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ABSTRACT

Context. Threads are the building blocks of solar prominences and very often show longitudinal oscillatory motions that are strongly
attenuated with time. The damping mechanism responsible for the reported oscillations is not fully understood yet.
Aims. To understand the oscillations and damping of prominence threads we must first investigate the nature of the equilibrium
solutions that arise under static conditions and under the presence of radiative losses, thermal conduction, and background heating.
This provides the basis to calculate the eigenmodes of the thread models.
Methods. The non-linear ordinary differential equations for hydrostatic and thermal equilibrium under the presence of gravity are
solved using standard numerical techniques and simple analytical expressions are derived under certain approximations. The solutions
to the equations represent a prominence thread, a dense and cold plasma region of a certain length that connects with the corona
through a prominence corona transition region (PCTR). The solutions can also match with a chromospheric-like layer if a spatially
dependent heating function localised around the footpoints is considered.
Results. We have obtained static solutions representing prominence threads and have investigated in detail the dependence of these
solutions on the different parameters of the model. Among other results, we show that multiple condensations along a magnetic field
line are possible, and that the effect of partial ionisation in the model can significantly modify the thermal balance in the thread, and
therefore their length. This last parameter is also shown to be comparable to that reported in the observations when the radiative losses
are reduced for typical thread temperatures.
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1. Introduction

A recent survey on longitudinal oscillations in solar filaments
carried out by Luna et al. (2018) has provided interesting results
about the temporal attenuation of the oscillatory motions. A
measure of the attenuation is the ratio of the damping time,
assuming an exponential decay, to the period of the oscilla-
tion. The mean value of this parameter over 106 small ampli-
tude events (with velocities below 10 km s−1) is 1.75, while for
large amplitude oscillations (above 10 km s−1) the 96 events give
a mean value of 1.25. This means that typically the oscillations
do not last more than two periods. The question that arises is
what mechanism produces such strong damping, and several
approaches can be used to investigate this problem.

The first approach is to consider that the system is near
equilibrium satisfying the energetic balance between radiation
losses, thermal conduction, and heating. The model may include
the effect of the magnetic field and also the gravitational force.
Once the equilibrium is calculated, which is the main motiva-
tion of the present work (Paper I), the problem of linear and
non-linear waves on these equilibrium configurations can be
then addressed (Paper II). Only a few works have focused on
the determination of a static equilibrium under thermal balance.
Degenhardt & Deinzer (1993) modelled a quiescent prominence
assuming balance between heating and radiative losses but
ignored heat conduction. These authors found reasonable values

for prominence temperatures and densities, but significantly
shorter threads were obtained (a similar result was obtained
by Milne et al. 1979). The connection with the chromosphere
was not included in the model. Later, Dahlburg et al. (1998)
demonstrated the role of a dipped geometry to support a promi-
nence condensation against gravity and included a localised
footpoint heating to match their solution with a chromospheric
layer. Regarding the oscillations Schmitt & Degenhardt (1995)
and Rempel et al. (1999) performed a stability analysis of a flux
tube model based on the work of Degenhardt & Deinzer (1993)
under line-tying conditions. However, in these studies the pertur-
bations were assumed to be adiabatic and therefore no attenua-
tion was reported, although some hints of instability were found.
The inclusion of non-adiabatic effects under different bound-
ary conditions will be addressed in Paper II. In addition, the
effect of partial ionisation, effective for plasma temperatures
below 10 000 K, is not taken into account in the above mentioned
studies.

The second approach to investigate thread or prominence
oscillations is based on the analysis of a dynamical system that
undergoes thermal non-equilibrium. Oscillations are naturally
produced in the system and their investigation provides details
about the damping processes. Along this line, Luna & Karpen
(2012) investigated the oscillations of multiple threads formed
in long, dipped flux tubes through the thermal non-equilibrium
process previously simulated (Luna et al. 2012). These authors
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found that the oscillation properties predicted by their simula-
tions are in agreement with the observed behaviour, and that the
main restoring force is the projected gravity along the tube where
the threads oscillate. Zhang et al. (2012, 2013) modelled impul-
sive heating at one leg of the loop and an impulsive momentum
deposition, which cause the prominence to oscillate. The oscil-
lation damps with time under the presence of non-adiabatic pro-
cesses and these authors concluded that radiative cooling is the
dominant factor leading to damping.

In this paper we follow the first approach. We construct
improved static prominence or thread models by considering dif-
ferent forms of the radiative losses under the presence of grav-
ity. The basic conditions to have a temperature minimum at the
thread centre are derived, and the possibility of having several
condensations along the field line is discussed. The connection
of the thread solution with the prominence corona transition
region (PCTR) and eventually with a chromospheric layer near
the footpoints is also investigated. Partial ionisation is included
in the model and its effect on the obtained solutions is studied.
The work presented here is the basis of the analysis of the eigen-
modes that will be described in Paper II.

2. Basic model

We assume that the magnetic field dominates the plasma and
reduce the problem to a one-dimensional thread in which the
magnetic field determines the geometry but is not modified
by the presence of the thread. The plasma quantities change
along the thread, and therefore we concentrate on the forces
and equilibrium along the field only. This assumption is valid
for prominences embedded in sufficiently strong magnetic fields
(e.g. Fiedler & Hood 1992; Hillier & van Ballegooijen 2013;
Jenkins et al. 2019). For a model with equilibrium normal to
the magnetic field, see for example Ballester & Priest (1989).
For simplicity, here we concentrate on a 1D problem and the
tube cross-section is assumed to be constant. We adopt a sym-
metric geometry about the midpoint with a dipped region in the
central part, as in Antiochos & Klimchuk (1991), Dahlburg et al.
(1998), and Zhou et al. (2014). The definition of the field geom-
etry is given by Eq. (6) of Dahlburg et al. (1998). We denote by
g(s) the gravity acceleration parallel to the field line and s the
distance along this line (starting at the midpoint of the struc-
ture, i.e., the centre of the thread). Three different examples of
field geometry investigated in the present work are represented
in Fig. 1.

