
RESEARCH ARTICLE

OTSun, a python package for the optical

analysis of solar-thermal collectors and

photovoltaic cells with arbitrary geometry

Gabriel CardonaID
1,2, Ramon Pujol-NadalID

3*

1 Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears, Palma de Mallorca,

Spain, 2 Institut des Sciences de l’Évolution, Université de Montpellier, Montpellier, France, 3 Departament

d’Enginyeria Industrial i Construcció, Universitat de les Illes Balears, Palma de Mallorca, Spain

* ramon.pujol@uib.es

Abstract

Ray tracing software systems are commonly used to analyze the optics of solar energy

devices, since they allow to predict the energy gains of devices in real conditions, and also

to compare them with other systems constantly emerging in the market. However, the avail-

able open-source packages apply excessive simplifications to the model of light-matter

interaction, making that the optical behaviour of the systems can not be properly character-

ized, which in turn implies disagreements between physical experiments and computer sim-

ulations. We present here the open source python package OTSun, which applies the

Fresnel equations in their most general form, without further simplifications, and is suitable

for the simulation of both solar-thermal and photovoltaic systems. The geometrical objects

used in this package are created using the parametric 3D modeler FreeCAD, which is also a

free and open source program and allows for the construction of arbitrary geometries that

can be analyzed with OTSun. These, and other software capabilities, make OTSun

extremely flexible and accurate for the optical analysis of solar devices with arbitrary geome-

try. Additionally, OTSun has a companion webtool, OTSunWebApp, that allows for the

usage of certain features of the package without the need to install anything locally. We also

show here two numerical experiments that we performed in order to validate the model and

implementation: The analysis of the optical efficiency of a Linear Fresnel Reflector (with

moving objects), and of a second surface mirror (with variable wavelengths). In each case,

the numerical computations had deviations of less than 0.25% from reference models

(either computed with another program or with exact formulas).

Introduction

There is a great variety of solar energy technologies [1], which, depending on the type of

energy conversion, can be classified into two large groups: solar-thermal and photovoltaic

technologies. The first one is intended to transfer heat, usually to a working fluid, that can be

later converted into electricity. The second one is intended to directly generate electricity.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Cardona G, Pujol-Nadal R (2020) OTSun,

a python package for the optical analysis of solar-

thermal collectors and photovoltaic cells with

arbitrary geometry. PLoS ONE 15(10): e0240735.

https://doi.org/10.1371/journal.pone.0240735

Editor: Fankang Li, Oak Ridge National Laboratory,

UNITED STATES

Received: June 23, 2020

Accepted: October 1, 2020

Published: October 14, 2020

Copyright: © 2020 Cardona, Pujol-Nadal. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The otsun package is

available at (https://github.com/bielcardona/

OTSun). The scripts and auxiliary files used in the

Model Validation section can be found at (https://

github.com/bielcardona/OTSunSuppMat). The

complete documentation of the API can be found at

(https://otsun.readthedocs.io). The web tool

OTSunWebApp is available at (http://otsun.uib.es).

Funding: The work was funded by the Spanish

Ministry of Economy and Competitiveness [grant

number ENE2015–68339-R], AEI and the

European Regional Development Fund, European

http://orcid.org/0000-0001-8845-4290
http://orcid.org/0000-0003-0523-6904
https://doi.org/10.1371/journal.pone.0240735
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240735&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240735&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240735&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240735&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240735&domain=pdf&date_stamp=2020-10-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0240735&domain=pdf&date_stamp=2020-10-14
https://doi.org/10.1371/journal.pone.0240735
http://creativecommons.org/licenses/by/4.0/
https://github.com/bielcardona/OTSun
https://github.com/bielcardona/OTSun
https://github.com/bielcardona/OTSunSuppMat
https://github.com/bielcardona/OTSunSuppMat
https://otsun.readthedocs.io
http://otsun.uib.es


Moreover, there are also mixed solar technologies (PVT) that perform both types of energy

conversion. Furthermore, and regardless of the solar collector technology, the solar energy

device can also be considered as an optical system, designed to maximize the absorption of

solar radiation. Thus, the optical characterization of such devices is the key underpinning for

improving solar energy conversion technologies [2].

In addition, with the increase of CPU and GPU capacities, simulations based on ray tracing

of light are the most suitable techniques to obtain accurate results, since they allow for consid-

ering realistic configurations, with complex geometries and novel materials, and also enable to

model different types of light sources [3]. In fact, the Monte Carlo Forward Ray Tracing

(MCFRT) is the most used method for ray tracing simulations. It consists on applying the geo-

metrical optics equations to the rays emitted from a light source to determine its interaction

with an optical system (the solar energy device). At the end, the more realistic they are the opti-

cal models implemented in the MCFRT, the more diversity of solar energy materials can be

considered for the optical system construction. This is the case of implementing the optical

Fresnel equations to determine the path trajectory of the rays traveling through the system

having into account: the ray wavelength, the light polarization, the complex refraction index

and other physical properties of materials. With this method, several interesting parameters,

such as the optical efficiency, flux irradiation and charge carrier generation, can be accurately

determined. It is important to mention that rigorous optical models are needed to elucidate

the optical behavior of a solar optical system.

