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Abstract

Magnetohydrodynamic (MHD) kink waves have been observed frequently in solar coronal flux tubes, which
makes them a great tool for seismology of the solar corona. Here, the effect of viscosity is studied on the evolution
of kink waves. To this aim, we solve the initial value problem for the incompressible linearized viscous MHD
equations in a radially inhomogeneous flux tube in the limit of long wavelengths. Using a modal expansion
technique the spatio-temporal behavior of the perturbations is obtained. We confirm that for large Reynolds
numbers representative of the coronal plasma the decrement in the amplitude of the kink oscillations is due to
the resonant absorption mechanism that converts the global transverse oscillation to rotational motions in the
inhomogeneous layer of the flux tube. We show that viscosity suppresses the rate of phase mixing of the
perturbations in the inhomogeneous region of the flux tube and prevents the continuous building up of small scales
in the system once a sufficiently small scale is reached. The viscous dissipation function is calculated to investigate
plasma heating by viscosity in the inhomogeneous layer of the flux tube. For Reynolds numbers of the order of
106–108, the energy of the kink wave is transformed into heat in two to eight periods of the kink oscillation. For
larger and more realistic Reynolds numbers, heating happens, predominantly, after the global kink oscillation is
damped, and no significant heating occurs during the observable transverse motion of the flux tube.

Unified Astronomy Thesaurus concepts: The Sun (1693); Solar physics (1476); Magnetohydrodynamics (1964);
Magnetohydrodynamical simulations (1966); Astrophysical fluid dynamics (101)

Supporting material: animations

1. Introduction

Aschwanden et al. (1999) and Nakariakov et al. (1999) were
the first to identify the spatially resolved kink oscillations of
coronal loops using the Transitional Region And Coronal
Explorer (TRACE) observations in the 171 Å Fe IX emission
lines. Because of the large number of observations of kink
oscillations in coronal loops these oscillations are a great
seismological tool to estimate the parameters of the solar
coronal plasma such as the magnetic field, the plasma density,
and the transport coefficients.

An interesting characteristic of kink oscillations in coronal
loops is that they damp fast usually within three to five periods.
Nakariakov et al. (1999) speculated that an anomalously
high viscosity or resistivity in the coronal plasma could be
responsible for this rapid damping. However, among the
proposed mechanisms to justify the rapid damping of the kink
waves (see, e.g., Goossens et al. 2002; Ofman & Aschwanden
2002; Ruderman & Roberts 2002; Ofman 2005, 2009; Morton
& Erdélyi 2009, 2010) resonant absorption is the strongest
candidate, since, unlike other theories, resonant absorption is
the only proposed mechanism that is able to explain short
damping times (of the order of a few periods of the kink
oscillation) without invoking anomalous processes or values of
the dissipative coefficients many orders of magnitude larger
than those expected in the corona. Resonant absorption is an
ideal process that does not need strong diffusion to work.
However, there is still no observational evidence for resonant
absorption. This mechanism was first proposed by Ionson
(1978) as a heating mechanism in coronal loops. Since then,
many studies have developed the theory of resonant absorption

(see, e.g., Davila 1987; Sakurai et al. 1991a, 1991b; Goossens
et al. 1995; Goossens & Ruderman 1995; Erdélyi 1997; Cally
& Andries 2010among many others). The necessary condition
in this mechanism is that the wave frequency lies in the local
Alfvén and/or slow frequency continuum. In this situation the
energy of the global mode oscillation transfers to the local
perturbations in the inhomogeneous regions of the magnetic
flux tube. As a result, the amplitude of the perturbations grows
at the resonance point and the dissipation mechanisms become
important in the resonance layer, where the oscillations make
large gradients. Ruderman & Roberts (2002) studied damping
of kink oscillations in coronal loops. Considering the effect of
viscosity in their analysis, they confirmed the previously
obtained numerical result (see, e.g., Poedts & Kerner 1991;
Tirry & Goossens 1996) that the decay rate of the transverse
oscillation is independent of the Reynolds number Rv when
Rv?1. They concluded that the Reynolds number affects only
the perturbations in the resonance layer so that it is not possible
to obtain the value of viscosity from the observations of
decaying kink oscillations in coronal loops. Resonant absorp-
tion has been studied for various complex configurations of the
magnetic flux tubes including curvature of the flux tube
(Terradas et al. 2006), longitudinal density stratification
(Andries et al. 2005; Karami & Asvar 2007; Soler et al.
2011), twisted magnetic field (Karami & Bahari 2010;
Ebrahimi & Karami 2016; Ebrahimi & Bahari 2019), and
magnetic field expansion (Shukhobodskiy et al. 2018; Howson
et al. 2019). For a review on the theory of resonant absorption,
see Goossens et al. (2011).
Another consequence of a continuum of Alfvén frequencies

existing in the flux tubes may be the phase mixing of the
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Alfvén waves (Heyvaerts & Priest 1983; Ireland & Priest 1997;
Karami & Ebrahimi 2009; Prokopyszyn & Hood 2019). In this
mechanism due to inhomogeneity of the local Alfvén phase
speed across the background magnetic field the perturbations
on different magnetic surfaces become out of phase while
traveling in the case of a propagating wave or oscillating in
the case of a standing wave. In the developed stage of phase
mixing even with a small amount of viscosity or resistivity the
dissipation mechanisms become important and could transform
the wave energy into heat. Ofman & Aschwanden (2002)
suggested that the loop oscillations are dissipated by phase
mixing with viscosity of the order n =  -10 m s5.3 3.5 2 1 that is
anomalously many orders of magnitude higher than the
classical coronal value of the shear viscosity, n = -1 m s2 1

