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Abstract

Background: Phylogenetic tree comparison metrics are an important tool in the study of evolution, and hence the
definition of such metrics is an interesting problem in phylogenetics. In a paper in Taxon fifty years ago, Sokal and
Rohlf proposed to measure quantitatively the difference between a pair of phylogenetic trees by first encoding them
by means of their half-matrices of cophenetic values, and then comparing these matrices. This idea has been used
several times since then to define dissimilarity measures between phylogenetic trees but, to our knowledge, no
proper metric on weighted phylogenetic trees with nested taxa based on this idea has been formally defined and
studied yet. Actually, the cophenetic values of pairs of different taxa alone are not enough to single out phylogenetic
trees with weighted arcs or nested taxa.

Results: For every (rooted) phylogenetic tree T, let its cophenetic vector ϕ(T) consist of all pairs of cophenetic values
between pairs of taxa in T and all depths of taxa in T. It turns out that these cophenetic vectors single out weighted
phylogenetic trees with nested taxa. We then define a family of cophenetic metrics dϕ,p by comparing these
cophenetic vectors by means of Lp norms, and we study, either analytically or numerically, some of their basic
properties: neighbors, diameter, distribution, and their rank correlation with each other and with other metrics.

Conclusions: The cophenetic metrics can be safely used on weighted phylogenetic trees with nested taxa and no
restriction on degrees, and they can be computed in O(n2) time, where n stands for the number of taxa. The metrics
dϕ,1 and dϕ,2 have positive skewed distributions, and they show a low rank correlation with the Robinson-Foulds metric
and the nodal metrics, and a very high correlation with each other and with the splitted nodal metrics. The diameter
of dϕ,p, for p � 1, is in O(n(p+2)/p), and thus for low p they are more discriminative, having a wider range of values.

Background
Many phylogenetic trees published in the literature or
included in phylogenetic databases are actually alternative
phylogenies for the same sets of organisms, obtained from
different datasets or using different evolutionary models
or different phylogenetic reconstruction algorithms [1].
This variety of phylogenetic trees makes it necessary to
developmethods formeasuring their differences [2, Chap-
ter 30]. The comparison of phylogenetic trees is also used
to compare phylogenetic trees obtained through numer-
ical algorithms with other types of hierarchical classi-
fications [3,4], to assess the stability of reconstruction
methods [5], and in the comparative analysis of den-
drograms and other hierarchical cluster structures [6,7].
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Hence, and since the safest way to quantify the differ-
ences between a pair of trees is through a metric, “tree
comparison metrics are an important tool in the study of
evolution” [8].
Many metrics for the comparison of phylogenetic trees

have been proposed so far [2, Chapter 30]. Some of these
metrics are edit distances that count howmany operations
of a given type are necessary to transform one tree into the
other. These metrics include the nearest-neighbor inter-
change metric [9] and the subtree prune-and-regrafting
distance [10]. Other metrics compare a pair of phylo-
genetic trees through some consensus subtree. This is
the case for instance of the MAST distances defined in
[11-13]. Finally, many metrics for phylogenetic trees are
based on the comparison of encodings of the phylogenetic
trees, like for instance the Robinson-Foulds metric [14,15]
(which can also be understood as an edit distance), the
triples metric [16], the classical nodal metrics for binary
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phylogenetic trees [5,8,17-19], and the splitted nodal met-
rics for arbitrary phylogenetic trees [20]. The advantage
of this last kind of metrics is that, unlike the edit and
the consensus distances, they are usually computed in low
polynomial time.
In an already fifty years old paper [4], Sokal and Rohlf

proposed a technique to compare dendrograms (which,
in their paper, were equivalent to weighted phylogenetic
trees without nested taxa) on the same set of taxa, by
encoding them by means of their half-matrices of cophe-
netic values, and then comparing these structures. Their
method runs as follows. To begin with, they divide the
range of depths of internal nodes in the tree into a suitable
number of equal intervals and number increasingly these
intervals. Then, for each pair of taxa i,j in the tree, they
compute their cophenetic value as the class mark of the
interval where the depth of their lowest common ances-
tor lies. Then, to compare two phylogenetic trees, they
compare their corresponding half-matrices of cophenetic
values. In that paper, they do it specifically by calculat-
ing a correlation coefficient between their entries. Sokal
and Rohlf ’s paper [4] is quite cited (612 cites according to
Google Scholar on July 1, 2012) and their method has been
often used to compare hierarchical classifications (see, for
instance, [21-23]).
Since Sokal and Rohlf ’s paper, other papers have com-

