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Abstract

In the solar atmosphere, Alfvén waves are believed to play an important role in the transfer of energy from the
photosphere to the corona and solar wind, and in the heating of the chromosphere. We perform numerical
computations to investigate the energy transport and dissipation associated with torsional Alfvén waves
propagating in magnetic flux tubes that expand from the photosphere to the corona in quiet-Sun conditions. We
place a broadband driver at the photosphere that injects a wave energy flux of 10’ ergcm s~ and consider
Ohm’s magnetic diffusion and ion—neutral collisions as dissipation mechanisms. We find that only a small fraction
of the driven flux, ~10° erg cm~2s ™", is able to reach coronal heights, but it may be sufficient to partly compensate
the total coronal energy loss. The frequency of maximal transmittance is ~5 mHz for a photospheric field strength
of 1 kG and is shifted to smaller/larger frequencies for weaker/stronger fields. Lower frequencies are reflected at
the transition region, while higher frequencies are dissipated, producing enough heat to balance chromospheric
radiative losses. Heating in the low and middle chromosphere is due to Ohmic dissipation, while ion—neutral
friction dominates in the high chromosphere. Ohmic diffusion is enhanced by phase mixing because of the
expansion of the magnetic field. This effect has the important consequence of increasing the chromospheric
dissipation and, therefore, reducing the energy flux that reaches the corona. We provide empirical fits of the
transmission coefficient that could be used as input for coronal models.
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1. Introduction

Recent high-resolution observations have shown that
Alfvénic waves, i.e., incompressible or nearly incompressible
magnetohydrodynamic (MHD) waves, are ubiquitous in the
solar atmosphere (see, e.g., De Pontieu et al. 2007; Jess et al.
2009; Mclntosh et al. 2011; De Pontieu et al. 2014; Morton et al.
2015; Jafarzadeh et al. 2017; Srivastava et al. 2017, to name a
few recent observations). The overwhelming presence of the
waves, together with estimations of their energy, strongly
suggest that they may play an important role in the energy
balance of the plasma and the propagation of energy through the
atmospheric layers (see, e.g., Hollweg 1978; Cranmer & van
Ballegooijen 2005; Cargill & de Moortel 2011; Mathioudakis
et al. 2013; Jess et al. 2015). However, despite the observational
evidence, there are still several open issues regarding, for
instance, the efficiency of wave dissipation as a plasma-heating
mechanism and the ability of the waves to supply a significant
amount of energy to the corona and extended atmosphere that
may compensate for the continuous energy loss. The present
paper aims to shed some light on both relevant issues from a
theoretical point of view.

In the lower atmosphere of the quiet Sun, most of the
magnetic flux is concentrated in the network, which is the
source of the magnetic field that extends from the photosphere
up to the corona. The photospheric network flux is in the form
of magnetic tubes that occupy, typically, 1% of the volume in
the photosphere and have field strengths of the order of 1kG
(Solanki 2000; Stenflo 2000). It is well known that magnetic
flux tubes act as waveguides for MHD waves and support a
number of different MHD wave modes (see, e.g., a recent
summary in Jess et al. 2015). In such waveguides, pure Alfvén

waves take the form of torsional waves, whose restoring force
is magnetic tension. By pure Alfvén waves we mean Alfvén
waves that are not coupled with another kind of mode, as it is
known that, in general, MHD waves in flux tubes have mixed
properties (see, e.g., Goossens et al. 2012). Torsional Alfvén
waves produce axisymmetric velocity and magnetic field
perturbations that, in a cylindrical tube, are polarized in the
azimuthal direction (see, e.g., Erdélyi & Fedun 2007). In the
solar photosphere, observations and numerical simulations
show that horizontal flows (e.g., Spruit 1981; Choudhuri et al.
1993; Huang et al. 1995; Stangalini et al. 2014) and vortex
motions (e.g., Shelyag et al. 2011, 2012; Wedemeyer-Bohm
et al. 2012; Morton et al. 2013) can efficiently drive this kind of
incompressible wave in the flux tubes anchored there. In this
scenario, part of the mechanical energy of the bulk photo-
spheric motions is converted into wave energy that subse-
quently propagates to the upper layers along the magnetic field
lines. The estimated driven energy flux, averaged over the
entire photosphere, could be as large as ~10" ergcm 25~
Thus, in theory, the waves may supply a significant amount of
energy to the overlying atmosphere, where part of it could be
thermalized.

The accurate theoretical description of the role of waves in
the energy transport in the solar atmosphere requires the use of
realistic models. An important ingredient is the expansion with
height of the magnetic field. The decrease of the gas pressure
with height in the atmosphere results in the radial expansion of
the flux tubes. In the lower chromosphere, at a height of
500-1000 km above the photosphere, the magnetic field has
expanded so much that neighboring flux tubes meet and occupy
the entire volume in the upper chromosphere and corona
(Spruit 2000). Both gravitational stratification of the plasma
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and expansion of the magnetic field have an important impact
on the reflection and transmission properties of the waves as
they propagate from the photosphere to the corona. So, the net
wave energy flux that can reach the upper layers depends on the
amount of reflection in the lower atmosphere (see, e.g.,
Hollweg 1978, 1981; Leroy 1980; Hollweg et al. 1982;
Similon & Zargham 1992; Cranmer & van Ballegooijen 2005).

Another important ingredient is the consideration of the
mechanisms that could efficiently dissipate the wave energy. In
this regard, partial ionization effects in the chromosphere are
essential to correctly describe the chromospheric physics and
dynamics (see, e.g., Martinez-Sykora et al. 2012, 2017). It has
been shown that partial ionization heavily influences the
properties of Alfvén waves (see, e.g., Piddington 1956;
Osterbrock 1961; Haerendel 1992; Khodachenko et al. 2004,
Zaqarashvili et al. 2011; Soler et al. 2013, among others). In the
chromosphere, ion—neutral collisions can efficiently damp
Alfvén waves and dissipate their energy into the plasma (see,
e.g., Leake et al. 2005; Goodman 2011; Tu & Song 2013;
Arber et al. 2016; Shelyag et al. 2016). In addition, electron—
neutral collisions enhance the effect of magnetic diffusion, so
that electric currents are more efficiently dissipated in partially
ionized plasmas than in fully ionized plasmas (see, e.g.,
Khomenko & Collados 2012). Thus, the presence of neutrals is
essential to correctly describe the dissipation of waves in the
chromosphere.

Here, we aim to study the propagation and dissipation of
Alfvén wave energy in the lower solar atmosphere. The present
paper follows and improves the previous work by Soler et al.
(2017). Two important improvements are here incorporated.
On the one hand, we abandon the thin flux tube approximation
used in the 1.5D model of Soler et al. (2017). Instead, we
consider an expanding magnetic flux tube of finite width in
which the radial dependence of the axisymmetric wave
perturbations is explicitly solved, so the model is 2.5D. This
makes it possible to add a presumably important effect missing
from the previous 1.5D models, namely the phase mixing of
Alfvén waves. On the other hand, besides ion—neutral
collisions, here we also consider Ohm’s magnetic diffusion
as a dissipation mechanism for the waves, which was not
included in Soler et al. (2017). This addition allows us to
perform a better description of wave dissipation in the low and
mid-chromosphere.

This paper is organized as follows. Section 2 contains the
description of the background atmospheric and magnetic field
models. Section 3 includes the basic equations and the
mathematical expressions used to investigate torsional Alfvén
waves, while Section 4 explains the numerical method we have
followed to solve those equations. Then, we present and
analyze the results in Section 5. Subsequently, in Section 6, we
use the numerical results to provide some empirical fits of the
wave energy transmission coefficient, which could be used in
future models. Finally, Section 7 summarizes our main
findings, discusses limitations, and explores some ideas for
forthcoming works.

2. Background Atmosphere and Magnetic Field
2.1. Quiet-Sun Atmospheric Model

The model considered for the lower solar atmosphere is an
improved version of that used in Soler et al. (2017). Here we
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give a brief summary of how the model is built and refer to
Soler et al. (2017) for more details.

We use a static, gravitationally stratified background plasma
based on the semi-empirical quiet-Sun chromospheric model C
of Fontenla et al. (1993), hereafter FALL93-C, which has been
extended to incorporate the low part of the corona. The model
provides the variation of the physical parameters with height,
but is invariant in the horizontal direction. The coordinate z
represents the vertical coordinate, with z =0 corresponding to
the top of the photosphere. Hence, the model extends from the
base of the photosphere (down to z = zp, = —100km),
through the chromosphere, the transition region (around
z &~ 2200 km), and the low corona (up to z = z. = 4000 km).

The plasma is composed of hydrogen and helium and is
partially ionized. The presence of species heavier than helium
is ignored for the sake of simplicity and because of their
negligible abundance. Thus, the species considered are
electrons (e), protons (p), neutral hydrogen (H), neutral helium
(He 1), singly ionized helium (He 1I), and doubly ionized helium
(He 111). We denote by pg = ngmg the mass density, with ns the
number density and mg the particle mass, and by T the
temperature of a particular species 5, with 8 = e, p, H, Hel,
He 11, and He 1II. The total mass density of the whole plasma is
computed as

o= ps M

Since the plasma is highly collisional (see Section 2.2), there is
strong thermal coupling between all species. Consequently, we
use the same background temperature, 7, for all species. This
temperature is the one provided in the FAL93-C model. In the
following formulae, we formally consider different tempera-
tures for each species in order to give the expressions in their
most general form. Figures 1(a) and (b) display the variation
with height of the total density and the temperature according
to the FAL93-C model.

