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Abstract

The cophenetic metrics dϕ,p, for p ∈ {0} ∪ [1,∞[, are a recent addition to the
kit of available distances for the comparison of phylogenetic trees. Based on a
fifty years old idea of Sokal and Rohlf, these metrics compare phylogenetic trees
on a same set of taxa by encoding them by means of their vectors of cophenetic
values of pairs of taxa and depths of single taxa, and then computing the Lp

norm of the difference of the corresponding vectors. In this paper we compute
the expected value of the square of dϕ,2 on the space of fully resolved rooted
phylogenetic trees with n leaves, under the Yule and the uniform probability
distributions.
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1. Introduction

The definition and study of metrics for the comparison of rooted phylogenetic
trees on the same set of taxa is a classical problem in phylogenetics [11, Ch. 30],
and many metrics have been introduced so far with this purpose. A recent
addition to the set of metrics available in this context are the cophenetic metrics
dϕ,p introduced in [8]; see also [18] for a related metric. Based on a fifty years
old idea of Sokal and Rohlf, the cophenetic metrics compare phylogenetic trees
on a same set of taxa by first encoding the trees by means of their vectors of
cophenetic values of pairs of taxa and depths of single taxa, and then computing
the Lp norm of the difference of the corresponding vectors.

Once the disimilarity between two phylogenetic trees has been computed
through a given metric, it is convenient in many situations to assess its signifi-
ance. One possibility is to compare the value obtained with its expected, or
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mean, value: is it much larger, much smaller, similar? [28] This makes it neces-
sary to study the distribution of the metric, or, at least, to have a formula for
the expected value of the metric for any number n of leaves. The distribution of
several metrics has been studied so far: see, for instance, [5, 6, 10, 17, 19, 28].

The expected value of a distance depends on the probability distribution on
the space of phylogenetic trees under consideration. The most popular distri-
bution on the space Tn of binary phylogenetic trees with n leaves is the uniform
distribution, under which all trees in Tn are equiprobable. But phylogeneticists
consider also other probability distributions on Tn, defined through stochastic
models of evolution [11, Ch. 33]. The most popular is the so-called Yule model
[15, 29], defined by an evolutionary process where, at each step, each currently
extant species can give rise, with the same probability, to two new species. Un-
der this model, different phylogenetic trees with the same number of leaves may
have different probabilities, which depend on their shape.

In this paper we provide explicit formulas for the expected values of the
square of the cophenetic metric dϕ,2 under the uniform and the Yule models. The
proofs of these formulas are based on long and tedious algebraic computations
and thus, to ease the task of the reader interested only in the formulas and the
path leading to them, but not in the details, we have moved these computations
to an Appendix at the end of the paper.

The spread of d2ϕ,2 around its expected value can be quantified by means
of its variance. Unfortunately, we have not been able so far to derive an exact
formula for this variance under any model. So, in §4 we provide instead an
accurate estimation of its order, both under the uniform and the Yule models,
based on simulations.

Besides the aforementioned application of this value in the assessment of tree
comparisons, the knowledge of formulas for the expected value of d2ϕ,2 under
different models may allow the use of dϕ,2 to test stochastic models of tree
growth, a popular line of research in the last years which so far has been mostly
based on shape indices; see, for instance, [3, 21]. As a proof of concept, in §5 we
report on a basic, preliminary such test performed on the binary phylogenetic
trees contained in the TreeBASE database [22].

2. Preliminaries

In this paper, by a phylogenetic tree on a set S of taxa we mean a fully
resolved, or binary, rooted tree with its leaves bijectively labeled in S. We
understand such a rooted tree as a directed graph, with its arcs pointing away
from the root. To simplify the language, we shall always identify a leaf of a
phylogenetic tree with its label. We shall also use the term phylogenetic tree
with n leaves to refer to a phylogenetic tree on the set {1, . . . , n}. We shall
denote by T (S) the space of all phylogenetic trees on S and by Tn the space of
all phylogenetic trees with n leaves.

Let T be a phylogenetic tree. If there exists a directed path from u to v in
T , we shall say that v is a descendant of u and also that u is an ancestor of
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v. The lowest common ancestor LCAT (u, v) of a pair of nodes u, v in T is the
unique common ancestor of them that is a descendant of every other common
ancestor of them. The depth δT (v) of a node v in T is the distance (in number
of arcs) from the root of T to v. The cophenetic value ϕT (i, j) of a pair of leaves
i, j in T is the depth of their LCA. To simplify the notations, we shall often
write ϕT (i, i) to denote the depth δT (i) of a leaf i.

Given two phylogenetic trees T, T ′ on disjoint sets of taxa S, S′, respectively,
we shall denote by T ̂T ′ the phylogenetic tree on S∪S′ obtained by connecting
the roots of T and T ′ to a (new) common root. Every phylogenetic tree T ∈ Tn
is obtained as Tk̂T ′n−k, for some 1 6 k 6 n − 1, some subset Sk ⊆ {1, . . . , n}
with k elements, some tree Tk on Sk and some tree T ′n−k on Sc

k = {1, . . . , n}\Sk.
Actually, every phylogenetic tree in Tn is obtained in this way twice.

The Yule, or Equal-Rate Markov, model of evolution [15, 29] is a stochastic
model of phylogenetic trees’ growth. It starts with a node, and at every step a
leaf is chosen randomly and uniformly and it is splitted into two leaves. Finally,
the labels are assigned randomly and uniformly to the leaves once the desired
number of leaves is reached. This corresponds to a model of evolution where, at
each step, each currently extant species can give rise, with the same probability,
to two new species. Under this stochastic model, if T ∈ Tn is a phylogenetic
tree with set of internal nodes Vint(T ), and if for every v ∈ Vint(T ) we denote
by `T (v) the number of its descendant leaves, then the probability of T is [4, 27]

PY (T ) =
2n−1

n!

∏
v∈Vint(T )

1

`T (v)− 1
.

The uniform, or Proportional to Distinguishable Arrangements, model [24] is
another stochastic model of phylogenetic trees’ growth. Unlike the Yule model,
its main feature is that all phylogenetic trees T ∈ Tn have the same probability:

PU (T ) =
1

(2n− 3)!!
, where (2n− 3)!! = (2n− 3)(2n− 5) · · · 3 · 1.