3. Fully ionised plasma

For a static situation two equations for the force balance and ther-
mal equilibrium must be satisfied simultaneously. Gas pressure
under static equilibrium must satisfy that

dp
ds

(s) = ρ(s)g(s)· (1)

When gravity is neglected gas pressure remains constant along
s. This equation is completed with the ideal gas law

p(s) =
1
µ̃

kB

mp
ρ(s)T (s), (2)

where kB/mp is the ideal gas constant and µ̃ is the mean atomic
weight. For a fully ionised hydrogen plasma µ̃ = 1/2. The mod-
ifications in the previous equation because of partial ionisation
are introduced in Sect. 4.

Fig. 1. Sketch of the assumed magnetic field geometry. The different
parameters change the shape and curvature of the field lines where the
thread is allocated (based on Dahlburg et al. 1998). The configurations
are labelled A, B, and C. The three configurations are represented with
different total lengths for visualisation purposes only. The parameters
of each curve following the definition in Dahlburg et al. (1998) are A
(bottom curve): s1 = 0.05L, s2 = 0.5L, d = 0.1L; B (middle curve):
s1 = 0.1L, s2 = 0.5L, d = 0.05L; and C (top curve): s1 = 0.2L, s2 =
0.5L, d = 0.01L. L is half the length of the magnetic field line.

Using the ideal gas law we can eliminate the variable p(s) to
obtain

dρ
ds

(s)T (s) + ρ(s)
dT
ds

(s) = µ̃
mp

kB
ρ(s)g(s)· (3)

For thermal equilibrium between conduction, radiative losses,
and heating the next non-linear ordinary differential equation has
to be satisfied,

d
ds

(
κ‖(s)

dT
ds

(s)
)
− ρ(s)2Λ(T (s)) + E0 = 0, (4)

where κ‖(s) = κ0 T (s)5/2, with κ0 a constant coefficient, and Λ(T )
is the radiative loss function and E0 the background heating. It is
instructive to write the previous energy equation in integral form
using the Gauss theorem in one dimension,[
κ‖(s)

dT
ds

(s)
]

s=±L
+

∫ L

−L

(
−ρ(s)2Λ(T (s)) + E0

)
ds = 0, (5)

where the first term of this equation represents the (minus) heat
flux through the footpoints of the field lines located at ±L and the
second term is the spatially integrated contribution of radiation
and heating. If E0 is zero the heat flux through the boundaries
because of thermal conduction, is equal to the total energy lost
by radiation in the whole domain.

For optically thin radiative losses the function Λ(T ) has sev-
eral parametrisations in the literature that are essentially valid
for the corona surrounding prominences. Nevertheless, threads
are optically thick, and therefore radiative losses are expected
to be greatly reduced. This effect can be taken into account by
artificially decreasing the values in the optically thin radiative
losses for low temperatures (T < 104 K) (see e.g. Milne et al.
1979; Schmitt & Degenhardt 1995). Here we consider two main
radiative loss functions, described in Athay (1986) and Hildner
(1974), which are represented in Fig. 2 for comparison pur-
poses. Athay’s radiation function has the advantage of being
an analytical function with continuous derivatives and attains
quite low values under prominence and/or thread conditions.
As we show in the next sections, this has important conse-
quences regarding the lengths of the calculated threads. We have
explored other radiative losses such as Klimchuk-Raymond’s fits
(Klimchuk & Cargill 2001) and the parametrisation computed
from CHIANTI atomic database (Dere et al. 1997; Landi et al.
2012), but the results are in general quite similar to those of
Hildner’s function.
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Fig. 2. Radiative loss functions used in the present work: Athay (1986)
(continuous line) and Hildner (1974) (dotted line). Athay’s function has
reduced losses in comparison with Hildner’s for typical temperatures in
the range 4000–12 000 K.

We derive the conditions to obtain a dense and cold thread at
the centre of the dip surrounded by a hot plasma. We denote the
temperature and density at this point as T0 = T (0) and ρ0 = ρ(0).
By symmetry around s = 0 we impose that dT/ds = 0, meaning
that Eq. (4) at s = 0 reduces to

d2T
ds2 (0) =

ρ2
0 Λ(T0) − E0

κ‖(0)
· (6)

Since we are looking for solutions that represent a cold thread
connecting with the hot corona, the temperature at s = 0 (where
there is an extrema because we have imposed that dT/ds = 0)
must have a minimum (i.e., d2T/ds2 > 0). According to Eq. (6),
this condition is satisfied only if E0 < ρ2

0 Λ(T0). Conditions for
the existence of prominence solutions were already studied in
some detail in the early work of Milne et al. (1979). We note
that even in the unlikely situation with no background heating in
the solar atmosphere (i.e. E0 = 0), it is still possible to obtain
physically meaningful solutions. However, for E0 > ρ

2
0 Λ(T0) no

solutions representative of threads (i.e., cold material surrounded
by coronal plasma) are found. Instead, coronal loop solutions of
the type studied by Klimchuk et al. (2010) or Mikić et al. (2013),
among others, are obtained. The stationary solutions calculated
by these last authors by solving the time dependent problem
were used as a check of our numerical method based on standard
routines. We obtained static equilibrium solutions that closely
match the stationary solutions of Mikić et al. (2013).

Typical numbers for background heating found in the litera-
ture are in the range 10−4−10−5 W m−3 (e.g., Karpen et al. 2001;
Mikić et al. 2013); however, for the specific radiative losses con-
sidered in this work, these values are in general too high to
satisfy the condition E0 < ρ2

0 Λ(T0) necessary to have a typi-
cal thread and/or prominence with density ρ0 = 10−11 kg m−3

and temperature T0 = 10 000 K. For this reason we decided
not to focus on a single value of the background heating, but to
change the value of E0 in the range between 0 and slightly below
ρ2

0 Λ(T0). It is clear that the value of the radiative loss function
at T0 is a relevant number that determines the range of allowed
values for E0. If the radiative losses are low for temperatures
around 10 000 K the background heating needs to be decreased
accordingly. For this reason we consider background heatings as
low as E0 = 2.75× 10−9 W m−3 and E0 = 1.25× 10−6 W m−3 for
Athay and Hildner’s radiation functions, but in some cases the
values are slightly above these values (e.g. Fig. 3).