2.2. Collisional Effects

The different species that form the plasma are assumed to
interact by means of elastic particle collisions (see, e.g.,
Braginskii 1965; Schunk 1977; Draine 1986). Elastic colli-
sions are interactions between two different species in which
the total momentum and energy are conserved and the total
number of particles of one specific species in a volume
element does not change because of the collisions. Collisions
of this kind are, e.g., momentum-transfer collisions and
charge-exchange collisions. Conversely, in the case of
inelastic collisions, there are processes that convert particles
of one species into another, such as, e.g., ionization and
recombination processes, so that the total number of particles
of one specific species is not conserved. The treatment of
inelastic collisions is more complicated. Several source and
sink terms have to be included in the continuity, momentum,
and energy equations of the colliding species, and the
collision term cannot always be explicitly written. Only
elastic collisions are considered here.

We denote by Rjy the exchange of momentum between
species 3 and (3’ because of collisions, namely

Ry = apgg(vg — vyr), 2)
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Figure 1. Background atmospheric model. Dependence on height above the

photosphere of the (a) total density, (b) temperature, and (c) Ohmic diffusion

coefficient according to the chromospheric model C of Fontenla et al. (1993),

which has been extended up to 4000 km above the photosphere to incorporate
the low corona.

where vz and vz are the velocities of species § and (', so that
(vg — vg) is the velocity drift, and agy is the so-called friction
or momentum-transfer coefficient. The presence of velocity
drifts between species causes the redistribution of momentum
within the plasma. This has the consequence that any
perturbation superimposed on the static background equili-
brium is damped, although there is no loss of total energy. The
energy of the perturbations is simply transformed into internal
energy of the plasma. The collisional interaction causes the
conversion from kinetic to internal energy and the transfer of
heat between colliding species. We denote by Qpg the heat
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transfer between species (3 and 3’ because of collisions, namely

205 | Agp
Q= ——2— [—” ke (Ts — Ty)
mg + mg | 2
1
+ > mg(vg — Va')z], 3)

where kg is Boltzmann’s constant, and Agg is a parameter
whose value is 4 for electron—neutral collisions and 3 for the
other types of collisions (see Draine 1986). The heat-transfer
term, Qpg, has two contributions. On the one hand, the first
term on the right-hand side of Equation (3) accounts for the
exchange of heat because of the different temperatures of the
colliding species. This contribution is positive or negative
depending on the relative temperature of the two species,
meaning that the role of this term is to equalize the
temperatures. According to this, in the static background
atmosphere, the temperature differences between species
vanish on very short timescales of the order of particle
collision times (see also Spitzer 1962). This justifies the use of
a common temperature for all species. On the other hand, the
second term on the right-hand side of Equation (3) accounts for
the conversion from kinetic energy to internal energy during
the collisions. This term is quadratic in the velocity drift,
meaning that its contribution is always positive. This term
represents a net heating because of the collisional friction.

The friction coefficients, agy, measure the strength of the
interaction between species and depend on the local plasma
parameters and the types of collisions. In the case of collisions
between two electrically charged species, namely ¢ and ¢’, the
interaction is Coulombian and the friction coefficient is
computed as (e.g., Spitzer 1962; Braginskii 1965)

nqnququqz/e4 InA 4y
- 62T fémqqr(kBTq/mq + kBTq//mq/)y2 ’
where mgy, = mymy /(m, + my) is the reduced mass, Z, and
Z, are the signed charged number of the particles, e is the
electron charge, ¢ is the permittivity of free space, and InA

is the so-called Coulomb’s logarithm given by (e.g.,
Spitzer 1962; Vranjes & Krstic 2013)

!

“

Qgq

127r63/2k§/2(Tq + 1)
|Z,Zy| €

X 5 5 . %)
Zq ngTy + Zq/nquq

InA = lnl

On the other hand, when the collisions involve at least one
neutral species, the scattering of particles is produced mainly
by direct impacts. Then, the friction coefficient in the
approximation of the small velocity drift can be cast as (e.g.,
Braginskii 1965; Chapman & Cowling 1970; Draine 1986)

4 8(ksTs  kpTly
Qs = NNy Mg —0pg' || — =
3 m\ mg mg

(6)

where ogs is the collision cross-section, which can be taken
independent of temperature for plasma conditions in the lower
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solar atmosphere (see, e.g., Dickinson et al. 1999; Lewkow
et al. 2012; Vranjes & Krstic 2013). The cross-sections
considered take into account charge-exchange effects. We note
that, in all cases, the friction coefficients are symmetric if the
two species that collide are interchanged. The total friction
coefficient of a species (§ with all other species is

ag =) ag. )

B'=p
In turn, we denote by v the collision frequency of species 3
with species 5’ and is computed from the friction coefficient as

Qpg
Vgg = ——. ®)
Ps

Unlike the friction coefficient, the collision frequency has a
more obvious physical meaning. The collision frequency
vgp measures, statistically, the number of encounters or
interactions of one particle of species 3 with particles of
species 3 per unit time. The collision frequency is generally
not symmetric if the colliding species are interchanged,
because of the different densities and effective cross-sections
that the two colliding species may have. The total collision
frequency of species @ with all the other species is com-
puted as
s

vy =Y vy = —. ©)
3= Ps

For the purpose of investigating Alfvén waves, all ions,
namely protons (p), singly ionized helium (He II), and doubly
ionized helium (He III), are assumed to form a single species,
which we generally call “ions.” We shall use the subscript “i”
to refer to this ionic species. We define the total density, p;, and

center-of-mass velocity, v;, of the ions as

Pi = Ppt+ PHen t PHemr (10)

o Pp¥p + PHenVHeu T PHe mVHe
L Pi .
Furthermore, we assume that all ions are strongly coupled, so

that their individual velocity drifts are much smaller than their
center-of-mass velocity. Therefore, we can approximate

)

Vp X VHeu =~ VHemr ~ Vi. (12)

The assumption of ignoring the ion—ion drifts is justified as
long as the frequency of the Alfvén waves remains much lower
than the cyclotron frequencies of the individual ions (see, e.g.,
Martinez-Gomez et al. 2016). The cyclotron frequencies are
about 10°rad s~ in the magnetized lower solar atmosphere. In
addition, we define the global friction coefficient of the ions by
adding the individual coefficients as

Qi = Qps + OHenp + OHems, (13)

with 3 = e, H, and He 1. In turn, the global collision frequency
of the ions with species [ is simply vi3 = ig/p;, so that the
total collision frequency of the ions is

Vi = Z Vig- (14)

B=i

Soler et al.

Velocity drifts between electrically charged species induce
electric currents, J, according to the expression

J= eZanqvq, (15)

q

where g = e, p, HeIl, and He 1. Consequently, these currents
are diffused by the collisions of electrons with all other species,
i.e., resistivity or magnetic diffusion. In terms of the electron
total friction coefficient, the coefficient of resistivity, 7, is given
by (see, e.g., Khomenko & Collados 2012)

Qe

s (16)
where p is the magnetic permeability. Figure 1(c) displays the
variation of 7 with height according to the FAL93-C model. In a
partially ionized plasma, as in the chromosphere, electron—neutral
collisions greatly enhance the value of 7. To highlight this effect,
we have overplotted in Figure 1(c) the value of 7 obtained when
electron—neutral collisions are ignored. We see that neutrals play a

predominant role in setting the value of 7 in the low chromosphere.

2.3. Magnetic Flux Tube Model

The magnetic field configuration used here is made up of a
vertical magnetic flux tube that is embedded in the background
atmosphere and expands with height over the photosphere. We
use cylindrical coordinates, namely r, ¢, and z, which denote
the radial, azimuthal, and vertical coordinates, respectively. We
assume that the flux tube is untwisted and azimuthally
symmetric, so that the magnetic field is invariant in ¢, and
there is no component in that direction. Thus, the magnetic
field is expressed as

B = B,(r, 2)é; + B.(r, 2)é, a7

where B, (r, z) and B,(r, z) are the radial and longitudinal
(vertical) components. We assume that this flux tube is in
equilibrium, so that the background magnetic field does not
evolve with time. Unlike in Soler et al. (2017), we do not
restrict ourselves to the thin flux tube approximation, and thus
allow the magnetic tube to have an arbitrary expansion factor.

A non-potential magnetic field generates electric currents
through Ampere’s Law, namely

J= lV X B. (18)
I

In turn, these currents induce velocity drifts between
electrically charged species according to Equation (15), so
that the magnetic field is eventually diffused by resistivity
because of electron collisions. The diffusion of non-potential
magnetic fields in the partially ionized chromosphere has been
explored by, e.g., Arber et al. (2009), Khomenko & Collados
(2012), and Shelyag et al. (2016). In our model, the
consideration of a non-potential background magnetic field is
incompatible with the assumption that the background plasma
is static and that the magnetic tube itself is in equilibrium.
Therefore, in order to satisfy both conditions, we consider a
potential, current-free magnetic field, so that J = 0 in the
background. We note that a potential magnetic field is also
force-free because J x B = 0. A potential flux tube was also



THE ASTROPHYSICAL JOURNAL, 871:3 (19pp), 2019 January 20

e | 4000
E 3000
1 2000§§
1 | £
' R
H i ()

1 i 1000 T

1000 1000

Soler et al.