Focusing on solar thermal applications, a review of existing optical simulation tools used

for Solar Central Receiver Systems (SCRS) was recently presented in [3]. In this review, a total

of 18 different software bundles have been analyzed. At present, only three of them, Tonatiuh

[4], HOpS [5] and SolTrace [6], are licensed as open source. Another recent study focused in

solar thermal applications was realized in the context of IEA/SHC Task 49 “Solar Heat Integra-

tion in Industrial Processes” [7], where a round-robin ray tracing software comparison for

Linear Focusing Solar Collectors (LFSC) was done. In this study, the main differences between

the software packages under study were found in how they model the angular dependency of

the optical properties of the materials. As a consequence, different modeling options by differ-

ent software tools produced different values of optical efficiency. The main reason is that they

implement simplified models of optical Fresnel equations, instead of implementing them in its

generic form.

On the photovoltaic applications side, optical simulation tools based on MCFRT for solar

cells are also used [8]. While there are many proprietary software packages, for example,

CROWM [9], actually, to the best knowledge of the authors, Scientrace [10] is the only open-

source ray tracing software focused on photovoltaic cells [11].

It should be noted that some of the commercial software packages can be used for both

solar-thermal and photovoltaic cells technologies, but no open source software has been found

that applies to both technologies. Related to this, we mention here some proprietary packages

that apply Fresnel equations: OptiCAD [12], ZEMAX [13], ASAP [14], TracePro [15], and

COMSOL [16]. In all of them, the optical efficiency and radiance flux can be determined,

among others parameters. However, we want to emphasize the importance of having open

source software, since this allows for the inspection, modification, and implementation of new

capabilities by the scientific community, which gives transparency and added value to the tool.

In this setting, our contribution with the development of OTSun is twofold. On the one

hand, we cover the absence of open source software that is focused on both solar technologies

(thermal and photovoltaic). On the second hand, we implement the Fresnel equations in their

most general form, without further simplifications, avoiding the aforementioned problem

reported in [7]. The OTSun package uses FreeCAD [17], a free 3D CAD system, in order to

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 2 / 15

Union. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0240735


model the geometry of the optical systems to be analyzed, and also uses its API to compute the

intersections of rays with the scene. FreeCAD is open sourced and permits to work with open

file formats such as STEP, STL, DXF, and OBJ.

OTSun is a python package, open sourced under the MIT license. It can be obtained from

the public repository https://github.com/bielcardona/OTSun, and can also be installed directly

from the Python Package Index (PyPI) by calling pip install otsun.

We also remark the existence of the web tool OTSunWebApp, publicly available at http://

otsun.uib.es, which has been developed to allow for making experiments without having to

install anything. Some tutorials for this tool can be found in [18].

The aim of this paper is to give a full overview of the OTSun package. In Section Back-

ground, we give a brief account of the theory of geometrical optics and describe the algorithm

we have used as a basis for our model. Section Implementation gives an overall view of the

implementation of the different modules in the OTSun package. In Section The Model valida-

tion, we exhibit some experiments we have performed to validate our models and implementa-

tions. We conclude this manuscript with some final remarks in Section Conclusion.

Background

The so-called ray tracing method is used to calculate the trajectory of light rays through sys-

tems composed by objects with different geometrical and optical properties. In the framework

of solar energy, this implies that the optical efficiency of systems can be assessed by computer

simulation. Two major elements are required for this purpose. First, a mathematical theory of

optics. Second, an algorithm for the simulation of pathways of rays emitted in the system.

These two main elements, which constitute the theoretical basis of OTSun, are described in the

following subsections.

Geometrical optics

Geometrical optics is a model that describes the propagation of light in terms of rays (see

[19]). This model can be figured out from approximate solutions of Maxwell’s equations and is

valid whenever the waves of light are propagated across and around objects with dimensions

greater than the wavelength. Hence, ray theory does not cover phenomena such as interference

and diffraction, but notice that OTSun is supplemented by the 1D transform matrix method

(TMM) to consider interference in thin films (see item PolarizedThinFilm in Section

The Material class).

The first main ingredient in this model is given by the Lambert-Beers law, which states that

the initial and final energies (E0 and E, respectively) of a ray with wavelength λ traveling a dis-

tance ℓ inside an optical medium are related by the equation

E ¼ E0e� aðlÞ‘; ð1Þ

where α(λ) = 4πk(λ) is the absorption coefficient of the medium.

The second main ingredient establishes what happens when a ray hits a surface delimiting

two different optical media. In this case, different phenomena can take place, since the ray

may get absorbed, reflected or transmitted (or a combination of those). In either case, this

models determines the ray direction in the new medium~v2 in terms of the initial ray direc-

tion~v1 and~n, the unit vector normal to the surface at the point of incidence, and pointing

towards the first medium. The vector~v1 also characterizes the incidence angle θ1 by means

of the equation cos y1 ¼ � ~v1 �~n. Analogously,~v2 characterizes the reflection/refraction

angle θ2 via cosy2 ¼ �~v2 �~n, where the sign is positive in case of reflection and negative in

case of refraction.

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 3 / 15

https://github.com/bielcardona/OTSun
http://otsun.uib.es
http://otsun.uib.es
https://doi.org/10.1371/journal.pone.0240735


In case of reflection, the new ray direction is given by the law of reflection:

~v2 ¼~v1 þ 2 cosy1~n: ð2Þ

If the ray is refracted (transmitted) the new ray direction~v2 is then given by the Snell’s law:

~v2 ¼ r~v1 þ ðr cosy1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2 sin 2y1

p
Þ~n: ð3Þ

In this equation, r ¼ Re ð~n1=~n2Þ, where ~niðlÞ ¼ niðlÞ � ikiðlÞ (for i = 1, 2) is the complex

refractive index in each of the two media. Finally, Fresnel’s equations give the reflectance R
and transmittance T rates for the energy of incident rays as follows (we have used the formal-

ism exposed in [20, Ch. 2]):

R ¼
Z1 � Z2

Z1 þ Z2

� �
Z1 � Z2

Z1 þ Z2

� ��

; ð4Þ

T ¼
4Z1 Re ðZ2Þ

ðZ1 þ Z2ÞðZ1 þ Z2Þ
� ; ð5Þ

where η1 and η2 are the tilted optical admittances of the two optical media, and they depend

on the polarization of the incident light:

Zi ¼

~niðlÞ cosyi
Z0

; for s � polarization;

~niðlÞ

Z0 cosyi
; for p � polarization;

8
>>>><

>>>>:

ð6Þ

being Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
m0=20

p
the optical impedance of free space.

