. For the gas and temperature, we use
the dependence proposed in Eq. (30). We find that the plasma
density is low inside the CH and grows gradually towards the

Fig. 8. Plasma-β as a function of height for the CH model with β0 =
0.004 at different values of x (see the labels in the plot). The same
parameters as in Fig. 7 are used. The thin continuous lines correspond
to the results based on the semi-analytical approach, and the thick
dashed lines represent the purely numerical results calculated using the
code PDE2D described in Sect. 4.3. The agreement between the semi-
analytical and the numerical curves is quite significant.

coronal environment. The effect of a finite pressure and gravity
changes the expansion of the magnetic field (compare the solid
and dashed blue lines). The magnetic field lines approach each
other in comparison with the potential magnetic field. The rea-
son is that magnetic pressure increases to compensate for the
decrease of gas pressure inside the CH and to keep the bal-
ance in the total pressure. Temperature shows a depletion inside
the CH and connects smoothly with the coronal environment.
Because the tempreature in this case only depends on the flux
function, the temperature isocontours perfectly match the mag-
netic field lines, but this is not true for the density distribution.
The density contrast at the centre of the CH and at z = 0 is
ρCH/ρC = (pCH/pC)(TC/TCH) = 0.3125 according to the pres-
sure and temperature ratios of this example (given in the caption
of Fig. 7). Because gas pressure and magnetic field change with
position in the CH model, the plasma-β is a spatially dependent
function. Different cuts of this dimensionless parameter at sev-
eral positions are plotted in Fig. 8. Now we prefer to use 1D
plots to facilitate the comparison with the fully numerical results
described in the following section. From Fig. 8 we find that the
plasma-β attains its minimum values at the centre of the CH
(x = 0), where it is always below 0.05. As we move sideways
from the centre, this parameter rises; the increment is especially
significant at low heights. Near the position at x/h = 2, its value
is about 6 (not shown in the figure). However, the behaviour with
height of β approaches that found at x/h = 0, and therefore it has
low values.

The situation with a temperature profile imposed to change
with height according to Eq. (26) is displayed in Fig. 9. Under
these conditions, we find that density and the magnetic field are
very similar to the previous case. The main difference is the 2D
temperature distribution (and gas pressure, not shown here) in
the structure. The coronal plasma surrounding the central part of
the CH reaches coronal temperatures, while the lowest tempera-
tures are found at low heights and inside the hole. This shows
that in these two examples, although the density distribution
is very similar, we obtain that the thermal structure of the CH
model can be rather different. In any case, the specific choice
given by Eq. (30) provides a fairly realistic representation of
typical CH conditions. It is worth mentioning that the density
contrast at the centre of the CH and at z = 0 is the same as in
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Fig. 9. Density and temperature distribution for the CH model with β0 =
0.004. In this solution, pCH/pC = 1/4, TCH/TC = 0.8, and x0/h = 0.2.
The temperature is forced to increase with height with a moderate scale
height variation, Λ = 20h. The solid blue lines represent the magnetic
field, and the dashed lines correspond to the potential magnetic field.

Fig. 7 because precisely at z = 0, the two models have the same
temperature and pressure values.

At this point and according to the results shown in Figs. 7
and 9, it is necessary to remark that the magnetic field topology
and the density structure of the CH do not coincide. This has
important implications regarding the setup and interpretation of
MHD simulations of CHs, but also for the interpretation of the
observations of CHs and the possible location of the CHB. Nev-
ertheless, our model does not provide information about plumes
and rays in CHs, which are nearly radially aligned density stria-
tions that are thought to follow the ambient magnetic field.

We now concentrate on ARs and compose several equilib-
rium models using the same semi-analytical procedure and the
functional dependences given by Eq. (32). Figure 10 shows the
configuration that we obtain whenH(z) = 1. Density is strongly
localised at the core of the AR, and gravity produces the strat-
ification effect that is visible outside the core. The magnetic
field lines expand much more than in the potential case. This
is essentially produced by the high-density and high-pressure
core. In this case, magnetic pressure has to decrease to bal-
ance the excess of gas pressure at the core, and this produces

Fig. 10. Density and temperature distribution for the AR model with
β0 = 0.004. In this solution, pAR/pC = 40, TAR/TC = 4, x0/h = 0.2,
x1/h = −1/4, and x2/h = 1/4. The isothermal condition (along the field
lines) is imposed in this model. The solid blue lines represent the mag-
netic field, and the dashed lines correspond to the potential magnetic
field.

a strong separation of the field lines compared to the potential
case. Temperature is also higher at the core, reaching 4 MK,
than for the coronal temperature at 1 MK. These two temper-
atures are imposed in the model through the parameters TAR and
TC. The density contrast at the centre of the AR and at z = 0
is ρAR/ρC = (pAR/pC)(TC/TAR) = 10 using the pressure and
temperature ratios of the model (given in the caption of Fig. 10).