pared the half-matrices of cophenetic values to define
dissimilarity measures between phylogenetic trees (see,
for instance, [3,24]), and such half-matrices have also been
used in the so-called “comparative method”, the statisti-
cal methods used to make inferences on the evolution
of a trait among species from the distribution of other
traits: see [25,26] and [2, Chapter 25]. But, to our knowl-
edge, no proper metric for phylogenetic trees based on
cophenetic values has been formally defined and studied
in the literature. In this paper we define a new family of
metrics for weighted phylogenetic trees with nested taxa
based on Sokal and Rohlf ’s idea and we study some of
their basic properties: neighbors, diameter, distribution,
and their rank correlation with each other and with other
metrics.
Our approach differs in some minor points with Sokal

and Rohlf ’s. For instance, we use as the cophenetic value
ϕ(i, j) of a pair of taxa i,j the actual depth of the low-
est common ancestor of i and j, instead of class marks,
which was done by Sokal and Rohlf because of practical
limitations. Moreover, instead of using a correlation coef-
ficient, we define metrics by using Lp norms. Finally, we
do not restrict ourselves to dendrograms, without internal
labeled nodes, but we also allow nested taxa.
There is, however, a main difference between our

approach and Sokal and Rohlf ’s. We do not only consider
the cophenetic values of pairs of taxa, but also the depths
of the taxa. We must do so because we want to define a

metric, where zero distance means isomorphism, and the
cophenetic values of pairs of different taxa alone do not
single out even the dendrograms considered by Sokal and
Rohlf. That is, two non isomorphic weighted phylogenetic
trees without nested taxa on the same set of taxa can have
the same vectors of cophenetic values; see Figure 1.
It turns out that the cophenetic vector consisting of all

cophenetic values of pairs of taxa and the depths of all taxa
characterizes a weighted phylogenetic tree with nested
taxa. This fact comes from the well known relationship
between cophenetic values and patristic distances. If we
denote by δ(i) the depth of a taxon i, by ϕ(i, j) the cophe-
netic value of a pair of taxa i,j and by d(i, j) the distance
between i and j, then [27]

d(i, j) = δ(i) + δ(j) − 2ϕ(i, j).

So, if the depths of the taxa are known, the knowledge of
the cophenetic values of pairs of taxa is equivalent to the
knowledge of the additive distance defined by the tree. On
their turn, the depths and the additive distance single out
the unrooted semi-labelled weighted tree associated to the
phylogenetic tree with the former root labeled with a spe-
cific label “root”, and hence the phylogenetic tree itself: cf.
Theorem 1.
The fact that cophenetic vectors single out weighted

phylogenetic trees with nested taxa can also be deduced
from their relationship with splitted path lengths [20].
Recall that the splitted path length �(i, j) is the distance
from the lowest common ancestor of i and j to i. It is
known [20, Thm. 10] that the matrix

(
�(i, j)

)
i,j character-

izes a weighted phylogenetic tree with nested taxa. Since,
obviously,

�(i, j) = δ(i) − ϕ(i, j),

the cophenetic vector uniquely determines the matrix of
splitted path lengths, and hence the tree.a
The vector of cophenetic values of pairs of different

taxa is also related to the notion of ultrametric [28,29].
Indeed, notice that −ϕ satisfies the three-point condition
of ultrametrics: for every taxa i, j, k,

−ϕ(i, j) � min{−ϕ(i, k),−ϕ(j, k)}.

1 2

4 5 1 1 1

1 2 1

2

Figure 1 An unweighted phylogenetic tree on 7 taxa.
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But −ϕ is not an ultrametric, as ϕ(i, i) = δ(i) �= 0. Actu-
ally, ϕ can only be used to define an ultrametric precisely
on ultrametric trees, where the depths of all leaves are the
same, say �. In this case, � − ϕ is the ultrametric defined
by the tree. In particular, ultrametric trees can be com-
pared by comparing their vectors of cophenetic values of
pairs of different taxa. A similar idea is used in [30] to
induce an average genetic distance between populations
from the average coancestry coefficient.
We would like to dedicate this paper to the memory of

Robert R. Sokal, father of the field of numerical taxon-
omy and who passed away last April. His ideas permeate
biostatistics and computational phylogenetics.