(b) 4000
B (G)
1000
3000+
800
::t;, 600
= 2000+ [ |
>
2
400
j [ | 200
0 L L

0 25 500 750 1000
Radial direction (km)

Figure 2. (a) Visualization in 3D of the expanding magnetic flux tube embedded in the stratified lower atmosphere. The red and blue lines outline some selected
magnetic field lines that cross the photosphere at r = 0.4R = 40 km and » = 0.7R = 70 km, respectively. (b) Representation of the magnetic field lines in the rz-
plane. The color gradient denotes the variation of the magnetic field strength along the field lines from the photospheric field By, to the coronal field B.. In this
example, we have considered By, = 1 kG and By, = 10 G. For visualization purposes, the horizontal and vertical axes are not to scale.

used by Brady & Arber (2016), although in Cartesian
coordinates. Hence, we express the background magnetic field
as

B = —Vo(r, 2), 19)

where ¢(r, z) is the magnetic scalar potential. The magnetic
field components are explicitly related to the potential as

B o) =~ 20D,

a >
B.(ro = - 220D (o)
0z
Because of the divergence-free condition of the magnetic field,
V - B = 0, the magnetic potential satisfies Laplace’s equation,
namely

V2¢(r, z) = 0. 21)

The potential magnetic flux tube is constructed by
numerically solving Equation (21) in the numerical domain
that extends, vertically, from the base of the photosphere
(z = zpn) to the low corona (z = z.) and, horizontally, from the
center of the tube (r=0) to a prescribed maximum value of
the radial coordinate (r = rp,y). In this context, r,, represents
the radial distance at which the considered flux tube merges
neighboring tubes of the network. In addition, we need to
consider appropriate boundary conditions. At the lower photo-
spheric boundary, we follow Brady & Arber (2016) and
prescribe the potential to represent a flux patch of size R,
namely

1’2
= o eXp(—ﬁ), at  z= Zp, (22)

where R = 100km is a measure of the flux tube radius at the
photosphere and ¢ is a constant that depends on the value of
the magnetic field strength imposed at the center of the
photospheric patch, namely By, At the upper coronal
boundary, we assume a purely vertical and uniform field of
strength B, = 10 G in all cases, so that the upper boundary
condition for the potential is

99
0z

Regarding the boundary conditions at » = 0 and r = rp,x, We
assume B, = 0, so that the condition for the potential is

% _,
or

In all cases, we take ry.x = 10R = 1000 km.

Figure 2 displays an example of the potential magnetic flux
tube model constructed with the above-mentioned method in
the case where the field strength in the photospheric patch is
By, = 1kG. We note that the strong expansion of the field
lines occurs at heights below 1000 km. The field lines are
already nearly vertical when the flux tube crosses the transition
region around 2000 km above the photosphere.

= —B., at 7= Ze. (23)

at r=0 and r = rpax. 24)

3. Mathematical Formalism
3.1. Basic Governing Equations

For the purpose of investigating Alfvén waves, the different
species in the plasma are treated as separate fluids that interact
by means of particle collisions and electromagnetic fields. All
ions are considered together as part of a single ionic fluid (i),
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while neutral hydrogen (H) and neutral helium (Hel) are
treated as two separate neutral fluids with different velocities.

A special treatment is used in the case of electrons (e). The
inertia of electrons is ignored owing to their small mass, which
allows us to obtain the generalized Ohm’s law and the
corresponding magnetic induction equation from the electron
momentum equation. This process can be found in, e.g.,
Zaqarashvili et al. (2011), Khomenko et al. (2014), and
Martinez-Gémez et al. (2017), among others, and is not
repeated here for the sake of simplicity. Also, because of the
negligible electron inertia, we assume that the inertia of the
much heavier ions and neutrals is not modified by electron—ion
and electron—neutral collisions. However, those collisions have
a very important effect on the dynamics of the lighter electrons.
Electron collisions cause the diffusion of currents, which is
mathematically represented by the resistivity or Ohm’s
diffusion term in the magnetic induction equation (see, e.g.,
Khomenko & Collados 2012; Khomenko et al. 2014).

Summarizing, the plasma is composed of three distinct
fluids: one ionic fluid and two neutral fluids, while the
dynamics of electrons is indirectly included through the
magnetic induction equation. Hence, the basic equations in
the present three-fluid model are the momentum, continuity,
and energy equations for each fluid, and the magnetic induction
equation. The full form of these multifluid equations can be
checked in, e.g., Zaqarashvili et al. (2011), Khomenko et al.
(2014), Martinez-Gémez et al. (2017), and Ballester et al.
(2018).

Now, we give the basic equations that are used to study the
propagation of Alfvén waves. Following Soler et al. (2017), we
assume that the Alfvén waves produce small perturbations over
the static background that are well described by the linear
regime of the equations. Hence, the governing equations are
linearized: each physical variable is expressed as a background
value plus a perturbation, and only linear terms in the
perturbations are retained. The resulting relevant equations
for Alfvén waves only involve the perturbations of the velocity
of the three fluids, l{é, with 3 =1, H, and Hel, and the
perturbation of the magnetic field, B’. These linearized
governing equations for Alfvén waves are

!
piai:,]’ X B — aiu(v] — v))
ot
— it — Vi), (25)
8"}/1 / ’
= —aygilvyg — Vi
PH ot Hi(vy )
— anne1 (Vi — Vi D (26)
o},
PHel aiel = *OéHen(Vp/Ie[ - Vi/)
- aHeIH(vI{leI - vlil)’ (27)
!
8 =V x v xB) —V x (unl")
ot
Vx(lJ’xB), (28)
en.

where J' = (V x B’)/u is the perturbation of the electric
current and the rest of the quantities have already been defined
before.
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Equation (25) is the linearized momentum equation of the
ionic fluid and includes the Lorentz force, J' x B, and the
frictional forces due to collisions as defined in Equation (2).
Equations (26) and (27) are the corresponding momentum
equations of neutrals and only include the frictional forces. Gas
pressure terms are not present in the linearized momentum
equations because Alfvén waves are incompressible and do not
produce pressure perturbations in the linear regime. In addition,
the gravity force is also absent from Equations (25)-(27)
because the magnetic flux tube is vertical and the Alfvén wave
motions are confined in horizontal planes perpendicular to the
direction of gravity.

Equation (28) is the magnetic induction equation and
formally includes Ohm’s diffusion (resistivity) and Hall’s term,
i.e., the second and third terms on the right-hand side,
respectively. However, in the present study, Hall’s term is
ignored. Pandey & Wardle (2008) and Martinez-Gémez et al.
(2017), among others, showed that in a partially ionized
plasma, Hall’s term becomes important for wave frequencies
larger than an effective cyclotron frequency called Hall’s
frequency, wy, given by

QP
wyg=——"-—,
1+ pn/pi

were p, = py + Pyer 1S the total neutral density and
Q, = e|B|/m,, is the proton cyclotron frequency. In the lower

(29)

chromosphere, 2, ~ 10°rads™" and p,/p, ~ 10°, so that
wy ~ 10rads™'. The largest wave frequency considered in
the present work is 300 mHz (~1.88 rad s~ 1), which is well
below wy. In addition, the results of Soler et al. (2015a) and
Arber et al. (2016) suggest that Hall’s term has a minor impact
on the damping of Alfvén waves and the associated heating
rates in the chromosphere. Hall’s term is ignored from here on.

3.2. Stationary State of Torsional Wave Propagation

We consider Alfvén waves of torsional type. Hence, we take
0/0p =0 and assume the velocity and magnetic field
perturbations to be strictly polarized in the azimuthal direction,
namely

v[, = vé#év, B = B;éw (30)
In addition, we consider the stationary state of wave propaga-
tion. Thus, we express the temporal dependence of perturbations
as exp (—iwt), where w is the angular frequency of the waves.
The prescribed temporal dependence implies that the driver that
excites the waves acts continuously and has been working for a
sufficiently long time, so that the waves have had time to
propagate and reflect along the whole domain and a stationary
pattern has been achieved. The same method was used in, e.g.,
Goodman (2011) and Soler et al. (2017), and it allows us to
drop the temporal dependence of the problem while retaining
the spatial dependence. At this stage, we do not need to specify
the form of the wave driver, although we later assume that it is
located at the photosphere. Detailed information about the
specific form of the wave driver used in the computations is
given in Section 4.1 when discussing the boundary conditions at
the photosphere.

Although the mathematical expressions given below are
written using the angular frequency, w (given in rad s '), when
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discussing the results we shall use the linear frequency, f (given
in Hz). Both are related by f = w/2m, so that the period of the
wave is simply 1/f.

An alternative approach would be performing time-depen-
dent simulations, which would provide the full temporal
dependence of the waves including any transients (see, e.g., Tu
& Song 2013; Arber et al. 2016; Brady & Arber 2016; Shelyag
et al. 2016). However, multifluid time-dependent simulations
are computationally much more expensive than the present
stationary-state method when very high spatial resolutions are
needed in the lower chromosphere (see Goodman 2011; Soler
et al. 2015b). At present, detailed parameter studies, such as the
ones performed here, are not practical with 2D or 3D time-
dependent simulations.

Thanks to the temporal dependence exp(—iwt), we can
combine Equations (26) and (27) to express the V{L , and Ve Lo

: /
in terms of v; , as

r _ wHi(W+ iVHe)) — VHHelVHeli / 3]
VH,p = . . i,00 31
(w + ivp) (W + WHeD) + VHHeIVHe 1H
/ iVHe1i(W + IVH) — VHe1HVH /
VHerp = Vi (32)

(w + ivp) (W + iVHe1) + VHHe1VHe 1H

In addition, from Equation (25), we can write v’yﬂ as a function
of B] as
v, = i1 1p. V(rBY), (33)
W HPefr T

with pes the effective plasma density felt by the Alfvén waves.
The effective density is a function of the wave frequency and is
given by

QCO
Peft = — Pi> (34)
w

where () is a complex quantity defined in Soler et al. (2017)
that has dimensions of frequency and contains w and all the
collision frequencies, namely

VinVHi(W + iVHe1) + IViHVHHe IV Heri
(w+ ivp) (W + iVHe1) + VHHe1VHe 1 H
ViHeVHe1i(W + IVH) + iViHeVHe 1HVHI
W + i) (W + iVhe) + VHHe1VHerH

Qeol = w + iv; +

(33)

The effective density takes into account that the inertia of the
plasma in response to the oscillations of the magnetic field
depends on the coupling degree between the different ionized
and neutral species. When the wave frequency is much higher
than the collision frequencies between species, (2., — w sO
that pesr — p;, meaning that high-frequency Alfvén waves only
perturb the ionic fluid while neutrals are left at rest. Conversely,
when the wave frequency is much lower than the collision
frequencies, Qco1 — wp/p;, so that per — p, meaning that low-
frequency Alfvén waves perturb the whole plasma, and all
species move as a single fluid. There is a continuous transition
when the wave frequency varies between both limits.
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Finally, we use Equation (33) in Equation (28) to get an
equation involving B,; alone, namely

iwB] + B - V[L : izB-V(rB;)]

W UPetr T

2p/ L, n aB’»/ﬁ _

+ n(V B, VZB’Q) + 92 0z 0. (36)
Equation (36) is our main equation and gives us the spatial
dependence of the torsional wave perturbations in the flux tube.
We recall that this equation is obtained for the case where
/9y = 0. Once the magnetic field perturbation is obtained by
solving Equation (36) along with the appropriate boundary
conditions, the ion velocity perturbation can be computed from
Equation (33).