From the point of view of tree growth, this model is described as the process
that starts with a node labeled 1 and then, at the k-th step, a new pendant arc,
ending in the leaf labeled k+1, is added either to a new root (whose other child
will be, then, the original root) or to some edge, with all possible locations of
this new pendant arc being equiprobable [9, 26]. Although this is not an explicit
model of evolution, only of tree growth, several interpretations of it in terms of
evolutionary processes have been given in the literature: see [3, p. 686] and the
references therein.

3. Main results

Let T ∈ Tn be a phylogenetic tree with n leaves. The cophenetic vector
ϕ(T ) of T is the vector consisting of, for each leaf, its depth, and for each pair
of different leaves, the depth of their LCA. Formally,

ϕ(T ) =
(
ϕT (i, j)

)
16i6j6n

∈ Rn(n+1)/2,
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with its elements lexicographically ordered in (i, j). It turns out [8] that the
mapping

ϕ : Tn → Rn(n+1)/2

that sends each T ∈ Tn to its cophenetic vector ϕ(T ), is injective up to isomor-
phism. As it is well known, this allows to induce metrics on Tn from metrics
defined on powers of R. In particular, in this paper we consider the cophenetic
metric dϕ,2 on Tn induced by the euclidean distance:

dϕ,2(T1, T2) =
  ∑

16i6j6n

(ϕT1(i, j)− ϕT2(i, j))2.

Example 1. Consider the phylogenetic trees T, T ′ ∈ T4 depicted in Fig. 1.
Their total cophenetic vectors are

ϕ(T ) = (2, 1, 0, 0, 2, 0, 0, 2, 1, 2)
ϕ(T ′) = (1, 0, 0, 0, 2, 1, 1, 3, 2, 3)

and therefore dϕ,2(T, T ′) =
√

7.

1 2 3 4

T

1 2 3 4

T ′

Figure 1: Two phylogenetic trees with 4 leaves.

Let D2
n the random variable that chooses a pair of trees T, T ′ ∈ Tn and

computes dϕ,2(T, T ′)2. Its expected values under the Yule and the uniform
models are given by the following two theorems. Recall that the n-th harmonic
number Hn is defined as Hn =

∑n
i=1 1/i.

Theorem 2. For every n > 2, the expected value of D2
n under the Yule model

is

EY (D2
n) =

2n

n− 1

(
3n2 − 10n− 1 + 8(n+ 1)Hn − 4(n+ 1)H2

n

)
.

Theorem 3. For every n > 2, the expected value of D2
n under the uniform

model is

EU (D2
n) =

1

3
(4n3+18n2−10n)− n(n+ 3)

2
· (2n− 2)!!

(2n− 3)!!
− n(n+ 7)

4
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(2n− 2)!!
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Since Hn ∼ ln(n) and (2n−2)!!/(2n−3)!! ∼
√
πn, these formulas imply that

EY (D2
n) ∼ 6n2, EU (D2

n) ∼
(4

3
− π

4

)
n3.

We prove the formulas in Theorems 2 and 3 by reducing the computation of
the expected value of D2

n to that of the following random variables:

• Sn, the random variable that chooses a tree T ∈ Tn and computes its
Sackin index [25]

S(T ) =
n∑

i=1

δT (i)

• Φn, the random variable that chooses a tree T ∈ Tn and computes its total
cophenetic index [20], defined by

Φ(T ) =
∑

16i<j6n

ϕT (i, j).

• Φ
(2)

n , the random variable that chooses a tree T ∈ Tn and computes

Φ
(2)

(T ) =
∑

16i6j6n

ϕT (i, j)2

For the models under consideration, the expected values of these variables are
related to that of D2

n by the next proposition. In it and henceforth, we shall
denote by E(X) the expected value of a random variableX on Tn under a generic
probability distribution p : Tn → [0, 1] on Tn invariant under relabelings. The
probability distributions pY and pU defined by the Yule and the uniform models,
respectively, are invariant under relabelings, and therefore the expected values
under these specific models, which will be denoted by EY and EU , respectively,
are special cases of E.

Proposition 4. E(D2
n) = 2E(Φ

(2)

n )− 2 · E(Sn)2

n
− 4 · E(Φn)2

n(n− 1)
.

Proof. To simplify the notations, let

• ϕn be the random variable that chooses a tree T ∈ Tn and computes
ϕT (1, 2).

• δn be the random variable that chooses a tree T ∈ Tn and computes δT (1).

5



Let us compute now E(D2
n) from its very definition:

E(D2
n) =

∑
(T,T ′)∈T 2

n

dϕ,2(T, T ′)2p(T )p(T ′)

=
∑

(T,T ′)∈T 2
n

( ∑
16i6j6n

(ϕT (i, j)− ϕT ′(i, j))
2
)
p(T )p(T ′)

=
∑

16i6j6n

∑
(T,T ′)∈T 2

n

(ϕT (i, j)2 + ϕT ′(i, j)
2 − 2ϕT (i, j)ϕT ′(i, j))p(T )p(T ′)

=
∑

16i6j6n

( ∑
(T,T ′)∈T 2

n

ϕT (i, j)2p(T )p(T ′) +
∑

(T,T ′)∈T 2
n

ϕT ′(i, j)
2p(T )p(T ′)

−2
∑

(T,T ′)∈T 2
n

ϕT (i, j)ϕT ′(i, j)p(T )p(T ′)
)

=
∑

16i6j6n

( ∑
T∈Tn

ϕT (i, j)2p(T ) +
∑

T ′∈Tn

ϕT ′(i, j)
2p(T ′)

−2
( ∑

T∈Tn

ϕT (i, j)p(T )
)( ∑

T ′∈Tn

ϕT ′(i, j)p(T
′)
))

=
∑

16i6j6n

(
2
∑
T∈Tn

ϕT (i, j)2p(T )− 2
( ∑

T∈Tn

ϕT (i, j)p(T )
)2)

= 2
∑
T∈Tn

( ∑
16i6j6n

ϕT (i, j)2
)
p(T )− 2

∑
16i<j6n

( ∑
T∈Tn

ϕT (i, j)p(T )
)2

−2
∑

16i6n

( ∑
T∈Tn

ϕT (i, i)p(T )
)2

= 2
∑
T∈Tn

Φ
(2)

(T )p(T )− 2

Ç
n

2

å( ∑
T∈Tn

ϕT (1, 2)p(T )
)2

−2n
( ∑

T∈Tn

δT (1)p(T )
)2

= 2E(Φ
(2)

n )− n(n− 1)E(ϕn)2 − 2nE(δn)2

Now, the values of E(δn) and E(ϕn) can be easily obtained from E(Sn) and
E(Φn), respectively, using the invariance under relabelings of the probability
distribution under which we compute the expected values E:

E(δn) = E(Sn)/n, E(ϕn) = E(Φn)/
(
n
2

)
The formula in the statement is then obtained by replacing E(δn) and E(ϕn)
by these values.