Notations
A rooted tree is a directed finite graph that contains a dis-
tinguished node, called the root, from which every node
can be reached through exactly one path. A weighted
rooted tree is a pair (T ,ω) consisting of a rooted tree
T = (V ,E) and a weight function ω : E → R>0 that
associates to every arc e ∈ E a non-negative real number
ω(e) > 0. We identify every unweighted (that is, where no
weight function has been explicitly defined) rooted tree T
with the weighted rooted tree (T ,ω) with ω the weight 1
constant function.
Let T = (V ,E) be a rooted tree. Whenever (u, v) ∈ E,

we say that v is a child of u and that u is the parent
of v. Two nodes with the same parent are siblings. The
nodes without children are the leaves of the tree, and the
other nodes (including the root) are called internal. A
pendant arc is an arc ending in a leaf. The nodes with
exactly one child are called elementary. A tree is binary,
or fully resolved, when every internal node has exactly two
children.
Whenever there exists a path from a node u to a node

v, we shall say that v is a descendant of u and also that u
is an ancestor of v, and we shall denote it by v � u; if,
moreover, u �= v, we shall write v ≺ u. The lowest common
ancestor (LCA) of a pair of nodes u,v of a rooted tree T, in
symbols [u, v]T , is the unique common ancestor of them
that is a descendant of every other common ancestor of
them. Given a node v of a rooted tree T, the subtree of
T rooted at v is the subgraph of T induced on the set of
descendants of v (including v itself ). A rooted subtree is a
cherry when it has 2 leaves, a triplet, when it has 3 leaves,
and a quartet, when it has 4 leaves.
The distance from a node u to a descendant v of it in a

weighted rooted tree T is the sum of the weights of the
arcs in the unique path from u to v. In an unweighted
rooted tree, this distance is simply the number of arcs in
this path. The depth of a node v, in symbols δT (v), is the
distance from the root to v.
Let S be a non-empty finite set of labels, or taxa. A

(weighted) phylogenetic tree on S is a (weighted) rooted

tree with some of its nodes bijectively labeled in the set S,
including all its leaves and all its elementary nodes except
possibly the root (which can be elementary but unlabeled).
The reasons why we allow unlabeled elementary roots
are that our results are still valid for phylogenetic trees
containing them, and that even if we forbid them, we
would need in some proofs to use that Theorem 1 below
is true for phylogenetic trees containing them. More-
over, it is not uncommon to add an unlabeled elementary
root to a phylogenetic tree in some contexts: see, for
instance, the phylogenetic trees depicted in Wikipedia’s
entry “Phylogenetic tree”.b
In a phylogenetic tree, we shall always identify a labeled

node with its taxon. The internal labeled nodes of a
phylogenetic tree are called nested taxa. Notice in partic-
ular that a phylogenetic tree without nested taxa cannot
have elementary nodes other than the root. Although in
practice S may be any set of taxa, to fix ideas we shall
usually take S = {1, . . . , n}, with n the number of labeled
nodes of the tree, and we shall use the term phyloge-
netic tree with n taxa to refer to a phylogenetic tree on
this set.
Given a set S of taxa, we shall consider the following

spaces of phylogenetic trees:

• WT (S), of all weighted phylogenetic trees on S
• UT (S), of all unweighted phylogenetic trees on S
• T (S), of all unweighted phylogenetic trees on S

without nested taxa
• BT (S), of all binary unweighted phylogenetic trees

on S without nested taxa

When S = {1, . . . , n}, we shall simply write WT n, UT n,
Tn, and BT n, respectively.
Two phylogenetic trees T and T ′ on the same set S of

taxa are isomorphic when they are isomorphic as directed
graphs and the isomorphism sends each labeled node of T
to the labeled node with the same label in T ′. An isomor-
phism of weighted phylogenetic trees is also required to
preserve arc weights. We shall make the abuse of notation
of saying that two isomorphic trees are actually the same,
and hence of denoting that two trees T ,T ′ are isomorphic
by simply writing T = T ′.

Methods
Cophenetic vectors
Let S be henceforth a non-empty set of taxa with |S| =
n, which without any loss of generality we identify with
{1, . . . , n}. Let T ∈ WT n be a weighted phylogenetic
tree on S. For every pair of different taxa i,j in T, their
cophenetic value is the depth of their LCA:

ϕT (i, j) = δT ([ i, j]T ).

To simplify the notations, we shall often write ϕT (i, i) to
denote the depth δT (i) of a taxon i.
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The cophenetic vector of T is

ϕ(T) = (
ϕT (i, j)

)
1�i�j�n ∈ R

n(n+1)/2,

with its elements lexicographically ordered in (i, j).

Example 1. If T is the unweighted phylogenetic tree in
Figure 2, then ϕ(T) is the vector obtained by lexicographi-
cally ordering in (i, j) the elements of Table 1.