3.3. Wave Energy Equation

The linearized equations (Equations (25)—(28)) can be
manipulated to obtain an equation describing the evolution of
the energy of the waves (see Walker 2005), namely

8—U+V~H:—H, (37)
ot
where U is the total (kinetic + magnetic) energy density, I7 is
the energy flux, and H is the loss of energy owing to
dissipation. These quantities are given by

1 1 1
U= > v/ >+ 5P Vil + = Prer Ve

2
+ Lpp, (38)
2p

II = l[(B . B’)vi’ — (vi' - BB] + nJ’ x B, 39)

n
H = Hopm, + Hpic. (40)

with

Honm, = pn |J'P = g IV x B'P, (41)

Hfric. = QiH Ivi/ - vI{IIZ + QiHel Ivi/ - Vlilell2
+ anHer v — Vie [ (42)

We note that, because of total energy conservation, the
energy dissipated from the waves must necessarily by
converted into internal energy of the plasma, so that H is the
heating rate associated with wave dissipation. The two
contributions to the heating rate are Ohmic heating, Hopn,.,
owing to the dissipation of currents, and frictional heating,
Hy;.., caused by velocity drifts between species. The role of
Honm, Was not considered by Soler et al. (2017) and may be
important in the lower chromosphere where 7 is large (see
again Figure 1(c)).

The expression of the energy flux, II, contains the term
nJ’ x B’, which is absent from the formula used by Soler et al.
(2017) because they considered n = 0. However, this addi-
tional term can be ignored throughout the entire atmosphere.
To show that, we introduce the quantities By and B, with
By < By, representing the characteristic values of the back-
ground magnetic field strength and its perturbation, respec-
tively; vy, representing the characteristic amplitude of the ion
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velocity perturbation; and g, representing the characteristic
wavelength. We define R,, = Agv,/n as the effective magnetic
Reynolds number associated with the waves. In the lower
chromosphere where Ohm’s diffusion is most efficient,
n e~ 10*m?s™! (see Figure 1(c)), and we can assume
vi ~ 1kms™' as an order-of-magnitude value of the velocity
amplitude according to observations (e.g., Jess et al. 2009;
Matsumoto & Shibata 2010). These values result in
R, ~ Ag/(10 m), which means that R,, is a large parameter
unless extremely short wavelengths are considered. Then, by
comparing the magnitudes of the two terms in Equation (39),
we find that their ratio is the product of two small quantities,
1/R,, and B;/By, namely
!/ !/
" x B ~ LB
(B - B))v/ — (v - B)B] R Bo

1

o
Therefore, we can safely ignore the term proportional to 7 in
the expression of the wave energy flux and use the same
expression as in Soler et al. (2017), namely

i,pP

II ~ l[(B -Byv — (v/ -B")B] = —lv/ B/B. (44)
1 1

3.4. Energy Propagation

Because of the dependence exp (—iwt), the energy flux, IT is
oscillatory in time. To avoid the oscillations and compute the
net contribution, we average IT in time over one full period of
the wave, 27/w. Then, the time-averaged energy flux, (IT), is
given by

(IT) = —i Re (v/ ,B/*)B, (45)
where * denotes the complex conjugate. The time-averaged
energy flux, (IT), informs us about the net energy propagated
by the Alfvén waves. However, as shown in Soler et al. (2017),
the perturbations in the flux tube are the result of the
superposition of waves propagating parallel and antiparallel
to the magnetic field direction. In the case of the vertical flux
tube, parallel/antiparallel propagation essentially corresponds
to upward/downward propagation. For the present study, it is
crucial to distinguish between both directions of propagation
and to separate the associated energy fluxes.

Inspired by the studies of Alfvénic turbulence, an adequate
method that enables to split the Alfvén wave perturbations into
the two possible directions of propagation involves the so-
called Elsasser variables (see, e.g., Biskamp 2008). Based on

the classic Elsidsser variables, we define the modified Elsidsser
variables for the multifluid case as

1

ZT = V', — —B,/, (46)
RN /T
Zi=vl + — B @7)

 HPett v

where Z! describes Alfvén waves propagating in the direction
of B (upward propagation), Z' describes Alfvén waves
propagating opposite to B (downward propagation), and pegr
is the effective density that was defined before (Equation (34)).
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We express v, and B in terms of Z" and Z!, and insert the
resulting formulae into the expression for the time-averaged
energy flux (Equation (45)). Then, we find that (IT) = (IT)! +
(IT), with

() = LS_F)ZTZT *B, (48)
<1‘_r>l = _lezi* B, (49)

N

where (IT) and (IT)' correspond to the time-averaged energy
fluxes associated with the upward propagating and downward
propagating Alfvén waves, respectively.

We are interested in the propagation of wave energy along
the wvertical direction. Therefore, to drop the other two
coordinates, r and ¢, we horizontally average the energy
fluxes at each height over an area extending from r = 0 to
F = Fmax, Namely

1 2m Tmax
(Ml = —— [ [ mdrdp.s0)

max

The horizontally averaged fluxes are functions of z alone and
can be used to quantify, at a certain height, the fractions of the
total wave energy that reflect and propagate at that height.

On the other hand, we define the reflection, R, and
transmission, 7, coefficients, which physically represent the
fractions of the driven wave energy that are reflected back to
the photosphere and are transmitted to the corona, respectively.
These coefficients of wave energy reflection and transmission
are intrinsic properties of the background model as a whole,
i.e., they are independent of z, but depend on the wave
frequency (see Soler et al. 2017). Assuming that the waves are
driven at the lower photospheric boundary, z = z,, and that
there are no incoming waves from the upper coronal boundary,
7z = Z., the incident, (II);,, reflected, (IT).¢, and transmitted,
(IT ), fluxes at those boundaries are

(I)ine = (ID)),,.
<H>ref = <H>zlw. : éz’ at

- e, at  z= Zpn, (51

7 = Zphs (52)
<H>tra = <H)£v ' éza at < = Zec- (53)

We note that only the z-components, i.e., the normal
components, of (IT)|! at the boundaries are needed. The
incident flux, (IT),, is imposed by the wave driver, while
the reflected, (II).f, and transmitted, (II),, fluxes depend on
the reflective properties of the background atmospheric model
and magnetic field and on the efficiency of the dissipation
mechanisms. Then, we compute the coefficients as

— <H>ref T = <H>tra .
(H>inc ' <H>inc

Furthermore, by invoking conservation of energy, we can
compute the fraction of the incident wave energy that is
deposited or absorbed in the plasma because of dissipation, A,
namely

(54)

A=1-R-T (55)

Obviously, the absorption is also frequency-dependent because
the efficiency of the dissipation mechanisms depends on w.
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3.5. Heating

As in the case of the energy flux, the wave heating rate, H, is
oscillatory in time. As before, to calculate the net heating, we
compute the time-averaged heating rate, (H), as

(H) = (H)onm. + (H)sic.. (56)

where (H)onm, and (H )gc, represent the Ohmic and frictional
contributions to the time-averaged heating and are given by

O(rB) O(rB'*
(Hyop = | L 20B2) 008
2ulr? or or
OB’ OB!*
v , (57)
0z 0z
1 aq [ 0 [
(H)fric. = —| cvim — A 4 ier -2
2 P p
+ QHHel | — : ]Vil,tpvil,gp*’ (58)
p
with
p = (w+ ivy) (W + iVHe1) + VHHe1VHe 1 H> (59)
q; = iwwHi(W + iVHe1) — VHHeIVHelis (60)
G = iVHe1i(W + IVH) — VHeHVH - (61)

Finally, as for the case of the energy flux, we define the
horizontally averaged heating rate as

1 27 Tinax
H)rdrdop, 62
nr2 »/(; j(; (H)rdrdp (62)

max

<H>av. =

which is a function of height alone.

4. Numerical Method for the Solution

The numerical scheme used to solve Equation (36) is
implemented in a Wolfram language code run on Mathematica
11.3. We take advantage of the fact that the azimuthal
direction, ¢, is ignorable for torsional waves. Thus,
Equation (36) only needs to be integrated along the radial, r,
and vertical, z, directions, while the solution is invariant in ¢.
We consider a 2D numerical domain where r € [0, . ] and
Z € [2Zph, 2c). The code numerically solves Equation (36) with
the function NDSolve, using finite elements for the spatial
discretization and considering appropriate boundary conditions
at the ends of the numerical box (see Section 4.1). In the code,
the resolution of the numerical mesh is nonuniform and is
chosen to make sure that the solution is sufficiently accurate in
physical terms (see Section 4.2). After prescribing a value for
the wave frequency, f, the output of the integration routine is
the spatial dependence of B; in the numerical domain.