(Ofman et al. 1994). It is believed that some small-scale
turbulence and structure enhance the viscosity in the coronal
loop plasma. Ofman et al. (1994) investigated the effect of
the viscous stress tensor on the heating of the corona by the
resonant absorption and showed that the shear viscosity has
the dominant role in the heating process but the compressive
viscosity does not have a significant contribution (see also
Erdélyi & Goossens 1995, 1996).

Goossens et al. (2014) investigated the nature of kink waves
and stated that kink waves do not only involve purely
transverse motions of solar magnetic flux tubes, but the
velocity field is a spatially and temporally varying sum of both
transverse and rotational motion. In an axisymmetric cylind-
rical flux tube, wave modes can be classified according to the
value of the azimuthal wavenumber, m. In this paper we study
modes with m=1, i.e., kink modes. The global kink mode is
the only mode that is able to displace transversely (i.e.,
laterally) the axis of the cylinder. The global mode with m=1
is resonantly coupled to Alfvén modes with m=1 in the
nonuniform layer of the tube. These modes have both radial
and azimuthal components of the displacement. Goossens et al.
(2014) called the Alfvén modes with ¹m 0 “rotational
modes.” The reason for calling these modes “rotational” is
that their streamlines follow a closed curve, so that a fluid
element flowing along one of those streamlines would describe
a “rotation” around a certain point. In the case of m=1, the
center of the rotation is not located on the axis of the cylinder
(as happens for torsional motions with “m=0”), but at some
place in between the axis and the boundary of the tube.
Following Goossens et al. (2014), we use the term “transverse
motion” to refer to the lateral displacement of the flux tube
caused by the global kink mode and the term “rotational
motion” to refer to the local Alfvén perturbations inside the
tube. Soler & Terradas (2015, hereafter ST2015) investigated
the resonant absorption of the kink magnetohydrodynamic
(MHD) wave and phase mixing of its perturbations in coronal
flux tubes. Using a modal expansion method they showed that
the energy of the global kink oscillation of the flux tube is
transformed into small-scale rotational motions in the nonuni-
form boundary of the tube that are eventually subject to the
simultaneously occurring phase mixing process. However,
ST2015 used the ideal MHD equations and did not consider the
effect of dissipation terms in their analysis. At the developed
stage of the phase mixing process where the perturbations are
highly phase mixed, the dissipation mechanisms could suppress
the rate of generating small scales in the system by coupling the

perturbations on the neighboring magnetic surface and finally
transform the kink wave energy to heat.
In this paper, our aim is to investigate the effect of viscosity

on the kink MHD waves and show how viscosity modifies the
previous results obtained by ST2015. Section 2 presents the
model and the governing MHD equations of motion. In
Section 3 we apply and extend the mathematical method used
by ST2015 and give a solution to the equation of motion. The
results are discussed in Section 4. Finally we conclude the
paper in Section 5.

2. Equations of Motion and Model

We model a typical coronal loop by a straight cylinder that
has a circular cross section of radius R. The background plasma
density in cylindrical coordinates (r, j, z) is assumed to be as
follows
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where r1=R−l/2 and r2=R+l/2. Here, l=r2−r1 is
the width of the inhomogeneous region. The background
magnetic field is assumed to be constant and aligned with the
flux tube axis everywhere, i.e., =B B z0 ˆ where B0 is constant.
The linearized MHD equations for an incompressible plasma

with viscosity are as follows

x xr
m

r n
¶
¶

= - ¢ +  ´ ¢ ´ + 
¶
¶

B Br
t

p r
t

1
,

2

2

2
0

2( ) ( ) ( )

( )
x¢ =  ´ ´B B , 3( ) ( )

x = 0, 4· ( )

where x is the Lagrangian displacement of the plasma, ¢B and
¢p are the Eulerian perturbations of the magnetic field and

plasma pressure, respectively. Here μ0 is the magnetic
permeability of the free space and ν is the coefficient of the
kinematic shear viscosity, which is assumed to be uniform.
Using Equation (4), we can rewrite Equation (3) as
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is the Alfvén operator. In the absence of viscosity, Equation (7)
reduces to Equation (8) of ST2015. Since the equilibrium
quantities are only functions of r, the perturbations can be
Fourier-analyzed with respect to the j and z coordinates.
Hence,
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where m is the azimuthal mode number and kz is the axial
wavenumber. The three components of Equation (7) and the
incompressibility condition (Equation (4)) form a system of
four independent equations for ξr, ξj, ξz, and ¢P as follows
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Here, we apply
j
¶
¶r