The cophenetic vectors single out weighted phyloge-
netic trees with nested taxa.

Theorem 1. For every T ,T ′ ∈ WT (S), if ϕ(T) = ϕ(T ′),
then T = T ′.

Proof. Let r be a symbol not belonging to S and let
X = S ∪ {r}. Recall that a weighted X-tree is an undirected
weighted tree T with set of nodes V endowed with a (non
necessarily injective) node-labeling mapping f : X → V
such that f (X) contains all the leaves and all the degree-2
nodes in T [31].
For every T ∈ WT (S), let T∗ be the weighted X-tree

obtained by considering T as undirected and adding to
its former root the label r. Then, the distance dT∗ on T∗
between pairs of labels in X is uniquely determined by
ϕ(T) in the following way:

dT∗(i, r) = δT (i) for every i ∈ S
dT∗(i, j) = δT (i) + δT (j) − 2ϕT (i, j) for every i, j ∈ S

Now, T∗ is singled out by dT∗ [31, Thm. 7.1.8]. Since T
is uniquely determined from T∗ and the knowledge of the
root (that is the node labeled with r), we deduce that ϕ(T)

singles out T.

This result implies that the vectors of cophenetic values
of pairs of different taxa single out unweighted phyloge-
netic trees without nested taxa.

1 2 3 4 5 6

7

T
Figure 2 Three non-isomorphic trees with the same vector ϕ̃(T).

Table 1 Cophenetic values of the pairs of taxa in the
phylogenetic tree T in Figure 2

j 1 2 3 4 5 6 7

i

1 4 2 1 1 0 0 3

2 3 1 1 0 0 2

3 3 2 0 0 1

4 3 0 0 1

5 2 1 0

6 2 0

7 3

Corollary 1. For every T ∈ Tn, let ϕ̃(T) = (ϕT
(i, j)

)
1�i<j�n ∈ R

n(n−1)/2, with its elements lexicograph-
ically ordered in (i, j). Then, for every T ,T ′ ∈ Tn, if
ϕ̃(T) = ϕ̃(T ′), then T = T ′.

Proof. If T is unweighted and without nested taxa, then,
for every taxon i,

δT (i) = 1 + max{ϕT (i, j) | 1 � j � n, j �= i}
and therefore, in this case, ϕ(T) is uniquely determined by
ϕ̃(T).

But in order to single out phylogenetic trees with non
constant weights in the arcs or with nested taxa, it is nec-
essary to take into account also the depths of the leaves.
Actually, for example, there is no way to reconstruct from
ϕ̃(T) the weights of the pendant arcs: the depths of the
leaves are needed. Or, without being able to compare
depths with cophenetic values, there is no way to say
whether a taxon is nested or not. More specifically, for
instance, the three trees in Figure 1 have the same value of
ϕ(1, 2), and hence the same vector ϕ̃(T), but they are not
isomorphic as weighted phylogenetic trees.
The cophenetic vector ϕ(T) of a weighted phylogenetic

tree T ∈ WT n can be computed in optimal O(n2) time
(assuming a constant cost for the addition of real num-
bers) by computing for each internal node v, its depth
δT (v) through a preorder traversal of T, and the pairs of
taxa of which v is the LCA through a postorder traver-
sal of the tree. Both preorder and postorder traversals are
performed in linear time on the usual tree data structures.

Cophenetic metrics
As we have seen in Theorem 1, the mapping

ϕ : WT n −→ R
n(n+1)/2

that sends each T ∈ WT n to its cophenetic vector ϕ(T),
is injective up to isomorphism. As it is well known, this
allows to induce metrics on WT n from metrics defined
on powers of R. In particular, every Lp norm ‖ · ‖p on
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R
n(n+1)/2, p � 1, induces a cophenetic metric dϕ,p onWT n

by means of

dϕ,p(T1,T2) = ‖ϕ(T1) − ϕ(T2)‖p, T1,T2 ∈ WT n.