The ray tracing algorithm

The key ingredients for any ray tracing simulation are shown in Fig 1. The light source is the

geometric region from where rays are emitted to the scene. The optical system is formed by

different elements that interact with the rays, some of which are made of absorber materials

that capture energy. In our implementation, the optical system is composed by surface and

volume elements generated by FreeCAD, and each of them must be associated to an optical

material (otherwise it will not interact with light rays). Two kinds of special materials are

implemented for defining the absorber material: thermal materials (for solar-thermal collec-

tors) and the PV materials (the active materials of photovoltaic cells). See Section Implementa-

tion for details on how we implement all these ingredients.

An overview of the algorithm for the tracing of each single ray is shown in Fig 2. The path

followed by a ray is composed of several “hops”, corresponding to different rectilinear seg-

ments where the ray moves inside a fixed optical medium. The algorithm starts with the

simulation of the emission of a ray from the light source. The point of emission, direction,

polarization and wavelength are determined by the light source, while the energy is normalized

to be unitary. Then, we sequentially simulate hops, determined by the interaction of the ray

with the scene as follows. First, we find the closest intersection of the simulated ray with the

scene; in case no intersection is found, then the ray has exited the scene and the tracing is fin-

ished. In case we find such an intersection, we update the energy level of the ray at this point,

since it could have been traveling inside a dissipative medium during the current hop; also,

and in the case that this medium is a “PV material”, we compute the collected energy for future

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 4 / 15

https://doi.org/10.1371/journal.pone.0240735


computations. Next, we determine if the ray has been absorbed at the point of intersection,

either by having found a “Thermal material” (and in this case we compute the absorbed energy

for future computations) or some other absorbent material; in any case, the ray tracing is fin-

ished. Likewise, if the energy level of the ray is below a threshold (by default 10−6), the ray is

assumed to have disappeared and the tracing is finished too. Furthermore, we check if the

Fig 1. Overview of the key elements of the ray tracing procedure. The scene is composed by the optical system, formed by FreeCAD volume

and surface elements. On the scene, at least one material has the functionality of light absorption. The light source emits rays to the scene.

https://doi.org/10.1371/journal.pone.0240735.g001

Fig 2. Overview of the sequential ray tracing algorithm.

https://doi.org/10.1371/journal.pone.0240735.g002

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 5 / 15

https://doi.org/10.1371/journal.pone.0240735.g001
https://doi.org/10.1371/journal.pone.0240735.g002
https://doi.org/10.1371/journal.pone.0240735


number of hops has reached its maximum (200 hops by default), in which case we determine

that the ray has been caught in a loop and stop the simulation. Otherwise, and since at this

point the tracing of the ray has to continue, we simulate the optical effect (either reflection or

refraction) of the materials on the ray to compute its new direction and polarization, and pro-

ceed to the simulation of the next hop.

Implementation

The python package OTSun (imported as otsun) is composed by different modules, some of

them collecting helper functions that implement both mathematical and optical methods, and

other ones built around each of the main classes that define the functionality of the package.

To ease the reading of this section, where we shall be dealing with classes and instances of

those classes, whenever a class (say Scene or LightSource) is considered, the downcase

version of their identifiers (scene and light_source in our example) will indicate

instances of those classes. Except for those classes defined by FreeCAD (like Part.Face or

Base.Vector), we refer to the corresponding section in this manuscript for the definition

and initialization options for each of these classes. For instance, in Section The Experiment
class we explain how to create an experiment (an instance of the Experiment class), giv-

ing an scene and a light_source, which are instances of Scene and LightSource,

described in Sections The Scene class and The LightSource class, respectively.

A typical use of the package involves the creation of an experiment, which specifies

the solar optics experiment to be run, defined by certain data that includes a scene and a

light_source. The scene holds the data of all the different objects that interact with light

rays, included in a FreeCAD document [17], and where each of them has a material associ-

ated describing its optical behaviour. Eventually, some objects may have movements, imple-

mented by a multi_tracking, and in such a case these elements will be moved to

maximize the absorbed energy. When the experiment is run, the light_source creates

rays, which interact with the scene until they either leave the scene or are absorbed, and in

this last case the collected energy (among other data) is stored for future analysis.

We comment now the main classes that have been implemented, together with its basic

functionality. The complete documentation of the API can be found at https://otsun.

readthedocs.io.

The Experiment class

An experiment is initialized giving the parameters that define it: An scene and a

light_source that describe the physical environment where the experiment takes place,

and the number of rays that have to be simulated. The execution of the experiment is launched

with the experiment.run() method, and once it is finished, the information that has

been recollected is found in instance variables like experiment.captured_energy_Th
and experiment.captured_energy_PV, that give the overall thermal and photovoltaic

(respectively) energy that has been collected by the active materials found in the scene.

The Scene class

Instances of the class Scene hold the data used to describe the physical objects present in an

experiment, stored in three main variables, faces, solids and materials. Each object

in the array faces (resp. solids) is a Part.Face (resp. Part.Solid) object of Free-

CAD that represents a surface (resp. volume) that can affect the propagation of a ray incident

with it. The dictionary materials assigns to each face or solid a material that describes

its optical properties.