The situation with a temperature increasing with height,
Λ = 20h, is shown in Fig. 11. The density distribution is sim-
ilar to the previous case, and the main differences are in the tem-
perature distribution, which is higher in the plasma surrounding
the core. Because in this configuration the temperature changes
along the field lines, the thermal conduction has an effect; this
is discussed in Sect. 5. The temperature dependence on height
has some influence on the structure of the magnetic field as (cf.
Fig. 10). Equation (32) provides a route for building AR mod-
els that are similar to the diffuse background of bipolar regions
reported in the observations. The structure of individual loops
commonly found in real ARs is missing in our model and is con-
sidered as secondary for our purposes.
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Fig. 11. Density and temperature distribution for the AR model with
β0 = 0.004. In this solution, pAR/pC = 40, TAR/TC = 4, x0/h = 0.2,
x1/h = −1/4, and x2/h = 1/4. The temperature is forced to increase
with height with a moderate scale height variation, Λ = 20h.

4.3. Numerical calculation of the equilibria in the low-β
regime

When the plasma-β is not small, the previous semi-analytical
method we used to find a solution is not fully justified. In this
case, it is convenient to solve Eq. (7) by numerical means. Even
in the low-β regime, it is useful to have an alternative method
for a comparison with the results of Sect. 4.2. We used the
numerical code PDE2D (Sewell 2018), which uses finite ele-
ments to solve partial differential equations of the type found
in our problem. We chose a collocation method with a bicubic
Hermite basis functions. This choice of basis functions ensures
that the first derivatives of the approximate solution are all con-
tinuous. Newton’s method was used to iteratively solve the non-
linear algebraic equations resulting from the collocation method.
Convergence is in general achieved in just four or five iterations
when a given constant value as the initial guess of the solution in
the whole numerical spatial domain is chosen (see Pizzo 1986,
for another alternative numerical technique).

The particular choice of boundary conditions discussed ear-
lier was also introduced into the numerical scheme and consti-
tute an essential part of the problem. We wished to minimise
the effect of the lateral and upper boundaries on the solution,

and as we have shown, a convenient approach is to impose the
BC at infinity, except at z = 0, where we selected the particu-
lar profile for the vertical component of the magnetic field. This
was achieved by choosing a suitable coordinate system. In the
z-direction, we used the following transformation, sometimes
referred to as a Möbius transformation:

Z =
1

z/Lz + 1
, (42)

and the initial domain 0 < z < ∞ changes to 0 < Z < 1, which is
bounded. There is some freedom in choosing the factor Lz in the
transformation. In the x-direction, we can choose an equivalent
transformation if the system is symmetric with respect to x = 0.
Nevertheless, we preferred not to be restricted to this situation.
For this reason, our choice was

X = tanh (x/Lx) , (43)

and therefore, instead of solving the problem in the range −∞ <
x < ∞ with the new coordinate, we just need to consider the
interval −1 < X < 1. Again, Lx is a factor that we have to select.

With the previous coordinate transformations, we rewrite the
2D Laplacian in terms of the new coordinates by using the cor-
responding scale factors. We obtain

∂2A
∂x2 +

∂2A
∂z2 =

1 − X2

L2
x

(
−2X

∂A
∂X

+ (1 − X2)
∂2A
∂X2

)
+

Z2

L2
z

(
2Z
∂A
∂Z

+ Z2 ∂
2A
∂Z2

)
. (44)

Due to the coordinate transformation, first-order derivatives of
A are present now. This equation plus the pressure term given
by Eqs. (28) and (29) was implemented in the numerical code
PDE2D for the specific functions defined in Eqs. (30) or (32).
After we obtained a solution in the coordinates X and Z, we
mapped to Cartesian coordinates to better visualise the results.
The obtained solution in Cartesian coordinates must be inde-
pendent of the factors Lx and Lz used in the transformation.
This provides clues about the optimal choice of these parameters
because in essence, they control the spacing of the non-uniform
grid viewed in Cartesian coordinates. For example, for the AR
model, the parameter Lx must be of the order of the separation
of the two unipolar regions, 2x1.