The system of Eqs. (3) and (4) are solved numerically for T
and ρ under given boundary conditions using standard numer-

Fig. 3. Hydrostatic and thermal equilibrium along the field line with
zero gravity. The continuous line corresponds to Athays’s radiation
function, the dashed line represents the results for Hildner’s func-
tion, while the background heatings are E0 = 2.75 × 10−9 W m−3 and
E0 = 1.75 × 10−6 W m−3. In this particular example T0 = 104 K,
ρ0 = 10−11 kg m−3, and the total length of the field line is 2L = 200 Mm.
Model A is used in this plot.

ical techniques based on a variable-order, variable-step Adams
method. At the centre of the thread (s = 0) the temperature (T0)
and density (ρ0) values are selected and dT/ds = 0 is imposed.
The two coupled ordinary differential equations are numerically
integrated from s = 0 to s = L using numerical methods. When
necessary, adaptive mesh methods are used, this is especially
important at the PCTR. We do not need, in general, to imple-
ment a shooting method since the three boundary conditions are
imposed at s = 0. The shooting method is only required when
density at s = 0 has to be determined to match the temperature
at the corona (s = L) (see end of Sect. 3.3). In this last case we
use a Runge–Kutta–Merson method and a Newton iteration in
the shooting and matching technique.

3.1. Constant gas pressure

For a better comprehension of the results we start with the case of
zero gravity. Gas pressure is constant along the field under such
conditions, and the solution of the equations is represented in
Fig. 3 for the two radiation functions. The solutions show rather
different behaviour although the reference temperatures and den-
sities are the same at s = 0. For Athay’s radiation function a sin-
gle thread around s = 0 is found and matches smoothly through
a PCTR a plasma that is close to coronal conditions (densities of
the order of 10−13 kg m−3, and temperatures around 106 K). On
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the contrary, in the case of Hildner’s function, up to three cold
and dense regions are found in the configuration. The densities
and temperatures of these thread-like solutions are chosen to be
exactly the same at the centre of the thread (s = 0). The sys-
tem displays periodic cold and dense threads; and this behaviour
also applies to Athay’s radiation function, but the corresponding
spatial periodicity is much longer than the length of the system.

The distance between successive threads depends on the ref-
erence values for temperature and density and also on the value
of the heating constant. It is clear that for constant gas pressure
the system has a characteristic spatial scale and it is worth inves-
tigating the origin of this length. It turns out that this scale is
closely related to Field’s wavenumber, after Field (1965). This
author found that the thermal mode in a uniform plasma with
constant temperature of the order of MK is always unstable if
thermal conduction is absent. Under the presence of thermal con-
duction, however, there is a critical length scale that we denote
hereafter as LC, for the stabilisation of the thermal mode. In the
model used by Field (1965), with uniform temperature and den-
sity, the equilibrium satisfies that

ρ2
0 Λ(T0) = E0, (7)

and for a given constant pressure value and using the gas law, the
density and temperature are obtained from the previous equation,
which must be solved numerically in general. Since the equilib-
rium is isothermal there is no conduction term in Eq. (7), but it
is present in the perturbations.

An analysis of the perturbations in this configuration to
understand the features of the thermal mode has been done in the
past by, for example, Field (1965), van der Linden & Goossens
(1991), Soler et al. (2011), and Soler et al. (2012). The obtained
dispersion relation shows the existence of a critical length, and
that only those perturbations with wavelengths below LC are sta-
ble; the expression for LC (see Eq. (26a) in Field 1965) is

LC = 2π
√

κ‖
ρ
T

(
∂ρ2Λ

∂ρ

)
T
−

(
∂ρ2Λ

∂T

)
ρ

= 2π

√√√√
κ0 T 5/2

0

2 ρ2
0

T0
Λ(T0) − ρ2

0 Λ′(T0)
· (8)

Derivatives involving density and radiative losses at constant
temperature and constant density are present in the denomina-
tor of the previous expression and are evaluated in the second
part of the equation where Λ′(T0) is the temperature derivative
of the radiative losses evaluated at T0. It is worth mentioning
that in Eq. (8) the explicit dependence on E0 is absent, the rea-
son being that in our model the heating only affects the equilib-
rium but not the perturbations. We note that Begelman & McKee
(1990) define a Field’s length which is not the same as the
critical length used here (see also Koyama & Inutsuka 2004;
Sharma et al. 2010). Begelman & McKee (1990) provide a rela-
tionship between the critical and the Field’s length in their
Eq. (4.16).

We applied Eq. (8) to the situation in Fig. 3, but we kept
in mind that we were comparing the calculated inhomogeneous
equilibrium with a model that has constant density and temper-
ature. In order to perform a reliable comparison we chose the
same gas pressure value (which is constant along the tube) and
the same background heating in the two models. Then we cal-
culated the corresponding density and temperature that satis-
fies Eq. (7) for the homogeneous model. For example, for the
Hildner radiation function we find a temperature of 342 536 K