Recall that

‖(x1, . . . , xm)‖p = p
√|x1|p + · · · + |xm|p,

and so, for instance,
dϕ,1(T1,T2) = ∑

1�i�j�n
|ϕT1(i, j) − ϕT2(i, j)|

dϕ,2(T1,T2) =
√ ∑

1�i�j�n
(ϕT1(i, j) − ϕT2(i, j))2

are the cophenetic metrics on WT n induced by the
Manhattan L1 and the euclidean L2 norms. One can also
use Donoho’s L0 “norm” (which, actually, is not a proper
norm)

‖(x1, . . . , xm)‖0 = number of entries xi that are �= 0

to induce a metric dϕ,0(T1,T2) on WT n, which turns out
to be simply the Hamming distance between ϕ(T1) and
ϕ(T2).
As we have seen in the previous subsection, the cophe-

netic vector of a phylogenetic tree in WT n can be com-
puted in O(n2) time. For every T1,T2 ∈ WT n, and
assuming a constant cost for the addition and product of
real numbers, the cost of computing dϕ,0(T1,T2) (as the
number of non-zero entries of ϕ(T1) − ϕ(T2)) is O(n2),
and the cost of computing dϕ,p(T1,T2)p, for p � 1 (as
the sum of the p-th powers of the entries of the difference
ϕ(T1)−ϕ(T2)) isO(n2+log2(p)n2), which is againO(n2) if
we understand log(p) as part of the constant factor. Finally,
the cost of computing dϕ,p(T1,T2), p � 1, as the p-th root
of dϕ,p(T1,T2)p will depend on p and on the accuracy with
which this root is computed. Assuming a constant cost
for the computation of p-th roots with a given accuracy
(notice that, in practice, for low p and accuracy, this step
will be dominated by the computation of dϕ,p(T1,T2)p),
the total cost of computing dϕ,p(T1,T2) is O(n2).
Next examples show some features of these cophenetic

metrics.

Example 2. Let T ∈ UT n, let (u, v) be an arc of T with u
or v unlabeled, and let T ′ be the phylogenetic tree in UT n

obtained by contracting (u, v): that is, by removing the node
v and the arc (u, v), labeling u with the label of v if it was
labeled, and replacing every arc (v, x) in T by an arc (u, x).
Notice that, in the passage from T to T ′, for every i, j ∈ S:

• If both i,j are descendants of v in T, then
ϕT ′(i, j) = ϕT (i, j) − 1.

• In any other case, ϕT ′(i, j) = ϕT (i, j).

As a consequence,

ϕT (i, j) − ϕT ′(i, j) =
{
1 if i, j � v
0 otherwise

and therefore, if nv is the number of descendant taxa of v,

dϕ,0(T ,T ′)=
(
nv + 1

2

)
, dϕ,p(T ,T ′)= p

√(
nv + 1

2

)
if p�1.

So the contraction of an arc in an tree T (which is
Robinson-Foulds’ α-operation [15]) yields a new tree T ′
at a cophenetic distance from T that depends increas-
ingly on the number of descendant taxa of the head of the
contracted arc.

Example 3. Let T0,T ′
0 ∈ WT m, for some m < n, let

T ∈ WT n be such that its subtree rooted at some node z is
T0, and let T ′ ∈ WT n be the tree obtained by replacing in
T this subtree T0 by T ′

0.
Notice that, for every i, j ∈ {1, . . . , n}, ϕT (i, j) = δT (z) +

ϕT0(i, j) if i, j � m, and ϕT (i, j) = ϕT (z, j) if i � m and
j > m, and the same holds in T ′, replacing T and T0 by
T ′ and T ′

0, respectively. Since, moreover, δT (z) = δT ′(z),
ϕT (z, j) = ϕT ′(z, j) for every j > m, and ϕT (i, j) = ϕT ′(i, j)
for every i, j > m, we conclude that

ϕ(T) − ϕ(T ′) = ϕ(T0) − ϕ(T ′
0)

and hence

dϕ,p(T ,T ′) = dϕ,p(T0,T ′
0).

So, the cophenetic metrics are local, as other popular
metrics like the Robinson Foulds or the triples metrics,
but unlike other popular metrics, like for instance the
nodal metrics.

Figure 3 Contraction of an arc ending in the parent of a cherry.
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Figure 4 Pruning and regrafting an uncle of a cherry to make it a sibling of them.

Results and discussion
Minimum andmaximum values for cophenetic metrics
Our first goal is to find the smallest non-negative value
of dϕ,p on several spaces of phylogenetic trees, and the
pairs of trees at which it is reached. These pairs of trees at
minimum distance can be understood as ‘adjacent’ in the
corresponding metric space, and their characterization
yields a first step towards understanding how cophenetic
metrics measure the difference between two trees.
Notice that this problem makes no sense for weighted

phylogenetic trees. For instance, if we add or subtract an
ε > 0 to the weight of a pendant arc in a tree T, with-
out changing its topology, the distance between T and the
resulting tree will be ε, which can be as small as desired.
So, we only consider this problem on UT n, Tn, and BT n.
In order to simplify the statements, set

Dp(T1,T2) =
{
dϕ,0(T1,T2) if p = 0
dϕ,p(T1,T2)p if p � 1

The following easy result, which is a direct consequence
of the fact that Dp(T1,T2) � D0(T1,T2) for every p � 1
and T1,T2 ∈ UT n, will be used in the proof of the next
propositions.