The numerical results for exactly the same situation as in
Fig. 7 (calculated using the semi-analytical approach) were com-
puted numerically using a grid of 200 × 200 points. A com-
parison of the plasma-β using the two methods is available in
Fig. 8. This figure demonstrates that the two results are almost
identical and that the differences appear when the plasma-β
rises. This corroborates that the semi-analytical method is accu-
rate enough to be used as a tool to formulate equilibria in the
low-β regime. Adding second-order terms to the semi-analytical
approach would increase the accuracy of the method further.

Another procedure for verifying that the semi-analytical
and/or the numerical solutions are correct is to introduce the
obtained profile for A(x, z) and the corresponding pressure and
density distributions in Eq. (7) and to compute the force balance.
For the purely numerical results, we find that as the resolution is
increased, the force balance converges towards zero, indicating
that our numerical solutions are truthful representations of the
real solution to Eq. (7). Nevertheless, we have found that as the
plasma-β rises (typically for β0 = 0.1), the numerical solution is
not as accurate, and convergence issues appear. These issues are
not mitigated when the spatial resolution is increased, and they
are more likely related to the intrinsic nature of the nonlinear
terms.
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5. Energy balance

In Sect. 4.2 we have obtained magnetohysdrostatic solutions for
a balance between the Lorenz force, the pressure gradient, and
the gravity force. In addition to the force equilibrium, the sys-
tem should also satisfy energy balance. When we consider that
we are in ideal MHD, the response is trivial because the effects
of thermal conduction, radiative losses, and heating are ignored.
In this case, the equilibrium solutions derived in the previous
sections under force balance can be used together with an adia-
batic energy equation to study different processes, for example,
the temporal evolution of MHD waves in the system. A possi-
ble application of the models developed in the present work is
the analysis of the evolution of global MHD waves interacting
with CH or AR because in this problem, the assumption of ideal
MHD is justified as a first step if the focus is on the properties of
the waves.

In reality, the assumption of ideal MHD in the solar corona
is a poor approximation because thermal conduction, optically
thin radiation, and heating are processes that cannot be ignored
in general (it depends on the temporal scales we are interested
in). We need to address how these effects are included in our
models. The question is in fact simple and clearly explained in
Low (1975, 1980), the energy equilibrium (or thermal balance)
can be calculated only a posteriori in the scheme used in this
paper. When we have the force balanced solution, that is, the
temperature and density distribution in 2D, we can calculate the
conduction term, EC, and the radiation term, ER, according to
their expressions and then derive the distribution of the heating
term, H, to have a perfect energy balance. In this situation, we
derive the heating distribution from the model using the follow-
ing equation:

H(x, z) = EC(x, z) + ER(x, z). (45)

With this procedure, we do not calculate the temperature distri-
bution self-consistently according to a known energy equation.
This can only be achieved, and this point is relevant, assuming an
ad hoc explicit dependence of the heating function, for example,
with the density, temperature, or magnetic field. The exact form
of the heating function and its source is precisely one of the main
unknowns in relation to the coronal heating problem, however.
Nevertheless, deriving the heating distribution after we obtain a
force balance for a prescribed temperature and pressure profiles
is an approach that is worthwhile investigating. The available
energy in the system is in some way constrained by the require-
ment of force balance. This does not necessarily mean that the
heating function obtained using this method is closely related to
the real heating source in the solar corona, but it can still provide
useful information about the energetics of system. In the follow-
ing, we try to make this point clearer. As far as we know, this
distinctive approach has not been explored in the literature, at
least in the form proposed here in relation to the 2D problem.

We start with the most elementary situation, the model of
constant temperature along the magnetic field lines. Temperature
can change from line to line, however, due to the dependence
T (A). Thermal conduction is zero under this assumption (we
did not consider conduction perpendicular to the magnetic field).
This means that the only possibility for thermal equilibrium is
that the heating has to balance the radiative losses exactly. This is
a rather unlikely situation from the physical point of view, but it
has been suggested by Aschwanden et al. (1999, 2000) because
their observations indicate that coronal loops of different ARs
are essentially in an isothermal state, and therefore thermal con-
duction is essentially zero. Nevertheless, the focus of our work

is not coronal loops, but the diffuse background, which does not
necessarily need to have the same isothermal character.