and a density of 2.9 × 10−13 kg m−3 in the homogeneous model.
If we compute the mean values for the corresponding inhomoge-
neous model (Fig. 3) we obtain a mean temperature of 418 897 K
and a mean density of 2.8×10−13 kg m−3; these numbers are sim-
ilar to those calculated for the homogeneous case. The obtained
values of temperature and density for the homogeneous case are
introduced in Eq. (8). We find that the corresponding scale length
for Hildner radiation function is 36 Mm. This value agrees rea-
sonable well with the periodicity found in Fig. 3 for Hildner’s
function, which is around 43 Mm. Repeating the same procedure
for Athay’s radiation function (calculating again the temperature
and density values) we find that in this case LC = 22881 Mm.
This large value explains in Fig. 3 the lack of periodicity in
a length of 100 Mm. Therefore, we conclude that the critical
length provides a reasonable estimation of the expected periodic-
ity that makes the system stable regarding the thermal instability.
Furthermore, we computed different numerical solutions by
changing the value of κ0 and positively checked that the obtained
characteristic lengths are proportional to the square root of the
conduction coefficient, as expected from Eq. (8). We varied other
parameters such as temperature and density and the results con-
firm that Eq. (8) is an adequate approximation. We note that the
role of sound waves, and therefore the effect of pressure varia-
tions, is absent in the definition of the critical length, while in
the full numerical solutions of Fig. 3 the effect of gas pressure is
included.

Now we focus on another characteristic scale in the system
but of local nature, the length of the individual threads. As we
mention in Sect. 1, the calculated lengths by Milne et al. (1979)
and Degenhardt & Deinzer (1993) are short in comparison with
the measured thread lengths. To investigate this question, and
since the dense plasma representing a thread is located around
the origin of our coordinate system, we assume that the tem-
perature around s = 0 can be written as a second-order series
expansion of the form

T (s) = T0

(
1 + b1

s
L

+ b2
s2

L2

)
, (9)

where the dimensionless coefficients b1 and b2 need to be deter-
mined. Additional terms in Eq. (9) are neglected since s/L �
1 and we perform a local analysis. The boundary condition
dT/ds = 0 at s = 0 yields to b1 = 0. For the plasma density
we have that using the gas law for constant pressure and in the
situation s/L � 1 we can write

ρ(s) ≈ ρ0

(
1 − b2

s2

L2

)
. (10)

We substitute these expansions in s for temperature and pressure
in the full energy equation given by Eq. (4). Approximating the
powers by the corresponding Taylor series and using again the
fact that s/L � 1, we find after some algebra and to zeroth order
in s that

b2 =
1
2

L2

κ0 T 7/2
0

(
ρ2

0 Λ(T0) − E0

)
· (11)

This coefficient is in essence the ratio of the radiative minus
the heating term to the conduction term evaluated at s = 0 and
assuming that the temperature changes on a spatial scale given
by L. Equation (11) provides the value of the term in front of
the parabolic dependence on distance, s, in Eq. (9) and it is used
here as a proxy to obtain information about the thread length.
The smaller the value of b2, the flatter the parabolic curve, and
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therefore the longer the length of the thread. The question that
we have to address is how to define a spatial scale, lth, associated
with a parabola. For this reason if we rewrite Eq. (9) as

T (s) = T0

1 +
s2

l2th

 , (12)

then

lth =

√
L2

b2
=

√√
2 κ0 T 7/2

0

ρ2
0 Λ(T0) − E0

, (13)

where we use the expression for b2 given in Eq. (11). The spa-
tial scale lth can be understood as an approximation for the
thread length, and it provides valuable information about the
dependence of this parameter on central density and temperature,
radiative losses at this temperature, conduction, and background
heating. The radiative losses are dependent on the specific cool-
ing table chosen as this will define the behaviour and there-
fore shape of the PCTR. Since we are under the assumption
E0 < ρ2

0 Λ(T0), the parameter lth is always a real positive num-
ber. According to Eq. (13) an increase in the conduction will
lead to longer threads, while an increase in the radiative losses
will shorten them (if E0 is constant). The dependence of lth on
the conduction coefficient, κ0, is exactly the same as for LC (see
Eq. (8)) although these two spatial scales have different physical
meanings. We return to Eq. (13) in the following sections.

3.2. Non-constant gas pressure, gravity included

When gravity is introduced in the system gas pressure is no
longer constant along the magnetic field line. We concentrate
hereafter on Model A. For large spatial scales we expect that
gravity can significantly alter the results in comparison to the
constant pressure case, and indeed this is the case. The numerical
solution indicates that the second thread solution for Hildner’s
function (at s ≈ 45 Mm in Fig. 3) tends to have temperatures
much below the minimum at the thread centre (s = 0) and the
numerical integration of the equations fails to converge. The sys-
tem does not allow the periodicity found for the case with zero
gravity for the same value of the background heating. In this
case no static solution is allowed in the system for the selected
parameters and a dynamical behaviour is expected because of
the thermal non-equilibrium.

However, by changing E0 it is still possible to find, under
some choices of parameters, a situation with two threads under
mechanical and thermal balance. An example is shown in Fig. 4.
Thus, it is possible to have some cold material in equilibrium
balance but not located at the dips. This cold and dense material
does not reach the temperature and density values of the central
thread, however.

In Fig. 4 density and temperature as a function of position
along the magnetic field under gravity is also represented for
Athay’s function. Interestingly, in this case the differences with
respect to the zero gravity situation are not large; essentially the
density tends to increase near the footpoint as a result of the pres-
ence of gravity since around the footpoint the gravity force is
purely vertical and makes the largest contribution (compare with
the continuous line in the top panel of Fig. 3). The thread length
obtained in this case from the simulations, hereafter denoted
as a (do not confuse with lth, the analytical approximation), is
1.7 Mm, and it is calculated using the position where the density
derivative with s has a maximum (a is twice this value). We find
an extended prominence corona transition region that eventually

Fig. 4. Hydrostatic and thermal equilibrium along the field line with
gravity. The continuous line corresponds to Athays’s radiation function
and the dashed line represents the results for Hildner’s function, while
the background heatings are E0 = 2.75 × 10−9 W m−3 and E0 = 1.25 ×
10−6 W m−3. In this particular example T0 = 104 K, ρ0 = 10−11 kg m−3

and the total length of the field line is 2L = 200 Mm. Model A is used
in this plot.

matches a plasma that is close to coronal conditions (densities
of the order of 10−13 kg m−3 and temperatures around 106 K).
For these reasons we conclude that the obtained model is a good
representation of a thread.