The result of waves excited by a broadband driver is
constructed by varying f in a wide range and superposing the
perturbations obtained for individual frequencies within the
range. The superposition is done after assuming a spectral
weighting function, a prescribed value of the incoming energy
flux, and a random temporal phase at the photosphere. The
resulting total B; perturbation is used to compute all the other
wave variables, including the upward and downward energy
fluxes and the heating rate.
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4.1. Boundary Conditions

Here we specify the boundary conditions used in the
numerical code. The conditions at the lateral boundaries of
the domain, r = 0 and r = ry,y, are set as

B,; =0, at r=0 and r = rpax. (63)

The condition at r =0 results from the mathematical
requirement that Equation (36) should remain finite at the
center of the flux tube, while the condition at » = ry,, results
from the physical requirement that perturbations are confined
within the flux tube.

Concerning the condition at the lower photospheric
boundary, z = zp,, we assume that waves are driven just
below that boundary, and we can specify the form of the BY/
Hence, we take

B, = A(f)b(r), at  z = Zph, (64)

where A(f) is the spectral weighting function and b(r) is an
arbitrary function of r that represents a twisting of the field
lines at the photosphere. We assume that the perturbations at
the photosphere are essentially confined within the flux patch,
so that we take b(r) of the form

2
b(r) = rexpl—(RL/z) ] (65)

We have tested other forms for the function b(r), but no
significant differences in the results are obtained. Naturally, the
perturbations at the lower boundary are the superposition of
incident (upward propagating) and reflected (downward
propagating) waves. With the help of the modified Elsdsser
variables, we can appropriately separate the upward and
downward energy fluxes at the boundary regardless of the
assumed form of b(r).

Regarding the spectral weighting function, we follow, e.g.,
Tu & Song (2013) and Arber et al. (2016) and take A(f) in the
form of a power-law dependence as

(4)" it r<s

A(f) = Ao (66)

AL
(z)’lff”’

where f, is the peak frequency of the spectrum, ¢, and ey are
the low-frequency and high-frequency exponents, respectively,
and Ag is a constant that depends on the value of the injected
energy flux averaged over the entire photosphere. In the
computations, we use f, = 1.59 mHz and ey = —5 /6, while
we consider two cases for ¢, namely ¢, = 0 and ¢ = 5/6.
Thus, the spectrum consists of two regions: a low-frequency
region where the power is either flat (for ¢, = 0) or increases
(for ¢ =5/6) with frequency, and a high-frequency region
where the power decreases in a Kolmogorov-like fashion. As
discussed by Arber et al. (2016), there is no direct observational
evidence for such a driver spectrum for the waves, although the
observed spectrum of photospheric horizontal velocities suggests
a power-law dependence (see Matsumoto & Shibata 2010).
The choice of a Kolmogorov spectrum at high frequencies
is motivated by observational indications that photospheric
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motions are turbulent. Regarding the form of the spectrum at low
frequencies, recent computations by Van Kooten & Cranmer
(2017) suggest a rather flat spectrum for low frequencies, i.e.,
€, ~ 0, while Tu & Song (2013) and Arber et al. (2016)
proposed a low-frequency exponent of e = 5/6. These two
possible choices for ¢ are considered to determine if this
dependence has any impact on the results.

We consider that the photospheric driver contains a spectrum
of frequencies ranging from 0.1 to 300 mHz, which corre-
sponds to wave periods from 2.78 hr to 3.33 s. The continuous
spectrum is represented by 84 discrete frequencies with a
logarithmic spacing. Recent observations of chromospheric
torsional waves by Srivastava et al. (2017) reported frequencies
in the range 12-42 mHz, while Jess et al. (2009) previously
reported torsional waves in photospheric bright points with
lower frequencies between 1 and 8 mHz. Hence, the considered
frequency range covers well the observed frequencies and
extends the range to lower and higher values.

Regarding the injected energy flux at the photosphere,
observations, analytic estimations, and numerical simulations
indicate that the shaking (see, e.g., Spruit 1981; Choudhuri
et al. 1993; Huang et al. 1995) and/or the twisting (see, e.g.,
Shelyag et al. 2011, 2012; Wedemeyer-Bohm et al. 2012;
Morton et al. 2013) of the footpoints of the magnetic field lines
can efficiently generate incompressible transverse waves.
Calculations of the transverse wave energy flux generated by
horizontal photospheric motions show that the flux generated
within the flux tubes is ~10°ergem 2s™' (see, e.g.,
Spruit 1981; Ulmschneider 2000; Noble et al. 2003; Shelyag
et al. 2011). However, this driven flux needs to be averaged
over the entire photosphere to determine the constant A in the
spectral weighting function (Equation (66)), so that the
magnetic field filling factor has to be taken into account. Thus,
we write the horizontally averaged incoming flux at the
photosphere as (see Spruit 1981)

<H>inc =10° x F, at Z = Zph» (67)

given in ergem 2s”', where F is the photospheric filling
factor. In our model, the flux tube radius at the photosphere is
~100 km, while we assume that the flux tube merges with
neighboring tubes at a radial distance of ~1000 km. Hence, the
filling factor is F ~ 0.01 (see also Solanki 2000; Stenflo 2000).
Therefore, from Equation (67), we obtain an average injected
flux of 10" ergem %s !, which coincides with the photo-
spheric Alfvénic flux typically assumed in the recent literature
(e.g., De Pontieu et al. 2001; Goodman 2011; Tu & Song 2013;
Arber et al. 2016).

Finally, at the upper coronal boundary, z = z.,, we impose
the condition that there are no incoming waves from the corona
and that the upward propagating waves get through the upper
boundary without reflection. We note that the condition of no
reflection is strictly imposed at the upper boundary alone. The
waves are allowed to naturally reflect in their way from the
photosphere to the corona without any restriction. This upper
boundary condition imposes that (IT)} = 0 at z = z.. In terms
of B;, the condition at the upper boundary translates into

%B . V(rB;) = W [HPeft B;, at 7= Zc (68)
This last expression can be simplified by taking into account
that the plasma at the coronal boundary is fully ionized, i.e.,
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Pett = p;, and that the magnetic field is vertical and constant,

i.e., B = B.é,. Thus, the upper boundary condition simply

becomes a condition for the normal derivative of B;, namely
OB,  w
L
0z

B, at 7= Zc, (69)

VA,c

where va . = B.//1p; s the coronal Alfvén velocity.

We note that in Soler et al. (2017) the treatment of the
boundary conditions involved the use of ghost cells at the top
and bottom boundaries where the inward and outward waves
were analytically expressed in the form of plane waves. The
present treatment based on the decomposition between upward
and downward fluxes via the modified Elsdsser variables is
more general and does not require the use of ghost cells.
Nevertheless, the upper boundary condition obtained with the
present method turns out to be exactly the same as that used in
Soler et al. (2017). When the magnetic field is uniform at the
boundary, both methods provide the same conditions. How-
ever, the present approach provides a more accurate decom-
position between the incident and reflected waves at the lower
photospheric boundary, where the magnetic field is not
uniform.

4.2. Numerical Resolution

Here we address the issue of what numerical resolution is
needed to obtain physically meaningful solutions to
Equation (36). An insufficient numerical resolution would
result in a poor description of the spatial scales associated with
the waves, which would directly affect the computations of the
wave energy flux and heating rate. Therefore, we need to adjust
the spatial resolution to minimize numerical errors.

As a zeroth-order approximation, we can perform a local
analysis of Equation (36) by ignoring the spatial variations of
the background quantities. By doing so, we can locally derive a
characteristic spatial scale that plays the role of the effective
wavelength of the perturbations along the magnetic field
direction, namely

VA, eff
)\eff ~ P

(70)

where vp et = |B| / NI is the effective Alfvén velocity
computed with the effective density. To make sure that the
numerical solution of Equation (36) is sufficiently accurate, the
resolution of the numerical mesh should be a fraction of Ay
The numerical resolution becomes a practical problem for high
wave frequencies for which M. is very short in the lower
chromosphere. For the highest frequencies considered, the
mesh needs to be very fine as to resolve wavelengths as small
as 100 m, approximately. However, ). increases rapidly with
height because of the decrease of the density. Hence, the
required numerical resolution varies with height by several
orders of magnitude. Using a constant resolution results in long
execution times of the finite-element solver, so that a more
convenient spatially dependent resolution is used instead.

We have implemented a nonuniform mesh with a height-
dependent local resolution equal to Aeg/3, approximately.
Convergence tests have shown that this resolution is enough for
the solution to be sufficiently accurate and keeps the execution
time within reasonable bounds. The local resolution increases
with height, but we have imposed that the resolution saturates
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Figure 3. Visualization in 3D of the magnetic field and velocity perturbations
associated with the torsional Alfvén waves excited by a photospheric
broadband driver. The red and blue lines outline some selected magnetic field
lines that cross the photosphere at r = 0.4R = 40 km and r = 0.7R = 70 km,
respectively. The arrows correspond to the ion velocity field at three horizontal
planes located 1000, 2500, and 4000 km above the photosphere. The color and
length of the arrows translate into the following speed values: short dark green
arrows for small velocities (<5 km s~ '), medium bright green arrows for
moderate velocities (~10-15kms™'), and long yellow arrows for large
velocities (=20 km s71). Results with Bph = 1 kG and ¢, = 5/6.

to 10km at the height where that particular value is attained.
Then, from that height up to the coronal boundary, the mesh is
uniform with a constant resolution of 10km. We note that
10 km is much smaller than the actual resolution required to
resolve the wavelengths in the coronal part of the domain. The
reason for using a finer mesh is that it provides more accurate
values of the spatial derivatives of B; in the coronal part of the
domain, which is essential for the computation of the velocity
perturbation and determination of the transmission coefficient
at the upper boundary.

5. Analysis of Results

Here we show and discuss the results of the numerical
computations for the case of a photospheric field strength of
Bpn = 1kG and a low-frequency exponent of ¢, = 5/6. Unless
otherwise stated, these parameters are used hereafter.