Thermal conduction has an effect in our model if we con-
sider that temperature also depends on height, that is, T (A, z).
We know that the thermal conduction term in the energy equa-
tion (see e.g. Priest 1982) can be expressed as

EC = ∇ · q = −∇ ·

(
κ‖

(
∇T · B̂

)
B̂
)
, (46)

which is written here in terms of the unitary magnetic field vector
B̂ = B/B. The heat flux is represented by q, and it is parallel to
the magnetic field (assuming that κ⊥ = 0, as mentioned earlier).
Using vector identities and the fact that ∇ · B = 0, the previous
expression reduces to

EC = −B · ∇
( κ‖

B2 (∇T · B)
)

= −
d
dl

(
κ‖

dT
dl

)
+
κ‖

B
dB
dl

dT
dl
, (47)

where on the right-hand side we used the coordinate l along
the magnetic field B. Thermal conduction has two contributions,
related to the variation of temperature along the field lines and
also to changes in the modulus of the magnetic field along l,
or equivalently, to the change in area of the corresponding flux
tube. The conduction term, EC, can be either positive or negative
and depends on the location in the domain, hence it is a space-
dependent function.

Using the separable form for the assumed temperature
dependence in this work, Eq. (24), we evaluated the factors in
the heat flux definition, finding that

∇T · B =
∂T
∂x

Bx +
∂T
∂z

Bz

=
∂T

∂A
BzBxH −

∂T

∂A
BxBzH + T Bz

dH
dz

= T Bz
dH
dz

,

(48)

where we used the chain rule and the definition of the mag-
netic field components in terms of the flux function A. Using
the previous expression and the fact that κ‖ = κ0 T 5/2 (κ0 =

1.1 × 10−11 W m−1 K−7/2), the heat flux vector reads

q = −κ0T
7/2 Bz

B2

dH
dz
H5/2 B. (49)

For the explicit exponential dependence of the function H(z)
given by Eq. (26), we obtain that the vertical component of the
heat flux vector is

qz = q · êz = −κ0T
7/2 B2

z

B2 e(7/2) z/Λ 1
Λ
. (50)

When the temperature is independent of z, the parameter Λ tends
to infinity and the heat flux is zero because we are in the isother-
mal situation along each field line. Equation (50) indicates that a
finite Λ introduces a net heat flux in the vertical direction. At the
bottom layer of the domain (z = 0), we have an incoming vertical
heat flux for negative Λ, while it is outgoing for positive Λ. This
has a relevant effect because heat, coming from below our ref-
erence level for positive Λ, modifies the thermal balance of the
system. The opposite situation, that is, heat leaving the system
through the bottom boundary, is only possible if the temperature
increases with height. The vertical heat flux is independent of
the sign of Bz according to Eq. (50).

The horizontal heat flux is

qx = q · êx = −κ0T
7/2 BzBx

B2 e(7/2) z/Λ 1
Λ
. (51)
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In contrast to the vertical component, the horizontal component
of the heat flux depends on the signs of Bz and Bx, and this is a
consequence of the fact that the heat flux vector points along the
magnetic field. Only in the situation of a purely vertical magnetic
field (the centre of a symmetric CH) or a purely horizontal mag-
netic field (the centre of a symmetric AR) is the horizontal heat
flux zero. It is worth mentioning that even in the situation of zero
heat flux, thermal conduction can be different from zero (because
this magnitude is the divergence of the heat flux, Eq. (46)).

From the previous expressions, it is easy to obtain the explicit
form of the energy conduction when the magnetic field is purely
vertical or purely horizontal. For the purely vertical magnetic
field at the centre of the CH, we find (see Eq. (47)) that

EC(x = 0, z) = −
∂

∂z

(
κ0T

7/2 dH
dz
H5/2

)
+ κ0T

7/2 dH
dz
H5/2 ∂|Bz|

∂z
1
|Bz|

. (52)

This expression applied to the exponential dependence on height
of the temperature reduces to

EC(x = 0, z) = κ0T
7/2e(7/2) z/Λ 1

Λ

(
−

7
2

1
Λ

+
∂|Bz|

∂z
1
|Bz|

)
. (53)

For the CH model we used, we have that ∂|Bz|/∂z < 0 at x = 0,
regardless of z. This means that for Λ > 0, we always obtain that
EC(x = 0, z) < 0 according to Eq. (53). For Λ < 0, however,
the sign of the energy conduction can change depending on the
terms inside the parentheses. In particular when

7
2

1
|Λ|

<

∣∣∣∣∣∂|Bz|

∂z

∣∣∣∣∣ 1
|Bz|

, (54)

then EC(x = 0, z) > 0. Nevertheless, this condition might be only
satisfied up to a certain height, as we show below.