1 and ¶
¶z

from the left of Equations (11) and
(12), respectively, and add the resulting equations together.
After that, with the help of Equations (9) and (13), we obtain ¢P
in terms of ξr and ξj as
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Now we use the thin tube (TT) approximation in which the
wavelength of the kink waves, λ, is much larger than the radius
of the cross section of the flux tube, = +R r r 21 2( ) , i.e.,
Rk 1z  or lR  . The first two terms of Equation (13) have
magnitudes of the order ξ0/R where ξ0 is a typical value for the
Lagrangian displacement. Since the characteristic length scale
in the z direction is λ, the order of the magnitude of the third
term of Equation (13) is equal to ξ0/λ. Hence, in TT
approximation neglecting the third term of Equation (13) with
respect to the first two terms, yields

j
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We use Equation (15) to obtain a single equation for ξr. Since
we use this approximation, it is not possible to obtain ξz with
respect to ξr from Equations (10)–(13). However, in the TT
approximation, Goossens et al. (2009) showed that the
longitudinal component of the displacement, ξz, is always
much smaller than the other components and the dominant
motion is in the horizontal plane normal to the background
magnetic field. Substituting Equation (15) in Equations (10)

and (14) and eliminating ¢P from the resulting equations, gives
the equation for xr as follows
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where s is the surface wave operator (see ST2015 for more
details) and d is the viscous damping operator which are
defined as follows
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In the absence of viscosity, Equation (16) consistently reverts
to Equation (16) of ST2015. From Equation (15) we find that
ξj is related to ξr as
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¶
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In this relation, the factor i accounts for a phase difference of
π/2 between ξj and ξr. So, for convenience, in order to avoid
imaginary terms in the calculations, in the rest of the paper we
redefine iξj as ξj.

3. Solution

3.1. Solution in the Uniform Regions (r�r1, r�r2)

In the limit of small viscosity, which is the case in the solar
corona, we can neglect the effect of viscosity in the interior and
exterior regions of the flux tube, because viscous effects are
only important in the inhomogeneous regions where phase
mixing operates (Heyvaerts & Priest 1983). So, following
ST2015 in TT approximation (R kz=1) solutions of ξr
representing the kink (m= 1) waves in the constant density
regions, i.e., r�r1 and r�r2, are as follows
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where Ai(t) and Ae(t) are the time-dependent amplitudes.

3.2. Solution in the Nonuniform Region ( < <r r r1 2)

In the nonuniform region < <r r r1 2, following ST2015, we
perform a modal expansion of the radial component of the
Lagrangian displacement x r t,r ( ) as
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In cylindrical geometry, it is appropriate to set functions ψn(r)
as the orthogonal eigenfunctions of the regular Sturm–Liouville
system defined by the following Bessel differential equation
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displacement of the plasma, xr, and Lagrangian perturbation of
total pressure, d x= ¢ +P P dP drr 0 , at =r r1 and =r r2.
Here, P0 is the equilibrium total (gas + magnetic) pressure.
For the equilibrium presented in this paper, =dP dr0

m  =B B1 00( )( · ) . Hence d = ¢P P and the continuity of
the Lagrangian perturbation of total pressure, δ P, is satisfied by
the continuity of the Eulerian perturbation of total pressure, ¢P .
Neglecting the viscous term in Equation (14) at the boundaries
of the inhomogeneous region i.e., r=r1 and r=r2, one can
find that the remaining terms are proportional to ξr or ∂ ξr/∂ r.
Hence, the continuity of δ P at the boundaries is satisfied with
the continuity of ξr and ∂ ξr/∂ r. From the continuity of ξr at
r=r1 and r=r2 we obtain amplitudes of ξr inside and outside
the tube, i.e., Ai(t) and Ae(t), respectively, as follows
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Subtracting Equation (27) from Equation (25) and multiplying
the resulting equation by 2r−3 we get
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Since the functions an(t) in Equations (26) and (28) are linearly
independent, their coefficients must be zero, namely,
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We use these equations as the boundary conditions governing
y rn ( ) at r=r1 and r=r2. Functions ψn(r) also satisfy the
following orthogonality condition

ò y y d= " ¢ Î ¼¢ ¢
l

r r rdr n n
1

, 1, 2, 3, . 31
r

r

n n nn
1

2

( ) ( ) { } ( )

For more details on the solution of ψn(r) see Section 3.2
of ST2015.