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 6 / 15

https://otsun.readthedocs.io
https://otsun.readthedocs.io
https://doi.org/10.1371/journal.pone.0240735


Such a scene is initialized with an array objects, all whose elements are instances of

Part.Feature, and typically they are all the objects included in a FreeCAD document. The

assignation of materials to each object is done by looking at its label. Namely, if an object obj
in a FreeCAD document has a label of the form “Label(mat_name)”, then the assigned

material scene.materials[obj] will be the Material instance mat such that mat.
name is mat_name.

For instance, the file ParabolicTrough.FCStd in the public repository https://github.

com/bielcardona/OTSunSuppMat (see also Section The MultiTracking class) contains a

model prepared to analyze a parabolic trough collector. The parabolic mirror (in blue) is made

by extruding a parabolic segment, and its label is Parabolic_reflector(Mir1). It

means that when imported with OTSun, it will have an associated material whose parameter

name is Mir1. In turn, this material has to be properly defined (see Section The Material
class) so that it behaves as a mirror. Other elements in this model are the central cylindrical

surface (in red), labeled Cylindrical_absorber(Abs1), and its covering (in green),

labeled Tube_glass(Glass1); hence, materials named Abs1 and Glass1 have to be

defined as an absorber surface and as a transparent volume material, respectively (see Section

The Material class).

The LightSource class

Instances of the class LightSource are used to model the source of rays in an experiment.

There are many parameters that define its behaviour, like its emitting_region, describing

the physical location of the source of the rays to be emitted, and its light_spectrum and

direction_distribution, describing respectively the distribution of wavelengths and

directions of the rays to be emitted.

The parameter light_spectrum can either be a constant, meaning that all rays will be

emitted with the same specified wavelength (given in nanometers), or a cumulative distribu-

tion function (CDF) F(λ) which is defined by interpolation on the discrete values (λi, F(λi))
stored in an array ((λ1, λ2, . . .), (F(λ1), F(λ2) . . .).

The emitting_region has to be an instance of any class that implements the method

random_point(), which returns a random point from where a ray will be emitted, and has

an attribute main_direction, giving the direction of the emitted ray. For convenience, the

class SunWindow implements such an emitting region as a plane rectangle P in the space,

orthogonal to a fixed direction~u, and such that all the objects in the scene are contained in the

rectangular semi-prism fPþ x~u j x � 0g.

The parameter direction_distribution can either be None (meaning that the

emitted rays are emitted in the main direction) or an instance of a class that implements the

method angle_distribution(), giving a random angle (in degrees) of deviation for the

emitted ray with respect to the main direction~u. For convenience, the class BuieDistri-
bution implements such deviation according to the Buie distribution [21], determined by its

circumsolar ratio (CSR), which is a parameter of the class.

The Ray class

Instances of the class Ray model light rays, which are emitted by a light_source. A ray
is initialized giving its initial optical_state, as well as the scene where it will travel.

Instances of OpticalState gather some relevant information of a light ray at a given

moment, like its direction, polarization and material, giving, respectively, the

direction and polarization vector of the ray, and the material (optical medium) where it is trav-

eling. When the method ray.run() is called, the propagation of the ray inside the scene

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 7 / 15

https://github.com/bielcardona/OTSunSuppMat
https://github.com/bielcardona/OTSunSuppMat
https://doi.org/10.1371/journal.pone.0240735


starts to be simulated. A simplified version of the iteration process is (see also Section The ray

tracing algorithm):

1. Find the closest intersection of ray with objects in scene.

2. If no intersection is found, the ray is lost and the simulation is finished.

3. If the first intersection is with an object having a determined material, then the method

material.change_of_optical_state() is called (with different parameters that

determine how the ray hits the material), which decides if the ray is reflected or refracted

(and gives the next optical state) or that the ray has been absorbed by some active optical

element.

4. If the ray has been reflected or refracted, go to step 1. Otherwise, the simulation is finished.

The Material class

The Material class is the most complex of all the classes implemented in OTSun, since

there are many kinds of materials, and their optical properties need to be explicitly defined.

There are two main subclasses, SurfaceMaterial and VolumeMaterial, correspond-

ing, respectively, to materials that can be assumed to be two-dimensional (like first surface

mirrors and selective absorbers) or not (like glasses, second surface mirrors, PV active materi-

als, thin films,. . .). Any material has an important property, material.name, indicating

how it will be called when identifying objects in a scene as explained in Section The Scene
class. The physical properties of a material are encoded in material.properties, a

dictionary whose contents depend on the kind of material.

Any user willing to use his own materials in his experiments can subclass SurfaceMa-
terial or VolumeMaterial to adapt the contents of material.properties, which

implement the specific properties of the materials. The user must override the method mate-
rial.change_of_optical_state() to implement the computation of how the inter-

action with the material changes the optical state (direction, polarization, etc.) of a ray.

Additionally, since it is interesting to store externally the properties of materials, the

method material.to_json() and the class method SubclassedMaterial.
load_from_json(info) should be implemented. The first one must convert any infor-

mation stored in material.properties into a serializable dictionary, and the second

one must use this dictionary to reconstruct the material.properties dictionary.

The VolumeMaterial class. Instances of VolumeMaterial represent the optical

properties of physical objects whose depth is not negligible, like glasses or PV active materials,

where the ray energy attenuation is determined by the Beer–Lambert law (1). In this case, the

method material.change_of_optical_state() is generically implemented using

the law of reflection (2), Snell’s law (3), and Fresnel’s Eqs (4)–(6), but any user could subclass it

and implement some other optical behaviour of the material.