For a purely horizontal magnetic field at the centre of the
symmetric AR model, it is possible to perform a similar analysis
as for the CH at x = 0. In this case, it is easy to show that

EC(x = 0, z) = −κ0T
7/2e(7/2) z/Λ 1

Λ

∂Bz

∂x
1
Bx
, (55)

which is different from Eq. (53). Because the magnetic configu-
ration of the AR has a concave geometry at x = 0, (∂Bz/∂x)/Bx <
0. Hence, for Λ > 0 Eq. (55) indicates that we always obtain that
EC(x = 0, z) > 0, while for Λ < 0, we have the opposite sit-
uation, EC(x = 0, z) < 0. These characteristics of the sign of
the conduction term have important consequences for the energy
balance.

We studied the radiative losses. Because we considered
coronal plasmas, we used the optically thin losses of Hildner
(1974) for simplicity, other functions can be used, however (see
Athay 1986; Dere et al. 1997; Klimchuk & Cargill 2001, and
Landi et al. 2012). As usual, ER = ρ2Q(T ), where Q(T ) is the
corresponding loss function depending only on the temperature.
From the force balance equation, we obtained the density and the
temperature distribution in 2D, and this information was used to
compute the spatial distribution of the 2D radiative losses using
the previous expression. When we know the radiative losses and
the conduction term, it is straightforward to calculate the spatial
distribution of the heating to have energy balance using Eq. (45).
Based on physical grounds, the heating must be positive, rep-
resenting a source of energy that needs to be supplied for the
system to have energy balance. Nevertheless, in our approach,

it may happen that in some regions of the 2D configuration, the
condition of positiveness is not satisfied. The reason is that as we
showed above, the conduction term is either positive or negative,
while the radiation term is always positive. The sum of these
two terms is not necessarily a positive number. In this case, the
obtained heating is negative and represents a nonphysical energy
sink. The system cannot achieve energy balance in this situation.
We demonstrate this behaviour by calculating the different terms
in the energy equation for several of the models presented ear-
lier. The results for a CH are shown in Fig. 12. The conduction
term is negative in most of the domain and is typically one order
of magnitude smaller that the radiation term. In particular, we
showed that for the vertical magnetic field line at the centre of
the CH, the conduction term is always negative when the tem-
perature increases with height (the present example). In this sit-
uation, the sum of radiation and conduction is positive up to one
scale height at x = 0. The dashed line in the plot for the heating
H represents the curve that separates the transition between the
energy-balanced and non-energy-balanced points of the domain.
At low heights, typically below z = h, the heating has to balance
the radiation losses, and it has a rather reduced value inside the
CH, where density and temperature are lower than in the envi-
ronment. In this example, the gradient of the temperature with
height is quite weak because Λ = 200h, but this has a relevant
effect due to the profile of conduction term.

The location of the transition curve depends on the parame-
ters, as Fig. 13 indicates. For example, for Λ = 20h, no energy
balance is possible inside the CH even at z = 0. Therefore,
this situation is difficult to achieve from the physical point of
view. Nevertheless, when Λ rises, see Λ = 200h and 400h,
the boundary moves progressively upward, meaning than in the
range 0 < z < 1.5h at x = 0, energy balance is accomplished
for Λ = 400h. A small vertical gradient in temperature has a
significant effect on the overall energy balance in the system.

Figure 14 shows the same type of plot as in Fig. 13, but for
a decreasing temperature with height. We again find transitions
between energy-balanced and non-balanced situations. Interest-
ingly, the corresponding curves do not show the strong depen-
dence on the value of Λ found in Fig. 13. Only for values of Λ in
the range from −10h to −h are the curves inside the limits of the
domain of the plot. For the case Λ = −h, we find that in addi-
tion to the minimum located at x = 0 around z = 0.25h, there
are two tiny additional symmetric zones of non-equilibrium at
z = 0. These two zones are produced because conduction is neg-
ative and higher (in absolute value) than the radiative losses. For
the remaining curves, the location of the height at x = 0 where
we find non-equilibrium is closely related to the condition given
by Eq. (53).

The same analysis was performed for the AR model. The
different terms in the energy equation are plotted in the three
panels of Fig. 15 for a temperature profile that decreases with
height. The conduction term is quite low, except at the core of
the AR, where it becomes negative. It is always negative when
the magnetic field is purely horizontal, as Eq. (55) indicates.
When added to the radiation term, the obtained heating distri-
bution shows some forbidden zones represented with continuous
red lines. Interestingly, the estimated heating is localised near the
footpoints where the vertical component of the magnetic field is
large and above the forbidden zone at the core of the AR.