In order to calculate the time-dependent coefficients an(t), we
must truncate the infinite series of Equation (22) to a finite

number N of terms. Substituting Equation (22) into (16) we
obtain
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Multiplying Equation (32) by y ¢ rn ( ) and integrating the
resulting equation over the interval r r,1 2[ ] we obtain the
following matrix equation
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where , , and  are square matrices of order N defined as
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in which, the superscript T denotes the transpose. The dot and
double dot signs in Equation (33) represent the first and the
second derivative with respect to t, respectively. We rewrite
Equation (33) in the following form
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where ∅ is the zero square matrix of order N. Using the
following definitions
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⎞
⎠⎟( ) ( )

( )
( )

we can rewrite Equation (38) as

+ = b bt t 0, 40( ) ( ) ( )

where  and  are the square matrices of order N2 . By setting
the temporal dependence of bn(t) as stexp( ), Equation (40) can
be cast in the form of a generalized eigenvalue problem,
namely,

s + = b b 0. 41( )

By solving Equation (41) we obtain a set of N2 eigenvalues, σ,
and the corresponding eigenvectors, b. The time-dependent
coefficients, bn(t), can be expressed as a superposition of the
eigenvectors as

å b= s

¢=
¢ ¢ ¢b t C e , 42n

n

N

n nn
t

1

2
n( ) ( )
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where, b ¢nn is the nth component of the ¢n th eigenvector and s ¢n

is the ¢n th eigenvalue. The constant coefficients ¢Cn are
obtained from the initial conditions. From the definition of b t( )
in Equation (39) we can see that the desired coefficients an(t)
correspond to the last N components of b t( ), i.e.,

å b= = ¼s

¢=
¢ + ¢ ¢a t C e n N, 1, 2, , . 43n

n

N

n N n n
t

1

2

, n( ) ( )

Hence the expression for x r t,r ( ) takes the following form

ååx b y= s

= ¢=
¢ + ¢ ¢r t C e r, . 44r

n

N

n

N

n N n n
t

n
1 1

2

, n( ) ( ) ( )

3.3. Initial Conditions

As in ST2015 we take the initial conditions for ξr as

x

x

x

x

= = < <y
y

y
y
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r r

r r r

r r

, 0

, ,

, ,

, ,

45r
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r

r

r

r

0 1
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2

2
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1 1

1 2

1 1

2

⎧
⎨
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⎩
⎪⎪ ( )

( ) ( )
( )
( )

( )
( )

x¶
¶

=
=t

0, 46r

r t, 0

( )
( )

where ξ0 is a constant. We choose these initial conditions in
purpose in order to be sure that at time t=0 the entire energy
of the perturbations is in the generalized Fourier mode with
largest spatial scale, i.e., ψ1(r). This enables us to investigate
the process of phase mixing of the perturbations in which the
energy of the wave transfers from large spatial scales to smaller
ones. In other words, with these initial conditions, as time goes
on, the Fourier modes with smaller and smaller spatial scales
contribute in the evolution of the kink wave. So, the larger the
number of the available modes, N, the larger the evolution
time that we are allowed to proceed before the solutions
become inaccurate (for more details, see Cally 1991).

Here, we rewrite Equation (42) in its matrix form, namely,

b= Sb Ct e , 47t( ) ˆ ( )

where s s sS = ¼diag , , , N1 2 2( ), = ¼C C C C, , , N
T

1 2 2[ ] and b̂ is
a N2 by N2 matrix that its columns are the eigenvectors of
Equation (41). Evaluating Equation (47) at t=0 yields

b b= = =b C Ct I0 , 48( ) ˆ ˆ ˆ ( )

where Î is the identity matrix of size ´N N2 2 . Assuming that
the matrix b̂ has a nonzero determinant, we obtain the
coefficient vector C as follows

b b= = =
=
=

- -C b
a
a

t
t
t

0
0
0

. 49
1 1⎡

⎣⎢
⎤
⎦⎥ˆ ( ) ˆ ( )

( ) ( )

Setting t=0 in Equation (22) and using the initial conditions
presented in Equations (45) and (46) one can easily find that the
only nonzero component of =b t 0( ) is = =+b t 0N 1( )

x y= =a t r01 0 1 1( ) ( ). Hence the coefficients Cn are obtained

as

b
x

y
= +

-C
r

. 50n n N, 1
1 0

1 1( )
( )

4. Numerical Results

In order to solve Equation (41), the density ratio of the flux
tube is considered to be r r = 5i e . The observational values of
this parameter have been reported to be in the range [2, 10]
(Aschwanden et al. 2003). The azimuthal mode number
representing the kink waves is m=±1. For the model
considered in this paper, the results for both m=+1 and
m=−1 are the same. Here, we take m=+1. Since we use the
TT approximation, the longitudinal wavenumber is assumed to
be = pkz R100

. For the thickness of the inhomogeneous layer we
consider two cases l/R=0.2 and l/R=1 that represent a thin
and a thick layer, respectively. To consider the effect of
viscosity, it is appropriate to use a dimensionless quantity, the
viscous Reynolds number which is defined as

n
ºR

lv
. 51v

Ai ( )