Some subclasses of this class are provided, so that materials appearing usually in the field of

solar collectors can be used without further implementation. For example:

• SimpleVolumeMaterial, representing a material with constant optical parameters

(refraction index and absorption coefficient, given in mm−1).

• WavelengthVolumeMaterial, where the index of refraction is complex (~n ¼ n � ik)

and depends on the wavelength of the ray. These values are computed by interpolation from

data given in tabulated form with rows (λ, n(λ), κ(λ)). Note that the imaginary part of the

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0240735


refractive index is the so called the extinction coefficient, and the absorption coefficient is

calculated as α = 4πκ/λ. The wavelengths are given in nanometers.

• PolarizedThinFilm, which represents a thin layer, such as an optical coating, where

the thickness and light coherence (that enables interference) can not be considered as negli-

gible in the simulation. The data values are given in tabulated form with rows (λ, θ, Rs(λ, θ),

Rp(λ, θ), Ts(λ, θ), Tp(λ, θ)), where θ is the incidence angle, R and T denote the power reflec-

tion and transmission coefficients respectively, and sub-indexes s and p denote respectively

the perpendicular and parallel ray polarization. Wavelengths are given in nanometers and

incidence angles in degrees. We remark that it is precisely in this case where the ray equa-

tions are complemented by the so-called fully-coherent medium transfer matrix formalism

(TMM).

• PVMaterial, which represents the active material in photovoltaic cells such as semicon-

ductors or any other material with that functionality. This is the case of the “PV material”

exposed in Section The ray tracing algorithm. The photo-absorption in such materials is

characterized by their extinction coefficient. The values of the index of refraction

ð~n ¼ n � ikÞ, which depends on the light wavelength, are given in tabulated form as in the

WavelengthVolumeMaterial case.

The SurfaceMaterial class. Any surface_material represents a two-dimen-

sional physical object, in the sense that its third dimension is negligible, or simply that its

behaviour does not depend on it. Examples of these objects are front surface mirrors, selective

absorbers, metallic coatings,. . .. In a first approximation, the interaction of a ray with such a

material can result in a reflection, an absorption or a transmittance, each with a given proba-

bility that may depend on the wavelength of the ray and are stored in the dictionary

p = material.properties. Hence, material.change_of_optical_state()
generically implements these different phenomena. This behaviour is also affected by other

properties of the material, like the booleans:

• p['lambertian_material'], indicating that, in the case of reflection, the direction

of the reflected ray should be a random vector, instead of that computed using the law of

reflection.

• p['thermal_material'], indicating that, in case of absorption, the energy is absorbed

and processed, instead of lost in the material. This is the case of the “Thermal material”

exposed in Section The ray tracing algorithm.

Some more specific materials are provided by subclassing SurfaceMaterial and over-

riding the change_of_optical_state() method. Some examples of these specific

materials are:

• AbsorberTWModelLayer, represents a thermal absorber where its absorption depends

on the incidence angle, θ, according to a ¼ a0 1 � b 1

cos y � 1
� �c� �

, see [22] for more details.

The following data values are given: α0, b, c. In this case, the boolean property p['ther-
mal_material'] is True.

• MetallicSpecularLayer, represents a metal surface, such as the silver coating in sec-

ond surface mirrors. Fresnel equations are considered and its characterization is defined by

the complex index of refraction ð~n ¼ n � ikÞ depending on the light wavelength. The data

values are given in tabulated form like in the WavelengthVolumeMaterial case.

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0240735


• MetallicLambertianLayer, represents a metal surface where Fresnel equations are

considered, but if the ray is reflected, a total diffuse reflection model with Lambertian scat-

tering is used. In this material, the boolean property p['lambertian_material'] is

True. Also, its characterization is defined by the complex index of refraction ð~n ¼ n � ikÞ
depending on the light wavelength. The data values are given in tabulated form like in the

WavelengthVolumeMaterial case.

• PolarizedCoatingLayer, and its subclasses PolarizedCoatingReflector-
Layer, PolarizedCoatingTransparentLayer, PolarizedCoatingAbsor-
berLayer, that represent thin layers such as optical coatings. The difference with the

PolarizedThinFilm is that the thickness of such material is negligible. The data values

are given as in the PolarizedThinFilm case. Depending on the role of the material,

three cases are defined: reflector (no light transmission is possible), transparent (reflection,

absorption and transmission are possible), and thermal absorber material (the boolean prop-

erty p['thermal_material'] is True and no light transmission is possible). In each

case, the parameters are given analogously to the case of PolarizedThinFilm.

The MultiTracking class

The class MultiTracking is designed to implement movements of the active elements in a

scene so that the rays emitted by a given light_source tend to be focused on a target (in

case that the attribute target is set to a point) or tend to return it to the source (in case that

the attribute is not set). That is, MultiTracking can be used either to orient the solar col-

lector to the sun or to direct rays to a target, as happens with the segment mirrors of a Linear

Fresnel Collector (LFR) or the heliostats in solar power tower plants.

Movements of elements are implemented by the helper class Joint, and its subclasses

CentralJoint and AxialJoint. The former implements rotations around a given point

in space (that is, with two degrees of freedom), while in the latter the rotations are around an

axis (and hence with a single degree of freedom). Each kind of joint can be easily represented

by a geometrical object in FreeCAD, either by a Vertex or an Edge with two points.