Lemma 1. Assume that, for every pair of different trees
T1,T2 in UT n, Tn or BT n such that D0(T1,T2) is mini-
mum on this space, we have that Dp(T1,T2) = D0(T1,T2).
Then, the minimum non-zero value of Dp on this space of
trees is equal to the minimum non-zero value of D0 on it,
and it is reached at exactly the same pairs of trees.

The least non-negative values ofDp, for p ∈ {0}∪[ 1,∞[,
on UT n, Tn, and BT n, together with an explicit descrip-
tion of the pairs of trees where these minimum values are
reached, are given by the next three propositions. We give
their proofs in the Additional file 1.

Proposition 1. The minimum non-negative value of Dp
on UT n, for p ∈ {0}∪[ 1,∞[ and n � 2, is 1. And for every
T ,T ′ ∈ UT n, Dp(T ,T ′) = 1 if, and only if, one of them is
obtained from the other by contracting a pendant arc.

So, not every tree in UT n has neighbors at cophenetic
distance 1: only those trees with some leaf whose par-
ent is unlabeled. Now, it is not difficult to check that a
tree T ∈ UT n such that all its leaves have labeled par-
ents has some tree T ′ such that Dp(T ,T ′) = 2, which
is the minimum value of Dp on UT n greater than 1.
One such T ′ is obtained by choosing a pendant arc in T
and interchanging the labels of its source and its target
nodes.

Proposition 2. The minimum non-negative value of Dp
on Tn, for p ∈ {0}∪[ 1,∞[ and n � 3, is 3. And for every
T ,T ′ ∈ Tn, Dp(T ,T ′) = 3 if, and only if, one of them is
obtained from the other by means of one of the following
two operations:

(a) Contracting an arc ending in the parent of a cherry
(see Figure 3)

(b) Pruning and regrafting a leaf that is a sibling of the
root of a cherry, to make it a sibling of the leaves in
the cherry (see Figure 4)

Figure 5 Reorganizing a triplet.
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Figure 6 Reorganizing a completely branched quartet.

So, every tree T ∈ Tn has neighbors T ′ such that
Dp(T ,T ′) = 3. Indeed, take an internal node v in T of
largest depth, so that all its children are leaves. If v has
exactly two children, one such neighbor of T is obtained
by contracting the arc ending in v. If v has more than two
children, one such neighbor of T is obtained by replac-
ing any two children of v by a cherry (that is, taking two
children i,j of v, removing the arcs (v, i) and (v, j), and
then adding a new node v0 and arcs (v, v0), (v0, i), and
(v0, j)).

Proposition 3. The minimum non-negative value of Dp
on BT n, for p ∈ {0}∪[ 1,∞[ and n � 3, is 4. And for every
T ,T ′ ∈ BT n, Dp(T ,T ′) = 4 if, and only if, one of them

is obtained from the other by means of one of the following
operations:

(a) Reorganizing a triplet (see Figure 5)
(b) Reorganizing a completely branched quartet (see

Figure 6)

So again, every tree T ∈ BT n has neighbors T ′ such
thatDp(T ,T ′) = 4. Indeed, take an internal node v in T of
largest depth, so that its two children are leaves. Let w be
the parent of v. Then, either the other child of w is a leaf,
in which case w is the root of a triple and reorganizing its
taxa we obtain a neighbor of T, or the other child of w is
the parent of a cherry (it will have the same, maximum,

6 d 2 dnodal ,1 dnodal ,2 dRF

d 1

d 2

dnodal ,

,

,

,

1

dnodal ,2

Figure 7 2D-histograms showing the relationship between different distances onBT 6.
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6 d 2 dspnodal ,1 dspnodal ,2 dRF

d 1

d 2

dspnodal ,

,

,

1

dspnodal ,2

Figure 8 2D-histograms showing the relationship between different distances onT6.

depth as v), in which case w is the root of a completely
branched quartet and reorganizing its taxa we obtain a
neighbor of T.
We focus now on the diameter, that is, the largest value

of dϕ,p on the spaces of unweighted phylogenetic trees (as
in the case of the minimum non-zero value, and for the
same reasons, the problem of finding the diameter makes
no sense for weighted trees). Unfortunately, we have not
been able to find exact formulas for it, but we have
obtained its order, which we give in the next proposition.
We also give its proof in the Additional file 1.