In contrast, for a temperature that increases with height, see
Fig. 16, the central part of the AR allows energy-balanced solu-
tions because the conduction term is always positive at x = 0
according to Eq. (55). In this regard, low-lying magnetic arches
are the most suitable to be in energy balance for Λ > 0. However,
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Fig. 12. Conduction, radiation, and heating terms for the CH model. The
boundary marked with dashed lines in the heating term separates the
transition from energy balance to non-energy balance (energy balance
below the curve, non-energy balance above the curve). In this plot, Λ =
200h. In our model, the reference values are ρ0 = 5 × 10−13 kg m−3 and
T0 = 1 MK.

when the temperature decreases with height, see Fig. 17, the
curves are similar to the curve in the CH model, except that very
low-lying curved fields situated at the core of the AR are now
out of thermal equilibrium, as expected from the results shown in
Fig. 15. These results demonstrate that small temperature gradi-

Fig. 13. Example of the location of the boundary, dashed red lines, that
separate regions in which energy balance is allowed (below these lines)
from regions in which it is not permitted (above the lines). In this case,
the temperature increases with height (Λ > 0). The magnetic field is
also displayed with blue lines.

Fig. 14. Same as in Fig. 13, but the temperature decreases with height
(Λ < 0).

ents with height can have a significant effect on the energy equi-
librium of the system, producing zones in which balance cannot
be achieved. Along this line, we explored different dependences
of the function H(z), which deviate from the simple exponen-
tial form of Eq. (26), and we were unable to find a function that
allows energy balance in the whole spatial domain. This result
suggests that such a global thermal balance is quite difficult to
achieve in a real magnetic structure. Non-thermal equilibrium
seems to be difficult to avoid, and this might partially explain
the occurrence of phenomena like coronal rain, which is reg-
ularly observed (see e.g. Antolin & Rouppe van der Voort 2012;
Antolin 2020 and references therein). Nevertheless, very specific
conditions are required for TNE to occur, as we describe in the
following.

Finally, it is worth analysing the possible occurrence of
TNE in our system using known results regarding this process.
Klimchuk & Luna (2019) used several approximations to derive
some basic conditions that lead to the presence of TNE in coro-
nal magnetic flux tubes. According to their results, when the
ratio of the heating at the apex of a given magnetic field line over
the heating at the base of the corona on the same line (HAP/HFP)
is smaller than 0.1, the system is prone to develop cycles asso-
ciated with TNE. Asymmetries can alter the conditions for TNE
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Fig. 15. Conduction, radiation, and heating terms for the AR model.
The boundary marked with a continuous line in the heating term sepa-
rates the transition from energy balance to non-energy balance (energy
balance below the curve, non-energy balance above the curve). In this
plot, Λ = −20h.

(see also Pelouze et al. 2022), but they do not play any role in our
perfectly symmetric configuration. We calculated this ratio from
the example shown in Fig. 15 using our computed heating (based
on energy balance), and the results are represented in Fig. 18 as
a function of the height of the different field lines at x = 0. There
are two forbidden regions for heights below 0.1 and for heights

Fig. 16. Same as in Fig. 13, but for the AR model. The temperature
increases with height (Λ > 0).

Fig. 17. Same as in Fig. 16, but now the temperature decreases with
height (Λ < 0). The situation shown in Fig. 15 is also represented here.

above 1 (as Fig. 15 already shows) in which equilibrium is not
permitted. Close to these two regions, we obtain values for the
heating ratios below 0.1, meaning that the system would be in
TNE according to the criteria of Klimchuk & Luna (2019). Con-
versely, in the range of heights between 0.15 ≤ z/h ≤ 0.7, the
system would achieve static equilibrium. Although our model
does not include a chromosphere, which is an elementary ingre-
dient for TNE with periodic cycles, the calculated heating in our
model can be used as a guide to infer the possible dynamical
evolution of the system.

6. Conclusions and discussion

This study represents an exploratory first attempt at under-
standing the physics of CHs and ARs from a global point of
view, instead of focusing on individual magnetic field lines. We
have developed a rather flexible, robust method for generating
2D MHS equilibria in Cartesian geometry in the presence of
constant gravity. We artificially built a magnetic field distribu-
tion at the base of the corona based on the superposition of
parabolic magnetic field profiles, which were translated in terms
of the flux function, A. This function satisfies a Grad-Shafranov
type of partial differential equation in 2D that contains a non-
linear term due to the coupling with gas pressure and tempera-
ture. The magnetic field arrangement, chosen to represent open
and closed magnetic field lines, was incorporated through the
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Fig. 18. Heating at the apex over the heating at the footpoint of a given
field line as a function of height at x = 0 (continuous line). The results
shown in Fig. 15 have been used to construct this plot, where the cri-
teria of Klimchuk & Luna (2019) regarding TNE have been applied
(HAP/HFP < 0.1 leads to TNE, represented with a horizontal dashed
red line).

boundary conditions needed to solve the partial differential equa-
tion. We were able to find manageable analytical expressions for
the magnetic distribution in the potential case.