5.1. Magnetic Field and Velocity Perturbations

To start with, we display the magnetic field and velocity
perturbations excited by the broadband driver. Figure 3 shows a
3D view of the perturbations in the flux tube. This figure can be
compared with Figure 2(a), which corresponds to the
undisturbed flux tube. We have selected some magnetic field
lines (the same as those plotted in Figure 2(a)) and have
computed their deformations because of the passing of the
torsional Alfvén waves. The field lines twist is large at low
heights because the torsional wave amplitude is largest near the
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photosphere and decreases with height. The field lines remain
practically undisturbed, i.e., straight, in the coronal part of the
model, suggesting that most of the wave power is not able to
reach those heights. Later, we shall confirm this initial thought.

In Figure 3 we also represent the ion velocity perturbation,
vif o at three horizontal planes located 1000, 2500, and 4000 km
above the photosphere. It is clear that at those horizontal
planes, the plasma motions are torsional, i.e., polarized in the
azimuthal direction. Contrary to the magnetic field perturba-
tion, the amplitude of the velocity perturbation increases with
height, and the largest velocities are found in the coronal part.

Since the torsional perturbations are invariant in the -
direction, a more illustrative way to show their shape is to
remove the azimuthal dependence and plot the perturbations in
the rz-plane. Figure 4 displays surface plots of the magnetic
field perturbation, B’, the ion velocity perturbation, vif o the
ion—neutral drift, v/, — v, ,, and the modulus of the current
density perturbation, |J’|. We have defined v, , as the center-of-
mass velocity perturbation of the neutrals, which is computed
as

!/ !
r PHVH,p + PHe1VHe ¢

Voo 71
Pu Tt Phes

In turn, Figures 5-8 show some selected vertical and horizontal

cuts of those perturbations. The following discussion is based

on the results displayed in these figures.

The amplitude of the magnetic field perturbation at the
photospheric level is ~200 G, which is a relatively small
fraction of the background photospheric field strength in this
case, namely 1 kG. As Figure 3 suggested, now we clearly see
that the magnetic field perturbation is essentially confined to
low heights in the chromosphere, and its amplitude decreases
rapidly with height (see Figure 5(a)), while the opposite
behavior is found in the case of the ion velocity perturbation
(see Figure 6(a)). Essentially, this is the same result as that
found in the 1.5D case of Soler et al. (2017, see their Figure 3),
although in the present 2.5D case, the decrease of B; with
height seems to be faster, suggesting stronger damping. This
fact will be confirmed later.

The amplitude of the ion velocity perturbation is
~1-2kms~" at the photosphere. The photospheric torsional
velocities obtained here are similar to the velocity amplitudes
of the torsional Alfvén waves in a bright point observed by Jess
et al. (2009) with the Swedish Solar Telescope/solar optical
universal polarimeter (~2.6kms ') and are also compatible
with the quiet-Sun photospheric horizontal velocities observed
by Matsumoto & Shibata (2010) with Hinode/SOT
(~1kms™"). The obtained velocity amplitudes in the chromo-
sphere (<10kms ') are of the same order as the chromo-
spheric torsional motions reported by De Pontieu et al. (2014)
with IRIS (10-30kms™"). In our computations, the velocity
amplitude increases to ~20-40km s ' when transition region
and coronal heights are reached. These amplitudes agree well
with the amplitudes of the outward-propagating Alfvénic
waves observed at the transition region by MclIntosh et al.
(2011) with the Solar Dynamics Observatory/AIA
(~20kms ™), although we note that the observations of
Mclntosh et al. (2011) could be better interpreted as Alfvénic
kink waves.

We note, however, that these amplitudes depend on the value
of the energy flux injected by the photospheric driver, so that



THE ASTROPHYSICAL JOURNAL, 871:3 (19pp), 2019 January 20 Soler et al.

(b)

(d)

11 (Alm?)

10

0

. . . . ’ . . . ’ . . ’ ’
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the current density perturbation, |J'|. Results with B, = 1 kG and ¢, = 5/6. Only the real part of the perturbations is plotted. Note that the ion—neutral drift is only
plotted up to the transition region where the plasma gets fully ionized.
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Figure 5. Magnetic field perturbation, Bé. (a) Vertical cuts at r = 50 km, r = 100 km, and r = 500 km from the tube axis. (b) Horizontal cuts at z = 0 km,
z = 100 km, and z = 500 km above the photosphere. Results with By, = 1kG and ¢ = 5/6. Only the real part of the perturbation is plotted.

increasing/decreasing the incoming flux would result in larger/ to the very large density, and negligible drifts are obtained.
smaller amplitudes. Although at those low heights the plasma is very weakly
ionized, neutrals are so tight to ions that all species move
essentially as a single fluid following the magnetic field

5.2. lon—Neutral Drift perturbations. However, the ion—neutral coupling becomes

Interestingly, the ion—neutral drift, Vit o — vr:,go’ displays a weaker as height increases. There is a narrow layer, centered
rather remarkable behavior with height (see Figure 7). We around 500 km above the photosphere, where the ion—neutral
remind readers that the ion—neutral drift is a measure of the drift suddenly increases to values of the order of ~2-3ms™'.
strength of the coupling between ions and neutrals. Close to In that chromospheric layer, the ion-neutral drift is
the photosphere, ions and neutrals are strongly coupled, due sufficiently large to produce an appreciable increase of the
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Bpn = 1 kG and ¢ = 5/6. Only the real part of the perturbation is plotted.
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Figure 8. Modulus of the current density perturbation, |J/|. (a) Vertical cuts at r = 50 km, r = 100 km, and r = 500 km from the tube axis. (b) Horizontal cuts at
z = —100 km, z = 100 km, z = 500 km, and z = 1000 km above the photosphere. Results with By = 1kG and ¢, = 5 /6.

frictional heating (see Section 5.6). Then, as height keeps
increasing, the ion—neutral drift decreases again until the
transition region is reached at about 2200 km above the
photosphere. The plasma gets fully ionized at the transition
region, so that the abundance of neutrals decreases drama-
tically at that height. To be precise, it is just below the
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transition region that the ion—neutral drift takes its largest
amplitudes of ~10 ms~'. We shall see in Section 5.6 that the
height-dependent behavior of the ion—neutral drift consis-
tently explains the efficiency of the frictional heating in the
chromosphere. The larger the ion—neutral drifts, the larger the
heating rates.
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5.3. Phase Mixing and Enhanced Magnetic Diffusion

The plots corresponding to the current density perturbation
(Figure 8) show that the current is mainly localized in the
photosphere and lower chromosphere and decreases rapidly
with height. In practice, the current density is completely
damped for heights larger than 1500 km, approximately. The
reason for this strong damping of the current is Ohm’s
magnetic diffusion. Figure 8(b), which displays some hor-
izontals cuts of the current density at various heights, provides
evidence that magnetic diffusion is at work. As height
increases, the amplitude of the current decreases and,
concurrently, the current spreads over a larger area across the
flux tube.

The horizontal cuts of the magnetic field and ion velocity
perturbations (see Figures 5(b) and 6(b)) reveal another
important feature that directly affects the efficiency of Ohm’s
diffusion. These plots show that the perturbations develop
small scales across the magnetic flux tube, especially at low
heights in the chromosphere. This is especially evident in the
case of the ion velocity perturbations. We interpret this shear in
the perturbations as clear evidence of the mechanism of phase
mixing.

Phase mixing is an inherent process of Alfvén waves
propagating in a structure with a gradient of the Alfvén velocity
across the magnetic field direction (see, e.g., Heyvaerts &
Priest 1983; Nocera et al. 1984). In our model, although the
background density is constant across the tube, the magnetic
field expands horizontally so that its strength depends on the
radial coordinate. This results in a radially varying Alfvén
velocity. Because of the spatially dependent Alfvén velocity,
waves propagating on adjacent field lines get out of phase as
height increases, producing a shear in the velocity and
magnetic field perturbations across the magnetic field. In turn,
this magnetic shear locally generates currents that enhance the
efficiency of Ohm’s diffusion, giving rise to a stronger
damping of the waves.

It has been shown, both analytically and numerically (see,
e.g., Ruderman et al. 1998; De Moortel et al. 2000; Smith et al.
2007; Ruderman & Petrukhin 2017; Petrukhin et al. 2018), that
divergence of the magnetic field lines enhances the efficiency
of phase mixing, whereas gravitational stratification diminishes
its effect compared to the case with no stratification. In our
model, magnetic field lines heavily expand (i.e., they diverge)
at low heights in the chromosphere. It is precisely at those low
heights that phase mixing and magnetic diffusion are greatly
enhanced, giving rise to strong wave damping. Conversely, as
height increases, the field lines become nearly vertical, while
density keeps decreasing due to stratification. Then, at large
heights, phase mixing becomes less efficient because the
dominant effect is density stratification. In fact, it can be seen in
the 2D plot of the ion velocity perturbation (Figure 4(b)) that
the generation of shear and small scales in the radial direction
takes place at low heights predominantly. Then, as height
increases, the radial structure of the perturbations remains
practically unmodified in the upper part of the domain.
Therefore, our results agree well with the behavior of Alfvén
waves propagating in a magnetically divergent and gravita-
tionally stratified medium explored in previous works in the
literature (see, e.g., Smith et al. 2007).

The role of Ohm’s diffusion, enhanced via phase mixing,
explains why in the present results the damping of the
perturbations appears to be stronger than in Soler et al. (2017),
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where Ohm’s diffusion was ignored. Phase mixing could not
happen also in the case of Soler et al. (2017) because their model
was 1.5D, and the dependence across the magnetic field was not
explicitly solved.