Proposition 4. The diameter of dϕ,p on UT n, Tn, and
BT n is in 	(n2) if p = 0 and in 	(n(p+2)/p) if p � 1.

In particular, the diameter of dϕ,1 on these spaces is in
	(n3), and the diameter of dϕ,2 is in 	(n2).

Numerical experiments
We have performed several numerical experiments con-
cerning the distributions of dϕ,1 and dϕ,2, and the cor-
relation of these metrics with other phylogenetic tree
comparison metrics. The results of all these experiments
can be found in the web page http://bioinfo.uib.es/∼

recerca/phylotrees/cophidist/. In this section we report
only on some significant results obtained through these
experiments.
As a first experiment, we have generated all trees inBT n

and Tn, for n = 3, 4, 5, 6, and for all pairs of them we have
computed:

• The cophenetic distances dϕ,1 and dϕ,2 on BT n and
Tn.

• The Robinson-Foulds distance dRF on BT n and Tn
[15].

• The classical nodal distances dnodal,1 and dnodal,2 on
BT n, which compare the vectors of distances
between pairs of taxa by means of the Manhattan and

Table 2 Spearman’s rank correlation coefficient between
different distances onBT 6

BT 6 dϕ,2 dnodal,1 dnodal,2 dRF

dϕ,1 0.966309 0.066217 0.057751 0.473775

dϕ,2 0.093708 0.100914 0.501130

dnodal,1 0.928421 0.585127

dnodal,2 0.623644

http://bioinfo.uib.es/~recerca/phylotrees/cophidist/
http://bioinfo.uib.es/~recerca/phylotrees/cophidist/
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Table 3 Spearman’s rank correlation coefficient between
different distances on T6

T6 dϕ,2 dspnodal,1 dspnodal,2 dRF

dϕ,1 0.965115 0.803159 0.864113 0.505631

dϕ,2 0.831387 0.902573 0.529837

dspnodal,1 0.957057 0.665752

dspnodal,2 0.642203

the Euclidean norms, respectively; see [5] and [18],
respectively, as well as [20].

• The splitted nodal distances dspnodal,1 and d
sp
nodal,2 on Tn,

which compare the matrices of splitted path lengths
between pairs of taxa by means of the Manhattan and
the Euclidean norms, respectively; see [20].

In order to analyze this data, we have plotted 2D-
histograms for all pairs of metrics and we have computed
their Spearman’s rank correlation coefficient. On the one
hand, the 2D-histograms for BT 6 and T6 (the most signi-
ficative case) are given in Figures 7 and 8, respectively. For
each pair of distances, we have divided the range of val-
ues that each of the distances gets into 25 subranges, and
computed how many pairs of trees fall into each of the
25× 25 different possibilities. Each of these possibilities is

represented by a rectangle in a grid, whose darkness level
is proportional of the number of trees. On the other hand,
the Spearman’s rank correlation coefficient between the
aforementioned distances in the most significative case of
n = 6 are given in Tables 2 and 3.
These histograms and tables show that dϕ,1 and dϕ,2 are

highly correlated, and that each dϕ,i, i = 1, 2, is highly
correlated with the corresponding dspnodal,i on T6. This is
not a surprise, because both types of metrics are based
on encodings of phylogenetic trees related to the position
in the tree of the LCA of every pair of leaves: remember
the relationship between depths, cophenetic values and
splitted path lengths recalled in the Background section.
More surprising to us is the low correlation between each
dϕ,i, and the corresponding dnodal,i on BT 6, because of
the relationship between depths, cophenetic values and
patristic distances also recalled in the Background section.
The very low correlation between the cophenetic metrics
and the Robinson-Foulds metric simply shows that these
metrics measure different notions of similarity.
Our second experiment is for values of n greater than 6.