To describe the movement of a concrete element in the scene, one needs to associate to

this object a joint, but since the goal is to direct the rays to a specified region, one also needs

to specify the corresponding principal vector. Here, by the principal vector, we mean the direc-

tion that best approaches the normal of the mobile element. When multi_tracking.
target is not set, the element will be moved so that this vector points to the source; other-

wise, the movement will be computed so that a solar ray reflected on the plane normal to the

principal vector and passing through the joint hits the point stored in multi_tracking.
target.

We associate objects in the scene to joints using the following convention (see also Section

The Scene class): Instead of giving to the object under consideration a label of the form

“Label(mat_name)”, where mat_name is the identifier of the material of the object, we

use a label of the form “Label(mat_name,joint_name,normal_name)” or “Label

(mat_name,joint_name,normal_name,target_name)”, where joint_name is

the label of the FreeCAD object that describes the joint (i.e. either a Vertex or a Edge),

normal_name is the label of the FreeCAD Edge whose direction is the principal vector of

the optical element, and target_name (if present) is the label of the FreeCAD object acting

as target.

A multi_tracking is created by giving the scene (which includes the elements that

describe the joints, together with their principal vectors and targets, if needed) and the

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 10 / 15

https://doi.org/10.1371/journal.pone.0240735


light_source, a Base.Vector giving the main direction of the sun rays. Once it is cre-

ated, the method target_tracking.make_movements() transforms the scene, rotat-

ing conveniently the elements, so that the scene behaves as explained above.

Model validation

We discuss here two experiments showing how the results obtained with OTSun are compared

with those obtained using other software tools, hence providing a validation for both our

model and our implementation. A third validation example, related to the optical behaviour of

perovskite solar cells, can be found in [2]. In each case, we have compared the results obtained

by OTSun with a reference model using both the mean error (ME), so that we can determine if

OTSun has an overall tendency to overestimate or underestimate the results, and the root

mean square error (RMSE), to evaluate the global accuracy. The scripts and auxiliary files cited

in this section can be found at https://github.com/bielcardona/OTSunSuppMat.

First experiment

We have compared the computations of the optical efficiency of a Linear Fresnel Reflector

(LFR) obtained using OTSun and Tonatiuh [4]. We have chosen this geometry due to its com-

plexity, having mobile objects and using four different types of optical materials. The geometry

of the LFR is composed by 11 parabolic mirrors of 500 mm width, a secondary CPC reflector

with a maximum concentration of 1.66 truncated at 61.81 mm, and a flat receiver of 70 mm

width placed 6 meters above the mirrors field. The parabolic mirrors track the sun with the

purpose of reflecting the sunlight to a target located at 46.45 mm under the flat receiver. Each

parabolic mirror has a focal length equal to the distance between its center position (which

includes the rotation axis) and the mentioned target. The files LFR.FCStd and LFR.tnh
contain the implementation of this geometry in FreeCAD and Tonatiuh, respectively. Addi-

tionally, the file LFR_output.FCStd shows the output given by OTSun with the simulation

of some rays with a transversal incidence angle equal to 45 degrees. Since the optics imple-

mented in Tonatiuh is not based on the Fresnel equations in all its generality, we took the deci-

sion to use materials with constant optical properties, so that we can use materials with the

same properties in both programs. The file validation1.py contains the specification

of the optical materials used in this example, as well as the code used to compute the optical

efficiency.

In our computations (both with OTSun and Tonatiuh), we have simulated the emission of

100,000 sun rays per each sun position, using the Buie model approach [21] with a value of

0.05 for the circumsolar ratio. Fig 3 shows the optical efficiencies obtained with the two soft-

ware packages using different angles for the sun position in both the transversal and longitudi-

nal planes.

Second experiment

We have determined the reflectance of a second surface mirror composed by a layer of 4 mm

of borosilicate glass with a silver coating. The model can be found in the file mirror.
FCStd, where it can be seen that we created a surface material formed by two layers to be put

over the mirror. The outside layer is a transparent material, while the inner one is an ideal

thermal material absorber. With this setting, the rays that reach the outer layer pass through it,

and those that are later reflected by the mirror are collected by the absorber material, hence

providing a measure of the optical efficiency of the mirror. This efficiency, divided by the

cosine of the incidence angle of the light rays with respect to the normal vector of the

mirror surface, gives the reflectance of the mirror. See the files mirror.FCStd and

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 11 / 15

https://github.com/bielcardona/OTSunSuppMat
https://doi.org/10.1371/journal.pone.0240735


validation2.py for more details on this geometry and the script we have used to make

the simulation with OTSun. Also, file mirror_output.FCStd shows the output produced

by OTSun with some simulated rays drawn.

The optical properties of this configuration can also be determined by the analytic trans-

form matrix method (TMM), as exposed in [23] and implemented in [24]. A comparison of

the results obtained using these two methods is shown in Fig 4, where the reflectances are

plot as a function of the wavelength using two different incidence angles (θ = 45˚ and θ = 80˚

degrees) and with parallel and perpendicular polarizations.

Robustness of validations

To prove the robustness of the validations, we have computed the mean error (ME) and the

root mean square error (RMSE) between the results obtained by OTSun and those obtained

either by Tonatiuh or TMM. Table 1 summarizes these computations.

One remark is due for these results. In the case of the second experiment, plotted in Fig 3,

the optical efficiency in the longitudinal plane for angles greater than or equal to 80 degrees is

nearly zero, since the sun is nearly in the direction of the axis of the mirrors and hence nearly

no reflections are captured by the receiver. To avoid the spurious behaviour of the indicators

due to values close to zero, we have opted for omitting the values corresponding to these angles

in the computation of ME and RMSE.