Here, the Alfvén speed m r=v BAi 0 0 i is the characteristic
speed for the propagation of kink waves in the flux tube. The
traditional value of the coefficient of shear viscosity in the solar
corona is of the order ν=1 m2 s−1 (see Ofman et al. 1994 and
references therein). With l=106 m and vAi=106 m s−1, the
corresponding Reynolds number is Rv=1012. Due to
computational limitations, we are forced to consider smaller
Rv in our results. However, the conclusions we obtain can be
easily generalized to the case of larger Rv. When appropriate,
we shall stress what differences would appear if more realistic
values of Rv were considered.
Solving the generalized eigenvalue problem (41) results to

2N eigenvalues, s wº -i ˜ where w w gº + i˜ is the complex
eigenfrequency. These eigenvalues are real or come in pairs
s s, *( ) where s* is the complex conjugate of σ. Figure 1 shows
the w  0n part of the spectrum of the complex eigenvalues
s w gº - +in n n with N=101 for l/R=0.2 and l/R=1 and
Reynolds numbers Rv=106, 107. Here, ωn and γn are the
frequency and the damping rate of the n’th eigenmode,
respectively. In the figure, w m r= k BzAi 0 0 i and w =Ae

m rk Bz 0 0 e are the Alfvén frequencies inside and outside of
the tube, respectively. Note that the frequencies and damping
rates are in units of the internal Alfvén frequency, ωAi. The
complex spectrum has the typical three-branch structure found in
previous papers that computed the resistive Alfvén spectrum in
similar configurations (see Poedts & Kerner 1991). It is clear
from Figure 1 that the smaller the value of the Reynolds number
(larger coefficient of viscosity) the larger the number of modes
with ω=0 present in the complex spectrum. This result is in
agreement with previous results obtained in resistive MHD (see,
e.g., Van Doorsselaere & Poedts 2007). An interesting result is
that similar to the resistive MHD analysis (see, e.g., Poedts &
Kerner 1991) in viscous MHD, one of the eigenvalues of the
complex spectrum could be identified as the damped quasi-
mode solution (global mode) of ideal MHD. The real part of
the frequency of this solution is the kink mode frequency, and
the imaginary part is its corresponding damping rate due to
the resonant absorption mechanism. Following Ruderman &
Roberts (2002) and Goossens et al. (2002), the quasi-mode
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frequency ωqm and damping rate γqm for MHD kink waves in the
TT and thin boundary (TB) (l/R=1) approximations are

w w
r

r r
w=

+
2

, 52qm k
i

i e
Ai ( )

g w
r r
r r

= -
-
+

l

R4
. 53qm k

i e

i e

( )

From these equations for r r = 5i e the quasi-mode frequency
is obtained as w w= 1.29qm Ai. Also the quasi-mode damping
rates for =l R 0.2 and =l R 1 are g w= -0.043qm Ai and
g w= -0.215qm Ai, respectively. As illustrated in Figure 1, the
singled out mode matches the quasi-mode solution especially
for the thin transitional layer case, =l R 0.2, and larger values
of the Reynolds number. For instance, for =l R 0.2 and

=R 10v
7 the singled out eigenfrequency is w = - i1.29 0.044˜

that is in agreement with the result obtained from the above
analytic approximations. For =l R 1 and =R 10v

7 the
corresponding eigenfrequency is w = - i1.33 0.269˜ . Hence,
in the case of the thick transitional layer, the numerical results,
and the analytic approximations deviate more from each other.
This is consistent with the fact that the analytic approximations
are only strictly valid when l R 1 . For a study of the
validity of the approximations beyond its theoretical range of
applicability, see Soler et al. (2014). These results show that for
the kink waves, the quasi-mode solution of the ideal MHD can

be identified as an eigenmode of the viscous MHD spectrum.
This correspondence is very clear in the case of thin
nonuniform layers and not very large Reynolds numbers.
However, as the thickness of the layer or the Reynolds number
increases, the identification of the quasi-mode in the dissipative
spectrum is more confusing since the quasi-mode gets
embedded in one of the branches of the spectrum and becomes
indistinguishable from an ordinary dissipative Alfvén mode
(see discussions on this issue in Van Doorsselaere &
Poedts 2007 and Soler et al. 2013). A detailed analysis of the
peculiar behavior of the quasi-mode in the complex spectrum is
beyond the purpose of the present paper.
Once the dissipative spectrum is computed, the time-

dependent behavior of the perturbations is obtained by the
superposition of all the modes in the spectrum according to the
prescribed initial condition, which represents a transverse, i.e.,
kink displacement of the whole tube (see Section 3.3). In short,
the evolution of the subsequent global kink oscillation is
determined by two simultaneously working mechanisms:
resonant absorption and phase mixing. On the one hand,
resonant absorption is responsible for a radial flux of energy
toward the nonuniform layer of the flux tube, and its net effect
is producing the damping of the global kink oscillation. As a
result, the amplitude of the displacement at the tube axis
decreases in time. On the other hand, the energy accumulated at
the nonuniform layer because of resonant absorption drives
local Alfvén waves with the same azimuthal symmetry as the
original kink oscillation, i.e., m=1. Although these Alfvén

Figure 1. Spectrum of the eigenvalues for p=k 100z and r r = 5i e . Left and right panels are for =l R 0.2 and =l R 1, respectively. Top and bottom panels are
for =R 10v

6 and =R 10v
7, respectively.
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waves have both radial and azimuthal components of the
displacement, they are largely polarized in the azimuthal
direction. The Alfvén waves undergo the process of phase
mixing because of the spatially dependent Alfvén velocity.
This causes the building up of small scales in the nonuniform
layer and the subsequent energy cascade to these small scales.