In Fig. 5 the contribution of the different terms in the energy
equation is represented for the same parameters of Fig. 4. The
conduction term is always positive and is essentially balanced by
the radiative losses while the background heating is very small in
this example. Both conduction and radiation have a strong peak
at the PCTR where density and temperature change abruptly.

3.3. A parametric survey

Once we know the main features of the solutions we study the
influence of the different parameters on the computed equilib-
rium for a wide range of values. For this reason we carried out a
parametric study starting with the dependence on E0. Although
from the results in Fig. 5 we can conclude that the role of the
background heating is small, it turns out that this parameter
has a strong influence on the obtained thread lengths and, as
we will show in Paper II, this significantly affects the damping
times. This effect of E0 on the equilibrium was already noted by
Schmitt & Degenhardt (1995) and is further investigated here.

In Fig. 6 we represent the numerically obtained thread
lengths (twice the position where the density derivative with
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Fig. 5. Terms in the energy equation, Eq. (4), as a function of position
at the thread body. The continuous line corresponds to the conduction
term, the dashed line to the radiation losses, while the dotted line repre-
sents the constant background heating. The same parameters as in Fig. 4
for Athay’s function are used. Model A is used in this plot.

Fig. 6. Thread length, a, as a function of the heating constant, E0, for
different reference densities ρ0. In this plot the reference temperature
is T0 = 8 × 103 K, and Athay’s radiative loss is used. The analyti-
cal approximation given by Eq. (13) is plotted with red dashed lines.
Model A is used in this plot.

s has a maximum) as a function of E0 for a specific choice of
temperature (8 × 103 K) at the core of the thread. The thread
length decreases when the heating is reduced and the mini-
mum thread length is achieved for zero background heating.
This agrees with the dependence of lth on ρ2

0 Λ(T0) − E0 in
the denominator of Eq. (13). Analytical approximations for the
thread length are more difficult to obtain in this case, but we note
that the projection of gravity at s = 0 is precisely zero; there-
fore, as a first approximation we can still use the definition of lth.
The numerical results indicate that the longest thread lengths are
obtained for values of the heating tending to the radiative losses
at the thread centre, as also expected from Eq. (13). Neverthe-
less, the analytical approximation given by Eq. (13) and plotted
in Fig. 6 with red dashed lines overestimates the thread length in
this last situation. It is worth mentioning that there are numerical
problems regarding convergence in the calculation of the solu-
tions for values of the heating constant near to ρ2

0 Λ(T0), but the
reason is clear from the denominator of lth.

Fig. 7. Thread length, a, as a function of the central temperature for
different reference densities. The radiative function is based on Athay
(1986). The analytical approximation given by Eq. (13) is plotted with
red dashed lines. Model A is used in this plot.

We focus now on the dependence of the thread length on
the length of the field lines. The three magnetic configurations,
denoted by A, B, and C, have been analysed and the total length
of the field lines has been changed in the range 80−200 Mm. We
found that for Athay’s radiative function the total length of the
threads (i.e., the parameter a) does not change much with the
length of the magnetic field lines, and the values are typically
of the order of several Mm. Interestingly, the thread lengths are
in the range reported in the observations (e.g., Okamoto et al.
2007; Arregui et al. 2018). The variation of the thread length
with models A, B, and C is at most around 1%. We conclude that
the geometry has some influence on the length of the threads,
but that it is not too significant. We note that this effect is not
included in Eq. (13) since no gravity was assumed in the deriva-
tion of this equation (in our model the geometry of the field is
only included through the projection of gravity along the mag-
netic field lines).

On the other hand, when Hildner’s radiative function is con-
sidered, the thread lengths are short, typically of the order of only
150 km. Again, the magnetic field geometry has a weak influence
on the results in this case. The short lengths of the threads for
Hildner’s function were already reported by Milne et al. (1979)
and Schmitt & Degenhardt (1995), and the cause is that the
radiative losses are too high for typical thread temperatures. On
the contrary, Athay’s radiative losses are significantly lower for
typical thread temperatures (see the comparison in Fig. 2), and
this eventually leads to much longer threads.

In Fig. 7 the obtained thread length is represented as a func-
tion of the central temperature for different reference densities.
In these calculations we used Athay’s function, and imposed that
E0 = 0; therefore, as we have demonstrated in Fig. 6, we concen-
trate on the shortest threads. Figure 7 indicates that cool threads
have longer lengths than hot threads. Furthermore, light threads
have larger sizes than heavy threads, which is in agreement again
with Eq. (13) (lth is inversely proportional to ρ2

0) (see the red
dashed lines in Fig. 7).

So far we have integrated the ordinary differential equations
from s = 0 to s = L because we have imposed three boundary
conditions at s = 0 (temperature, density, and zero derivative
of temperature), and the problem is well defined. The calcula-
tion of the maximum heating is straightforward since it involves
the density and temperature at the centre of the thread. Although
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Fig. 8. Thread density at s = 0, as a function of the central tempera-
ture for models A, B, and C, matching a coronal temperature of 1 MK.
A shooting method was used. The radiative function is the same as in
Athay (1986).

in some cases we obtained coronal temperatures slightly below
1 MK, in the corona this approach provides reasonable results.
However, it is also interesting to investigate the situation where,
apart from the thread temperature, the coronal temperature is
imposed and the integration provides the rest of the parame-
ters. We are mainly interested in the calculation of the density
at the centre of the thread that produces a perfect match for a
coronal temperature at s = L. In this case a shooting method is
required to solve the differential equations. Now the maximum
heating constant is not known since it involves the thread density
that has to be determined from the solution of the equations. An
iterative approach is required to calculate the maximum E0. To
avoid this complication we concentrated on the situation E0 = 0
and studied the dependence of the results on temperature for the
three different geometrical configurations. The results are shown
in Fig. 8, where the obtained thread densities are plotted as a
function of the thread temperatures. The range of thread temper-
atures for the three configurations agree well with the densities
estimated from the observations (e.g., Tandberg-Hanssen 1995;
Patsourakos & Vial 2002). The cooler the thread, the higher the
density is the behaviour found in the configuration, and is what
is expected (using the gas law) from a set of solutions that have
essentially the same gas pressure at the centre of the thread. We
investigated the situation when the heating constant is different
from zero, and again it leads to longer threads than the situa-
tion for E0 = 0, as expected from Eq. (13) and demonstrated in
Fig. 6.