The expected values of Sn and Φn under the Yule and the uniform models
are known:

EY (Sn) = 2n(Hn − 1) EY (Φn) = n(n− 1)− 2n(Hn − 1)

EU (Sn) = n
( (2n− 2)!!

(2n− 3)!!
− 1
)

EU (Φn) =
1

2

Ç
n

2

å( (2n− 2)!!

(2n− 3)!!
− 2
)
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The formula for EY (Sn) was proved in [16] and the other three, in [20].
To obtain the expected values of D2

n, it remains to compute the expected

values of Φ
(2)

n . They are given by the following result.

Proposition 5. For every n > 2,

(a) EY (Φ
(2)

n ) = 5n(n− 1)− 8n(Hn − 1)

(b) EU (Φ
(2)

n ) =
1

6
n(4n2 + 21n− 7)− 3

4
n(n+ 3)

(2n− 2)!!

(2n− 3)!!

This proposition is proved in the Appendix at the end of this paper. Finally,
the identities given in Theorems 2 and 3 are obtained by replacing, in the

identity given in Proposition 4, E(Sn), E(Φn), and E(Φ
(2)

n ) by their values. We
leave the last details to the reader.

4. On the variance of D2
n

In order to assess the spread of the random variable D2
n around its expected

value, it is useful to know its variance. Since Var(D2
n) = E(D4

n)− E(D2
n)2, the

computation of this variance involves the computation of the expected value
of D4

n. Developing this expected value as in Proposition 4, one can obtain an
expression for E(D4

n) in the same spirit as the one given for E(D2
n) therein,

but with 24 different terms instead of only 3, and so far we have not been able
to convert it, either for the Yule or the uniform model, into a closed formula
depending only on n.

Therefore, in order to be able to, at least, estimate the asymptotic order of
E(D4

n), we have taken the Monte Carlo path. More specifically, both for the
Yule and the uniform models, and for every n = 3, . . . , 100, we have randomly
generated N = 10000 pairs of binary trees (T, T ′) ∈ Tn×Tn, we have computed
the value of dϕ,2(T, T ′)4 for each such pair (T, T ′), and we have computed the

arithmetic mean D4
n of these N values. These arithmetic means are estimations

of the value of E(D4
n) under the corresponding model.

Finally, we have computed the slope α of the regression line of log(D4
n)

as a function of log(n) using the values for n = 50, . . . , 100. We have only
considered the largest values of n because if smaller values were also included
in the regression, the regression coefficient was considerably smaller, due to the
fact that, for small n, the dominant term is not large enough to significantly
stand out from terms of smaller degree. The results obtained are given in the
following table:

Model α Regression coefficient R2

Yule 4.439682 0.9999
Uniform 6.226358 0.9999

The intermediate results of all these computations, as well as the Python and R
scripts used to compute them, are available in the Supplementary Material web
page http://bioinfo.uib.es/~recerca/phylotrees/expectedcophdist/.
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From this table, we estimate then that EY (D4
n) ≈ Θ(n4.44) and EU (D4

n) ≈
Θ(n6.23), and the regression coefficients tell us that these orders explain quite
well the estimated expected values up to n = 100. Since, by Theorems 2 and 3,
EY (D2

n)2 = Θ(n4) and EU (D2
n)2 = Θ(n6), and hence these asymptotic orders

are smaller than those estimated for EY (D4
n) and EU (D4

n), we estimate that
the asymptotic orders of Var(D2

n) under the Yule and the uniform models are
the same as those of E(D4

n).

5. An experiment on TreeBASE

In this section we report on a very simple experiment to show how dϕ,2 can
be used to test evolutionary hypotheses. In this experiment, we have compared
the expected value of d2ϕ,2 on Tn under the uniform and the Yule models with
its average value on the set TreeBASEbin,n of binary phylogenetic trees with n
leaves contained in TreeBASE [22] (downloaded on December 15, 2015).

To perform this experiment, we had to take some decisions. First, since
there are only very few values n > 50 such that |TreeBASEbin,n| > 10, we
have decided to consider only those binary trees contained in TreeBASE with
n 6 50 leaves. On the other hand, even for those n such that TreeBASEbin,n is
relatively large, in most cases it does not contain many pairs of trees with the
same taxa. So, instead of computing the average value of d2ϕ,2 on TreeBASEbin,n

by averaging the values d2ϕ,2(T, T ′) for pairs T, T ′ with exactly the same n taxa,
we have made use of the formula given in Proposition 4, as if TreeBASEbin,n was
closed under relabelings: that is, we have taken only into account the shapes of
the trees contained in it. This is consistent with the fact that our final goal is
to test models of evolution that produce tree shapes.