Then, viscous dissipation becomes important. In the following
paragraphs, we analyze the dynamics we have just summarized.
Figures 2 and 3 show the evolution of xr and xj for
=l R 0.2 and =l R 1, respectively. Time is in units of the

period of the kink oscillation in TTTB approximations,
p w=P 2k k. In Figures 2 and 3 the solid black curves

Figure 2. Evolution of xr (top panels) and xj (bottom panels) in a nonuniform tube with =l R 0.2 for = ¥R , 10v
6 and 107. Left, center, and right panels denote

=t P 0k , 3, and 10, respectively. The left and right vertical dashed lines locate =r r1 and =r r2, respectively. Other auxiliary parameters are as in Figure 1. An
animation of this figure is available. The video has been made of a sequence of 201 frames from =t P 0k to =t P 10k with time steps D =t P0.05 k . Each frame
delays 0.05s. Hence, the realtime duration of the video is 10.05s in which a second corresponds to one kink period, Pk. In the video, left and right panels denote xr
and xj, respectively.

(An animation of this figure is available.)

Figure 3. Same as Figure 2 but for =l R 1. An animation of this figure is available. The video has been made of a sequence of 201 frames from =t P 0k to
=t P 10k with time steps D =t P0.05 k . Each frame delays 0.05s. Hence, the realtime duration of the video is 10.05s in which a second corresponds to one kink

period, Pk. In the video, left and right panels denote xr and xj, respectively.

(An animation of this figure is available.)
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represent the results previously obtained by ST2015 in the
absence of viscosity, i.e., = ¥Rv . The blue dashed and red
dashed–dotted curves are for =R 10v

7 and =R 10v
6, respec-

tively. Figures reveal that in the presence of viscosity, unlike
the results obtained in ideal MHD (see Soler & Terradas 2015;
Ebrahimi et al. 2017) perturbations are not allowed to be phase
mixed indefinitely. The smaller the Reynolds number, the
quicker the dissipative solution departs from the ideal solution.
The existence of viscosity causes coupling of the perturbations
on the neighboring magnetic surfaces. This effect suppresses
the phase mixing when a certain spatial scale is reached and
transforms the total (kinetic plus magnetic) energy of the
perturbations to heat via dissipation.

To illustrate the flux of the total energy of the kink wave
from the internal and external regions to the inhomogeneous
region where it is finally dissipated, we calculate the total
energy density of the perturbations as

x
r

m
=

¶
¶

+ ¢BE r t
t

,
1

2

1
, 54

2
2

⎛
⎝⎜

⎞
⎠⎟( ) ∣ ∣ ( )

where ¢B is obtained from Equation (5). Figure 4 illustrates the
evolution of the total energy density as a function of r. In the
absence of viscosity after a few time periods the whole energy
of the kink wave concentrates in a narrow layer in the
inhomogeneous region of the flux tube. The role of viscosity is
to dissipate this concentrated energy. Although, these two
processes i.e., flow of energy to the inhomogeneous layer and
the dissipation occur simultaneously but they are caused by
independent and physically different mechanisms. In order to
have a better illustration of the flow of energy of the kink wave
from internal and external regions to the inhomogeneous layer
and its dissipation, it is appropriate to calculate the integrated
total energy of the perturbations in the interior, transitional
layer and exterior of the flux tube as a function of time,

respectively, as follows
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Note that in order to compute the third integral of Equation (55)
we must replace the upper limit of the integral, ¥, with a
sufficiently large radius where the amplitudes of the perturbations
are already negligible. Hence, we check the convergence of the
total energy by taking a series of large radii as the upper limit of
the third integral in Equation (55). Results show that at =r R20
the total energy converges to the desired level of accuracy.
Figure 5 shows the integrated energy in these three regions as a
function of time for = ¥R , 10 , and 10v

7 6. The solid, dashed,
and dotted lines denote the integrated energies of the internal,
inhomogeneous, and external regions, respectively. The black,
blue and red colors represent = ¥Rv (ideal MHD), =R 10v

7,
and =R 10v

6, respectively. Note that in the figure, the plots of the
internal and external energies (i.e., the solid and dotted lines) for