3.4. Matching a chromospheric layer

So far we have described a system composed of a cold and
dense material representing a thread connecting with a plasma
under coronal conditions. A more realistic model should include
the connection with the chromosphere near the footpoints of the
magnetic field lines that are supposed to be anchored in the pho-
tosphere. The physics of the chromosphere is complex and it is
beyond the scope of this work to include detailed modelling of
this layer. However, it is worth investigating the physical con-
ditions required to have a layer similar to the chromosphere in
our simplified 1D system. We have already seen that it is possi-
ble to obtain cold and dense plasma regions along the field lines

depending on the periodicity of the condensations that can have
similar conditions to chromospheric plasmas, especially in the
presence of gravity. Nevertheless, these chromospheric regions
can occur anywhere along the field line, while we are mostly
interested in a chromosphere localised near the footpoints (i.e.,
near s = ±L in our model). The way to force the coronal part
of the previously obtained solutions to match a chromosphere is
to include a localised heating source near the footpoints. This
approach has been used in the past by several authors and the
most common form for the heating function used in the litera-
ture is

E(s) = E0

(
1 + hch e(s−L)/λ

)
, (14)

where λ is a spatial scale typically of the order of 10 Mm and hch
is a factor that is in the range 20–100 (see e.g., Dahlburg et al.
1998; Karpen et al. 2001). Using these values in the spatially
dependent heating function and solving the ordinary differen-
tial equations we obtain a solution with a fast decrease in tem-
perature and a quick increase in density near the footpoint.
However, the rapidly changing nature of the chromospheric
part of the solution requires, in general, a special treatment of
this layer (see Lionello et al. 2009; Johnston & Bradshaw 2019;
Zhou et al. 2021 for modifications in the conduction coefficient
to avoid such difficulties). Nevertheless, the adaptive methods
that are implicitly used in our numerical treatment do not fail to
resolve the steep gradients in the solution. It is important to note
that the condition E(s = 0) < ρ2

0 Λ(T0) still needs to be satisfied
to have a thread-like solution.

The approach used here to incorporate a chromospheric layer
in the model is to assume that at some point the temperature
remains constant and takes typical chromospheric values (see
e.g., Mikić et al. 2013; Karpen et al. 2001). In this situation no
energy equation is required, gas pressure must be continuous
at this point, and the presence of gravity leads to an exponen-
tially growing density and pressure as we move downwards in
the chromospheric part. The integration of the equations is per-
formed from the thread centre to the chromosphere. An exam-
ple of a computed equilibrium is shown in Fig. 9 for the case
hch = 35. In this equilibrium a temperature threshold of 104 K is
imposed in the isothermal chromospheric layer, which starts at
s = 95 Mm, and its thickness is therefore 5 Mm (larger than the
real thickness which is typically around 2 Mm). The exponential
increase in density (straight line in the logarithmic scale of the
plot) is clear in the top panel of the figure and leads to mean
chromospheric density values.

Using Hildner’s function and for comparison purposes we
include in Fig. 9 two solutions with reduced localised heating
to visualise the nature of the solutions. For the situations with
hch = 15 and hch = 0 we find how temperature decreases near
the footpoint, but is still above the temperature threshold (104 K)
to have a chromosphere. An interesting conclusion from Fig. 9 is
that the presence of footpoint heating does not affect the thread
properties and the solution is essentially the same around s = 0
for the three cases. This is also true when Athay’s radiative func-
tion is considered. It is worth mentioning that multiple conden-
sations (discussed in Sect. 3.2) are not present in Fig. 9 because
the heating constant is always lower than the value used in Fig. 4.

The model developed in this section including a dense and
cold chromosphere near the footpoint will be useful for under-
standing the effect of this layer on the attenuation of the waves
(Paper II) produced by the possible mechanism of wave reflec-
tion at the chromosphere and wave leakage if the boundary is
open.
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Fig. 9. Hydrostatic and thermal equilibrium along the field line with
gravity for Hildner’s function. The background heating is E0 = 5 ×
10−7 W m−3 and hch = 35, 15, 0 for the continuous, dashed, and dotted
lines. In this particular example T0 = 104 K, ρ0 = 10−11 kg m−3 and the
temperature threshold for the imposed chromosphere is 104 K. Model A
is used in this example.

4. Partially ionised plasma

Let us assume that the plasma is not fully ionised. Based on 1D
non-LTE radiative transfer models, Heinzel et al. (2014) calcu-
lated, among other parameters, the ionisation degree in several
prominence slabs. In particular, Heinzel et al. (2015) provide
tables for the ionisation degree for different temperatures and
pressures at the prominence. The idea here is to use these values
in our calculations of the equilibrium and study how our mod-
els are modified by the presence of neutrals. We are again in the
situation where the description using an optically thin plasma is
not completely correct, but it can be considered a starting point.