So, we have computed the average values of Φ
(2)

, of the Sackin index S,
and of the total cophenetic index Φ on TreeBASEbin,n, and we have taken as
average value of d2ϕ,2 on this set the result of appying the formula in Proposition
4. Let’s call ETrB(D2

n) the resulting value.
On the other hand, for each n 6 50 we have used our estimations of EY (D4

n)
and EU (D4

n) and the exact values of EY (D2
n) and EU (D2

n) to give estimations
sdY (D2

n) and sdY (D2
n) of the values of the standard deviations of D2

n under
both models. Finally, for every n 6 50, we have taken the intervals EY (D2

n)±
2 · sdY (D2

n) and EU (D2
n)± 2 · sdU (D2

n) as reference intervals for D2
n under the

Yule and the uniform model. The detailed results of these computations, as
well as the Python and R scripts used to compute and analyze them, are also
available in the Supplementary Material web page http://bioinfo.uib.es/

~recerca/phylotrees/expectedcophdist/.
Fig. 2 plots log(ETrB(D2

n)) as a function of log(n) (middle, continuous
curve). We have added the curves of log(EY (D2

n)) (lower, dotted curve) and
log(EU (D2

n)) (upper, dashed curve), again as functions of log(n), and the loga-
rithms of the corresponding reference intervals for D2

n (vertical segments). The
graphic shows that the expected value of d2ϕ,2 on (the shapes of) the phyloge-
netic trees contained in TreeBASE is better explained by the uniform model
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than by the Yule model. This agrees with the results of similar experiments
using other measures (see, for instance, [3, 20]).
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Figure 2: Log plots of the mean of D2
n for the binary trees in TreeBASE with a fixed number

n of leaves, of EY (D2
n) (red curve) and EU (D2

n) (blue curve).

6. Conclusions and discussion

In this paper we have obtained formulas for the expected values under the
Yule and the uniform models of the square of the cophenetic metric dϕ,2 in-
duced by the euclidean distance between cophenetic vectors. These formulas
are explicit and hold on spaces Tn of fully resolved phylogenetic trees with any
number n of leaves.

These formulas have been obtained through long algebraic manipulations of
sums of sequences. To double-check our results, we have computed the exact
value of EY (D2

n) and EU (D2
n) for n = 3, . . . , 7, by generating all trees with up

to 7 leaves. Moreover, we have computed numerical approximations to these
values for n = 10, 20, . . . , 100, by generating pairs of random trees until the
numerical method stabilizes. These numerical experiments confirm that our
formulas give the right figures. Table 1 gives the exact values for n = 3, . . . , 7.
The Python scripts used in these computations, as well as a full account of
the results, are also available in the Supplementary Material web page http:

//bioinfo.uib.es/~recerca/phylotrees/expectedcophdist/.
The formulas for EY (D2

n) and EU (D2
n) grow in different orders: EY (D2

n) is
in Θ(n2), while EU (D2

n) is in Θ(n3). Therefore, D2
n can be used to test the Yule

and the uniform models as null stochastic models of evolution for collections of
phylogenetic trees reconstructed by different methods. We have reported on a
first experiment of this type, which reinforces the conclusion that “real world”
phylogenetic trees (that is, those contained in TreeBASE) are not consistent
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with the Yule model of evolution. We plan to report in a future paper on more
extensive tests on stochastic models of evolutionary processes, including Ford’s
α-model [12] and Aldous’ β-model [2].

3 4 5 6 7
EY (D2

n) 2.66667 9.40741 21.1833 38.712 62.5562
EU (D2

n) 2.66667 10.56 26.2367 52.3023 91.4086

Table 1: Values of EY (D2
n) and EU (D2

n) for n = 3, . . . , 7. They agree with those given by
our formulas.

We would like to close this paper with a conjecture. As we have seen
in §4, from our simulations we have obtained that EY (D4

n) ≈ Θ(n4.44) and
EU (D4

n) ≈ Θ(n6.23). Now, the formulas in n usually obtained in the explicit
computation of terms like those appearing in the formal development of E(D4

n)
in the spirit of Proposition 4, are linear combinations of square, fourth, and, in
general, 2m-th roots of polynomials in n. Therefore, looking at the exponents
in the aforementioned estimated asymptotic orders of EY (D4

n) and EU (D4
n),

we conjecture that their actual asymptotic orders are EY (D4
n) = Θ(n4.5) and

EU (D4
n) = Θ(n6.25).
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[7] G. Cardona, A. Mir, F. Rosselló, Exact formulas for the variance of several
balance indices under the Yule model. Journal of Mathematical Biology, 67
(2013), 1833–1846.

[8] G. Cardona, A. Mir, L. Rotger, F. Rosselló, D. Sánchez, Cophenetic metrics
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Appendix: Proof of Proposition 5

Proof of Proposition 5.(a)

For every T ∈ Tn, let

Φ(T ) = S(T ) + Φ(T ) =
∑

16i6j6n

ϕT (i, j),

and let Φn be the random variable that chooses a tree T ∈ Tn and computes
Φ(T ). We have that

EY (Φn) = EY (Sn) + EY (Φn) = n(n− 1).

To compute EY (Φ
(2)

n ), we shall use an argument similar to the one used in
the proof of [6, Prop. 3]. Notice that

EY (Φ
(2)

n ) =
∑
T∈Tn

Φ
(2)

(T ) · pY (T )

=
1

2

n−1∑
k=1

∑
Sk({1,...,n}
|Sk|=k

∑
Tk∈T (Sk)

∑
T ′
n−k
∈T (Sc

k
)

Φ
(2)

(Tk̂T ′n−k) · pY (Tk̂T ′n−k)

Now, on the one hand, we have the following easy lemma on PY (T ̂T ′): see [7,
Lem. 1].

12



Lemma 6. Let ∅ 6= Sk ( {1, . . . , n} with |Sk| = k, let Tk ∈ T (Sk) and T ′n−k ∈
T (Sc

k). Then,

PY (Tk̂T ′n−k) =
2

(n− 1)
(
n
k

)P (Tk)P (T ′n−k).

On the other hand, we have the following recursive expression for Φ
(2)

(T ̂T ′).
Lemma 7. Let ∅ 6= Sk ( {1, . . . , n} with |Sk| = k, let Tk ∈ T (Sk) and T ′n−k ∈
T (Sc

k). Then

Φ
(2)

(Tk̂T ′n−k) = Φ
(2)

(Tk)+Φ
(2)

(T ′n−k)+2Φ(Tk)+2Φ(T ′n−k)+

Ç
k + 1

2

å
+

Ç
n− k + 1

2

å
.