= ¥Rv and =R 10 and 10v
7 6 coincide with each other, which

reveals that for large Reynolds numbers the existence of viscosity
does not affect the energy flow from internal and external regions
to the inhomogeneous layer. In other words, the resonant
absorption process is not affected by viscosity. Figure 5 also
shows that in the presence of viscosity, the energy in the
inhomogeneous layer increases in the initial stage of the evolution
and reaches a maximum after a few time periods. After that, the
energy decreases, since phase mixing in the inhomogeneous layer
enhances the viscous dissipation mechanism. The temporal

Figure 4. Energy density as a function of rational radius in units of the total initial energy with =l R 0.2 (top panels) and =l R 1 (bottom panels) for = ¥R , 10v
6

and 107. Left, center, and right panels denote =t P 0k , 3, and 10, respectively. The left and right vertical dashed lines locate =r r1 and =r r2, respectively. Other
auxiliary parameters are the same as in Figure 1.
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behavior of the total energy of the kink wave has been illustrated
in Figure 6 for l/R=0.2 and 1 and Rv=∞, 107, and 106. As the
figure shows, the energy of the kink wave in the absence of
viscosity (black line in the figure) is conserved. The results show
that, considering a flux tube with thin transitional layer
( =l R 0.2), for Rv=107 and 106 the energy of the kink wave
decreases to e1 of its initial energy after t P5.8 k and
t P4.4 k , respectively. For the thick transitional layer
( =l R 1) the corresponding values are t P5.2 k and t P2.7 k .

Figure 7 shows the radial component of the displacement at
the axis of the flux tube. Interestingly the results for =Rv

¥, 10 , and 107 6 are the same. Note that in the observations of
kink waves in coronal flux tubes, we measure the displacement of
the axis but detecting the rotational motions related to the kink
waves in the inhomogeneous boundary of the flux tubes is not an
easy task. Comparing the results illustrated in Figures 6 and 7, it is
clear that although the temporal behavior of the displacement
of the flux tube axis is the same in both cases of ideal and
viscous MHD (with large Reynolds number), the total energy of
the kink waves, which is conserved for = ¥Rv , decays in a few
periods for =R 10v

7 and 106. Hence, one can conclude that
assuming a large Reynolds number for the coronal plasma the
global damping of kink waves reported in the observations is due
to converting the transverse motion to rotational perturbations in

the inhomogeneous layer of the flux tube, i.e., the resonant
absorption process, and is not related to the existence of viscosity.
In order to illustrate the rate of plasma heating in the

inhomogeneous region due to viscosity we use the viscous
dissipation function that for an incompressible plasma with
constant viscosity is as follows (White 1991)

rn e e e e e eF = + + + + +jj j j2 , 56rr zz r rz z
2 2 2 2 2 2[ ( ) ] ( )

where eij with j=i j r z, , , are components of the strain rate
tensor defined as follows
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Figure 5. Integrated energy of the kink wave in the interior, inhomogeneous
region and exterior of the flux tube in units of the total initial energy vs. time
for = ¥R , 10v

6, and 107. Top and bottom panels are for =l R 0.2 and
=l R 1, respectively. Other auxiliary parameters are the same as in Figure 1.

Figure 6. Total energy of the kink wave vs. time for = ¥R , 10 , and 10v
6 7.

Top and bottom panel are for =l R 0.2 and =l R 1, respectively. Other
auxiliary parameters are the same as in Figure 1.
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The dissipation function, Φ, is the work done by the viscous
stresses on an element of plasma per unit volume per unit time.
Here, we remove the j and z dependency of the dissipation
function by integrating Φ in these directions, i.e.,

ò ò j plF¢ = F = F
l p

rd dz r , 57
0 0

2
( )

where, l p= k2 z is the wavelength. Figure 8 shows the
contour plot of F¢ in the r–t plane for =l R 0.2 and =l R 1
with =R 10v

6 and =R 10v
7. As the figure shows, the heating

rate has an oblique oscillatory pattern. The obliquity of the
contours of F¢ is due to the phase mixing of the perturbations.
In order to obtain the time that the dissipation in the
inhomogeneous region reaches its maximum we have calcu-
lated the integral of F¢ over the range r r,1 2[ ] that is a function
of time. For =R 10v

6, considering =l R 0.2 and =l R 1 we
obtain the peak time of the integrated dissipation as

=t P2.75 kpeak and =t P2.1 kpeak , respectively. The corresp-
onding values for =R 10v

7 are =t P4.5 kpeak and =t P4.1 kpeak .
For =l R 0.2 and =R 10v

8 we get =t P8 kpeak . So, for the
larger value of the Reynolds number the system needs to be
more phase mixed for viscosity to reach its maximum
efficiency as a heating mechanism for the plasma. Obviously,
if the Reynolds number is further increased to the expected

value in the solar corona, the peak efficiency of dissipation
happens in a much later time corresponding to many periods of
the original kink oscillation. Since the observationally reported
damping time of kink oscillations corresponds to a few periods
(as the theory of resonant absorption correctly predicts), we
conclude that viscous heating becomes of significance only
after the global kink oscillation is damped, i.e., no heating is
expected during the damping of the global kink oscillation in
realistic coronal conditions.