The plasma is assumed to be composed of hydrogen and
helium. The abundance of helium is 10% and is not ionised. The
ionisation degree is defined here as i = ne/nH where ne is the
electron density and nH the total hydrogen density (nHI +np). The
total particle number is defined as N = nH + nHe + ne, and using
the previous definitions and the helium abundance (nHe = 0.1 nH)
it is written as

N = ne

(
1 +

1.1
i

)
. (15)

Using the ideal gas law we find that the electron density in terms
of pressure, temperature, and ionisation degree is (writing the

explicit dependence of the variables)

ne(s) =
p(s)

kBT (s)

(
i(p(s),T (s))

i(p(s),T (s)) + 1.1

)
. (16)

The ionisation degree, i, depends on p and T and it is calculated
from Table 1 of Heinzel et al. (2015). To simplify things, here-
after we write i(p(s),T (s)) as i(s).

For the total density we have that ρ = nH mp+nHe 4 mp+ne me
(being mp and me the proton and electron masses). It reduces to
the following expression when the electron mass is neglected in
front of the proton mass,

ρ(s) =
mp

kB

p(s)
T (s)

(
1.4

i(s) + 1.1

)
. (17)

Now the term in the brackets plays the role of µ̃ in Eq. (2). In
the partially ionised situation it is more convenient to solve the
equilibrium equations for gas pressure and temperature because
the ionisation degree calculated in Heinzel et al. (2015) depends
on these two magnitudes.

The equation for hydrostatic equilibrium in Eq. (1) is writ-
ten in terms of pressure and temperature because density has
been eliminated using Eq. (17). Partial ionisation changes the
equation for thermal equilibrium in the conduction and radiation
terms. The factor in front of the radiative term is now

ne(s) nH(s) =
n2

e(s)
i(s)

. (18)

In the conductivities the contribution of neutrals has to be
added to the electron contribution. We have that according to
Soler et al. (2010, 2012),

κe(s) = κ0 ξp(s) T 5/2(s), (19)

κn(s) =
(
κ1 ξHI (s) + κ2 ξHeI

)
T 1/2(s), (20)

where the relative density of species are in our case ξp(s) =
i(s)/1.4, ξHI (s) = (1 − i(s))/1.4, and ξHeI = 0.4/1.4. For the
conductivities we have that κ0 = 1.1 × 10−11 W m−1 K−7/2, κ1 =
2.24×10−2 W m−1 K−3/2, and κ2 = 3.18×10−2 W m−1 K−3/2. The
effective conduction coefficient is now the sum of electron and
neutral conductivities

κ‖(s) = κe(s) + κn(s). (21)

The conduction term involves spatial derivatives of this coeffi-
cient. The coefficient κ‖ depends on temperature and ionisation
degree, and this last parameter also depends on temperature and
pressure. Regarding the ionisation, from the practical point of
view we adjusted a second-order polynomial to the function
i(p,T ) given in Heinzel et al. (2015) (table for an altitude of
20 Mm). The calculation of the partial derivatives of i with p
and T is straightforward using the polynomial fit.

We repeated some of the previous calculations including the
effect of partial ionisation through the change in the radiation and
conduction terms and the modification of the ideal gas law. Since
we have shown that the inclusion of a chromosphere has little
effect on the conditions within the threads, we do not include
this pseudo-layer in the present calculations.

The main result is that partial ionisation significantly
increases the size of the thread. An example is shown in Fig. 10
where the length of the thread is four times longer than in the
fully ionised case. We have to keep in mind that the initial values
of the thread parameters at s = 0, required to perform the inte-
gration of the differential equations, are now different to those in
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Fig. 10. Hydrostatic and thermal equilibrium along a thread under par-
tial ionisation (continuous lines) and full ionisation (dashed lines). In
this particular example temperature (T0 = 8 × 103 K) and pressure at
(s = 0) are the same for the partially and fully ionised situations. In
these solutions E0 = 0 is imposed. The radiative function is the same as
in Athay (1986). Model A is used in this plot.

the fully ionised case because of the change introduced in the gas
law by partial ionisation (see Eq. (17)). In the present example
temperature and gas pressure are the same at the thread centre,

but the reference density is different. In Fig. 10 (bottom panel)
we can see how the ionisation degree changes inside the thread
because of the implemented model of Heinzel et al. (2015). The
ionisation degree raises smoothly from 0.72 at the thread centre
to 1 at the edge of the thread where high (coronal) temperatures
are achieved.

The increment in the thread length produced by partial ion-
isation is a consequence of the changes in thermal conduction,
which is larger owing to the contribution of neutrals on the con-
ductivities. For a better understanding of this feature we proceed
as in the fully ionised situation when gravity is absent. Using the
same approximation as in Eq. (9), we find that under the pres-
ence of partial ionisation the characteristic spatial scale of the
thread is

lth =

√√√
2
κ0

i0
1.4 T 7/2

0 +
(
κ1

1−i0
1.4 + κ2

0.4
1.4

)
T 3/2

0

ρ2
0Λ(T0) i0

1.42 − E0
, (22)

where i0 = i(p0,T0) is the ionisation degree at the centre of the
thread. The value of i0 is typically around 0.72, but the reference
density, ρ0, also depends on i0 (see Eq. (17)). It is not difficult
to calculate the ratio of the radiation term for partial ionisation
relative to full ionisation for constant reference pressure (p0) and
temperature (T0). For partial ionisation the reference density is

ρ0p =
mp

kB

p0

T0

(
1.4

i0 + 1.1

)
, (23)

while for full ionisation

ρ0f =
mp

kB

p0

T0

(
1
2

)
. (24)

The ratio of the two corresponding radiation terms is

ρ2
0p Λ(T0) i0

1.42

ρ2
0f Λ(T0)

=
4 i0

(i0 + 1.1)2 . (25)

This ratio is always lower than one, meaning that radiative losses
under partial ionisation are reduced in comparison with the fully
ionised case. Since this term appears in the denominator of
Eq. (22) it means that it produces an increase in the thread length.