Proof. Let us assume, without any loss of generality, that S = {1, . . . ,m} and
S′ = {m+ 1, . . . , n}. Then

ϕ
Tk̂T ′n−k

(i, j) =


ϕTk

(i, j) + 1 if 1 6 i, j 6 k
ϕT ′

n−k
(i, j) + 1 if k + 1 6 i, j 6 n

0 otherwise

and therefore

Φ
(2)

(Tk̂T ′n−k) =
∑

16i6j6n

ϕ
Tk̂T ′n−k

(i, j)2

=
∑

16i6j6k

(ϕTk
(i, j) + 1)2 +

∑
k+16i6j6n

(ϕT ′
n−k

(i, j) + 1)2

=
∑

16i6j6k

(ϕTk
(i, j)2 + 2ϕTk

(i, j) + 1) +
∑

k+16i6j6n

(ϕT ′
n−k

(i, j)2 + 2ϕT ′
n−k

(i, j) + 1)

= Φ
(2)

(Tk) + 2Φ(Tk) +

Ç
k + 1

2

å
+ Φ

(2)
(T ′n−k) + 2Φ(T ′n−k) +

Ç
n− k + 1

2

å
.

So, if we set

f(a, b) =

Ç
a+ 1

2

å
+

Ç
b+ 1

2

å
,
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we have that

EY (Φ
(2)

n )

=
1

2

n−1∑
k=1

Ç
n

k

å ∑
Tk∈Tk

∑
T ′
n−k
∈Tn−k

[
Φ

(2)
(Tk) + Φ

(2)
(T ′n−k) + 2(Φ(Tk) + Φ(T ′n−k))

+f(k, n− k)
] 2

(n− 1)
(
n
k

)PY (Tk)PY (T ′n−k)

=
1

n− 1

n−1∑
k=1

[∑
Tk

∑
T ′
n−k

Φ
(2)

(Tk)PY (Tk)PY (T ′n−k)

+
∑
Tk

∑
T ′
n−k

Φ
(2)

(T ′n−k)PY (Tk)PY (T ′n−k)

+2
∑
Tk

∑
T ′
n−k

Φ(Tk)PY (Tk)PY (T ′n−k)

+2
∑
Tk

∑
T ′
n−k

Φ(T ′n−k)PY (Tk)PY (T ′n−k)

+
∑
Tk

∑
T ′
n−k

f(k, n− k)PY (Tk)PY (T ′n−k)
]

=
1

n− 1

n−1∑
k=1

[∑
Tk

Φ
(2)

(Tk)PY (Tk) +
∑
T ′
n−k

Φ
(2)

(T ′n−k)PY (T ′n−k)

+2
∑
Tk

Φ(Tk)PY (Tk) + 2
∑
T ′
n−k

Φ(T ′n−k)PY (T ′n−k) + f(k, n− k)
]

=
1

n− 1

n−1∑
k=1

[
EY (Φ

(2)

k ) + EY (Φ
(2)

n−k) + 2EY (Φk) + 2EY (Φn−k)

+

Ç
k + 1

2

å
+

Ç
n− k + 1

2

å]
=

2

n− 1

n−1∑
k=1

EY (Φ
(2)

k ) +
4

n− 1

n−1∑
k=1

EY (Φk) +
1

3
n(n+ 1).

In particular

EY (Φ
2

n−1) =
2

n− 2

n−2∑
k=1

EY (Φ
(2)

k ) +
4

n− 2

n−2∑
k=1

EY (Φk) +
1

3
n(n− 1).
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and therefore

EY (Φ
(2)

n ) =
n− 2

n− 1
· 2

n− 2

n−2∑
k=1

EY (Φ
(2)

k ) +
2

n− 1
EY (Φ

(2)

n−1)

+
n− 2

n− 1
· 4

n− 2

n−2∑
k=1

EY (Φk) +
4

n− 1
EY (Φn−1)

+
n− 2

n− 1
· 1

3
n(n− 1) + n

=
n− 2

n− 1
EY (Φ

(2)

n−1) +
2

n− 1
EY (Φ

(2)

n−1) +
4

n− 1
EY (Φn−1) + n

=
n

n− 1
EY (Φ

(2)

n−1) + 5n− 8.

Setting xn = EY (Φ
(2)

n )/n, this recurrence becomes

xn = xn−1 + 5− 8

n

and the solution of this recursive equation with x1 = EY (Φ
(2)

1 ) = 0 is

xn =
n∑

k=2

(
5− 8

k

)
= 5(n− 1)− 8(Hn − 1) = 5n+ 3− 8Hn

from where we deduce that EY (Φ
(2)

n ) = 5n2 + 3n− 8nHn, as we claimed.

Proof of Proposition 5.(b)

To compute EU (Φ
(2)

n ), we shall use an argument similar to the one used in
[19]. For every k = 1, . . . , n− 1, let

fk,n = |{T ∈ Tn | ϕT (1, 2) = k}|
= |{T ∈ Tn | ϕT (i, j) = k}| for every 1 6 i < j 6 n

dk,n = |{T ∈ Tn | δT (1) = k}|
= |{T ∈ Tn | δT (i) = k}| for every 1 6 i 6 n

(where |X| denotes the cardinal of the set X).

Lemma 8. For every n > 2,

EU (Φ
(2)

n ) =
1

(2n− 3)!!

(
n

n−1∑
k=1

k2 · dk,n +

Ç
n

2

å n−2∑
k=1

k2 · fk,n
)

Proof. Under the uniform model,

EU (Φ
(2)

n ) =

∑
T∈Tn Φ

(2)
(T )

(2n− 3)!!
,
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where ∑
T∈Tn

Φ
(2)

(T ) =
∑
T∈Tn

∑
16i6j6n

ϕT (i, j)2 =
∑

16i6j6n

∑
T∈Tn

ϕT (i, j)2

=
∑

16i6n

∑
T∈Tn

δT (i)2 +
∑

16i<j6n

∑
T∈Tn

ϕT (i, j)2

=
∑

16i6n

n−1∑
k=1

k2 · |{T ∈ Tn | δT (i) = k}|

+
∑

16i<j6n

n−2∑
k=1

k2 · |{T ∈ Tn | ϕT (i, j) = k}|

=
∑

16i6n

n−1∑
k=1

k2 · dk,n +
∑

16i<j6n

n−2∑
k=1

k2 · fk,n

= n
n−1∑
k=1

k2 · dk,n +

Ç
n

2

å n−2∑
k=1

k2 · fk,n.