The numbers of trees in each of the spaces Tn and BT n
make it unfeasible to compute the distances between all
pairs of trees. Hence, we have randomly and uniformly
generated pairs of trees in each of these spaces for

100 d 2 dnodal ,, 1 dnodal ,2 dRF

d 1

d 2

dnodal ,

,

,

1

dnodal ,2

Figure 9 2D-histograms showing the relationship between different distances onBT 100.
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100 d 2 dspnodal ,, 1 dspnodal ,2 dRF

d 1

d 2

dspnodal ,1

dspnodal ,2

,

,

Figure 10 2D-histograms showing the relationship between different distances onT100.

n = 10, 20, . . . , 100 until the approximated value of the
Spearman’s rank correlations of all pairs of distances con-
verge up to 3 significant digits. The corresponding 2D-
histograms and Spearman’s rank correlation coefficient
tables for the most significative case of n = 100 are shown
in Figures 9 and 10 and Tables 4 and 5. These diagrams
and tables confirm the very high correlation between dϕ,1
and dϕ,2, and very low correlation of these metrics and
the nodal and Robinson-Foulds metrics. The correlation
between each dϕ,i, i = 1, 2, and the corresponding dspnodal,i
is still significant, but it decreases as n increases.
Finally, in Figure 11 we have plotted the histograms

of the distributions of dϕ,1 and dϕ,2 on BT n and Tn for
n = 10, 20, . . . , 100. As it can be seen, they are positive

Table 4 Spearman’s rank correlation coefficient between
different distances onBT 100

BT 100 dϕ,2 dnodal,1 dnodal,2 dRF

dϕ,1 0.986933 0.447140 0.448265 -0.00080

dϕ,2 0.513306 0.514363 0.003281

dnodal,1 0.998478 0.012643

dnodal,2 0.012391

skewed, like the splitted nodal metrics [20, Figure 5], but
unlike other metrics like the Robinson-Foulds [32] or the
transposition distance [33, Figure 2], which are negative
skewed, or the triples metric [16], which is approximately
normal.

Conclusions
Following a fifty years old idea of Sokal and Rohlf [4], we
have encoded a weighted phylogenetic tree with nested
taxa by means of its vector of cophenetic values of pairs
of taxa, adding moreover to this vector the depths of
single taxa. These positive real-valued vectors single out
weighted phylogenetic trees with nested taxa, and there-
fore they can be used to define metrics to compare

Table 5 Spearman’s rank correlation coefficient between
different distances on T100

T100 dϕ,2 dspnodal,1 dspnodal,2 dRF

dϕ,1 0.987184 0.731755 0.753918 0.091556

dϕ,2 0.780030 0.803423 0.088390

dspnodal,1 0.990944 0.132030

dspnodal,2 0.118336
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n d 1 n d 2 n d 1 n d 2 n

Figure 11 Histograms of the distributions of dϕ,1 and dϕ,2 on Tn andBT n for n = 10, 20, . . . , 100.
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such trees. We have defined a family of metrics dϕ,p, for
p ∈ {0}∪[ 1,∞[, by comparing these vectors through the
Lp norm.
We cannot advocate the use of any cophenetic metric

dϕ,p over the other ones except, perhaps, warning against
the use of the Hamming distance dϕ,0 because it is too
uninformative. Since the most popular norms on R

m are
the Manhattan L1 and the Euclidean L2, it seems natural
to use dϕ,1 or dϕ,2. And since these two metrics are very
highly correlated, the comparison of trees using one or the
other will not differ greatly. Each one of these metrics has
its own advantages.
On the one hand, the computation of dϕ,1 does not

involve roots, and therefore it can be computed exactly.
Moreover, it takes integer values on unweighted trees and
in this case its range of values is greater, thus being more
discriminative. Actually, since ‖x‖p � ‖x‖1 for every x ∈
R
m and p � 1, we have that

dϕ,p(T1,T2) ≤ dϕ,1(T1,T2) for everyT1,T2 ∈ WT n.

On the other hand, the comparison of cophenetic vec-
tors by means of the Euclidean norm enables the use
of many geometric and clustering methods that are not
available otherwise. In particular, it is possible to com-
pute the mean value of the square of dϕ,2 under different
evolutionary models. We shall report on this elsewhere.
As a rule of thumb, and as we already advised in the

context of splitted nodal metrics [20], we suggest using
dϕ,1 when the trees are unweighted, because these trees
can be seen as discrete objects and thus their compari-
son through a discrete tool as the Manhattan norm seems
appropriate. When the trees have arbitrary positive real
weights, they should be understood as belonging to a con-
tinuous space [34], and then the Euclidean norm is more
appropriate.
Future work will include a deeper study of the distri-

bution of dϕ,1 and dϕ,2 on different spaces of unweighted
phylogenetic trees.

Endnotes
aThere are some details to be filled here, because for tech-
nical reasons we shall allow the root of our phylogenetic
trees to have out-degree 1 without being labeled, and this
case is not covered by [20, Thm. 10], but it is not dif-
ficult to modify the argument given above to cover also
this case.
bhttp://en.wikipedia.org/wiki/Phylogenetic tree
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