For thermal conduction we need to evaluate the three terms
that appear in the numerator of Eq. (22). The sum of the three
terms is typically around 4.5 times the value for the fully ionised
situation. This increment leads to longer threads under partial
ionisation. It turns out that the increased conduction under partial
ionisation is mostly produced by the presence of neutral helium.
This is visualised in Fig. 11 where the different conduction terms
are plotted as a function of position for a typical case. Inside the
thread, conduction by neutrals dominates conduction by elec-
trons. The contribution of neutral helium is the largest, although
its abundance is just 10%. Conduction by neutral H goes to zero
as we approach the edge of the thread where plasma is fully
ionised. In the coronal medium the contribution of neutral He
is artificially forced to go to zero since at coronal temperatures
it is fully ionised. Neutral He is therefore responsible, together
with the reduced radiation, for the rise of the obtained thread
lengths.

Finally, Fig. 12 shows how the thread length changes with
the central temperature under partial ionisation. The behaviour is
the same as in Fig. 7 for the fully ionised case, and for compari-
son purposes we also represent the results for full ionisation for
the same reference pressure at s = 0. Interestingly, as the cen-
tral temperature increases the two curves approach each other

A95, page 9 of 11



A&A 653, A95 (2021)

Fig. 11. Conduction terms as a function of position (in the range 0–
30 Mm for visualisation purposes). Conduction by neutral H (dashed
line) goes to zero at the edge of the thread where the plasma is fully
ionised. Conduction by neutral He (dotted line) dominates inside the
thread and becomes zero in the corona where there is conduction by
electrons only (continuous line). The same parameters as in Fig. 10 are
used.

Fig. 12. Thread length as a function of temperature under partial ion-
isation and full ionisation. In these solutions E0 = 0 is imposed. The
radiative function is the same as in Athay (1986). The analytical approx-
imations given by Eqs. (22) (partial ionisation) and (13) (full ionisation)
are plotted with orange and red dashed lines. The same parameters as in
Fig. 10 are used.

since the higher the temperature, the larger the ionisation degree
in the prominence. We find again longer threads in the presence
of partial ionisation; the difference is relative to full ionisation, a
factor that varies from 5.3 to 2.6 in the range of temperatures of
the plot. The analytical approximation given by Eq. (22) is also
plotted in the figure, and the agreement with the numerical result
is remarkable.

5. Summary and conclusions

In the present work we have analysed the features of one-
dimensional equilibrium thread models under hydrostatic and
thermal balance. We started with the situation without gravity
and progressively increased the complexity of the model. This
has allowed us a better comprehension of the results. Gravita-
tional stratification, the presence of a chromosphere, and finally

partial ionisation effects were incorporated into our model. The
main outcome of our study is summarised in the following:
1. The value of the background heating in comparison with the

radiative losses at the centre of the thread is crucial to lead
to thread-like solutions surrounded by coronal plasma. Only
if E0 < ρ2

0 Λ(T0) do static, cold, and dense plasma threads
under thermal equilibrium exist. In the opposite situation
when the background heating is higher than the radiative
losses at the centre of the structure, only loop-like solutions
are achieved.

2. Several thread-like condensations are in principle possible
along the field lines and not necessarily located at the dips
of the magnetic field. We find that the physical origin of
the secondary condensations is related to the critical length
introduced by Field (1965) and related to the characteristic
spatial scale for thermal stability.

3. The presence of gravity in the model can produce that the
secondary condensations collapse and no equilibrium con-
figuration on a given length of the magnetic field line is
achieved. Again the value of the background heating plays
a major role in the behaviour of secondary thread-like solu-
tions, located in general near the footpoints. The gravita-
tional stability of the obtained solutions needs to be inves-
tigated; this will be addressed in Paper II.

4. A parametric survey has been carried out to understand the
dependence of the thread length, on the different values of
the parameters. The geometry of the field lines is not espe-
cially important, but the radiative losses for low tempera-
tures are crucial to obtain realistic thread lengths. Athay’s
radiative function, with reduced losses under typical thread
conditions (see Fig. 2), is the most suitable choice from the
ensemble of radiative losses analysed in the present work.
In any case, since the plasma is optically thick under typi-
cal prominence and/or thread conditions, the incorporation
of more realistic physics requires us to properly solve the
radiative transport problem.

5. We have derived a simple analytical expression for the char-
acteristic spatial scale of the thread, lth, under static equi-
librium that explains the dependence of the computed thread
lengths, a, with the different parameters of the model, includ-
ing partial ionisation. This could be used in a novel way,
for example to infer the ratio of radiation to heating if the
length of the thread and the central temperature and density
are known from observations.

6. Significantly long threads are obtained when partial ionisa-
tion is present. This is a consequence of the reduced radi-
ation and increased conduction produced by neutral helium
in comparison to the fully ionised case. It is assumed that
helium is totally neutral in the thread, but this is not com-
pletely true under real conditions (see Soler et al. 2010), and
in reality this may decrease the length of the threads. This
needs to be addressed in the future.

7. The connection of the thread-corona system with a chromo-
sphere is obtained when heating around a certain thresh-
old is localised near the footpoints, in agreement with
Dahlburg et al. (1998). The chromospheric model used here
(a stratified and isothermal layer under full ionisation) is a
first approximation, and more physics needs to be included
in future studies. However, the presence of a chromosphere
is interesting for the applications regarding the damped oscil-
lations that will be discussed in Paper II.

8. Related to the previous point, we have shown that localised
footpoint heating does not significantly alter the tempera-
ture and density of the cold plasma representing the thread
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relative to the case without footpoint heating, at least for
the parameters considered in this work. In our model the
localised heating essentially leads to the existence of a chro-
mospheric layer alone.

The numerical solutions presented in this work will be used to
compute the corresponding eigenmodes to compare the damp-
ing rates of our calculations and the reported in the observa-
tions (Paper II). Firstly, this will allow us to better understand
the damping mechanism of the oscillations, and secondly, this
information will be used to constrain or to infer some modifica-
tions to the models (see Anzer & Heinzel 2008) and most likely
about the dependence of the radiative losses on temperature. The
comparison of theory and observations will be used for seismo-
logical purposes.
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