A formula for dk,n was obtained in the proof of [20, Lem. 21]:

dk,n =
(2n− k − 3)! · k

(n− k − 1)!2n−k−1
. (1)

As far as fk,n goes, we have the following result. In it, and henceforth, pFq

denotes the (generalized) hypergeometric function defined by

pFq

Å
a1, . . . , ap
b1, . . . , bq

; z

ã
=
∑
k>0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

· z
k

k!
,

where (a)0 = 1 and (a)k := a · (a+ 1) · · · (a+ k − 1) for k > 1.

Lemma 9. For every n > 2, f0,n = (2n− 4)!! and

fk,n =
(2n− k − 5)!k

(2n− 2k − 4)!!
· 3F2

Å
1, 2− n, k + 2− n
k+5
2 − n,

k
2 − n+ 3

; 1

ã
for every k = 1, . . . , n− 2.

Proof. Let us start by proving f0,n = (2n − 4)!! by induction on n. It is clear
that f0,2 = 1 = (2 · 2 − 4)!!. Assume now that f0,n−1 = (2(n − 1) − 4)!!.
Every phylogenetic tree T with n leaves such that ϕT (1, 2) = 0, that is, where
LCAT (1, 2) is the root, is obtained by taking a phylogenetic tree T ′ with n− 1
leaves such that ϕT ′(1, 2) = 0 and adding a new pendant edge, ending in the leaf
n, to any edge in T ′. Then, since there are f0,n−1 = (2n− 6)!! trees T ′ ∈ Tn−1
such that ϕT ′(1, 2) = 0, and each one of them has 2(n− 1)− 2 edges where we
can add the new edge, we obtain

f0,n = (2n− 4)(2n− 6)!! = (2n− 4)!!.
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Now, to compute fk,n for k > 1, we shall study the structure of a tree T ∈ Tn
such that ϕT (1, 2) = k; to simplify the notations, let us denote by x the node
LCAT (1, 2), which has depth k, and by T0 the subtree of T rooted at x.

Then, on the one hand, T0 is a phylogenetic tree on a subset S0 ⊆ {1, . . . , n}
containing 1, 2, and since its root x is the LCA of 1 and 2 in T , we have that
ϕT0(1, 2) = 0. On the other hand, there is a path (r = v1, v2, v3, . . . , vk+1 = x)
in T from r to x. For every j = 1, . . . , k, let Tj be the subtree rooted at the
child of vj other than vj+1; see Fig. 3.

So, the tree T is determined by:

• A number 0 6 m 6 n− k − 2, so that m+ 2 will be the number of leaves
of the phylogenetic tree T0 rooted at LCAT (1, 2)

• A subset {i1, . . . , im} of {3, . . . , n}. There are
(
n−2
m

)
such subsets.

• A phylogenetic tree T0 on {1, 2, i1, . . . , im} such that ϕT0
(1, 2) = 0. There

are f0,m+2 = (2m)!! such trees.

• An ordered k-forest, that is, an ordered sequence of phylogenetic trees
(T1, T1, . . . , Tk) such that

⋃k
i=1 L(Ti) = {1, . . . , n}−{1, 2, i1, . . . , im}. The

number of such ordered k-forests is (see, for instance, [19, Lem. 1])

(2n− 2m− k − 5)!k

(n−m− k − 2)!2n−m−k−2
.

x

1 2

T0

..
.

Tk

T2

T1

Figure 3: The structure of a tree T with ϕT (1, 2) = k.
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This shows that fk,n can be computed as

fk,n =
n−k−2∑
m=0

(number of ways of choosing {i1, . . . , im})
·(number of trees in Tm+2 with ϕT (1, 2) = 0)
·(number of ordered k-forests on n−m− 2 leaves)

=
n−k−2∑
m=0

Ç
n− 2

m

å
· (2m)!! · (2n− 2m− k − 5)!k

(n−m− k − 2)!2n−m−k−2

= k
n−k−2∑
m=0

(n− 2)!m!2m(2n− 2m− k − 5)!

m!(n−m− 2)!(n−m− k − 2)!2n−m−k−2

=
(n− 2)!k

2n−k−2

n−k−2∑
m=0

4m(2n− 2m− k − 5)!

(n−m− 2)!(n−m− k − 2)!

Now, taking into account that

(1)m = m!

(2− n)m = (−1)m
(n− 2)!

(n−m− 2)!

(k + 2− n)m = (−1)m
(n− k − 2)!

(n− k −m− 2)!Å
k + 5

2
− n
ã
m

=
(−1)m(2n− k − 5)!!

2m(2n− k − 2m− 5)!!
,Å

k

2
− n+ 3

ã
m

=
(−1)m(2n− k − 6)!!

2m(2n− k − 2m− 6)!!

we have that

3F2

Å
1, 2− n, k + 2− n
k+5
2 − n,

k
2 − n+ 3

; 1

ã
=
∑
m>0

(1)m · (2− n)m · (k + 2− n)m

(k+5
2 − n)m · (k

2 − n+ 3)m
· 1

m!

=
∑
m>0

m!(n− 2)!(n− k − 2)!2m(2n− k − 2m− 5)!!2m(2n− k − 2m− 6)!!

(n−m− 2)!(n− k −m− 2)!(2n− k − 5)!!(2n− k − 6)!!m!

=
n−k−2∑
m=0

(n− 2)!(n− k − 2)!(2n− k − 2m− 5)!22m

(n−m− 2)!(n− k −m− 2)!(2n− k − 5)!

=
(n− 2)!(n− k − 2)!

(2n− k − 5)!

n−k−2∑
m=0

(2n− k − 2m− 5)!4m

(n−m− 2)!(n− k −m− 2)!

from where we deduce that

n−k−2∑
m=0

(2n− k − 2m− 5)!4m

(n−m− 2)!(n− k −m− 2)!

=
(2n− k − 5)!

(n− 2)!(n− k − 2)!
3F2

Å
1, 2− n, k + 2− n
k+5
2 − n,

k
2 − n+ 3

; 1

ã
18



and hence

fk,n =
(n− 2)!k

2n−k−2

n−k−2∑
m=0

4m(2n− 2m− k − 5)!

(n−m− 2)!(n−m− k − 2)!

=
(n− 2)!k

2n−k−2
· (2n− k − 5)!