Fig 3. Optical efficiency at transversal and longitudinal planes of the analyzed LFR, as computed by OTSun and Tonatiuh.

https://doi.org/10.1371/journal.pone.0240735.g003

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 12 / 15

https://doi.org/10.1371/journal.pone.0240735.g003
https://doi.org/10.1371/journal.pone.0240735


From Table 1, we see that the ME takes both positive and negative values, which implies

that OTSun does not present any tendency to overestimate or underestimate the results with

respect to the reference models. From the result obtained by OTSun respect to the reference

cases, we can see that OTSun presents RMSE values between 0.0013 and 0.0025 for the cases

analyzed, which represents an error lower than 0.25%.

Conclusion

Ray tracing software systems are commonly used to make optical analysis of solar energy

devices. However, the available open source systems make excessive simplifications in the

implementation of optics, causing limitations on their features. In this paper, we have

Fig 4. Reflectance of a second surface mirror at an incidence angle of 45 and 80 degrees, with parallel and perpendicular polarization,

computed using the TMM and OTSun.

https://doi.org/10.1371/journal.pone.0240735.g004

Table 1. Mean Error (ME) and Root Mean Square Error (RMSE) between OTSun simulations and the reference models.

Experiment Case ME RMSE

First Transversal 0.00130 0.0020

First Longitudinal −0.00983 0.0013

Second θ = 45˚, k pol. 0.00035 0.0015

Second θ = 45˚,? pol. −0.00019 0.0016

Second θ = 80˚, k pol. −0.00193 0.0024

Second θ = 80˚,? pol. −0.00019 0.0025

https://doi.org/10.1371/journal.pone.0240735.t001

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 13 / 15

https://doi.org/10.1371/journal.pone.0240735.g004
https://doi.org/10.1371/journal.pone.0240735.t001
https://doi.org/10.1371/journal.pone.0240735


presented the open source package OTSun. It is a Monte Carlo ray tracing python library,

where the optics is implemented using the Fresnel optics equations in their most general form.

The optical phenomena implemented in OTSun allow for dependence on wavelength, inci-

dence angle, light polarization, interference, ray attenuation, complex refractive index, source

spectrum and direction of emission, among others. OTSun also implements tracking move-

ments, so that objects move to track the sun or to reflect the rays onto a specific target. The

geometry of the optical systems used by OTSun is built with FreeCAD, which is also open

source, and hence allows for the simulation of solar energy devices with arbitrary geometry. In

addition, OTSun is accompanied by the webtool OTSunWebApp, that allows to make some

simulations without the need to install anything locally.

We presented numerical simulations to validate the OTSun models and implementations.

For this purpose, we made two different experiments. The first one is mainly devoted to testing

the reflections and movements of optical elements, while the second one focuses on the full

implementation of the Fresnel equations. The robustness of such validations is demonstrated,

achieving deviations lower than 0.25% from the reference models, Tonatiuh and TMM,

respectively.

We think that OTSun will become a valuable resource for the community of designers and

researchers on solar optics. But not only for them: It has been demonstrated that OTSun is a

software tool suitable to analyze opto-mechanic problems, due to its flexibility and that the

optics equations are implemented in its most general form. To this end, and as our future

work, we have in mind to develop modules for FreeCAD to simplify the construction of optical

elements such as lenses, collimators, filters, etc., and solar energy devices such as LFRs, PTCs,

solar power towers, PV cells, etc.

In its present form, OTSun is exclusively an optics simulator. Even with this limitation, and

for the case of solar cells, we have implement functions to obtain the photocurrent if the inter-

nal quantum efficiency is given as input. A future work consists in integrating a solver for the

carrier transport equations, to evaluate the capabilities of power electricity conversion of solar

cells. This would provide in a single tool, the capability of considering both optical and elec-

tronic aspects of solar cells.

Acknowledgments

We thank David Gómez Sospedra for the assistance on the design of the LFR used in the first

experiment.

Author Contributions

Conceptualization: Gabriel Cardona.

Data curation: Ramon Pujol-Nadal.

Formal analysis: Gabriel Cardona, Ramon Pujol-Nadal.

Funding acquisition: Ramon Pujol-Nadal.

Investigation: Gabriel Cardona, Ramon Pujol-Nadal.

Methodology: Gabriel Cardona.

Project administration: Ramon Pujol-Nadal.

Software: Gabriel Cardona.

Supervision: Gabriel Cardona.

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 14 / 15

https://doi.org/10.1371/journal.pone.0240735


Validation: Ramon Pujol-Nadal.

Visualization: Ramon Pujol-Nadal.

Writing – original draft: Gabriel Cardona, Ramon Pujol-Nadal.

Writing – review & editing: Gabriel Cardona.

References
1. Malinowski M, Leon JI, Abu-Rub H. Solar Photovoltaic and Thermal Energy Systems: Current Technol-

ogy and Future Trends. Proceedings of the IEEE. 2017; 105(11):2132–2146. https://doi.org/10.1109/

JPROC.2017.2690343

2. Bonnı́n-Ripoll F, Martynov YB, Cardona G, Nazmitdinov RG, Pujol-Nadal R. Synergy of the ray tracing

+carrier transport approach: On efficiency of perovskite solar cells with a back reflector. Solar Energy

Materials and Solar Cells. 2019; 200:110050. https://doi.org/10.1016/j.solmat.2019.110050

3. Cruz NC, Redondo JL, Berenguel M, Álvarez JD, Ortigosa PM. Review of software for optical analyzing

and optimizing heliostat fields. Renewable and Sustainable Energy Reviews. 2017; 72:1001–1018.

https://doi.org/10.1016/j.rser.2017.01.032

4. Blanco M, Mutuberria A, Monreal A, Albert R. Results of the empirical validation of Tonatiuh at Mini-

Pegase CNRS-PROMES facility. In: Proceedings of the 17th SolarPACES Int. Symposium on Concen-

trating Solar Power and Chemical Energy; 2011. Available from: https://iat-cener.github.io/tonatiuh/.