Based on physical grounds and the information provided by
observations, we proposed a relatively simple functional form
for plasma pressure and temperature in terms of the flux func-
tion. We selected a depression in pressure and temperature inside
the CH to have a realistic model. Under such conditions den-
sity is found to be lower inside the CH with respect to the coro-
nal environment if the elementary constraint pCH/pC < TCH/TC
is satisfied. A decrease in gas pressure produces an increase in
magnetic pressure in order to keep the total pressure constant
across the field lines. Along the magnetic field lines, there is,
by construction in the model, balance between the gas pressure
gradient and the projected gravitational term. Conversely, in our
ARs models, the core is over-dense when pAR/pC > TAR/TC.
Interestingly, the same functional form of gas pressure and tem-
perature with the flux function correctly describes the general
features of both CHs (low pressure, temperature, and density)
and ARs (high pressure, temperature, and density), which are in
principle two considerably different coronal structures. A com-
pelling contribution of our model is that we found solutions
that can concurrently represent two different magnetic structures
with properties similar to those reported by the observations. In
this regard, it is imperative to mention that the exact dependence
of pressure and temperature on the flux function A we consid-
ered is not a crucial step of our analysis. Other choices can also
lead to physically acceptable solutions.

The highly non-linear term that couples the gas pressure
effect to the magnetic field substantially complicates the deriva-
tion of analytical solutions. Nevertheless, the linearisation of
the Grad-Shafranov equation leads to a Poisson equation with
a source term that depends on the potential solution that is
obtained from a Laplace equation. The formal solutions to these
two equations were written using Green’s functions and apply-
ing the method of images. The outcome of our study is a semi-
analytical method, valid in the low-β regime, that includes the
effect of gas pressure and gravity. Other alternatives can be
explored in the future to solve the characteristic non-linear equa-
tion without assuming that the plasma-β is a small parameter,
for example Liao (2003) for a novel method based on homo-
topy analysis. An interesting result obtained by applying our

semi-analytic method is that in CHs, the density distribution is
not necessarily aligned with the magnetic field. Thus, the usual
assumption that density structures delineate the magnetic field in
the corona is not fully justified in open structures such as CHs.

The focus of this work was finding MHS solutions under
force balance, and the possible energy balance was calculated
when the solution is known. We showed by calculating the
conduction and radiation terms that the corresponding heating
necessary to maintain energy equilibrium is constrained in the
spatial domain. We also refer to Petrie et al. (2003), where a
similar approach was used, but based on a fully analytic model.
These authors where able to calculate models whose loop length,
shape, plasma density, temperature, and velocity profiles were
fitted to loops observed with different satellites. In our model,
depending on the parameters, especially the temperature depen-
dence on height, thermal balance may not be achieved at cer-
tain locations. Under these circumstances, the system will most
likely evolve either towards a different equilibrium configura-
tion or develop cycles around a non-existing equilibrium, such
as happens in TNE processes. In the first case, the excess of
heat can be used to increase the temperature and gas pressure
of the plasma along the field line. The evolution of the sys-
tem strongly depends on the boundary conditions applied at the
footpoints, and especially on the condition on the heat energy
flux. The presence of a chromosphere at the footpoints also
affects the evolution of the system, and it is especially relevant
regarding TNE processes. The temporal evolution is a topic of
its own and is beyond the scope of the present work, but the
results presented here provide indications about the possible pro-
gression of the system with time. Because TNE is a non-linear
mechanism, the absence of equilibrium in a stationary config-
uration does not directly imply a TNE state. Recently, several
authors have carried out a parameter space investigation (see
Froment et al. 2018; Pelouze et al. 2022) for TNE onset in a
1D geometry considering the possibility of asymmetric heating
(along the loop) and asymmetric geometry. In addition to TNE,
they also showed the conditions in which steady or static state is
achieved. Importantly, they found that when the heating is small
(but typical of AR), TNE occurs only when geometries and heat-
ing profiles match specific criteria. That is, at low energies, the
TNE parameter space seems to be strongly constrained (see also
Klimchuk & Luna 2019). As an illustrative example, we calcu-
lated the criteria for one of our models.