(n− 2)!(n− k − 2)!
3F2

Å
1, 2− n, k + 2− n
k+5
2 − n,

k
2 − n+ 3

; 1

ã
=

(2n− k − 5)!k

(2n− 2k − 4)!!
· 3F2

Å
1, 2− n, k + 2− n
k+5
2 − n,

k
2 − n+ 3

; 1

ã
as we claimed.

We must compute now the sums

n−1∑
k=1

k2 · dk,n,
n−2∑
k=1

k2 · fk,n.

To do that, we shall use the following auxiliary lemma.

Lemma 10. For every n > 2 and m > 1, let

Un,m =
n−2∑
k=0

km(n+ k − 2)!

k!2k
.

Then,

Un,0 = (2n− 4)!!
Un,1 = (n− 1)(2n− 4)!!− (2n− 3)!!
Un,2 = (n2 − 1)(2n− 4)!!− (2n− 1)(2n− 3)!!
Un,3 = (n3 + 3n2 − 3n− 1)(2n− 4)!!− (3n2 + n− 1)(2n− 3)!!

Proof. The proof of these identities is standard, using well known equalities for
hypergeometric functions and the lookup algorithm given in [23, p. 36]. We
shall prove in detail the identity for m = 2, and we leave the details of the rest
to the reader.

Notice that

Un,2 =
n−2∑
k=0

k2(n+ k − 2)!

k!2k
=

n−2∑
k=1

k2(n+ k − 2)!

k!2k
=

n−3∑
k=0

(k + 1)2(n+ k − 1)!

(k + 1)!2k+1

=
∞∑
k=0

(k + 1)2(n+ k − 1)!

(k + 1)!2k+1
−

∞∑
k=n−2

(k + 1)2(n+ k − 1)!

(k + 1)!2k+1

Set

Xn =
∞∑
k=0

(k + 1)2(n+ k − 1)!

(k + 1)!2k+1
, Yn =

∞∑
k=n−2

(k + 1)2(n+ k − 1)!

(k + 1)!2k+1

We compute now these two summands.

19



As to Xn,

Xn =
(n− 1)!

2

∞∑
k=0

(k + 1)2(n+ k − 1)!

(n− 1)!(k + 1)!2k

If we set

tk =
(k + 1)2(n+ k − 1)!

(n− 1)!(k + 1)!2k
,

we have that
tk+1

tk
=

(k + 2)(k + n)

(k + 1)2
· 1

2

and therefore, by the lookup algorithm [23, p. 36], we have that

Xn =
(n− 1)!

2
· 2F1

Å
2, n
1 ;

1

2

ã
=

(n− 1)!

2
· 2n · 2F1

Å
n, −1
1 ;−1

ã
(using (15.3.4) in [1, p. 559])

= (n− 1)!2n−1
∑
k>0

(n)k(−1)k
(1)k

· (−1)k

k!

= (n− 1)!2n−1
( (n)0(−1)0

(1)0
· (−1)0

0!
+

(n)1(−1)1
(1)1

· (−1)1

1!

)
= (n− 1)!2n−1(n+ 1)

As to Yn,

Yn =
∞∑
k=0

(k + n− 1)2(2n+ k − 3)!

(k + n− 1)!2k+n−1

=
(n− 1)2(2n− 3)!

(n− 1)!2n−1
·
∞∑
k=0

(k + n− 1)2(2n+ k − 3)!

(k + n− 1)!2k · (n−1)
2(2n−3)!

(n−1)!

If we take now

tk =
(k + n− 1)2(2n+ k − 3)!

(k + n− 1)!2k · (n−1)
2(2n−3)!

(n−1)!

we have that
tk+1

tk
=

(n+ k)(2n+ k − 2)

(k + n− 1)2
· 1

2

and therefore, again by the lookup algorithm [23, p. 36], we have that

Yn =
(n− 1)2(2n− 3)!

(n− 1)!2n−1
· 3F2

Å
1, n, 2n− 2
n− 1, n− 1 ;

1

2

ã
=

(n− 1)2(2n− 3)!

(n− 1)!2n−1

[
2F1

Å
2n− 2, 1
n− 1 ;

1

2

ã
+

1

n− 1
· 2F1

Å
2n− 1, 2
n ;

1

2

ã]
(using [13]).
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Now

2F1

Å
2n− 2, 1
n− 1 ;

1

2

ã
= 2 · 2F1

Å
1− n, 1
n− 1 ;−1

ã
(using (15.3.4) in [1, p. 559])

= 2 · 22(n−2)Γ(n− 1)

Γ(2n− 2)

[Γ(n− 1)

Γ(0)
+

Γ(n)

Γ(1)
+

2Γ(n− 1
2 )

Γ( 1
2 )

]
(using [14])

= 2 · 22(n−2)(n− 2)!

(2n− 3)!

[
(n− 1)! + 2 · (2n− 3)!!

2n−1

]
=

2n−1(n− 1)!

(2n− 3)!!
+ 2

2F1

Å
2n− 1, 2
n ;

1

2

ã
= 22 · 2F1

Å
2, 1− n
n ;−1

ã
(using (15.3.4) in [1, p. 559])

= 4 · Γ(n)

22(2−n)Γ(2n− 1)

(Γ(n− 1
2 )

Γ( 1
2 )

+
Γ(n+ 1

2 )

Γ( 3
2 )

+ 2Γ(n)
)

(using [14])

=
22n−2(n− 1)!

(2n− 2)!

( (2n− 3)!!

2n−1
+

(2n− 1)!!

2n−1
+ 2 · (n− 1)!

)
=

2n−1(n− 1)!

(2n− 2)!
((2n− 3)!! + (2n− 1)!! + 2n · (n− 1)!)

Therefore,

Yn =
(n− 1)2(2n− 3)!

(n− 1)!2n−1

[2n−1(n− 1)!

(2n− 3)!!
+ 2

+
1

n− 1
· 2n−1(n− 1)!

(2n− 2)!
((2n− 3)!! + (2n− 1)!! + 2n · (n− 1)!)

]
= 2n−2(n+ 1)(n− 1)! + (2n− 1)!!

and finally

Un,2 = Xn − Yn = 2n−2(n+ 1)(n− 1)!− (2n− 1)!!
= (n2 − 1)(2n− 4)!!− (2n− 1)(2n− 3)!!

as we claimed.