5.4. Energy Fluxes

Here we turn to the study of the wave energy flux.
Figure 9(a) displays the horizontally averaged upward, down-
ward, and net wave energy fluxes as functions of height above
the photosphere. We see that the net flux, i.e., the actual energy
that propagates upwards, decreases with height by several
orders of magnitude. The net flux that is able to reach the
corona is ~1.5 x 10°ergem *s~ ', which corresponds to
about 1% of the injected flux at the photosphere. Two different
mechanisms are behind this dramatic decrease of the energy
flux with height, namely reflection and dissipation. Figure 9(b)
helps us to understand how the two processes oppose upward
energy transmission.

Figure 9(b) shows the horizontally averaged incoming
(injected) and reflected fluxes at the photospheric boundary
and the transmitted flux at the coronal boundary as functions of
the frequency. For frequencies in the lower part of the
spectrum, i.e., for f < f;,, the reflected flux roughly equals the
incoming flux, meaning that the energy stored in those low
frequencies returns back to the photosphere via reflection. The
comparison of the height-dependent upward and downward
fluxes plotted in Figure 9(a) reveals that most of the reflection
takes place in the middle and upper chromosphere, between
1000 km above the photosphere and the transition region. In the
lower chromosphere, reflection is less important, as evidenced
by the fact that the upward flux is much larger than the
downward flux, while in the coronal part of the domain
reflection is virtually zero.

Returning to Figure 9(b), we see that as the frequency
increases, the reflected flux decreases. In turn, the transmitted
flux first increases, until it reaches a maximum and eventually
decreases again. The initial increase of the transmitted flux is
because the wavelengths become shorter and shorter as the
frequency increases. As explained in Soler et al. (2017), when
the wavelengths become comparable to or smaller than the
gravitational scale height, the waves can propagate with less
and less reflection (see also, e.g., Musielak & Moore 1995). In
an ideal, dissipationless medium, the transmitted flux would
monotonically increase with the frequency. However, the
chromosphere is a dissipative medium, and dissipation
becomes relevant for high frequencies. Dissipation is very
efficient when the frequency is in the upper part of the
spectrum, i.e., for f 2 f,,, and the damping of the waves reduces
the fraction of energy that reaches the corona. This explains the
presence of a maximum in the transmitted flux and why it later
decreases rapidly and is effectively zero for the highest
frequencies in the spectrum. In contrast to reflection, dissipa-
tion predominantly works in the lower chromosphere, where
Ohm’s diffusion is most efficient.

Another feature seen in Figure 9(a) is that the upward and
net fluxes first increase slightly with height in the very low
chromosphere, until ~200 km above the photosphere, before
they start to decrease. The reason for this counterintuitive
behavior is that the fluxes plotted in Figure 9(a) are horizontally
averaged. We recall that the average injected flux at the
photosphere is 10" ergcm >s~ ' but, because the photospheric
filling factor is very small, the actual flux within the flux tube is
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Figure 9. (a) Horizontally averaged upward, downward, and net wave energy fluxes as functions of height above the photosphere. (b) Horizontally averaged incident
and reflected fluxes at the photospheric boundary and transmitted flux at the coronal boundary as functions of the wave frequency. (c) Coefficients of wave energy
reflectivity, transmissivity, and absorption as functions of the wave frequency. (d) Horizontally averaged Ohmic, frictional, and total wave heating rates as functions of
height above the photosphere. Results with By, = 1kG and for the cases with ¢, = 5/6 and ¢ = 0. The peak frequency of the incoming flux is f, = 1.59 mHz.

larger, namely ~10° erg cm s~ In the first 200 km above the
photosphere, the upward flux within the flux tube remains
roughly constant because the accumulated effect of reflection
and dissipation is not significant yet. However, the filling factor
becomes larger because of the flux tube expansion. As a
consequence of this, the horizontally averaged flux increases
until reflection and dissipation are efficient enough to counter-
balance the increase of the filling factor with height.

Although only a small fraction of the injected energy at the
photosphere is transported to the corona, the transmitted energy
may still be significant for the energy balance in the coronal
plasma. Withbroe & Noyes (1977) indicated that the total
energy loss in the quiet-Sun corona is ~3 x 10°ergcm *s ™',
which is only twice the value of the Alfvénic energy flux
obtained here.

5.5. Reflectivity, Transmissivity, and Absorption

In order to compare the present 2.5D results with the 1.5D
results of Soler et al. (2017), we plot in Figure 9(c) the
coefficients of the wave energy reflectivity, transmissivity, and
absorption as functions of the wave frequency. These
coefficients are computed by comparing the average energy
fluxes at the upper and bottom boundaries of the domain (see
Section 3.4). As before, we consider the results with
By, = 1kG, but a detailed study of the dependence of the
transmission coefficient on the photospheric field strength is
given later in Section 6. Figure 9(c) can be compared with
Figure 4 of Soler et al. (2017).
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While the reflectivity behaves similarly to that in Soler et al.
(2017), i.e., the reflectivity decreases as the frequency increases,
the present results are characterized by a much larger absorption.
Here, absorption starts to dominate for frequencies much shorter
than those in Soler et al. (2017), so that wave energy propagation
is first dominated by reflection (for low frequencies) and later by
absorption (for intermediate and high frequencies). Transmission
is always residual. For the considered parameters, the maximum
value of the transmissivity is ~0.03 for f ~ 5 mHz. As opposed to
the results of Soler et al. (2017), here there is no frequency range
for which transmissivity is the largest coefficient. As discussed
before, the reason for this important discrepancy is the effect of
Ohm’s diffusion, which is greatly enhanced by phase mixing.
Such a relevant ingredient is absent from the computations of
Soler et al. (2017). This points out the importance of considering
appropriately all of the relevant dissipation mechanisms that are at
work in the chromosphere.

5.6. Heating Rate

The injected wave energy that is neither reflected back to the
photosphere nor transmitted to the corona is dissipated in the
chromosphere. The dissipated wave energy acts as a source of
heating for the plasma. Figure 9(d) shows the horizontally
averaged heating rate as a function of height. In that figure, we
display the total heating rate as well as the heating rates
associated with Ohmic diffusion alone and ion—neutral friction
alone. We obtain that Ohmic heating dominates throughout the
chromosphere except at a relatively narrow layer just below the
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transition region, where frictional heating is more important.
The location of this layer dominated by frictional heating is
consistent with the occurrence of the maximum values of the
ion—neutral drift (see Figure 7(a)). In turn, the largest values of
the Ohmic heating rate are found at low heights where the
current density perturbation is largest (see Figure 8(a)).

The result that Ohmic diffusion is the predominant heating
mechanism even at large heights in the chromosphere somehow
contradicts the estimations of its efficiency based on 1.5D
models, which predicted that the importance of Ohmic
diffusion would be confined to low heights (see Soler et al.
2015b). In this regard, the heating rates found here at low and
medium heights are somewhat larger than those obtained in the
1.5D numerical simulations of Arber et al. (2016, see their
Figure 6). The probable reason for this difference is that
damping due to Ohmic diffusion is greatly enhanced by phase
mixing in our 2.5D computations compared to the less efficient
damping found in 1.5D results. In fact, Figure 6 of Arber et al.
(2016) shows that, in their case, Ohmic heating is only
dominant at heights below ~500 km, while here this dissipa-
tion mechanism remains the predominant one up to ~1500 km.
Conversely, the frictional heating rates obtained in the present
2.5D model are similar to those computed in the 1.5D case, as
can be seen by comparing Figure 9(d) with Figure 9 of Soler
et al. (2017).

To determine whether the dissipated wave energy can be
important for the plasma energy balance, the computed heating
rate needs to be compared with the rate of energy loss due to
radiation. Classic estimations of chromospheric radiative losses
(see Withbroe & Noyes 1977) are 10" ergcm > s~ ' in the low
chromosphere and 107>~10 2 ergem > s~! in the middle and
high chromosphere. The heating rates obtained here are
compatible with those energy requirements, and even larger
values than those required are obtained in the lower chromo-
sphere. Dissipation of Alfvén waves, predominantly by Ohmic
diffusion, is very efficient in the lower chromosphere, which
results in large heating rates.

5.7. Results with ¢, =0

Up to now, we have shown results obtained when the low-
frequency exponent in the spectral weighting function is
e = 5/6. Here we discuss how the results are modified when
we consider ¢ = 0. In Figure 9, we have overplotted the
results obtained for ¢, = 0.

The overall behavior of the upward, downward, and net
fluxes is the same as for ¢ = 5/6 (see Figure 9(a)), but now
smaller fluxes are obtained. In this case, the flux transmitted to
the corona is ~6 x 10*ergem 2s™', about half the value
obtained when e = 5/6. Although the injected flux at the
photosphere is the same for both values of ¢, a smaller energy
transmission to the corona is obtained when ¢ = 0. The reason
for this result is that a larger fraction of the incoming flux is
stored in low frequencies when ¢ = 0, as can be seen in
Figure 9(b). Since those low frequencies are mostly reflected
back to the photosphere, the total energy flux that is able to
reach the corona is lower when ¢, = 0.

Regarding the coefficients of energy transmission, reflection,
and absorption (Figure 9(c)), we recall that these coefficients
are intrinsic properties of the background, but are independent
of the value of the injected flux and the form of the spectral
weighting function. Hence, the coefficients are independent of
the value of ;..
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Concerning the heating rates, again the overall behavior for
e = 0 is the same as that for ¢, = 5/6. In Figure 9(d), we
have also overplotted the results with ¢, = 0. As in the case of
the energy flux, smaller values of the heating rate are obtained
for ¢, = 0, but the differences are not significant. In both cases,
the heating rates remain within the same order of magnitude.
The reason is the same as before: a larger fraction of the
injected energy is reflected back to the photosphere when
€. = 0, leaving less energy to be dissipated in the chromo-
sphere. However, as heating is mainly caused by the dissipation
of high frequencies, here the impact of the value of ¢ is not
very important.