The main critical point of the approach used in this work
regarding the energy balance is that the energy equation is not
treated self-consistently. Nevertheless, the exact dependence of
the heating function is required to solve the problem in a self-
consistent manner. The heating function has several parametri-
sations depending on the heating mechanism invoked (e.g.
Mandrini et al. 2000; Démoulin et al. 2003), but the exact form
of the heating function in the corona is still debated. For this
reason, determining the heating function based on the constrains
of force balance and thermal balance is an alternative path that
should not necessarily be discarded. Although the condition of
thermal or energy balance in the solar corona is not fully jus-
tified because some observations suggest the presence of low-
frequency nanoflare events in AR, leading to non-steady heating,
investigating the steady situation still provides useful informa-
tion. In particular, we showed that if temperature has a mono-
tonic dependence on height (either increasing or decreasing),
then we obtain regions in the magnetic configuration in which
an appropriate amount of heating leads to a perfect energy bal-
ance. However, we also find regions where energy balance is
not possible, and this depends on the scale of the temperature
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variation with height that eventually modifies the conduction and
the radiative losses in the system. It might be worthwhile in the
near future to compare the heating function we obtain from our
models with those commonly used in the literature in order to
assess the possible similarities or discrepancies among them.

We have used a magnetic unipolar configuration for the CH.
Although there are indications in the observations that the field
is unipolar based on the estimates of the unsigned flux, the mag-
netograms show the typical salt-and-pepper distribution inside
CHs. Our models only explain the upper part of the magnetic
field in the solar corona, where the magnetic field is essentially
open (e.g. Wiegelmann & Solanki 2004). The models we devel-
oped are fairly basic and very idealised, but contain the primitive
ingredients for providing a common physical background that
describes the elementary features of CHs and ARs. Nevertheless,
previous assumptions are mandatory to make analytical progress
and to understand the basic physical concepts that underlie this
problem. The models developed here can be extended further.
In particular, a stimulating extension of our work is the analysis
of MHS equilibria that contain both a CH and an AR separated
by a certain distance. By analysing how the main parameters of
one structure depend on the parameters of the other, information
about the coupling between the two magnetic arrangements may
be gained. This may pave the path to viewing CHs and ARs as
connected structures.

We have assumed that the temperature profile only depends
on the magnetic field line (on the flux function A) and explicitly
depends on height in the coronal part of the atmosphere. Never-
theless, the model can be extended to include the lower parts
of the solar atmosphere by choosing a temperature and pres-
sure variation with height that is representative of the chromo-
sphere, the transition region, and finally the corona. In this future
model, the coupling of the corona with the chromosphere will be
included and can have relevant effects on the coronal part of the
solution. For this reason, it deserves to be investigated further.
The thermal balance under these conditions is also of interest,
but is much more complicated because of the intricate physics
of the solar chromosphere. For example, the radiative losses are
no longer optically thin, and therefore the loss functions used
for the coronal part are not applicable. A chromospheric layer is
known to act as a reservoir of energy and mass that can lead to
the appearance of condensations in the corona and to cycles of
thermal non-equilibrium.

Our results should be also expanded to include flows. This
is a more realistic situation than the static case because there is
clear evidence in the observations of outgoing flows in CHs that
are inevitably linked to the solar wind. For simplicity, we should
first assume that the flow is field aligned. This problem has been
investigated in the past by several authors in other contexts,
see for example Tsinganos (1981, 1982), Low & Tsinganos
(1986), and Webb et al. (1994, 2001), and in coronal loops by
Petrie et al. (2002, 2003). When flows are present, the Grad-
Shafranov equation and the Bernoulli equation are coupled. This
problem is left for future studies and is also closely related to
the appearance of TNE cycles. TNE is due to the necessity of an
enthalpy flux to balance energy loss in the corona. In the long
run, this is an unstable configuration because mass and runaway
radiative losses build up.

Finally, the solutions we obtained should be extended to
the 3D. This case is more representative of a real situation.
The CH model can be translated into cylindrical geometry,
while a different approach is required to represent bipolar
ARs in 3D. The logical next step is to use Euler potentials,
although they have some limitations that need to be assessed

depending on the specific configuration (see details in Neukirch
2015). Other ad hoc approaches to building analytic solutions
in 3D that can be useful for our purposes have been investi-
gated by Low (1985, 1991), Neukirch & Rastätter (1999), and
Neukirch & Wiegelmann (2019), although a purely numerical
treatment is most likely required in 3D when the thermal struc-
ture is included in the problem, as in our study here.
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