5. Google Inc. HOpS: The Heliostat Optical Simulator; 2013. Available from: https://github.com/google/

hops.

6. Wendelin T. SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics. In: Proceedings

of the ISEC 2003: International Solar Energy Conference; 2003. p. 253–260. Available from: https://

www.nrel.gov/csp/soltrace.html.

7. Osório T, Horta P, Larcher M, Pujol-Nadal R, Hertel J, Van Rooyen DW, et al. Ray-tracing software

comparison for linear focusing solar collectors. AIP Conference Proceedings. 2016; 1734. https://doi.

org/10.1063/1.4949041

8. Magnin V, Harari J, Halbwax M, Bastide S, Cherfi D, Vilcot JP. Angle-dependent ray tracing simulations

of reflections on pyramidal textures for silicon solar cells. Solar Energy. 2014; 110:378–385. https://doi.

org/10.1016/j.solener.2014.09.025

9. Lipovšek B, Krč J, TopičM. CROWM; 2019. Available from: http://lpvo.fe.uni-lj.si/en/software/crowm/.

10. Bos-Coenraad J. Scientrace; 2020. Available from: http://joepbc.github.io/scientrace/.

11. Bos-Coenraad J, Bunthof LAA, Schermer JJ. Scientrace: An open source, programmable 3D ray tracer.

Solar Energy. 2017; 155:1188–1196. https://doi.org/10.1016/j.solener.2017.07.003

12. OptiCAD Corp. OptiCAD; 2020. Available from: http://www.opticad.com.

13. Zemax LLC. Zemax; 2020. Available from: https://www.zemax.com/.

14. Breault Research Organization Inc. ASAP; 2020. Available from: http://www.breault.com/software/

asap-nextgen.

15. Lambda Research Corp. TracePro; 2020. Available from: https://www.lambdares.com/tracepro/.

16. COMSOL Inc. COMSOL; 2020. Available from: https://www.comsol.com/.

17. Riegel J, Mayer W, van Havre Y. FreeCAD; 2020. Available from: http://www.freecadweb.org.

18. Cardona G, Pujol-Nadal R. OTSunWebApp Tutorials; 2020. Available from: https://github.com/

bielcardona/OTSun/tree/master/OTSunWebApp.

19. Verma RK. Ray Optics. Discovery Publishing House Pvt. Limited; 2006. Available from: https://books.

google.es/books?id=acZGvg_7Z0gC.

20. Macleod HA. Thin-film optical filters. CRC Press/Taylor & Francis; 2010.

21. Buie D, Dey CJ, Bosi S. The effective size of the solar cone for solar concentrating systems. Solar

Energy. 2003; 74(5):417–427. https://doi.org/10.1016/S0038-092X(03)00156-7

22. Tesfamichael T, Wäckelgård E. Angular solar absorptance and incident angle modifier of selective

absorbers for solar thermal collectors. Solar Energy. 2000; 68(4):335–341. https://doi.org/10.1016/

S0038-092X(00)00029-3

23. Byrnes SJ. Multilayer optical calculations; 2016. Available from: https://arxiv.org/abs/1603.02720.

24. Steven Byrnes. tmm 0.1.7: Python Package Index; 2017. Available from: https://pypi.python.org/pypi/

tmm.

PLOS ONE OTSun, a python package for the optical analysis of solar energy devices with arbitrary geometry

PLOS ONE | https://doi.org/10.1371/journal.pone.0240735 October 14, 2020 15 / 15

https://doi.org/10.1109/JPROC.2017.2690343
https://doi.org/10.1109/JPROC.2017.2690343
https://doi.org/10.1016/j.solmat.2019.110050
https://doi.org/10.1016/j.rser.2017.01.032
https://iat-cener.github.io/tonatiuh/
https://github.com/google/hops
https://github.com/google/hops
https://www.nrel.gov/csp/soltrace.html
https://www.nrel.gov/csp/soltrace.html
https://doi.org/10.1063/1.4949041
https://doi.org/10.1063/1.4949041
https://doi.org/10.1016/j.solener.2014.09.025
https://doi.org/10.1016/j.solener.2014.09.025
http://lpvo.fe.uni-lj.si/en/software/crowm/
http://joepbc.github.io/scientrace/
https://doi.org/10.1016/j.solener.2017.07.003
http://www.opticad.com
https://www.zemax.com/
http://www.breault.com/software/asap-nextgen
http://www.breault.com/software/asap-nextgen
https://www.lambdares.com/tracepro/
https://www.comsol.com/
http://www.freecadweb.org
https://github.com/bielcardona/OTSun/tree/master/OTSunWebApp
https://github.com/bielcardona/OTSun/tree/master/OTSunWebApp
https://books.google.es/books?id=acZGvg_7Z0gC
https://books.google.es/books?id=acZGvg_7Z0gC
https://doi.org/10.1016/S0038-092X(03)00156-7
https://doi.org/10.1016/S0038-092X(00)00029-3
https://doi.org/10.1016/S0038-092X(00)00029-3
https://arxiv.org/abs/1603.02720
https://pypi.python.org/pypi/tmm
https://pypi.python.org/pypi/tmm
https://doi.org/10.1371/journal.pone.0240735