Lemma 11. For every n > 2,

n−1∑
k=1

k2dk,n = (4n− 1)(2n− 3)!!− 3(2n− 2)!!.

Proof. By equation (1),

n−1∑
k=1

k2dk,n =
n−1∑
k=1

k3(2n− k − 3)!

(n− k − 1)!2n−k−1
=

n−2∑
k=0

(n− k − 1)3(n+ k − 2)!

k!2k

= (n− 1)3Un,0 − 3(n− 1)2Un,1 + 3(n− 1)Un,2 − Un,3

= (n− 1)3(2n− 4)!!− 3(n− 1)2
(
(n− 1)(2n− 4)!!− (2n− 3)!!

)
+3(n− 1)

(
(n2 − 1)(2n− 4)!!− (2n− 1)(2n− 3)!!

)
−
(
(n3 + 3n2 − 3n− 1)(2n− 4)!!− (3n2 + n− 1)(2n− 3)!!

)
= (4n− 1)(2n− 3)!!− 3(2n− 2)(2n− 4)!!.
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Lemma 12. For every n > 2,

n−2∑
k=1

k2fk,n =
1

3
(4n+ 1)(2n− 3)!!− 3

2
(2n− 2)!!.

Proof. To simplify the notations, set Sn =
n−2∑
k=1

k2fk,n. As we have seen in the

proof of Lemma 9,

fk,n =
(n− 2)!k

2n−k−2

n−k−2∑
m=0

4m(2n− 2m− k − 5)!

(n−m− 2)!(n−m− k − 2)!

and therefore

Sn =
(n− 2)!

2n−2

n−2∑
k=1

2kk3
n−k−2∑
m=0

4m(2n− k − 2m− 5)!

(n− k − 2)!(n− k −m− 2)!

=
(n− 2)!

2n−2

n−2∑
k=1

2kk3
n−k−2∑
m=0

4n−k−2−m(k + 2m− 1)!

(k +m)!m!

= (n− 2)!2n−2
n−2∑
k=1

k3

2k

(
1

k
+

n−k−2∑
m=1

1

4mm

Ç
k + 2m− 1

k +m

å)
= (n− 2)!2n−2

(
6− n2 + 2

2n−2
+

n−2∑
k=1

k3

2k

n−k−2∑
m=1

1

4mm

Ç
k + 2m− 1

k +m

å)
Set now

S′n =
n−2∑
k=1

k3

2k

n−k−2∑
m=1

1

4mm

Ç
k + 2m− 1

k +m

å
=

n−3∑
k=1

k3

2k

n−k−2∑
m=1

1

4mm

Ç
k + 2m− 1

k +m

å
Since S′3 = 0, we have that

S′n =
n−1∑
p=3

(S′p+1 − S′p)
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and

S′p+1 − S′p =
(p− 2)3

2p
+

p−3∑
k=1

k3

2k(p− k − 1)4p−k−1

Ç
2p− k − 3

p− 1

å
=

(p− 2)3

2p
+

1

22p−2

p−3∑
k=1

k3(2p− k − 3)!

2−k(p− k − 1)(p− 1)!(p− k − 2)!

=
(p− 2)3

2p
+

1

22p−2(p− 1)!

p−3∑
k=1

k3(2p− k − 3)!

2−k(p− k − 1)!

=
(p− 2)3

2p
+

1

22p−2(p− 1)!

p−3∑
k=1

(p− k − 2)3(p+ k − 1)!

2k−p+2(k + 1)!

=
(p− 2)3

2p
+

1

2p−1(p− 1)!

p−2∑
k=2

(p− k − 1)3(p+ k − 2)!

2kk!

=
(p− 2)3

2p
+

1

2p−1(p− 1)!

[ p−2∑
k=0

(p− k − 1)3(p+ k − 2)!

2kk!

−(p− 1)3(p− 2)!− 1

2
(p− 2)3(p− 1)!

]
= − (p− 1)2

2p−1
+

1

2p−1(p− 1)!

p−2∑
k=0

(p− k − 1)3(p+ k − 2)!

2kk!

= − (p− 1)2

2p−1
+

1

(2p− 2)!!

(
(4p− 1)(2p− 3)!!− 3(2p− 2)!!

)
(by Lemma 11)

= − (p− 1)2

2p−1
+ (4p− 1)

(2p− 3)!!

(2p− 2)!!
− 3

Therefore

S′n =
n−1∑
p=3

(
(4p− 1)

(2p− 3)!!

(2p− 2)!!
− (p− 1)2

2p−1
− 3
)

Now, applying Gosper’s algorithm [23, p. 77] we have that

n−1∑
p=3

(4p− 1)
(2p− 3)!!

(2p− 2)!!
=

1

3 · 22n+1

(
32(4n2 − 3n− 1)

Ç
2n− 3

n− 1

å
− 39 · 22n

)
and then

S′n =
1

3 · 22n+1

(
32(4n2 − 3n− 1)

Ç
2n− 3

n− 1

å
− 39 · 22n

)
−11 · 2n − 8(n2 + 2)

2n+1
− 3(n− 3)

=
n2 + 2

2n−2
− 3(n+ 1) +

(4n+ 1)(2n− 3)!!

3(2n− 4)!!
.
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Finally,

Sn = (n− 2)!2n−2
Å

6− n2 + 2

2n−2
+ S′n

ã
= −3(n− 1)!2n−2 +

(4n+ 1)(2n− 3)!!

3

=
1

3
(4n+ 1)(2n− 3)!!− 3

2
(2n− 2)!!.

Finally, by Lemmas 8, 11, and 12, we have that

EU (Φ
(2)

n ) =
1

(2n− 3)!!

(
n

n−1∑
k=1

k2 · dk,n +

Ç
n

2

å n−2∑
k=1

k2 · fk,n
)

=
1

(2n− 3)!!

[
n((4n− 1)(2n− 3)!!− 3(2n− 2)!!)

+

Ç
n

2

å(1

3
(4n+ 1)(2n− 3)!!− 3

2
(2n− 2)!!

)]
=

1

6
n(4n2 + 21n− 7)− 3n(n+ 3)

4
· (2n− 2)!!

(2n− 3)!!

as we claimed.
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