5. Summary and Conclusions

Here, we investigated the effect of viscosity on the evolution
of MHD kink waves in coronal flux tubes. We modeled a
magnetic flux tube by a straight magnetic cylinder. Plasma
density inside and outside the tube is constant with different
values. The interior and exterior of the tube are connected by an
inhomogeneous transitional layer in which the plasma density
varies smoothly with a sinusoidal profile from the internal
value to the external one. The background magnetic field is
aligned with tube axis and has constant magnitude everywhere.
We neglected the role of viscosity in the constant density
regions since in the limit of small viscosities the dissipation is
only important in the inhomogeneous region where the phase
mixing process is at work. Using the modal expansion
technique (Cally 1991; Soler & Terradas 2015) we solved the
viscous MHD equations of motion in thin tube approximation
and obtained the spatio-temporal behavior of the perturbations
in the flux tube. We considered both the cases of thin and thick
inhomogeneous layers in our analysis.
We obtained the spectrum of the complex eigenfrequencies

of the Alfvén discrete modes in the inhomogeneous layer. In
the spectrum, one of the eigenfrequencies could be identified as
the quasi-mode solution of the kink waves by the resonant
absorption mechanism.
To investigate the effect of viscosity on the kink waves, we

obtained the temporal and spatial behaviors of the perturbations
in the interior, inhomogeneous region and exterior of the flux
tube. Our results showed that for both cases of thin and thick
inhomogeneous layers, considering the viscosity in the system
does not affect the transverse motion of the flux tube axis and
its decay rate for large Reynolds numbers ( R 10v

6)
confirming the previous results obtained by e.g., Ruderman
& Roberts (2002) and Goossens et al. (2002). This result
confirms that the fast damping of the kink oscillations in
coronal loops could be a consequence of resonant absorption
mechanism which despite the existence of viscosity naturally
results to changing the behavior of kink mode from mainly
transverse motion to rotational motion (Goossens et al. 2014).
However, even for small viscosities (relevant for the coronal
plasma) the viscous dissipation is important in the developed
stage of phase mixing of the perturbations in the inhomoge-
neous region. Our results show that viscosity eventually
suppresses the rate of phase mixing of the perturbations by
coupling the neighboring magnetic surfaces and transforming
their energy to heat.
In order to investigate the effect of viscosity on cascading the

total (kinetic plus magnetic) energy of the kink wave to the
inhomogeneous layer of the flux tube, we obtained the total
energy density as well as the integrated total energy as a
function of r and t. As in the ideal MHD case, in the presence
of viscosity the energy of the kink wave tends to concentrate in

Figure 7. Temporal behavior of xr on the axis of the flux tube for
= ¥R , 10v

6, and 107. Top and bottom panels are for =l R 0.2 and
=l R 1, respectively. Other auxiliary parameters are the same as in Figure 1.
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a narrow region in the inhomogeneous layer of the flux tube but
it is not allowed to achieve its maximum value obtained in the
ideal case since the dissipation mechanism is at work and
decreases the energy in time. However, the small amount of
viscosity considered in our analysis does not affect the energy
flow from interior and exterior of the tube to the inhomoge-
neous region. Temporal behavior of the total energy showed
that for both the thin and thick inhomogeneous region with
Reynolds numbers of the order 106, 107, and 108 the energy of
the kink wave decays to heat the plasma within a few periods.
However, if larger and more realistic values of the Reynolds
number were used, heating would happen much later after the
observable kink oscillation is completely damped. These
conclusions agree with the simple estimations provided in the
research note by Terradas & Arregui (2018), although these
authors considered resistive heating instead of viscous heating.

We also studied the efficiency of heating due to viscosity by
calculating the dissipation function in the inhomogeneous
region. The obtained results show that at the initial stage of the
evolution the dissipation increases with time and reaches a
maximum level after a few periods (two to eight periods for

=R 10 10v
6 8– but much later for realistic Rv) in a narrow layer

near the boundary of the flux tube. After that the dissipation
decreases since the energy budget provided by the initial value
problem considered in this paper is finite.

In summary, we showed that viscosity, even in a small
amount, can have a significant impact on the later evolution of

phase mixing by suppressing the generation of small scales and
transforming the energy of the wave to heat. Reynolds number
larger than the values considered in this paper needs more
massive numerical computation with the mathematical
approach presented here to obtain the correct set of complex
eigenvalues of the damped Alfvén discrete modes, which could
be a subject of future work.
We finally note that this work is based on linear theory.

Nonlinear effects may somehow modify these results, since
presumably important ingredients as, e.g., the triggering of
Kelvin–Helmholtz instabilities are absent from our study (see,
e.g., Terradas et al. 2008). The nonlinear evolution should be
necessarily investigated with high-resolution dissipative MHD
simulations.
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