In summary, we conclude that the form of the spectral
weighting function at low frequencies, and thus the amount of
energy that is injected at those low frequencies, has some
impact on the energy transmission to the corona because the
energy of those low frequencies is mostly reflected. Con-
versely, the low-frequency exponent has a minor effect on the
chromospheric heating rates, because heating is mainly caused
by high frequencies.

6. Empirical Fits of the Transmissivity

As a practical application, we include some empirical fits of
the wave energy transmissivity that could be useful for coronal
models. The results discussed so far were obtained for the case
where the photospheric field strength is 1kG. It is also
interesting to generalize our results to other values of the
photospheric field strength.

Figure 10(a) shows the coefficient of wave energy
transmissivity as a function of f (in logarithmic scale) for four
different values of By, namely 100 G, 500 G, 1 kG, and 2kG.
In all cases, the coronal field strength is 10 G. We find that the
maximum of the transmissivity grows and is shifted toward
higher frequencies as By, increases. The overall behavior of the
transmissivity growing when the photospheric field strength
increases agrees with the results obtained in Soler et al. (2017)
for the 1.5D case. However, even in the case with the strongest
photospheric field strength, the injected wave energy that is
transmitted to the corona is a very small fraction. Hence,
despite the impact of the photospheric field strength on the
shape and amplitude of the transmissivity, the rest of the results
and the main conclusions remain qualitatively similar to those
discussed in Section 5 for the case of By, = 1kG.

By visual inspection of Figure 10(a), we notice that the
dependence of the transmissivity on f can be well approximated
analytically by a skewed log-normal distribution, namely

1 exp| — (logyf — H)z
N 2mo? 202

X [1 + erf(%—k)gmi_ ,u)]’

where erf is the error function, while ag, u, o, and « are the
amplitude, location, scale, and shape parameters, respectively.
We have overplotted in Figure 10(a) the best fits obtained by
using the analytic formula of Equation (72) and adjusting the
values of the parameters aog, u, o, and a. A very good
agreement is found with the numerical results. The R*
coefficients of these fits for By, = 100G, 500G, 1kG, and
2kG are 0.995953, 0.996036, 0.998229, and 0.998082,
respectively.

1(f) = ao

(72)
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Figure 10. (a) Alfvén wave energy transmissivity as a function of log,, f for B, = 100 G, 500 G, 1 kG, and 2 kG. The points are the numerical results, whereas the
solid lines are the empirical fits based on Equation (72). (b) Best fits of the parameters aq, p, 0, and « in Equation (72) as functions of By,,. The points are the numerical
results for By, = 100 G, 500 G, 1 kG, and 2 kG, whereas the dashed lines are the results of adjusting to each parameter the parabolic function ¢ + ¢;Byn + czszh,

where cg, ¢1, and ¢, are constants given in Table 1.

Table 1
Parabolic Fit Coefficients of the Parameters ao, pt, 0, and « in Equation (72) as Functions of the Photospheric Magnetic Field Strength, By,
Parameter Co cy Cc R?
ag x 100 0.543043 0.00369942 —1.05127 x 107° 0.995629
o 0.401902 0.000874326 —2.4108 x 1077 0.985080
o 0.600716 —0.000071398 3.4683 x 107° 0.894329
« —4.43062 0.00296635 —8.43723 x 1077 0.999716

Note. The rightmost column denotes the R* coefficient of the corresponding parabolic fit. Each parameter has been fitted to a parabolic function ¢y + c; Bpn + czszh,
where the photospheric magnetic field strength, By, is given in Gauss. We note that these fits assume that the wave frequency, f, in the skewed log-normal distribution

(Equation (72)) is given in milli-Hertz.

Figure 10(b) displays the values of aqg, u, o, and «
corresponding to the best fits as functions of Bp,. Further fits
have been done by adjusting each of these parameters to a
parabolic function in the photospheric magnetic field strength,
namely ¢y + ¢ Bpn + Czszh, where ¢y, ¢, and ¢, are constants
whose specific values are given in Table 1.

Thus, Equation (72) together with the fitted parameters in
Table 1 can be used to approximate the wave energy
transmission coefficient for a range of photospheric field
strengths between 100 G and 2 kG. This approximation avoids
the necessity of computing a full numerical solution of the
waves in the photosphere and chromosphere, so it can be used
as a lower boundary condition for coronal-only models. We
note that the transmissivity is independent of the photospheric
wave spectrum, which should be assumed independently in
order to compute the transmitted energy.

7. Concluding Remarks

In this work, we have studied the energy transport and
dissipation associated with torsional Alfvén waves that prop-
agate through the solar atmosphere from the photosphere toward
the corona. We have extended and improved the previous work
of Soler et al. (2017) by incorporating new relevant ingredients,
namely the consideration of a 2.5D model and the presence of a
term due to Ohm’s magnetic diffusion in the induction equation.
Both additions turned out to have important impacts on the
results.
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On the one hand, the 2.5D model used here allowed us to
fully solve the radial dependence of the wave perturbations,
which was not possible in the 1.5D models used in the previous
work. As a consequence of that, the effect of phase mixing is
present here. The magnetic shear generated by phase mixing
across the flux tube produces large current density perturba-
tions, which are efficiently dissipated by Ohmic diffusion in the
low and middle chromosphere. This results in a stronger
damping of the Alfvén waves in those regions compared to
estimations based on 1.5D models.

On the other hand, and in connection with the above
comment, the presence of Ohm’s magnetic diffusion dramati-
cally reduces the net upward energy flux of the waves. Ohmic
diffusion is the dominant damping mechanism in most of the
chromosphere, while ion—neutral collisions are only dominant
in the higher chromosphere. This fact does not imply that the
role of partial ionization is not important, however. We recall
that Ohmic diffusivity is greatly enhanced in partially ionized
plasmas because of electron—neutral collisions (see again
Figure 1(c)), so that the very efficient role of Ohmic diffusion
in the chromosphere is a direct consequence of the plasma
being partially ionized.

Another effect that decreases the upward energy flux is
reflection, the role of which is especially important in the upper
chromosphere and transition region. Because of reflection,
counterpropagating waves coexist in the chromosphere. It is
known that the interaction of counterpropagating Alfvén waves
can lead to plasma turbulence, which has been proposed as
another important heating mechanism in the solar atmosphere
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(see, e.g., van Ballegooijen et al. 2011). The role of turbulence
has not been incorporated here but could be explored in future
works.

The combined effects of dissipation and reflection cause only
about 1% of the wave energy flux driven at the photosphere to
be able to reach coronal heights. Although small, the
transmitted energy flux may still represent a significant energy
input for the coronal plasma when compared to the total
coronal energy loss in quiet-Sun conditions (see Withbroe &
Noyes 1977). We have provided an empirical fit of the
transmission coefficient that could be used to incorporate in
coronal models the energy flux of photospherically driven
Alfvén waves. The use of these empirical formulae would
avoid the need of considering the very narrow chromosphere
with a sufficiently high resolution to actually resolve the wave
transmission.

We have computed the heating rates associated with the
dissipation of wave energy, which seem to be compatible with
the chromospheric energy requirements. However, because we
have restricted ourselves to the linear regime, we cannot
actually compute the plasma thermalization associated with the
deposition of this heating in the form of internal energy. To do
so, we should use the full, nonlinear equations and should also
consider the effects of radiation losses and thermal conduction.
This cannot be done in the stationary-state assumption used
here and should be done, necessarily, using time-dependent
simulations.

Owing to the lack of detailed observational information, our
choice for the photospheric wave driver relies on two
assumptions, namely the value of the average incoming energy
flux and the form of the spectral weighting function. Regarding
the incoming flux, we have used 10’ erg cm 2 s_l, which is the
value typically assumed all recent literature (see, e.g., De
Pontieu et al. 2001; Goodman 2011; Tu & Song 2013; Arber
et al. 2016) and is based on some numerical estimations (see
Ulmschneider 2000). Obviously, increasing/decreasing this
value would result in a larger/smaller energy transmission to
the corona. Concerning the spectral weighting function,
changing the weight that low/high frequencies have in the
spectrum would affect the fraction of the total wave energy that
is reflected/dissipated. That, in turn, would also modify the
transmitted flux. Future high-resolution observations are
needed to shed some light on the nature of the photospheric
wave drivers.

An approximation in our model is that there is no reflection
at the upper coronal boundary. The condition that there are no
incoming waves from the corona is necessary because our
model only includes the lower corona up to 4000 km above
the photosphere. We do not incorporate information about
the coronal structure at larger heights, and so we ignore the
possible reflections that may occur there. In the context of
plasma heating by turbulence, Alfvén wave reflection in the
corona has been studied by, e.g., Matthaeus et al. (1999),
Cranmer & van Ballegooijen (2005), and Zank et al. (2018).
In relation with the purpose of this paper, i.e., to study wave
energy propagation from the photosphere to the corona
through the chromosphere, the results show that the reflection
of waves driven at the photosphere is important in the high
chromosphere and transition region but, in our calculations,
reflection does not play a relevant role above the transition
region because only about 1% of the driven energy flux is able
to reach those heights (see again Figure 9(a)). Even if all of
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the transmitted flux were reflected back to the chromosphere,
the results discussed here would not be modified significantly.

Finally, we should note that the static model used here
represents an idealization of the actual atmosphere. In reality,
the chromosphere is a very dynamic medium. The study of
Alfvén waves in more realistic, time-varying models is a
challenge because of the tremendous complexity represented
by separating the wave activity from the dynamic evolution of
the background (see, e.g., Khomenko et al. 2018). Early
attempts to understand wave behavior in dynamic plasmas have
been undertaken (see Ballester et al. 2018). However, it is
necessary to keep improving the models and to make them
approach reality in order to advance our understanding of the
role of waves in solar atmosphere dynamics.
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